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Abstract Learning classifiers from imbalanced data is still one of challenging tasks

in machine learning and data mining. Data difficulty factors referring to internal and

local characteristics of class distributions deteriorate performance of standard classi-

fiers. Many of these factors may be approximated by analyzing the neighbourhood of

the learning examples and identifying different types of examples from the minority

class. In this paper, we follow recent research on developing such methods for assess-

ing the types of examples which exploit either k-nearest neighbours or kernels. We

discuss the approaches to tune the size of both kinds of neighborhoods depending on

the data set characteristics and evaluate their usefulness in series of experiments with

real-world and synthetic data sets. Furthermore, we claim that the proper analysis of

these neighborhoods could be the basis for developing new specialized algorithms

for imbalanced data. To illustrate it, we study generalizations of over-sampling in

pre-processing methods and neighbourhood based ensembles.

1 Introduction

Supervised classification is one of the well studied tasks of machine learning, data

mining and statistical data analysis. Its aim is to learn the relationship between values

of attributes describing examples and a target class of interest. Since many problems

can be represented in the attribute value form it has a wide spectrum of possible

applications [1]. The classification relationships learned from labeled examples can

be used as a classifier to predict class labels for new, unclassified examples. Numer-

ous approaches, based on different principles, have been already introduced to learn
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classifiers. Nevertheless they may be insufficient when dealing with complexities

affecting the data representation.

One of these complexities is class imbalanced data, where at least one of the tar-

get classes contains a much smaller number of examples than the other classes. This

class is usually called the minority class, while the remaining classes are denoted

as majority class(es). Imbalanced data often occur in practical problems, such as,

medical data analysis, fraud detection, technical diagnostics or image recognition,

see, e.g., [8, 20, 60]. In all these problems correct recognition of the minority class

is of key importance. Nevertheless, the standard learning algorithms usually do not

work properly for these problems since they are biased toward better recognition of

the majority classes and they met difficulties, or even are unable, to classify correctly

new objects from the minority class [61].

Although the difficulty while learning classifiers from imbalanced data has been

known in practical applications for decades, this problem received a particular, grow-

ing research interest in the beginning of the current century and several specialized

methods have been proposed (for their review see, e.g., [7, 20, 21, 56]). They are

usually categorized as classifier-independent pre-processing techniques or modifica-

tions of algorithms for learning particular classifiers.

Researchers still treat learning from class imbalanced data as a research challenge

and look for new more effective directions. One of these directions includes studying

the nature of the imbalanced data, key properties of its underlying distribution and

consequences they bring for learning better classifiers or for constructing specialized

pre-processing methods.

While examining these properties, it has been noticed that the high, global imbal-

ance ratio between cardinalities of minority and majority classes is not the only and

not even the main reason of difficulties in learning classifiers. Other, as we call

them, data difficulty factors, referring to internal characteristics of class distribu-

tions, are also influential. They include: decomposition of the minority class into

many rare sub-concepts playing a role of small disjuncts [25, 26], the effect overlap-

ping between the classes [15, 46] or presence of many minority class examples inside

the majority class region [39]. When these data difficulty factors occur together with

class imbalance, they may seriously hinder the recognition of the minority class, see

e.g., experimental studies [36, 40, 42, 48].

Please note that aforementioned data factors correspond to local data character-
istics, occurring in some sub-regions of the minority class distribution rather than

at the global level of the entire data set. Furthermore, the development of several

informed pre-processing methods, such as [9, 31], is strongly based on exploiting

information about example distribution in the neighborhood of considered minority

examples.

In the previous research Napierala and Stefanowski have linked data difficulty

factors to different types of examples forming the minority class distribution [39, 40,

52, 55]. It has led the authors to a differentiation between safe and unsafe exam-

ples for recognizing the minority class. These types of examples were identified by

analyzing class labels distribution among examples’ neighbours [40]. Two ways of

modeling the neighbourhood have been proposed, either by considering, k-nearest
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neighbours or kernel functions [38, 40]. These approaches can be applied to several

crucial issues for learning classifiers from imbalanced data:

∙ to analyze internal characteristics of real-world data sets and establish their diffi-

culty for recognizing minority classes [38, 40];

∙ to support comparisons of algorithms for learning classifiers as well as pre-

processing methods [42];

∙ to construct new, specialized algorithms for improving classifiers [5].

Nevertheless, in these studies the size of neighborhood was chosen in the simplest

way and usually with the same value of the crucial hyper-parameter for all considered

data sets. Although it has proven to be sufficiently effective in previous works, a more

systematic tuning of this parameter with respect to data set characteristics is still an

open research problem and requires more studies.

Therefore, the main aims of this paper are the following:

1. To introduce a new approach to tune the size of the neighborhood depending

on the data characteristics. Unlike the previous works [40, 42], we pay more

attention to using kernels in this analysis.

2. To experimentally study usefulness of kernels for an analysis of imbalanced

data—also for identifying more types of examples than proposed in [40].

3. To discuss the applicability of this special tuned neighborhood for construct-

ing dynamic pre-processing methods as well as to learning neighbourhood based

ensembles dedicated to, imbalanced data.

The paper is organized as follows. The next section summarizes related works on

data difficulty factors and using local information in pre-processing methods. The

previous approach to an identification of types of minority examples is discussed

in Sect. 3. The new proposal of tuning its parameters is introduced in Sect. 4 and

validated in the experiments in Sect. 5. The following section discusses its use to

construct new pre-processing techniques. Similarly, its applicability for the Nearest

Neighbourhood Ensemble is presented in Sect. 7. Other possible extensions of the

presented neighborhood analysis are discussed in Sect. 8. The final section draws

conclusions.

2 Related Research on Imbalanced Data Characteristics

In this section we will briefly discuss the issues most related to studying local char-

acteristics of class imbalanced data. We do not intend to provide here a comprehen-

sive review of methods for dealing with these data. For such a review, the reader is

referred to the monograph [20] covering the most representative issues, as well as to

systematic surveys, such as [7, 8, 21, 56].
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2.1 Nature of the Class Imbalance Problem

Recall that a data set is considered class imbalanced when it is characterized by

an unequal distribution of objects in classes. Japkowicz names it a between-class
imbalance [24]. It may be quantified by a class imbalance ratio—which represents

a global point of view at data characteristics.

Generally speaking, any data set with unequal distribution of examples between

class could be considered as imbalanced. However, there is no common agreement

with regard to a precise threshold defined for the global imbalance ratio that would

allow to distinguish imbalanced data sets [21]. Here we also do not define a precise

threshold value but share an opinion saying that the class imbalance problem is asso-

ciated with lack of data (called also absolute rarity [60]), which hinder the accurate

recognition of minority classes [53].

In this study we consider a two class (minority class vs. majority class) formu-

lation of class imbalance problem. It is justified by semantic importance of the rare

class versus other classes, which can be considered as the two class problem. More-

over, this formulation of the imbalance problem is mostly studied in the current lit-

erature. Even if the original definition of the classification problem includes more

classes, they are aggregated into one majority class. Note, however, that in some

applications it may be reasonable to consider multi-class data sets, where imbal-

ances may exist between various classes and it is required to improve classifier per-

formance with respect to more than one minority class. We will come back to these

issues in Sect. 8.

The class imbalance observed in a data set can be either intrinsic (in the sense

that it is a direct result of the nature of the data space) or extrinsic (caused by rea-

sons external to the data space). Extrinsic imbalance can be caused by high costs

of acquiring the examples from the minority class, e.g., due to economic or privacy

reasons or it comes from technical, time or storage limitations [60].

2.2 Data Complexity and Difficulty Factors

Although many authors have experimentally shown that standard classifiers meet

difficulties while recognizing the minority class, it has also been observed that in

some problems characterized by high imbalance between classes (expressed by the

value of the global imbalanced data) standard classifiers are still sufficiently accu-

rate [2]. For instance, Napierala reports several experimental studies which conclude

that when there is a clear separation between classes, the minority class can be suf-

ficiently recognized regardless of the high imbalance ratio [38].

These and other studies prove that the global class imbalance ratio is not nec-

essarily the only, or even the main, problem causing the decrease of classification

performance and focusing only on the global ratio may be insufficient for improving

classification performance. Data complexity, understood here as the distribution of

examples from both classes in the attribute space, has a crucial impact on learning. It
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is not particularly surprising, since data complexity affects learning also in standard,

balanced domains. However, when data complexity occurs together with the class

imbalance, the deterioration of classification performance is amplified and it affects

mostly (or even only) the minority class.

In the context of learning from imbalanced data the term “data complexity” may

comprise different data distribution patterns, such as: overlapping, small disjuncts,

outliers or noise. Several authors call them as data difficulty factors. We describe

them briefly below.

Within Class Decomposition and Small Disjuncts
The experimental studies with several data sets have shown that minority class usu-

ally does not form a homogeneous, compact distribution of the target concept but it

is often scattered into smaller sub-parts representing separate sub-concepts. Japkow-

icz named it within-class imbalance [26]. This is closely related to the problem of

small disjuncts which are harder to learn and cause more classification errors than

larger sub-concepts.

