
Studies in Computational Intelligence 738

Adam E. Gawęda
Janusz Kacprzyk
Leszek Rutkowski
Gary G. Yen Editors

Advances in Data
Analysis with
Computational
Intelligence Methods
Dedicated to Professor Jacek Żurada

Studies in Computational Intelligence

Volume 738

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Adam E. Gawęda • Janusz Kacprzyk
Leszek Rutkowski • Gary G. Yen
Editors

Advances in Data Analysis
with Computational
Intelligence Methods
Dedicated to Professor Jacek Żurada

123

Editors
Adam E. Gawęda
Department of Medicine, Division
of Nephrology and Hypertension

University of Louisville
Louisville, KY
USA

Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
Warsaw
Poland

Leszek Rutkowski
Institute of Computational Intelligence,
Department of Mechanical Engineering
and Computer Science

Częstochowa University of Technology
Częstochowa
Poland

Gary G. Yen
School of Electrical and Computer
Engineering

Oklahoma State University
Stillwater, OK
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-67945-7 ISBN 978-3-319-67946-4 (eBook)
https://doi.org/10.1007/978-3-319-67946-4

Library of Congress Control Number: 2017952518

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

This volume is an expression of gratitude to
one of our professional colleagues and
friends with whom we have had the pleasure
to meet and work. It is dedicated to
Dr. Jacek M. Zurada, one of the most
prominent scientists and technical leaders in
the field of computational intelligence, who
has made many pioneering contributions to
the field, notably to the theory and
applications of neural networks. But, in
addition to his widely recognized and cited
works, he has equally distinguished himself
through his career by his exceptional
leadership and service to the profession and
community. His illustrious academic and

professional career spans over three stages:
the early doctoral years in Poland and
postdoctoral training at ETH Zürich in
Switzerland (1972–1980), his academic work
in the USA (1980–present), and his
intermittent visiting professorship positions,
first during his sabbatical at Princeton
University and then during his summer stays
in Singapore and Japan.
It can be easily argued that the impact of
Dr. Zurada’s technical, professional, and
educational accomplishments has been
extraordinary in each of these aspects alone,
but only their sum, broadened by his
generous personality, has made a truly
unique and influential career.
His work has heavily influenced the field, and
it continues to inspire and benefit numerous
researchers as it will for sure do for decades
to come. For over 25 years, he has been one
of the most recognizable scientists and
personalities of the field of computational
intelligence, notably in neural networks. This
recognition is to be credited to his seminal
works that continue to have lasting societal
and technical impact. He has contributed to
the fundamental understanding of the field
through publishing many papers on
significant theoretical advances and
applications of tools and techniques
developed in the field, to a large extent by
himself and his collaborators, and through
authoring a groundbreaking book that has
been widely considered as a pioneering and
standard reference of the field. His
contributions have resulted in about 10500
citations.

One of his most widely recognized singular
contributions is to the area of recurrent
attractor networks that use complex-valued
neurons (1996) which established a new and
seminal paradigm of the Hopfield-type
associative memories. Further, he has
developed one of the most successful and
widely applied methods to deal with the
“black box nature” of neural networks
through their sensitivity evaluations. This
novel idea has allowed for an efficient and
systematic reduction of oversized
architectures, pruning of inputs and other
simplifications. Based on this seminal concept
of the perceptron networks sensitivity, other
algorithms have been developed for network
pruning, derivation of logic rules and
explanation capabilities. Well over two dozen
authors had continued extending the early
concepts proposed by Dr. Zurada.
One of the most attractive applications of
neural networks has been in the field of
computer-assisted medicine. Here, Dr.
Zurada’s work in drug dosing with
computational methods has opened new
avenues and lines of inquiry for numerous
researchers all over the world. Working with
his colleagues in the University of
Louisville’s School of Medicine and his Ph.D.
students, he has devised new
pharmacokinetical models for renal clinic
patients and for different drugs. These
pioneering works have resulted in numerous
articles in many highly respected journals
and opened new vistas for both the theory
and practice.
Last but not least, Dr. Zurada’s signature
contribution is his famous book “Introduction

to Artificial Neural Systems” which is widely
recognized as the first comprehensive and
cohesive academic text of the field. It has
ingeniously combined the scope and depth of
coverage with the clarity of exposition. It has
also been reprinted in Singapore, Poland,
Egypt, and most recently in India, the latter of
which underscores this pioneering work’s
outstanding longevity. This book has
successfully bridged the gaps between the
early multifaceted research by scientists from
various fields including psychology, physics,
information theory, computer science,
electrical engineering, and others. In fact,
this contribution of Dr. Zurada has laid the
foundation for numerous neurocomputing
courses in electrical/computer and other
engineering and computer science
departments throughout the world.
Dr. Zurada’s academic teaching emphasizes
in-depth, project-based learning that helps
electrical/computer engineers to stay
technically current as the technology evolves
during their careers. He has also served the
industry as a consultant and lecturer. He has
advised 21 Ph.D. and many more M.Sc.
students many of whom now hold leadership
positions in industrial R&D centers,
academia, and governmental agencies in the
USA, Korea, and Poland. He has also
delivered 170 invited, plenary, and keynote
conference presentations and seminars
throughout the world. He has served as IEEE
Distinguished Speaker for the IEEE Systems,
Man and Cybernetics Society, and served as
a Distinguished Lecturer the IEEE Circuits
and Systems and Computational Intelligence
Societies.

It is also the editors’ pleasure to cite
Dr. Zurada’s distinguished career of service
to the profession, mostly to the IEEE all the
editors are strongly attached to. Since 1992,
he has served in many editorial roles. He was
an Associate Editor of the IEEE Transactions
on Circuits and Systems, Parts I and II, and a
Member of the Editorial Board of the
Proceedings of the IEEE and Senior Advisory
Editor of IEEE Computational Intelligence
Magazine. He also served as the
Editor-in-Chief of the IEEE Transactions on
Neural Networks (1998–2003). He has served
as a chair or member of about 140
conference committees.
He has made an extraordinary impact on the
IEEE Computational Intelligence Society
(formerly Neural Networks Society) and was
the Society President (2004–2005). More
recently, he has held several top IEEE
positions in the Publications, Products and
Services and Technical Activities Boards,
including Chair of IEEE TAB Periodicals
Committee (2010–2011) and of Periodical
Review and Advisory Committee
(2012–2013). He was also elected as the
2014 TAB Chair or Vice-President of IEEE,
Technical Activities (2014—VP Elect, and
2016—Past VP).
In recognition of his research
accomplishments and his unselfish service to
the profession, Dr. Zurada has received a
number of awards for distinction in research,
teaching, and service including the 1993
Presidential Award for Research,
Scholarship and Creative Activity, and the
2001 Presidential Distinguished Service
Award for Service to the Profession. He

received the Golden Jubilee IEEE Medal
from the Circuits and Systems Society in 2000
and the Meritorious Service Award from the
Computational Intelligence Society in 2008.
He is an IEEE Life Fellow. In 2003, he was
conferred the Title of Professor by the
President of Poland. In 2005, he was elected
a Foreign Member of the Polish Academy of
Sciences. He also holds four honorary
doctorates from European and Asian
universities.
We are the four coeditors who represent
hundreds of privileged individuals in our
community who have had the pleasure to
personally and professionally know
Dr. Zurada, work with him, or study under
his direction, and enjoy his friendship. We
have undertaken this editorial effort to honor
his dedication and impact he had on all of us.
Our intention is to present these select topical
papers in our research field as a token of
appreciation for his efforts that have
benefitted so many of us.

Adam E. Gawęda
Janusz Kacprzyk

Leszek Rutkowski
Gary G. Yen
Spring 2017

Preface

This volume is dedicated to Prof. Jacek Żurada, Full Professor at the Computational
Intelligence Laboratory, Department of Electrical and Computer Engineering,
J.B. Speed School of Engineering, University of Louisville, Kentucky, USA, as a
token of appreciation for his scientific and scholarly achievements, and his longtime
service to many communities, notably—from the point of view of research interests
topics—those of computational intelligence, in particular neural networks, machine
learning, data analyses, and data mining, but also fuzzy logic, evolutionary com-
putation, to just mention a few. On the other hand, from an institutional and
organizational point of view, this is also a small token of appreciation for his
longtime dedication and service to so many scientific, scholarly, and professional
communities and societies, notably those of IEEE (Institute of Electrical and
Electronics Engineers), the world largest professional technical professional orga-
nization dedicated to advancing science and technology in a broad spectrum of
areas and fields related to its scope of interest.

Dr. Żurada’s illustrious scientific and scholarly career spans over so many fields
and areas of science and technology exemplified primarily by neural networks, the
area he has been for years an iconic personality, but also many other areas from the
broadly perceived fields of data sciences, machine learning, knowledge engineer-
ing, and—to put it most generally, maybe by using too general a name—for all
kinds of intelligent systems. In a more applied direction, his influential works in the
field of computer-assisted medicine deserve much appreciation, both because
of their scientific quality and—which is maybe even more important—for their
crucial relevance and value to the society.

The volume is divided into five parts that cover main issues related to the topic
of the volume. Part I deals with theoretic, algorithmic, and implementation prob-
lems related to an intelligent use of data in the sense of how to get from data
information and knowledge which can be in general useful for solving some rel-
evant tasks, such as, data mining, machine learning, and knowledge discovery.

In his paper on “Tensor Networks for Dimensionality Reduction, Big Data and
Deep Learning,” Andrzej Cichocki provides a comprehensive and critical
state-of-the-art survey, complemented with a deep vision on some innovative links

xi

between low-rank tensor network decompositions and deep neural networks. This
survey and analysis is motivated by the fact that large-scale multidimensional data
are often provided as multiway arrays or higher-order tensors, and they can be
approximately represented in distributed forms via low-rank tensor decompositions
and tensor networks. Due to the underlying low-rank approximations, tensor net-
works may help reduce the dimensionality and alleviate the infamous curse of
dimensionality in many real-life cases, exemplified buy large-scale optimization
problems and deep learning. A novel view of links between the low-rank tensor
network decompositions and the deep neural networks is provided and graphically
illustrated. It is shown in an intuitively appealing way that due to low-rank tensor
approximations and sophisticated contractions of core tensors, tensor networks
attain a remarkable ability to perform distributed computations on otherwise pro-
hibitively large volume of data/parameters. The approach is mainly related to the
Hierarchical Tucker tensor train (TT) decompositions and the MERA tensor
networks in some specific applications.

Jerzy Błaszczyński and Jerzy Stefanowski (“Local Data Characteristics in
Learning Classifiers from Imbalanced Data”) deal with a very important yet difficult
and challenging problem of learning classifiers from imbalanced data. Standard
classifiers do not usually show a good performance due to many factors, notably
those related to data difficulty related to internal and local characteristics of class
distributions. Many of these difficulties can be alleviated by some approximation
through an analysis of some neighborhoods of learning examples and the identi-
fication of different types of examples from the minority class. The authors assume
a recent research direction for the evaluation of the types of examples that are based
on the use of either the k-nearest neighbor or kernel-based methods. Some
approaches are shown for tuning the size of both kinds of neighborhoods depending
on the data set characteristics as well as for the evaluation of their usefulness in a
series of both benchmark type and real data. Then, a claim is considered and
analyzed that a proper analysis of these neighborhoods could be a basis for the
development of new specialized algorithms for dealing with imbalanced data. For
illustration, some generalizations of oversampling in preprocessing methods and
neighborhood-based ensembles are discussed.

Paweł Szmeja, Maria Ganzha, Marcin Paprzycki, and Wiesław Pawłowski
(“Similarity dimensions of semantic ontologies”) deal with a very important, yet
difficult, problem of semantic similarity which is usually meant in the sense of
tools, models, and methods applied in knowledge bases, semantic graphs, text
disambiguation, and ontology matching, to just name a few more relevant problem
classes. Many models and algorithms have been proposed for that purpose, and—
though they are usually very different both with respect to the very idea, algorithm,
and implementation—they are all meant to produce a single numerical score
evaluation, termed a “semantic similarity” that is meant to capture all aspects of
similarity. The authors claim that there are many ways in which semantic entities
can be similar, and a single score may not be the best option. In their approach,
a division of knowledge (and, consequently, the similarity) into categories
(dimensions) of semantic relationships is performed, with each dimension

xii Preface

representing a different “type” of similarity, with this process guided by an inter-
pretation of the meaning (semantics) of a similarity score in a particular dimension.
Therefore, an add extra information to a similarity score can be added to emphasize
differences and similarities between results obtained by using different methods.

Ryszard Tadeusiewicz (“Some interesting phenomenon occurring during
self-learning process with its psychological interpretation”) discusses some inter-
esting and general issues related to neural networks and artificial intelligence. The
point of departure is that neural networks are very often useful for solving many
practical problems but this usefulness can be viewed limited in the sense that it can
be interesting and valid for a limited number of readers who are concerned with
similar problems and applications. Therefore, a reasonable approach may be that
some more interesting observations, which are related to phenomena observed, are
selected during the neural network self-learning process. Since there is some
intrinsic similarity to psychological processes that can be observed during a natural
activity in the human mind, such phenomena are called “artificial dreams” meant
here as spontaneous and unexpected processes emerging from natural self-learning
procedures. These phenomena are very interesting and exciting, even mysterious,
yet are rarely considered in a sufficient depth by the artificial intelligence or
computational intelligence communities. The main reason may be viewed to be die
to the fact that most contributions presenting methods and results of self-learning,
even in neural networks which are main tool considered in this work, are mainly
goal-oriented, and authors of almost all papers first try to obtain the best result in
terms of solving a specified problem, for instance, by building a neural network
based model of some process or finding a solution of a pattern recognition problem.
Therefore, in the discussion of the self-learning results, the authors usually take into
account only the final result exemplified by the value of a measure of the quality
of the model or the correctness of classification. Issues discussed in this paper occur
when the self-learning system has not been learned enough, and emphasis is on a
rarely considered issue of a detailed analysis of behavior of a network, or other
self-learning system, during the learning process, as well as some unexpected
outcomes.

Part II is devoted to various aspects of neural networks and connectionist sys-
tems. Filippo Maria Bianchi, Lorenzo Livi, and Cesare Alippi, in their paper
“On the interpretation and characterization of echo state networks dynamics:
A complex systems perspective,” discuss some relevant, recently developed
methods for characterizing the dynamics of recurrent neural network using some
concepts and tools and techniques of complex systems theory. They focus on the
so-called echo state networks which are a class of recurrent networks. They show a
method for the characterization and analysis of the evolution of internal states,
which makes it possible to provide a qualitative interpretation of the network
dynamics, as well as to assess the very important problem, for theoretical and
practical points of view, of stability of the system. Then, the identification
of the onset of criticality in such networks is dealt with. The authors discuss an
unsupervised method based on Fisher information which can be used to tune the
network hyperparameters. It is shown that as compared to standard supervised

Preface xiii

techniques, the proposed approach is effective and efficient for many problems, and
shows better results.

Martha Pulido, Patricia Melin, and Olivia Mendoza (“Optimization of Ensemble
Neural Networks with Type-1 and Interval Type-2 Fuzzy Integration for
Forecasting the Taiwan Stock Exchange”) describe an optimization method based
on the PSO (particle swarm optimization) for ensemble neural networks with type-1
and type-2 fuzzy aggregation for the forecasting complex time series, notably
related to financial data. Notably, the optimization of the structure of the ensemble
neural network with type-1 and type-2 fuzzy integration is concerned. For the
comparison of the new hybrid method proposed with traditional methods, the data
from the Taiwan Stock Exchange (TAIEX) are used, and the simulation results
show that the ensemble approach produces good prediction results.

In his paper “Deep Neural Networks—A Brief History,” Krzysztof J. Cios
provides a description on and insight into Deep Neural Networks (DNN), their
history, and some related concepts and works. Basically, the DNNs—which are one
of the most efficient tools that belong to the so-called deep learning—process input
information in a hierarchical way in that each subsequent level of processing
extracts more abstract/global/invariant features so that the DNNs (semi) automati-
cally learn key features from data and then aggregate them for some purpose, such
as the recognition of objects in the images. To be more specific, the author illus-
trates how the DNNs using some example from face recognition where the inputs
are images from which at the first level (the first hidden layer) of processing simple
image characteristics such as edges are extracted, then—at the second and subse-
quent levels—more complex parts of an image are formed, and—finally, at the
output layer—human faces are recognized. Then, the author concentrates on the
fully unsupervised DNNs, the field in which little progress has been reported so far.
The focus here is on the DNNs, including those that use spiking neuron models and
the corresponding learning rules.

Part III deals with broadly perceived tools and techniques for intelligent tech-
nologies in systems modeling. Grzegorz J. Nalepa (“Techniques for Construction
and Integration of Rule Bases”) discusses issues related to the use of rules for
capturing and executing knowledge. He deals with rule-based shells, software
frameworks that support knowledge engineers by providing a rule language for
encoding the rule base and a generic inference engine. One of the best known shells,
CLIPS (C Language Integrated Production System) is now a multiparadigm pro-
gramming language that provides support for rule-based, object-oriented, and
procedural programming. This wide acceptance of CLIPS has implied the devel-
opment of Jess which, although being similar, has been entirely written in Java
which improved its integration capabilities. The development of intelligent systems
in last decades shows that the rule-based systems (RBS) are still a technology with a
great potential and many applications. However, it is also clear that rules, while very
useful, need to be integrated with other paradigms, including those related to data
and knowledge processing, software development, implementation, etc. In this
paper, the author presents an identification of some issues that are relevant for the

xiv Preface

integration of rule-based systems, notably: high-level modeling techniques for rule
bases, integration architectures for rule-based systems, and rule interoperability.
A human assisted and an automatic derivation of rules are discussed, and some
challenging common problems, notably the handling of large rules sets through
structuring, integration of rule-based components, as well as rule interoperability
issues, are discussed.

Krystian Łapa, Krzysztof Cpałka, and Leszek Rutkowski (“New Aspects of
Interpretability of Fuzzy Systems for Nonlinear Modeling”) discuss fuzzy systems
as a well suited tool for modeling nonlinear systems. The authors emphasize that
the fuzzy systems can be effectively and efficiently used if their structure and
structure parameters are properly chosen, and the rules are clear and interpretable.
A new algorithm for the automatic learning of fuzzy systems and new inter-
pretability criteria of fuzzy systems are proposed. The interpretability criteria are
related to all aspects of those systems, not only their fuzzy sets and rules, and also
concern the choice and analysis of parameterized triangular norms, discretization
points and weights of importance from the rules. Such a comprehensive solution is
novel. The proposed criteria are taken into account in the learning process which
proceeds using a new learning algorithm that combines the genetic algorithm and
the firework algorithms, which makes it possible to automatically choose not only
the parameters but also the structure of the system. The new approach is tested on
some relevant simulation problems of nonlinear modeling.

Krassimir T. Atanassov and Peter Vassilev discuss in their paper “On the
Intuitionistic Fuzzy Sets of n-th Type” the use of various extensions of the concept
of a fuzzy set introduced by Zadeh, notably some extensions along the line of
Atanassov’s intuitionistic fuzzy set that makes it possible not only to express
imprecision of information but a very important problem related to the fact that the
human beings tend to use in their everyday discourse, judgments, reasoning, etc.,
aspects for and against. The author clarifies some misconceptions and introduces a
unified framework for such approaches.

In Part IV, “Intelligent Technologies in Decision Making, Optimization and
Control,” the first paper by Jacek Mańdziuk (“MCTS/UCT in solving real-life
problems”) deals with the Monte Carlo Tree Search (MCTS) supported by the Upper
Confidence Bounds Applied to Trees (UCT) method, i.e., the so-called MCTS/UCT
which is one of the state-of-the-art techniques in the game-playing domain. In
particular, it is emphasized the spectacular success of this method (combined with
the use of deep neural networks trained with the reinforcement learning algorithm)
in the game of Go. The author summarizes his works and experience in the appli-
cation of MCTS/UCT to domains other than games, with a particular emphasis on
hard real-life problems with a large degree of uncertainty due to the existence of
some stochastic factors in their definition, exemplified by the Capacitated Vehicle
Routing Problem with Traffic Jams, and the Risk-Aware Project Scheduling
Problem. It is shown how MCTS/UCT is a viable method in these two domains,
notably due its ability to effectively and efficiently deal with uncertainty by online
adaptation of the core MCTS simulations to the current situation.

Preface xv

Miłosz Kadziński, Michał K. Tomczyk, and Roman Słowiński (“Interactive
Cone Contraction for Evolutionary Multiple Objective Optimization”) present a
new interactive evolutionary algorithm for Multiple Objective Optimization
(MOO) which combines the NSGA-II method with a cone contraction method. The
new approach requires the Decision Maker (DM) to provide the preference infor-
mation as a reference point and pairwise comparisons of solutions from a current
population. This information is represented using a compatible Achievement
Scalarizing Function (ASF) which is used to guide the evolutionary search toward
the most preferred region of the Pareto front. The proposed algorithm is tested on a
set of benchmark problems, and the results show its quick convergence to the DM’s
most preferred region. Moreover, it also indicated the advantage of the new algo-
rithm of the well-known NEMO-0, in particular when the DM provides a richer
preference information composed of a greater number of pairwise comparisons of
solutions.

Oscar Castillo, Carlos Soto, and Fevrier Valdez (“A Review of Fuzzy and
Mathematic Methods for Dynamic Parameter Adaptation in the Firefly Algorithm”)
are concerned with some issues related to the design and use of the firefly algorithm,
a well-known meta-heuristic. The authors concentrate on the choice of parameters
of the firefly algorithm, its analysis, and dynamic adjustments. Some relevant tra-
ditional and fuzzy logic-based approaches are analyzed and numerically compared.

In Part V, “Applications of Intelligent Technologies,” in the first paper by
Adam E. Gawęda and Michael E. Brier (“Computational Intelligence Methods in
Personalized Pharmacotherapy”), the authors are concerned with a pharmacologic
therapy of chronic diseases that remains a big challenge to physicians, notably
because individual dose-response characteristics of patients may vary significantly
across patient populations, and—due to a chronic nature of the process—they may
change over time within individual patients as well. Current state-of-the-art pro-
tocols for dose adjustment of pharmacologic agents rely heavily on data from the
drug approval process and a physician’s expertise but they do not fuzzy utilize the
wealth of knowledge hidden in patient data collected during his or her treatment.
The authors review the application of two computational intelligence methods: the
artificial neural networks and fuzzy sets theory, to personalized pharmacologic
treatment of a chronic condition using patient data. As an example, the authors use
data on patients with anemia and renal failure.

Zdzisław Kowalczuk and Michał Czubenko (“Embodying Intelligence in
Autonomous and Robotic Systems with the Use of Cognitive Psychology and
Motivation Theories”) discuss a coherent anthropological approach for the control
of autonomous robots or agents. This modern approach is based on an appropriate
modeling of the human mind using the available psychological knowledge. One
of the main reasons that have inspired the authors is the lack of available
and effective top-down approaches resulting from the some known results from the
area of autonomous robotics. On the other hand, a system for a comprehensive and
effective and efficient modeling of human psychology for the purpose of con-
structing autonomous systems is lacking. The authors review the recent progress in
the understanding of the mechanisms of cognitive computations underlying

xvi Preface

decision-making and existing challenges, notably those founded on cognitive ideas
such as LIDA, CLARION, SOAR, MANIC, DUAL, and OpenCog. In particular,
the idea of an Intelligent System of Decision-making (ISD) is emphasized that is
based on the results of cognitive psychology (using the aspect of “information
path”), motivation theory (where the needs and emotions serve as the main drives,
or motivations, in the mechanism of governing autonomous systems), and several
other detailed theories, which concern memory, categorization, perception, and
decision-making. In the ISD system, in particular, an xEmotion subsystem is
focused on that covers the psychological theories on emotions, including the
appraisal, evolutionary, and somatic theories.

Krystian Łapa and Krzysztof Cpałka (“Evolutionary Approach for Automatic
Design of PID Controllers”) present a new approach to an automatic design of the
well-known and widely used PID controllers. It is based on a meta-heuristic hybrid
algorithm which combines the genetic algorithm and the imperialist one. The main
characteristic of the proposed approach is its capability to design the structure of the
controller and the structure of its parameters. This eliminates the need for a
trial-and-error process during the design of the controller structure. Moreover, in the
proposed approach, various control criteria can be reflected.

Marcin Zalasiński, Krzysztof Cpałka, and Leszek Rutkowski (“Fuzzy-genetic
Approach to Identity Verification Using a Handwritten Signature”) discuss a rele-
vant biometric problem of the verification of the dynamic signature. There are many
methods for the signature verification using dynamics of the signing process often
based on the so-called global features. In this paper, a new approach to the signature
verification using global features is proposed. Basically, it involves the classifica-
tion of the signature which is performed using a fuzzy-genetic system; the selection
of an individual set of features for each signer which uses a genetic algorithm with
an appropriately designed evaluation function and works without access to the
signatures called skilled forgeries; and the determination of weights of importance
for evolutionarily selected features which are taken into account in the classification
process. The main advantages of this new approach is that the feature selection via a
fuzzy-genetic systems works with access to the signatures called skilled forgeries,
and also that the proposed classifier can do without machine learning with respect to
its work interpretation and possibility of an analytical determination of its parameters.
Simulation results for the BioSecure signature database, distributed by the BioSecure
Association, are performed and confirm the above mentioned good results.

