
Tensor Networks for Dimensionality
Reduction, Big Data and Deep Learning

Andrzej Cichocki

Abstract Large scale multidimensional data are often available as multiway arrays

or higher-order tensors which can be approximately represented in distributed forms

via low-rank tensor decompositions and tensor networks. Our particular emphasis

is on elucidating that, by virtue of the underlying low-rank approximations, tensor

networks have the ability to reduce the dimensionality and alleviate the curse of

dimensionality in a number of applied areas, especially in large scale optimization

problems and deep learning. We briefly review and provide tensor links between

low-rank tensor network decompositions and deep neural networks. We elucidating,

through graphical illustrations, that low-rank tensor approximations and sophisti-

cated contractions of core tensors, tensor networks have the ability to perform dis-

tributed computations on otherwise prohibitively large volume of data/parameters.

Our focus is on the Hierarchical Tucker, tensor train (TT) decompositions and MERA

tensor networks in specific applications.

1 Introduction and Objectives

This paper aims to present some new ideas and methodologies related to tensor

decompositions (TDs) and tensor networks models (TNs), especially in applications

to deep neural networks (DNNs) and dimensionality reduction. The resurgence of

artificial neural systems, especially deep learning neural networks has formed an

active frontier of machine learning, signal processing and data mining [1–6, 13,

14]. Tensor decompositions (TDs) decompose complex data tensors of exceedingly

high volume into their factor (component) matrices, while tensor networks (TNs)

A. Cichocki (✉)

Systems Research Institute, Polish Academy of Science, Warsaw, Poland

e-mail: a.cichocki@riken.jp

A. Cichocki

RIKEN Brain Science Institute, Tokyo, Japan

A. Cichocki

SKOLTECH, Moscow, Russia

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_1

3

4 A. Cichocki

decompose higher-order tensors into sparsely interconnected small-scale factor matri-

ces and/or low-order core tensors [7–14]. These low-order core tensors are called

“components”, “blocks”, “factors” or simply “cores”. In this way, large-scale data

can be approximately represented in highly compressed and distributed formats.

In this paper, the TDs and TNs are treated in a unified way, by considering TDs

as simple tensor networks or sub-networks; the terms “tensor decompositions” and

“tensor networks” will therefore be used interchangeably. Tensor networks can be

thought of as special graph structures which break down high-order tensors into a set

of sparsely interconnected low-order core tensors, thus allowing for both enhanced

interpretation and computational advantages [12–14].

Tensor networks offer a theoretical and computational framework for the analysis

of computationally prohibitive large volumes of data, by “dissecting” such data into

the “relevant” and “irrelevant” information. In this way, tensor network representa-

tions often allow for super-compression of data sets as large as 108 entries, down to

the affordable levels of 105 or even less entries [15–25].

Challenges in Big Data Processing. Extreme-scale volumes and variety of mod-

ern data are becoming ubiquitous across the science and engineering disciplines. In

the case of multimedia (speech, video), remote sensing and medical/biological data,

the analysis also requires a paradigm shift in order to efficiently process massive

data sets within tolerable time (velocity). Such massive data sets may have billions

of entries and are typically represented in the form of huge block matrices and/or

tensors. This has spurred a renewed interest in the development of tensor algorithms

that are suitable for extremely large-scale data sets.

Apart from the huge Volume, the other features which characterize big data

include Veracity, Variety and Velocity (see Fig. 1a and b). Each of the “V features”

represents a research challenge in its own right. For example, high volume implies

the need for algorithms that are scalable; high Velocity requires the processing of

big data streams in near real-time; high Veracity calls for robust and predictive

algorithms for noisy, incomplete and/or inconsistent data; high Variety demands the

fusion of different data types, e.g., continuous, discrete, binary, time series, images,

video, text, probabilistic or multi-view. Some applications give rise to additional

“V challenges”, such as Visualization, Variability and Value. The Value feature is

particularly interesting and refers to the extraction of high quality and consistent

information, from which meaningful and interpretable results can be obtained.

Our objective is to show that tensor networks provide a natural sparse and distrib-

uted representation for big data, and address both established and emerging method-

ologies for tensor-based representations and optimization. Our particular focus is on

low-rank tensor network representations, which allow for huge data tensors to be

approximated (compressed) by interconnected low-order core tensors [10, 11, 14].

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 5

(a)

Batch

Micro-batch

Near real-time

Streams

VOLUME

M
is

si
ng

 d
at

a
A

no
m

al
y

O
ut

lie
rs

N
oi

seIn
co

ns
is

te
nc

y

Ti
m

e
se

rie
s

Im
ag

es
Bi

na
ry

 d
at

a
3D

 im
ag

es
M

ul
tiv

ie
w

 d
at

a
Pr

ob
ab

ili
sti

c

V
E

R
A

C
IT

Y

Petabytes

Terabytes

GB

MB

V
A

R
IE

TY

VELOCITY

(b)

Storage
Management,

Scale

Integration
of Variety of

Data

High Speed
Distributed,

Parallel
Computing

Robustness to
Noise, Outliers,
Missing Values

VOLUME

VERACITY

VELOCITY

VARIETY

Applications,
Tasks

Matrix/Tensor
Completion,
Inpainting,
Imputation

Anomaly
Detection

Feature
Extraction,

Classification,
Clustering

Correlation,
Regression,
Prediction,
Forecasting

PARAFAC
CPD,NTF

Tucker,NTD
Hierarchical

Tucker
Tensor Train,

MPS/MPO

PEPS,
MERA

Tensor
Models

Sparseness
Optimization

Criteria,
Constraints

SmoothnessNon-negativity

Statistical
Independence,

Correlation

Signal
Processing

and Machine
Learning for

Big Data

Challenges

Fig. 1 a The 4 V challenges for big data. b A framework for extremely large-scale data analysis

and the potential applications based on tensor decomposition approaches

6 A. Cichocki

2 Tensor Operations and Graphical Representations
of Tensor Networks

Tensors are multi-dimensional generalizations of matrices. A matrix (2nd-order ten-

sor) has two modes, rows and columns, while an Nth-order tensor has N modes

for example, a 3rd-order tensor (with three-modes) looks like a cube. Sub-tensors

are formed when a subset of tensor indices is fixed. Of particular interest are fibers

which are vectors obtained by fixing every tensor index but one, and matrix slices

which are two-dimensional sections (matrices) of a tensor, obtained by fixing all the

tensor indices but two. It should be noted that block matrices can also be represented

by tensors.

We adopt the notation whereby tensors (forN ≥ 3) are denoted by bold underlined

capital letters, e.g., 𝐗 ∈ ℝI1×I2×⋯×IN . For simplicity, we assume that all tensors are

real-valued, but it is possible to define tensors as complex-valued or over arbitrary

fields. Matrices are denoted by boldface capital letters, e.g., 𝐗 ∈ ℝI×J
, and vectors

(1st-order tensors) by boldface lower case letters, e.g., 𝐱 ∈ ℝJ
. For example, the

columns of the matrix 𝐀 = [𝐚1, 𝐚2,… , 𝐚R] ∈ ℝI×R
are the vectors denoted by 𝐚r ∈

ℝI
, while the elements of a matrix (scalars) are denoted by lowercase letters, e.g.,

air = 𝐀(i, r) (for more details regarding notations and basic tensor operations see

[10–14, 26].

A specific entry of an Nth-order tensor 𝐗 ∈ ℝI1×I2×⋯×IN is denoted by xi1,i2,…,iN =
𝐗(i1, i2,… , iN) ∈ ℝ. The order of a tensor is the number of its “modes”, “ways” or

“dimensions”, which can include space, time, frequency, trials, classes, and dictio-

naries. The term “size” stands for the number of values that an index can take in a

particular mode. For example, the tensor 𝐗 ∈ ℝI1×I2×⋯×IN is of order N and size In in

all modes-n (n = 1, 2,… ,N). Lower-case letters e.g., i, j are used for the subscripts

in running indices and capital letters I, J denote the upper bound of an index, i.e.,

i = 1, 2,… , I and j = 1, 2,… , J. For a positive integer n, the shorthand notation<n>
denotes the set of indices {1, 2,… , n}.

Notations and terminology used for tensors and tensor networks differ across the

scientific communities to this end we employ a unifying notation particularly suitable

for machine learning and signal processing research [13, 14].

A precise description of tensors and tensor operations is often tedious and cum-

bersome, given the multitude of indices involved. We grossly simplify the descrip-

tion of tensors and their mathematical operations through diagrammatic representa-

tions borrowed from physics and quantum chemistry (see [13, 14, 27] and references

therein). In this way, tensors are represented graphically by nodes of any geometrical

shapes (e.g., circles, squares, dots), while each outgoing line (“edge”, “leg”, “arm”)

from a node represents the indices of a specific mode (see Fig. 2a). In our adopted

notation, each scalar (zero-order tensor), vector (first-order tensor), matrix (2nd-

order tensor), 3rd-order tensor or higher-order tensor is represented by a circle (or

rectangular), while the order of a tensor is determined by the number of lines (edges)

connected to it. According to this notation, an Nth-order tensor 𝐗 ∈ ℝI1×⋯×IN is rep-

resented by a circle (or any shape) with N branches each of size In, n = 1, 2,… ,N

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 7

(a)

Scalar Vector

I

a a I

Matrix

I J

A I J

3rd-order tensor

I K
J

I

K

A

A

J J

I

K

J

I

K

4th-order tensor

I K
J

M

M

 I J K

A1 AM

A I J KM

(b)

I J

x W
=

J

y=Wx

I J

x W
=

K

y=W2W1x

K

I J

x W

1 W2

y
= h = xT Wy

I J

X W Y

K

= = (XWY)tr

x z

I 3

I 2

I 1

y

W
= = W1x2y3z

W
X Y

I 1

I 2 I 3

I4 =
I

x W(2)=Vec(X) y=Vec(Y)

1I2 I3I4

(x,y)

h(X,Y)

h(x,y,z)

Fig. 2 Graphical representation of tensor operations. a Basic building blocks for tensor network

diagrams. b Tensor network diagrams for matrix-vector and tensor-vectors multiplications

8 A. Cichocki

(see Sect. 2.1). An interconnection between two circles designates a contraction of

tensors, which is a summation of products over a common index (see Fig. 2b).

Hierarchical (multilevel block) matrices are also naturally represented by tensors.

All mathematical operations on tensors can be therefore equally performed on block

matrices [12, 13].

In this paper, we make extensive use of tensor network diagrams as an intuitive

and visual way to efficiently represent tensor decompositions. Such graphical nota-

tions are of great help in studying and implementing sophisticated tensor opera-

tions. We highlight the significant advantages of such diagrammatic notations in

the description of tensor manipulations, and show that most tensor operations can

be visualized through changes in the architecture of a tensor network diagram.

2.1 Tensor Operations and Tensor Network Diagrams

Tensor operations benefit from the power of multilinear algebra which is structurally

much richer than linear algebra, and even some basic properties, such as the rank,

have a more complex meaning.

For convenience, general operations, such as vec(⋅) or diag(⋅), are defined simi-

larly to the MATLAB syntax.

Multi-indices: By a multi-index i = i1i2 ⋯ iN we refer to an index which takes

all possible combinations of values of indices, i1, i2,… , iN , for in = 1, 2,… , In, n =
1, 2,… ,N and in a specific order. Multi–indices can be defined using the following

convention [28]:

i1i2 ⋯ iN = iN + (iN−1 − 1)IN + (iN−2 − 1)ININ−1 +
⋯ + (i1 − 1)I2 ⋯ IN .

Matricization. The matricization operator, also known as the unfolding or flat-

tening, reorders the elements of a tensor into a matrix. Such a matrix is re-indexed

according to the choice of multi-index described above, and the following two fun-

damental matricizations are used extensively.

The mode-n matricization. For a fixed index n ∈ {1, 2,… ,N}, the mode-n
matricization of an Nth-order tensor, 𝐗 ∈ ℝI1×⋯×IN , is defined as the (“short” and

“wide”) matrix

𝐗(n) ∈ ℝIn×I1I2⋯In−1In+1⋯IN
, (1)

with In rows and I1I2 ⋯ In−1In+1 ⋯ IN columns, the entries of which are

(𝐗(n))in,i1…in−1in+1…iN
= xi1,i2,…,iN .

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 9

Note that the columns of a mode-n matricization, 𝐗(n), of a tensor 𝐗 are the mode-n
fibers of 𝐗.

The mode-{n} canonical matricization. For a fixed index n ∈ {1, 2,… ,N}, the

mode-(1, 2,… , n) matricization, or simply mode-n canonical matricization, of a ten-

sor 𝐗 ∈ ℝI1×⋯×IN is defined as the matrix

𝐗
<n> ∈ ℝI1I2⋯In×In+1⋯IN

, (2)

with I1I2 ⋯ In rows and In+1 ⋯ IN columns, and the entries

(𝐗
<n>)i1i2…in, in+1…iN

= xi1,i2,…,iN .

The matricization operator in the MATLAB notation (reverse lexicographic) is given

by

𝐗
<n> = reshape

(
𝐗, I1I2 ⋯ In, In+1 ⋯ IN

)
. (3)

As special cases we immediately have

𝐗
<1> = 𝐗(1), 𝐗

<N−1> = 𝐗T

(N), 𝐗
<N> = vec(𝐗). (4)

The tensorization of a vector or a matrix can be considered as a reverse process

to the vectorization or matricization (see Fig. 3) [14].

The following symbols are used for most common tensor multiplications: ◦ for

the outer product ⊗ for the Kronecker product, ⊙ for the Khatri–Rao product, ⊛ for

the Hadamard (componentwise) product, and ×n for the mode-n product. We refer to

[13, 14, 26, 29] for more detail regarding the basic notations and tensor operations

(Figs. 4 and 5).

Outer product. The central operator in tensor analysis is the outer or tensor

product, which for the tensors 𝐀 ∈ ℝI1×⋯×IN and 𝐁 ∈ ℝJ1×⋯×JM gives the tensor

𝐂 = 𝐀 ◦𝐁 ∈ ℝI1×⋯×IN×J1×⋯×JM with entries ci1,…,iN ,j1,…,jM = ai1,…,iN bj1,…,jM .

Note that for 1st-order tensors (vectors), the tensor product reduces to the standard

outer product of two nonzero vectors, 𝐚 ∈ ℝI
and 𝐛 ∈ ℝJ

, which yields a rank-1

matrix, 𝐗 = 𝐚 ◦𝐛 = 𝐚𝐛T ∈ ℝI×J
. The outer product of three nonzero vectors, 𝐚 ∈

ℝI
, 𝐛 ∈ ℝJ

and 𝐜 ∈ ℝK
, gives a 3rd-order rank-1 tensor (called pure or elementary

tensor), 𝐗 = 𝐚 ◦𝐛 ◦ 𝐜 ∈ ℝI×J×K
, with entries xijk = ai bj ck.