Although the problem of within-class imbalance may occur in both minority

and majority classes, small disjuncts are more characteristic and more critical for a

minority class. In the majority class, the sub-concepts will be most often represented

by a sufficient number of examples forming larger disjuncts, while in the minority

class, in which the examples are already rare, their further decomposition into sev-

eral sub-concepts will produce small disjuncts, represented by a too small number of

examples to be correctly learned. Such fragmentation of the minority class into five

smaller sub-parts is illustrated in Fig. 1. Additionally each sub-part of the minority

Fig. 1 Visualization of

sub-concepts of the minority

class additionally affecting

by class over-lapping (here

represented by borderline

examples) in flower data
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has a small overlapping with the neighbours from the majority class (which consti-

tute an additional difficulty).

According to [25, 26] the higher deterioration of classification performance

results from an increased decomposition of the minority class into many sub-parts

containing too few examples rather than by changing the global imbalance ratio.

Overlapping Between the Classes
In the boundary regions between classes, the examples from different classes may

overlap—which hinders learning classifiers even in a standard, balanced case. As the

minority class is underrepresented in the data set, it may be underrepresented also in

the overlapping region. Most learning algorithms tend to shift the decision bound-

ary too close to the minority class, treating the whole overlapping area as belonging

to the majority class. Indeed, the experiments on mainly artificial data with differ-

ent degrees of overlapping have shown that overlapping deteriorated the classifier

performance, especially when the minority class was concerned [46]. Furthermore,

according to research of [15] the imbalance ratio calculated locally inside the over-

lapping regions is more influential for the minority class than the global ratio con-

cerning the complete data. In other experiments a combination of increased overlap-

ping between the classes with decomposition of the minority class influenced results

more than changing the class imbalance ratio [39].

Dealing with Noisy or Outlier Examples
Single examples from one class, located far from the decision boundary inside the

other class, are usually called noisy examples. Handling noise is often considered

in standard machine learning problems, however it becomes even more important

issue in learning from imbalanced data. Noisy majority examples are particularly

harmful for recognition of the minority class. They may cause a fragmentation of the

minority class and increase the difficulties in learning its definition—see a discussion

in [38]. Thus, examples of this type are usually either removed/relabeled in the pre-

processing phase [48, 55].

On the other hand, distant minority examples surrounded by the majority class

examples are not necessarily noisy. As the minority class examples are underrep-

resented in the data set, such lonely examples may represent a rare but valid sub-

concept of which no other representatives could be collected for training [38, 40].

We will call such examples outliers.

The role of noise and outliers in learning from imbalanced data has not been

deeply studied yet. Few authors have shown that randomly introduced class or

attribute value noise results in degradation of classification performance on imbal-

anced data, see e.g., [38]. Some other authors have studied the role of iterative fil-

tering (or removing) noisy (difficult to be correctly classified) minority case exam-

ples [48]. More interesting experiments presented in [39] have also shown that single

minority examples located inside the majority class regions cannot be simply deleted

from the data since their proper treatment by informed pre-processing may improve

classification performance for the minority class.
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To summarize the discussion of the aforementioned data complexity factors we

would like to stress that their identification in real world data sets is not a trivial

task. The discussion of this issue and references to known methods are presented in

[38, 53].

2.3 Local Data Characteristics in Informed Pre-processing

Recall that the pre-processing methods are classifier independent and they are

designed to modify the imbalanced data set in a way that transforms the class dis-

tribution to a more appropriate one for learning classifiers. Many of these methods

generate a more balanced distribution of examples into classes. In general, changing

the class distribution towards a more balanced one improves the performance for

most data sets and classifiers [21].

The simplest pre-processing methods are random over-sampling which replicates

examples from the minority class, and random under-sampling which randomly

eliminates examples from the majority classes until a required degree of balance

between class cardinalities is reached. Therefore these methods exploit global infor-

mation about the data set: the current and expected imbalance ratios.

Since simple random pre-processing methods are often not effective, focused
(also called informed) methods have been introduced; see their comprehensive

reviews in [7, 21]. Many of these methods attempt to take into account internal

characteristics of data regions around minority class examples. Historically, the first

such method resulted from Kubat and Matwin’s proposal of the one-side-sampling
method (OSS) [29]. These authors observed that characteristics of mutual positions

of examples from different classes is a source of difficulty. Thus, OSS is based on

distinguishing different types of learning examples: safe examples (located inside

the regions occupied by examples from the given class), borderline (located near the

decision boundary) and, so called, noisy examples (these authors understood them

as examples from the given class localed inside safe regions of the other classes).

According to the OSS filtering approach, borderline and noisy examples are removed

from the majority classes, while the minority class is kept unchanged (even for noisy

minority examples).

Many other filtering (mainly under-sampling) methods exploits the paradigm of

edited nearest classifiers. For instance, the Nearest Cleaning Rule (NCR) [31] applies

it to removal of “difficult” examples from the majority classes. Briefly speaking,

NCR first looks for a specific number k of nearest neighbours (k = 3 is recommended

in [31]) of the “seed” example. Then, it re-classifies seed example according to most

frequent class label among neighbours. Finally, it removes from majority class these

examples, which cause the wrong re-classification.

The analysis of class labels among k nearest neighbors is also exploited in a hybrid

method SPIDER that selectively filters out the majority examples which may lead

to incorrect re-classification of the minority ones [55]. In the first stage it applies

the edited nearest rule to distinguish between safe and unsafe examples (which is
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depending how strongly k neighbours may correctly—or incorrectly—re-classify the

given “seed” example). For the majority class, the neighbours which misclassify the

seed minority example are either removed or relabeled. Then, in the next stage, the

reclassification analysis is repeated and the remaining unsafe minority examples are

additionally replicated depending on the number of majority neighbours.

The best known method of informative over-sampling is called Synthetic Minor-

ity Over-sampling Technique (SMOTE) [9]. It is also based on the k nearest neigh-

bourhood and exploits it to selectively over-sample the minority class by creating

new synthetic examples with respect to the global parameter, called over-sampling
ratio. SMOTE has been further extended in different ways—see reviews in [7, 21].

Quite often these extensions exploit different local information about the learn-

ing examples. For instance, the authors of BORDERLINE SMOTE do not treat all

minority examples in the same way and focus oversampling around examples from

borderline region between classes [19].

3 Analyzing Neighbourhoods of Minority Class Examples

3.1 Motivations

Following the critical analysis of earlier works on using local data characteristics in

informed pre-processing and studies on the complexity of imbalanced data Napierala

and Stefanowski have decided to link data difficulty factors to different types of exam-
ples forming the minority class distribution. They proposed to differentiate between

safe and unsafe examples in learning from imbalanced data [40], however in a dif-

ferent way than earlier proposed, e.g. by [29]. Below we present this categorization

following their definitions from [38, 40, 42].

Safe examples are ones located in the homogeneous regions populated by exam-

ples from one class only. Other examples are unsafe and more difficult for learning.

Unsafe examples are categorized into borderline (placed close to the decision bound-

ary between classes), rare cases (isolated groups of few examples located deeper

inside the opposite class), or outliers. As the minority class can be highly under-

represented in the data, it is claimed that the rare examples or outliers, could rep-

resent a very small but valid sub-concepts of which no other representatives could

be collected for training [38]. Therefore, they cannot be considered as noise exam-

ples which typically are then removed or re-labeled. In Fig. 2 all these four types of

examples from the minority class are illustrated in the 2-dimensional distribution of

the two class data set called paw.

Recall experimental studies from [38, 40], where the graphical visualizations

techniques based on multi-dimensional scaling and non-linear t-SNE projection have

confirmed the occurrence of this categorization of example types in several real-

world imbalanced data sets. However, such an analysis cannot be directly applied to
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Fig. 2 Visualization of four

types of minority class

examples in paw data
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larger data. Napierala and Stefanowski have looked for new simple techniques which

should more directly identify these types of examples.

Their method origins from the hypotheses [40] on role of the mutual positions of

the learning examples in the attribute space and the idea of assessing the type of an

example by analyzing class labels of the other examples in its local neighbourhood.

Following the proposal of [38, 40]—a term local refers to studying characteristics

of the nearest examples due to the possible sparse decomposition of the minority

class into rather rare sub-concepts with non-linear decision boundaries. Considering

a larger size of the neighbourhood may not reflect the underlying distribution of the

minority class.

Such a neighbourhood of an example could be modeled in different ways. In the

previous research Napierala and Stefanowski proposed to construct it with:

∙ k-nearest neighbours,

∙ or kernel functions.

The analysis of class labels of examples in the k-nearest approach concerns a fixed

number of nearest examples (without taking into account their distances to the seed

examples) while in the kernel approach all examples within a given radius (the kernel

bandwidth) are taken into account together with their distances. We will come back

to the problem of tuning their proper values in Sect. 4. An analysis of the class label

distribution of examples inside the neighborhood of the given example allow us to

assess its level of difficulty and as a result its type (safe vs. unsafe to be learned).