S. Piasecki, R. Szmurlo, J. Rabkowski, and M.P. Kaźmierkowski (“A Method of
Design and Optimization for SiC-based Grid-connected AC-DC Converters”)
present a method of design and optimization for three-phase AC-DC converters.
The main idea of presented work is to provide a tool which supports the design
process and helps to achieve the main desired properties: efficiency, volume,
weight, and cost. The proposed design method is described with a special attention
paid to calculations regarding the power section of the converter. The authors
concentrate on the new technology of SiC power devices. The method is illustrated
on three SiC-based laboratory models rated at 10 and 20 kVA, respectively.

Preface xvii

Each model is a result of an optimization process performed for different input
requirements related to the volume and efficiency. Finally, the performance of all
models is verified during the operation with a 3x400V AC grid.

We would like to express our gratitude to all the authors for their interesting,
novel, and inspiring contributions. Peer-reviewers also deserve a deep appreciation,
because their insightful and constructive remarks and suggestions have consider-
ably improved many contributions.

And last but not least, we wish to thank Dr. Tom Ditzinger, Dr. Leontina di
Cecco, and Mr. Holger Schaepe for their dedication and help to implement and
finish this large publication project on time maintaining the highest publication
standards.

Louisville, USA Adam E. Gawęda
Warsaw, Poland Janusz Kacprzyk
Częstochowa, Poland Leszek Rutkowski
Stillwater, USA Gary G. Yen
Spring 2017

xviii Preface

Contents

Part I Data Mining, Machine Learning, Knowledge Discovery

Tensor Networks for Dimensionality Reduction, Big Data
and Deep Learning . 3
Andrzej Cichocki

Local Data Characteristics in Learning Classifiers from Imbalanced
Data . 51
Jerzy Błaszczyński and Jerzy Stefanowski

Dimensions of Semantic Similarity. 87
Paweł Szmeja, Maria Ganzha, Marcin Paprzycki and Wiesław Pawłowski

Some Interesting Phenomenon Occurring During Self-learning
Process with Its Psychological Interpretation . 127
Ryszard Tadeusiewicz

Part II Neural Networks and Connectionist Systems

On the Interpretation and Characterization of Echo State Networks
Dynamics: A Complex Systems Perspective . 143
Filippo Maria Bianchi, Lorenzo Livi and Cesare Alippi

Optimization of Ensemble Neural Networks with Type-1
and Interval Type-2 Fuzzy Integration for Forecasting
the Taiwan Stock Exchange . 169
Martha Pulido, Patricia Melin and Olivia Mendoza

Deep Neural Networks—A Brief History . 183
Krzysztof J. Cios

xix

Part III Intelligent Technologies in Systems Modeling

Techniques for Construction and Integration of Rule Bases 203
Grzegorz J. Nalepa

New Aspects of Interpretability of Fuzzy Systems for Nonlinear
Modeling . 225
Krystian Łapa, Krzysztof Cpałka and Leszek Rutkowski

On the Intuitionistic Fuzzy Sets of n-th Type . 265
Krassimir T. Atanassov and Peter Vassilev

Part IV Intelligent Technologies in Decision Making, Optimization
and Control

MCTS/UCT in Solving Real-Life Problems. 277
Jacek Mańdziuk

Interactive Cone Contraction for Evolutionary Mutliple Objective
Optimization . 293
Miłosz Kadziński, Michał K. Tomczyk and Roman Słowiński

A Review of Fuzzy and Mathematic Methods for Dynamic
Parameter Adaptation in the Firefly Algorithm . 311
Oscar Castillo, Carlos Soto and Fevrier Valdez

Part V Applications of Intelligent Technologies

Computational Intelligence Methods in Personalized
Pharmacotherapy . 325
Adam E. Gawęda and Michael E. Brier

Embodying Intelligence in Autonomous and Robotic Systems
with the Use of Cognitive Psychology and Motivation Theories 335
Kowalczuk Zdzisław and Czubenko Michał

Evolutionary Approach for Automatic Design of PID Controllers 353
Krystian Łapa and Krzysztof Cpałka

Fuzzy-Genetic Approach to Identity Verification Using
a Handwritten Signature . 375
Marcin Zalasiński, Krzysztof Cpałka and Leszek Rutkowski

A Method of Design and Optimization for SiC-Based
Grid-Connected AC-DC Converters . 395
S. Piasecki, R. Szmurlo, J. Rabkowski and M.P. Kazmierkowski

xx Contents

Part I
Data Mining, Machine Learning,

Knowledge Discovery

Tensor Networks for Dimensionality
Reduction, Big Data and Deep Learning

Andrzej Cichocki

Abstract Large scale multidimensional data are often available as multiway arrays

or higher-order tensors which can be approximately represented in distributed forms

via low-rank tensor decompositions and tensor networks. Our particular emphasis

is on elucidating that, by virtue of the underlying low-rank approximations, tensor

networks have the ability to reduce the dimensionality and alleviate the curse of

dimensionality in a number of applied areas, especially in large scale optimization

problems and deep learning. We briefly review and provide tensor links between

low-rank tensor network decompositions and deep neural networks. We elucidating,

through graphical illustrations, that low-rank tensor approximations and sophisti-

cated contractions of core tensors, tensor networks have the ability to perform dis-

tributed computations on otherwise prohibitively large volume of data/parameters.

Our focus is on the Hierarchical Tucker, tensor train (TT) decompositions and MERA

tensor networks in specific applications.

1 Introduction and Objectives

This paper aims to present some new ideas and methodologies related to tensor

decompositions (TDs) and tensor networks models (TNs), especially in applications

to deep neural networks (DNNs) and dimensionality reduction. The resurgence of

artificial neural systems, especially deep learning neural networks has formed an

active frontier of machine learning, signal processing and data mining [1–6, 13,

14]. Tensor decompositions (TDs) decompose complex data tensors of exceedingly

high volume into their factor (component) matrices, while tensor networks (TNs)

A. Cichocki (✉)

Systems Research Institute, Polish Academy of Science, Warsaw, Poland

e-mail: a.cichocki@riken.jp

A. Cichocki

RIKEN Brain Science Institute, Tokyo, Japan

A. Cichocki

SKOLTECH, Moscow, Russia

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_1

3

4 A. Cichocki

decompose higher-order tensors into sparsely interconnected small-scale factor matri-

ces and/or low-order core tensors [7–14]. These low-order core tensors are called

“components”, “blocks”, “factors” or simply “cores”. In this way, large-scale data

can be approximately represented in highly compressed and distributed formats.

In this paper, the TDs and TNs are treated in a unified way, by considering TDs

as simple tensor networks or sub-networks; the terms “tensor decompositions” and

“tensor networks” will therefore be used interchangeably. Tensor networks can be

thought of as special graph structures which break down high-order tensors into a set

of sparsely interconnected low-order core tensors, thus allowing for both enhanced

interpretation and computational advantages [12–14].

Tensor networks offer a theoretical and computational framework for the analysis

of computationally prohibitive large volumes of data, by “dissecting” such data into

the “relevant” and “irrelevant” information. In this way, tensor network representa-

tions often allow for super-compression of data sets as large as 108 entries, down to

the affordable levels of 105 or even less entries [15–25].

Challenges in Big Data Processing. Extreme-scale volumes and variety of mod-

ern data are becoming ubiquitous across the science and engineering disciplines. In

the case of multimedia (speech, video), remote sensing and medical/biological data,

the analysis also requires a paradigm shift in order to efficiently process massive

data sets within tolerable time (velocity). Such massive data sets may have billions

of entries and are typically represented in the form of huge block matrices and/or

tensors. This has spurred a renewed interest in the development of tensor algorithms

that are suitable for extremely large-scale data sets.

Apart from the huge Volume, the other features which characterize big data

include Veracity, Variety and Velocity (see Fig. 1a and b). Each of the “V features”

represents a research challenge in its own right. For example, high volume implies

the need for algorithms that are scalable; high Velocity requires the processing of

big data streams in near real-time; high Veracity calls for robust and predictive

algorithms for noisy, incomplete and/or inconsistent data; high Variety demands the

fusion of different data types, e.g., continuous, discrete, binary, time series, images,

video, text, probabilistic or multi-view. Some applications give rise to additional

“V challenges”, such as Visualization, Variability and Value. The Value feature is

particularly interesting and refers to the extraction of high quality and consistent

information, from which meaningful and interpretable results can be obtained.

Our objective is to show that tensor networks provide a natural sparse and distrib-

uted representation for big data, and address both established and emerging method-

ologies for tensor-based representations and optimization. Our particular focus is on

low-rank tensor network representations, which allow for huge data tensors to be

approximated (compressed) by interconnected low-order core tensors [10, 11, 14].

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 5

(a)

Batch

Micro-batch

Near real-time

Streams

VOLUME

M
is

si
ng

 d
at

a
A

no
m

al
y

O
ut

lie
rs

N
oi

seIn
co

ns
is

te
nc

y

Ti
m

e
se

rie
s

Im
ag

es
Bi

na
ry

 d
at

a
3D

 im
ag

es
M

ul
tiv

ie
w

 d
at

a
Pr

ob
ab

ili
sti

c

V
E

R
A

C
IT

Y

Petabytes

Terabytes

GB

MB

V
A

R
IE

TY

VELOCITY

(b)

Storage
Management,

Scale

Integration
of Variety of

Data

High Speed
Distributed,

Parallel
Computing

Robustness to
Noise, Outliers,
Missing Values

VOLUME

VERACITY

VELOCITY

VARIETY

Applications,
Tasks

Matrix/Tensor
Completion,
Inpainting,
Imputation

Anomaly
Detection

Feature
Extraction,

Classification,
Clustering

Correlation,
Regression,
Prediction,
Forecasting

PARAFAC
CPD,NTF

Tucker,NTD
Hierarchical

Tucker
Tensor Train,

MPS/MPO

PEPS,
MERA

Tensor
Models

Sparseness
Optimization

Criteria,
Constraints

SmoothnessNon-negativity

Statistical
Independence,

Correlation

Signal
Processing

and Machine
Learning for

Big Data

Challenges

Fig. 1 a The 4 V challenges for big data. b A framework for extremely large-scale data analysis

and the potential applications based on tensor decomposition approaches

6 A. Cichocki

2 Tensor Operations and Graphical Representations
of Tensor Networks

Tensors are multi-dimensional generalizations of matrices. A matrix (2nd-order ten-

sor) has two modes, rows and columns, while an Nth-order tensor has N modes

for example, a 3rd-order tensor (with three-modes) looks like a cube. Sub-tensors

are formed when a subset of tensor indices is fixed. Of particular interest are fibers

which are vectors obtained by fixing every tensor index but one, and matrix slices

which are two-dimensional sections (matrices) of a tensor, obtained by fixing all the

tensor indices but two. It should be noted that block matrices can also be represented

by tensors.

We adopt the notation whereby tensors (forN ≥ 3) are denoted by bold underlined

capital letters, e.g., 𝐗 ∈ ℝI1×I2×⋯×IN . For simplicity, we assume that all tensors are

real-valued, but it is possible to define tensors as complex-valued or over arbitrary

fields. Matrices are denoted by boldface capital letters, e.g., 𝐗 ∈ ℝI×J
, and vectors

(1st-order tensors) by boldface lower case letters, e.g., 𝐱 ∈ ℝJ
. For example, the

columns of the matrix 𝐀 = [𝐚1, 𝐚2,… , 𝐚R] ∈ ℝI×R
are the vectors denoted by 𝐚r ∈

ℝI
, while the elements of a matrix (scalars) are denoted by lowercase letters, e.g.,

air = 𝐀(i, r) (for more details regarding notations and basic tensor operations see

[10–14, 26].

A specific entry of an Nth-order tensor 𝐗 ∈ ℝI1×I2×⋯×IN is denoted by xi1,i2,…,iN =
𝐗(i1, i2,… , iN) ∈ ℝ. The order of a tensor is the number of its “modes”, “ways” or

“dimensions”, which can include space, time, frequency, trials, classes, and dictio-

naries. The term “size” stands for the number of values that an index can take in a

particular mode. For example, the tensor 𝐗 ∈ ℝI1×I2×⋯×IN is of order N and size In in

all modes-n (n = 1, 2,… ,N). Lower-case letters e.g., i, j are used for the subscripts

in running indices and capital letters I, J denote the upper bound of an index, i.e.,

i = 1, 2,… , I and j = 1, 2,… , J. For a positive integer n, the shorthand notation<n>
denotes the set of indices {1, 2,… , n}.

Notations and terminology used for tensors and tensor networks differ across the

scientific communities to this end we employ a unifying notation particularly suitable

for machine learning and signal processing research [13, 14].

A precise description of tensors and tensor operations is often tedious and cum-

bersome, given the multitude of indices involved. We grossly simplify the descrip-

tion of tensors and their mathematical operations through diagrammatic representa-

tions borrowed from physics and quantum chemistry (see [13, 14, 27] and references

therein). In this way, tensors are represented graphically by nodes of any geometrical

shapes (e.g., circles, squares, dots), while each outgoing line (“edge”, “leg”, “arm”)

from a node represents the indices of a specific mode (see Fig. 2a). In our adopted

notation, each scalar (zero-order tensor), vector (first-order tensor), matrix (2nd-

order tensor), 3rd-order tensor or higher-order tensor is represented by a circle (or

rectangular), while the order of a tensor is determined by the number of lines (edges)

connected to it. According to this notation, an Nth-order tensor 𝐗 ∈ ℝI1×⋯×IN is rep-

resented by a circle (or any shape) with N branches each of size In, n = 1, 2,… ,N

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 7

(a)

Scalar Vector

I

a a I

Matrix

I J

A I J

3rd-order tensor

I K
J

I

K

A

A

J J

I

K

J

I

K

4th-order tensor

I K
J

M

M

 I J K

A1 AM

A I J KM

(b)

I J

x W
=

J

y=Wx

I J

x W
=

K

y=W2W1x

K

I J

x W

1 W2

y
= h = xT Wy

I J

X W Y

K

= = (XWY)tr

x z

I 3

I 2

I 1

y

W
= = W1x2y3z

W
X Y

I 1

I 2 I 3

I4 =
I

x W(2)=Vec(X) y=Vec(Y)

1I2 I3I4

(x,y)

h(X,Y)

h(x,y,z)

Fig. 2 Graphical representation of tensor operations. a Basic building blocks for tensor network

diagrams. b Tensor network diagrams for matrix-vector and tensor-vectors multiplications

8 A. Cichocki

(see Sect. 2.1). An interconnection between two circles designates a contraction of

tensors, which is a summation of products over a common index (see Fig. 2b).

Hierarchical (multilevel block) matrices are also naturally represented by tensors.

All mathematical operations on tensors can be therefore equally performed on block

matrices [12, 13].

In this paper, we make extensive use of tensor network diagrams as an intuitive

and visual way to efficiently represent tensor decompositions. Such graphical nota-

tions are of great help in studying and implementing sophisticated tensor opera-

tions. We highlight the significant advantages of such diagrammatic notations in

the description of tensor manipulations, and show that most tensor operations can

be visualized through changes in the architecture of a tensor network diagram.

2.1 Tensor Operations and Tensor Network Diagrams

Tensor operations benefit from the power of multilinear algebra which is structurally

much richer than linear algebra, and even some basic properties, such as the rank,

have a more complex meaning.

For convenience, general operations, such as vec(⋅) or diag(⋅), are defined simi-

larly to the MATLAB syntax.

Multi-indices: By a multi-index i = i1i2 ⋯ iN we refer to an index which takes

all possible combinations of values of indices, i1, i2,… , iN , for in = 1, 2,… , In, n =
1, 2,… ,N and in a specific order. Multi–indices can be defined using the following

convention [28]:

i1i2 ⋯ iN = iN + (iN−1 − 1)IN + (iN−2 − 1)ININ−1 +
⋯ + (i1 − 1)I2 ⋯ IN .

Matricization. The matricization operator, also known as the unfolding or flat-

tening, reorders the elements of a tensor into a matrix. Such a matrix is re-indexed

according to the choice of multi-index described above, and the following two fun-

damental matricizations are used extensively.

The mode-n matricization. For a fixed index n ∈ {1, 2,… ,N}, the mode-n
matricization of an Nth-order tensor, 𝐗 ∈ ℝI1×⋯×IN , is defined as the (“short” and

“wide”) matrix

𝐗(n) ∈ ℝIn×I1I2⋯In−1In+1⋯IN
, (1)

with In rows and I1I2 ⋯ In−1In+1 ⋯ IN columns, the entries of which are

(𝐗(n))in,i1…in−1in+1…iN
= xi1,i2,…,iN .

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 9

Note that the columns of a mode-n matricization, 𝐗(n), of a tensor 𝐗 are the mode-n
fibers of 𝐗.

The mode-{n} canonical matricization. For a fixed index n ∈ {1, 2,… ,N}, the

mode-(1, 2,… , n) matricization, or simply mode-n canonical matricization, of a ten-

sor 𝐗 ∈ ℝI1×⋯×IN is defined as the matrix

𝐗
<n> ∈ ℝI1I2⋯In×In+1⋯IN

, (2)

with I1I2 ⋯ In rows and In+1 ⋯ IN columns, and the entries

(𝐗
<n>)i1i2…in, in+1…iN

= xi1,i2,…,iN .

The matricization operator in the MATLAB notation (reverse lexicographic) is given

by

𝐗
<n> = reshape

(
𝐗, I1I2 ⋯ In, In+1 ⋯ IN

)
. (3)

As special cases we immediately have

𝐗
<1> = 𝐗(1), 𝐗

<N−1> = 𝐗T

(N), 𝐗
<N> = vec(𝐗). (4)

The tensorization of a vector or a matrix can be considered as a reverse process

to the vectorization or matricization (see Fig. 3) [14].

The following symbols are used for most common tensor multiplications: ◦ for

the outer product ⊗ for the Kronecker product, ⊙ for the Khatri–Rao product, ⊛ for

the Hadamard (componentwise) product, and ×n for the mode-n product. We refer to

[13, 14, 26, 29] for more detail regarding the basic notations and tensor operations

(Figs. 4 and 5).

Outer product. The central operator in tensor analysis is the outer or tensor

product, which for the tensors 𝐀 ∈ ℝI1×⋯×IN and 𝐁 ∈ ℝJ1×⋯×JM gives the tensor

𝐂 = 𝐀 ◦𝐁 ∈ ℝI1×⋯×IN×J1×⋯×JM with entries ci1,…,iN ,j1,…,jM = ai1,…,iN bj1,…,jM .

Note that for 1st-order tensors (vectors), the tensor product reduces to the standard

outer product of two nonzero vectors, 𝐚 ∈ ℝI
and 𝐛 ∈ ℝJ

, which yields a rank-1

matrix, 𝐗 = 𝐚 ◦𝐛 = 𝐚𝐛T ∈ ℝI×J
. The outer product of three nonzero vectors, 𝐚 ∈

ℝI
, 𝐛 ∈ ℝJ

and 𝐜 ∈ ℝK
, gives a 3rd-order rank-1 tensor (called pure or elementary

tensor), 𝐗 = 𝐚 ◦𝐛 ◦ 𝐜 ∈ ℝI×J×K
, with entries xijk = ai bj ck.

The outer (tensor) product has been generalized to the nonlinear outer (tensor)

products, as follows

(
𝐀◦

𝜌

𝐁
)
i1,…,iN ,j1,…,JM

= 𝜌

(
ai1,…,iN , bj1,…,jM

)
, (5)

where 𝜌 is, in general, nonlinear suitably chosen function (see [30] and Sect. 7 for

more detail).

In a similar way, we can define the generalized Kronecker and the Khatri-Rao

products. Generalized Kronecker product of two tensors 𝐀 ∈ ℝI1×I2×⋯×IN and

10 A. Cichocki

Matricization

Vectorization

Tensorization

Tensor
Data

Tensorization

Vectorization

...

...

...

...

...

Fig. 3 Tensor reshaping operations: matricization, vectorization and tensorization. Matricization

refers to converting a tensor into a matrix, vectorization to converting a tensor or a matrix into

a vector, while tensorization refers to converting a vector, a matrix or a low-order tensor into a

higher-order tensor

(a) A

I1

I2

In

IN

...
... In

A()n
IN

I1

1 1 1n n NI I I I...

(b) I1

I2

In

I
In+1

IN J...

...

A<n>

I1
IN.... ..

A

I2
In

In+1

Fig. 4 Matricization (flattening, unfolding) used in tensor reshaping. a Tensor network diagram

for the mode-n matricization of an Nth-order tensor, 𝐀 ∈ ℝI1×I2×⋯×IN , into a short and wide matrix,

𝐀(n) ∈ ℝIn × I1⋯In−1In+1⋯IN . b Mode-{1, 2,… , n}th (canonical) matricization of an Nth-order tensor,

𝐀, into a matrix 𝐀
<n> = 𝐀(i1…in ; in+1…iN)

∈ ℝI1I2⋯In × In+1⋯IN

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 11

𝐁 ∈ ℝJ1×J2×⋯×JN yields a tensor𝐂 = 𝐀⊗
𝜌

𝐁 ∈ ℝI1J1×⋯×INJN , with entries c i1j1,…,iN jN
=

𝜌(ai1,…,iN , bj1,…,jN).
Analogously, we can define a generalized Khatri–Rao product of two matri-

ces 𝐀 = [𝐚1,… , 𝐚J] ∈ ℝI×J
and 𝐁 = [𝐛1,… ,𝐛J] ∈ ℝK×J

is a matrix 𝐂 = 𝐀⊙
𝜌

𝐁 ∈
ℝIK×J

, with columns 𝐜j = 𝐚j ⊗𝜌

𝐛j ∈ ℝIK
.

CP decomposition, Kruskal tensor. Any tensor can be expressed as a finite sum

of rank-1 tensors, in the form

𝐗 =
R∑

r=1
𝐛(1)r ◦𝐛(2)r ◦ ⋯ ◦𝐛(N)r =

R∑

r=1

(
N

n=1
◦ 𝐛(n)r

)
, 𝐛(n)r ∈ ℝIn

, (6)

which is exactly the form of the Kruskal tensor, also known under the names of

CANDECOMP/PARAFAC, Canonical Polyadic Decomposition (CPD), or simply

the CP decomposition in (23). We will use the acronyms CP and CPD.

Tensor rank. The tensor rank, also called the CP rank, is a natural extension of

the matrix rank and is defined as a minimum number, R, of rank-1 terms in an exact

CP decomposition of the form in (6).

Multilinear products. The mode-n (multilinear) product, also called the tensor-

times-matrix product (TTM), of a tensor, 𝐀 ∈ ℝI1×⋯×IN , and a matrix, 𝐁 ∈ ℝJ×In ,

gives the tensor

𝐂 = 𝐀 ×n 𝐁 ∈ ℝI1×⋯×In−1×J×In+1×⋯×IN
, (7)

with entries ci1,i2,…,in−1,j,in+1,…,iN =
∑In

in=1
ai1,i2,…,iN bj,in . An equivalent matrix represen-

tation is 𝐂(n) = 𝐁𝐀(n), which allows us to employ established fast matrix-by-vector

and matrix-by-matrix multiplications when dealing with very large-scale tensors.

Efficient and optimized algorithms for TTM are, however, still emerging [31–33].

Full Multilinear Product. A full multilinear product, also called the Tucker

product,
1

of an Nth-order tensor, 𝐆 ∈ ℝR1×R2×⋯×RN , and a set of N factor matrices,

𝐁(n) ∈ ℝIn×Rn for n = 1, 2,… ,N, performs the multiplications in all the modes and

can be compactly written as

𝐂 = 𝐆 ×1 𝐁(1) ×2 𝐁(2) ⋯ ×N 𝐁(N) ∈ ℝI1×I2×⋯×IN
.

Observe that this format corresponds to the Tucker decomposition [26, 34, 35] (see

also Sect. 3.1).

Multilinear product of a tensor and a vector (TTV). In a similar way, the mode-

n multiplication of a tensor, 𝐆 ∈ ℝR1×⋯×RN , and a vector, 𝐛 ∈ ℝRn (tensor-times-

vector, TTV) yields a tensor

1
The standard multilinear product can be generalized to nonlinear multilinear product as 𝐂 = 𝐆 ×𝜎

1
𝐁(1) ×𝜎

2 𝐁
(2) ⋯ ×𝜎

N 𝐁(N)
, where 𝐆 ×𝜎

n 𝐁 = 𝜎(𝐆 ×n 𝐁), and 𝜎 is a suitably chosen nonlinear activation

function.