The outer (tensor) product has been generalized to the nonlinear outer (tensor)

products, as follows

(
𝐀◦

𝜌

𝐁
)
i1,…,iN ,j1,…,JM

= 𝜌

(
ai1,…,iN , bj1,…,jM

)
, (5)

where 𝜌 is, in general, nonlinear suitably chosen function (see [30] and Sect. 7 for

more detail).

In a similar way, we can define the generalized Kronecker and the Khatri-Rao

products. Generalized Kronecker product of two tensors 𝐀 ∈ ℝI1×I2×⋯×IN and

10 A. Cichocki

Matricization

Vectorization

Tensorization

Tensor
Data

Tensorization

Vectorization

...

...

...

...

...

Fig. 3 Tensor reshaping operations: matricization, vectorization and tensorization. Matricization

refers to converting a tensor into a matrix, vectorization to converting a tensor or a matrix into

a vector, while tensorization refers to converting a vector, a matrix or a low-order tensor into a

higher-order tensor

(a) A

I1

I2

In

IN

...
... In

A()n
IN

I1

1 1 1n n NI I I I...

(b) I1

I2

In

I
In+1

IN J...

...

A<n>

I1
IN.... ..

A

I2
In

In+1

Fig. 4 Matricization (flattening, unfolding) used in tensor reshaping. a Tensor network diagram

for the mode-n matricization of an Nth-order tensor, 𝐀 ∈ ℝI1×I2×⋯×IN , into a short and wide matrix,

𝐀(n) ∈ ℝIn × I1⋯In−1In+1⋯IN . b Mode-{1, 2,… , n}th (canonical) matricization of an Nth-order tensor,

𝐀, into a matrix 𝐀
<n> = 𝐀(i1…in ; in+1…iN)

∈ ℝI1I2⋯In × In+1⋯IN

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 11

𝐁 ∈ ℝJ1×J2×⋯×JN yields a tensor𝐂 = 𝐀⊗
𝜌

𝐁 ∈ ℝI1J1×⋯×INJN , with entries c i1j1,…,iN jN
=

𝜌(ai1,…,iN , bj1,…,jN).
Analogously, we can define a generalized Khatri–Rao product of two matri-

ces 𝐀 = [𝐚1,… , 𝐚J] ∈ ℝI×J
and 𝐁 = [𝐛1,… ,𝐛J] ∈ ℝK×J

is a matrix 𝐂 = 𝐀⊙
𝜌

𝐁 ∈
ℝIK×J

, with columns 𝐜j = 𝐚j ⊗𝜌

𝐛j ∈ ℝIK
.

CP decomposition, Kruskal tensor. Any tensor can be expressed as a finite sum

of rank-1 tensors, in the form

𝐗 =
R∑

r=1
𝐛(1)r ◦𝐛(2)r ◦ ⋯ ◦𝐛(N)r =

R∑

r=1

(
N

n=1
◦ 𝐛(n)r

)
, 𝐛(n)r ∈ ℝIn

, (6)

which is exactly the form of the Kruskal tensor, also known under the names of

CANDECOMP/PARAFAC, Canonical Polyadic Decomposition (CPD), or simply

the CP decomposition in (23). We will use the acronyms CP and CPD.

Tensor rank. The tensor rank, also called the CP rank, is a natural extension of

the matrix rank and is defined as a minimum number, R, of rank-1 terms in an exact

CP decomposition of the form in (6).

Multilinear products. The mode-n (multilinear) product, also called the tensor-

times-matrix product (TTM), of a tensor, 𝐀 ∈ ℝI1×⋯×IN , and a matrix, 𝐁 ∈ ℝJ×In ,

gives the tensor

𝐂 = 𝐀 ×n 𝐁 ∈ ℝI1×⋯×In−1×J×In+1×⋯×IN
, (7)

with entries ci1,i2,…,in−1,j,in+1,…,iN =
∑In

in=1
ai1,i2,…,iN bj,in . An equivalent matrix represen-

tation is 𝐂(n) = 𝐁𝐀(n), which allows us to employ established fast matrix-by-vector

and matrix-by-matrix multiplications when dealing with very large-scale tensors.

Efficient and optimized algorithms for TTM are, however, still emerging [31–33].

Full Multilinear Product. A full multilinear product, also called the Tucker

product,
1

of an Nth-order tensor, 𝐆 ∈ ℝR1×R2×⋯×RN , and a set of N factor matrices,

𝐁(n) ∈ ℝIn×Rn for n = 1, 2,… ,N, performs the multiplications in all the modes and

can be compactly written as

𝐂 = 𝐆 ×1 𝐁(1) ×2 𝐁(2) ⋯ ×N 𝐁(N) ∈ ℝI1×I2×⋯×IN
.

Observe that this format corresponds to the Tucker decomposition [26, 34, 35] (see

also Sect. 3.1).

Multilinear product of a tensor and a vector (TTV). In a similar way, the mode-

n multiplication of a tensor, 𝐆 ∈ ℝR1×⋯×RN , and a vector, 𝐛 ∈ ℝRn (tensor-times-

vector, TTV) yields a tensor

1
The standard multilinear product can be generalized to nonlinear multilinear product as 𝐂 = 𝐆 ×𝜎

1
𝐁(1) ×𝜎

2 𝐁
(2) ⋯ ×𝜎

N 𝐁(N)
, where 𝐆 ×𝜎

n 𝐁 = 𝜎(𝐆 ×n 𝐁), and 𝜎 is a suitably chosen nonlinear activation

function.

12 A. Cichocki

(b)(a)

R1
R2

R4
B

(1) R5
B

(5)

B
(4)

B
(3)B

(2)

I1

I2
I3

I4

I5

R3

G

R4

R1

R2

R3

b3

b2

b1 G

Fig. 5 Generalized (nonlinear) multilinear tensor products used in deep learning in a compact ten-

sor network notation. a Generalized multilinear product of a tensor, 𝐆 ∈ ℝR1×R2×⋯×R5 , and five fac-

tor (component) matrices, 𝐁(n) ∈ ℝIn×Rn (n = 1, 2,… , 5), yields the tensor 𝐂 = (((((𝐆 ×𝜎

1 𝐁(1)) ×𝜎

2
𝐁(2)) ×𝜎

3 𝐁(3)) ×𝜎

4 𝐁(4)) ×𝜎

5 𝐁(5)) ∈ ℝI1×I2×⋯×I5 . This corresponds to the generalized Tucker for-

mat. c Generalized multi-linear product of a 4th-order tensor, 𝐆 ∈ ℝR1×R2×R3×R4 , and three vectors,

𝐛n ∈ ℝRn (n = 1, 2, 3), yields the vector 𝐜 = (((𝐆 ×̄𝜎

1 𝐛1) ×̄
𝜎

2 𝐛2) ×̄
𝜎

3 𝐛3) ∈ ℝR4 , where, in general, 𝜎

is a nonlinear activation function

𝐂 = 𝐆×̄n𝐛 ∈ ℝR1×⋯×Rn−1×Rn+1×⋯×RN
, (8)

with entries cr1,…,rn−1,rn+1,…,rN =
∑Rn

rn=1
gr1,…,rn−1,rn,rn+1,…,rN brn .

Note that the mode-n multiplication of a tensor by a matrix does not change the

tensor order, while the multiplication of a tensor by vectors reduces its order, with

the mode n removed.

Multilinear products of tensors by matrices or vectors play a key role in deter-

ministic methods for the reshaping of tensors and dimensionality reduction, as well

as in probabilistic methods for randomization/sketching procedures and in random

projections of tensors into matrices or vectors. In other words, we can also perform

reshaping of a tensor through random projections that change its entries, dimen-

sionality or size of modes, and/or the tensor order. This is achieved by multiplying

a tensor by random matrices or vectors, transformations which preserve its basic

properties [36–43].

Tensor contractions. Tensor contraction is a fundamental and the most important

operation in tensor networks, and can be considered a higher-dimensional analogue

of matrix multiplication, inner product, and outer product.

In a way similar to the mode-n multilinear product,
2

the mode-(mn) product (ten-

sor contraction) of two tensors, 𝐀 ∈ ℝI1×I2×⋯×IN and 𝐁 ∈ ℝJ1×J2×⋯×JM , with common

modes, In = Jm, yields an (N +M − 2)-order tensor,

𝐂 ∈ ℝI1×⋯×In−1×In+1×⋯×IN×J1×⋯×Jm−1×Jm+1×⋯×JM , in the form (see Fig. 6a)

𝐂 = 𝐀 ×m
n 𝐁, (9)

2
In the literature, sometimes the symbol ×n is replaced by ∙n.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 13

I1

I2 J3

J4

A B

I4

I J3 2=

A B

I1

I2

J5

J4

I5 1=J

I4 2=J

I3 3=J

J1

(a) (b)

Fig. 6 Examples of contractions of two tensors. a Tensor contraction of two 4th-order tensors,

along mode-3 in 𝐀 and mode-2 in 𝐁, yields a 6th-order tensor, 𝐂 = 𝐀 ×2
3 𝐁 ∈ ℝI1×I2×I4×J1×J3×J4 ,

with entries ci1 ,i2 ,i4 ,j1 ,j3 ,j4 =
∑

i3
ai1 ,i2 ,i3 ,i4 bj1 ,i3 ,j3 ,j4 . b Tensor contraction of two 5th-order tensors

along the modes 3, 4, 5 in𝐀 and 1, 2, 3 in𝐁 yields a 4th-order tensor,𝐂 = 𝐀 ×1,2,3
5,4,3 𝐁 ∈ ℝI1×I2×J4×J5 .

Nonlinear contraction can be also performed similar to formula (5)

for which the entries are computed as ci1,…, in−1, in+1,…,iN , j1,…, jm−1, jm+1,…, jM =
∑In

in=1
ai1,…,in−1, in, in+1,…, iN bj1,…, jm−1, in, jm+1,…, jM . This operation is referred to as a con-

traction of two tensors in single common mode.

Tensors can be contracted in several modes (or even in all modes), as illustrated

in Fig. 6. Often, the super- or sub-index, e.g., m, n, will be omitted in a few special

cases. For example, the multilinear product of the tensors, 𝐀 ∈ ℝI1×I2×⋯×IN and 𝐁 ∈
ℝJ1×J2×⋯×JM , with common modes, IN = J1, can be written as

𝐂 = 𝐀 ×1
N 𝐁 = 𝐀 ×1 𝐁 = 𝐀 ∙ 𝐁 ∈ ℝI1×I2×⋯×IN−1×J2×⋯×JM

, (10)

for which the entries c𝐢2∶N ,𝐣2∶M =
∑I1

i=1 ai,𝐢2∶N bi,𝐣2∶M by using the MATLAB notation

𝐢p∶q = {ip, ip+1,… , iq−1, iq}.

In this notation, the multiplications of matrices and vectors can be written as,𝐀 ×1
2

𝐁 = 𝐀 ×1 𝐁 = 𝐀𝐁, 𝐀 ×2
2 𝐁 = 𝐀𝐁T

, 𝐀 ×1,2
1,2 𝐁 = 𝐀×̄𝐁 = ⟨𝐀,𝐁⟩, and 𝐀 ×1

2 𝐱 =
𝐀 ×1 𝐱 = 𝐀𝐱.

In practice, due to the high computational complexity of tensor contractions,

especially for tensor networks with loops, this operation is often performed approx-

imately [44–47].

3 Mathematical and Graphical Representation of Basic
Tensor Networks

Tensor networks (TNs) represent a higher-order tensor as a set of sparsely intercon-

nected lower-order tensors (see Fig. 7), and in this way provide computational and

storage benefits. The lines (branches, edges) connecting core tensors correspond to

the contracted modes while their weights (or numbers of branches) represent the

14 A. Cichocki

I1 I2 I3 I4 I5 I6

X

I1 I2 I3

I4

I5 I6

I7 I8
I9

I7 I8

I9

TT/MPS

PEPS

HT

I1 I2 I3

I4

I5

I6

I7 I8

I9

I1 I2 I3 I4

I5

I6

I7

I8

I9

Fig. 7 Illustration of the decomposition of a 9th-order tensor, 𝐗 ∈ ℝI1×I2×⋯×I9 , into different forms

of tensor networks (TNs). In general, the objective is to decompose a very high-order tensor into

sparsely (weakly) connected low-order and small size core tensors, typically 3rd-order and 4th-order

cores. Top: The Tensor Train (TT) model, which is equivalent to the Matrix Product State (MPS)

with closed boundary conditions (CBC). Middle: The Projected Entangled-Pair States (PEPS). Bot-

tom: The Hierarchical Tucker (HT)

rank of a tensor network,
3

whereas the lines which do not connect core tensors cor-

respond to the “external” physical variables (modes, indices) within the data tensor.

In other words, the number of free (dangling) edges (with weights larger than one)

determines the order of a data tensor under consideration, while set of weights of

internal branches represents the TN rank.

3.1 The CP and Tucker Tensor Formats

The CP and Tucker decompositions have long history. For recent surveys and more

detailed information we refer to [12–14, 26, 48–50]. Compared to the CP decom-

position, the Tucker decomposition provides a more general factorization of an Nth-

order tensor into a relatively small size core tensor and factor matrices, and can be

expressed as follows:

3
Strictly speaking, the minimum set of internal indices {R1,R2,R3,…} is called the rank (bond

dimensions) of a specific tensor network.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 15

𝐗 ≅
R1∑

r1=1
…

RN∑

rN=1
gr1r2…rN

(
𝐛(1)r1

◦𝐛(2)r2
◦ ⋯ ◦𝐛(N)rN

)

= 𝐆 ×1 𝐁(1) ×2 𝐁(2) ⋯ ×N 𝐁(N)

= �𝐆;𝐁(1)
,𝐁(2)

,… ,𝐁(N)�, (11)

where 𝐗 ∈ ℝI1×I2×⋯×IN is the given data tensor, 𝐆 ∈ ℝR1×R2×⋯×RN is the core tensor,

and 𝐁(n) = [𝐛(n)1 ,𝐛(n)2 ,… ,𝐛(n)Rn
] ∈ ℝIn×Rn are the mode-n factor (component) matrices,

n = 1, 2,… ,N (see Fig. 8). The core tensor (typically, Rn ≪ In) models a potentially

complex pattern of mutual interaction between the vectors in different modes. The

model in (11) is often referred to as the Tucker-N model.