Note, however, that constructing both types of the neighbourhood involves deci-

sions on choosing the distance function. In previous considerations Napierala and



60 J. Błaszczyński and J. Stefanowski

Stefanowski have followed results of analyzing different distance metrics [32] and

chose the HVDM metric (Heterogeneous Value Difference Metric) [63]. Its main

advantage for mixed attributes is that it aggregates normalized distances for qualita-

tive and quantitative attributes. In particular, comparing to other metrics, HVDM

provides more appropriate handling of qualitative attributes as instead of simple

value matching, as it makes use of the class information to compute attribute value

conditional probabilities by using a Stanfil and Valtz value difference metric for nom-

inal attributes [63].

More precisely, let x be a seed example and y be another example (potential neigh-

bour). The HVDM is defined over m attributes as

D(x, y) =

√
√
√
√

m
∑

i=1
di(xi, yi)2

All distances for single attributes are normalized in range 0 to 1. If one of the attribute

values of xi, yi is unknown, the distance di is equal to 1. The partial distance for

numeric attributes is defined as a normalized metric (yi − xi). Then, the partial dis-

tance for nominal attributes is defined as:

di(xi, yi) =
{

0 if xi = yi
svdm if xi ≠ xi

Value difference metric svdm is defined as [10]:

svdm =
k
∑

l=1

|
|
|
|

N(xi,Kl)
N(xi)

−
N(yi,Kl)

N(yi)
|
|
|
|

where k is the number of classes, N(xi) and N(yi) are the numbers of examples for

which the value on i-th attribute is equal to xi and yi respectively, N(xi,Kl) and

N(yi,Kl) are the numbers of examples from the decision class Kl, which belong to

N(xi) and N(yi), respectively.

In the next two sub-sections we will discuss more precisely previous proposals of

modeling these two kinds of the neighbourhood (with k-nearest neighbours or kernel

functions) and establishing types of minority class examples [38, 40].

In both cases, deciding about the type of minority examples is based on analyzing

class labels of examples in its neighbourhood.

3.2 Modeling k-Neighbourhood

The k-nearest neighbourhood has been mainly exploited in the previous studies [38,

40, 42] and some applications of this approach to pre-processing [43, 62] or special-
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ized ensembles [5]. These authors have aimed at distinguishing whether an example

is safe, borderline, rare or outlier depending on the numbers of examples from minor-

ity vs. majority classes in the considered neighbourhood. As we will also discuss in

the next section, the size neighbourhood k should not be smaller than 5 as it may

poorly distinguish between four types of examples.

In [40] the following rule has been introduced to identify the type of the given

example. If all, or nearly all, its neighbours belong the same (usually minority) class,

this example is treated as the safe example, otherwise it is one of unsafe types. If the

number of both classes inside the k-neighbourhood are quite similar, the example is

treating as borderline one. For an extreme situation—all neighbours belong to the

opposite class it is clearly an outlier. Finally, the examples with one or sometimes

two (for larger sized of the k) neighbours from its class was identified as a rare case.

For the most used size of neighbourhood k = 5, the proportion of neighbours

from the same class against neighbours from the opposite class can range from 5:0

(all neighbours are from the same class as the analyzed example) to 0:5 (all neigh-

bours belong to the opposite class). Depending on this proportion, Napierala and

Stefanowski have proposed to assign the labels to the examples in the following way:

∙ 5:0 or 4:1—an example is labelled as a safe example.

∙ 3:2 or 2:3—a borderline example; Note that although the examples with the pro-

portion 3:2 are still correctly re-classified by its neighbours, the number of neigh-

bours from both classes is approximately the same, so it was assumed that this

example could be located too close to the decision boundary between the classes.

∙ 1:4—labelled as a rare example.

∙ 0:5—an example is labelled as an outlier.

Similar interpretations has been extended for larger values of k. For instance, in

case of k = 7 and the neighbourhood distribution 7:0 or 6:1 or 5:2—a safe example;

4:3 or 3:4—a borderline example; again the number of neighbours from both classes

are approximately the same; 2:5 or 1:6—a rare example; and 0:7—an outlier [38].

Besides using such thresholding, these authors also considered defining the one

coefficient expressing a safe level of the given example x—being an estimator of

conditional probability of its assignment to the minority class as p(Cmin|x) =
kmin

k
,

where Cmin is a minority class, k is the number of neighbours and kmin is the number

of minority class neighbours [42].

3.3 Modeling Kernel Neighborhood

An alternative approach to fixing the number of neighbours is to fix the local area

around the example as it done in kernel approaches—which was discussed in [38]

and studied in [42]. Note that due to the form of the kernel function, different weights

(probabilities) could be assigned to the neighbours, based on their distance from the

analyzed minority example x. Moreover, unlike having always the same number of

examples in the k-neighbourhood modeling, each kernel may cover different number
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of examples within a fixed radius which rises wider interpretation of local density

(see our further experimental analysis in Sect. 5.2).

Several kernel functions could be considered—besides the most popular Gaussian

kernel, other triangular or Epanechnikov functions are among common choices. In

this study we have decided to apply Epanechnikov function which is defined as:

K(u) = 3
4
(1 − u2)𝟏

|u|≤1,

where u = di

h
, di is the distance of i-th example (xi) to the considered example x, and

h is bandwidth of the kernel. Epanechnikov kernel is suitable for our purposes since

it takes values 0 when di > h. In this sense, it resembles limits of k-neighbourhood.

Moreover, this property will be very useful inside the procedure for tuning the neigh-

borhood size discussed in Sect. 5.2. The distance di between examples is calculated

according to HVDM metric (see motivations presented in the earlier Sect. 3.1). Given

the definition of the kernel function we estimate a weighted sum of all minority

neighbours, where weights depend on the distance from the analyzed example. Com-

paring it to the weighted sum calculated for the majority class neighbours we can

estimate the probability that the analyzed example x may belong to the minority

class p(Cmin|x).
To assess the type of a minority example, we need to discretize the range of this

value into subintervals. Inspired by earlier research [38], in this paper we proposed

the following rule: if 1 ≥ p(Cmin|x) > 0.7 then label x as safe; if 0.7 ≥ p(Cmin|x) >
0.4 then label x as borderline; if 0.4 ≥ p(Cmin|x) > 0.2 then label x as rare; if 0.2 ≥

p(Cmin|x) > 0 then label x as outlier (we keep this type similarly to earlier name);

if p(Cmin|x) = 0 then label x as a new type called zero. Finally, if there is no other

example inside the neighbourhood of x (even from the opposite majority class), then

label x as a singleton in an empty sub-region (further called simply empty).

Note that this rule is different than the one proposed in [38, 42] as it introduces

two new labels, which allow to better understand types of the kernel neighbourhood

discovered in data.

3.4 Experiences with Analyzing Types of Minority Examples

The previous experiments with modeling k-nearest neighbourhood applied to UCI

imbalanced data sets are described in [38, 42]. They have clearly demonstrated that

most of these real-world data do not include many safe minority examples. They

rather contain all types of examples, but in different proportions. Depending on the

dominating type of identified minority examples, the considered data sets could be

labeled as: safe, border, rare or outlier—which show the level of their potential dif-

ficulty. Moreover, the thesis [38] has shown that the classifier performance could be

related to the category of data. First, for the safe data nearly compared single clas-

sifiers (SVM, RBF, k-NN, decision trees or rules) have achieved good, comparable
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prediction results. The larger differentiation among these classifiers has been noticed

for more unsafe data sets (e.g. SVM is worse than k-NN and trees for data with higher

number of rare cases and outliers). The similar analysis has been carried out for the

most representative pre-processing approaches, showing that the competence area

of each method depends on the data difficulty level, based on the types of minority

class examples. For more details see [38, 42].

4 Tuning the Neighbourhood Size

In this paper we focus our interest on tuning the size of the neighborhood with respect

to characteristics of each data set.

4.1 Tuning k Value

In the previous studies Napierala and Stefanowski [38, 40, 42] exploited mainly k
nearest neighbourhood and they showed that values smaller than 5, e.g., k = 1 and

k = 3, may poorly distinguish the type of examples, especially if one wants to assign

them to four types. Too high values, on the other hand, would be inconsistent with the

assumption of the locality of the method (see [42] for more details of the discussion

why the locality is important for analyzing complex minority class distributions in

imbalanced data).

They proposed to set k = 5 as the default value. To check whether this parameter k
could strongly influence the results of labelling minority examples, a special sensitiv-

ity analysis over 26 different data sets was carried out in [42]. Its results have shown

that proportions of identified types of examples are quite stable while changing k
values (between 5 and 13—globally defined for all of these data sets). The recom-

mendation of the smallest value of k has come from the paradigm of the most local

analysis of the complex decision boundaries of the minority class and its sparsity.

Furthermore, the authors pointed out that the parameter k = 5 was recommended for

many related, informed pre-processing methods (see e.g. [9, 31, 55]).