12 A. Cichocki

(b)(a)

R1
R2

R4
B

(1) R5
B

(5)

B
(4)

B
(3)B

(2)

I1

I2
I3

I4

I5

R3

G

R4

R1

R2

R3

b3

b2

b1 G

Fig. 5 Generalized (nonlinear) multilinear tensor products used in deep learning in a compact ten-

sor network notation. a Generalized multilinear product of a tensor, 𝐆 ∈ ℝR1×R2×⋯×R5 , and five fac-

tor (component) matrices, 𝐁(n) ∈ ℝIn×Rn (n = 1, 2,… , 5), yields the tensor 𝐂 = (((((𝐆 ×𝜎

1 𝐁(1)) ×𝜎

2
𝐁(2)) ×𝜎

3 𝐁(3)) ×𝜎

4 𝐁(4)) ×𝜎

5 𝐁(5)) ∈ ℝI1×I2×⋯×I5 . This corresponds to the generalized Tucker for-

mat. c Generalized multi-linear product of a 4th-order tensor, 𝐆 ∈ ℝR1×R2×R3×R4 , and three vectors,

𝐛n ∈ ℝRn (n = 1, 2, 3), yields the vector 𝐜 = (((𝐆 ×̄𝜎

1 𝐛1) ×̄
𝜎

2 𝐛2) ×̄
𝜎

3 𝐛3) ∈ ℝR4 , where, in general, 𝜎

is a nonlinear activation function

𝐂 = 𝐆×̄n𝐛 ∈ ℝR1×⋯×Rn−1×Rn+1×⋯×RN
, (8)

with entries cr1,…,rn−1,rn+1,…,rN =
∑Rn

rn=1
gr1,…,rn−1,rn,rn+1,…,rN brn .

Note that the mode-n multiplication of a tensor by a matrix does not change the

tensor order, while the multiplication of a tensor by vectors reduces its order, with

the mode n removed.

Multilinear products of tensors by matrices or vectors play a key role in deter-

ministic methods for the reshaping of tensors and dimensionality reduction, as well

as in probabilistic methods for randomization/sketching procedures and in random

projections of tensors into matrices or vectors. In other words, we can also perform

reshaping of a tensor through random projections that change its entries, dimen-

sionality or size of modes, and/or the tensor order. This is achieved by multiplying

a tensor by random matrices or vectors, transformations which preserve its basic

properties [36–43].

Tensor contractions. Tensor contraction is a fundamental and the most important

operation in tensor networks, and can be considered a higher-dimensional analogue

of matrix multiplication, inner product, and outer product.

In a way similar to the mode-n multilinear product,
2

the mode-(mn) product (ten-

sor contraction) of two tensors, 𝐀 ∈ ℝI1×I2×⋯×IN and 𝐁 ∈ ℝJ1×J2×⋯×JM , with common

modes, In = Jm, yields an (N +M − 2)-order tensor,

𝐂 ∈ ℝI1×⋯×In−1×In+1×⋯×IN×J1×⋯×Jm−1×Jm+1×⋯×JM , in the form (see Fig. 6a)

𝐂 = 𝐀 ×m
n 𝐁, (9)

2
In the literature, sometimes the symbol ×n is replaced by ∙n.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 13

I1

I2 J3

J4

A B

I4

I J3 2=

A B

I1

I2

J5

J4

I5 1=J

I4 2=J

I3 3=J

J1

(a) (b)

Fig. 6 Examples of contractions of two tensors. a Tensor contraction of two 4th-order tensors,

along mode-3 in 𝐀 and mode-2 in 𝐁, yields a 6th-order tensor, 𝐂 = 𝐀 ×2
3 𝐁 ∈ ℝI1×I2×I4×J1×J3×J4 ,

with entries ci1 ,i2 ,i4 ,j1 ,j3 ,j4 =
∑

i3
ai1 ,i2 ,i3 ,i4 bj1 ,i3 ,j3 ,j4 . b Tensor contraction of two 5th-order tensors

along the modes 3, 4, 5 in𝐀 and 1, 2, 3 in𝐁 yields a 4th-order tensor,𝐂 = 𝐀 ×1,2,3
5,4,3 𝐁 ∈ ℝI1×I2×J4×J5 .

Nonlinear contraction can be also performed similar to formula (5)

for which the entries are computed as ci1,…, in−1, in+1,…,iN , j1,…, jm−1, jm+1,…, jM =
∑In

in=1
ai1,…,in−1, in, in+1,…, iN bj1,…, jm−1, in, jm+1,…, jM . This operation is referred to as a con-

traction of two tensors in single common mode.

Tensors can be contracted in several modes (or even in all modes), as illustrated

in Fig. 6. Often, the super- or sub-index, e.g., m, n, will be omitted in a few special

cases. For example, the multilinear product of the tensors, 𝐀 ∈ ℝI1×I2×⋯×IN and 𝐁 ∈
ℝJ1×J2×⋯×JM , with common modes, IN = J1, can be written as

𝐂 = 𝐀 ×1
N 𝐁 = 𝐀 ×1 𝐁 = 𝐀 ∙ 𝐁 ∈ ℝI1×I2×⋯×IN−1×J2×⋯×JM

, (10)

for which the entries c𝐢2∶N ,𝐣2∶M =
∑I1

i=1 ai,𝐢2∶N bi,𝐣2∶M by using the MATLAB notation

𝐢p∶q = {ip, ip+1,… , iq−1, iq}.

In this notation, the multiplications of matrices and vectors can be written as,𝐀 ×1
2

𝐁 = 𝐀 ×1 𝐁 = 𝐀𝐁, 𝐀 ×2
2 𝐁 = 𝐀𝐁T

, 𝐀 ×1,2
1,2 𝐁 = 𝐀×̄𝐁 = ⟨𝐀,𝐁⟩, and 𝐀 ×1

2 𝐱 =
𝐀 ×1 𝐱 = 𝐀𝐱.

In practice, due to the high computational complexity of tensor contractions,

especially for tensor networks with loops, this operation is often performed approx-

imately [44–47].

3 Mathematical and Graphical Representation of Basic
Tensor Networks

Tensor networks (TNs) represent a higher-order tensor as a set of sparsely intercon-

nected lower-order tensors (see Fig. 7), and in this way provide computational and

storage benefits. The lines (branches, edges) connecting core tensors correspond to

the contracted modes while their weights (or numbers of branches) represent the

14 A. Cichocki

I1 I2 I3 I4 I5 I6

X

I1 I2 I3

I4

I5 I6

I7 I8
I9

I7 I8

I9

TT/MPS

PEPS

HT

I1 I2 I3

I4

I5

I6

I7 I8

I9

I1 I2 I3 I4

I5

I6

I7

I8

I9

Fig. 7 Illustration of the decomposition of a 9th-order tensor, 𝐗 ∈ ℝI1×I2×⋯×I9 , into different forms

of tensor networks (TNs). In general, the objective is to decompose a very high-order tensor into

sparsely (weakly) connected low-order and small size core tensors, typically 3rd-order and 4th-order

cores. Top: The Tensor Train (TT) model, which is equivalent to the Matrix Product State (MPS)

with closed boundary conditions (CBC). Middle: The Projected Entangled-Pair States (PEPS). Bot-

tom: The Hierarchical Tucker (HT)

rank of a tensor network,
3

whereas the lines which do not connect core tensors cor-

respond to the “external” physical variables (modes, indices) within the data tensor.

In other words, the number of free (dangling) edges (with weights larger than one)

determines the order of a data tensor under consideration, while set of weights of

internal branches represents the TN rank.

3.1 The CP and Tucker Tensor Formats

The CP and Tucker decompositions have long history. For recent surveys and more

detailed information we refer to [12–14, 26, 48–50]. Compared to the CP decom-

position, the Tucker decomposition provides a more general factorization of an Nth-

order tensor into a relatively small size core tensor and factor matrices, and can be

expressed as follows:

3
Strictly speaking, the minimum set of internal indices {R1,R2,R3,…} is called the rank (bond

dimensions) of a specific tensor network.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 15

𝐗 ≅
R1∑

r1=1
…

RN∑

rN=1
gr1r2…rN

(
𝐛(1)r1

◦𝐛(2)r2
◦ ⋯ ◦𝐛(N)rN

)

= 𝐆 ×1 𝐁(1) ×2 𝐁(2) ⋯ ×N 𝐁(N)

= �𝐆;𝐁(1)
,𝐁(2)

,… ,𝐁(N)�, (11)

where 𝐗 ∈ ℝI1×I2×⋯×IN is the given data tensor, 𝐆 ∈ ℝR1×R2×⋯×RN is the core tensor,

and 𝐁(n) = [𝐛(n)1 ,𝐛(n)2 ,… ,𝐛(n)Rn
] ∈ ℝIn×Rn are the mode-n factor (component) matrices,

n = 1, 2,… ,N (see Fig. 8). The core tensor (typically, Rn ≪ In) models a potentially

complex pattern of mutual interaction between the vectors in different modes. The

model in (11) is often referred to as the Tucker-N model.

Using the properties of the Kronecker tensor product, the Tucker-N decomposi-

tion in (11) can be expressed in an equivalent vector form as

vec(𝐗) ≅ [𝐁(N)
⊗ 𝐁(N−1)

⊗⋯⊗ 𝐁(1)] vec(𝐆), (12)

where the multi-indices are ordered in a reverse lexicographic order (little-endian).

Note that the CP decomposition can be considered as a special case of the Tucker

decomposition, whereby the cube core tensor has nonzero elements only on the main

diagonal. In contrast to the CP decomposition, the unconstrained Tucker decompo-

sition is not unique. However, constraints imposed on all factor matrices and/or core

tensor can reduce the indeterminacies to only column-wise permutation and scaling,

thus yielding a unique core tensor and factor matrices [51].

R1I1 B (1) G

R2

I2

B(2)

B (3) I3

R3
R1I1

B (1)

R
R

R

R3

I3

R2

I2

B (2)

B (3)

A(1)

A(2)

A(3)

Fig. 8 Illustration of the standard Tucker and Tucker-CP decompositions, where the objective

is to compute the factor matrices, 𝐁(n)
, and the core tensor, 𝐆. Tucker decomposition of a 3rd-

order tensor, 𝐗 ≅ 𝐆 ×1 𝐁(1) ×2 𝐁(2) ×3 𝐁(3)
. In some applications, the core tensor can be further

approximately factorized using the CP decomposition as 𝐆 ≅
∑R

r=1 𝐚r ◦𝐛r ◦ 𝐜r or alternatively

using TT/HT decompositions. Graphical representation of the Tucker-CP decomposition for a 3rd-

order tensor, 𝐗 ≅ 𝐆 ×1 𝐁(1) ×2 𝐁(2) ×3 𝐁(3) = �𝐆;𝐁(1)
,𝐁(2)

,𝐁(3)� ≅ (𝜦 ×1 𝐀(1) ×2 𝐀(2) ×3 𝐀(3)) ×1
𝐁(1) ×2 𝐁(2) ×3 𝐁(3) = �𝜦; 𝐁(1)𝐀(1)

, 𝐁(2)𝐀(2)
, 𝐁(3)𝐀(3)�

16 A. Cichocki

3.2 Operations in the Tucker Format

If very large-scale data tensors admit an exact or approximate representation in their

TN formats, then most mathematical operations can be performed more efficiently

using the so obtained much smaller core tensors and factor matrices.

As illustrative example, consider the Nth-order tensors 𝐗 and 𝐘 in the Tucker

format, given by

𝐗 = �𝐆X;𝐗
(1)
,… ,𝐗(N)� and 𝐘 = �𝐆Y ;𝐘

(1)
,… ,𝐘(N)�, (13)

for which the respective multilinear ranks are {R1,R2,… ,RN} and {Q1,Q2,… ,QN},

then the following mathematical operations can be performed directly in the Tucker

format, which admits a significant reduction in computational costs [13, 52–54]:

∙ The addition of two Tucker tensors of the same order and sizes

𝐗 + 𝐘 = �𝐆X ⊕𝐆Y ; [𝐗
(1)
,𝐘(1)],… , [𝐗(N)

,𝐘(N)]�, (14)

where⊕ denotes a direct sum of two tensors, and [𝐗(n)
,𝐘(n)] ∈ ℝIn×(Rn+Qn), 𝐗(n) ∈

ℝIn×Rn and 𝐘(n) ∈ ℝIn×Qn
, ∀n.

∙ The Kronecker product of two Tucker tensors of arbitrary orders and sizes

𝐗⊗ 𝐘 = �𝐆X ⊗𝐆Y ; 𝐗
(1)

⊗ 𝐘(1)
,… ,𝐗(N)

⊗ 𝐘(N)�. (15)

∙ The Hadamard or element-wise product of two Tucker tensors of the same order

and the same sizes

𝐗⊛ 𝐘 = �𝐆X ⊗𝐆Y ; 𝐗
(1)

⊙1 𝐘(1)
,… ,𝐗(N)

⊙1 𝐘(N)�, (16)

where ⊙1 denotes the mode-1 Khatri–Rao product, also called the transposed

Khatri–Rao product or row-wise Kronecker product.

∙ The inner product of two Tucker tensors of the same order and sizes can be

reduced to the inner product of two smaller tensors by exploiting the Kronecker

product structure in the vectorized form, as follows

⟨𝐗,𝐘⟩ = vec(𝐗)T vec(𝐘) (17)

= vec(𝐆X)
T

(N⨂

n=1
𝐗(n) T

)(N⨂

n=1
𝐘(n)

)

vec(𝐆Y)

= vec(𝐆X)
T

(N⨂

n=1
𝐗(n)T 𝐘(n)

)

vec(𝐆Y)

= ⟨�𝐆X; (𝐗
(1)T 𝐘(1)),… , (𝐗(N)T 𝐘(N))�,𝐆Y⟩.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 17

∙ The Frobenius norm can be computed in a particularly simple way if the factor

matrices are orthogonal, since then all products 𝐗(n)T 𝐗(n)
, ∀n, become the iden-

tity matrices, so that

‖𝐗‖F = ⟨𝐗,𝐗⟩

= vec
(
�𝐆X; (𝐗

(1)T 𝐗(1)),… , (𝐗(N)T 𝐗(N))�
)T

vec(𝐆X)
= vec(𝐆X)

T
vec(𝐆X) = ‖𝐆X‖F. (18)

∙ TheN-Ddiscrete convolution of tensors𝐗 ∈ ℝI1×⋯×IN and𝐘 ∈ ℝJ1×⋯×JN in their

Tucker formats can be expressed as

𝐙 = 𝐗 ∗ 𝐘 = �𝐆Z ;𝐙
(1)
,… ,𝐙(N)� (19)

∈ ℝ(I1+J1−1)×⋯×(IN+JN−1)
.

If {R1,R2,… ,RN} is the multilinear rank of 𝐗 and {Q1,Q2,… ,QN} the multilin-

ear rank 𝐘, then the core tensor 𝐆Z = 𝐆X ⊗𝐆Y ∈ ℝR1Q1×⋯×RNQN and the factor

matrices

𝐙(n) = 𝐗(n) �1 𝐘(n) ∈ ℝ(In+Jn−1)×RnQn
, (20)

where 𝐙(n)(∶, sn) = 𝐗(n)(∶, rn) ∗ 𝐘(n)(∶, qn) ∈ ℝ(In+Jn−1) for sn = rnqn = 1, 2,… ,

RnQn.

∙ Super Fast discrete Fourier transform (MATLAB functions fftn(𝐗) and fft(𝐗(n)
,

[], 1)) of a tensor in the Tucker format

 (𝐗) = �𝐆X; (𝐗(1)),… , (𝐗(N))�. (21)

Note that if the data tensor admits low multilinear rank approximation, then per-

forming the FFT on factor matrices of relatively small size 𝐗(n) ∈ ℝIn×Rn , instead

of a large-scale data tensor, decreases considerably computational complexity.

This approach is referred to as the super fast Fourier transform in Tucker format.

Similar operations can be performed in other TN formats [13].

4 Curse of Dimensionality and Separation of Variables for
Multivariate Functions

The term curse of dimensionality was coined by Bellman [55] to indicate that the

number of samples needed to estimate an arbitrary function with a given level

of accuracy grows exponentially with the number of variables, that is, with the

dimensionality of the function. In a general context of machine learning and the

underlying optimization problems, the “curse of dimensionality” may also refer to an

18 A. Cichocki

exponentially increasing number of parameters required to describe the data/system

or an extremely large number of degrees of freedom. The term “curse of dimen-

sionality”, in the context of tensors, refers to the phenomenon whereby the number

of elements, IN , of an Nth-order tensor of size (I × I ×⋯ × I) grows exponentially

with the tensor order, N. Tensor volume can therefore easily become prohibitively

big for multiway arrays for which the number of dimensions (“ways” or “modes”)

is very high, thus requiring huge computational and memory resources to process

such data. The understanding and handling of the inherent dependencies among the

excessive degrees of freedom create both difficult to solve problems and fascinating

new opportunities, but comes at a price of reduced accuracy, owing to the necessity

to involve various approximations.

The curse of dimensionality can be alleviated or even fully dealt with through ten-

sor network representations; these naturally cater for the excessive volume, veracity

and variety of data (see Fig. 1) and are supported by efficient tensor decomposi-

tion algorithms which involve relatively simple mathematical operations. Another

desirable aspect of tensor networks is their relatively small-scale and low-order core

tensors, which act as “building blocks” of tensor networks. These core tensors are

relatively easy to handle and visualize, and enable super-compression of the raw,

incomplete, and noisy huge-scale data sets. This suggests a solution to a more gen-

eral quest for new technologies for processing of exceedingly large data sets within

affordable computation times [13, 18, 56–58].

To address the curse of dimensionality, this work mostly focuses on approximative

low-rank representations of tensors, the so-called low-rank tensor approximations

(LRTA) or low-rank tensor network decompositions.

A tensor is said to be in a full or raw format when it is represented as an original

(raw) multidimensional array [59], however, distributed storage and processing of

high-order tensors in their full format is infeasible due to the curse of dimension-

ality. The sparse format is a variant of the full tensor format which stores only the

nonzero entries of a tensor, and is used extensively in software tools such as the

Tensor Toolbox [60] and in the sparse grid approach [61–63].

As already mentioned, the problem of huge dimensionality can be alleviated

through various distributed and compressed tensor network formats, achieved by

low-rank tensor network approximations.

The underpinning idea is that by employing tensor networks formats, both com-

putational costs and storage requirements may be considerably reduced through dis-

tributed storage and computing resources. It is important to note that, except for very

special data structures, a tensor cannot be compressed without incurring some com-

pression error, since a low-rank tensor representation is only an approximation of

the original tensor.

The concept of compression of multidimensional large-scale data by tensor net-

work decompositions can be intuitively explained as follows [13]. Consider the

approximation of an N-variate function h(𝐱) = h(x1, x2,… , xN) by a finite sum of

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 19

products of individual functions, each depending on only one or a very few vari-

ables [64–67]. In the simplest scenario, the function h(𝐱) can be (approximately)

represented in the following separable form

h(x1, x2,… , xN) ≅ h(1)(x1) h(2)(x2)⋯ h(N)(xN). (22)

In practice, when an N-variate function h(𝐱) is discretized into an Nth-order array,

or a tensor, the approximation in (22) then corresponds to the representation by

rank-1 tensors, also called elementary tensors (see Sect. 2.1). Observe that with

In, n = 1, 2,… ,N denoting the size of each mode and I = maxn{In}, the memory

requirement to store such a full tensor is
∏N

n=1 In ≤ IN , which grows exponentially

with N. On the other hand, the separable representation in (22) is completely defined

by its factors, h(n)(xn), (n = 1, 2,… ,N), and requires only
∑N

n=1 In ≪ IN storage

units.

If x1, x2,… , xN are statistically independent random variables, their joint prob-

ability density function is equal to the product of marginal probabilities, p(𝐱) =
p(1)(x1)p(2)(x2)… p(N)(xN), in an exact analogy to outer products of elementary ten-

sors. Unfortunately, the form of separability in (22) is rather rare in practice.

It should be noted that a function h(x1, x2) is a continuous analogue of a matrix,

say 𝐇 ∈ ℝI1×I2 , while a function h(x1,… , xN) in N dimensions is a continuous ana-

logue of an N-order grid tensor 𝐇 ∈ ℝI1×⋯×IN . In other words, the discretization of a

continuous score function h(x1, x2,… , xN) on a hyper-cube leads to a grid tensor of

order N. Specifically, we make use of a grid tensor that approximates and/or inter-

polates h(x1,… , xN) on a grid of points.

The concept of tensor networks rests upon generalized (full or partial) separability

of the variables of a high dimensional function. This can be achieved in different

tensor formats, including:

1. The Canonical Polyadic (CP) format, where

h(x1, x2,… , xN) ≅
R∑

r=1
h(1)r (x1) h(2)r (x2)⋯ h(N)r (xN), (23)

in an exact analogy to (22). In a discretized form, the above CP format can be

written as an Nth-order tensor

𝐇 ≅
R∑

r=1
𝐡(1)r ◦𝐡(2)r ◦ ⋯ ◦𝐡(N)r ∈ ℝI1×I2×⋯×IN

, (24)

where 𝐡(n)r ∈ ℝIn denotes a discretized version of the univariate function h(n)r (xn),
symbol ◦ denotes the outer product, and R is the tensor rank.

20 A. Cichocki

2. The Tucker format, given by (see Sect. 3.1)

h(x1,… , xN) ≅
R1∑

r1=1
⋯

RN∑

rN=1
gr1,…,rN h(1)r1

(x1)⋯ h(N)rN
(xN), (25)

and its distributed tensor network variants,

3. The Tensor Train (TT) format (see Sect. 6.2), in the form

h(x1, x2,… , xN) ≅
R1∑

r1=1

R2∑

r2=1
…

RN−1∑

rN−1=1
h(1)r1

(x1) h(2)r1 r2
(x2)⋯

⋯h(N−2)rN−2 rN−1
(xN−1) h(N)rN−1

(xN), (26)

with the equivalent compact matrix representation

h(x1, x2,… , xN) ≅ 𝐇(1)(x1)𝐇(2)(x2)⋯𝐇(N)(xN), (27)

where 𝐇(n)(xn) ∈ ℝRn−1×Rn , with R0 = RN = 1.

All the above approximations adopt the form of “sum-of-products” of single-

dimensional functions, a procedure which plays a key role in all tensor factoriza-

tions and decompositions.

Indeed, in many applications based on multivariate functions, a relatively good

approximations are obtained with a surprisingly small number of factors; this num-

ber corresponds to the tensor rank, R, or tensor network ranks, {R1,R2,… ,RN} (if

the representations are exact and minimal). However, for some specific cases this

approach may fail to obtain sufficiently good low-rank TN approximations [67]. The

concept of generalized separability has already been explored in numerical methods

for high-dimensional density function equations [22, 66, 67] and within a variety of

huge-scale optimization problems [13, 14].

To illustrate how tensor decompositions address excessive volumes of data, if

all computations are performed on a CP tensor format in (24) and not on the raw

Nth-order data tensor itself, then instead of the original, exponentially growing, data

dimensionality of IN , the number of parameters in a CP representation reduces to

NIR, which scales linearly in the tensor order N and size I. For example, the dis-

cretization of a 5-variate function over 100 sample points on each axis would yield

the difficulty to manage 1005 = 10,000,000,000 sample points, while a rank-2 CP

representation would require only 5 × 2 × 100 = 1000 sample points.

In contrast to CP decomposition algorithms, TT tensor network formats in (26)

exhibit both very good numerical properties and the ability to control the error

of approximation, so that a desired accuracy of approximation is obtained rel-

atively easily [13, 68–70]. The main advantage of the TT format over the CP

decomposition is the ability to provide stable quasi-optimal rank reduction, achieved

through, for example, truncated singular value decompositions (tSVD) or adaptive

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 21

cross-approximation [64, 71, 72]. This makes the TT format one of the most sta-

ble and simple approaches to separate latent variables in a sophisticated way, while

the associated TT decomposition algorithms provide full control over low-rank TN

approximations.
4

We therefore, make extensive use of the TT format for low-rank

TN approximations and employ the TT toolbox software for efficient implementa-

tions [68]. The TT format will also serve as a basic prototype for high-order tensor

representations, while we also consider the Hierarchical Tucker (HT) and the Tree

Tensor Network States (TTNS) formats (having more general tree-like structures)

whenever advantageous in applications [13].

Furthermore, the concept of generalized separability of variables and the

tensorization of structured vectors and matrices allows us to to convert a wide

class of huge-scale optimization problems into much smaller-scale interconnected

optimization sub-problems which can be solved by existing optimization methods

[11, 14].

The tensor network optimization framework is therefore performed through the

two main steps:

∙ Tensorization of data vectors and matrices into a high-order tensor, followed by

a distributed approximate representation of a cost function in a specific low-rank

tensor network format.

∙ Execution of all computations and analysis in tensor network formats (i.e., using

only core tensors) that scale linearly, or even sub-linearly (quantized tensor net-

works), in the tensor order N. This yields both the reduced computational com-

plexity and distributed memory requirements.

The challenge is to extend beyond the standard Tucker and CP tensor decomposi-

tions, and to demonstrate the perspective of TNs in extremely large-scale data ana-

lytic, together with their role as a mathematical backbone in the discovery of hidden

structures in prohibitively large-scale data. Indeed, TN models provide a framework

for the analysis of linked (coupled) blocks of tensors with millions and even billions

of non-zero entries [13, 14].

5 Tensor Networks Approaches for Deep Learning

Revolution (breakthroughs) in the fields of Artificial Intelligence (AI) and Machine

Learning triggered by class of deep convolutional neural networks (DCNNs), often

simply called CNNs, has been a vehicle for a large number of practical applications

and commercial ventures in computer vision, speech recognition, language process-

ing, drug discovery, biomedical informatics, recommender systems, robotics, games,

and artificial creativity, to mention just a few.

