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Abstract Verification of the dynamic signature is an important issue of biomet-

rics. There are many methods for the signature verification using dynamics of the

signing process. Many of these methods are based on the so-called global features.

In this paper we propose a new approach to the signature verification using global

features. The proposed approach can be characterized as follows: (a) Classification

of the signature is performed using a fuzzy-genetic system. (b) We select an indi-

vidual set of features for each signer. (c) In the procedure of features selection we

use a genetic algorithm with appropriately designed evaluation function. It works

without access to the signatures called skilled forgeries (this is a major advantage of

the proposed approach). (d) We determine weights of importance for evolutionarily

selected features. (e) The weights are taken into account in the classification process.

(f) An additional advantage of the proposed classifier is the possibility of its work

interpretation and possibility of an analytical determination of its parameters without

machine learning. In this paper we present the simulation results for the BioSecure

signature database, distributed by the BioSecure Association.

1 Introduction

Signature is a biometric characteristic (see e.g. [13, 17, 83–87]) which is easy to

acquire and socially acceptable, so it is often used to develop effective systems for

identity verification. In the literature there are two main types of the signatures. The
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first is called static signature (off-line). Analysis of this type of signature is based on

its geometric features, such as shape, size ratios, etc. (see e.g. [3, 4, 43]). The second

is called dynamic signature (on-line) and it contains information about dynamics of

the signing process. The most commonly used signals, which are the basis of the

dynamic signature analysis, include a signal of pen pressure on the tablet surface

and a signal of pen velocity. The second one is determined indirectly on the basis

of the signals describing a position of the pen on the tablet surface. There are also

other types of available signals, but the method of their processing is analogous.

Dynamic signature verification is much more effective than a static signature verifi-

cation because: (a) dynamics of the signature is very individual characteristic of the

signer, (b) it is difficult to forge, (c) waveforms describing the dynamics of the sig-

nature are difficult to translate into the process of signing, (d) waveforms describing

the dynamics of the signature can be easily analyzed.

1.1 Approaches to the Dynamic Signature Analysis Proposed
in the Literature

In the literature four main approaches to the analysis of the dynamic signature have

been presented: (a) global feature based approach (see e.g. [28, 46, 53–55, 82,

88]), (b) function based approach (see e.g. [24, 36, 40, 42, 49, 56]), (c) regional
based approach (see e.g. [11, 12, 25, 27, 34, 41, 61, 65]), (d) hybrid approach
(see e.g. [16, 52, 57]). It should also be emphasized that the algorithms for analysis

of the dynamic signature can be relatively easily used in other areas of biometric

applications, which are based on the analysis of dynamic behavior (see e.g. [15,

21]). Among the four mentioned approaches to analyze the dynamic signature, the

methods using global features deserve special attention (see e.g. [28, 44, 58, 59]).

The literature in this field contains, among others, definitions of the global features,

description of the features selection and classification algorithms based on the fea-

tures. We encourage you to read the more detailed review of the literature on the

dynamic signature verification, which has been presented in our previous papers (see

e.g. [11, 12]).

1.2 Our Approach to the Dynamic Signature Analysis

In this paper we propose a new method for the dynamic signature verification based

on global features, which stands out from the methods of other authors by the fol-

lowing characteristics:

∙ It uses a genetic algorithm (see e.g. [1, 22, 50, 62, 67, 75, 79, 81]) for the

individual selection of the features (for each signer), which among others elimi-

nates the features decreasing the accuracy of the verification (we use our previous



Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 377

experiences on evolutionary algorithms, see e.g. [6]). Genetic algorithm belongs

to the computational intelligence methods (see e.g. [19, 20, 23, 38, 39, 63, 64])

In the papers of other authors different methods for the global features selection

have been described, but the selection has not been realized individually for each

user (see e.g. [28, 53, 54]). The method proposed in this paper realizes this type

of selection.

∙ It determines individually for each signer weights of importance of the features

and takes them into account in the process of the signature verification (we use

the triangular norms with the weights of arguments, proposed by us earlier, see

e.g. [71]). In the papers of other authors different methods for the determination

of weights have been described, but it has not been realized individually for each

user (see e.g. [28, 46, 55]).