Nevertheless, the idea of tuning of k parameter, for each imbalanced data set indi-

vidually, has not been considered so far. Studying the literature one may find some

positions that consider changing size of neighbourhoods in a standard k-NN classi-

fier for class balanced data. In these works choosing value k is made with respect to

the data set or class cardinality. Refer, e.g., to [17] which recommends approximating

k ≈
√

n, where n is the total number of learning examples. However, we hypothe-

size that in case of imbalanced data n should be rather the size of the minority class.

Other researches have proposed some slightly different approximations. Enas and

Chai [12] postulated to take

k = n2∕8 or k = n3∕8.
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See also [16] for a more detailed presentation of similar proposals. Since these

formulas have been designed with typical problems and k-NN classifier in mind,

Napierala and Stefanowski have expressed their doubts whether they can be directly

transferred into a different context of modeling neighborhoods for class imbalanced

data [42].

Here, we share this point of view and we propose a method of tuning k value in

a cross-validation procedure. The important question concerns the choice of opti-

mization criterion for the tuning method. If one refers to the idea of recognizing the

minority class examples as good as possible (which is a key issue in learning from

imbalanced data)—such a criterion may reflect abilities of k neighborhood to cor-

rectly re-classify examples. This idea is consistent with some earlier proposals of

using cross-validation to choose k value which minimize the classification error of a

standard k-NN classifier, as it was argued by Dasarathy [11]. We will describe it in

more detail in Sect. 4.3.

4.2 Tuning Kernel Bandwidth

Modeling neighbourhood with kernels was preliminary discussed in [38, 42] as an

alternative to using k neighbours analysis of imbalanced data. The authors postu-

lated that the Epanechnikov function should be equal to the average distance to the

5th neighbour of each minority example in the data set, as they wanted to keep the

link to their basic k neighbourhood method. Furthermore, in [42] they presented

an comparative experiment of labelling the minority class examples in 26 popular

imbalanced data sets and demonstrated that using the kernel method does not change

the results of k neighbourhood more than by 5–10%.

In this paper we want to consider new approaches for tuning the size of kernel

neighbourhood with respect to each data set. Firstly, note that the kernel analysis is

often related to kernel density estimation, i.e., non-parametric approach to estima-

tion of probability density function, which is one of the most fundamental issues in

statistics [33, 50, 51]. Although there are important differences between the density

estimation and our problem, one can still notice some similarities while calculating

probabilities in considered points of the example space. Recall that exploiting class

probabilities inside the kernel neighbourhood of the seed example x may be equiva-

lent to operating on contribution of neighbours with respect to their kernel distance

to x. It may be also interpreted in the context of the kernel density estimator

̂fh(x) =
1
n

n
∑

i=1
Kh(x − xi),

where n is a number of neighbours xi (or more generally considered data points), Kh
a kernel function with a bandwidth size h.
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It is also known that the kernel bandwidth is this parameter which strongly influ-

ences the resulting probability estimate. Its tuning has been already intensively stud-

ied in statistics. The most of approaches attempt to optimize a criterion referring to

the expected L2 risk, which is a kind of the mean integrated squared error between

̂fh(x) − f (x). Although basic formulations involve unknown density function f many

automatic, data-based methods have been developed for selecting the bandwidth h;

for some reviews refer, e.g., to [27].

If Gaussian basis kernel functions are used to approximate univariate data, and

the underlying density being estimated is assumed to be Gaussian, the choice for h
(that is, the bandwidth that minimizes the mean integrated squared error) is often

estimated as

h =
(

4𝜎̂5

3n

) 1
5

≈ 1.066𝜎̂n−1∕5.

where 𝜎̂ is the standard deviation of the examples in the data. This approximation

is known as Silverman’s rule of thumb [51] and quite often implemented in statis-

tical software. Other bandwidth selection methods were also proposed, for instance

Terrell and Scott proposed oversmoothed density estimates which in case of the stan-

dard Gaussian kernel leads to the oversmoothed bandwidth h = 1.144𝜎̂n−1∕5. These

considerations could be generalized for the multi-dimensional kernel with H—a

symmetric positive bandwidth matrix [33]. For instance the aforementioned rules

of thumbs are generalized to

hi = 𝜎̂i

(

4
(d + 2)∕n

) 1
d+4

.

Nevertheless, the above tuning methods concern a typical estimation of density

function in the unsupervised setting. Although they are sometimes applied as a kind

of pre-processing inside the supervised classifiers—in particular Bayesian classi-

fiers, see e.g., [34], in our opinion these methods cannot be transferred directly to our

problem of supervised neighbourhood analysis for imbalanced data. However, due

to some similarities, we acknowledge inspiration in specialized density estimation

methods, which are based on cross-validation optimization of Least Squares forms

representing the integrated squared error (ISE) of density functions or, so called,

biased versions [50].

4.3 A New Tuning Method Based on Cross-Validation

Following the critical analysis of tuning k parameter (see Sect. 4.1), and kernel

bandwidth in density estimation (in Sect. 4.2), we propose a simple cross-validation

method to tune both of these parameters. Our motivation is to make use of ability of

neighbourhoods of an example to correctly recognize its class label. Recall that in



66 J. Błaszczyński and J. Stefanowski

learning classifiers from imbalanced data one attempts to improve recognition of the

minority class, so studying the neighborhood from the re-classification perspective

may be connected with this aim.

The tuning method is based on the optimization procedure which scans a value of

neighbourhood parameter (k for k nearest neighbourhood and bandwidth h for kernel

neighbourhood) from a pre-defined set of possible values. In our further experiments,

for the kernel version we will refer these values to the average distances between

minority class examples calculated for a given data set (see Sect. 5.2). However, in

general, they could be other appropriate values. In case of k nearest neighbourhood

we will enumerate k values starting from the smallest possible value.

As the optimization criterion we should choose a measure reflecting ability of

the neighborhoods built on the training examples to recognize the type of the testing

example. In further experiment we have decided to apply popular G-mean measure

as it aggregates re-classifications of examples from both classes.

For a given value of an analyzed parameter (bandwidth h or k) the data set is

split into training and testing parts following the stratified version of cross validation

technique. For each split the following schema is carried out:

∙ For each example from the training part its neighborhood is constructed and tuned

with respect to the given parameter value—its size.

∙ Each example from the testing part is classified by the tuned neighborhood (of the

same size as the optimized parameter).

∙ The classification by the neighbourhood is performed according to highest proba-

bility p(Ci|x) that example x, from the test set may belong to class Ci (for problems

considered in this paper i = {1, 2}, since we have only minority class Cmin, and

majority class Cmaj), estimated according to distribution of classes of examples in

the neighbourhood constructed in the training set.

∙ The value of the optimization criterion is calculated on the basis of how many

examples from a test set are correctly classified by the tuned neighbourhood.

The final value of the optimization criterion comes from averaging over several

folds inside the cross-validation. The cross-validation may be repeated several times

to reduce variance of optimization criterion. The value of the finally chosen neigh-

bourhood parameter that corresponds to the best average optimization criterion is

the result of this tuning method.

5 Experimental Analysis of Data Characteristics

5.1 Experimental Setup

In this section we will carry out two kinds of experiments. Firstly, we will show

how to tune the kernel neighbourhood and k-neighbourhood sizes, i.e., bandwidth h
and k, over different benchmark real-world data sets and synthetic data sets. It should
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Table 1 Characteristics of real-world data

Data set # examples # attributes Minority class IR

abalone 4177 8 0–4, 16–29 11.47

breast-cancer 286 9 Recurrence-

events

2.36

car 1728 6 Good 24.04

cleveland 303 13 3 7.66

cmc 1473 9 2 3.42

ecoli 336 7 imU 8.60

haberman 306 4 2 2.78

hepatitis 155 19 1 3.84

scrotal-pain 201 13 Positive 2.41

solar-flare 1066 12 F 23.79

transfusion 748 4 1 3.20

vehicle 846 18 Van 3.25

yeast 1484 8 ME2 28.10

illustrate the usefulness of the method presented in Sect. 4. Secondly, given the tuned

sizes of neighbourhood, we will analyze the internal characteristics of imbalanced

data sets and establish the level of their difficulty (with respect to different types

of minority examples). This part of experiment should show the applicability of the

neighbourhood analysis to recognize the different categories of imbalanced data sets.

Similarly to the related study [42] we will focus our experiments on 13 bench-

mark real-world imbalanced data sets. Their characteristics is presented in Table 1.

We have chosen the data sets which have been often studied in many experimen-

tal studies with imbalanced data. They represent different sizes, imbalance ratios

(denoted by IR), domains and have both continuous and nominal attributes. Follow-

ing the most related results [42] some of these data sets should be easier to learn

standard classifiers while most of them constitute different degrees of difficulties.

Nearly all of benchmark real-world data sets come from the UCI repository.
1

One

data set is medical data set which was used in the earlier works of Stefanowski et

al. on class imbalance.
2

In data sets with more than one majority class, they are

aggregated into one class to have only binary problems, which is also typically done

in the literature.

Furthermore, we have decided to study few synthetic data sets with known data

distribution. We apply a specialized generator for imbalanced data [64] and pro-

duced two different types of data sets. The examples of both minority classes are

generated randomly inside predefined spheres and the majority class examples are

1
http://www.ics.uci.edu/mlearn/MLRepository.html.