4
Although similar approaches have been known in quantum physics for a long time, their rigorous

mathematical analysis is still a work in progress (see [27, 69] and references therein).

22 A. Cichocki

The renaissance of deep learning neural networks [5, 6, 73, 74] has both cre-

ated an active frontier of machine learning and has provided many advantages in

applications, to the extent that the performance of DNNs in multi-class classifica-

tion problems can be similar or even better than what is achievable by humans.

Deep learning is highly interesting in very large-scale data analysis for many rea-

sons, including the following [14]:

1. High-level representations learnt by deep NN models, that are easily interpretable

by humans, can also help us to understand the complex information processing

mechanisms and multi-dimensional interaction of neuronal populations in the

human brain;

2. Regarding the degree of nonlinearity and multi-level representation of features,

deep neural networks often significantly outperform their shallow counterparts;

3. In big data analytic, deep learning is very promising for mining structured data,

e.g., for hierarchical multi-class classification of a huge number of images.

It is well known that both shallow and deep NNs are universal function approxi-

mators in the sense that they are able to approximate arbitrarily well any continu-

ous function of N variables on a compact domain, under the condition that a shal-

low network has an unbounded width (i.e., the size of a hidden layer), that is, an

unlimited number of parameters. In other words, a shallow NN may require a huge

(intractable) number of parameters (curse of dimensionality), while DNNs can per-

form such approximations using a much smaller number of parameters.

Universality refers to the ability of a deep learning network to approximate any

function when no restrictions are imposed on its size. On the other hand, depth effi-

ciency refers to the case when a function realized by polynomially-sized deep neural

network requires shallow networks to have super-polynomial (exponential) size for

the same accuracy of approximation (course of dimensionality). This is often referred

to as the expressive power of depth.

Despite recent advances in the theory of DNNs, there are several open fundamen-

tal challenges (or open problems) related to understanding high performance DNNs,

especially the most successful and perspective DCNNs [13, 14]:

∙ Theoretical and practical bounds on the expressive power of a specific architecture,

i.e., quantification of the ability to approximate or learn wide classes of unknown

nonlinear functions;

∙ Ways to reduce the number of parameters without a dramatic reduction in perfor-

mance;

∙ Ability to generalize while avoiding overfitting in the learning process;

∙ Fast learning and the avoidance “bad” local and spurious minima, especially for

highly nonlinear score (objective) functions;

∙ Rigorous investigation of the conditions under which deep neural networks are

“much better” the shallow networks (i.e., NNs with one hidden layer).

The aim of this section is to discuss the many advantages of tensor networks

in addressing the first two of the above challenges and to build up both intuitive

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 23

and mathematical links between DNNs and TNs. Revealing such links and inherent

connections will both cross-fertilize deep learning and tensor networks and provide

new insights.

In addition to establishing the existing and developing new links, this will also

help to optimize existing DNNs and/or generate new architectures with improved

performances.

We shall first present an intuitive approach using a simplified hierarchical Tucker

(HT) model, followed by alternative simple but efficient, tensor train/tensor chain

(TT/TC) architectures. We also propose to use more sophisticated TNs, such as

MERA tensor network models in order to enable more flexibility, improved

performance, and/or higher expressive power of the next generation of DCCNs.

5.1 Why Tensor Networks Are Important in Deep Learning?

Several research groups have recently investigated the application of tensor decom-

positions to simplify DNNs and to establish links between the deep learning and

low-rank tensor networks [14, 75–80]. For example, [80] presented a general and

constructive connection between Restricted Boltzmann Machines (RBM), which

is a fundamental basic building block in class of Deep Boltzmann Machines, and

(TNs) together with the correspondence between general Boltzmann machines and

TT/MPS. In a series of research papers [30, 79, 81, 82] the authors analyze the

expressive power of a class of DCNNs using simplified Hierarchal Tucker (HT)

models (see the next sections). Particularly, Convolutional Arithmetic Circuits (Con-

vAC), also known as Sum-Product Networks, and Convolutional Rectifier Networks

(CRN) have been considered as HT model. They claim that a shallow (single hid-

den layer) network realizes the classic CP decomposition, whereas a deep network

with log2 N hidden layers realizes Hierarchical Tucker (HT) decomposition (see the

next section). Some researchers also argued that the “unreasonable success” of deep

learning can be explained by inherent law of physics, such as the theory of TNs

that often employ physical constraints locality, symmetry, compositional hierarchi-

cal functions, entropy, and polynomial log-probability, imposed on measurements

or input training data [77, 80, 83]. In fact, a very wide spectrum of tensor networks

can be potentially used to model and analyze some specific classes of DNNs, in

order to obtain simpler and/or more efficient neural networks in the sense that they

could provide more expressive power or reduced complexity. Such an approach not

only promises to open the door to various mathematical and algorithmic tools for

enhanced analysis of DNNs, but also allows us to design novel multi-layer archi-

tectures and practical implementations of various deep learning systems. In other

words, the consideration of tensor networks in this context may give rise to new

NN architectures which could be even potentially superior to the existing ones,

but have so far been overlooked by practitioners. Furthermore, methods used for

reducing or approximating TNs could be a vehicle to achieve more efficient DNNs,

with a reduced number of parameters. This follows from the facts that redundancy

24 A. Cichocki

 Deep
Neural Network

(DNN)
Tensor Network

(TN)

Reduced TN
Reduced
 DNN

Transform to a
tensor network

Rounding
(recompression)
of TN ranks
Canonicalization

Transform TN
back to DNN

Fig. 9 Optimization of Deep Neural Networks (DNNs) using The Tensor Networks (TNs)

approach. In order to simplify a specific DNN and reduce the number of its parameters, we first

transform the DNN into a specific TN, e.g., TT/MPS, then transform the approximated (with

reduced rank) TN back to a new optimized DNN. Such transformation can performed in a layer

by layer fashion, or globally for the whole DNN. For detailed discussions of such mappings for the

Restricted Boltzmann Machine (RBM) see [80]. Optionally, we may choose to first construct and

learn (e.g., via tensor completion) a tensor network and then transform it to an equivalent DNN

is inherent both in TNs and DNNs. Moreover, both TNs and DNNs are usually not

unique. For example, two NNs with different connection weights and biases may

result into the modeling the same nonlinear function. Therefore, the knowledge about

redundancy in TNs can help simplify DNNs [14].

The general concept of optimization of DNNs via TNs is illustrated in Fig. 9.

Given a specific DNN, we first construct an equivalent TN representation of the

given DNN, then the TN is transformed into its reduced or canonical form by per-

forming, e.g., the truncated SVD at each rank (bond). This will reduce the rank

dimensions to the minimal requirement determined by a desired accuracy of approxi-

mation. Finally, we map back the reduced and optimized TN to another DNN. Since

a rounded (approximated) TN has smaller ranks dimensions, a final DNN can be

simpler than the original one,and with the same or slightly reduced performance.

It should be noted that, in practice, low-rank TN approximations have many poten-

tial advantages over a direct reduction of redundant DNNs, due to availability of

many efficient optimization methods to reduce the number of parameters and achieve

a pre-specified approximation error. Moreover, low-rank tensor networks are capable

of avoiding the curse of dimensionality through low-order sparsely interconnected

core tensors.

In the past two decades, quantum physicists and computer scientists have devel-

oped solid theoretical understanding and efficient numerical techniques for low-rank

TN decompositions.

The entanglement entropy, Renyi’s entropy, entanglement spectrum and long

range correlations are four of the most widely used quantities (calculated from a

spatial reduced density matrix) investigated in the theory of tensor networks. The

spatial reduced density matrix is determined by splitting a TN into two parts, say,

regions A and B, where a density matrix in region A is given by integrating out all

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 25

the degrees of freedom in region B. The entanglement spectra are determined by the

eigenvalues of the reduced density matrix [84, 85].

Entanglement is a physical phenomenon that occurs when pairs or groups of par-

ticles, such as photons, electrons, or qubits, are generated or interact in such way that

the quantum state of each particle cannot be described independently of the others,

so that a quantum state must be described for the system as a whole. Entanglement

entropy is therefore a measure for the amount of entanglement. Strictly speaking,

entanglement entropy is a measure of how quantum information is stored in a quan-

tum state and it is mathematically expressed as the von Neumann entropy of the

reduced density matrix. Entanglement entropy characterizes the information content

of a bipartition of a specific TN. Furthermore, the entanglement area law explains

that the entanglement entropy increases only proportionally to the boundary between

the two tensor sub-networks. Also entanglement entropy characterizes the informa-

tion content of the distribution of singular values of a matricized tensor, and can be

viewed as a proxy for the correlations between the two partitions; uncorrelated data

has zero entanglement entropy at any bipartition.

Note that TNs are usually designed to efficiently represent large systems which

exhibit a relatively low entanglement entropy. In practice, we often need to only care

about a small fraction of the input training data among a huge number of possible

inputs similar to deep neural networks. This all suggest that certain guiding princi-

ples in DNNs correspond to the entanglement area law used in the theory of tensor

networks. These may then used to quantify the expressive power of a wide class of

DCNNs. Note that long range correlations also typically increase with the entan-

glement. We therefore conjecture that realistic data sets in most successful machine

learning applications have relatively low entanglement entropies [86]. On the other

hand, by exploiting the entanglement entropy bound of TNs, we can rigorously quan-

tify the expressive power of a wide class of DNNs applied to complex and highly

correlated data sets.

5.2 Basic Features of Deep Convolutional Neural Networks

Basic DCNNs are usually characterized by at least three features: locality, weight

sharing (optional) and pooling explained below [14, 79]

∙ Locality refers to the connection of a (artificial) neuron only to neighboring neu-

rons in the preceding layer, as opposed to being fed by the entire layer (this is

consistent with biological NNs).

∙ Weight sharing reflects the property that different neurons in the same layer, con-

nected to different neighborhoods in the preceding layer, often share the same

weights. Note that weight sharing, when combined with locality, gives rise to

standard convolution. However, it should noted that although weight sharing may

reduce the complexity of a deep neural network, it is optional. However, the locality

26 A. Cichocki

at each layer is a key factor which gives DCNNs an exponential advantage over

shallow NNs [77, 87, 88].

∙ Pooling, is essentially an operator that gradually decimates (reduces) layer sizes by

replacing the local population of neural activations in a spatial window by a single

value (e.g., by taking their maxima, average values or their scaled products). In

the context of images, pooling induces invariance to translation, which often does

not affect semantic content, and is interpreted as a way to create a hierarchy of

abstractions in the patterns that neurons respond to [14, 79, 87].

Usually, DCNNs perform much better when dealing with compositional func-

tion approximations
5

and multi-class classification problems than shallow network

architectures with one hidden layer. In fact, DCNNs can efficiently and conveniently

select a subset of features for multiple classes, while for efficient learning a DCNN

model can be pre-trained by first learning each DCNN layer, followed by fine tuning

of the parameter of the entire model e.g., stochastic gradient descent. To summarize,

the deep learning neural networks have the ability to exploit and approximate the

complexity of compositional hierarchical functions arbitrarily well, whereas shal-

low networks are blind to them.

5.3 Score Functions for Deep Convolutional Neural
Networks

Consider a multi-class classification task where the input training data, also called

local structures or instances (e.g., input patches in images), are denoted by X =
(𝐱1,… , 𝐱N), where 𝐱n ∈ ℝS n = 1,… ,N) belonging to one ofC categories (classes)

denoted by yc ∈ {y1, y2,… , yC}. Such a representation is quite natural for many high-

dimensional data—in images, the local structures represent patches consisting of S
pixels, while in audio data voice can be represented through spectrograms.

For this kind of problems, DCNNs aim is to model the following set of multivari-

ate score functions:

hyc (𝐱1,… , 𝐱N) =
I1∑

i1=1
⋯

IN∑

iN=1
𝐖 yc

(i1,… , iN) 𝛷i1,…,iN (𝐱1,… , 𝐱N),

𝛷i1,…,iN (𝐱1,… , 𝐱N) =
N∏

n=1
f
𝜃in
(𝐱n), (28)

for yc = y1, y2,… , yC,

where 𝐖 yc
∈ ℝI1×⋯×IN is an Nth-order coefficient tensor (typically, with all dimen-

sions In = I, ∀n), N is the number of (typically overlapped) input patches 𝐱n, In is

5
A compositional function can take, for example, the following form

h1(… h3(h21(h11(x1, x2)h12(x3, x4)), h22(h13(x5, x6)h14(x7, x8))…))).

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 27

the size (dimension) of each mode 𝐖 yc
, and f

𝜃1
,… , f

𝜃In
are referred to as the repre-

sentation functions (in the representation layer) selected from a parametric family of

nonlinear functions.
6

In general, the one-dimensional basis functions could be polynomials, splines or

other sets of basis functions. Natural choices for this family of nonlinear functions are

also radial basis functions (Gaussian RBFs), wavelets, and affine functions followed

by point-wise activations. Particularly interesting are Gabor wavelets, owing to their

ability to induce features that resemble representations in the visual cortex of human

brain.

Note that the representation functions in standard (artificial) neurons have the

form

f
𝜃i
(𝐱) = 𝜎(�̃�T

i 𝐱 + bi), (29)

for the set of parameters 𝜃i = {�̃�i, bi}, where 𝜎(⋅) is a suitably chosen activation

function.

The representation layer play a key role to transform the inputs, by means of I
nonlinear functions, f

𝜃i
(𝐱n) (i = 1, 2,… , I), to template input patches, thereby cre-

ating I feature maps [81]. Note that the representation layer can be expressed by a

feature vector defined as

𝐟 = 𝐟
𝜽
(𝐱1)⊗ 𝐟

𝜽
(𝐱2)⊗⋯⊗ 𝐟

𝜽
(𝐱N) ∈ ℝI1I2…IN

, (30)

where 𝐟
𝜽
(𝐱n) = [f

𝜃1
(𝐱n), f𝜃2 (𝐱n),… , f

𝜃In
(𝐱n)]T ∈ ℝIn for n = 1, 2,… ,N and in =

1, 2,… , In.

Alternatively, the representation layer can be expressed as rank one tensor (see

Fig. 10a)

𝐅 = 𝐟
𝜽
(𝐱1) ◦ 𝐟𝜽(𝐱2) ◦ ⋯ ◦ 𝐟

𝜽
(𝐱N) ∈ ℝI1×I2×⋯×IN

. (31)

This allows us to represent the score function as an inner product of two tensors, as

illustrated in Fig. 10a

hyc (𝐱1,… , 𝐱N) = ⟨𝐖yc
,𝐅⟩ = 𝐖yc

×̄1 𝐟𝜽(𝐱1) ×̄2 𝐟𝜽(𝐱2)… ×̄N 𝐟
𝜽
(𝐱N). (32)

To simplify the notations of a grid tensor, we can construct square matrices 𝐅n
(n = 1, 2,… ,N), as follows

𝐅n =

⎡
⎢
⎢
⎢
⎢
⎣

f
𝜃1
(𝐱(1)n) f

𝜃2
(𝐱(1)n) … f

𝜃In
(𝐱(1)n)

f
𝜃1
(𝐱(2)n) f

𝜃2
(𝐱(2)n) … f

𝜃In
(𝐱(2)n)

⋮ ⋮ ⋱ ⋮
f
𝜃1
(𝐱(In)n) f

𝜃2
(𝐱(In)n) … f

𝜃In
(𝐱(In)n)

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝIn×In
, (33)

6
Note that the representation layer can be considered as a tensorization of input patches 𝐱n.

28 A. Cichocki

(a)

(b) (c)

Fig. 10 Various representations of the score function of a DCNN. a Direct Representation of

the score function hyc (𝐱1, 𝐱2,… , 𝐱N) = 𝐖yc
×̄1𝐟𝜽(𝐱1)×̄2𝐟𝜽(𝐱2)⋯ ×̄N 𝐟𝜽(𝐱N). Note that the coefficient

tensor 𝐖c can be represented in a distributed form by any suitable tensor network. b Graphical

illustration of the Nth-order grid tensor of the score function hc. This model can be considered as a

special case of Tucker-N model where the representation matrix 𝐅n ∈ ℝIn×In built up factor matri-

ces; note that typically all the factor matrices are the same and In = I, ∀n. c CP decomposition of

the coefficient tensor𝐖 yc
= 𝜦

(yc) ×1 𝐖(1) ×2 𝐖(2) … ×N 𝐖(N) =
R∑

r=1
𝜆

(yc)
r (𝐰(1)

r ◦𝐰(2)
r ◦ ⋯ ◦𝐰(N)

r),

where 𝐖(n) = [𝐰(n)
1 ,… ,𝐰(n)

R] ∈ ℝIn×R. This CP model corresponds to a simple shallow neural net-

work with one hidden layer, comprising weights w(n)
ir , and the output layer comprising weights 𝜆

(yc)
r ,

r = 1,… ,R

which holding the values of taken by the nonlinear basis functions {f
𝜃1
,… , f

𝜃In
} on

the selected fixed vectors, referred to as templates, {𝐱(1)n , 𝐱(2)n ,… , 𝐱(In)n }. Usually, we

can assume that In = I, ∀n, and 𝐱(in)n = 𝐱(i) [30].

For discrete data values, the score function can be represented by a grid tensor,

as graphically illustrated in Fig. 10b. The grid tensor of the nonlinear score function

hyc (𝐱1, ,… , 𝐱N) determined over all the templates 𝐱(1)n , 𝐱(2)n ,… , 𝐱(I)n can be expressed

as a grid tensor

𝐖(hyc) = 𝐖yc
×1 𝐅1 ×2 𝐅2 ⋯ ×N 𝐅N . (34)

Of course, since the order N of the coefficient (core) tensor is large, it cannot be

implemented, or even saved on computer due to the curse of dimensionality.

The simplest model to represent coefficient tensors would be to apply the CP

decomposition to reduce the number of parameters, as illustrated in Fig. 10c. This

leads to a simple shallow network, however, this approach is associated with two

problems: (i) the rankR of the coefficient tensor𝐖yc
can be very large (so compression

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 29

of parameters cannot be very high), (ii) the existing CP decomposition algorithms are

not very stable for very high-order tensors, and so an alternative promising approach

would be to apply tensor networks such as HT that enable us to avoid the curse of

dimensionality.

Following the representation layer, a DCNN may consists of a cascade of L convo-

lutional hidden layers with pooling in-between, where the number of layers L should

be at least two. In other words, each hidden layer performs 3D or 4D convolution

followed by spatial window pooling, in order to reduce (decimate) feature maps by

e.g., taking a product of the entries in sub-windows. The output layer is a linear dense

layer.

Classification can then be carried out in a standard way, through the maximization

of a set of labeled score functions, hyc for C classes, that is, the predicted label for the

input instants X = (𝐱1,… , 𝐱N) will be the index ŷc for which the score value attains

a maximum, that is

ŷc = arg max
yc∈{y1,…,yC}

hyc (𝐱1,… , 𝐱N). (35)

Such score functions can be represented through their coefficient tensors which, in

turn, can be approximated by low-rank tensor network decompositions [13].

The one restriction of the so formulated score functions (29) is that they allow for

straightforward implementation of only a particular class of DCNNs, called convo-

lutional Arithmetic Circuit (ConvAC). However, the score functions can be approx-

imated indirectly and almost equivalently using more popular CNNs (see the next

section). For example, it was shown recently how NNs with a univariate ReLU non-

linearity may perform multivariate function approximation [77].

The main idea is to employ a low-rank tensor network representation to approxi-

mate and interpolate a multivariate function hyc (𝐱1,… , 𝐱N) of N variables by a finite

sum of separated products of simpler functions (i.e., via sparsely interconnected core

tensors) [13, 14].

6 Convolutional Arithmetic Circuits (ConvAC) Using
Tensor Networks

Once the set of score functions has been formulated (29), we need to construct

(design) a suitable multilayered or distributed representation for DCNN implemen-

tation. The objective is to estimate the parameters 𝜃1,… , 𝜃I and coefficient tensors
7

𝐖 y1
,… ,𝐖 yC

. Since the tensors are of Nth-order and each with IN entries, in order

to avoid the curse of dimensionality, we need to perform dimensionality reduction

7
It should be noted that these tensors share the same entries, except for the parameters in the output

layer.

30 A. Cichocki

through low-rank tensor network decompositions. Note that a direct implementation

of (29) is intractable due to a huge number of parameters.

Conceptually, the ConvAC can be divided into three parts: (i) the first (input)

layer is the representation layer which transforms input vectors (𝐱1,… , 𝐱N) into

N ⋅ I real valued scalars {f
𝜃i
(𝐱n)} for n = 1,… ,N and i = 1,… , I. In other words,

the representation functions, f
𝜃i
∶ ℝS → ℝ, i = 1,… , I, map each local patch 𝐱n

into a feature space of dimension I. We can denote the feature vector by 𝐟n =
[f
𝜃1
(𝐱n),… , f

𝜃I
(𝐱n)]T ∈ ℝI

, n = 1,… ,N; (ii) the second, a key or kernel part, is a

convolutional arithmetic circuits with many hidden layers that takes the N ⋅ I mea-

surements (training samples) generated by the representation layer; (iii) the output

layer represented by a full matrix 𝐖(L)
, which computes C different score functions

hyc [79].

6.1 Hierarchical Tucker (HT) and Tree Tensor Network State
(TTNS) Models

The simplified HT tensor network [79] shown in Fig. 11 contains sparse 3rd-order

core tensors 𝐖(l,j) ∈ ℝR(l−1,2j−1)×R(l−1,2j−1)×R(l,j)
for l = 1,… ,L − 1 and matrices 𝐖(0,j) =

[𝐰(0,j)
1 ,… ,𝐰(0,j)

R(0,j)] ∈ ℝIj×R(0,j)
for l = 0 and j = 1,… ,N∕2l, and a full matrix 𝐖(L) =

[𝐰(L)
1 ,… ,𝐰(L)

yC
] ∈ ℝR(L−1)×yC with column vectors 𝐰(L)

yc
= diag(𝐖(L)

yc
) =

[𝜆(yc)1 ,… , 𝜆

(yc)
R(L−1)]T in the output L-layer (or equivalently the output sparse tensor

𝐖(L) ∈ ℝR(L−1)×R(L−1)×yC . The number of channels in the input layer is denoted by I,
while for the jth node in the lth layer (for l = 0, 1,… ,L − 1) is denoted by R(l,j)

. The

yC different values of score functions are calculated in the output layer.

For simplicity, and in order to mimic basic features of the standard ConvAC, we

assume that R(l,j) = R(l)
for all j, and that frontal slices of the core tensors 𝐖(l,j)

are

diagonal matrices with entries wl,j
r(l−1),r(l) . Note that such sparse core tensors can be

represented by non-zero matrices defined as 𝐖(l,j) ∈ ℝR(l−1)×R(l)
.

The simplified HT tensor network can be mathematically described in the follow-

ing recursive form

𝐖(0,j) = [𝐰(0,j)
1 ,… ,𝐰(0,j)

R(0)] ∈ ℝIj×R(0)

𝐖(≤1,j)
r(1) =

R(0)∑

r(0)=1
w(1,j)
r(0),r(1) ⋅

(
𝐰(0,2j−1)

r(0) ◦𝐰(0,2j)
r(0)

)
∈ ℝI2j−1×I2j

… (36)

𝐖(≤l,j)
r(l) =

R(l−1)∑

r(l−1)=1
w(l,j)
r(l−1),r(l) ⋅

(
𝐖(≤l−1,2j−1)

r(l−1) ◦𝐖(≤l−1,2j)
r(l−1)

)

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 31

W(1,1)

W (2,1)

W (L-1,1)W(1,2)

W (1,M-1)

W(1,M)

W (2,M/2)

W (L-1,2)

W (0,1)

W(0,2M-3)

R(0,1)

R(0,2)

R(0,3)

R(0,4)

R(0,2M-3)

R(0,2M-1)

R(0,2M-1)

R(0,2M)

R(1,1)

R(1,2)

R(1,M-1)

R(1,M)

R(L-1,1)

R(L-1,2)

W (L)

W (0,2)

W (0,3)

W (0,4)

W(0,2M-2)

W(0,2M-1)

W(0,2M)

...
...

...
...

Fig. 11 Architecture of a simplified Hierarchical Tucker (HT) network with sparse core tensors,

which simulates the coefficient tensor for a ConvAC deep learning network with a pooling-2 win-

dow [79]. The HT tensor network consists of L = log2(N) hidden layers and pooling-2 window. For

simplicity, we assumed that we, N = 2M = 2L input patches, R(l,j) = R(l)
), for l = 0, 1,… ,L − 1.

The representation layer is not shown explicitly in this figure. Note that since all core tensors can

be represented by matrices, we do not need to use tensors notation in this case

𝐖(≤L−1,j)
r(L−1) =

R(L−2)∑

r(L−2)=1
w(L−1,j)
r(L−2),r(L−1) ⋅

(
𝐖(≤L−2,2j−1)

r(L−2) ◦𝐖(≤L−2,2j)
r(L−2)

)

𝐖yc
≅

R(L−1)∑

r(L−1)=1
𝜆

(yc)
r(L−1) ⋅

(
𝐖(≤L−1,1)

r(L−1) ◦𝐖(≤L−1,2)
r(l−1)

)
∈ ℝI1×⋯×IN

,

where 𝝀
(yc) = diag(𝜆(yc)1 ,… , 𝜆

(yc)
R(L−1)) = 𝐖(L)(∶, ∶, yc).