∙ It takes advantage of the fuzzy set theory and fuzzy systems in the process of the

signature verification (we use our previous experiences in the field of the flexible

fuzzy systems, see e.g. [9, 10, 48, 68–70, 72–74]). In this paper we propose a new

way to use that system to the dynamic signature verification and a new method

of its parameters selection. This method allows to avoid the so-called iterative

machine learning (see e.g. [90]), which we used in our previous papers (these

papers are not related to the dynamic signature verification, but they concerned

different structures of the system, applications and methods of automatic selection

of the structure and parameters). In the papers of other authors in the field of the

dynamic signature verification we have not found this solution.

∙ It allows to interpret the knowledge accumulated in the system used to the signa-

ture verification (we use our previous experiences in the field of interpretability

of knowledge of fuzzy systems, see e.g. [5, 7, 8, 47, 48, 66, 76, 78, 89]). In the

papers of other authors different methods for the dynamic signature verification

have been described, but they were mainly focused on speed and accuracy. The

algorithm proposed in this paper works in such a way that the processing method

of the signatures and determination of the signatures descriptors (based on the val-

ues of global features) could be easily interpreted. This is an important advantage

of the algorithm.

∙ It does not require so-called skilled forgeries and reference signatures of other

signers in the training phase (this is a big advantage in the considered group

of methods). This is a consequence of properly designed evaluation function in

used genetic algorithm. Some methods proposed by other authors requires refer-

ence signatures of other users or false signatures (so-called skilled forgeries) in

the learning phase. This causes that the accuracy of the algorithm depends on

the number of users stored in the database and the effectiveness of the so-called

skilled forgers (false signatures created by them are available in popular databases

of the signatures, which are used to compare efficiency of the verification meth-

ods). Moreover, it causes problems during practical implementation. The proposed

method does not depend on the number of users in the database. It uses false sig-

natures only in the testing phase. This is achieved through appropriately structured

flexible fuzzy system, which is the one-class classifier.
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∙ It is distinguished by the independence of the used set of features which can be

arbitrarily reduced or expanded. In other words, the proposed algorithm is flexible

because it is not sensitive to the selection of the initial set of features. Methods of

other authors are often highly dependent on the used set of features.

In the simulations we have used paid signature database BioSecure, distributed

by the BioSecure Association (see [32]).

This paper is organized into four sections. In Sect. 2 we present description of the

proposed algorithm for the signature verification based on global features. In Sect. 3

simulation results are presented. Conclusions are drawn in Sect. 4.

2 Description of the Fuzzy-Genetic Approach for Signature
Verification

The proposed method consists of two phases: learning (training on the basis of the

reference signatures) and testing (verification of the test signature). In the first phase

the selection of features is performed individually for each signer, descriptors of

features and weights of importance of features are determined. They are needed for

a proper work of the classifier in the test phase. These parameters are stored in a

database. In the second phase parameters stored for each signer in the learning phase

are downloaded from the database. Next, verification of signatures is realized on

the basis of these parameters. In the remainder of this section, learning procedure

(Sect. 2.1) and signature verification procedure (Sect. 2.2) have been described.

2.1 Description of the Learning Phase

This section describes steps of the algorithm executed in the learning phase.

Step 1 The learning phase starts by acquiring J reference signatures of the signer

i. Different types of tablets may have a different sampling frequency thus acquired

signatures should be normalized. In the normalization procedure for each user the

most typical reference signature, called base signature, is selected. It is one of the

reference signatures collected in the acquisition phase, for which a distance to the

other reference signatures is the smallest. The distance is calculated according to

the adopted distance measure (e.g. Euclidean). Training or testing signatures are

matched to the base signature using the Dynamic Time Warping algorithm (see e.g.

[2, 26, 77]), which operates on the basis of matching velocity and pressure signals.

The result of matching of two signatures is a map of their corresponding points. On

the basis of the map, trajectories of the signatures are matched. Matching using DTW

could not be done directly with the use of trajectories, because this would remove

the differences between the shapes of the signatures. It would have a very negative

impact on training. Elimination of differences in rotation of signatures is performed
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by the PCA algorithm which in the literature is commonly used to make the images

rotation invariant (see e.g. [31]). A more detailed description of the normalization

techniques can be found in the literature (see e.g. [35, 45, 60]).