Using the properties of the Kronecker tensor product, the Tucker-N decomposi-

tion in (11) can be expressed in an equivalent vector form as

vec(𝐗) ≅ [𝐁(N)
⊗ 𝐁(N−1)

⊗⋯⊗ 𝐁(1)] vec(𝐆), (12)

where the multi-indices are ordered in a reverse lexicographic order (little-endian).

Note that the CP decomposition can be considered as a special case of the Tucker

decomposition, whereby the cube core tensor has nonzero elements only on the main

diagonal. In contrast to the CP decomposition, the unconstrained Tucker decompo-

sition is not unique. However, constraints imposed on all factor matrices and/or core

tensor can reduce the indeterminacies to only column-wise permutation and scaling,

thus yielding a unique core tensor and factor matrices [51].

R1I1 B (1) G

R2

I2

B(2)

B (3) I3

R3
R1I1

B (1)

R
R

R

R3

I3

R2

I2

B (2)

B (3)

A(1)

A(2)

A(3)

Fig. 8 Illustration of the standard Tucker and Tucker-CP decompositions, where the objective

is to compute the factor matrices, 𝐁(n)
, and the core tensor, 𝐆. Tucker decomposition of a 3rd-

order tensor, 𝐗 ≅ 𝐆 ×1 𝐁(1) ×2 𝐁(2) ×3 𝐁(3)
. In some applications, the core tensor can be further

approximately factorized using the CP decomposition as 𝐆 ≅
∑R

r=1 𝐚r ◦𝐛r ◦ 𝐜r or alternatively

using TT/HT decompositions. Graphical representation of the Tucker-CP decomposition for a 3rd-

order tensor, 𝐗 ≅ 𝐆 ×1 𝐁(1) ×2 𝐁(2) ×3 𝐁(3) = �𝐆;𝐁(1)
,𝐁(2)

,𝐁(3)� ≅ (𝜦 ×1 𝐀(1) ×2 𝐀(2) ×3 𝐀(3)) ×1
𝐁(1) ×2 𝐁(2) ×3 𝐁(3) = �𝜦; 𝐁(1)𝐀(1)

, 𝐁(2)𝐀(2)
, 𝐁(3)𝐀(3)�

16 A. Cichocki

3.2 Operations in the Tucker Format

If very large-scale data tensors admit an exact or approximate representation in their

TN formats, then most mathematical operations can be performed more efficiently

using the so obtained much smaller core tensors and factor matrices.

As illustrative example, consider the Nth-order tensors 𝐗 and 𝐘 in the Tucker

format, given by

𝐗 = �𝐆X;𝐗
(1)
,… ,𝐗(N)� and 𝐘 = �𝐆Y ;𝐘

(1)
,… ,𝐘(N)�, (13)

for which the respective multilinear ranks are {R1,R2,… ,RN} and {Q1,Q2,… ,QN},

then the following mathematical operations can be performed directly in the Tucker

format, which admits a significant reduction in computational costs [13, 52–54]:

∙ The addition of two Tucker tensors of the same order and sizes

𝐗 + 𝐘 = �𝐆X ⊕𝐆Y ; [𝐗
(1)
,𝐘(1)],… , [𝐗(N)

,𝐘(N)]�, (14)

where⊕ denotes a direct sum of two tensors, and [𝐗(n)
,𝐘(n)] ∈ ℝIn×(Rn+Qn), 𝐗(n) ∈

ℝIn×Rn and 𝐘(n) ∈ ℝIn×Qn
, ∀n.

∙ The Kronecker product of two Tucker tensors of arbitrary orders and sizes

𝐗⊗ 𝐘 = �𝐆X ⊗𝐆Y ; 𝐗
(1)

⊗ 𝐘(1)
,… ,𝐗(N)

⊗ 𝐘(N)�. (15)

∙ The Hadamard or element-wise product of two Tucker tensors of the same order

and the same sizes

𝐗⊛ 𝐘 = �𝐆X ⊗𝐆Y ; 𝐗
(1)

⊙1 𝐘(1)
,… ,𝐗(N)

⊙1 𝐘(N)�, (16)

where ⊙1 denotes the mode-1 Khatri–Rao product, also called the transposed

Khatri–Rao product or row-wise Kronecker product.

∙ The inner product of two Tucker tensors of the same order and sizes can be

reduced to the inner product of two smaller tensors by exploiting the Kronecker

product structure in the vectorized form, as follows

⟨𝐗,𝐘⟩ = vec(𝐗)T vec(𝐘) (17)

= vec(𝐆X)
T

(N⨂

n=1
𝐗(n) T

)(N⨂

n=1
𝐘(n)

)

vec(𝐆Y)

= vec(𝐆X)
T

(N⨂

n=1
𝐗(n)T 𝐘(n)

)

vec(𝐆Y)

= ⟨�𝐆X; (𝐗
(1)T 𝐘(1)),… , (𝐗(N)T 𝐘(N))�,𝐆Y⟩.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 17

∙ The Frobenius norm can be computed in a particularly simple way if the factor

matrices are orthogonal, since then all products 𝐗(n)T 𝐗(n)
, ∀n, become the iden-

tity matrices, so that

‖𝐗‖F = ⟨𝐗,𝐗⟩

= vec
(
�𝐆X; (𝐗

(1)T 𝐗(1)),… , (𝐗(N)T 𝐗(N))�
)T

vec(𝐆X)
= vec(𝐆X)

T
vec(𝐆X) = ‖𝐆X‖F. (18)

∙ TheN-Ddiscrete convolution of tensors𝐗 ∈ ℝI1×⋯×IN and𝐘 ∈ ℝJ1×⋯×JN in their

Tucker formats can be expressed as

𝐙 = 𝐗 ∗ 𝐘 = �𝐆Z ;𝐙
(1)
,… ,𝐙(N)� (19)

∈ ℝ(I1+J1−1)×⋯×(IN+JN−1)
.

If {R1,R2,… ,RN} is the multilinear rank of 𝐗 and {Q1,Q2,… ,QN} the multilin-

ear rank 𝐘, then the core tensor 𝐆Z = 𝐆X ⊗𝐆Y ∈ ℝR1Q1×⋯×RNQN and the factor

matrices

𝐙(n) = 𝐗(n) �1 𝐘(n) ∈ ℝ(In+Jn−1)×RnQn
, (20)

where 𝐙(n)(∶, sn) = 𝐗(n)(∶, rn) ∗ 𝐘(n)(∶, qn) ∈ ℝ(In+Jn−1) for sn = rnqn = 1, 2,… ,

RnQn.

∙ Super Fast discrete Fourier transform (MATLAB functions fftn(𝐗) and fft(𝐗(n)
,

[], 1)) of a tensor in the Tucker format

 (𝐗) = �𝐆X; (𝐗(1)),… , (𝐗(N))�. (21)

Note that if the data tensor admits low multilinear rank approximation, then per-

forming the FFT on factor matrices of relatively small size 𝐗(n) ∈ ℝIn×Rn , instead

of a large-scale data tensor, decreases considerably computational complexity.

This approach is referred to as the super fast Fourier transform in Tucker format.

Similar operations can be performed in other TN formats [13].

4 Curse of Dimensionality and Separation of Variables for
Multivariate Functions

The term curse of dimensionality was coined by Bellman [55] to indicate that the

number of samples needed to estimate an arbitrary function with a given level

of accuracy grows exponentially with the number of variables, that is, with the

dimensionality of the function. In a general context of machine learning and the

underlying optimization problems, the “curse of dimensionality” may also refer to an

18 A. Cichocki

exponentially increasing number of parameters required to describe the data/system

or an extremely large number of degrees of freedom. The term “curse of dimen-

sionality”, in the context of tensors, refers to the phenomenon whereby the number

of elements, IN , of an Nth-order tensor of size (I × I ×⋯ × I) grows exponentially

with the tensor order, N. Tensor volume can therefore easily become prohibitively

big for multiway arrays for which the number of dimensions (“ways” or “modes”)

is very high, thus requiring huge computational and memory resources to process

such data. The understanding and handling of the inherent dependencies among the

excessive degrees of freedom create both difficult to solve problems and fascinating

new opportunities, but comes at a price of reduced accuracy, owing to the necessity

to involve various approximations.

The curse of dimensionality can be alleviated or even fully dealt with through ten-

sor network representations; these naturally cater for the excessive volume, veracity

and variety of data (see Fig. 1) and are supported by efficient tensor decomposi-

tion algorithms which involve relatively simple mathematical operations. Another

desirable aspect of tensor networks is their relatively small-scale and low-order core

tensors, which act as “building blocks” of tensor networks. These core tensors are

relatively easy to handle and visualize, and enable super-compression of the raw,

incomplete, and noisy huge-scale data sets. This suggests a solution to a more gen-

eral quest for new technologies for processing of exceedingly large data sets within

affordable computation times [13, 18, 56–58].

To address the curse of dimensionality, this work mostly focuses on approximative

low-rank representations of tensors, the so-called low-rank tensor approximations

(LRTA) or low-rank tensor network decompositions.

A tensor is said to be in a full or raw format when it is represented as an original

(raw) multidimensional array [59], however, distributed storage and processing of

high-order tensors in their full format is infeasible due to the curse of dimension-

ality. The sparse format is a variant of the full tensor format which stores only the

nonzero entries of a tensor, and is used extensively in software tools such as the

Tensor Toolbox [60] and in the sparse grid approach [61–63].

As already mentioned, the problem of huge dimensionality can be alleviated

through various distributed and compressed tensor network formats, achieved by

low-rank tensor network approximations.

The underpinning idea is that by employing tensor networks formats, both com-

putational costs and storage requirements may be considerably reduced through dis-

tributed storage and computing resources. It is important to note that, except for very

special data structures, a tensor cannot be compressed without incurring some com-

pression error, since a low-rank tensor representation is only an approximation of

the original tensor.

The concept of compression of multidimensional large-scale data by tensor net-

work decompositions can be intuitively explained as follows [13]. Consider the

approximation of an N-variate function h(𝐱) = h(x1, x2,… , xN) by a finite sum of

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 19

products of individual functions, each depending on only one or a very few vari-

ables [64–67]. In the simplest scenario, the function h(𝐱) can be (approximately)

represented in the following separable form

h(x1, x2,… , xN) ≅ h(1)(x1) h(2)(x2)⋯ h(N)(xN). (22)

In practice, when an N-variate function h(𝐱) is discretized into an Nth-order array,

or a tensor, the approximation in (22) then corresponds to the representation by

rank-1 tensors, also called elementary tensors (see Sect. 2.1). Observe that with

In, n = 1, 2,… ,N denoting the size of each mode and I = maxn{In}, the memory

requirement to store such a full tensor is
∏N

n=1 In ≤ IN , which grows exponentially

with N. On the other hand, the separable representation in (22) is completely defined

by its factors, h(n)(xn), (n = 1, 2,… ,N), and requires only
∑N

n=1 In ≪ IN storage

units.

If x1, x2,… , xN are statistically independent random variables, their joint prob-

ability density function is equal to the product of marginal probabilities, p(𝐱) =
p(1)(x1)p(2)(x2)… p(N)(xN), in an exact analogy to outer products of elementary ten-

sors. Unfortunately, the form of separability in (22) is rather rare in practice.

It should be noted that a function h(x1, x2) is a continuous analogue of a matrix,

say 𝐇 ∈ ℝI1×I2 , while a function h(x1,… , xN) in N dimensions is a continuous ana-

logue of an N-order grid tensor 𝐇 ∈ ℝI1×⋯×IN . In other words, the discretization of a

continuous score function h(x1, x2,… , xN) on a hyper-cube leads to a grid tensor of

order N. Specifically, we make use of a grid tensor that approximates and/or inter-

polates h(x1,… , xN) on a grid of points.

The concept of tensor networks rests upon generalized (full or partial) separability

of the variables of a high dimensional function. This can be achieved in different

tensor formats, including:

1. The Canonical Polyadic (CP) format, where

h(x1, x2,… , xN) ≅
R∑

r=1
h(1)r (x1) h(2)r (x2)⋯ h(N)r (xN), (23)

in an exact analogy to (22). In a discretized form, the above CP format can be

written as an Nth-order tensor

𝐇 ≅
R∑

r=1
𝐡(1)r ◦𝐡(2)r ◦ ⋯ ◦𝐡(N)r ∈ ℝI1×I2×⋯×IN

, (24)

where 𝐡(n)r ∈ ℝIn denotes a discretized version of the univariate function h(n)r (xn),
symbol ◦ denotes the outer product, and R is the tensor rank.

20 A. Cichocki

2. The Tucker format, given by (see Sect. 3.1)

h(x1,… , xN) ≅
R1∑

r1=1
⋯

RN∑

rN=1
gr1,…,rN h(1)r1

(x1)⋯ h(N)rN
(xN), (25)

and its distributed tensor network variants,

3. The Tensor Train (TT) format (see Sect. 6.2), in the form

h(x1, x2,… , xN) ≅
R1∑

r1=1

R2∑

r2=1
…

RN−1∑

rN−1=1
h(1)r1

(x1) h(2)r1 r2
(x2)⋯

⋯h(N−2)rN−2 rN−1
(xN−1) h(N)rN−1

(xN), (26)

with the equivalent compact matrix representation

h(x1, x2,… , xN) ≅ 𝐇(1)(x1)𝐇(2)(x2)⋯𝐇(N)(xN), (27)

where 𝐇(n)(xn) ∈ ℝRn−1×Rn , with R0 = RN = 1.

All the above approximations adopt the form of “sum-of-products” of single-

dimensional functions, a procedure which plays a key role in all tensor factoriza-

tions and decompositions.

Indeed, in many applications based on multivariate functions, a relatively good

approximations are obtained with a surprisingly small number of factors; this num-

ber corresponds to the tensor rank, R, or tensor network ranks, {R1,R2,… ,RN} (if

the representations are exact and minimal). However, for some specific cases this

approach may fail to obtain sufficiently good low-rank TN approximations [67]. The

concept of generalized separability has already been explored in numerical methods

for high-dimensional density function equations [22, 66, 67] and within a variety of

huge-scale optimization problems [13, 14].

To illustrate how tensor decompositions address excessive volumes of data, if

all computations are performed on a CP tensor format in (24) and not on the raw

Nth-order data tensor itself, then instead of the original, exponentially growing, data

dimensionality of IN , the number of parameters in a CP representation reduces to

NIR, which scales linearly in the tensor order N and size I. For example, the dis-

cretization of a 5-variate function over 100 sample points on each axis would yield

the difficulty to manage 1005 = 10,000,000,000 sample points, while a rank-2 CP

representation would require only 5 × 2 × 100 = 1000 sample points.