In a special case when the weights in each layer are shared, i.e., 𝐖(l,1) = 𝐖(l,2) =
⋯ = 𝐖(l)

, the above equation can be considerably simplified to

𝐖≤l
r(l) =

R(l−1)∑

r(l−1)=1
w(l)
r(l−1),r(l) (𝐖

≤l−1
r(l−1) ◦𝐖

≤l−1
r(l−1)) (37)

for the layers l = 1,… ,L − 1, while for the output layer

𝐖 yc
≅

R(L−1)∑

r(L−1)=1
𝜆

(yc)
r(L−1) (𝐖

≤L−1
r(L−1) ◦𝐖

≤L−1
r(L−1)), (38)

32 A. Cichocki

where 𝐖≤l
r(l) = 𝐖≤l(∶,… , ∶, r(l)) ∈ ℝI×⋯×I

are sub-tensors of 𝐖≤l
, for each r(l) =

1,… ,R(l)
, and w(l)

r(l−1),r(l) is the (r(l−1), r(l))th entry of the weight matrix 𝐖(l) ∈
ℝR(l−1)×R(l)

.

However, it should be noted that the simplified HT model shown in Fig. 11 has

a limited ability to approximate an arbitrary coefficient tensor, 𝐖yc
, due to strong

constraints imposed of core tensors. A more flexible and powerful model is shown

in Fig. 12, in which constraints imposed on 3rd-order cores have been completely

removed. Such a HT tensor network (with a slight abuse of notation) can be mathe-

matically expressed as

𝐖(≤1,j)
r(1) =

R(0,2j−1)∑

r1=1

R(0,2j)∑

r2=1
w(1,j)
r1,r2,r(1)

⋅
(
𝐰(0,2j−1)

r1
◦𝐰(0,2j)

r2

)

… (39)

𝐖(≤l,j)
r(l) =

R(l−1,2j−1)∑

r1=1

R(l−1,2j)∑

r2=1
w(l,j)
r1,r2,r(l)

⋅
(
𝐖(≤l−1,2j−1)

r(l−1) ◦𝐖(≤l−1,2j)
r(l−1)

)

…

𝐖(≤L−1,j)
r(L−1) =

R(L−2,2j−1)∑

r1=1

R(L−2,2j)∑

r2=1
w(L−1,j)
r1,r2,r(L−1)

⋅
(
𝐖(≤L−2,2j−1)

r(L−2) ◦𝐖(≤L−2,2j)
r(L−2)

)

W(0,1)

W(0,2)

W (0,3)

W(0,4)

W (0,2M-3)

W (0,2M-2)

W (0,2M-1)

W (0,2M)

W
(1,1)

W (1,2)

W (1,M-1)

W(1,M)

R(0,1)

R(0,2)

R(0,3)

R(0,4)

R(0,2M-3)

R(0,2M-1)

R(0,2M-1)

R(0,2M)

R(1,1)

R(1,2)

R(1,M-1)

R(1,M)
W

(2,M/2)

W(L-1,2)
R(L-1,2)

R(L-1,1)

W(L-1,1)

W (L)

W(2,1)

Wyc

IN

InI2

I1 =~

Fig. 12 Hierarchical Tucker (HT) tensor network for the approximation of coefficient tensors,𝐖 yc
,

of the score functions hyc (𝐱1,… , 𝐱N)

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 33

Fig. 13 Tree Tensor Networks States (TTNS) with variable order of core tensors. The rectangles

represent core tensors of orders 5 and 3 that allows pooling of window size 4 and 2, respectively

𝐖(yc) ≅
R(L−1,2j−1)∑

r1=1

R(L−1,2j)∑

r2=1
w(L)
r1,r2,yc

⋅
(
𝐖(≤L−1,1)

r(L−1) ◦𝐖(≤L−1,2)
r(l−1)

)
.

The HT network can be further extended to the Tree Tensor Networks States

(TTNS), as illustrated in Fig. 13. The use of TTNS, instead HT tensor networks,

allows for more flexibility in the choice of size of pooling-window, the pooling size

in each hidden layer cab be adjusted by applying core tensors with a suitable variable

order in each layer. For example, if we use 5th-order (4rd-order) core tensors instead

3rd-order cores, then the pooling will employ a size-4 pooling window (size-3 pool-

ing) instead of only size-2 pooling window when using 3rd-order core tensors in HT

tensor networks. For more detail regrading HT networks and their generalizations to

TTNS [13].

6.2 Alternative Tensor Network Model: Tensor Train (TT)
Networks

We should emphasize that the HT/TTNS architectures are not the only one suitable

TN decompositions which can be used to model DCNNs, and the whole family of

powerful tensor networks can be employed to model individual hidden layers. In

this section we discuss modified TT/MPS and TC models for this purpose for which

efficient learning algorithms exist.

34 A. Cichocki

R1

...

I1
I2

R1

R2

(2)
W(1)wr1

W w

R1 R2

I2 INI1

W(2) WW (1) W ()N
R

...
R

IN

...

...

...

...

...

...

...

r2 r

N-2

(N-1)

IN-1

Λ
(y)c

RN-1

RN-1

N-2

N-1

N-1

(N-1)

I RN-1

(N)
rN-1

λ
(y)c
rN-1

Fig. 14 Basic Tensor Train (TT/MPS) architecture for the representation of coefficient (weight)

tensors 𝐖 yc
of the set of score functions hyc

The Tensor Train (TT) format can be interpreted as a special case of the HT for-

mat, where all nodes (TT-cores) of the underlying tensor network are connected in

cascade (or train), i.e., they are aligned while factor matrices corresponding to the

leaf modes are assumed to be identities and thus need not be stored. The TT format

was first proposed in numerical analysis and scientific computing by Oseledets [15,

69].

Figure 14 presents the concept of TT decomposition for an Nth-order tensor,

the entries of which can be computed as a cascaded (multilayer) multiplication of

appropriate matrices (slices of TT-cores). The weights of internal edges (denoted

by {R1,R2,… ,RN−1}) represent the TT-rank. In this way, the so aligned sequence

of core tensors represents a “tensor train” where the role of “buffers” is played by

TT-core connections. It is important to highlight that TT networks can be applied

not only for the approximation of tensorized vectors but also for scalar multivariate

functions, matrices, and even large-scale low-order tensors [13].

In the quantum physics community, the TT format is known as the Matrix Product

State (MPS) representation with the Open Boundary Conditions (OBC). In fact, the

TT/MPS was rediscovered several times under different names: MPS, valence bond

states, and density matrix renormalization group (DMRG) (see [13, 27, 89–94] and

references therein).

An important advantage of the TT/MPS format over the HT format is its sim-

pler practical implementation, as no binary tree needs to be determined. Another

attractive property of the TT-decomposition is its simplicity when performing basic

mathematical operations on tensors directly in the TT-format (that is, employing

only core tensors). These include matrix-by-matrix and matrix-by-vector multipli-

cations, tensor addition, and the entry-wise (Hadamard) product of tensors. These

operations produce tensors, also in the TT-format, which generally exhibit increased

TT-ranks. A detailed description of basic operations supported by the TT format

is given in [13]. Note that only TT-cores need to be stored and processed, which

makes the number of TN parameters to scale linearly in the tensor order, N, of a data

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 35

tensor and all mathematical operations are then performed only on the low-order and

relatively small size core tensors.

The TT rank is defined as an (N − 1)-tuple of the form

rank TT(𝐗) = 𝐫TT = {R1,… ,RN−1}, Rn = rank(𝐗
<n>), (40)

where 𝐗
<n> ∈ ℝI1…In×In−1…IN is an nth canonical matricization of the tensor 𝐗. Since

the TT rank determines memory requirements of a tensor train, it has a strong impact

on the complexity, i.e., the suitability of tensor train representation for a given raw

data tensor.

The number of data samples to be stored scales linearly in the tensor order, N,

and the size, I, and quadratically in the maximum TT rank bound, R, that is

N∑

n=1
Rn−1RnIn ∼ (NR2I), R ∶= max

n
{Rn}, I ∶= max

n
{In}. (41)

This is why it is crucially important to have low-rank TT approximations.
8

As illustrated in Fig. 14 the simplest possible implementation of the ConvAC net-

work is via the standard tensor train (TT/MPS) (unbalanced binary tree), which can

be represented by recursive formulas as

𝐖≤1 = 𝐖(1)

𝐖≤2 =
R1∑

r1=1
𝐖(1)

r1
◦𝐖(2)

r1
∈ ℝI1×I2×R2

…

𝐖≤n =
Rn−1∑

rn−1=1
𝐖≤n−1

rn−1
◦𝐖(n)

rn−1
∈ ℝI1×⋯×In×Rn

… (42)

𝐖≤N−1 =
RN−2∑

rN−2=1
𝐖≤N−2

rN−2
◦𝐖(N−1)

rN−2
∈ ℝI1×⋯×IN−1×RN−1

𝐖 yc
= 𝐖≤N =

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐖≤N−1
rN−1

◦𝐰(N)
rN−1,1

) ∈ ℝI1×⋯×IN
,

where 𝐖(n)
rn−1

= 𝐖(n)(rn−1, ∶, ∶) ∈ ℝIn×Rn are lateral slices of the core tensor 𝐖(n) ∈
ℝRn−1×In×Rn and 𝐖≤n

rn
= 𝐖≤n(∶,… , ∶, rn) ∈ ℝI1×⋯×In are sub-tensors of 𝐖≤n ∈

ℝI1×⋯×In×Rn for n = 1,… ,N (Fig. 14).

The above recursive formulas for the TT network can be written in a compact

form as

8
In the worst case scenario the TT ranks can grow up to I(N∕2) for an Nth-order tensor.

36 A. Cichocki

(a)

(b)

Fig. 15 Extended (modified) Tensor Train (TT/MPS) architectures for the representation of coef-

ficient (weight) tensors 𝐖 yc
of the score function hyc . a TT-tucker network, also called fork tensor

product states (FTPS) with reduced TT ranks. b Hierarchical TT network consisting of core tensors

with different orders, where each high-order core tensor can be represented by a TT or HT sub-

network. Rectangular boxes represent core tensors (sub-tensors) with variable orders. The ticker

horizontal lines or double/tripple lines indicate relatively higher internal TT-ranks

𝐖 yc
=

R1∑

r1=1
⋯

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐰(1)
1,r1

◦𝐰(2)
r1,r2

◦ ⋯ ◦𝐰(N−1)
rN−2,rN−1

◦𝐰(N)
rN−1,1

), (43)

where 𝐰(n)
rn−1,rn

= 𝐖(n)(∶, in, ∶) ∈ ℝIn are tubes of the core tensor 𝐖(n) ∈ ℝRn−1×In×Rn .

The TT-rank of the standard tensor train network with 3rd-order cores, shown in

Fig. 15, can be very large for core tensors located in the middle of the chain. In the

worst case scenario, the TT ranks can grow even, up to I(N∕2) for an exact represen-

tation of Nth-order tensor. In order to reduce the TT-rank and consequently reduce

the number of parameters of a DCNN, we can apply two approaches, as explained

in Fig. 14a and b. The main idea is to employ only a few core tensors with order

larger than three, whereby each of these core is further approximated via a TT or HT

sub-network.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 37

...

I2

R1

R2

(2)
W

(1)
Wr1

W

R1 R2

I2 INI1 I

W(2) W (N-1)W(1) W()N
R

R

R

I

...

...

...

r2 r

...

...RN

IN

RN-1

...

I1

RN

R1

...

RN

Wr
()N

N

Λ
(y)c RN

N-2

N-1

RN-1

N-1

N-2

N-1

(N-1)

N-1

Fig. 16 The Tensor Chain (TC) architecture for the representation of coefficient (weight) tensors

𝐖 yc
of the score function hyc (𝐱1,… , 𝐱N). Note that for R0 = RN = 1 the TC simplifies to the stan-

dard TT

6.3 Tensor Chain and TT/MPO Networks

Alternatively, the Tensor Chain (TC) network, called also TT/MPS with periodic

bounded conditions, shown in Fig. 16 can be employed to represent individual hidden

layers or output fully connected layers. This TC network is mathematically described

through the following a recursive formulas as

𝐖≤1 = 𝐖(1) ∈ ℝRN×I1×R1

𝐖≤2 =
R1∑

r1=1
𝐖≤1

r1
◦𝐖(2)

r1
∈ ℝRN×I1×I2×R2

…

𝐖≤n =
Rn−1∑

rn−1=1
𝐖≤n−1

rn−1
◦𝐖(n)

rn−1
∈ ℝRN×I1×⋯×In×Rn

…

𝐖≤N =
RN−1∑

rN−1=1
𝐖≤N−1

rN−1
◦𝐖(N)

rN−1
∈ ℝRN×I1×⋯×IN×RN

𝐖 yc
=

RN∑

rN=1
𝜆

(yc)
rN

𝐖≤N
rN ,rN

∈ ℝI1×⋯×IN
, (44)

where 𝐖(n)
rn−1

= 𝐖(n)(rn−1, ∶, ∶) ∈ ℝIn×Rn are lateral slices of the core tensor 𝐖(n) ∈
ℝRn−1×In×Rn , 𝐖≤n

rn
= 𝐖≤n(∶,… , ∶, rn) ∈ ℝRN×I1×⋯×In are sub-tensors of 𝐖≤n ∈

38 A. Cichocki

I2

R2J2

...I1

R1
J1

1R

R1 R2
J1I1

W
I2 InJ2

IN JN

Rn-1 Rn
Jn

INJN

... ...

I2

J2
...

...

...

...

...

RN-1

Jn
In

Jn
In

Rn

Rn-1 RN-1

1 1 1(1)I J R 1 2 2 2()R I J R 1()n n nnR I J R 1(1)N NNR I J

(1)
W

(2)
W

(n)
W

(N)

Fig. 17 An alternative TT/MPO tensor network for the approximation of 2Nth-order coefficient

tensor 𝐖 yc
of the score function hc(𝐱1,… , 𝐱N) defined by Eq. (46). Operation between matrices

(slices) of core tensors can be performed multi-linearly and in nonlinear way, as explained in the

next section

ℝRN×I1×⋯×In×Rn , and 𝐖≤N
rN ,rN

= 𝐖≤N(rN , ∶,… , ∶, rN) = Tr(𝐖≤N) ∈ ℝI1×⋯×IN for n =
1,… ,N and R0 = RN ≠ 1.

The above TC network can be written in a compact form (due to the commuta-

tivity and associativity of the outer products) as

𝐖 yc
=

R1∑

r1=1
⋯

RN∑

rN=1
𝜆

(yc)
rN
(𝐰(1)

rN ,r1
◦𝐰(2)

r1,r2
◦ ⋯ ◦𝐰(N)

rN−1,rN
), (45)

where 𝐰(n)
rn−1,rn

= 𝐖(n)(∶, in, ∶) ∈ ℝIn are tubes of a core tensor 𝐖(n) ∈ ℝRn−1×In×Rn .

The ConvAC can be alternatively modeled via TT/MPO networks, as illustrated

in Fig. 17 for a more general score function defined as

hyc =
I1∑

i1=1
⋯

IN∑

iN=1

J1∑

j1=1
⋯

JN∑

jN=1
𝐖 yc

(i1,… , iN , j1,… , jN)
N∏

n=1
f
𝜃in ,jn

(𝐱n), (46)

where 𝐖 yc
(i1,… , iN , j1,… , jN) represent entries of an 2Nth-order coefficient tensor.

Such tensor networks are well understood and efficient algorithms exist to perform

their learning, that is, to estimate the core tensors on the basis of a relatively small

number of measurements or a small set of available training data.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 39

7 Deep Convolutional Rectifier Using Nonlinear Tensor
Networks Decompositions

The convolutional arithmetic circuits (ConvACs) model employs the standard outer

(tensor) products, which for two tensors, 𝐀 ∈ ℝI1×⋯×IN and 𝐁 ∈ ℝJ1×⋯×JM , are

defined as

(𝐀 ◦𝐁)i1,…,iN ,j1,…,jM = ai1,…,iN ⋅ bj1,…,jM .

However, in order to convert ConvAC tensor models to popular and widely used

convolutional rectifier networks we need to employ the generalized (nonlinear) outer

products, defined as [30]

(𝐀◦
𝜌

𝐁)i1,…,iN ,j1,…,jM = 𝜌(ai1,…,iN , bj1,…,jM), (47)

where the operator

𝜌 = 𝜌
𝜎,P(a, b) = P[𝜎(a), 𝜎(b))], (48)

is referred to as the activation-pooling operator or function,
9

which meets the asso-

ciativity and the commutativity requirements (i.e., the operator satisfies the following

properties: 𝜌(𝜌(a, b), c) = 𝜌(a, 𝜌(b, c)) and 𝜌(a, b) = 𝜌(b, a), ∀a, b, c ∈ ℝ).

The activation–pooling operator can take various forms. In particular, for the con-

volutional rectifier network with max pooling, we can use the following activation-

pooling operator

𝜌
𝜎,P(a, b) = max{[a]+, [b]+)} = max{a, b, 0}. (49)

As an example, consider a generalized CP decomposition, which represents a shal-

low rectifier network in the form

𝐖 yc
=

R∑

r=1
𝜆

(yc)
r (𝐰(1)

r ◦
𝜌

𝐰(2)
r ◦

𝜌

⋯◦
𝜌

𝐰(N)
r), (50)

where the coefficients 𝜆
(yc)
r represent weights of the output layer, vectors 𝐰(n)

r ∈ ℝIn

are weights in the hidden layer, and R denotes the number of channels (using the

language of deep learning community).

It should be noted that if we employ the weight sharing, then all vectors 𝐰(n)
r =

𝐰r, ∀n, and consequently the coefficient tensor, 𝐖 yc
, must be a symmetric tensor

which further limits the ability of this model to approximate a desired function.

9
The symbols 𝜎(⋅) and P(⋅) are respectively the activation and pooling functions of the network.

40 A. Cichocki

As a second example, let us consider a nonlinear HT tensor network which models

a deep convolutional rectifier. The TN shown in Fig. 17 can be compactly described

as follows (assuming the generalized outer products defined above):

𝐖 yc
=

R1∑

r1=1
⋯

RN−1∑

rN−1=1
𝜆

(yc)
rN−1

(𝐖(1)
1,r1

◦
𝜌

𝐖(2)
r1,r2

◦
𝜌

⋯◦
𝜌

𝐖(N−1)
rN−1,1

), (51)

where 𝐖(n)
rn−1,rn

∈ ℝIn×Jn are block matrices of core tensor 𝐖(n) ∈ ℝRn−1×In×Jn×Rn (for

more detail see [13, 14]).

The TT and TC networks
10

provide some simplicity in comparison to HT, together

with very deep TN structures, that is, N hidden layers. Note that the HT model gen-

erates architectures of DCNNs with L = log2(N) hidden layers, while TT/TC tenor

network employsN hidden layers. Taking into account the current trend in deep lean-

ing to use a large number of hidden layers, it would be a quite attractive to employ

so called quantized TT/TC QTT/QTC networks with a relatively large number of

hidden layers: L = N ⋅ log2(I) [13].

To summarize, deep convolutional neural networks may be considered as a spe-

cial case of hierarchical architectures, which can be indirectly simulated and opti-

mized via relative simple and well understood tensor networks, especially HT/TT

(i.e., using unbalanced or balanced binary trees and graphical models), however,

more sophisticated tensor network diagrams with loops, discussed in the next section

may provide potentially better performance and the ability to generate novel archi-

tectures of DCNNs.

8 MERA Tensor Networks for a Next Generation of
DCNNs

The Multiscale Entanglement Renormalization Ansatz (MERA) tensor network was

first introduced by Vidal [95], and numerical algorithms to minimize the energy or

local Hamiltonian already exist [96].

The MERA is a relatively new tensor network, widely investigated in quantum

physics based variational Ansatz, since it is capable of capturing many of the key

complex physical properties of strongly correlated ground states [97]. The MERA

also shares many relationships with the AdS/CFT (gauge-gravity) correspondence by

realizing a complete holographic duality within the tensor networks framework. Fur-

thermore, the MERA can be regarded as a TN realization of an orthogonal wavelets

transform acting on the mode space of the physical fermionic degrees of freedom

[98–100].

10
It is important to note that TT/TC tensor networks described in this section do not necessary need

to have weight sharing and do not need even to be convolutional.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 41

For simplicity, we focus in this section on the 1D binary and ternary MERA ten-

sor networks (see Fig. 18a for basic binary MERA). Instead of writing of complex

mathematical formulas it is more convenient to describe MERA tensor networks

graphically.

Using, the terminology from quantum physics, the standard binary MERA archi-

tecture contains three classes of core tensors: (i) Disentanglers—4th-order cores; (ii)

isometries also called the coarse-grainer, typically 3rd order cores for binary MERA

and 4th-order cores for ternary MERA; and (iii) one output core which is usually a

matrix or a 4th-order core, as illustrated in Fig. 18a and c. Each MERA layer is con-

structed of a row of disentanglers and a row of coarse-grainers or isometries. Dis-

entanglers remove the short-scale entanglement between the adjacent modes, while

isometries renormalise each pair of modes to a single mode Each renormalisation

layer performs these operations on a different length scale.

The coarse-grainers take inputs from two modes on a lower scale in the MERA,

and give an output onto one mode which is on a higher layer in the tensor network,

while the disentangler removes entanglement between two neighboring modes (sites)

on the same level. From the perspective of a mapping, the nodes (core tensors) can

be considered as processing units, that is, the 4th-order cores map matrices to other

matrices, while the coarse-grainers take matrices and map then to vectors. The key

idea here is to realize that the “compression” capability arises from the hierarchy

and the entanglement. As a matter of fact, the MERA network embodies the mutual

information chain rule. In other words, the main idea underlying MERA is that of dis-

entangling the system at various length scales as one follows coarse graining Renor-

malization Group (RG) flow in the system. The MERA is particularly effective for

(scale invariant) critical points of the physical systems.

The key features properties of MERA can be summarized as follows [97]:

∙ MERA can capture scale-invariance of inputs data;

∙ It reproduces polynomial decay of correlations between inputs, in contrast to HT

or TT tensor networks which reproduce only exponential decay of correlations;

∙ MERA has ability to much better compress tensor data that TT/HT tensor net-

works;

∙ It reproduces a logarithmic correction to the area law, therefore MERA is a more

powerful tensor network in comparison to HT/TTNS or TT/TC networks;

∙ MERA can be efficiently contracted due to unitary constraints imposed on core

tensors.

Motivated by these features, we are currently investigating MERA tensor net-

works as powerful tools to model and analyze DCNNs. A key objective is to estab-

lish a precise connection between MERA tensor networks and extended model of

DCNNs. This connection may provide exciting new insights about deep learning

and may also allow for construction of improved families of DCNNs, with potential

application to more efficient data/image classification, clustering and prediction. In

other words, we conjecture that the MERA will lead to useful new results, poten-

tially allowing not only better characterization of expressive power of DCNNs, but

42 A. Cichocki

(b)(a)

(c)

Fig. 18 Various architectures of MERA tensor networks for the new generation of deep convolu-

tional neural networks. a Basic binary MERA tensor network. Observe that the alternating layers of

disentangling and coarse-graining cores. For the network shown in (a) the number of modes (ten-

sor cores) after each such set of operations is approximately halved. b Improved (lower complexity)

MERA network. c Ternary MERA in which coarse grainers are also 4th-order tensors, i.e., three

sites (modes) are coarse-grained into one effective site (mode)

also new practical implementations. Going the other way, the links and relations

between TNs and DCNNs could lead to useful advances in the design of novel deep

neural networks.

The MERA tensor networks, shown in Fig. 18, may provide a much higher expres-

sive power of deep learning in comparison to networks corresponding to HT/TT

architectures, since this class of tensor networks can model more complex long term

correlations between input instances. This follows form the facts that for HT and TT,

TC tensor networks correlations between input variables decay exponentially and the

entanglement entropy saturates to a constant, while the more sophisticated MERA

tensor networks provide polynomially decaying correlations.

For future research directions, it would be very important to further explore

the links between deep learning architectures, such as DCNN or deep Boltzmann

machine, and TNs with hierarchical structures such as tree tensor network states

(TTNS) and multi-scale entanglement renormalization ansatz (MERA), in order to

better understand and improve the expressive power of deep feedforward neural net-

works. We deeply believe that the insights into the theory of tensor networks and

quantum many-body physics can provide better theoretical understanding of deep

learning, together with the guidance for optimized DNNs design.

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 43

To summarize, the tensor network methodology and architectures discussed in

this section could be extended to allow analytic construction of new DCNNs.

Moreover, systematic investigation of the correspondences between DNNs and wide

spectrum of TNs can provide a very fruitful perspective including cashing the

existing conjectures and claims about operational similarities and correspondences

between DNNs and TNs into a more rigorous and constructive framework.

9 Conclusions and Discussions

The tensor networks (TNs) methodology is a promising paradigm for the analysis of

extreme-scale multidimensional data. Due to their ‘super’ compression abilities and

the distributed way in which they process data, TNs can be employed for a wide fam-

ily of large-scale optimization problems, especially linear/multilinear dimensionality

reduction tasks.