Step 2 In this step of the algorithm, the matrix 𝐆i is determined. The matrix contains

values of all global features which describe the dynamics of the reference signatures

of the signer i. It has the following structure:

𝐆i =
⎡
⎢
⎢
⎣

gi,1,1 … gi,N,1
⋮ ⋮

gi,1,J … gi,N,J

⎤
⎥
⎥
⎦

, (1)

where I is a number of the signers, J is a number of the signatures created by the

signer in the acquisition phase, N is a number of used global features, and gi,n,j is a

value of the global feature n, n = 1,… ,N, determined for the signature j, j = 1,… , J,

created by the signer i, i = 1,… , I. Method of determining values of 85 global fea-

tures used by us in the simulations has been described in detail in [28] and it will not

be considered in this paper.

Step 3 In this step of the algorithm, the vector �̄�i =
[
ḡi,1,… , ḡi,N

]
is determined,

where ḡi,n is an average value of n-th global feature of all J reference signatures of

the signer i:

ḡi,n =
1
J
⋅

J∑

j=1
gi,n,j. (2)

Step 4 In this step of the algorithm, evolutionary selection of subset of global fea-

tures takes place. The subset contains features which are the most characteristic for

the signer i (procedureEvolutionary Features Selection (𝐆i, �̄�𝐢)). Evo-

lutionary algorithm is a method modelled on natural evolution for solving problems,

mainly optimization ones. It is the search procedure based on the mechanisms of

natural selection and inheritance. It uses the evolutionary principle of survival of

the fittest individuals. Evolutionary algorithms differ from traditional optimization

methods, among others, in that: (a) they do not process the task parameters directly,

but their encoded form, (b) they start a search not from a single point, but from the

population of points, (c) they use only the objective function, not its derivatives,

(d) they use probabilistic rather than deterministic selection rules. As a result, they

have the advantage over other optimization techniques, for example analytical meth-

ods, random methods, etc. (see e.g. [67]). Procedure Evolutionary Features
Selection (𝐆i, �̄�𝐢) randomly generates an initial set of so-called chromosomes,

which form a population of abundance Ch. Each of them specifies other subset of

features. The chromosome is denoted as the vector 𝐱i,ch =
[
xi,ch,1,… , xi,ch,N

]
, where

xi,ch,g ∈ {0, 1} indicates whether feature g (g = 1,… ,N) encoded in the chromosome

ch (ch = 1,… ,Ch) will be used to verify the signature of the signer i (1-it will be

used, 0-it will not be used). Next, the evaluation of the chromosomes adaptation is

performed and operators of crossing and mutation are applied to the chromosomes.
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These genetic operators provide exploitation and exploration of the searching space

of the features. This action is repeated within the next steps, so-called generations

(number of generations is a parameter of the algorithm). Thanks to the use of genetic

operators, chromosomes in each subsequent generation have got a better value of

the evaluation function (a way of its determination is given in the Sect. 2.1.2). This

means that encoded subset of features is becoming more characteristic for the consid-

ered signer i. From the population of chromosomes, in the latest generation chromo-

some with the smallest value of the evaluation function is selected (the best for min-

imization function). The selected chromosome encodes an evolutionarily selected

subset of features. It is rewritten to the vector 𝐱′i.

Step 5 In this step of the algorithm, determination of the reduced matrix of global

features 𝐆′
i and reduced vector �̄�′i of average values of global features is performed.

They are created taking into account the vector 𝐱′i, therefore they contain only infor-

mation about those features which have been evolutionarily selected for the signer i.
A number of columns of the vector �̄�′i and the matrix 𝐆′

i is N′
i , where N′

i ≤ N is a

number of features selected for the signer i.