In contrast to CP decomposition algorithms, TT tensor network formats in (26)

exhibit both very good numerical properties and the ability to control the error

of approximation, so that a desired accuracy of approximation is obtained rel-

atively easily [13, 68–70]. The main advantage of the TT format over the CP

decomposition is the ability to provide stable quasi-optimal rank reduction, achieved

through, for example, truncated singular value decompositions (tSVD) or adaptive

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 21

cross-approximation [64, 71, 72]. This makes the TT format one of the most sta-

ble and simple approaches to separate latent variables in a sophisticated way, while

the associated TT decomposition algorithms provide full control over low-rank TN

approximations.
4

We therefore, make extensive use of the TT format for low-rank

TN approximations and employ the TT toolbox software for efficient implementa-

tions [68]. The TT format will also serve as a basic prototype for high-order tensor

representations, while we also consider the Hierarchical Tucker (HT) and the Tree

Tensor Network States (TTNS) formats (having more general tree-like structures)

whenever advantageous in applications [13].

Furthermore, the concept of generalized separability of variables and the

tensorization of structured vectors and matrices allows us to to convert a wide

class of huge-scale optimization problems into much smaller-scale interconnected

optimization sub-problems which can be solved by existing optimization methods

[11, 14].

The tensor network optimization framework is therefore performed through the

two main steps:

∙ Tensorization of data vectors and matrices into a high-order tensor, followed by

a distributed approximate representation of a cost function in a specific low-rank

tensor network format.

∙ Execution of all computations and analysis in tensor network formats (i.e., using

only core tensors) that scale linearly, or even sub-linearly (quantized tensor net-

works), in the tensor order N. This yields both the reduced computational com-

plexity and distributed memory requirements.

The challenge is to extend beyond the standard Tucker and CP tensor decomposi-

tions, and to demonstrate the perspective of TNs in extremely large-scale data ana-

lytic, together with their role as a mathematical backbone in the discovery of hidden

structures in prohibitively large-scale data. Indeed, TN models provide a framework

for the analysis of linked (coupled) blocks of tensors with millions and even billions

of non-zero entries [13, 14].

5 Tensor Networks Approaches for Deep Learning

Revolution (breakthroughs) in the fields of Artificial Intelligence (AI) and Machine

Learning triggered by class of deep convolutional neural networks (DCNNs), often

simply called CNNs, has been a vehicle for a large number of practical applications

and commercial ventures in computer vision, speech recognition, language process-

ing, drug discovery, biomedical informatics, recommender systems, robotics, games,

and artificial creativity, to mention just a few.

4
Although similar approaches have been known in quantum physics for a long time, their rigorous

mathematical analysis is still a work in progress (see [27, 69] and references therein).

22 A. Cichocki

The renaissance of deep learning neural networks [5, 6, 73, 74] has both cre-

ated an active frontier of machine learning and has provided many advantages in

applications, to the extent that the performance of DNNs in multi-class classifica-

tion problems can be similar or even better than what is achievable by humans.

Deep learning is highly interesting in very large-scale data analysis for many rea-

sons, including the following [14]:

1. High-level representations learnt by deep NN models, that are easily interpretable

by humans, can also help us to understand the complex information processing

mechanisms and multi-dimensional interaction of neuronal populations in the

human brain;

2. Regarding the degree of nonlinearity and multi-level representation of features,

deep neural networks often significantly outperform their shallow counterparts;

3. In big data analytic, deep learning is very promising for mining structured data,

e.g., for hierarchical multi-class classification of a huge number of images.

It is well known that both shallow and deep NNs are universal function approxi-

mators in the sense that they are able to approximate arbitrarily well any continu-

ous function of N variables on a compact domain, under the condition that a shal-

low network has an unbounded width (i.e., the size of a hidden layer), that is, an

unlimited number of parameters. In other words, a shallow NN may require a huge

(intractable) number of parameters (curse of dimensionality), while DNNs can per-

form such approximations using a much smaller number of parameters.

Universality refers to the ability of a deep learning network to approximate any

function when no restrictions are imposed on its size. On the other hand, depth effi-

ciency refers to the case when a function realized by polynomially-sized deep neural

network requires shallow networks to have super-polynomial (exponential) size for

the same accuracy of approximation (course of dimensionality). This is often referred

to as the expressive power of depth.

Despite recent advances in the theory of DNNs, there are several open fundamen-

tal challenges (or open problems) related to understanding high performance DNNs,

especially the most successful and perspective DCNNs [13, 14]:

∙ Theoretical and practical bounds on the expressive power of a specific architecture,

i.e., quantification of the ability to approximate or learn wide classes of unknown

nonlinear functions;

∙ Ways to reduce the number of parameters without a dramatic reduction in perfor-

mance;

∙ Ability to generalize while avoiding overfitting in the learning process;

∙ Fast learning and the avoidance “bad” local and spurious minima, especially for

highly nonlinear score (objective) functions;

∙ Rigorous investigation of the conditions under which deep neural networks are

“much better” the shallow networks (i.e., NNs with one hidden layer).

The aim of this section is to discuss the many advantages of tensor networks

in addressing the first two of the above challenges and to build up both intuitive

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 23

and mathematical links between DNNs and TNs. Revealing such links and inherent

connections will both cross-fertilize deep learning and tensor networks and provide

new insights.

In addition to establishing the existing and developing new links, this will also

help to optimize existing DNNs and/or generate new architectures with improved

performances.

We shall first present an intuitive approach using a simplified hierarchical Tucker

(HT) model, followed by alternative simple but efficient, tensor train/tensor chain

(TT/TC) architectures. We also propose to use more sophisticated TNs, such as

MERA tensor network models in order to enable more flexibility, improved

performance, and/or higher expressive power of the next generation of DCCNs.

5.1 Why Tensor Networks Are Important in Deep Learning?

Several research groups have recently investigated the application of tensor decom-

positions to simplify DNNs and to establish links between the deep learning and

low-rank tensor networks [14, 75–80]. For example, [80] presented a general and

constructive connection between Restricted Boltzmann Machines (RBM), which

is a fundamental basic building block in class of Deep Boltzmann Machines, and

(TNs) together with the correspondence between general Boltzmann machines and

TT/MPS. In a series of research papers [30, 79, 81, 82] the authors analyze the

expressive power of a class of DCNNs using simplified Hierarchal Tucker (HT)

models (see the next sections). Particularly, Convolutional Arithmetic Circuits (Con-

vAC), also known as Sum-Product Networks, and Convolutional Rectifier Networks

(CRN) have been considered as HT model. They claim that a shallow (single hid-

den layer) network realizes the classic CP decomposition, whereas a deep network

with log2 N hidden layers realizes Hierarchical Tucker (HT) decomposition (see the

next section). Some researchers also argued that the “unreasonable success” of deep

learning can be explained by inherent law of physics, such as the theory of TNs

that often employ physical constraints locality, symmetry, compositional hierarchi-

cal functions, entropy, and polynomial log-probability, imposed on measurements

or input training data [77, 80, 83]. In fact, a very wide spectrum of tensor networks

can be potentially used to model and analyze some specific classes of DNNs, in

order to obtain simpler and/or more efficient neural networks in the sense that they

could provide more expressive power or reduced complexity. Such an approach not

only promises to open the door to various mathematical and algorithmic tools for

enhanced analysis of DNNs, but also allows us to design novel multi-layer archi-

tectures and practical implementations of various deep learning systems. In other

words, the consideration of tensor networks in this context may give rise to new

NN architectures which could be even potentially superior to the existing ones,

but have so far been overlooked by practitioners. Furthermore, methods used for

reducing or approximating TNs could be a vehicle to achieve more efficient DNNs,

with a reduced number of parameters. This follows from the facts that redundancy

24 A. Cichocki

 Deep
Neural Network

(DNN)
Tensor Network

(TN)

Reduced TN
Reduced
 DNN

Transform to a
tensor network

Rounding
(recompression)
of TN ranks
Canonicalization

Transform TN
back to DNN

Fig. 9 Optimization of Deep Neural Networks (DNNs) using The Tensor Networks (TNs)

approach. In order to simplify a specific DNN and reduce the number of its parameters, we first

transform the DNN into a specific TN, e.g., TT/MPS, then transform the approximated (with

reduced rank) TN back to a new optimized DNN. Such transformation can performed in a layer

by layer fashion, or globally for the whole DNN. For detailed discussions of such mappings for the

Restricted Boltzmann Machine (RBM) see [80]. Optionally, we may choose to first construct and

learn (e.g., via tensor completion) a tensor network and then transform it to an equivalent DNN

is inherent both in TNs and DNNs. Moreover, both TNs and DNNs are usually not

unique. For example, two NNs with different connection weights and biases may

result into the modeling the same nonlinear function. Therefore, the knowledge about

redundancy in TNs can help simplify DNNs [14].

The general concept of optimization of DNNs via TNs is illustrated in Fig. 9.

Given a specific DNN, we first construct an equivalent TN representation of the

given DNN, then the TN is transformed into its reduced or canonical form by per-

forming, e.g., the truncated SVD at each rank (bond). This will reduce the rank

dimensions to the minimal requirement determined by a desired accuracy of approxi-

mation. Finally, we map back the reduced and optimized TN to another DNN. Since

a rounded (approximated) TN has smaller ranks dimensions, a final DNN can be

simpler than the original one,and with the same or slightly reduced performance.

It should be noted that, in practice, low-rank TN approximations have many poten-

tial advantages over a direct reduction of redundant DNNs, due to availability of

many efficient optimization methods to reduce the number of parameters and achieve

a pre-specified approximation error. Moreover, low-rank tensor networks are capable

of avoiding the curse of dimensionality through low-order sparsely interconnected

core tensors.

In the past two decades, quantum physicists and computer scientists have devel-

oped solid theoretical understanding and efficient numerical techniques for low-rank

TN decompositions.

The entanglement entropy, Renyi’s entropy, entanglement spectrum and long

range correlations are four of the most widely used quantities (calculated from a

spatial reduced density matrix) investigated in the theory of tensor networks. The

spatial reduced density matrix is determined by splitting a TN into two parts, say,

regions A and B, where a density matrix in region A is given by integrating out all

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 25

the degrees of freedom in region B. The entanglement spectra are determined by the

eigenvalues of the reduced density matrix [84, 85].

Entanglement is a physical phenomenon that occurs when pairs or groups of par-

ticles, such as photons, electrons, or qubits, are generated or interact in such way that

the quantum state of each particle cannot be described independently of the others,

so that a quantum state must be described for the system as a whole. Entanglement

entropy is therefore a measure for the amount of entanglement. Strictly speaking,

entanglement entropy is a measure of how quantum information is stored in a quan-

tum state and it is mathematically expressed as the von Neumann entropy of the

reduced density matrix. Entanglement entropy characterizes the information content

of a bipartition of a specific TN. Furthermore, the entanglement area law explains

that the entanglement entropy increases only proportionally to the boundary between

the two tensor sub-networks. Also entanglement entropy characterizes the informa-

tion content of the distribution of singular values of a matricized tensor, and can be

viewed as a proxy for the correlations between the two partitions; uncorrelated data

has zero entanglement entropy at any bipartition.

Note that TNs are usually designed to efficiently represent large systems which

exhibit a relatively low entanglement entropy. In practice, we often need to only care

about a small fraction of the input training data among a huge number of possible

inputs similar to deep neural networks. This all suggest that certain guiding princi-

ples in DNNs correspond to the entanglement area law used in the theory of tensor

networks. These may then used to quantify the expressive power of a wide class of

DCNNs. Note that long range correlations also typically increase with the entan-

glement. We therefore conjecture that realistic data sets in most successful machine

learning applications have relatively low entanglement entropies [86]. On the other

hand, by exploiting the entanglement entropy bound of TNs, we can rigorously quan-

tify the expressive power of a wide class of DNNs applied to complex and highly

correlated data sets.

5.2 Basic Features of Deep Convolutional Neural Networks

Basic DCNNs are usually characterized by at least three features: locality, weight

sharing (optional) and pooling explained below [14, 79]

∙ Locality refers to the connection of a (artificial) neuron only to neighboring neu-

rons in the preceding layer, as opposed to being fed by the entire layer (this is

consistent with biological NNs).

∙ Weight sharing reflects the property that different neurons in the same layer, con-

nected to different neighborhoods in the preceding layer, often share the same

weights. Note that weight sharing, when combined with locality, gives rise to

standard convolution. However, it should noted that although weight sharing may

reduce the complexity of a deep neural network, it is optional. However, the locality

26 A. Cichocki

at each layer is a key factor which gives DCNNs an exponential advantage over

shallow NNs [77, 87, 88].

∙ Pooling, is essentially an operator that gradually decimates (reduces) layer sizes by

replacing the local population of neural activations in a spatial window by a single

value (e.g., by taking their maxima, average values or their scaled products). In

the context of images, pooling induces invariance to translation, which often does

not affect semantic content, and is interpreted as a way to create a hierarchy of

abstractions in the patterns that neurons respond to [14, 79, 87].

Usually, DCNNs perform much better when dealing with compositional func-

tion approximations
5

and multi-class classification problems than shallow network

architectures with one hidden layer. In fact, DCNNs can efficiently and conveniently

select a subset of features for multiple classes, while for efficient learning a DCNN

model can be pre-trained by first learning each DCNN layer, followed by fine tuning

of the parameter of the entire model e.g., stochastic gradient descent. To summarize,

the deep learning neural networks have the ability to exploit and approximate the

complexity of compositional hierarchical functions arbitrarily well, whereas shal-

low networks are blind to them.

5.3 Score Functions for Deep Convolutional Neural
Networks

Consider a multi-class classification task where the input training data, also called

local structures or instances (e.g., input patches in images), are denoted by X =
(𝐱1,… , 𝐱N), where 𝐱n ∈ ℝS n = 1,… ,N) belonging to one ofC categories (classes)

denoted by yc ∈ {y1, y2,… , yC}. Such a representation is quite natural for many high-

dimensional data—in images, the local structures represent patches consisting of S
pixels, while in audio data voice can be represented through spectrograms.

For this kind of problems, DCNNs aim is to model the following set of multivari-

ate score functions:

hyc (𝐱1,… , 𝐱N) =
I1∑

i1=1
⋯

IN∑

iN=1
𝐖 yc

(i1,… , iN) 𝛷i1,…,iN (𝐱1,… , 𝐱N),

𝛷i1,…,iN (𝐱1,… , 𝐱N) =
N∏

n=1
f
𝜃in
(𝐱n), (28)

for yc = y1, y2,… , yC,

where 𝐖 yc
∈ ℝI1×⋯×IN is an Nth-order coefficient tensor (typically, with all dimen-

sions In = I, ∀n), N is the number of (typically overlapped) input patches 𝐱n, In is

5
A compositional function can take, for example, the following form

h1(… h3(h21(h11(x1, x2)h12(x3, x4)), h22(h13(x5, x6)h14(x7, x8))…))).