In this paper, we focused on two main challenges in huge-scale data analysis

which are addressed by tensor networks: (i) an approximate representation of a spe-

cific cost (objective) function by a tensor network while maintaining the desired

accuracy of approximation, and (ii) the extraction of physically meaningful latent

variables from data in a sufficiently accurate and computationally affordable way.

The benefits of multiway (tensor) analysis methods for large-scale data sets then

include:

∙ Graphical representations of tensor networks allow us to express mathematical

operations on tensors (e.g., tensor contractions and reshaping) in a simple and

intuitive way, and without the explicit use of complex mathematical expressions;

∙ Simultaneous and flexible distributed representations of both the structurally rich

data and complex optimization tasks;

∙ Efficient compressed formats of large multidimensional data achieved via ten-

sorization and low-rank tensor decompositions into low-order factor matrices

and/or core tensors;

∙ Ability to operate with noisy and missing data by virtue of numerical stability and

robustness to noise of low-rank tensor/matrix approximation algorithms;

∙ A flexible framework which naturally incorporates various diversities and con-

straints, thus seamlessly extending the standard, flat view, Component Analysis

(2-way CA) methods to multiway component analysis;

∙ Possibility to analyze linked (coupled) blocks of large-scale matrices and tensors

in order to separate common/correlated from independent/uncorrelated compo-

nents in the observed raw data.

In that sense, this paper both reviews current research in this area and comple-

ments optimisation methods, such as the Alternating Direction Method of Multi-

pliers (ADMM) [101].

44 A. Cichocki

Tensor decompositions (TDs) have been already adopted in widely diverse dis-

ciplines, including psychometrics, chemometrics, biometric, quantum physics quan-

tum chemistry, signal and image processing, machine learning, and brain science

[12–14, 26, 29, 63, 102–105]. This is largely due to their advantages in the analysis

of data that exhibit not only large volume but also very high variety (see Fig. 1), as in

the case in bio- and neuroinformatics and in computational neuroscience, where var-

ious forms of data collection include sparse tabular structures and graphs or hyper-

graphs.

Moreover, tensor networks have the ability to efficiently parameterize, through

structured compact representations, very general high-dimensional spaces which

arise in modern applications [11, 14, 72, 106–110]. Tensor networks also naturally

account for intrinsic multidimensional and distributed patterns present in data, and

thus provide the opportunity to develop very sophisticated models for capturing mul-

tiple interactions and couplings in data—these are more physically insightful and

interpretable than standard pair-wise interactions.

Acknowledgements This work has been partially supported by Misnistry of Education and

Science of the Russian Federation (grant 14.756,0001).

References

1. Zurada, J.: Introduction to Artificial Neural Systems, vol. 8. West St, Paul (1992)

2. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The

Handbook of Brain Theory and Neural Networks, MIT Press, pp. 255–258 (1998)

3. Hinton, G., Sejnowski, T.: Learning and relearning in boltzmann machines. In: Parallel Dis-

tributed Processing, MIT Press, pp. 282–317 (1986)

4. Cichocki, A., Kasprzak, W., Amari, S.: Multi-layer neural networks with a local adaptive

learning rule for blind separation of source signals. In: Proceedings of the International Sym-

posium Nonlinear Theory and Applications (NOLTA), Las Vegas, NV, Citeseer, pp. 61–65

(1995)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.

deeplearningbook.org

7. Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorisation. Electron. Lett. 42(16),

1 (2006)

8. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative

matrix/tensor factorization. In: International Symposium on Neural Networks, pp. 793–802.

Springer (2007)

9. Cichocki, A.: Tensor decompositions: new concepts in brain data analysis? J. Soc. Instr. Con-

trol Eng. 50(7), 507–516. arXiv:1305.0395 (2011)

10. Cichocki, A.: Era of big data processing: a new approach via tensor networks and tensor

decompositions, (invited). In: Proceedings of the International Workshop on Smart Info-

Media Systems in Asia (SISA2013). arXiv:1403.2048 (September 2013)

11. Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems.

arXiv:1407.3124 (2014)

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1305.0395
http://arxiv.org/abs/1403.2048
http://arxiv.org/abs/1407.3124

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 45

12. Cichocki, A., Mandic, D., Caiafa, C., Phan, A., Zhou, G., Zhao, Q., Lathauwer, L.D.: Tensor

decompositions for signal processing applications: from two-way to multiway component

analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

13. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.: Tensor networks for

dimensionality reduction and large-scale optimization: part 1 low-rank tensor decomposi-

tions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016)

14. Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.: Tensor

networks for dimensionality reduction and large-scale optimization: part 2 applications and

future perspectives. Found. Trends Mach. Learn. 9(6), 431–673 (2017)

15. Oseledets, I., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to use SVD in

many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)

16. Dolgov, S., Khoromskij, B.: Two-level QTT-Tucker format for optimized tensor calculus.

SIAM J. Matrix Anal. Appl. 34(2), 593–623 (2013)

17. Kazeev, V., Khoromskij, B., Tyrtyshnikov, E.: Multilevel Toeplitz matrices generated by

tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput.

35(3), A1511–A1536 (2013)

18. Kazeev, V., Khammash, M., Nip, M., Schwab, C.: Direct solution of the chemical master

equation using quantized tensor trains. PLoS Comput. Biol. 10(3), e1003359 (2014)

19. Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace cor-

rection for symmetric eigenvalue problems. SIAM J. Sci. Comput. 36(5), A2346–A2368

(2014)

20. Vervliet, N., Debals, O., Sorber, L., De Lathauwer, L.: Breaking the curse of dimensionality

using decompositions of incomplete tensors: Tensor-based scientific computing in big data

analysis. IEEE Signal Process. Mag. 31(5), 71–79 (2014)

21. Dolgov, S., Khoromskij, B.: Simultaneous state-time approximation of the chemical master

equation using tensor product formats. Numer. Linear Algebra Appl. 22(2), 197–219 (2015)

22. Liao, S., Vejchodský, T., Erban, R.: Tensor methods for parameter estimation and bifurcation

analysis of stochastic reaction networks. J. R. Soc. Interface 12(108), 20150233 (2015)

23. Bolten, M., Kahl, K., Sokolović, S.: Multigrid methods for tensor structured Markov chains

with low rank approximation. SIAM J. Sci. Comput. 38(2), A649–A667 (2016)

24. Lee, N., Cichocki, A.: Estimating a few extreme singular values and vectors for large-scale

matrices in Tensor Train format. SIAM J. Matrix Anal. Appl. 36(3), 994–1014 (2015)

25. Lee, N., Cichocki, A.: Regularized computation of approximate pseudoinverse of large matri-

ces using low-rank tensor train decompositions. SIAM J. Matrix Anal. Appl. 37(2), 598–623

(2016)

26. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500

(2009)

27. Orús, R.: A practical introduction to tensor networks: matrix product states and projected

entangled pair states. Ann. Phys. 349, 117–158 (2014)

28. Dolgov, S., Savostyanov, D.: Alternating minimal energy methods for linear systems in higher

dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)

29. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factoriza-

tions: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation.

Wiley, Chichester (2009)

30. Cohen, N., Shashua, A.: Convolutional rectifier networks as generalized tensor decomposi-

tions. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 955–

963 (2016)

31. Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-place approach

to dense tensor-times-matrix multiply. In: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, p. 76. ACM (2015)

46 A. Cichocki

32. Ballard, G., Benson, A., Druinsky, A., Lipshitz, B., Schwartz, O.: Improving the numerical

stability of fast matrix multiplication algorithms. arXiv:1507.00687 (2015)

33. Ballard, G., Druinsky, A., Knight, N., Schwartz, O.: Brief announcement: Hypergraph parti-

tioning for parallel sparse matrix-matrix multiplication. In: Proceedings of the 27th ACM on

Symposium on Parallelism in Algorithms and Architectures, pp. 86–88. ACM (2015)

34. Tucker, L.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen,

H., Frederiksen, N. (eds.) Contributions to Mathematical Psychology, pp. 110–127. Holt,

Rinehart and Winston, New York (1964)

35. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3),

279–311 (1966)

36. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge Discovery and

Data Mining, pp. 374–383. ACM (2006)

37. Drineas, P., Mahoney, M.: A randomized algorithm for a tensor-based generalization of the

singular value decomposition. Linear Algebra Appl. 420(2), 553–571 (2007)

38. Lu, H., Plataniotis, K., Venetsanopoulos, A.: A survey of multilinear subspace learning for

tensor data. Pattern Recogn. 44(7), 1540–1551 (2011)

39. Li, M., Monga, V.: Robust video hashing via multilinear subspace projections. IEEE Trans.

Image Process. 21(10), 4397–4409 (2012)

40. Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Pro-

ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 239–247. ACM (2013)

41. Wang, Y., Tung, H.Y., Smola, A., Anandkumar, A.: Fast and guaranteed tensor decomposition

via sketching. In: Advances in Neural Information Processing Systems, pp. 991–999 (2015)

42. Kuleshov, V., Chaganty, A., Liang, P.: Tensor factorization via matrix factorization. In: Pro-

ceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,

pp. 507–516 (2015)

43. Sorber, L., Domanov, I., Van Barel, M., De Lathauwer, L.: Exact line and plane search for

tensor optimization. Comput. Optim. Appl. 63(1), 121–142 (2016)

44. Lubasch, M., Cirac, J., Banuls, M.C.: Unifying projected entangled pair state contractions.

New J. Phys. 16(3), 033014 (2014)

45. Di Napoli, E., Fabregat-Traver, D., Quintana-Ortí, G., Bientinesi, P.: Towards an efficient use

of the BLAS library for multilinear tensor contractions. Appl. Math. Comput. 235, 454–468

(2014)

46. Pfeifer, R., Evenbly, G., Singh, S., Vidal, G.: NCON: A tensor network contractor for MAT-

LAB. arXiv:1402.0939 (2014)

47. Kao, Y.J., Hsieh, Y.D., Chen, P.: Uni10: An open-source library for tensor network algorithms.

J. Phys. Conf. Ser. 640, 012040 (2015). IOP Publishing

48. Grasedyck, L., Kessner, D., Tobler, C.: A literature survey of low-rank tensor approximation

techniques. GAMM-Mitteilungen 36, 53–78 (2013)

49. Comon, P.: Tensors: A brief introduction. IEEE Signal Process. Mag. 31(3), 44–53 (2014)

50. Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor

decomposition for signal processing and machine learning. arXiv:1607.01668 (2016)

51. Zhou, G., Cichocki, A.: Fast and unique Tucker decompositions via multiway blind source

separation. Bull. Pol. Acad. Sci. 60(3), 389–407 (2012)

52. Phan, A., Cichocki, A., Tichavský, P., Zdunek, R., Lehky, S.: From basis components to com-

plex structural patterns. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26–31, 2013,

pp. 3228–3232

53. Phan, A., Tichavský, P., Cichocki, A.: Low rank tensor deconvolution. In: Proceedings of the

IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, April

2015, pp. 2169–2173

54. Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis using tensor

network formats. Multidimension. Syst. Signal Process, pp 1–40, Springer (March 2017)

http://arxiv.org/abs/1507.00687
http://arxiv.org/abs/1402.0939
http://arxiv.org/abs/1607.01668

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 47

55. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton, NJ (1961)

56. Austin, W., Ballard, G., Kolda, T.: Parallel tensor compression for large-scale scientific data.

arXiv:1510.06689 (2015)

57. Jeon, I., Papalexakis, E., Faloutsos, C., Sael, L., Kang, U.: Mining billion-scale tensors: algo-

rithms and discoveries. VLDB J. 1–26 (2016)

58. Phan, A., Cichocki, A.: PARAFAC algorithms for large-scale problems. Neurocomputing

74(11), 1970–1984 (2011)

59. Klus, S., Schütte, C.: Towards tensor-based methods for the numerical approximation of the

Perron-Frobenius and Koopman operator. arXiv:1512.06527 (December 2015)

60. Bader, B., Kolda, T.: MATLAB tensor toolbox version. 2, 6 (2015)

61. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Computing 67(3), 225–253

(2001)

62. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

63. Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Series in Computa-

tional Mathematics, vol. 42. Springer, Heidelberg (2012)

64. Bebendorf, M.: Adaptive cross-approximation of multivariate functions. Constr. Approx.

34(2), 149–179 (2011)

65. Dolgov, S.: Tensor product methods in numerical simulation of high-dimensional dynamical

problems. Ph.D. thesis, Faculty of Mathematics and Informatics, University Leipzig, Ger-

many, Leipzig, Germany (2014)

66. Cho, H., Venturi, D., Karniadakis, G.: Numerical methods for high-dimensional probability

density function equations. J. Comput. Phys. 305, 817–837 (2016)

67. Trefethen, L.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev. (to appear)

(2017)

68. Oseledets, I., Dolgov, S., Kazeev, V., Savostyanov, D., Lebedeva, O., Zhlobich, P., Mach, T.,

Song, L.: TT-Toolbox (2012)

69. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

70. Khoromskij, B.: Tensors-structured numerical methods in scientific computing: Survey on

recent advances. Chemometr. Intell. Lab. Syst. 110(1), 1–19 (2011)

71. Oseledets, I., Tyrtyshnikov, E.: TT cross-approximation for multidimensional arrays. Linear

Algebra Appl. 432(1), 70–88 (2010)

72. Khoromskij, B., Veit, A.: Efficient computation of highly oscillatory integrals by using QTT

tensor approximation. Comput. Methods Appl. Math. 16(1), 145–159 (2016)

73. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)

74. Schneider, D.: Deeper and cheaper machine learning [top tech 2017]. IEEE Spectr. 54(1),

42–43 (2017)

75. Lebedev, V., Lempitsky, V.: Fast convolutional neural networks using group-wise brain dam-

age. arXiv:1506.02515 (2015)

76. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neural networks. In:

Advances in Neural Information Processing Systems (NIPS), pp. 442–450 (2015)

77. Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Q.: Why and when can deep–but

not shallow–networks avoid the curse of dimensionality: a review. arXiv:1611.00740 (2016)

78. Yang, Y., Hospedales, T.: Deep multi-task representation learning: a tensor factorisation

approach. arXiv:1605.06391 (2016)

79. Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a tensor analy-

sis. In: 29th Annual Conference on Learning Theory, pp. 698–728 (2016)

80. Chen, J., Cheng, S., Xie, H., Wang, L., Xiang, T.: On the equivalence of restricted Boltzmann

machines and tensor network states. arXiv e-prints (2017)

81. Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks through pooling geom-

etry. CoRR (2016). arXiv:1605.06743

82. Sharir, O., Tamari, R., Cohen, N., Shashua, A.: Tensorial mixture models. CoRR (2016).

arXiv:1610.04167

http://arxiv.org/abs/1510.06689
http://arxiv.org/abs/1512.06527
http://arxiv.org/abs/1506.02515
http://arxiv.org/abs/1611.00740
http://arxiv.org/abs/1605.06391
http://arxiv.org/abs/1605.06743
http://arxiv.org/abs/1610.04167

48 A. Cichocki

83. Lin, H.W., Tegmark, M.: Why does deep and cheap learning work so well? arXiv e-prints

(2016)

84. Zwanziger, D.: Fundamental modular region, Boltzmann factor and area law in lattice theory.

Nucl. Phys. B 412(3), 657–730 (1994)

85. Eisert, J., Cramer, M., Plenio, M.: Colloquium: Area laws for the entanglement entropy. Rev.

Modern Phys. 82(1), 277 (2010)

86. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. Theory

Exp. 2004(06), P06002 (2004)

87. Anselmi, F., Rosasco, L., Tan, C., Poggio, T.: Deep convolutional networks are hierarchical

kernel machines. arXiv:1508.01084 (2015)

88. Mhaskar, H., Poggio, T.: Deep vs. shallow networks: an approximation theory perspective.

Anal. Appl. 14(06), 829–848 (2016)

89. White, S.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B

48(14), 10345 (1993)

90. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys.

Rev. Lett. 91(14), 147902 (2003)

91. Perez-Garcia, D., Verstraete, F., Wolf, M., Cirac, J.: Matrix product state representations.

Quantum Inf. Comput. 7(5), 401–430 (2007)

92. Verstraete, F., Murg, V., Cirac, I.: Matrix product states, projected entangled pair states, and

variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–

224 (2008)

93. Schollwöck, U.: Matrix product state algorithms: DMRG, TEBD and relatives. In: Strongly

Correlated Systems, pp. 67–98. Springer (2013)

94. Huckle, T., Waldherr, K., Schulte-Herbriggen, T.: Computations in quantum tensor networks.

Linear Algebra Appl. 438(2), 750–781 (2013)

95. Vidal, G.: Class of quantum many-body states that can be efficiently simulated. Phys. Rev.

Lett. 101(11), 110501 (2008)

96. Evenbly, G., Vidal, G.: Algorithms for entanglement renormalization. Phys. Rev. B 79(14),

144108 (2009)

97. Evenbly, G., Vidal, G.: Tensor network renormalization yields the multiscale entanglement

renormalization Ansatz. Phys. Rev. Lett. 115(20), 200401 (2015)

98. Evenbly, G., White, S.R.: Entanglement renormalization and wavelets. Phys. Rev. Lett.

116(14), 140403 (2016)

99. Evenbly, G., White, S.R.: Representation and design of wavelets using unitary circuits. arXiv

e-prints (2016)

100. Matsueda, H.: Analytic optimization of a MERA network and its relevance to quantum inte-

grability and wavelet. arXiv:1608.02205 (2016)

101. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical

learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),

1–122 (2011)

102. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences.

Wiley, New York (2004)

103. Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis and Gabor features

for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

104. Kroonenberg, P.: Applied Multiway Data Analysis. Wiley, New York (2008)

105. Favier, G., de Almeida, A.: Overview of constrained PARAFAC models. EURASIP J. Adv.

Signal Process. 2014(1), 1–25 (2014)

106. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Rie-

mannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

107. Zhang, Z., Yang, X., Oseledets, I., Karniadakis, G., Daniel, L.: Enabling high-dimensional

hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE

Trans. Comput.-Aided Des. Integr. Circ. Syst. 34(1), 63–76 (2015)

108. Corona, E., Rahimian, A., Zorin, D.: A tensor-train accelerated solver for integral equations

in complex geometries. arXiv:1511.06029 (2015)

http://arxiv.org/abs/1508.01084
http://arxiv.org/abs/1608.02205
http://arxiv.org/abs/1511.06029

Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning 49

109. Litsarev, M., Oseledets, I.: A low-rank approach to the computation of path integrals. J. Com-

put. Phys. 305, 557–574 (2016)

110. Benner, P., Khoromskaia, V., Khoromskij, B.: A reduced basis approach for calculation of

the Bethe-Salpeter excitation energies by using low-rank tensor factorisations. Mol. Phys.

114(7–8), 1148–1161 (2016)

Local Data Characteristics in Learning
Classifiers from Imbalanced Data

Jerzy Błaszczyński and Jerzy Stefanowski

Abstract Learning classifiers from imbalanced data is still one of challenging tasks

in machine learning and data mining. Data difficulty factors referring to internal and

local characteristics of class distributions deteriorate performance of standard classi-

fiers. Many of these factors may be approximated by analyzing the neighbourhood of

the learning examples and identifying different types of examples from the minority

class. In this paper, we follow recent research on developing such methods for assess-

ing the types of examples which exploit either k-nearest neighbours or kernels. We

discuss the approaches to tune the size of both kinds of neighborhoods depending on

the data set characteristics and evaluate their usefulness in series of experiments with

real-world and synthetic data sets. Furthermore, we claim that the proper analysis of

these neighborhoods could be the basis for developing new specialized algorithms

for imbalanced data. To illustrate it, we study generalizations of over-sampling in

pre-processing methods and neighbourhood based ensembles.

1 Introduction

Supervised classification is one of the well studied tasks of machine learning, data

mining and statistical data analysis. Its aim is to learn the relationship between values

of attributes describing examples and a target class of interest. Since many problems

can be represented in the attribute value form it has a wide spectrum of possible

applications [1]. The classification relationships learned from labeled examples can

be used as a classifier to predict class labels for new, unclassified examples. Numer-

ous approaches, based on different principles, have been already introduced to learn

J. Błaszczyński ⋅ J. Stefanowski (✉)

Institute of Computing Science, Poznań University of Technology,

Piotrowo 2, 60-965 Poznań, Poland

e-mail: jerzy.stefanowski@cs.put.poznan.pl

J. Błaszczyński

e-mail: jerzy.blaszczynski@cs.put.poznan.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_2

51

52 J. Błaszczyński and J. Stefanowski

classifiers. Nevertheless they may be insufficient when dealing with complexities

affecting the data representation.

One of these complexities is class imbalanced data, where at least one of the tar-

get classes contains a much smaller number of examples than the other classes. This

class is usually called the minority class, while the remaining classes are denoted

as majority class(es). Imbalanced data often occur in practical problems, such as,

medical data analysis, fraud detection, technical diagnostics or image recognition,

see, e.g., [8, 20, 60]. In all these problems correct recognition of the minority class

is of key importance. Nevertheless, the standard learning algorithms usually do not

work properly for these problems since they are biased toward better recognition of

the majority classes and they met difficulties, or even are unable, to classify correctly

new objects from the minority class [61].

Although the difficulty while learning classifiers from imbalanced data has been

known in practical applications for decades, this problem received a particular, grow-

ing research interest in the beginning of the current century and several specialized

methods have been proposed (for their review see, e.g., [7, 20, 21, 56]). They are

usually categorized as classifier-independent pre-processing techniques or modifica-

tions of algorithms for learning particular classifiers.

Researchers still treat learning from class imbalanced data as a research challenge

and look for new more effective directions. One of these directions includes studying

the nature of the imbalanced data, key properties of its underlying distribution and

consequences they bring for learning better classifiers or for constructing specialized

pre-processing methods.

While examining these properties, it has been noticed that the high, global imbal-

ance ratio between cardinalities of minority and majority classes is not the only and

not even the main reason of difficulties in learning classifiers. Other, as we call

them, data difficulty factors, referring to internal characteristics of class distribu-

tions, are also influential. They include: decomposition of the minority class into

many rare sub-concepts playing a role of small disjuncts [25, 26], the effect overlap-

ping between the classes [15, 46] or presence of many minority class examples inside

the majority class region [39]. When these data difficulty factors occur together with

class imbalance, they may seriously hinder the recognition of the minority class, see

e.g., experimental studies [36, 40, 42, 48].

Please note that aforementioned data factors correspond to local data character-
istics, occurring in some sub-regions of the minority class distribution rather than

at the global level of the entire data set. Furthermore, the development of several

informed pre-processing methods, such as [9, 31], is strongly based on exploiting

information about example distribution in the neighborhood of considered minority

examples.

In the previous research Napierala and Stefanowski have linked data difficulty

factors to different types of examples forming the minority class distribution [39, 40,

52, 55]. It has led the authors to a differentiation between safe and unsafe exam-

ples for recognizing the minority class. These types of examples were identified by

analyzing class labels distribution among examples’ neighbours [40]. Two ways of

modeling the neighbourhood have been proposed, either by considering, k-nearest

Local Data Characteristics in Learning Classifiers . . . 53

neighbours or kernel functions [38, 40]. These approaches can be applied to several

crucial issues for learning classifiers from imbalanced data:

∙ to analyze internal characteristics of real-world data sets and establish their diffi-

culty for recognizing minority classes [38, 40];

∙ to support comparisons of algorithms for learning classifiers as well as pre-

processing methods [42];

∙ to construct new, specialized algorithms for improving classifiers [5].

Nevertheless, in these studies the size of neighborhood was chosen in the simplest

way and usually with the same value of the crucial hyper-parameter for all considered

data sets. Although it has proven to be sufficiently effective in previous works, a more

systematic tuning of this parameter with respect to data set characteristics is still an

open research problem and requires more studies.

Therefore, the main aims of this paper are the following:

1. To introduce a new approach to tune the size of the neighborhood depending

on the data characteristics. Unlike the previous works [40, 42], we pay more

attention to using kernels in this analysis.

2. To experimentally study usefulness of kernels for an analysis of imbalanced

data—also for identifying more types of examples than proposed in [40].

3. To discuss the applicability of this special tuned neighborhood for construct-

ing dynamic pre-processing methods as well as to learning neighbourhood based

ensembles dedicated to, imbalanced data.

The paper is organized as follows. The next section summarizes related works on

data difficulty factors and using local information in pre-processing methods. The

previous approach to an identification of types of minority examples is discussed

in Sect. 3. The new proposal of tuning its parameters is introduced in Sect. 4 and

validated in the experiments in Sect. 5. The following section discusses its use to

construct new pre-processing techniques. Similarly, its applicability for the Nearest

Neighbourhood Ensemble is presented in Sect. 7. Other possible extensions of the

presented neighborhood analysis are discussed in Sect. 8. The final section draws

conclusions.

2 Related Research on Imbalanced Data Characteristics

In this section we will briefly discuss the issues most related to studying local char-

acteristics of class imbalanced data. We do not intend to provide here a comprehen-

sive review of methods for dealing with these data. For such a review, the reader is

referred to the monograph [20] covering the most representative issues, as well as to

systematic surveys, such as [7, 8, 21, 56].