2
We are grateful to Prof. W. Michalowski and the MET Research Group from the University of

Ottawa for providing us an access to scrotal-pain data set.

http://www.ics.uci.edu/mlearn/MLRepository.html
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uniformly distributed in an area surrounding them. We consider two configurations

of these minority class spheres: called paw and flower—see their 2-D illustrations

at Figs. 1 and 2. In both data sets the global imbalanced ratio IR is equal to 7, and

the total cardinality of examples are 1200 for paw and 1500 for flower always

with three attributes. The minority class is decomposed into 3 sub-parts or 5 sub-

parts. Moreover, each of this data sets has been generated with different numbers of

unsafe examples—which is denoted by four numbers inside the name of data. For

instance flower5-3d-30-40-15-15 means that the generated minority class

should contain approximately 30% of safe examples, 30% inside the class overlap-

ping, 15% rare and 15% outliers.

5.2 Tuning Kernel Bandwidth and k-Neighbourhood

In this experiment we used the method presented in Sect. 4 to tune the best size

of kernels’ bandwidth h and the best value of parameter k representing the number

of nearest neighbours. The results of the tuning on benchmark real-world data are

presented in Table 2, while the results of tuning on synthetic data are presented in

Table 3. The results presented in these tables come from stratified 10-fold cross-

validation averaged 5 times to improve reproducibility and reduce possible variance

of the optimization criterion (here G-mean).

Note that the considered bandwidth h sizes refer to the average distance to k-th

nearest neighbour in the minority class of the given data set. This setting allows us to

obtain more comparable results and make the bandwidth size dependent on the char-

Table 2 Bandwidth h and k tuned on real-world data

Data set Kernel k-NN

Avg. k h G-mean k G-mean

abalone 6.5 0.074 36.679 5 45.547

breast-cancer 8 0.087 52.480 7 57.324

car 8 ≃0 77.265 5 87.627

cleveland 1 0.523 22.190 5 41.997

cmc 1 0.059 47.963 5 58.233

ecoli 7 0.332 76.739 9 80.300

haberman 9 0.328 43.624 5 56.552

hepatitis 6 0.812 65.695 7 71.893

scrotal-pain 8.5 0.408 55.955 9 77.244

solar-flare 1 0.038 27.095 5 50.609

transfusion 3 0.128 53.976 7 60.710

vehicle 8.5 0.516 88.682 5 93.883

yeast 2.5 0.430 34.391 5 60.018
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Table 3 Bandwidth h and k tuned on synthetic data

Data set Kernel k-NN

Avg. k h G-mean k G-mean

flower5-3d-10-20-35-35 0.5 0.058 43.199 7 52.549

flower5-3d-100-0-0-0 9 0.077 91.906 9 96.407

flower5-3d-30-40-15-15 2.5 0.103 79.623 9 80.998

flower5-3d-30-70-0-0 9 0.076 89.802 9 96.082

flower5-3d-50-50-0-0 9 0.077 92.757 8 96.506

paw3-3d-10-20-35-35 0.5 0.066 44.088 7 49.319

paw3-3d-100-0-0-0 8.5 0.099 95.425 9 97.067

paw3-3d-30-40-15-15 2 0.113 78.178 7 79.186

paw3-3d-30-70-0-0 9 0.100 90.252 7 93.189

paw3-3d-50-50-0-0 8.5 0.098 92.458 9 95.090

acteristics of each data set that was analyzed. Please note that value of k-neighbour

according to the average distance in the minority class relates to some extend to the

value of k in the other approach based on nearest neighbours. Technically, we con-

sidered values of the kernel bandwidth corresponding to average distance to k-th

neighbour, with k from interval [5, 9] with a basic step 0.5.

We have chosen these values as we wanted to check smaller neighbourhoods,

which was already well motivated in the previous research presented in [42]. In case

of the other approach based on nearest neighbours, we considered only

k = {5, 6, 7, 8, 9} for the same reasons. The choice of k ≥ 5 is motivated here by the

fact that neighbourhoods smaller than 5 do not allow to perform sensible labelling of

example types that we presented in Sect. 5.3. This argument is not viable for average

k values related to the bandwidth size. In Tables 4 and 5, we present an average num-

ber of examples inside the kernel for bandwidths tuned in experiments on real-world

and synthetic data sets, respectively.

Note that average numbers of nearest neighbours in kernels of real-world data

sets, presented in Table 4, are always higher than 5. For synthetic data sets, pre-

sented in Table 5, one can observe that the average number of examples inside ker-

nels is smaller than 3 in case of the most difficult to learn distributions of examples

(data sets: flower5-3d-10-20-35-35, paw3-3d-10-20-35-35). In case

of these two data sets, rare and outlier examples are the most numerous in the minor-

ity class. This result can be explained when we take a look at results from the Table 3.

For these data sets the value of average k is the smallest possible, which means that

it was better to keep the neighbourhood (and the bandwidth) as small as possible to

obtain the best optimization result of G-mean.

A comparison of results obtained with tuning kernels and nearest neighbours vari-

ants, reported in Tables 2, and 3, shows that kernel neighbourhoods works differently

than k nearest neighbourhoods. This observation comes mainly from the comparison

of G-mean values obtained in the tuning process. Regardless whether we compare on



70 J. Błaszczyński and J. Stefanowski

Table 4 Average k (for tuned bandwidth) and average number of examples inside a kernel for

real-world data

Data set Avg. k Avg. n

abalone 6.5 115.04

breast-cancer 8 41.12

car 8 14.39

cleveland 1 18.74

cmc 1 6.96

ecoli 7 25.37

haberman 9 54.25

hepatitis 6 36.69

scrotal-pain 8.5 58.46

solar-flare 1 273.93

transfusion 3 38.55

vehicle 8.5 22.33

yeast 2.5 62.24

Table 5 Average k (for tuned bandwidth) and average number of examples inside a kernel for

synthetic data

Data set Avg. k Avg. n

flower5-3d-10-20-35-35 0.5 3.10

flower5-3d-100-0-0-0 9 12.56

flower5-3d-30-40-15-15 2.5 18.16

flower5-3d-30-70-0-0 9 12.96

flower5-3d-50-50-0-0 9 12.55

paw3-3d-10-20-35-35 0.5 2.88

paw3-3d-100-0-0-0 8.5 12.28

paw3-3d-30-40-15-15 2 15.82

paw3-3d-30-70-0-0 9 14.81

paw3-3d-50-50-0-0 8.5 12.94

real-world or synthetic data sets, k-neighbourhood achieves higher G-mean values

than kernel neighbourhood.

However, one should be careful with drawing conclusions from comparing aver-

age k related to the tuned kernel bandwidth with k tuned directly for nearest neigh-

bours as the kernel approach uses other ranges. Nevertheless, it is visible that higher

values of bandwidths in kernels relate always to higher values of k in nearest neigh-

bours. We can also notice that larger neighbourhoods are selected for easier data

sets.
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The size of the kernel bandwidth (the distance values) presented in Tables 2, and 3

is not easy to interpret since it is a value of HVDM metric (please see Sect. 3). Note,

however, that values of the bandwidth on real-world data sets have higher variance

than these observed for synthetic data sets. It seems natural that real-world data sets

should present more variability than synthetic ones.

5.3 Analyzing Types of Minority Examples

In this part experiment, we used the previously tuned bandwidths of kernels and

k-neighbourhoods to label different types of minority class examples in real-world

and synthetic data sets (it is somehow inspired by the earlier analysis in [40]). The

results obtained for benchmark real-world data sets with kernel neighbourhood are

presented in Table 6, and the ones obtained with k-neighbourhood are presented in

Table 7.

Let us first explain differences in the number of example types identified by the

two approaches to model neighbourhoods. Recall that differently than in [42], we

have not applied the same labelling rule and the tuned values of k are different and

vary depending on the given data set (see values of k for k-NN in Table 2 for details).

Instead we used analogous rules, which are formulated according to estimated values

of probability of minority class, for both kernels and k-neighbourhood (please see

Sect. 4 for details).