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 27

the size (dimension) of each mode 𝐖 yc
, and f

𝜃1
,… , f

𝜃In
are referred to as the repre-

sentation functions (in the representation layer) selected from a parametric family of

nonlinear functions.
6

In general, the one-dimensional basis functions could be polynomials, splines or

other sets of basis functions. Natural choices for this family of nonlinear functions are

also radial basis functions (Gaussian RBFs), wavelets, and affine functions followed

by point-wise activations. Particularly interesting are Gabor wavelets, owing to their

ability to induce features that resemble representations in the visual cortex of human

brain.

Note that the representation functions in standard (artificial) neurons have the

form

f
𝜃i
(𝐱) = 𝜎(�̃�T

i 𝐱 + bi), (29)

for the set of parameters 𝜃i = {�̃�i, bi}, where 𝜎(⋅) is a suitably chosen activation

function.

The representation layer play a key role to transform the inputs, by means of I
nonlinear functions, f

𝜃i
(𝐱n) (i = 1, 2,… , I), to template input patches, thereby cre-

ating I feature maps [81]. Note that the representation layer can be expressed by a

feature vector defined as

𝐟 = 𝐟
𝜽
(𝐱1)⊗ 𝐟

𝜽
(𝐱2)⊗⋯⊗ 𝐟

𝜽
(𝐱N) ∈ ℝI1I2…IN

, (30)

where 𝐟
𝜽
(𝐱n) = [f

𝜃1
(𝐱n), f𝜃2 (𝐱n),… , f

𝜃In
(𝐱n)]T ∈ ℝIn for n = 1, 2,… ,N and in =

1, 2,… , In.

Alternatively, the representation layer can be expressed as rank one tensor (see

Fig. 10a)

𝐅 = 𝐟
𝜽
(𝐱1) ◦ 𝐟𝜽(𝐱2) ◦ ⋯ ◦ 𝐟

𝜽
(𝐱N) ∈ ℝI1×I2×⋯×IN

. (31)

This allows us to represent the score function as an inner product of two tensors, as

illustrated in Fig. 10a

hyc (𝐱1,… , 𝐱N) = ⟨𝐖yc
,𝐅⟩ = 𝐖yc

×̄1 𝐟𝜽(𝐱1) ×̄2 𝐟𝜽(𝐱2)… ×̄N 𝐟
𝜽
(𝐱N). (32)

To simplify the notations of a grid tensor, we can construct square matrices 𝐅n
(n = 1, 2,… ,N), as follows

𝐅n =

⎡
⎢
⎢
⎢
⎢
⎣

f
𝜃1
(𝐱(1)n) f

𝜃2
(𝐱(1)n) … f

𝜃In
(𝐱(1)n)

f
𝜃1
(𝐱(2)n) f

𝜃2
(𝐱(2)n) … f

𝜃In
(𝐱(2)n)

⋮ ⋮ ⋱ ⋮
f
𝜃1
(𝐱(In)n) f

𝜃2
(𝐱(In)n) … f

𝜃In
(𝐱(In)n)

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝIn×In
, (33)

6
Note that the representation layer can be considered as a tensorization of input patches 𝐱n.

28 A. Cichocki

(a)

(b) (c)

Fig. 10 Various representations of the score function of a DCNN. a Direct Representation of

the score function hyc (𝐱1, 𝐱2,… , 𝐱N) = 𝐖yc
×̄1𝐟𝜽(𝐱1)×̄2𝐟𝜽(𝐱2)⋯ ×̄N 𝐟𝜽(𝐱N). Note that the coefficient

tensor 𝐖c can be represented in a distributed form by any suitable tensor network. b Graphical

illustration of the Nth-order grid tensor of the score function hc. This model can be considered as a

special case of Tucker-N model where the representation matrix 𝐅n ∈ ℝIn×In built up factor matri-

ces; note that typically all the factor matrices are the same and In = I, ∀n. c CP decomposition of

the coefficient tensor𝐖 yc
= 𝜦

(yc) ×1 𝐖(1) ×2 𝐖(2) … ×N 𝐖(N) =
R∑

r=1
𝜆

(yc)
r (𝐰(1)

r ◦𝐰(2)
r ◦ ⋯ ◦𝐰(N)

r),

where 𝐖(n) = [𝐰(n)
1 ,… ,𝐰(n)

R] ∈ ℝIn×R. This CP model corresponds to a simple shallow neural net-

work with one hidden layer, comprising weights w(n)
ir , and the output layer comprising weights 𝜆

(yc)
r ,

r = 1,… ,R

which holding the values of taken by the nonlinear basis functions {f
𝜃1
,… , f

𝜃In
} on

the selected fixed vectors, referred to as templates, {𝐱(1)n , 𝐱(2)n ,… , 𝐱(In)n }. Usually, we

can assume that In = I, ∀n, and 𝐱(in)n = 𝐱(i) [30].

For discrete data values, the score function can be represented by a grid tensor,

as graphically illustrated in Fig. 10b. The grid tensor of the nonlinear score function

hyc (𝐱1, ,… , 𝐱N) determined over all the templates 𝐱(1)n , 𝐱(2)n ,… , 𝐱(I)n can be expressed

as a grid tensor

𝐖(hyc) = 𝐖yc
×1 𝐅1 ×2 𝐅2 ⋯ ×N 𝐅N . (34)

Of course, since the order N of the coefficient (core) tensor is large, it cannot be

implemented, or even saved on computer due to the curse of dimensionality.

The simplest model to represent coefficient tensors would be to apply the CP

decomposition to reduce the number of parameters, as illustrated in Fig. 10c. This

leads to a simple shallow network, however, this approach is associated with two

problems: (i) the rankR of the coefficient tensor𝐖yc
can be very large (so compression

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 29

of parameters cannot be very high), (ii) the existing CP decomposition algorithms are

not very stable for very high-order tensors, and so an alternative promising approach

would be to apply tensor networks such as HT that enable us to avoid the curse of

dimensionality.

Following the representation layer, a DCNN may consists of a cascade of L convo-

lutional hidden layers with pooling in-between, where the number of layers L should

be at least two. In other words, each hidden layer performs 3D or 4D convolution

followed by spatial window pooling, in order to reduce (decimate) feature maps by

e.g., taking a product of the entries in sub-windows. The output layer is a linear dense

layer.

Classification can then be carried out in a standard way, through the maximization

of a set of labeled score functions, hyc for C classes, that is, the predicted label for the

input instants X = (𝐱1,… , 𝐱N) will be the index ŷc for which the score value attains

a maximum, that is

ŷc = arg max
yc∈{y1,…,yC}

hyc (𝐱1,… , 𝐱N). (35)

Such score functions can be represented through their coefficient tensors which, in

turn, can be approximated by low-rank tensor network decompositions [13].

The one restriction of the so formulated score functions (29) is that they allow for

straightforward implementation of only a particular class of DCNNs, called convo-

lutional Arithmetic Circuit (ConvAC). However, the score functions can be approx-

imated indirectly and almost equivalently using more popular CNNs (see the next

section). For example, it was shown recently how NNs with a univariate ReLU non-

linearity may perform multivariate function approximation [77].

The main idea is to employ a low-rank tensor network representation to approxi-

mate and interpolate a multivariate function hyc (𝐱1,… , 𝐱N) of N variables by a finite

sum of separated products of simpler functions (i.e., via sparsely interconnected core

tensors) [13, 14].

6 Convolutional Arithmetic Circuits (ConvAC) Using
Tensor Networks

Once the set of score functions has been formulated (29), we need to construct

(design) a suitable multilayered or distributed representation for DCNN implemen-

tation. The objective is to estimate the parameters 𝜃1,… , 𝜃I and coefficient tensors
7

𝐖 y1
,… ,𝐖 yC

. Since the tensors are of Nth-order and each with IN entries, in order

to avoid the curse of dimensionality, we need to perform dimensionality reduction

7
It should be noted that these tensors share the same entries, except for the parameters in the output

layer.

30 A. Cichocki

through low-rank tensor network decompositions. Note that a direct implementation

of (29) is intractable due to a huge number of parameters.

Conceptually, the ConvAC can be divided into three parts: (i) the first (input)

layer is the representation layer which transforms input vectors (𝐱1,… , 𝐱N) into

N ⋅ I real valued scalars {f
𝜃i
(𝐱n)} for n = 1,… ,N and i = 1,… , I. In other words,

the representation functions, f
𝜃i
∶ ℝS → ℝ, i = 1,… , I, map each local patch 𝐱n

into a feature space of dimension I. We can denote the feature vector by 𝐟n =
[f
𝜃1
(𝐱n),… , f

𝜃I
(𝐱n)]T ∈ ℝI

, n = 1,… ,N; (ii) the second, a key or kernel part, is a

convolutional arithmetic circuits with many hidden layers that takes the N ⋅ I mea-

surements (training samples) generated by the representation layer; (iii) the output

layer represented by a full matrix 𝐖(L)
, which computes C different score functions

hyc [79].

6.1 Hierarchical Tucker (HT) and Tree Tensor Network State
(TTNS) Models

The simplified HT tensor network [79] shown in Fig. 11 contains sparse 3rd-order

core tensors 𝐖(l,j) ∈ ℝR(l−1,2j−1)×R(l−1,2j−1)×R(l,j)
for l = 1,… ,L − 1 and matrices 𝐖(0,j) =

[𝐰(0,j)
1 ,… ,𝐰(0,j)

R(0,j)] ∈ ℝIj×R(0,j)
for l = 0 and j = 1,… ,N∕2l, and a full matrix 𝐖(L) =

[𝐰(L)
1 ,… ,𝐰(L)

yC
] ∈ ℝR(L−1)×yC with column vectors 𝐰(L)

yc
= diag(𝐖(L)

yc
) =

[𝜆(yc)1 ,… , 𝜆

(yc)
R(L−1)]T in the output L-layer (or equivalently the output sparse tensor

𝐖(L) ∈ ℝR(L−1)×R(L−1)×yC . The number of channels in the input layer is denoted by I,
while for the jth node in the lth layer (for l = 0, 1,… ,L − 1) is denoted by R(l,j)

. The

yC different values of score functions are calculated in the output layer.

For simplicity, and in order to mimic basic features of the standard ConvAC, we

assume that R(l,j) = R(l)
for all j, and that frontal slices of the core tensors 𝐖(l,j)

are

diagonal matrices with entries wl,j
r(l−1),r(l) . Note that such sparse core tensors can be

represented by non-zero matrices defined as 𝐖(l,j) ∈ ℝR(l−1)×R(l)
.

The simplified HT tensor network can be mathematically described in the follow-

ing recursive form

𝐖(0,j) = [𝐰(0,j)
1 ,… ,𝐰(0,j)

R(0)] ∈ ℝIj×R(0)

𝐖(≤1,j)
r(1) =

R(0)∑

r(0)=1
w(1,j)
r(0),r(1) ⋅

(
𝐰(0,2j−1)

r(0) ◦𝐰(0,2j)
r(0)

)
∈ ℝI2j−1×I2j

… (36)

𝐖(≤l,j)
r(l) =

R(l−1)∑

r(l−1)=1
w(l,j)
r(l−1),r(l) ⋅

(
𝐖(≤l−1,2j−1)

r(l−1) ◦𝐖(≤l−1,2j)
r(l−1)

)

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 31

W(1,1)

W (2,1)

W (L-1,1)W(1,2)

W (1,M-1)

W(1,M)

W (2,M/2)

W (L-1,2)

W (0,1)

W(0,2M-3)

R(0,1)

R(0,2)

R(0,3)

R(0,4)

R(0,2M-3)

R(0,2M-1)

R(0,2M-1)

R(0,2M)

R(1,1)

R(1,2)

R(1,M-1)

R(1,M)

R(L-1,1)

R(L-1,2)

W (L)

W (0,2)

W (0,3)

W (0,4)

W(0,2M-2)

W(0,2M-1)

W(0,2M)

...
...

...
...

Fig. 11 Architecture of a simplified Hierarchical Tucker (HT) network with sparse core tensors,

which simulates the coefficient tensor for a ConvAC deep learning network with a pooling-2 win-

dow [79]. The HT tensor network consists of L = log2(N) hidden layers and pooling-2 window. For

simplicity, we assumed that we, N = 2M = 2L input patches, R(l,j) = R(l)
), for l = 0, 1,… ,L − 1.

The representation layer is not shown explicitly in this figure. Note that since all core tensors can

be represented by matrices, we do not need to use tensors notation in this case

𝐖(≤L−1,j)
r(L−1) =

R(L−2)∑

r(L−2)=1
w(L−1,j)
r(L−2),r(L−1) ⋅

(
𝐖(≤L−2,2j−1)

r(L−2) ◦𝐖(≤L−2,2j)
r(L−2)

)

𝐖yc
≅

R(L−1)∑

r(L−1)=1
𝜆

(yc)
r(L−1) ⋅

(
𝐖(≤L−1,1)

r(L−1) ◦𝐖(≤L−1,2)
r(l−1)

)
∈ ℝI1×⋯×IN

,

where 𝝀
(yc) = diag(𝜆(yc)1 ,… , 𝜆

(yc)
R(L−1)) = 𝐖(L)(∶, ∶, yc).

In a special case when the weights in each layer are shared, i.e., 𝐖(l,1) = 𝐖(l,2) =
⋯ = 𝐖(l)

, the above equation can be considerably simplified to

𝐖≤l
r(l) =

R(l−1)∑

r(l−1)=1
w(l)
r(l−1),r(l) (𝐖

≤l−1
r(l−1) ◦𝐖

≤l−1
r(l−1)) (37)

for the layers l = 1,… ,L − 1, while for the output layer

𝐖 yc
≅

R(L−1)∑

r(L−1)=1
𝜆

(yc)
r(L−1) (𝐖

≤L−1
r(L−1) ◦𝐖

≤L−1
r(L−1)), (38)

32 A. Cichocki

where 𝐖≤l
r(l) = 𝐖≤l(∶,… , ∶, r(l)) ∈ ℝI×⋯×I

are sub-tensors of 𝐖≤l
, for each r(l) =

1,… ,R(l)
, and w(l)

r(l−1),r(l) is the (r(l−1), r(l))th entry of the weight matrix 𝐖(l) ∈
ℝR(l−1)×R(l)

.