Step 6 In this step of the algorithm, calculation of the classifier parameters used in the

test phase is performed. This procedure is calledClassifier Determination
(i, 𝐱′i ,𝐆

′
i , �̄�

′
i) and it has been described in the Sect. 2.1.3. In particular, distances

maxdi,n and weights wi,n (i = 1,… , I, n = 1,… ,N′
i ) are determined individually for

the signer i. Each parameter maxdi,n determines instability of signing of the signer i
in the context of the feature n. Its value is dependent on the variability of the feature.

Each weight wi,n describes importance of the global feature n.

Step 7 In the last step of the algorithm, the following information about the signer i
are stored into a database: the vector 𝐱′i, the vector �̄�′i , and parameters of the classifier

maxdi,n and wi,n. Training phase for the signer i: (a) proceeds similarly to all signers,

but for each signer regardless, (b) in practice is performed once for each signer.

2.1.1 Evolutionary Features Selection

A purpose of the procedure Evolutionary Features Selection (𝐆i, �̄�𝐢)
is the choice of such a subset of features whose values determined for the reference

signatures of the signer i are similar to each other. This is not an easy task, because

e.g. for 85 features (the number of features which we used in the simulations) the

number of combinations is over 38 × 1024 (exactly it is

N∑

n=1
N!∕ (n! ⋅ (N − n)!)). It

is expected that the evolutionary algorithm finds a subset of the features close to

the optimum in acceptable time. Considered procedure works according to the algo-

rithm shown in Fig. 1. At the beginning, random initialization of the vectors 𝐱i,ch
takes place. The vectors are interpreted as chromosomes in the population encoding

subsets of the features. Next, evaluation of chromosomes by determining the val-

ues of their adaptation function is performed (see Sect. 2.1.2). Having the values of
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stop

evaluation of the fitness of chromosomes in the population

selection of chromosomes

creation of the new population of chromosomes

initiation of chromosomes in the population

yes
no

presentation of the best chromosome

start

Fig. 1 Scheme of the procedure Evolutionary Features Selection (𝐆i, �̄�i)), consis-

tent with the scheme of the genetic algorithm

the adaptation function the stop condition of the algorithm is checked. It takes into

account the achievement of the threshold value by the function or execution by the

algorithm a certain number of generations. If the stop condition is satisfied, then

the evolutionary feature selection procedure terminates and returns the best chromo-

some from the population. It rarely takes place immediately after the initialization

of the population, so the population must be processed in a process of evolution. Its

first step is a draw of the individuals in order to apply genetic operators to them.

A typical method of individuals selection is e.g. the tournament selection (see e.g.

[51, 67]). In this method a few chromes are drawn from the entire population. These

chromosomes create so-called tournament group and the chromosome having the

best fitness function value is selected from them. Then, another tournament group

is created and one chromosome from it is selected. This process is repeated until a

new population is created. Next, pairs of chromosomes exchange genes (crossing is

applied) at random points and finally some randomly selected genes of the chromo-

somes mutate (their value changes from 0 to 1 or vice versa). The algorithm takes

into account a probability of crossover and mutation, which are its parameters. In this

way, the parent population form descendant population, which again is evaluated and

the process is repeated.

Operation of the procedure Evolutionary Features Selection (𝐆i,

�̄�i) is dependent on the following parameters:

∙ Size of the population (number of chromosomes). It specifies the number of fea-

tures subsets processed in a single step of the algorithm (so-called single genera-

tion).

∙ Number of generations. It specifies the maximum number of steps S in the evolu-

tionary feature selection algorithm for a single user.

∙ Crossover probability. It is a real number in the range [0, 1] and determines the

intensity of the crossing (gene exchange) between chromosomes. For each ran-

domly selected pair of chromosomes selected in the tournament method, a real

number in the range [0, 1] is drawn. If the number is less than the crossover prob-

ability, an exchange of genes between the chromosomes is performed. Moreover,

the number of the crossing points is also associated with this operation. At these
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points a “cut” of binary chromosomes is performed. This process precedes the

genes exchange.

∙ Mutation probability. It is a real number in the range [0, 1] and determines the

intensity of chromosomes mutation. For each gene of each chromosome a real

number in the range [0, 1] is drawn. If the number is less than the mutation prob-

ability, the value of the gene is changed to the opposite, i.e. from 0 to 1 and vice

versa. A detailed description of the algorithm can be found, among others, in [51,

67].