54 J. Błaszczyński and J. Stefanowski

2.1 Nature of the Class Imbalance Problem

Recall that a data set is considered class imbalanced when it is characterized by

an unequal distribution of objects in classes. Japkowicz names it a between-class
imbalance [24]. It may be quantified by a class imbalance ratio—which represents

a global point of view at data characteristics.

Generally speaking, any data set with unequal distribution of examples between

class could be considered as imbalanced. However, there is no common agreement

with regard to a precise threshold defined for the global imbalance ratio that would

allow to distinguish imbalanced data sets [21]. Here we also do not define a precise

threshold value but share an opinion saying that the class imbalance problem is asso-

ciated with lack of data (called also absolute rarity [60]), which hinder the accurate

recognition of minority classes [53].

In this study we consider a two class (minority class vs. majority class) formu-

lation of class imbalance problem. It is justified by semantic importance of the rare

class versus other classes, which can be considered as the two class problem. More-

over, this formulation of the imbalance problem is mostly studied in the current lit-

erature. Even if the original definition of the classification problem includes more

classes, they are aggregated into one majority class. Note, however, that in some

applications it may be reasonable to consider multi-class data sets, where imbal-

ances may exist between various classes and it is required to improve classifier per-

formance with respect to more than one minority class. We will come back to these

issues in Sect. 8.

The class imbalance observed in a data set can be either intrinsic (in the sense

that it is a direct result of the nature of the data space) or extrinsic (caused by rea-

sons external to the data space). Extrinsic imbalance can be caused by high costs

of acquiring the examples from the minority class, e.g., due to economic or privacy

reasons or it comes from technical, time or storage limitations [60].

2.2 Data Complexity and Difficulty Factors

Although many authors have experimentally shown that standard classifiers meet

difficulties while recognizing the minority class, it has also been observed that in

some problems characterized by high imbalance between classes (expressed by the

value of the global imbalanced data) standard classifiers are still sufficiently accu-

rate [2]. For instance, Napierala reports several experimental studies which conclude

that when there is a clear separation between classes, the minority class can be suf-

ficiently recognized regardless of the high imbalance ratio [38].

These and other studies prove that the global class imbalance ratio is not nec-

essarily the only, or even the main, problem causing the decrease of classification

performance and focusing only on the global ratio may be insufficient for improving

classification performance. Data complexity, understood here as the distribution of

examples from both classes in the attribute space, has a crucial impact on learning. It

Local Data Characteristics in Learning Classifiers . . . 55

is not particularly surprising, since data complexity affects learning also in standard,

balanced domains. However, when data complexity occurs together with the class

imbalance, the deterioration of classification performance is amplified and it affects

mostly (or even only) the minority class.

In the context of learning from imbalanced data the term “data complexity” may

comprise different data distribution patterns, such as: overlapping, small disjuncts,

outliers or noise. Several authors call them as data difficulty factors. We describe

them briefly below.

Within Class Decomposition and Small Disjuncts
The experimental studies with several data sets have shown that minority class usu-

ally does not form a homogeneous, compact distribution of the target concept but it

is often scattered into smaller sub-parts representing separate sub-concepts. Japkow-

icz named it within-class imbalance [26]. This is closely related to the problem of

small disjuncts which are harder to learn and cause more classification errors than

larger sub-concepts.

Although the problem of within-class imbalance may occur in both minority

and majority classes, small disjuncts are more characteristic and more critical for a

minority class. In the majority class, the sub-concepts will be most often represented

by a sufficient number of examples forming larger disjuncts, while in the minority

class, in which the examples are already rare, their further decomposition into sev-

eral sub-concepts will produce small disjuncts, represented by a too small number of

examples to be correctly learned. Such fragmentation of the minority class into five

smaller sub-parts is illustrated in Fig. 1. Additionally each sub-part of the minority

Fig. 1 Visualization of

sub-concepts of the minority

class additionally affecting

by class over-lapping (here

represented by borderline

examples) in flower data

−0.50

−0.25

0.00

0.25

0.50

0.500.250.00−0.25−0.50
A1

A2

LABEL MIN−SAFE MIN−BORDER MAJ

56 J. Błaszczyński and J. Stefanowski

has a small overlapping with the neighbours from the majority class (which consti-

tute an additional difficulty).

According to [25, 26] the higher deterioration of classification performance

results from an increased decomposition of the minority class into many sub-parts

containing too few examples rather than by changing the global imbalance ratio.

Overlapping Between the Classes
In the boundary regions between classes, the examples from different classes may

overlap—which hinders learning classifiers even in a standard, balanced case. As the

minority class is underrepresented in the data set, it may be underrepresented also in

the overlapping region. Most learning algorithms tend to shift the decision bound-

ary too close to the minority class, treating the whole overlapping area as belonging

to the majority class. Indeed, the experiments on mainly artificial data with differ-

ent degrees of overlapping have shown that overlapping deteriorated the classifier

performance, especially when the minority class was concerned [46]. Furthermore,

according to research of [15] the imbalance ratio calculated locally inside the over-

lapping regions is more influential for the minority class than the global ratio con-

cerning the complete data. In other experiments a combination of increased overlap-

ping between the classes with decomposition of the minority class influenced results

more than changing the class imbalance ratio [39].

Dealing with Noisy or Outlier Examples
Single examples from one class, located far from the decision boundary inside the

other class, are usually called noisy examples. Handling noise is often considered

in standard machine learning problems, however it becomes even more important

issue in learning from imbalanced data. Noisy majority examples are particularly

harmful for recognition of the minority class. They may cause a fragmentation of the

minority class and increase the difficulties in learning its definition—see a discussion

in [38]. Thus, examples of this type are usually either removed/relabeled in the pre-

processing phase [48, 55].

On the other hand, distant minority examples surrounded by the majority class

examples are not necessarily noisy. As the minority class examples are underrep-

resented in the data set, such lonely examples may represent a rare but valid sub-

concept of which no other representatives could be collected for training [38, 40].

We will call such examples outliers.

The role of noise and outliers in learning from imbalanced data has not been

deeply studied yet. Few authors have shown that randomly introduced class or

attribute value noise results in degradation of classification performance on imbal-

anced data, see e.g., [38]. Some other authors have studied the role of iterative fil-

tering (or removing) noisy (difficult to be correctly classified) minority case exam-

ples [48]. More interesting experiments presented in [39] have also shown that single

minority examples located inside the majority class regions cannot be simply deleted

from the data since their proper treatment by informed pre-processing may improve

classification performance for the minority class.

Local Data Characteristics in Learning Classifiers . . . 57

To summarize the discussion of the aforementioned data complexity factors we

would like to stress that their identification in real world data sets is not a trivial

task. The discussion of this issue and references to known methods are presented in

[38, 53].

2.3 Local Data Characteristics in Informed Pre-processing

Recall that the pre-processing methods are classifier independent and they are

designed to modify the imbalanced data set in a way that transforms the class dis-

tribution to a more appropriate one for learning classifiers. Many of these methods

generate a more balanced distribution of examples into classes. In general, changing

the class distribution towards a more balanced one improves the performance for

most data sets and classifiers [21].

The simplest pre-processing methods are random over-sampling which replicates

examples from the minority class, and random under-sampling which randomly

eliminates examples from the majority classes until a required degree of balance

between class cardinalities is reached. Therefore these methods exploit global infor-

mation about the data set: the current and expected imbalance ratios.

Since simple random pre-processing methods are often not effective, focused
(also called informed) methods have been introduced; see their comprehensive

reviews in [7, 21]. Many of these methods attempt to take into account internal

characteristics of data regions around minority class examples. Historically, the first

such method resulted from Kubat and Matwin’s proposal of the one-side-sampling
method (OSS) [29]. These authors observed that characteristics of mutual positions

of examples from different classes is a source of difficulty. Thus, OSS is based on

distinguishing different types of learning examples: safe examples (located inside

the regions occupied by examples from the given class), borderline (located near the

decision boundary) and, so called, noisy examples (these authors understood them

as examples from the given class localed inside safe regions of the other classes).

According to the OSS filtering approach, borderline and noisy examples are removed

from the majority classes, while the minority class is kept unchanged (even for noisy

minority examples).

Many other filtering (mainly under-sampling) methods exploits the paradigm of

edited nearest classifiers. For instance, the Nearest Cleaning Rule (NCR) [31] applies

it to removal of “difficult” examples from the majority classes. Briefly speaking,

NCR first looks for a specific number k of nearest neighbours (k = 3 is recommended

in [31]) of the “seed” example. Then, it re-classifies seed example according to most

frequent class label among neighbours. Finally, it removes from majority class these

examples, which cause the wrong re-classification.

The analysis of class labels among k nearest neighbors is also exploited in a hybrid

method SPIDER that selectively filters out the majority examples which may lead

to incorrect re-classification of the minority ones [55]. In the first stage it applies

the edited nearest rule to distinguish between safe and unsafe examples (which is

58 J. Błaszczyński and J. Stefanowski

depending how strongly k neighbours may correctly—or incorrectly—re-classify the

given “seed” example). For the majority class, the neighbours which misclassify the

seed minority example are either removed or relabeled. Then, in the next stage, the

reclassification analysis is repeated and the remaining unsafe minority examples are

additionally replicated depending on the number of majority neighbours.

The best known method of informative over-sampling is called Synthetic Minor-

ity Over-sampling Technique (SMOTE) [9]. It is also based on the k nearest neigh-

bourhood and exploits it to selectively over-sample the minority class by creating

new synthetic examples with respect to the global parameter, called over-sampling
ratio. SMOTE has been further extended in different ways—see reviews in [7, 21].

Quite often these extensions exploit different local information about the learn-

ing examples. For instance, the authors of BORDERLINE SMOTE do not treat all

minority examples in the same way and focus oversampling around examples from

borderline region between classes [19].

3 Analyzing Neighbourhoods of Minority Class Examples

3.1 Motivations

Following the critical analysis of earlier works on using local data characteristics in

informed pre-processing and studies on the complexity of imbalanced data Napierala

and Stefanowski have decided to link data difficulty factors to different types of exam-
ples forming the minority class distribution. They proposed to differentiate between

safe and unsafe examples in learning from imbalanced data [40], however in a dif-

ferent way than earlier proposed, e.g. by [29]. Below we present this categorization

following their definitions from [38, 40, 42].

Safe examples are ones located in the homogeneous regions populated by exam-

ples from one class only. Other examples are unsafe and more difficult for learning.

Unsafe examples are categorized into borderline (placed close to the decision bound-

ary between classes), rare cases (isolated groups of few examples located deeper

inside the opposite class), or outliers. As the minority class can be highly under-

represented in the data, it is claimed that the rare examples or outliers, could rep-

resent a very small but valid sub-concepts of which no other representatives could

be collected for training [38]. Therefore, they cannot be considered as noise exam-

ples which typically are then removed or re-labeled. In Fig. 2 all these four types of

examples from the minority class are illustrated in the 2-dimensional distribution of

the two class data set called paw.

Recall experimental studies from [38, 40], where the graphical visualizations

techniques based on multi-dimensional scaling and non-linear t-SNE projection have

confirmed the occurrence of this categorization of example types in several real-

world imbalanced data sets. However, such an analysis cannot be directly applied to

Local Data Characteristics in Learning Classifiers . . . 59

Fig. 2 Visualization of four

types of minority class

examples in paw data

−0.50

−0.25

0.00

0.25

0.50

0.500.250.00−0.25−0.50

A1

A2

LABEL MIN−SAFE MIN−BORDER MIN−RARE MIN−OUTLIER MAJ

larger data. Napierala and Stefanowski have looked for new simple techniques which

should more directly identify these types of examples.

Their method origins from the hypotheses [40] on role of the mutual positions of

the learning examples in the attribute space and the idea of assessing the type of an

example by analyzing class labels of the other examples in its local neighbourhood.

Following the proposal of [38, 40]—a term local refers to studying characteristics

of the nearest examples due to the possible sparse decomposition of the minority

class into rather rare sub-concepts with non-linear decision boundaries. Considering

a larger size of the neighbourhood may not reflect the underlying distribution of the

minority class.

Such a neighbourhood of an example could be modeled in different ways. In the

previous research Napierala and Stefanowski proposed to construct it with:

∙ k-nearest neighbours,

∙ or kernel functions.

The analysis of class labels of examples in the k-nearest approach concerns a fixed

number of nearest examples (without taking into account their distances to the seed

examples) while in the kernel approach all examples within a given radius (the kernel

bandwidth) are taken into account together with their distances. We will come back

to the problem of tuning their proper values in Sect. 4. An analysis of the class label

distribution of examples inside the neighborhood of the given example allow us to

assess its level of difficulty and as a result its type (safe vs. unsafe to be learned).

Note, however, that constructing both types of the neighbourhood involves deci-

sions on choosing the distance function. In previous considerations Napierala and

60 J. Błaszczyński and J. Stefanowski

Stefanowski have followed results of analyzing different distance metrics [32] and

chose the HVDM metric (Heterogeneous Value Difference Metric) [63]. Its main

advantage for mixed attributes is that it aggregates normalized distances for qualita-

tive and quantitative attributes. In particular, comparing to other metrics, HVDM

provides more appropriate handling of qualitative attributes as instead of simple

value matching, as it makes use of the class information to compute attribute value

conditional probabilities by using a Stanfil and Valtz value difference metric for nom-

inal attributes [63].

More precisely, let x be a seed example and y be another example (potential neigh-

bour). The HVDM is defined over m attributes as

D(x, y) =

√
√
√
√

m
∑

i=1
di(xi, yi)2

All distances for single attributes are normalized in range 0 to 1. If one of the attribute

values of xi, yi is unknown, the distance di is equal to 1. The partial distance for

numeric attributes is defined as a normalized metric (yi − xi). Then, the partial dis-

tance for nominal attributes is defined as:

di(xi, yi) =
{

0 if xi = yi
svdm if xi ≠ xi

Value difference metric svdm is defined as [10]:

svdm =
k
∑

l=1

|
|
|
|

N(xi,Kl)
N(xi)

−
N(yi,Kl)

N(yi)
|
|
|
|

where k is the number of classes, N(xi) and N(yi) are the numbers of examples for

which the value on i-th attribute is equal to xi and yi respectively, N(xi,Kl) and

N(yi,Kl) are the numbers of examples from the decision class Kl, which belong to

N(xi) and N(yi), respectively.

In the next two sub-sections we will discuss more precisely previous proposals of

modeling these two kinds of the neighbourhood (with k-nearest neighbours or kernel

functions) and establishing types of minority class examples [38, 40].

In both cases, deciding about the type of minority examples is based on analyzing

class labels of examples in its neighbourhood.

3.2 Modeling k-Neighbourhood

The k-nearest neighbourhood has been mainly exploited in the previous studies [38,

40, 42] and some applications of this approach to pre-processing [43, 62] or special-

Local Data Characteristics in Learning Classifiers . . . 61

ized ensembles [5]. These authors have aimed at distinguishing whether an example

is safe, borderline, rare or outlier depending on the numbers of examples from minor-

ity vs. majority classes in the considered neighbourhood. As we will also discuss in

the next section, the size neighbourhood k should not be smaller than 5 as it may

poorly distinguish between four types of examples.

In [40] the following rule has been introduced to identify the type of the given

example. If all, or nearly all, its neighbours belong the same (usually minority) class,

this example is treated as the safe example, otherwise it is one of unsafe types. If the

number of both classes inside the k-neighbourhood are quite similar, the example is

treating as borderline one. For an extreme situation—all neighbours belong to the

opposite class it is clearly an outlier. Finally, the examples with one or sometimes

two (for larger sized of the k) neighbours from its class was identified as a rare case.

For the most used size of neighbourhood k = 5, the proportion of neighbours

from the same class against neighbours from the opposite class can range from 5:0

(all neighbours are from the same class as the analyzed example) to 0:5 (all neigh-

bours belong to the opposite class). Depending on this proportion, Napierala and

Stefanowski have proposed to assign the labels to the examples in the following way:

∙ 5:0 or 4:1—an example is labelled as a safe example.

∙ 3:2 or 2:3—a borderline example; Note that although the examples with the pro-

portion 3:2 are still correctly re-classified by its neighbours, the number of neigh-

bours from both classes is approximately the same, so it was assumed that this

example could be located too close to the decision boundary between the classes.

∙ 1:4—labelled as a rare example.

∙ 0:5—an example is labelled as an outlier.

Similar interpretations has been extended for larger values of k. For instance, in

case of k = 7 and the neighbourhood distribution 7:0 or 6:1 or 5:2—a safe example;

4:3 or 3:4—a borderline example; again the number of neighbours from both classes

are approximately the same; 2:5 or 1:6—a rare example; and 0:7—an outlier [38].

Besides using such thresholding, these authors also considered defining the one

coefficient expressing a safe level of the given example x—being an estimator of

conditional probability of its assignment to the minority class as p(Cmin|x) =
kmin

k
,

where Cmin is a minority class, k is the number of neighbours and kmin is the number

of minority class neighbours [42].

3.3 Modeling Kernel Neighborhood

An alternative approach to fixing the number of neighbours is to fix the local area

around the example as it done in kernel approaches—which was discussed in [38]

and studied in [42]. Note that due to the form of the kernel function, different weights

(probabilities) could be assigned to the neighbours, based on their distance from the

analyzed minority example x. Moreover, unlike having always the same number of

examples in the k-neighbourhood modeling, each kernel may cover different number

62 J. Błaszczyński and J. Stefanowski

of examples within a fixed radius which rises wider interpretation of local density

(see our further experimental analysis in Sect. 5.2).

Several kernel functions could be considered—besides the most popular Gaussian

kernel, other triangular or Epanechnikov functions are among common choices. In

this study we have decided to apply Epanechnikov function which is defined as:

K(u) = 3
4
(1 − u2)𝟏

|u|≤1,

where u = di

h
, di is the distance of i-th example (xi) to the considered example x, and

h is bandwidth of the kernel. Epanechnikov kernel is suitable for our purposes since

it takes values 0 when di > h. In this sense, it resembles limits of k-neighbourhood.

Moreover, this property will be very useful inside the procedure for tuning the neigh-

borhood size discussed in Sect. 5.2. The distance di between examples is calculated

according to HVDM metric (see motivations presented in the earlier Sect. 3.1). Given

the definition of the kernel function we estimate a weighted sum of all minority

neighbours, where weights depend on the distance from the analyzed example. Com-

paring it to the weighted sum calculated for the majority class neighbours we can

estimate the probability that the analyzed example x may belong to the minority

class p(Cmin|x).
To assess the type of a minority example, we need to discretize the range of this

value into subintervals. Inspired by earlier research [38], in this paper we proposed

the following rule: if 1 ≥ p(Cmin|x) > 0.7 then label x as safe; if 0.7 ≥ p(Cmin|x) >
0.4 then label x as borderline; if 0.4 ≥ p(Cmin|x) > 0.2 then label x as rare; if 0.2 ≥

p(Cmin|x) > 0 then label x as outlier (we keep this type similarly to earlier name);

if p(Cmin|x) = 0 then label x as a new type called zero. Finally, if there is no other

example inside the neighbourhood of x (even from the opposite majority class), then

label x as a singleton in an empty sub-region (further called simply empty).

Note that this rule is different than the one proposed in [38, 42] as it introduces

two new labels, which allow to better understand types of the kernel neighbourhood

discovered in data.

3.4 Experiences with Analyzing Types of Minority Examples

The previous experiments with modeling k-nearest neighbourhood applied to UCI

imbalanced data sets are described in [38, 42]. They have clearly demonstrated that

most of these real-world data do not include many safe minority examples. They

rather contain all types of examples, but in different proportions. Depending on the

dominating type of identified minority examples, the considered data sets could be

labeled as: safe, border, rare or outlier—which show the level of their potential dif-

ficulty. Moreover, the thesis [38] has shown that the classifier performance could be

related to the category of data. First, for the safe data nearly compared single clas-

sifiers (SVM, RBF, k-NN, decision trees or rules) have achieved good, comparable

Local Data Characteristics in Learning Classifiers . . . 63

prediction results. The larger differentiation among these classifiers has been noticed

for more unsafe data sets (e.g. SVM is worse than k-NN and trees for data with higher

number of rare cases and outliers). The similar analysis has been carried out for the

most representative pre-processing approaches, showing that the competence area

of each method depends on the data difficulty level, based on the types of minority

class examples. For more details see [38, 42].

4 Tuning the Neighbourhood Size

In this paper we focus our interest on tuning the size of the neighborhood with respect

to characteristics of each data set.

4.1 Tuning k Value

In the previous studies Napierala and Stefanowski [38, 40, 42] exploited mainly k
nearest neighbourhood and they showed that values smaller than 5, e.g., k = 1 and

k = 3, may poorly distinguish the type of examples, especially if one wants to assign

them to four types. Too high values, on the other hand, would be inconsistent with the

assumption of the locality of the method (see [42] for more details of the discussion

why the locality is important for analyzing complex minority class distributions in

imbalanced data).

They proposed to set k = 5 as the default value. To check whether this parameter k
could strongly influence the results of labelling minority examples, a special sensitiv-

ity analysis over 26 different data sets was carried out in [42]. Its results have shown

that proportions of identified types of examples are quite stable while changing k
values (between 5 and 13—globally defined for all of these data sets). The recom-

mendation of the smallest value of k has come from the paradigm of the most local

analysis of the complex decision boundaries of the minority class and its sparsity.

Furthermore, the authors pointed out that the parameter k = 5 was recommended for

many related, informed pre-processing methods (see e.g. [9, 31, 55]).

Nevertheless, the idea of tuning of k parameter, for each imbalanced data set indi-

vidually, has not been considered so far. Studying the literature one may find some

positions that consider changing size of neighbourhoods in a standard k-NN classi-

fier for class balanced data. In these works choosing value k is made with respect to

the data set or class cardinality. Refer, e.g., to [17] which recommends approximating

k ≈
√

n, where n is the total number of learning examples. However, we hypothe-

size that in case of imbalanced data n should be rather the size of the minority class.

Other researches have proposed some slightly different approximations. Enas and

Chai [12] postulated to take

k = n2∕8 or k = n3∕8.

64 J. Błaszczyński and J. Stefanowski

See also [16] for a more detailed presentation of similar proposals. Since these

formulas have been designed with typical problems and k-NN classifier in mind,

Napierala and Stefanowski have expressed their doubts whether they can be directly

transferred into a different context of modeling neighborhoods for class imbalanced

data [42].

Here, we share this point of view and we propose a method of tuning k value in

a cross-validation procedure. The important question concerns the choice of opti-

mization criterion for the tuning method. If one refers to the idea of recognizing the

minority class examples as good as possible (which is a key issue in learning from

imbalanced data)—such a criterion may reflect abilities of k neighborhood to cor-

rectly re-classify examples. This idea is consistent with some earlier proposals of

using cross-validation to choose k value which minimize the classification error of a

standard k-NN classifier, as it was argued by Dasarathy [11]. We will describe it in

more detail in Sect. 4.3.

4.2 Tuning Kernel Bandwidth

Modeling neighbourhood with kernels was preliminary discussed in [38, 42] as an

alternative to using k neighbours analysis of imbalanced data. The authors postu-

lated that the Epanechnikov function should be equal to the average distance to the

5th neighbour of each minority example in the data set, as they wanted to keep the

link to their basic k neighbourhood method. Furthermore, in [42] they presented

an comparative experiment of labelling the minority class examples in 26 popular

imbalanced data sets and demonstrated that using the kernel method does not change

the results of k neighbourhood more than by 5–10%.

In this paper we want to consider new approaches for tuning the size of kernel

neighbourhood with respect to each data set. Firstly, note that the kernel analysis is

often related to kernel density estimation, i.e., non-parametric approach to estima-

tion of probability density function, which is one of the most fundamental issues in

statistics [33, 50, 51]. Although there are important differences between the density

estimation and our problem, one can still notice some similarities while calculating

probabilities in considered points of the example space. Recall that exploiting class

probabilities inside the kernel neighbourhood of the seed example x may be equiva-

lent to operating on contribution of neighbours with respect to their kernel distance

to x. It may be also interpreted in the context of the kernel density estimator

̂fh(x) =
1
n

n
∑

i=1
Kh(x − xi),

where n is a number of neighbours xi (or more generally considered data points), Kh
a kernel function with a bandwidth size h.

Local Data Characteristics in Learning Classifiers . . . 65

It is also known that the kernel bandwidth is this parameter which strongly influ-

ences the resulting probability estimate. Its tuning has been already intensively stud-

ied in statistics. The most of approaches attempt to optimize a criterion referring to

the expected L2 risk, which is a kind of the mean integrated squared error between

̂fh(x) − f (x). Although basic formulations involve unknown density function f many

automatic, data-based methods have been developed for selecting the bandwidth h;

for some reviews refer, e.g., to [27].