However, it should be noted that the simplified HT model shown in Fig. 11 has

a limited ability to approximate an arbitrary coefficient tensor, 𝐖yc
, due to strong

constraints imposed of core tensors. A more flexible and powerful model is shown

in Fig. 12, in which constraints imposed on 3rd-order cores have been completely

removed. Such a HT tensor network (with a slight abuse of notation) can be mathe-

matically expressed as

𝐖(≤1,j)
r(1) =

R(0,2j−1)∑

r1=1

R(0,2j)∑

r2=1
w(1,j)
r1,r2,r(1)

⋅
(
𝐰(0,2j−1)

r1
◦𝐰(0,2j)

r2

)

… (39)

𝐖(≤l,j)
r(l) =

R(l−1,2j−1)∑

r1=1

R(l−1,2j)∑

r2=1
w(l,j)
r1,r2,r(l)

⋅
(
𝐖(≤l−1,2j−1)

r(l−1) ◦𝐖(≤l−1,2j)
r(l−1)

)

…

𝐖(≤L−1,j)
r(L−1) =

R(L−2,2j−1)∑

r1=1

R(L−2,2j)∑

r2=1
w(L−1,j)
r1,r2,r(L−1)

⋅
(
𝐖(≤L−2,2j−1)

r(L−2) ◦𝐖(≤L−2,2j)
r(L−2)

)

W(0,1)

W(0,2)

W (0,3)

W(0,4)

W (0,2M-3)

W (0,2M-2)

W (0,2M-1)

W (0,2M)

W
(1,1)

W (1,2)

W (1,M-1)

W(1,M)

R(0,1)

R(0,2)

R(0,3)

R(0,4)

R(0,2M-3)

R(0,2M-1)

R(0,2M-1)

R(0,2M)

R(1,1)

R(1,2)

R(1,M-1)

R(1,M)
W

(2,M/2)

W(L-1,2)
R(L-1,2)

R(L-1,1)

W(L-1,1)

W (L)

W(2,1)

Wyc

IN

InI2

I1 =~

Fig. 12 Hierarchical Tucker (HT) tensor network for the approximation of coefficient tensors,𝐖 yc
,

of the score functions hyc (𝐱1,… , 𝐱N)

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 33

Fig. 13 Tree Tensor Networks States (TTNS) with variable order of core tensors. The rectangles

represent core tensors of orders 5 and 3 that allows pooling of window size 4 and 2, respectively

𝐖(yc) ≅
R(L−1,2j−1)∑

r1=1

R(L−1,2j)∑

r2=1
w(L)
r1,r2,yc

⋅
(
𝐖(≤L−1,1)

r(L−1) ◦𝐖(≤L−1,2)
r(l−1)

)
.

The HT network can be further extended to the Tree Tensor Networks States

(TTNS), as illustrated in Fig. 13. The use of TTNS, instead HT tensor networks,

allows for more flexibility in the choice of size of pooling-window, the pooling size

in each hidden layer cab be adjusted by applying core tensors with a suitable variable

order in each layer. For example, if we use 5th-order (4rd-order) core tensors instead

3rd-order cores, then the pooling will employ a size-4 pooling window (size-3 pool-

ing) instead of only size-2 pooling window when using 3rd-order core tensors in HT

tensor networks. For more detail regrading HT networks and their generalizations to

TTNS [13].

6.2 Alternative Tensor Network Model: Tensor Train (TT)
Networks

We should emphasize that the HT/TTNS architectures are not the only one suitable

TN decompositions which can be used to model DCNNs, and the whole family of

powerful tensor networks can be employed to model individual hidden layers. In

this section we discuss modified TT/MPS and TC models for this purpose for which

efficient learning algorithms exist.

34 A. Cichocki

R1

...

I1
I2

R1

R2

(2)
W(1)wr1

W w

R1 R2

I2 INI1

W(2) WW (1) W ()N
R

...
R

IN

...

...

...

...

...

...

...

r2 r

N-2

(N-1)

IN-1

Λ
(y)c

RN-1

RN-1

N-2

N-1

N-1

(N-1)

I RN-1

(N)
rN-1

λ
(y)c
rN-1

Fig. 14 Basic Tensor Train (TT/MPS) architecture for the representation of coefficient (weight)

tensors 𝐖 yc
of the set of score functions hyc

The Tensor Train (TT) format can be interpreted as a special case of the HT for-

mat, where all nodes (TT-cores) of the underlying tensor network are connected in

cascade (or train), i.e., they are aligned while factor matrices corresponding to the

leaf modes are assumed to be identities and thus need not be stored. The TT format

was first proposed in numerical analysis and scientific computing by Oseledets [15,

69].

Figure 14 presents the concept of TT decomposition for an Nth-order tensor,

the entries of which can be computed as a cascaded (multilayer) multiplication of

appropriate matrices (slices of TT-cores). The weights of internal edges (denoted

by {R1,R2,… ,RN−1}) represent the TT-rank. In this way, the so aligned sequence

of core tensors represents a “tensor train” where the role of “buffers” is played by

TT-core connections. It is important to highlight that TT networks can be applied

not only for the approximation of tensorized vectors but also for scalar multivariate

functions, matrices, and even large-scale low-order tensors [13].

In the quantum physics community, the TT format is known as the Matrix Product

State (MPS) representation with the Open Boundary Conditions (OBC). In fact, the

TT/MPS was rediscovered several times under different names: MPS, valence bond

states, and density matrix renormalization group (DMRG) (see [13, 27, 89–94] and

references therein).

An important advantage of the TT/MPS format over the HT format is its sim-

pler practical implementation, as no binary tree needs to be determined. Another

attractive property of the TT-decomposition is its simplicity when performing basic

mathematical operations on tensors directly in the TT-format (that is, employing

only core tensors). These include matrix-by-matrix and matrix-by-vector multipli-

cations, tensor addition, and the entry-wise (Hadamard) product of tensors. These

operations produce tensors, also in the TT-format, which generally exhibit increased

TT-ranks. A detailed description of basic operations supported by the TT format

is given in [13]. Note that only TT-cores need to be stored and processed, which

makes the number of TN parameters to scale linearly in the tensor order, N, of a data

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 35

tensor and all mathematical operations are then performed only on the low-order and

relatively small size core tensors.

The TT rank is defined as an (N − 1)-tuple of the form

rank TT(𝐗) = 𝐫TT = {R1,… ,RN−1}, Rn = rank(𝐗
<n>), (40)

where 𝐗
<n> ∈ ℝI1…In×In−1…IN is an nth canonical matricization of the tensor 𝐗. Since

the TT rank determines memory requirements of a tensor train, it has a strong impact

on the complexity, i.e., the suitability of tensor train representation for a given raw

data tensor.

The number of data samples to be stored scales linearly in the tensor order, N,

and the size, I, and quadratically in the maximum TT rank bound, R, that is

N∑

n=1
Rn−1RnIn ∼ (NR2I), R ∶= max

n
{Rn}, I ∶= max

n
{In}. (41)

This is why it is crucially important to have low-rank TT approximations.
8

As illustrated in Fig. 14 the simplest possible implementation of the ConvAC net-

work is via the standard tensor train (TT/MPS) (unbalanced binary tree), which can

be represented by recursive formulas as

𝐖≤1 = 𝐖(1)

𝐖≤2 =
R1∑

r1=1
𝐖(1)

r1
◦𝐖(2)

r1
∈ ℝI1×I2×R2

…

𝐖≤n =
Rn−1∑

rn−1=1
𝐖≤n−1

rn−1
◦𝐖(n)

rn−1
∈ ℝI1×⋯×In×Rn

… (42)

𝐖≤N−1 =
RN−2∑

rN−2=1
𝐖≤N−2

rN−2
◦𝐖(N−1)

rN−2
∈ ℝI1×⋯×IN−1×RN−1

𝐖 yc
= 𝐖≤N =

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐖≤N−1
rN−1

◦𝐰(N)
rN−1,1

) ∈ ℝI1×⋯×IN
,

where 𝐖(n)
rn−1

= 𝐖(n)(rn−1, ∶, ∶) ∈ ℝIn×Rn are lateral slices of the core tensor 𝐖(n) ∈
ℝRn−1×In×Rn and 𝐖≤n

rn
= 𝐖≤n(∶,… , ∶, rn) ∈ ℝI1×⋯×In are sub-tensors of 𝐖≤n ∈

ℝI1×⋯×In×Rn for n = 1,… ,N (Fig. 14).

The above recursive formulas for the TT network can be written in a compact

form as

8
In the worst case scenario the TT ranks can grow up to I(N∕2) for an Nth-order tensor.

36 A. Cichocki

(a)

(b)

Fig. 15 Extended (modified) Tensor Train (TT/MPS) architectures for the representation of coef-

ficient (weight) tensors 𝐖 yc
of the score function hyc . a TT-tucker network, also called fork tensor

product states (FTPS) with reduced TT ranks. b Hierarchical TT network consisting of core tensors

with different orders, where each high-order core tensor can be represented by a TT or HT sub-

network. Rectangular boxes represent core tensors (sub-tensors) with variable orders. The ticker

horizontal lines or double/tripple lines indicate relatively higher internal TT-ranks

𝐖 yc
=

R1∑

r1=1
⋯

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐰(1)
1,r1

◦𝐰(2)
r1,r2

◦ ⋯ ◦𝐰(N−1)
rN−2,rN−1

◦𝐰(N)
rN−1,1

), (43)

where 𝐰(n)
rn−1,rn

= 𝐖(n)(∶, in, ∶) ∈ ℝIn are tubes of the core tensor 𝐖(n) ∈ ℝRn−1×In×Rn .

The TT-rank of the standard tensor train network with 3rd-order cores, shown in

Fig. 15, can be very large for core tensors located in the middle of the chain. In the

worst case scenario, the TT ranks can grow even, up to I(N∕2) for an exact represen-

tation of Nth-order tensor. In order to reduce the TT-rank and consequently reduce

the number of parameters of a DCNN, we can apply two approaches, as explained

in Fig. 14a and b. The main idea is to employ only a few core tensors with order

larger than three, whereby each of these core is further approximated via a TT or HT

sub-network.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 37

...

I2

R1

R2

(2)
W

(1)
Wr1

W

R1 R2

I2 INI1 I

W(2) W (N-1)W(1) W()N
R

R

R

I

...

...

...

r2 r

...

...RN

IN

RN-1

...

I1

RN

R1

...

RN

Wr
()N

N

Λ
(y)c RN

N-2

N-1

RN-1

N-1

N-2

N-1

(N-1)

N-1

Fig. 16 The Tensor Chain (TC) architecture for the representation of coefficient (weight) tensors

𝐖 yc
of the score function hyc (𝐱1,… , 𝐱N). Note that for R0 = RN = 1 the TC simplifies to the stan-

dard TT

6.3 Tensor Chain and TT/MPO Networks

Alternatively, the Tensor Chain (TC) network, called also TT/MPS with periodic

bounded conditions, shown in Fig. 16 can be employed to represent individual hidden

layers or output fully connected layers. This TC network is mathematically described

through the following a recursive formulas as

𝐖≤1 = 𝐖(1) ∈ ℝRN×I1×R1

𝐖≤2 =
R1∑

r1=1
𝐖≤1

r1
◦𝐖(2)

r1
∈ ℝRN×I1×I2×R2

…

𝐖≤n =
Rn−1∑

rn−1=1
𝐖≤n−1

rn−1
◦𝐖(n)

rn−1
∈ ℝRN×I1×⋯×In×Rn

…

𝐖≤N =
RN−1∑

rN−1=1
𝐖≤N−1

rN−1
◦𝐖(N)

rN−1
∈ ℝRN×I1×⋯×IN×RN

𝐖 yc
=

RN∑

rN=1
𝜆

(yc)
rN

𝐖≤N
rN ,rN

∈ ℝI1×⋯×IN
, (44)

where 𝐖(n)
rn−1

= 𝐖(n)(rn−1, ∶, ∶) ∈ ℝIn×Rn are lateral slices of the core tensor 𝐖(n) ∈
ℝRn−1×In×Rn , 𝐖≤n

rn
= 𝐖≤n(∶,… , ∶, rn) ∈ ℝRN×I1×⋯×In are sub-tensors of 𝐖≤n ∈

38 A. Cichocki

I2

R2J2

...I1

R1
J1

1R

R1 R2
J1I1

W
I2 InJ2

IN JN

Rn-1 Rn
Jn

INJN

... ...

I2

J2
...

...

...

...

...

RN-1

Jn
In

Jn
In

Rn

Rn-1 RN-1

1 1 1(1)I J R 1 2 2 2()R I J R 1()n n nnR I J R 1(1)N NNR I J

(1)
W

(2)
W

(n)
W

(N)

Fig. 17 An alternative TT/MPO tensor network for the approximation of 2Nth-order coefficient

tensor 𝐖 yc
of the score function hc(𝐱1,… , 𝐱N) defined by Eq. (46). Operation between matrices

(slices) of core tensors can be performed multi-linearly and in nonlinear way, as explained in the

next section

ℝRN×I1×⋯×In×Rn , and 𝐖≤N
rN ,rN

= 𝐖≤N(rN , ∶,… , ∶, rN) = Tr(𝐖≤N) ∈ ℝI1×⋯×IN for n =
1,… ,N and R0 = RN ≠ 1.

The above TC network can be written in a compact form (due to the commuta-

tivity and associativity of the outer products) as

𝐖 yc
=

R1∑

r1=1
⋯

RN∑

rN=1
𝜆

(yc)
rN
(𝐰(1)

rN ,r1
◦𝐰(2)

r1,r2
◦ ⋯ ◦𝐰(N)

rN−1,rN
), (45)

where 𝐰(n)
rn−1,rn

= 𝐖(n)(∶, in, ∶) ∈ ℝIn are tubes of a core tensor 𝐖(n) ∈ ℝRn−1×In×Rn .

The ConvAC can be alternatively modeled via TT/MPO networks, as illustrated

in Fig. 17 for a more general score function defined as

hyc =
I1∑

i1=1
⋯

IN∑

iN=1

J1∑

j1=1
⋯

JN∑

jN=1
𝐖 yc

(i1,… , iN , j1,… , jN)
N∏

n=1
f
𝜃in ,jn

(𝐱n), (46)

where 𝐖 yc
(i1,… , iN , j1,… , jN) represent entries of an 2Nth-order coefficient tensor.

Such tensor networks are well understood and efficient algorithms exist to perform

their learning, that is, to estimate the core tensors on the basis of a relatively small

number of measurements or a small set of available training data.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 39

7 Deep Convolutional Rectifier Using Nonlinear Tensor
Networks Decompositions

The convolutional arithmetic circuits (ConvACs) model employs the standard outer

(tensor) products, which for two tensors, 𝐀 ∈ ℝI1×⋯×IN and 𝐁 ∈ ℝJ1×⋯×JM , are

defined as

(𝐀 ◦𝐁)i1,…,iN ,j1,…,jM = ai1,…,iN ⋅ bj1,…,jM .