We would like also to emphasize that the originality of the proposed approach

results from a specific way of determining the evaluation function of chromosomes

from the population (Calculate Ff (𝐆i, �̄�i, 𝐱i,ch)). Evaluation of the chromo-

somes is based on the similarity of features for the reference signatures created in

the training phase (described in Sect. 2.2).

2.1.2 Determination of Fitness Function

In the determination of the fitness function of the chromosome, the following para-

meters are taken into account:

∙ 𝐆i—a matrix of all global features values, determined for all reference signatures

of the signer i,
∙ �̄�i—a vector of average values of global features, averaged in the context of all

reference signatures of the signer i,
∙ 𝐱i,ch—a chromosome with index ch in the population associated with the signer i,

for which the value of the evaluation function is calculated. In the considered pro-

cedure (and only in this procedure) will be used reduced versions of the mentioned

parameters: N∗
, 𝐆∗ =

[
𝐠∗j=1,… , 𝐠∗j=J

]
, and �̄�∗. They were created on the basis of

the values of the vector 𝐱i,ch in the same way as previously described parameters:

N′
i , 𝐆

′
i, and �̄�′i (on the basis of the vector 𝐱′i).

Considered method Calculate Ff (𝐆i, �̄�i, 𝐱i,ch) starts by determination of the

covariance matrix for the matrix of all global features (Step 1). Covariance cov (𝐆∗)
is a measure of the linear correlation between global features values of the reference

signatures 𝐆∗
of the signer i (created in the acquisition phase). In the Step 2 of the

algorithm, determination of the vector of Mahalanobis distances (see e.g. [14]) 𝐦 is

performed. It contains distances between the vector of average values of the global

features �̄�∗ and the matrix of the global features values 𝐆∗
represented by the vectors

𝐠∗j , j = 1,… , J:

mj =
√

(
𝐠∗j − �̄�∗

)
(cov(𝐆∗))−1

(
𝐠∗j − �̄�∗

)T
. (3)

Mahalanobis distance well defines the similarity of the selected features vector of the

reference signature j (features indicated by the tested chromosome) 𝐠∗j to the vector
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of average values of these features �̄�∗. It takes into account their mutual correlation

and individual variance (expressed by the arithmetic mean of the squared deviations

from the arithmetic mean). It should be noted that for each subset of features J dis-

tances are determined. The subset of features associated with the lowest distance is

the most valuable for the signer i in the training phase. In the last step of the algo-

rithm (Step 3), determination of the evaluation function of the chromosome 𝐱i,ch is

performed:

f f
(
𝐱i,ch

)
= 1

J
⋅

J∑

j=1
mj. (4)

Lower value of the fitness function f f
(
𝐱i,ch

)
means that the chromosome 𝐱i,ch is

“better” (subset of global features encoded in the chromosome 𝐱i,ch is the most char-

acteristic for the signer i).

2.1.3 Determination of the Classifier Parameters

In the procedure described in this section only individually selected (for the signer

i) dynamic signature features are considered (there are N′
i features). It means that in

determination of the classifier parameters only the matrix 𝐆′
i and the vector �̄�′i are

taken into account.

Procedure Classifier Determination (i, 𝐱′i,𝐆′
i, �̄�′i) starts by determi-

nation of Euclidean distances di,n,j between each global feature n encoded in the

chromosome 𝐱′i and average value of the global feature for all J signatures of the

signer i (Step 1):

di,n,j =
|
|
|
ḡi,n − gi,n,j

|
|
|
. (5)

In the Step 2 of the considered procedure, selection of maximum distance for each

global feature n is performed (from distances determined in the Step 1):

maxdi,n = max
j=1,…,J

{
di,n,j

}
. (6)

If reference signatures are more similar to each other, the tolerance of our classifier

is lower, because maxdi,n takes smaller values. In the Step 3 of the considered pro-

cedure, computation of weights wi,n is performed. Each weight is calculated on the

basis of standard deviation of n-th global feature of the signer i and average value of

distances for n-th feature of the signer i:

wi,n = 1 −

√

1
J
⋅

J∑

j=1
di,n,j2

1
J
⋅

J∑

j=1
di,n,j

. (7)
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It should be emphasized that the distances and the weights are used in the classifi-

cation process of the signature.