Table 6 Labelling of minority class examples in real-word data for the tuned bandwidth

Data set Safe [%] Borderline

[%]

Rare [%] Outlier [%] Zero [%] Empty [%]

abalone 4.78 10.15 8.66 70.75 3.58 2.09

breast-

cancer

17.65 18.82 31.76 29.41 1.18 1.18

car 0.00 47.83 43.48 8.70 0.00 0.00

cleveland 2.86 2.86 25.71 42.86 17.14 8.57

cmc 13.81 21.32 24.02 13.21 20.42 7.21

ecoli 5.71 68.57 14.29 5.71 5.71 0.00

haberman 1.23 25.93 39.51 29.63 2.47 1.23

hepatitis 28.12 21.88 3.12 34.38 6.25 6.25

scrotal-pain 15.25 20.34 28.81 22.03 1.69 11.86

solar-flare 4.65 6.98 16.28 65.12 4.65 2.33

transfusion 5.06 38.76 27.53 16.85 6.74 5.06

vehicle 55.78 35.68 5.53 0.00 0.50 2.51

yeast 7.84 11.76 27.45 39.22 9.80 3.92
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Table 7 Labelling of minority class examples in real-word data for tuned k
Data set Safe [%] Borderline [%] Rare [%] Outlier [%]

abalone 11.04 8.36 23.58 57.01

breast-cancer 29.41 28.24 29.41 12.94

car 60.87 21.74 13.04 4.35

cleveland 0.00 22.86 17.14 60.00

cmc 23.72 18.32 31.23 26.73

ecoli 28.57 48.57 14.29 8.57

haberman 14.81 29.63 38.27 17.28

hepatitis 43.75 28.12 12.50 15.62

scrotal-pain 38.98 42.37 15.25 3.39

solar-flare 0.00 18.60 32.56 48.84

transfusion 26.97 33.71 15.17 24.16

vehicle 78.89 13.57 6.03 1.51

yeast 15.69 19.61 21.57 43.14

The next important difference comes from the new assumption that the kernel

approach allows us to identify more types of examples. It is clearly visible for the

real-world data sets (see Table 6) which contain minority examples of all six dif-

ferent types. A similar observation is valid for the same data sets analyzed with k-

neighbourhood (in Table 7), although here we distinguish four types. Let us also

note that the results presented in Table 7 correspond well with the previous ones

presented in [42]. Nevertheless, some differences in proportions are visible mostly

for more difficult data sets (e.g., abalone, solar-flare, yeast).

Even though numbers of examples into different types labelled by kernel neigh-

bourhood and k-neighbourhood are not exactly the same, the characteristics of the

particular data sets (i.e. their categorization with respect to dominating types of

minority examples) are generally quite similar. In particular, the highest number of

outliers is discovered for the same data sets: yeast, solar-flare, abalone,

cleveland. The highest number of rare type examples is also discovered for the

same data sets: cmc, breast-cancer (although k-neighbourhood discovers the

same number of safe examples),haberman. The same applies to borderline and safe

examples. The highest number of borderline examples is discovered for data sets:

transfusion, and ecoli. The highest number of safe examples is discovered

by both kernel and k neighbourhood for vehicle. Limited differences in labeling

are observed for few data sets only: hepatitis, scrotal-pain, and car.

One can notice that new types of examples discovered by the kernel neighbour-

hood are present in almost all data sets. There are two exceptions: zero type exam-

ples are not discovered in car; then empty type examples are not found in car,

and ecoli. These type of examples are not dominant in any data set. Since they

reflect poor performance of kernel neighbourhood at estimating probability of minor-

ity class, one should not expect to find a lot of them. Still, relatively high numbers
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Table 8 Labelling of minority class examples in synthetic data for tuned bandwidth

Data set Safe

[%]

Borderline

[%]

Rare

[%]

Outlier

[%]

Zero

[%]

Empty

[%]

flower5-3d-10-20-35-35 20.21 22.87 21.28 0.00 35.11 0.53

flower5-3d-100-0-0-0 84.57 14.89 0.53 0.00 0.00 0.00

flower5-3d-30-40-15-15 35.64 34.04 3.19 14.36 12.77 0.00

flower5-3d-30-70-0-0 76.60 23.40 0.00 0.00 0.00 0.00

flower5-3d-50-50-0-0 77.13 22.34 0.53 0.00 0.00 0.00

paw3-3d-10-20-35-35 14.67 20.67 24.67 0.67 36.00 3.33

paw3-3d-100-0-0-0 65.33 34.67 0.00 0.00 0.00 0.00

paw3-3d-30-40-15-15 26.00 42.67 4.67 11.33 15.33 0.00

paw3-3d-30-70-0-0 44.67 52.00 3.33 0.00 0.00 0.00

paw3-3d-50-50-0-0 57.33 40.67 2.00 0.00 0.00 0.00

Table 9 Labelling of minority class examples in synthetic data for tuned k
Data set Safe [%] Borderline [%] Rare [%] Outlier [%]

flower5-3d-10-20-35-35 25.00 5.32 36.17 33.51

flower5-3d-100-0-0-0 87.77 12.23 0.00 0.00

flower5-3d-30-40-15-15 52.66 17.55 17.02 12.77

flower5-3d-30-70-0-0 77.13 22.87 0.00 0.00

flower5-3d-50-50-0-0 90.43 9.57 0.00 0.00

paw3-3d-10-20-35-35 18.00 12.00 34.67 35.33

paw3-3d-100-0-0-0 70.67 29.33 0.00 0.00

paw3-3d-30-40-15-15 54.00 16.00 14.67 15.33

paw3-3d-30-70-0-0 76.00 23.33 0.67 0.00

paw3-3d-50-50-0-0 66.00 34.00 0.00 0.00

of zeros and empty type examples is found in data sets: cleveland and cmc.

Relatively high number of zero examples only is found in yeast. Furthermore, a

relatively high number of empty type examples is found in scrotal-pain. Some

relations between the numbers of discovered zero and empty type examples and the

predictive performance of kernel neighbourhood (in Table 2) can be also observed.

The labeling results obtained for synthetic data sets with kernel neighbourhood

and k-neighbourhood are presented in Table 8 and in Table 9, respectively.

We can conclude that the types of examples injected to synthetic data sets are

rather well discovered by both kernel neighbourhood and k-neighbourhood. Safer

distributions of examples in data sets (without rare and outlier type examples) are

recognized in the best way. There is a tendency to mislabel some of safe examples

as borderline (which could explained for examples located very closed to the deci-

sion boundaries that they are too dominated by neighbors from the opposite class),
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however, the reverse tendency (to mislabel borderline as safe) is also observable

(especially for k-neighborhood). Rare and outlier types of examples are much bet-

ter recognized by k-neighborhood than kernel neighborhood. We can hypothesize

that the kernel neighborhood expresses a worrying tendency to discover outliers as

zero type (and also sometimes empty type) examples. This result can be linked to

choosing too small bandwidth by the tuning procedure for difficult distributions of

examples.

To sum up, this kind of labeling analysis shows the usefulness of modeling the

neighborhood to identify the level of difficulty of the studied data set. Generally

speaking, the less safe examples, the more difficult could be the data set. It is also

interesting to notice that most of studied data sets do not contain too many safe exam-

ples. The percentage of rare, outlier or even empty example is quite high for some

of data sets. In particular the kernel analysis may provide more information than k
neighborhood approach due to new types of examples.

6 Improving Pre-processing Techniques
with the Neighbourhood Analysis

One can ask whether the estimation of probability of minority class examples, which

is behind the labelling of minority class, may be useful to improve pre-processing of

imbalanced data sets. Therefore, we compare performance of a standard unprunned

J48 classifier trained on data sets pre-processed according to the neighbourhood

analysis with kernel and k-neighbourhoods against the same classifier trained on

not-processed and randomly over-sampled data sets. The choice of over-sampling is

motivated by its’ ease of implementing as compared to under-sampling.

The proposed over-sampling technique uses probability of the minority class esti-

mated for each of minority class example according to the frequency of examples

in tuned kernel neighbourhood and k neighbourhood (we use the same tuning as

comes from the analysis carried out in Sect. 5.3). The estimated probability is used

as a weight of example in the sampling procedure. The difference with respect to

the neighbourhood analysis is that, since we apply over-sampling, we want difficult

examples (thus, having low value of the probability) to be more represented in the

over-sampled data set than safe ones. To achieve this result we simply use inverse of

the probability as the weight and replicate them proportionally to this value. In gen-

eral, we want to achieve approximately balanced classes, so we estimate the global

number of need copies and divide this number among all minority examples with

respect to their weights.

Classification performance of J4.8 with pre-processing technique is measured

by standard measures such as G-mean and sensitivity. G-mean results are presented

in Tables 10, and 11, for real-world, and synthetic data sets, respectively.

G-mean classification results on real-world data sets show rather limited influ-

ence of the proposed pre-processing on predictive performance. In general, one
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Table 10 G-mean [%] for unprunned J48 learned on base (original) and over-sampled real-world

data

Data set Base Random Kernel k-NN

abalone 53.790 60.198 60.802 60.481

breast-cancer 56.495 68.139 68.764 68.791

car 89.851 90.356 90.157 89.681

cleveland 48.984 56.570 50.365 51.716

cmc 56.706 64.142 64.541 64.494

ecoli 70.489 74.011 74.080 74.401

haberman 56.060 54.559 57.394 56.492

hepatitis 63.136 72.058 66.507 68.809

scrotal-pain 69.563 70.570 70.313 71.781

solar-flare 44.249 44.522 42.867 44.110

transfusion 60.018 56.071 56.456 56.564

vehicle 91.929 94.405 93.912 92.609

yeast 54.564 53.735 55.535 57.219

Table 11 G-mean [%] for unprunned J48 learned on base and over-sampled synthetic data

Data set Base Random Kernel k-NN

flower5-3d-10-20-35-35 0.000 39.627 38.835 38.426

flower5-3d-100-0-0-0 89.410 88.692 87.245 88.190

flower5-3d-30-40-15-15 72.924 72.281 70.576 73.215

flower5-3d-30-70-0-0 87.205 87.496 86.000 85.125

flower5-3d-50-50-0-0 90.530 89.306 89.834 88.442

paw3-3d-10-20-35-35 0.000 33.252 34.634 33.474

paw3-3d-100-0-0-0 88.205 89.231 89.894 88.192

paw3-3d-30-40-15-15 71.320 73.613 74.417 74.074

paw3-3d-30-70-0-0 88.491 85.650 86.153 84.993

paw3-3d-50-50-0-0 89.499 87.421 86.449 86.088

can observe improvements for several difficult data sets: yeast, haberman, then

smaller improvements are also noted for: abalone, breast-cancer, and

ecoli. For safer data sets like: vehicle, car one may expect that no over-

sampling (base) or random over-sampling may be sufficient solutions (i.e., they may

perform better). Then, we acknowledge that no oversampling is best performing

on transfusion. Moreover, random over-sampling works best on two data sets:

solar-flare, and cleveland.