However, in order to convert ConvAC tensor models to popular and widely used

convolutional rectifier networks we need to employ the generalized (nonlinear) outer

products, defined as [30]

(𝐀◦
𝜌

𝐁)i1,…,iN ,j1,…,jM = 𝜌(ai1,…,iN , bj1,…,jM), (47)

where the operator

𝜌 = 𝜌
𝜎,P(a, b) = P[𝜎(a), 𝜎(b))], (48)

is referred to as the activation-pooling operator or function,
9

which meets the asso-

ciativity and the commutativity requirements (i.e., the operator satisfies the following

properties: 𝜌(𝜌(a, b), c) = 𝜌(a, 𝜌(b, c)) and 𝜌(a, b) = 𝜌(b, a), ∀a, b, c ∈ ℝ).

The activation–pooling operator can take various forms. In particular, for the con-

volutional rectifier network with max pooling, we can use the following activation-

pooling operator

𝜌
𝜎,P(a, b) = max{[a]+, [b]+)} = max{a, b, 0}. (49)

As an example, consider a generalized CP decomposition, which represents a shal-

low rectifier network in the form

𝐖 yc
=

R∑

r=1
𝜆

(yc)
r (𝐰(1)

r ◦
𝜌

𝐰(2)
r ◦

𝜌

⋯◦
𝜌

𝐰(N)
r), (50)

where the coefficients 𝜆
(yc)
r represent weights of the output layer, vectors 𝐰(n)

r ∈ ℝIn

are weights in the hidden layer, and R denotes the number of channels (using the

language of deep learning community).

It should be noted that if we employ the weight sharing, then all vectors 𝐰(n)
r =

𝐰r, ∀n, and consequently the coefficient tensor, 𝐖 yc
, must be a symmetric tensor

which further limits the ability of this model to approximate a desired function.

9
The symbols 𝜎(⋅) and P(⋅) are respectively the activation and pooling functions of the network.

40 A. Cichocki

As a second example, let us consider a nonlinear HT tensor network which models

a deep convolutional rectifier. The TN shown in Fig. 17 can be compactly described

as follows (assuming the generalized outer products defined above):

𝐖 yc
=

R1∑

r1=1
⋯

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐖(1)
1,r1

◦
𝜌

𝐖(2)
r1,r2

◦
𝜌

⋯◦
𝜌

𝐖(N−1)
rN−1,1

), (51)

where 𝐖(n)
rn−1,rn

∈ ℝIn×Jn are block matrices of core tensor 𝐖(n) ∈ ℝRn−1×In×Jn×Rn (for

more detail see [13, 14]).

The TT and TC networks
10

provide some simplicity in comparison to HT, together

with very deep TN structures, that is, N hidden layers. Note that the HT model gen-

erates architectures of DCNNs with L = log2(N) hidden layers, while TT/TC tenor

network employsN hidden layers. Taking into account the current trend in deep lean-

ing to use a large number of hidden layers, it would be a quite attractive to employ

so called quantized TT/TC QTT/QTC networks with a relatively large number of

hidden layers: L = N ⋅ log2(I) [13].

To summarize, deep convolutional neural networks may be considered as a spe-

cial case of hierarchical architectures, which can be indirectly simulated and opti-

mized via relative simple and well understood tensor networks, especially HT/TT

(i.e., using unbalanced or balanced binary trees and graphical models), however,

more sophisticated tensor network diagrams with loops, discussed in the next section

may provide potentially better performance and the ability to generate novel archi-

tectures of DCNNs.

8 MERA Tensor Networks for a Next Generation of
DCNNs

The Multiscale Entanglement Renormalization Ansatz (MERA) tensor network was

first introduced by Vidal [95], and numerical algorithms to minimize the energy or

local Hamiltonian already exist [96].

The MERA is a relatively new tensor network, widely investigated in quantum

physics based variational Ansatz, since it is capable of capturing many of the key

complex physical properties of strongly correlated ground states [97]. The MERA

also shares many relationships with the AdS/CFT (gauge-gravity) correspondence by

realizing a complete holographic duality within the tensor networks framework. Fur-

thermore, the MERA can be regarded as a TN realization of an orthogonal wavelets

transform acting on the mode space of the physical fermionic degrees of freedom

[98–100].

10
It is important to note that TT/TC tensor networks described in this section do not necessary need

to have weight sharing and do not need even to be convolutional.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 41

For simplicity, we focus in this section on the 1D binary and ternary MERA ten-

sor networks (see Fig. 18a for basic binary MERA). Instead of writing of complex

mathematical formulas it is more convenient to describe MERA tensor networks

graphically.

Using, the terminology from quantum physics, the standard binary MERA archi-

tecture contains three classes of core tensors: (i) Disentanglers—4th-order cores; (ii)

isometries also called the coarse-grainer, typically 3rd order cores for binary MERA

and 4th-order cores for ternary MERA; and (iii) one output core which is usually a

matrix or a 4th-order core, as illustrated in Fig. 18a and c. Each MERA layer is con-

structed of a row of disentanglers and a row of coarse-grainers or isometries. Dis-

entanglers remove the short-scale entanglement between the adjacent modes, while

isometries renormalise each pair of modes to a single mode Each renormalisation

layer performs these operations on a different length scale.

The coarse-grainers take inputs from two modes on a lower scale in the MERA,

and give an output onto one mode which is on a higher layer in the tensor network,

while the disentangler removes entanglement between two neighboring modes (sites)

on the same level. From the perspective of a mapping, the nodes (core tensors) can

be considered as processing units, that is, the 4th-order cores map matrices to other

matrices, while the coarse-grainers take matrices and map then to vectors. The key

idea here is to realize that the “compression” capability arises from the hierarchy

and the entanglement. As a matter of fact, the MERA network embodies the mutual

information chain rule. In other words, the main idea underlying MERA is that of dis-

entangling the system at various length scales as one follows coarse graining Renor-

malization Group (RG) flow in the system. The MERA is particularly effective for

(scale invariant) critical points of the physical systems.

The key features properties of MERA can be summarized as follows [97]:

∙ MERA can capture scale-invariance of inputs data;

∙ It reproduces polynomial decay of correlations between inputs, in contrast to HT

or TT tensor networks which reproduce only exponential decay of correlations;

∙ MERA has ability to much better compress tensor data that TT/HT tensor net-

works;

∙ It reproduces a logarithmic correction to the area law, therefore MERA is a more

powerful tensor network in comparison to HT/TTNS or TT/TC networks;

∙ MERA can be efficiently contracted due to unitary constraints imposed on core

tensors.

Motivated by these features, we are currently investigating MERA tensor net-

works as powerful tools to model and analyze DCNNs. A key objective is to estab-

lish a precise connection between MERA tensor networks and extended model of

DCNNs. This connection may provide exciting new insights about deep learning

and may also allow for construction of improved families of DCNNs, with potential

application to more efficient data/image classification, clustering and prediction. In

other words, we conjecture that the MERA will lead to useful new results, poten-

tially allowing not only better characterization of expressive power of DCNNs, but

42 A. Cichocki

(b)(a)

(c)

Fig. 18 Various architectures of MERA tensor networks for the new generation of deep convolu-

tional neural networks. a Basic binary MERA tensor network. Observe that the alternating layers of

disentangling and coarse-graining cores. For the network shown in (a) the number of modes (ten-

sor cores) after each such set of operations is approximately halved. b Improved (lower complexity)

MERA network. c Ternary MERA in which coarse grainers are also 4th-order tensors, i.e., three

sites (modes) are coarse-grained into one effective site (mode)

also new practical implementations. Going the other way, the links and relations

between TNs and DCNNs could lead to useful advances in the design of novel deep

neural networks.

The MERA tensor networks, shown in Fig. 18, may provide a much higher expres-

sive power of deep learning in comparison to networks corresponding to HT/TT

architectures, since this class of tensor networks can model more complex long term

correlations between input instances. This follows form the facts that for HT and TT,

TC tensor networks correlations between input variables decay exponentially and the

entanglement entropy saturates to a constant, while the more sophisticated MERA

tensor networks provide polynomially decaying correlations.

For future research directions, it would be very important to further explore

the links between deep learning architectures, such as DCNN or deep Boltzmann

machine, and TNs with hierarchical structures such as tree tensor network states

(TTNS) and multi-scale entanglement renormalization ansatz (MERA), in order to

better understand and improve the expressive power of deep feedforward neural net-

works. We deeply believe that the insights into the theory of tensor networks and

quantum many-body physics can provide better theoretical understanding of deep

learning, together with the guidance for optimized DNNs design.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 43

To summarize, the tensor network methodology and architectures discussed in

this section could be extended to allow analytic construction of new DCNNs.

Moreover, systematic investigation of the correspondences between DNNs and wide

spectrum of TNs can provide a very fruitful perspective including cashing the

existing conjectures and claims about operational similarities and correspondences

between DNNs and TNs into a more rigorous and constructive framework.

9 Conclusions and Discussions

The tensor networks (TNs) methodology is a promising paradigm for the analysis of

extreme-scale multidimensional data. Due to their ‘super’ compression abilities and

the distributed way in which they process data, TNs can be employed for a wide fam-

ily of large-scale optimization problems, especially linear/multilinear dimensionality

reduction tasks.

In this paper, we focused on two main challenges in huge-scale data analysis

which are addressed by tensor networks: (i) an approximate representation of a spe-

cific cost (objective) function by a tensor network while maintaining the desired

accuracy of approximation, and (ii) the extraction of physically meaningful latent

variables from data in a sufficiently accurate and computationally affordable way.

The benefits of multiway (tensor) analysis methods for large-scale data sets then

include:

∙ Graphical representations of tensor networks allow us to express mathematical

operations on tensors (e.g., tensor contractions and reshaping) in a simple and

intuitive way, and without the explicit use of complex mathematical expressions;

∙ Simultaneous and flexible distributed representations of both the structurally rich

data and complex optimization tasks;

∙ Efficient compressed formats of large multidimensional data achieved via ten-

sorization and low-rank tensor decompositions into low-order factor matrices

and/or core tensors;

∙ Ability to operate with noisy and missing data by virtue of numerical stability and

robustness to noise of low-rank tensor/matrix approximation algorithms;

∙ A flexible framework which naturally incorporates various diversities and con-

straints, thus seamlessly extending the standard, flat view, Component Analysis

(2-way CA) methods to multiway component analysis;

∙ Possibility to analyze linked (coupled) blocks of large-scale matrices and tensors

in order to separate common/correlated from independent/uncorrelated compo-

nents in the observed raw data.

In that sense, this paper both reviews current research in this area and comple-

ments optimisation methods, such as the Alternating Direction Method of Multi-

pliers (ADMM) [101].

44 A. Cichocki

Tensor decompositions (TDs) have been already adopted in widely diverse dis-

ciplines, including psychometrics, chemometrics, biometric, quantum physics quan-

tum chemistry, signal and image processing, machine learning, and brain science

[12–14, 26, 29, 63, 102–105]. This is largely due to their advantages in the analysis

of data that exhibit not only large volume but also very high variety (see Fig. 1), as in

the case in bio- and neuroinformatics and in computational neuroscience, where var-

ious forms of data collection include sparse tabular structures and graphs or hyper-

graphs.

Moreover, tensor networks have the ability to efficiently parameterize, through

structured compact representations, very general high-dimensional spaces which

arise in modern applications [11, 14, 72, 106–110]. Tensor networks also naturally

account for intrinsic multidimensional and distributed patterns present in data, and

thus provide the opportunity to develop very sophisticated models for capturing mul-

tiple interactions and couplings in data—these are more physically insightful and

interpretable than standard pair-wise interactions.

Acknowledgements This work has been partially supported by Misnistry of Education and

Science of the Russian Federation (grant 14.756,0001).

References

1. Zurada, J.: Introduction to Artificial Neural Systems, vol. 8. West St, Paul (1992)

2. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The

Handbook of Brain Theory and Neural Networks, MIT Press, pp. 255–258 (1998)

3. Hinton, G., Sejnowski, T.: Learning and relearning in boltzmann machines. In: Parallel Dis-

tributed Processing, MIT Press, pp. 282–317 (1986)

4. Cichocki, A., Kasprzak, W., Amari, S.: Multi-layer neural networks with a local adaptive

learning rule for blind separation of source signals. In: Proceedings of the International Sym-

posium Nonlinear Theory and Applications (NOLTA), Las Vegas, NV, Citeseer, pp. 61–65

(1995)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.

deeplearningbook.org

7. Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorisation. Electron. Lett. 42(16),

1 (2006)

8. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative

matrix/tensor factorization. In: International Symposium on Neural Networks, pp. 793–802.

Springer (2007)

9. Cichocki, A.: Tensor decompositions: new concepts in brain data analysis? J. Soc. Instr. Con-

trol Eng. 50(7), 507–516. arXiv:1305.0395 (2011)

10. Cichocki, A.: Era of big data processing: a new approach via tensor networks and tensor

decompositions, (invited). In: Proceedings of the International Workshop on Smart Info-

Media Systems in Asia (SISA2013). arXiv:1403.2048 (September 2013)

11. Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems.

arXiv:1407.3124 (2014)

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1305.0395
http://arxiv.org/abs/1403.2048
http://arxiv.org/abs/1407.3124

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 45

12. Cichocki, A., Mandic, D., Caiafa, C., Phan, A., Zhou, G., Zhao, Q., Lathauwer, L.D.: Tensor

decompositions for signal processing applications: from two-way to multiway component

analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

13. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.: Tensor networks for

dimensionality reduction and large-scale optimization: part 1 low-rank tensor decomposi-

tions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016)

14. Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.: Tensor

networks for dimensionality reduction and large-scale optimization: part 2 applications and

future perspectives. Found. Trends Mach. Learn. 9(6), 431–673 (2017)

15. Oseledets, I., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to use SVD in

many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)

16. Dolgov, S., Khoromskij, B.: Two-level QTT-Tucker format for optimized tensor calculus.

SIAM J. Matrix Anal. Appl. 34(2), 593–623 (2013)

17. Kazeev, V., Khoromskij, B., Tyrtyshnikov, E.: Multilevel Toeplitz matrices generated by

tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput.