2.2 Description of the Signatures Verification Phase

The purpose of the signatures verification phase is to determine whether the tested

signature, which belongs to a signer claiming to be the signer i, in fact belongs to

the signer i. In the Step 1 of the procedure a signer, whose identity should be ver-

ified, creates one test signature. In this step he also claims his identity as i. As in

the case of the learning phase, the signature has to be geometrically pre-processed.

In the Step 2 of the procedure, the following information are downloaded from the

database: information about selected features of the signer i (𝐱′i), average values of

this features calculated during training phase (�̄�i) and classifier parameters of the

signer i (maxdi,n, wi,n). In the Step 3 of the procedure, determination of the values

of the global features gtsti,n, n = 1,… ,N′
i , for the test signature is performed. The

values refer to the features which have been selected as the most characteristic for

the signer i in the training phase. In the Step 4 of the procedure, similarities of global

features values of the test signature to the average values of the global features for

the reference signatures are determined:

dtsti,n = |
|ḡi,n − gtsti,n|| . (8)

In the last step (Step 5) of the procedure, the verification of the test signature using

one-class flexible fuzzy classifier of the Mamdani type (Sect. 2.2.2) is performed. Its

structure is described in the next section. Values of the signals dtsti,n determined in

the Step 4 are given at the input of the system.

2.2.1 A New One-Class Flexible Fuzzy Classifier

In the signature verification value of the variable dtsti,n is considered. It refers to the

similarity between values of the test signature global features and average values of

these features determined for the reference signatures. It has an imprecise nature and

it is difficult to describe with classical theory of sets and two-valued logic. Therefore,

we have used the theory of fuzzy sets and we described values the “high similarity”

and “low similarity” using fuzzy sets. Then we have formulated clear fuzzy rules and

used approximate inference. As a result, we have obtained a complete fuzzy system

which for values of similarities dtsti,n (n = 1,… ,N′
i ) given on inputs determines the

similarity of the values of evolutionary selected features of the test signature to the

values of the reference signatures global features. In the proposed method it is the

basis for evaluation of the reliability of the signature in Sect. 2.2.2. Our system for

signature verification works on the basis of two fuzzy rules in the form:
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⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

⎡
⎢
⎢
⎢
⎣

IF
(
dtsti,1isA1

i,1

)|
|
|
|
wi,1AND…

…AND
(
dtsti,N′

i
isA1

i,N′
i

)|
|
|
|
wi,N′

i
THENyiisB1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

IF
(
dtsti,1isA2

i,1

)|
|
|
|
wi,1AND…

…AND
(
dtsti,N′

i
isA2

i,N′
i

)|
|
|
|
wi,N′

i
THENyiisB2

⎤
⎥
⎥
⎥
⎦

, (9)

where:

∙ dtsti,n, i = 1,… , I, n = 1,… ,N′
i , are input linguistic variables (see e.g. [18, 30])

indicating the “similarity between the values of the global feature n of the test

signature and the average values of the global feature defined for the reference

signatures of the signer i”. Values “high” and “low” assumed by these variables

are Gaussian fuzzy sets A1
i,1,… ,A1

i,N′
i

and A2
i,1,… ,A2

i,N′
i

(see Fig. 2), described by

the membership functions 𝜇A1
i,n

and 𝜇A2
i,n

. In the case when a fuzzification of the

singleton type is used, input linguistic variables can be considered as input signals

of the system, which are determined using the formula (8).

∙ yi, i = 1,… , I, is output linguistic variable “similarity between the values of the

selected evolutionary global features of the test signature and the features of the

reference signatures of the signer i”. Value “high” assumed by this variable is the

fuzzy set B1
of the 𝛾 type, value “low” is the fuzzy set B2

of the L type (see Fig. 2).

Sets B1
and B2

are described by the membership functions 𝜇B1 and 𝜇B2 (see e.g.

[67]).