The results on synthetic data sets also show no significant improvement when

kernel and k-neighborhood over-sampling is applied. Better performance in com-

parison to random over-sampling and no over-sampling (base) can be observed on
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some more difficult distributions. Sensitivity results confirm the observations made

with respect to G-mean. Thus, we do not include tables with these results due to the

page limits.

More encouraging results have been obtained for modifications of SMOTE, in

particular the recent proposal called Local Neighbourhood extension of SMOTE

(briefly LN-SMOTE) which is inspired by the analyzing local data characteristics

of the minority examples [37]. Its comparative study against basic SMOTE and two

other related generalizations applied with 3 different classifiers (J48, Naive Bayes

and k-NN) showed that it improved G-mean and F-measure on several of real world

data sets. Yet another modifications of SMOTE with respect to individual difficulty

weights of examples has been also considered in [43].

7 Neighbourhood Based Ensembles

Ensembles are another kind of methods which could be improved by the neighbour-

hood analysis. The current proposals of ensembles dedicated to class imbalanced

data are mainly extensions of known strategies as bagging, boosting or random trees.

They usually either employ pre-processing methods before learning component clas-

sifiers or embed the cost-sensitive framework in the ensemble learning process; see

their review in [14]. Previous comparative studies, such as [4, 14], have showed

that extensions of bagging ensembles are quite promising. The most popular exten-

sions pre-process bootstrap samples by under-sampling the majority class or over-

sampling the minority class to obtain a balance of class cardinalities in each boot-

strap sample. Roughly Balanced Bagging (RBBag), which is a kind of specialized

under-sampling approach leads to best improvements [30, 54].

In this section we want to show that using the neighbourhood based approach to

change distributions of minority class examples in bootstrap samples may improve

performance of bagging ensemble classifiers and result in solutions being competi-

tive to Roughly Balanced Bagging.

We focus on k-neighbourhoods in bagging ensembles, since they proved to bet-

ter render the distribution of minority class examples in Sect. 5.2. Moreover, they

have been already successfully integrated in the Neighbourhood Balanced Bag-

ging (NBBag), which we have proposed [5].

Neighbourhood Balanced Bagging is based on a different principle than all known

bagging extensions for class imbalance. First, instead of integrating bagging with

pre-processing, it keeps the standard bagging idea. What changes are probabilities

of sampling examples to bootstraps. The chance of drawing minority examples is,

sometimes radically, amplified (which is controlled by a special hyper-parameter 𝜓).

Furthermore, the amplification depends on the type of difficulty of minority example

identified according to its k-neighbourhood.

We have already shown that NBBag works in both types of bagging general-

izations: over-sampling and under-sampling [5]. In first type of generalization, it is

similar to over-sampling minority class examples into bootstraps, however, at the
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same time, the probabilities of drawing majority class examples are decreased. The

size of bootstrap is kept the same as the size of the original learning set. The second

type is inspired by under-sampling generalizations, which predicts better than over-

sampling generalizations [5]. The probabilities of drawing minority class examples

are increased, while probabilities of drawing majority class examples are decreased.

Most of the extensions of bagging for imbalanced data are non-parametric [6].

They do not introduce any new parameters, which need to be adjusted during con-

struction of an ensemble of classifiers. On the one hand, one can argue that bagging

itself is a parametric method since the adequate size of the ensemble for a given prob-

lem is not known a priori. The size of the ensemble is a parameter, which may influ-

ence the performance of each of the considered extensions. On the other hand, fix-

ing this parameter enables comparison of ensembles of the same size, which should

allow to distinguish ones which perform better than the others under the same con-

ditions.

Different types of parameters are introduced in NBBag [5] to control the char-

acteristics of neighbourhood: size of neighbourhood k, and amplification factor 𝜓 .

In the experiments comparing NBBag to other bagging extensions presented in [5]

these two parameters were carefully selected to provide the best average perfor-

mance. The previous tuning of these parameters was made post-hoc, i.e., first results

were obtained for a number of promising pairs of parameter values and then the

best values were chosen. On the other hand, we need to look for more appropri-

ate approaches to tune these parameter inside learning an ensemble rather than in a

post-hoc way.

Tuning of such model parameters is a known problem in machine learning [18].

However, to our best knowledge, this problem has drawn rather limited attention in

the context of learning ensembles from imbalanced data. Class imbalance may limit

using some more advanced parameter tuning techniques. To put it simply, minority

class examples are to valuable to spare them for tuning purposes only, while majority

class examples are not. Following this observation, we investigate a basic technique

taken from tree learning. In the same way as reduced-error pruning uses training

data [47], we divide training data set into two stratified samples. The first sample is

used for training NBBag models and the second one to validate the trained models.

After the best parameters are selected, NBBag classifier is constructed on the whole

training set. Contrary to what was presented in [5], this technique does not allow to

distinguish best values of parameters for all data sets nor even for one data set when

learning of a classifier is repeated, as e.g., in cross-validation. Tuning of parameters

is performed independently for each constructed component classifier.

In the following, we present performance of two variants of Neighbourhood Bal-

anced Bagging: under-sampling (uNBBag) and over-sampling (oNBBag) with tun-

ing of k and 𝜓 parameters among a limited set of values (small k, and limited amplifi-

cation of examples weight represented by 𝜓—please consult [6] for details). Tuning

of best parameter values is performed on 2∕3 of the training set. The remaining 1∕3
of training set is used for the validation.

Now we experimentally compare classification performance of uNBBag and

oNBBag to Exactly Balanced Bagging (EBBag) [23], Over-Bagging (OverBag) [58],
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Table 12 G-mean [%] of NBBag and other bagging ensembles on real-world data

Data set EBBag OverBag uNBBag oNBBag RBBag

abalone 78.845 69.230 79.517 78.706 79.035

breast-cancer 58.175 60.718 58.465 58.795 60.091

car 96.668 96.959 96.356 96.851 96.568

cleveland 73.628 51.629 73.260 66.754 71.130

cmc 64.191 61.036 65.051 63.787 65.350

ecoli 88.178 83.896 88.435 85.380 88.430

haberman 64.144 63.329 63.742 61.779 63.533

hepatitis 79.137 75.816 78.035 74.762 79.457

scrotal-pain 73.679 74.038 72.923 71.997 75.618

solar-flare 83.710 64.649 83.149 79.994 83.421

transfusion 66.607 67.748 66.449 66.476 67.143

vehicle 95.038 94.934 95.440 95.115 95.417

yeast 84.018 63.167 84.475 79.557 85.016

and Roughly Balanced Bagging (RBBag) [22]. The size of ensembles is fixed to 50

components, J48 with exactly the same parameters as in Sect. 6 is used as compo-

nent classifier. We restrict our comparison to real-world data sets only.

The results of G-mean and sensitivity are presented in Tables 12 and 13, respec-

tively. These results were estimated by a stratified 10-fold cross-validation repeated

ten times to reduce the variance of measures.

Looking at both Tables 12 and 13, one can notice that uNBBag and RBBag stand

out as the best performing classifiers. Another observation is that over-sampling

extensions of bagging, represented by OverBag and oNBBag, provide worse perfor-

mance that under-sampling extensions. When we compare G-mean performance of

ensemble classifiers to performance of over-sampled single classifiers (see Table 10)

it is clear that ensembles provide better performance except for breast-cancer,

where ensembles are only better than single classifier trained on not pre-processed

data (i.e., base). A more detailed comparison on G-mean shows that RBBag and

uNBBag does not perform best only in case of some relatively safe data sets like:

car (both classifiers), scrotal-pain (uNBBag) or more difficult breast-
cancer (uNBBag), and cleveland (RBBag).

With respect to values of sensitivity (Table 13) uNBBag and EBBag are clearly

the best performing classifiers. uNBBag provides the best recognition of the minority

class in case of almost all of considered real-world data sets.