35(3), A1511–A1536 (2013)

18. Kazeev, V., Khammash, M., Nip, M., Schwab, C.: Direct solution of the chemical master

equation using quantized tensor trains. PLoS Comput. Biol. 10(3), e1003359 (2014)

19. Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace cor-

rection for symmetric eigenvalue problems. SIAM J. Sci. Comput. 36(5), A2346–A2368

(2014)

20. Vervliet, N., Debals, O., Sorber, L., De Lathauwer, L.: Breaking the curse of dimensionality

using decompositions of incomplete tensors: Tensor-based scientific computing in big data

analysis. IEEE Signal Process. Mag. 31(5), 71–79 (2014)

21. Dolgov, S., Khoromskij, B.: Simultaneous state-time approximation of the chemical master

equation using tensor product formats. Numer. Linear Algebra Appl. 22(2), 197–219 (2015)

22. Liao, S., Vejchodský, T., Erban, R.: Tensor methods for parameter estimation and bifurcation

analysis of stochastic reaction networks. J. R. Soc. Interface 12(108), 20150233 (2015)

23. Bolten, M., Kahl, K., Sokolović, S.: Multigrid methods for tensor structured Markov chains

with low rank approximation. SIAM J. Sci. Comput. 38(2), A649–A667 (2016)

24. Lee, N., Cichocki, A.: Estimating a few extreme singular values and vectors for large-scale

matrices in Tensor Train format. SIAM J. Matrix Anal. Appl. 36(3), 994–1014 (2015)

25. Lee, N., Cichocki, A.: Regularized computation of approximate pseudoinverse of large matri-

ces using low-rank tensor train decompositions. SIAM J. Matrix Anal. Appl. 37(2), 598–623

(2016)

26. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500

(2009)

27. Orús, R.: A practical introduction to tensor networks: matrix product states and projected

entangled pair states. Ann. Phys. 349, 117–158 (2014)

28. Dolgov, S., Savostyanov, D.: Alternating minimal energy methods for linear systems in higher

dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)

29. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factoriza-

tions: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation.

Wiley, Chichester (2009)

30. Cohen, N., Shashua, A.: Convolutional rectifier networks as generalized tensor decomposi-

tions. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 955–

963 (2016)

31. Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-place approach

to dense tensor-times-matrix multiply. In: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, p. 76. ACM (2015)

46 A. Cichocki

32. Ballard, G., Benson, A., Druinsky, A., Lipshitz, B., Schwartz, O.: Improving the numerical

stability of fast matrix multiplication algorithms. arXiv:1507.00687 (2015)

33. Ballard, G., Druinsky, A., Knight, N., Schwartz, O.: Brief announcement: Hypergraph parti-

tioning for parallel sparse matrix-matrix multiplication. In: Proceedings of the 27th ACM on

Symposium on Parallelism in Algorithms and Architectures, pp. 86–88. ACM (2015)

34. Tucker, L.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen,

H., Frederiksen, N. (eds.) Contributions to Mathematical Psychology, pp. 110–127. Holt,

Rinehart and Winston, New York (1964)

35. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3),

279–311 (1966)

36. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge Discovery and

Data Mining, pp. 374–383. ACM (2006)

37. Drineas, P., Mahoney, M.: A randomized algorithm for a tensor-based generalization of the

singular value decomposition. Linear Algebra Appl. 420(2), 553–571 (2007)

38. Lu, H., Plataniotis, K., Venetsanopoulos, A.: A survey of multilinear subspace learning for

tensor data. Pattern Recogn. 44(7), 1540–1551 (2011)

39. Li, M., Monga, V.: Robust video hashing via multilinear subspace projections. IEEE Trans.

Image Process. 21(10), 4397–4409 (2012)

40. Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Pro-

ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 239–247. ACM (2013)

41. Wang, Y., Tung, H.Y., Smola, A., Anandkumar, A.: Fast and guaranteed tensor decomposition

via sketching. In: Advances in Neural Information Processing Systems, pp. 991–999 (2015)

42. Kuleshov, V., Chaganty, A., Liang, P.: Tensor factorization via matrix factorization. In: Pro-

ceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,

pp. 507–516 (2015)

43. Sorber, L., Domanov, I., Van Barel, M., De Lathauwer, L.: Exact line and plane search for

tensor optimization. Comput. Optim. Appl. 63(1), 121–142 (2016)

44. Lubasch, M., Cirac, J., Banuls, M.C.: Unifying projected entangled pair state contractions.

New J. Phys. 16(3), 033014 (2014)

45. Di Napoli, E., Fabregat-Traver, D., Quintana-Ortí, G., Bientinesi, P.: Towards an efficient use

of the BLAS library for multilinear tensor contractions. Appl. Math. Comput. 235, 454–468

(2014)

46. Pfeifer, R., Evenbly, G., Singh, S., Vidal, G.: NCON: A tensor network contractor for MAT-

LAB. arXiv:1402.0939 (2014)

47. Kao, Y.J., Hsieh, Y.D., Chen, P.: Uni10: An open-source library for tensor network algorithms.

J. Phys. Conf. Ser. 640, 012040 (2015). IOP Publishing

48. Grasedyck, L., Kessner, D., Tobler, C.: A literature survey of low-rank tensor approximation

techniques. GAMM-Mitteilungen 36, 53–78 (2013)

49. Comon, P.: Tensors: A brief introduction. IEEE Signal Process. Mag. 31(3), 44–53 (2014)

50. Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor

decomposition for signal processing and machine learning. arXiv:1607.01668 (2016)

51. Zhou, G., Cichocki, A.: Fast and unique Tucker decompositions via multiway blind source

separation. Bull. Pol. Acad. Sci. 60(3), 389–407 (2012)

52. Phan, A., Cichocki, A., Tichavský, P., Zdunek, R., Lehky, S.: From basis components to com-

plex structural patterns. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26–31, 2013,

pp. 3228–3232

53. Phan, A., Tichavský, P., Cichocki, A.: Low rank tensor deconvolution. In: Proceedings of the

IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, April

2015, pp. 2169–2173

54. Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis using tensor

network formats. Multidimension. Syst. Signal Process, pp 1–40, Springer (March 2017)

http://arxiv.org/abs/1507.00687
http://arxiv.org/abs/1402.0939
http://arxiv.org/abs/1607.01668

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 47

55. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton, NJ (1961)

56. Austin, W., Ballard, G., Kolda, T.: Parallel tensor compression for large-scale scientific data.

arXiv:1510.06689 (2015)

57. Jeon, I., Papalexakis, E., Faloutsos, C., Sael, L., Kang, U.: Mining billion-scale tensors: algo-

rithms and discoveries. VLDB J. 1–26 (2016)

58. Phan, A., Cichocki, A.: PARAFAC algorithms for large-scale problems. Neurocomputing

74(11), 1970–1984 (2011)

59. Klus, S., Schütte, C.: Towards tensor-based methods for the numerical approximation of the

Perron-Frobenius and Koopman operator. arXiv:1512.06527 (December 2015)

60. Bader, B., Kolda, T.: MATLAB tensor toolbox version. 2, 6 (2015)

61. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Computing 67(3), 225–253

(2001)

62. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

63. Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Series in Computa-

tional Mathematics, vol. 42. Springer, Heidelberg (2012)

64. Bebendorf, M.: Adaptive cross-approximation of multivariate functions. Constr. Approx.

34(2), 149–179 (2011)

65. Dolgov, S.: Tensor product methods in numerical simulation of high-dimensional dynamical

problems. Ph.D. thesis, Faculty of Mathematics and Informatics, University Leipzig, Ger-

many, Leipzig, Germany (2014)

66. Cho, H., Venturi, D., Karniadakis, G.: Numerical methods for high-dimensional probability

density function equations. J. Comput. Phys. 305, 817–837 (2016)

67. Trefethen, L.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev. (to appear)

(2017)

68. Oseledets, I., Dolgov, S., Kazeev, V., Savostyanov, D., Lebedeva, O., Zhlobich, P., Mach, T.,

Song, L.: TT-Toolbox (2012)

69. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

70. Khoromskij, B.: Tensors-structured numerical methods in scientific computing: Survey on

recent advances. Chemometr. Intell. Lab. Syst. 110(1), 1–19 (2011)

71. Oseledets, I., Tyrtyshnikov, E.: TT cross-approximation for multidimensional arrays. Linear

Algebra Appl. 432(1), 70–88 (2010)

72. Khoromskij, B., Veit, A.: Efficient computation of highly oscillatory integrals by using QTT

tensor approximation. Comput. Methods Appl. Math. 16(1), 145–159 (2016)

73. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)

74. Schneider, D.: Deeper and cheaper machine learning [top tech 2017]. IEEE Spectr. 54(1),

42–43 (2017)

75. Lebedev, V., Lempitsky, V.: Fast convolutional neural networks using group-wise brain dam-

age. arXiv:1506.02515 (2015)

76. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neural networks. In:

Advances in Neural Information Processing Systems (NIPS), pp. 442–450 (2015)

77. Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Q.: Why and when can deep–but

not shallow–networks avoid the curse of dimensionality: a review. arXiv:1611.00740 (2016)

78. Yang, Y., Hospedales, T.: Deep multi-task representation learning: a tensor factorisation

approach. arXiv:1605.06391 (2016)

79. Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a tensor analy-

sis. In: 29th Annual Conference on Learning Theory, pp. 698–728 (2016)

80. Chen, J., Cheng, S., Xie, H., Wang, L., Xiang, T.: On the equivalence of restricted Boltzmann

machines and tensor network states. arXiv e-prints (2017)

81. Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks through pooling geom-

etry. CoRR (2016). arXiv:1605.06743

82. Sharir, O., Tamari, R., Cohen, N., Shashua, A.: Tensorial mixture models. CoRR (2016).

arXiv:1610.04167

http://arxiv.org/abs/1510.06689
http://arxiv.org/abs/1512.06527
http://arxiv.org/abs/1506.02515
http://arxiv.org/abs/1611.00740
http://arxiv.org/abs/1605.06391
http://arxiv.org/abs/1605.06743
http://arxiv.org/abs/1610.04167

48 A. Cichocki

83. Lin, H.W., Tegmark, M.: Why does deep and cheap learning work so well? arXiv e-prints

(2016)

84. Zwanziger, D.: Fundamental modular region, Boltzmann factor and area law in lattice theory.

Nucl. Phys. B 412(3), 657–730 (1994)

85. Eisert, J., Cramer, M., Plenio, M.: Colloquium: Area laws for the entanglement entropy. Rev.

Modern Phys. 82(1), 277 (2010)

86. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. Theory

Exp. 2004(06), P06002 (2004)

87. Anselmi, F., Rosasco, L., Tan, C., Poggio, T.: Deep convolutional networks are hierarchical

kernel machines. arXiv:1508.01084 (2015)

88. Mhaskar, H., Poggio, T.: Deep vs. shallow networks: an approximation theory perspective.

Anal. Appl. 14(06), 829–848 (2016)

89. White, S.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B

48(14), 10345 (1993)

90. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys.

Rev. Lett. 91(14), 147902 (2003)

91. Perez-Garcia, D., Verstraete, F., Wolf, M., Cirac, J.: Matrix product state representations.

Quantum Inf. Comput. 7(5), 401–430 (2007)

92. Verstraete, F., Murg, V., Cirac, I.: Matrix product states, projected entangled pair states, and

variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–

224 (2008)

93. Schollwöck, U.: Matrix product state algorithms: DMRG, TEBD and relatives. In: Strongly

Correlated Systems, pp. 67–98. Springer (2013)

94. Huckle, T., Waldherr, K., Schulte-Herbriggen, T.: Computations in quantum tensor networks.

Linear Algebra Appl. 438(2), 750–781 (2013)

95. Vidal, G.: Class of quantum many-body states that can be efficiently simulated. Phys. Rev.

Lett. 101(11), 110501 (2008)

96. Evenbly, G., Vidal, G.: Algorithms for entanglement renormalization. Phys. Rev. B 79(14),

144108 (2009)

97. Evenbly, G., Vidal, G.: Tensor network renormalization yields the multiscale entanglement

renormalization Ansatz. Phys. Rev. Lett. 115(20), 200401 (2015)

98. Evenbly, G., White, S.R.: Entanglement renormalization and wavelets. Phys. Rev. Lett.

116(14), 140403 (2016)

99. Evenbly, G., White, S.R.: Representation and design of wavelets using unitary circuits. arXiv

e-prints (2016)

100. Matsueda, H.: Analytic optimization of a MERA network and its relevance to quantum inte-

grability and wavelet. arXiv:1608.02205 (2016)

101. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical

learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),

1–122 (2011)

102. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences.

Wiley, New York (2004)

103. Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis and Gabor features

for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

104. Kroonenberg, P.: Applied Multiway Data Analysis. Wiley, New York (2008)

105. Favier, G., de Almeida, A.: Overview of constrained PARAFAC models. EURASIP J. Adv.

Signal Process. 2014(1), 1–25 (2014)

106. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Rie-

mannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

107. Zhang, Z., Yang, X., Oseledets, I., Karniadakis, G., Daniel, L.: Enabling high-dimensional

hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE

Trans. Comput.-Aided Des. Integr. Circ. Syst. 34(1), 63–76 (2015)

108. Corona, E., Rahimian, A., Zorin, D.: A tensor-train accelerated solver for integral equations

in complex geometries. arXiv:1511.06029 (2015)

http://arxiv.org/abs/1508.01084
http://arxiv.org/abs/1608.02205
http://arxiv.org/abs/1511.06029

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 49

109. Litsarev, M., Oseledets, I.: A low-rank approach to the computation of path integrals. J. Com-

put. Phys. 305, 557–574 (2016)

110. Benner, P., Khoromskaia, V., Khoromskij, B.: A reduced basis approach for calculation of

the Bethe-Salpeter excitation energies by using low-rank tensor factorisations. Mol. Phys.

114(7–8), 1148–1161 (2016)

	Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning
	1 Introduction and Objectives
	2 Tensor Operations and Graphical Representations of Tensor Networks
	2.1 Tensor Operations and Tensor Network Diagrams

	3 Mathematical and Graphical Representation of Basic Tensor Networks
	3.1 The CP and Tucker Tensor Formats
	3.2 Operations in the Tucker Format

	4 Curse of Dimensionality and Separation of Variables for Multivariate Functions
	5 Tensor Networks Approaches for Deep Learning
	5.1 Why Tensor Networks Are Important in Deep Learning?
	5.2 Basic Features of Deep Convolutional Neural Networks
	5.3 Score Functions for Deep Convolutional Neural Networks

	6 Convolutional Arithmetic Circuits (ConvAC) Using Tensor Networks
	6.1 Hierarchical Tucker (HT) and Tree Tensor Network State (TTNS) Models
	6.2 Alternative Tensor Network Model: Tensor Train (TT) Networks
	6.3 Tensor Chain and TT/MPO Networks

	7 Deep Convolutional Rectifier Using Nonlinear Tensor Networks Decompositions
	8 MERA Tensor Networks for a Next Generation of DCNNs
	9 Conclusions and Discussions
	References