∙ maxdi,n, i = 1,… , I, n = 1,… ,N′
i , can be equated with the border values of fea-

tures of individual signers (calculated by the formula (6)) and wi,n are weights of

importance related to the global feature number n of the signer i (calculated by the

formula (7)).

Fig. 2 Input and output fuzzy sets of the one-class flexible fuzzy classifier of the Mamdani type

for signature verification of the signer i
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2.2.2 Signature Verification

In the proposed method, the test signature is recognized as belonging to the signer i
(genuine) if the assumption ȳi > cthi is satisfied, where ȳi is the value of the output

signal of fuzzy system described by the rules (9):

ȳi =

T∗

⎧
⎪
⎨
⎪
⎩

𝜇A1
i,1

(
dtsti,1

)
,… , 𝜇A1

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

⎫
⎪
⎬
⎪
⎭

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T∗

{
𝜇A1

i,1

(
dtsti,1

)
,… , 𝜇A1

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

}

+

T∗

{
𝜇A2

i,1

(
dtsti,1

)
,… , 𝜇A2

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

}

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(10)

where:

∙ T∗ {⋅} is the algebraic weighted t-norm (see [6, 71]) in the form:

T∗
{

a1, a2;
w1,w2

}

= T
{

1 − w1 ⋅
(
1 − a1

)
,

1 − w2 ⋅
(
1 − a2

)
}

e.g.
= .

(
1 − w1 ⋅

(
1 − a1

))
⋅
(
1 − w2 ⋅

(
1 − a2

))
,

(11)

where t-norm T {⋅} is a generalization of the usual two-valued logical conjunction

(studied in classical logic), w1 and w2 ∈ [0, 1] mean weights of importance of

the arguments a1, a2 ∈ [0, 1]. Please note that T∗ {a1, a2; 1, 1
}
= T

{
a1, a2

}
and

T∗ {a1, a2; 1, 0
}
= a1.

∙ cthi ∈ [0, 1]—coefficient determined experimentally for each signer to eliminate

disproportion between FAR (False Acceptance Rate) and FRR (False Rejection

Rate) error (see e.g. [80]).

Formula (10) was established by taking into account in the description of system

simplification resulting from the spacing of fuzzy sets, shown in Fig. 2:

{
𝜇B1 (0) = 0, 𝜇B1 (1) = 1
𝜇B2 (0) = 1, 𝜇B2 (1) = 0 . (12)

Detailed information about the system described by the rules in the form (9), which

allow to easily derive the relationship (10) on the basis of the assumption (12), can

be found e.g. in [5, 6, 8, 71, 73].

2.2.3 Interpretability of the Classifier Knowledge

In the literature one can find the conditions that must be met by the rules of the

fuzzy systems, which cause that the rules are clear. For example, in the paper [29] 4
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interpretability levels have been presented (complexity at the rule base level, com-

plexity at the level of fuzzy partitions, semantics at the rule base level, semantics at

the fuzzy partition level). The rules in the form (9) meet defined levels. Moreover,

it is worth to note that in the proposed method: (a) all parameters of the rules are

determined analytically and they have their own interpretation, (b) the rules have the

same form for all signers but different values of the parameters.

2.3 Description of the Computational Complexity

In practice, the learning phase of the algorithm is performed once for each user and

the testing phase (signature verification) can be performed multiple times. A decisive

influence on the computational complexity of the learning phase has a complexity of

used genetic algorithm (see Table 2). In turn, a way of determining the global features

has a decisive influence on the computational complexity of the testing phase (mini-

mal in practice) (see Table 2). Implementation details of the proposed algorithm have

not been considered in the paper, but a need to start the process of evolution once for

each user in the learning phase should not be a problem in the practical implementa-

tion of the algorithm. However, if there is a need of processing a very large number

of users registering to the system at the same time, the algorithm could be run in a

parallel server environment. Another solution could be queuing of tasks associated

with an automatic evolutionary selection of features.