This analysis of classification performance of bagging extensions leads to con-

clusions, which are concordant with the ones presented in [5] and in [6]. RBBag and

uNBBag are identified as two outstanding alternatives. Moreover, an exploitation of

a relatively simple parameter tuning technique, including a dynamic adaptation of

the neighborhood size, allowed us to obtain quite satisfactory predictive performance

of NBBag.
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Table 13 Sensitivity [%] of NBBag and other bagging ensembles on real-world data

Data set EBBag OverBag uNBBag oNBBag RBBag

abalone 80.925 51.224 80.776 75.851 77.045

breast-cancer 63.412 54 65.176 59.059 58.471

car 100 95.652 100 95.942 100

cleveland 80.286 30.571 79.143 63.429 69.143

cmc 70.240 50.721 68.739 63.423 64.685

ecoli 92 76 92 84 90.571

haberman 56.914 59.136 63.827 66.543 55.802

hepatitis 83.438 67.188 79.062 69.688 77.500

scrotal-pain 76.271 70.169 76.441 73.051 75.763

solar-flare 88.140 46.977 86.744 81.395 85.581

transfusion 66.517 61.236 72.697 67.753 65.674

vehicle 97.236 94.523 97.286 95.477 96.935

yeast 91.765 40.980 90.392 73.529 88.431

8 Extensions of the Neighbourhood Analysis

In this section we briefly point out potential extensions of the neighbourhood

approaches which may be useful for some applications—although they are not stud-

ied in this paper. We focus our attention on the following three issues:

Identification of Class Decomposition into Sub-concepts
The discussed neighbourhood analysis may approximate some data difficulty factors

only. In particular, it does not directly identify a decomposition of the minority class

into sub-concepts. As it was discussed in the Sect. 2.1 research of Japkowicz and her

collaborators on within-class imbalance showed that increasing the number of the

sub-concepts decreased classification performance more than increasing the global

imbalance ratio between class imbalance [24, 26]. The comprehensive summary of

other studies on the role of such class decomposition is presented in [53].

The open question is how to automatically identify such sub-concepts in real-

world data sets. In cluster-oversampling proposal, Japkowicz applied k-means clus-

tering algorithm to examples from each class separately [44]. However, it is nec-

essary to estimate the unknown number of expected clusters or to choose an opti-

mization criterion (the most popular criteria are not defined for the context of imbal-

anced data). Moreover, these kinds of algorithms are not appropriate for dealing with

complex decision boundaries or outlier examples. In our opinion there is a need for

developing a new kind of a semi-supervised algorithm (where it is necessary to deal

with presence of minority vs. majority examples inside clusters).

Highly-Dimensional Data Sets
The presented approach uses HVDM metric to calculate distances between exam-

ples. Similarly to using Euclidean metric in most of pre-processing methods it is



80 J. Błaszczyński and J. Stefanowski

more suitable for problems with relatively small or medium number of attributes.

On the other hand, highly dimensional data sets may occur in image analysis, bio-

medical data analysis, genetics or other fields. The use of such dissimilarity mea-

sures and k-nearest neighbor principle on such data sets may suffer from the curse of

dimensionality as it has been recently showed by Tomasev’s research on, so called,

hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor

classification [57].

Recall that this problem is also a challenge for standard learning of classifiers as

it increases risks of over-fitting as well as spurious findings. However, considering

it with class-imbalanced predictions presents an additional source of difficulties, as

it biases classification towards majority class for most classifiers (see, e.g., experi-

mental analyses from [3, 30]). In standard balanced classification feature selection

or projections techniques, such as: SVD or PCA, are often applied to enhance pre-

dictive performance. Even though these methods have been extensively studied, they

mey be too biased toward majority class. Although, some new class imbalance tech-

niques have been recently introduced [35], we postulate still more research also in

the context of an identification of types of examples.

Multiple Imbalanced Classes
A binary classification task is mostly studied in case of imbalanced data. This for-

mulation is justified by focus an interest on the most important class and real-world

semantics, like in medical diagnosis (distinguishing sick vs. healthy patients). On

the other hand, in some situations it may be reasonable to distinguish more classes

with low cardinalities [59].

Considering multiple minority classes makes the learning task more difficult as

relations between particular classes become more complex [59]. Internal data dis-

tributions or decision boundaries will be different than in case when some classes

are aggregated. Techniques developed for binary imbalanced problems are usually

not directly applicable to multi-class problems. Quite often they lose performance

on one class while trying to gain it on another. A brief review of current specialized

techniques is available in [49].

We could ask a question on possible generalizations of the neighbourhood analy-

sis for more than one minority class. Although it has not been studied yet, two direc-

tions could be considered. Either one can decompose the multi-class imbalanced

data set to a set of binary problems—one minority class vs. all other classes; con-

sider them independently and somehow aggregate results. According to [28] it is a

dominating strategy in specialized ensembles, see e.g., [13].

However, in such decomposition of the multiple imbalanced classes, pairwise

relations between two classes may be too strongly over-simplified and they do not

reflect more complex relations/interactions between several of classes, as one class

influences several neighboring classes at the same time. Therefore, it may be more

interesting to consider interaction of examples from various minority classes while

defining types of examples or exploiting other information from the neighbourhood

analysis—however, it is still a topic for further research.
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9 Final Remarks

In this paper we follow earlier research on studying the internal characteristics of

class imbalanced data and its consequences for difficulties while learning classifiers.

We share opinions of researches [15, 25, 26, 36] who showed that the high imbalance

ratio between the minority and majority classes (measured on the global level of the

data) is not the only and not even the main reason of these difficulties. Other data

difficulty factors, such as decomposition of the minority class into many rare sub-

concepts, the effect of too strong overlapping between the classes or a presence of

too many minority examples inside the majority class region, referring to more local

characteristics of class distributions, are more influential.

Our current study on these local data characteristics and difficulties goes along

research lines introduced by Napierala and Stefanowski in [40, 42]. They have pro-

posed to capture the aforementioned data difficulty factors by considering the local

characteristics of learning examples from the minority class and by an identification

of four basic types of examples: safe, borderline, rare case and outlier. It has been

achieved by analyzing the class distribution of examples from different classes inside

a local neighborhood of the considered example which could be modeled either by

means of k-neighbours or kernels.

As the tuning the size of these two kinds of neighbourhoods with respect to char-

acteristics of given data sets have not been sufficiently studied yet, the first contri-

bution of this paper is discussing tuning methods. In our opinion simple rules of

thumb are simply not suitable. We have rather promoted tuning bandwidth of a ker-

nel neighbourhood or number k of nearest neighbours using the adapted version of

cross validation optimization methods.

Results of many experiments presented in Sect. 5 have confirmed usefulness of

these tuning methods. Moreover, they were sufficiently consistent with earlier results

of establishing categories of data set difficulty with respect to dominating types of

minority class examples [40, 42]. However, unlike the earlier studies, in this paper

we have managed to find an individual size of neighbourhood for each data sets.

A general observation is that this size is larger for easier imbalanced data while it

becomes smaller for data sets treated as more difficult to be learned.

The other contribution of the current paper is to promote incorporating the results

of analyzing this neighbourhood of minority class examples in construction of new

methods for learning classifiers from imbalanced data. We have “implemented” this

postulate by considering two main categories of methods specialized for imbal-

anced data: (1) the most popular over-sampling and (2) the generalization of bagging

ensembles which incorporates the results of an analyzing the local neighbourhood

to re-sample examples into bootstrap samples.

The experiments presented in Sect. 7 have demonstrated that Nearest Balanced

Bagging in the version of under-sampling with local tuning the size of neighbour-

hoods and the level of re-sampling achieved the best predictive results. Furthermore,

experiments presented in Sects. 5.2, and 6 have shown that the k nearest neighbours

variant has led to better predictions than the kernel neighbourhood. On the other
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hand, the kernel analysis allows to identify new types of minority class examples:

singletons in empty sub-regions (which is an extreme rarity situation being different

to single examples surrounded by k-neighbours from opposite classes—this exten-

sion may be valuable in studying medical complex data with many untypical cases

of disease, see [45]).

Issues of dealing with the local characteristics of imbalanced data may still open

several lines of future research. Besides already mentioned semi-supervised cluster-

ing for detecting small disjuncts, re-considering the neighbourhood based methods

in highly dimensional spaces or multi-class imbalanced problems one could look for

other tasks such as:

∙ Other, more sophisticated proposals of dynamic re-sampling (also under-sampling)

of both classes with respect to identified different, local characteristics of sub-

regions of imbalanced data.

∙ Considering a new type of cost-sensitive re-sampling where costs of misclassifica-

tion between classes will be taken into account while defining types of the minority

examples; Then, the cost post-posterior probability should be joined together with

an estimation of different density of examples in various sub-regions.

∙ Studying differences between outliers and real noise in imbalanced data; detecting

them, developing a new method for dealing with such noisy examples.

∙ Exploiting information about types of examples in modifications of other algo-

rithms, see e.g., promising results of the rule induction algorithm, called BRACID

[41].

∙ Studying imbalanced data streams affected by concept drifts, i.e., changes in def-

initions of target classes over time [65]; In particular, recent studies have shown

needs for developing new kinds of ensembles for the imbalanced and evolving

data streams.
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