Table 1 Performance comparison of our method with other methods using BioSecure database

Method Average FAR (%) Average FRR (%) Average error (%)

Methods used in

signature evaluation

campaign 2009 [33]

– – 1.71–27.76

Horizontal

partitioning [12]

2.94 4.45 3.70

Vertical partitioning

[11]

3.13 4.15 3.64

Evolutionary selection

with PCA [88]

5.29 6.01 5.65

Our method without

evolutionary selection

3.29 3.82 3.56

Our method with

evolutionary selection

2.32 2.48 2.40
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Table 2 Computational complexity of the proposed algorithm

Step Learning phase 1 Testing phase

1 J 1

2 J ⋅
N∑

n=1
cn 4 ⋅ N′

3 J ⋅ N
N′
∑

n=1
cn

4 S ⋅(
N + 9 + N ⋅ (2 + J) + 2⋅N∗3+9⋅N∗2+13⋅N∗

6

) N′

5 2 ⋅ N 1 + 2 ⋅ N′

6 4 ⋅ J ⋅ N –

7 4 ⋅ N –

3 Simulation Results

Simulations were performed using commercial BioSecure database which contains

signatures of 210 signers. The signatures were acquired in two sessions using the

digital graphic tablet. Each session contains 15 genuine signatures and 10 skilled

forgeries per person. During training phase we used 5 randomly selected genuine sig-

natures of each signer. During test phase we used 10 remaining genuine signatures

and all 10 skilled forgeries of each signer. The process was performed five times,

and the results were averaged. The described method is commonly used in evaluat-

ing the effectiveness of methods for the dynamic signature verification and it corre-

sponds to the standard cross validation procedure. The test was performed using the

authorial testing environment implemented in C# language. During the simulations

the following assumptions have been adopted: (a) population contains 100 chromo-

somes, (b) algorithm stops after the lapse of a determined number of 1000 gener-

ations, (c) during selection of chromosomes tournament selection method is used,

(d) crossover is performed with probability equal to 0.8 at three points, (e) mutation

is performed for each gene with probability equal to 0.02. Details concerning the

interpretation of these parameters can be found, among others, in [51, 67].

Conclusions of the simulations can be summarized as follows:

∙ The proposed method for the considered BioSecure database works with high

accuracy in comparison with the methods presented in the Table 1 and in the paper

[33]. The comparison criterion was the value of the error EER (Equal Error Rate),

which is commonly used to evaluate the accuracy of biometric methods (see e.g.

[24, 42]). In practice, also other measures, such as e.g. d′, can be used in assessing

the effectiveness of the biometric systems (see e.g. [37]). The d′ measures the sep-

aration between the means of the genuine and impostor probability distributions

in standard deviation units. Its mean value, averaged for five test sessions and all

signers, is equal to 7.58 for the BioSecure database.
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Fig. 3 Percentage frequency of selection of the global features of the signature in the context of

all signers for BioSecure database

∙ In simulations a common value of cthi = 0.45 was used for all signers. We adopted

the assumption that the number of false acceptance should be close to the number

of false rejection. If the algorithm working in practice has to be e.g. more sensitive

to false acceptance (e.g. in high security systems), value of cthi should be higher

than 0.45.

∙ The considered set of features does not contain features selected to verify signature

of all signers (see Fig. 3). However, there are those which were not selected at all.

Their names are not given, because the verification of a usefulness of the features

in the context of the database BioSecure was not our goal. It should be noted that

use of all available features causes increasing of ERR value to 3.56%.

4 Conclusions

In this paper we have proposed a new fuzzy-genetic biometric method for the

dynamic signature verification using global features. It is based on the appropri-

ately designed evaluation function of the genetic algorithm. It is used for individual

choice of a subset of the global features which are the most characteristic for the

reference signatures of the considered signer. Moreover, the proposed method deter-

mines the weights of importance of the evolutionarily selected global features and

uses them in the classification process. It is also worth noting that the proposed algo-

rithm works independently of the initial set of features, works without access to the

so-called skilled forgeries and uses the capabilities of the fuzzy one-class classifier,

whose knowledge can be interpreted. We would also like to emphasize that the pro-

posed method worked with very high accuracy for the BioSecure signature database

in comparison to the methods of other authors (described in the available positions

of the literature).

In our further research in the field of the dynamic signature verification we are

planning to take care of, among others, research about the relationship between the

dynamic signature verification accuracy and the number of the global features used

in the verification.
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