If Gaussian basis kernel functions are used to approximate univariate data, and

the underlying density being estimated is assumed to be Gaussian, the choice for h
(that is, the bandwidth that minimizes the mean integrated squared error) is often

estimated as

h =
(

4�̂�5

3n

) 1
5

≈ 1.066�̂�n−1∕5.

where �̂� is the standard deviation of the examples in the data. This approximation

is known as Silverman’s rule of thumb [51] and quite often implemented in statis-

tical software. Other bandwidth selection methods were also proposed, for instance

Terrell and Scott proposed oversmoothed density estimates which in case of the stan-

dard Gaussian kernel leads to the oversmoothed bandwidth h = 1.144�̂�n−1∕5. These

considerations could be generalized for the multi-dimensional kernel with H—a

symmetric positive bandwidth matrix [33]. For instance the aforementioned rules

of thumbs are generalized to

hi = �̂�i

(

4
(d + 2)∕n

) 1
d+4

.

Nevertheless, the above tuning methods concern a typical estimation of density

function in the unsupervised setting. Although they are sometimes applied as a kind

of pre-processing inside the supervised classifiers—in particular Bayesian classi-

fiers, see e.g., [34], in our opinion these methods cannot be transferred directly to our

problem of supervised neighbourhood analysis for imbalanced data. However, due

to some similarities, we acknowledge inspiration in specialized density estimation

methods, which are based on cross-validation optimization of Least Squares forms

representing the integrated squared error (ISE) of density functions or, so called,

biased versions [50].

4.3 A New Tuning Method Based on Cross-Validation

Following the critical analysis of tuning k parameter (see Sect. 4.1), and kernel

bandwidth in density estimation (in Sect. 4.2), we propose a simple cross-validation

method to tune both of these parameters. Our motivation is to make use of ability of

neighbourhoods of an example to correctly recognize its class label. Recall that in

66 J. Błaszczyński and J. Stefanowski

learning classifiers from imbalanced data one attempts to improve recognition of the

minority class, so studying the neighborhood from the re-classification perspective

may be connected with this aim.

The tuning method is based on the optimization procedure which scans a value of

neighbourhood parameter (k for k nearest neighbourhood and bandwidth h for kernel

neighbourhood) from a pre-defined set of possible values. In our further experiments,

for the kernel version we will refer these values to the average distances between

minority class examples calculated for a given data set (see Sect. 5.2). However, in

general, they could be other appropriate values. In case of k nearest neighbourhood

we will enumerate k values starting from the smallest possible value.

As the optimization criterion we should choose a measure reflecting ability of

the neighborhoods built on the training examples to recognize the type of the testing

example. In further experiment we have decided to apply popular G-mean measure

as it aggregates re-classifications of examples from both classes.

For a given value of an analyzed parameter (bandwidth h or k) the data set is

split into training and testing parts following the stratified version of cross validation

technique. For each split the following schema is carried out:

∙ For each example from the training part its neighborhood is constructed and tuned

with respect to the given parameter value—its size.

∙ Each example from the testing part is classified by the tuned neighborhood (of the

same size as the optimized parameter).

∙ The classification by the neighbourhood is performed according to highest proba-

bility p(Ci|x) that example x, from the test set may belong to class Ci (for problems

considered in this paper i = {1, 2}, since we have only minority class Cmin, and

majority class Cmaj), estimated according to distribution of classes of examples in

the neighbourhood constructed in the training set.

∙ The value of the optimization criterion is calculated on the basis of how many

examples from a test set are correctly classified by the tuned neighbourhood.

The final value of the optimization criterion comes from averaging over several

folds inside the cross-validation. The cross-validation may be repeated several times

to reduce variance of optimization criterion. The value of the finally chosen neigh-

bourhood parameter that corresponds to the best average optimization criterion is

the result of this tuning method.

5 Experimental Analysis of Data Characteristics

5.1 Experimental Setup

In this section we will carry out two kinds of experiments. Firstly, we will show

how to tune the kernel neighbourhood and k-neighbourhood sizes, i.e., bandwidth h
and k, over different benchmark real-world data sets and synthetic data sets. It should

Local Data Characteristics in Learning Classifiers . . . 67

Table 1 Characteristics of real-world data

Data set # examples # attributes Minority class IR

abalone 4177 8 0–4, 16–29 11.47

breast-cancer 286 9 Recurrence-

events

2.36

car 1728 6 Good 24.04

cleveland 303 13 3 7.66

cmc 1473 9 2 3.42

ecoli 336 7 imU 8.60

haberman 306 4 2 2.78

hepatitis 155 19 1 3.84

scrotal-pain 201 13 Positive 2.41

solar-flare 1066 12 F 23.79

transfusion 748 4 1 3.20

vehicle 846 18 Van 3.25

yeast 1484 8 ME2 28.10

illustrate the usefulness of the method presented in Sect. 4. Secondly, given the tuned

sizes of neighbourhood, we will analyze the internal characteristics of imbalanced

data sets and establish the level of their difficulty (with respect to different types

of minority examples). This part of experiment should show the applicability of the

neighbourhood analysis to recognize the different categories of imbalanced data sets.

Similarly to the related study [42] we will focus our experiments on 13 bench-

mark real-world imbalanced data sets. Their characteristics is presented in Table 1.

We have chosen the data sets which have been often studied in many experimen-

tal studies with imbalanced data. They represent different sizes, imbalance ratios

(denoted by IR), domains and have both continuous and nominal attributes. Follow-

ing the most related results [42] some of these data sets should be easier to learn

standard classifiers while most of them constitute different degrees of difficulties.

Nearly all of benchmark real-world data sets come from the UCI repository.
1

One

data set is medical data set which was used in the earlier works of Stefanowski et

al. on class imbalance.
2

In data sets with more than one majority class, they are

aggregated into one class to have only binary problems, which is also typically done

in the literature.

Furthermore, we have decided to study few synthetic data sets with known data

distribution. We apply a specialized generator for imbalanced data [64] and pro-

duced two different types of data sets. The examples of both minority classes are

generated randomly inside predefined spheres and the majority class examples are

1
http://www.ics.uci.edu/mlearn/MLRepository.html.

2
We are grateful to Prof. W. Michalowski and the MET Research Group from the University of

Ottawa for providing us an access to scrotal-pain data set.

http://www.ics.uci.edu/mlearn/MLRepository.html

68 J. Błaszczyński and J. Stefanowski

uniformly distributed in an area surrounding them. We consider two configurations

of these minority class spheres: called paw and flower—see their 2-D illustrations

at Figs. 1 and 2. In both data sets the global imbalanced ratio IR is equal to 7, and

the total cardinality of examples are 1200 for paw and 1500 for flower always

with three attributes. The minority class is decomposed into 3 sub-parts or 5 sub-

parts. Moreover, each of this data sets has been generated with different numbers of

unsafe examples—which is denoted by four numbers inside the name of data. For

instance flower5-3d-30-40-15-15 means that the generated minority class

should contain approximately 30% of safe examples, 30% inside the class overlap-

ping, 15% rare and 15% outliers.

5.2 Tuning Kernel Bandwidth and k-Neighbourhood

In this experiment we used the method presented in Sect. 4 to tune the best size

of kernels’ bandwidth h and the best value of parameter k representing the number

of nearest neighbours. The results of the tuning on benchmark real-world data are

presented in Table 2, while the results of tuning on synthetic data are presented in

Table 3. The results presented in these tables come from stratified 10-fold cross-

validation averaged 5 times to improve reproducibility and reduce possible variance

of the optimization criterion (here G-mean).

Note that the considered bandwidth h sizes refer to the average distance to k-th

nearest neighbour in the minority class of the given data set. This setting allows us to

obtain more comparable results and make the bandwidth size dependent on the char-

Table 2 Bandwidth h and k tuned on real-world data

Data set Kernel k-NN

Avg. k h G-mean k G-mean

abalone 6.5 0.074 36.679 5 45.547

breast-cancer 8 0.087 52.480 7 57.324

car 8 ≃0 77.265 5 87.627

cleveland 1 0.523 22.190 5 41.997

cmc 1 0.059 47.963 5 58.233

ecoli 7 0.332 76.739 9 80.300

haberman 9 0.328 43.624 5 56.552

hepatitis 6 0.812 65.695 7 71.893

scrotal-pain 8.5 0.408 55.955 9 77.244

solar-flare 1 0.038 27.095 5 50.609

transfusion 3 0.128 53.976 7 60.710

vehicle 8.5 0.516 88.682 5 93.883

yeast 2.5 0.430 34.391 5 60.018

Local Data Characteristics in Learning Classifiers . . . 69

Table 3 Bandwidth h and k tuned on synthetic data

Data set Kernel k-NN

Avg. k h G-mean k G-mean

flower5-3d-10-20-35-35 0.5 0.058 43.199 7 52.549

flower5-3d-100-0-0-0 9 0.077 91.906 9 96.407

flower5-3d-30-40-15-15 2.5 0.103 79.623 9 80.998

flower5-3d-30-70-0-0 9 0.076 89.802 9 96.082

flower5-3d-50-50-0-0 9 0.077 92.757 8 96.506

paw3-3d-10-20-35-35 0.5 0.066 44.088 7 49.319

paw3-3d-100-0-0-0 8.5 0.099 95.425 9 97.067

paw3-3d-30-40-15-15 2 0.113 78.178 7 79.186

paw3-3d-30-70-0-0 9 0.100 90.252 7 93.189

paw3-3d-50-50-0-0 8.5 0.098 92.458 9 95.090

acteristics of each data set that was analyzed. Please note that value of k-neighbour

according to the average distance in the minority class relates to some extend to the

value of k in the other approach based on nearest neighbours. Technically, we con-

sidered values of the kernel bandwidth corresponding to average distance to k-th

neighbour, with k from interval [5, 9] with a basic step 0.5.

We have chosen these values as we wanted to check smaller neighbourhoods,

which was already well motivated in the previous research presented in [42]. In case

of the other approach based on nearest neighbours, we considered only

k = {5, 6, 7, 8, 9} for the same reasons. The choice of k ≥ 5 is motivated here by the

fact that neighbourhoods smaller than 5 do not allow to perform sensible labelling of

example types that we presented in Sect. 5.3. This argument is not viable for average

k values related to the bandwidth size. In Tables 4 and 5, we present an average num-

ber of examples inside the kernel for bandwidths tuned in experiments on real-world

and synthetic data sets, respectively.

Note that average numbers of nearest neighbours in kernels of real-world data

sets, presented in Table 4, are always higher than 5. For synthetic data sets, pre-

sented in Table 5, one can observe that the average number of examples inside ker-

nels is smaller than 3 in case of the most difficult to learn distributions of examples

(data sets: flower5-3d-10-20-35-35, paw3-3d-10-20-35-35). In case

of these two data sets, rare and outlier examples are the most numerous in the minor-

ity class. This result can be explained when we take a look at results from the Table 3.

For these data sets the value of average k is the smallest possible, which means that

it was better to keep the neighbourhood (and the bandwidth) as small as possible to

obtain the best optimization result of G-mean.

A comparison of results obtained with tuning kernels and nearest neighbours vari-

ants, reported in Tables 2, and 3, shows that kernel neighbourhoods works differently

than k nearest neighbourhoods. This observation comes mainly from the comparison

of G-mean values obtained in the tuning process. Regardless whether we compare on

70 J. Błaszczyński and J. Stefanowski

Table 4 Average k (for tuned bandwidth) and average number of examples inside a kernel for

real-world data

Data set Avg. k Avg. n

abalone 6.5 115.04

breast-cancer 8 41.12

car 8 14.39

cleveland 1 18.74

cmc 1 6.96

ecoli 7 25.37

haberman 9 54.25

hepatitis 6 36.69

scrotal-pain 8.5 58.46

solar-flare 1 273.93

transfusion 3 38.55

vehicle 8.5 22.33

yeast 2.5 62.24

Table 5 Average k (for tuned bandwidth) and average number of examples inside a kernel for

synthetic data

Data set Avg. k Avg. n

flower5-3d-10-20-35-35 0.5 3.10

flower5-3d-100-0-0-0 9 12.56

flower5-3d-30-40-15-15 2.5 18.16

flower5-3d-30-70-0-0 9 12.96

flower5-3d-50-50-0-0 9 12.55

paw3-3d-10-20-35-35 0.5 2.88

paw3-3d-100-0-0-0 8.5 12.28

paw3-3d-30-40-15-15 2 15.82

paw3-3d-30-70-0-0 9 14.81

paw3-3d-50-50-0-0 8.5 12.94

real-world or synthetic data sets, k-neighbourhood achieves higher G-mean values

than kernel neighbourhood.

However, one should be careful with drawing conclusions from comparing aver-

age k related to the tuned kernel bandwidth with k tuned directly for nearest neigh-

bours as the kernel approach uses other ranges. Nevertheless, it is visible that higher

values of bandwidths in kernels relate always to higher values of k in nearest neigh-

bours. We can also notice that larger neighbourhoods are selected for easier data

sets.

Local Data Characteristics in Learning Classifiers . . . 71

The size of the kernel bandwidth (the distance values) presented in Tables 2, and 3

is not easy to interpret since it is a value of HVDM metric (please see Sect. 3). Note,

however, that values of the bandwidth on real-world data sets have higher variance

than these observed for synthetic data sets. It seems natural that real-world data sets

should present more variability than synthetic ones.

5.3 Analyzing Types of Minority Examples

In this part experiment, we used the previously tuned bandwidths of kernels and

k-neighbourhoods to label different types of minority class examples in real-world

and synthetic data sets (it is somehow inspired by the earlier analysis in [40]). The

results obtained for benchmark real-world data sets with kernel neighbourhood are

presented in Table 6, and the ones obtained with k-neighbourhood are presented in

Table 7.

Let us first explain differences in the number of example types identified by the

two approaches to model neighbourhoods. Recall that differently than in [42], we

have not applied the same labelling rule and the tuned values of k are different and

vary depending on the given data set (see values of k for k-NN in Table 2 for details).

Instead we used analogous rules, which are formulated according to estimated values

of probability of minority class, for both kernels and k-neighbourhood (please see

Sect. 4 for details).

Table 6 Labelling of minority class examples in real-word data for the tuned bandwidth

Data set Safe [%] Borderline

[%]

Rare [%] Outlier [%] Zero [%] Empty [%]

abalone 4.78 10.15 8.66 70.75 3.58 2.09

breast-

cancer

17.65 18.82 31.76 29.41 1.18 1.18

car 0.00 47.83 43.48 8.70 0.00 0.00

cleveland 2.86 2.86 25.71 42.86 17.14 8.57

cmc 13.81 21.32 24.02 13.21 20.42 7.21

ecoli 5.71 68.57 14.29 5.71 5.71 0.00

haberman 1.23 25.93 39.51 29.63 2.47 1.23

hepatitis 28.12 21.88 3.12 34.38 6.25 6.25

scrotal-pain 15.25 20.34 28.81 22.03 1.69 11.86

solar-flare 4.65 6.98 16.28 65.12 4.65 2.33

transfusion 5.06 38.76 27.53 16.85 6.74 5.06

vehicle 55.78 35.68 5.53 0.00 0.50 2.51

yeast 7.84 11.76 27.45 39.22 9.80 3.92

72 J. Błaszczyński and J. Stefanowski

Table 7 Labelling of minority class examples in real-word data for tuned k
Data set Safe [%] Borderline [%] Rare [%] Outlier [%]

abalone 11.04 8.36 23.58 57.01

breast-cancer 29.41 28.24 29.41 12.94

car 60.87 21.74 13.04 4.35

cleveland 0.00 22.86 17.14 60.00

cmc 23.72 18.32 31.23 26.73

ecoli 28.57 48.57 14.29 8.57

haberman 14.81 29.63 38.27 17.28

hepatitis 43.75 28.12 12.50 15.62

scrotal-pain 38.98 42.37 15.25 3.39

solar-flare 0.00 18.60 32.56 48.84

transfusion 26.97 33.71 15.17 24.16

vehicle 78.89 13.57 6.03 1.51

yeast 15.69 19.61 21.57 43.14

The next important difference comes from the new assumption that the kernel

approach allows us to identify more types of examples. It is clearly visible for the

real-world data sets (see Table 6) which contain minority examples of all six dif-

ferent types. A similar observation is valid for the same data sets analyzed with k-

neighbourhood (in Table 7), although here we distinguish four types. Let us also

note that the results presented in Table 7 correspond well with the previous ones

presented in [42]. Nevertheless, some differences in proportions are visible mostly

for more difficult data sets (e.g., abalone, solar-flare, yeast).

Even though numbers of examples into different types labelled by kernel neigh-

bourhood and k-neighbourhood are not exactly the same, the characteristics of the

particular data sets (i.e. their categorization with respect to dominating types of

minority examples) are generally quite similar. In particular, the highest number of

outliers is discovered for the same data sets: yeast, solar-flare, abalone,

cleveland. The highest number of rare type examples is also discovered for the

same data sets: cmc, breast-cancer (although k-neighbourhood discovers the

same number of safe examples),haberman. The same applies to borderline and safe

examples. The highest number of borderline examples is discovered for data sets:

transfusion, and ecoli. The highest number of safe examples is discovered

by both kernel and k neighbourhood for vehicle. Limited differences in labeling

are observed for few data sets only: hepatitis, scrotal-pain, and car.

One can notice that new types of examples discovered by the kernel neighbour-

hood are present in almost all data sets. There are two exceptions: zero type exam-

ples are not discovered in car; then empty type examples are not found in car,

and ecoli. These type of examples are not dominant in any data set. Since they

reflect poor performance of kernel neighbourhood at estimating probability of minor-

ity class, one should not expect to find a lot of them. Still, relatively high numbers

Local Data Characteristics in Learning Classifiers . . . 73

Table 8 Labelling of minority class examples in synthetic data for tuned bandwidth

Data set Safe

[%]

Borderline

[%]

Rare

[%]

Outlier

[%]

Zero

[%]

Empty

[%]

flower5-3d-10-20-35-35 20.21 22.87 21.28 0.00 35.11 0.53

flower5-3d-100-0-0-0 84.57 14.89 0.53 0.00 0.00 0.00

flower5-3d-30-40-15-15 35.64 34.04 3.19 14.36 12.77 0.00

flower5-3d-30-70-0-0 76.60 23.40 0.00 0.00 0.00 0.00

flower5-3d-50-50-0-0 77.13 22.34 0.53 0.00 0.00 0.00

paw3-3d-10-20-35-35 14.67 20.67 24.67 0.67 36.00 3.33

paw3-3d-100-0-0-0 65.33 34.67 0.00 0.00 0.00 0.00

paw3-3d-30-40-15-15 26.00 42.67 4.67 11.33 15.33 0.00

paw3-3d-30-70-0-0 44.67 52.00 3.33 0.00 0.00 0.00

paw3-3d-50-50-0-0 57.33 40.67 2.00 0.00 0.00 0.00

Table 9 Labelling of minority class examples in synthetic data for tuned k
Data set Safe [%] Borderline [%] Rare [%] Outlier [%]

flower5-3d-10-20-35-35 25.00 5.32 36.17 33.51

flower5-3d-100-0-0-0 87.77 12.23 0.00 0.00

flower5-3d-30-40-15-15 52.66 17.55 17.02 12.77

flower5-3d-30-70-0-0 77.13 22.87 0.00 0.00

flower5-3d-50-50-0-0 90.43 9.57 0.00 0.00

paw3-3d-10-20-35-35 18.00 12.00 34.67 35.33

paw3-3d-100-0-0-0 70.67 29.33 0.00 0.00

paw3-3d-30-40-15-15 54.00 16.00 14.67 15.33

paw3-3d-30-70-0-0 76.00 23.33 0.67 0.00

paw3-3d-50-50-0-0 66.00 34.00 0.00 0.00

of zeros and empty type examples is found in data sets: cleveland and cmc.

Relatively high number of zero examples only is found in yeast. Furthermore, a

relatively high number of empty type examples is found in scrotal-pain. Some

relations between the numbers of discovered zero and empty type examples and the

predictive performance of kernel neighbourhood (in Table 2) can be also observed.

The labeling results obtained for synthetic data sets with kernel neighbourhood

and k-neighbourhood are presented in Table 8 and in Table 9, respectively.

We can conclude that the types of examples injected to synthetic data sets are

rather well discovered by both kernel neighbourhood and k-neighbourhood. Safer

distributions of examples in data sets (without rare and outlier type examples) are

recognized in the best way. There is a tendency to mislabel some of safe examples

as borderline (which could explained for examples located very closed to the deci-

sion boundaries that they are too dominated by neighbors from the opposite class),

74 J. Błaszczyński and J. Stefanowski

however, the reverse tendency (to mislabel borderline as safe) is also observable

(especially for k-neighborhood). Rare and outlier types of examples are much bet-

ter recognized by k-neighborhood than kernel neighborhood. We can hypothesize

that the kernel neighborhood expresses a worrying tendency to discover outliers as

zero type (and also sometimes empty type) examples. This result can be linked to

choosing too small bandwidth by the tuning procedure for difficult distributions of

examples.

To sum up, this kind of labeling analysis shows the usefulness of modeling the

neighborhood to identify the level of difficulty of the studied data set. Generally

speaking, the less safe examples, the more difficult could be the data set. It is also

interesting to notice that most of studied data sets do not contain too many safe exam-

ples. The percentage of rare, outlier or even empty example is quite high for some

of data sets. In particular the kernel analysis may provide more information than k
neighborhood approach due to new types of examples.

6 Improving Pre-processing Techniques
with the Neighbourhood Analysis

One can ask whether the estimation of probability of minority class examples, which

is behind the labelling of minority class, may be useful to improve pre-processing of

imbalanced data sets. Therefore, we compare performance of a standard unprunned

J48 classifier trained on data sets pre-processed according to the neighbourhood

analysis with kernel and k-neighbourhoods against the same classifier trained on

not-processed and randomly over-sampled data sets. The choice of over-sampling is

motivated by its’ ease of implementing as compared to under-sampling.

The proposed over-sampling technique uses probability of the minority class esti-

mated for each of minority class example according to the frequency of examples

in tuned kernel neighbourhood and k neighbourhood (we use the same tuning as

comes from the analysis carried out in Sect. 5.3). The estimated probability is used

as a weight of example in the sampling procedure. The difference with respect to

the neighbourhood analysis is that, since we apply over-sampling, we want difficult

examples (thus, having low value of the probability) to be more represented in the

over-sampled data set than safe ones. To achieve this result we simply use inverse of

the probability as the weight and replicate them proportionally to this value. In gen-

eral, we want to achieve approximately balanced classes, so we estimate the global

number of need copies and divide this number among all minority examples with

respect to their weights.

Classification performance of J4.8 with pre-processing technique is measured

by standard measures such as G-mean and sensitivity. G-mean results are presented

in Tables 10, and 11, for real-world, and synthetic data sets, respectively.

G-mean classification results on real-world data sets show rather limited influ-

ence of the proposed pre-processing on predictive performance. In general, one

Local Data Characteristics in Learning Classifiers . . . 75

Table 10 G-mean [%] for unprunned J48 learned on base (original) and over-sampled real-world

data

Data set Base Random Kernel k-NN

abalone 53.790 60.198 60.802 60.481

breast-cancer 56.495 68.139 68.764 68.791

car 89.851 90.356 90.157 89.681

cleveland 48.984 56.570 50.365 51.716

cmc 56.706 64.142 64.541 64.494

ecoli 70.489 74.011 74.080 74.401

haberman 56.060 54.559 57.394 56.492

hepatitis 63.136 72.058 66.507 68.809

scrotal-pain 69.563 70.570 70.313 71.781

solar-flare 44.249 44.522 42.867 44.110

transfusion 60.018 56.071 56.456 56.564

vehicle 91.929 94.405 93.912 92.609

yeast 54.564 53.735 55.535 57.219

Table 11 G-mean [%] for unprunned J48 learned on base and over-sampled synthetic data

Data set Base Random Kernel k-NN

flower5-3d-10-20-35-35 0.000 39.627 38.835 38.426

flower5-3d-100-0-0-0 89.410 88.692 87.245 88.190

flower5-3d-30-40-15-15 72.924 72.281 70.576 73.215

flower5-3d-30-70-0-0 87.205 87.496 86.000 85.125

flower5-3d-50-50-0-0 90.530 89.306 89.834 88.442

paw3-3d-10-20-35-35 0.000 33.252 34.634 33.474

paw3-3d-100-0-0-0 88.205 89.231 89.894 88.192

paw3-3d-30-40-15-15 71.320 73.613 74.417 74.074

paw3-3d-30-70-0-0 88.491 85.650 86.153 84.993

paw3-3d-50-50-0-0 89.499 87.421 86.449 86.088

can observe improvements for several difficult data sets: yeast, haberman, then

smaller improvements are also noted for: abalone, breast-cancer, and

ecoli. For safer data sets like: vehicle, car one may expect that no over-

sampling (base) or random over-sampling may be sufficient solutions (i.e., they may

perform better). Then, we acknowledge that no oversampling is best performing

on transfusion. Moreover, random over-sampling works best on two data sets:

solar-flare, and cleveland.

The results on synthetic data sets also show no significant improvement when

kernel and k-neighborhood over-sampling is applied. Better performance in com-

parison to random over-sampling and no over-sampling (base) can be observed on

76 J. Błaszczyński and J. Stefanowski

some more difficult distributions. Sensitivity results confirm the observations made

with respect to G-mean. Thus, we do not include tables with these results due to the

page limits.

More encouraging results have been obtained for modifications of SMOTE, in

particular the recent proposal called Local Neighbourhood extension of SMOTE

(briefly LN-SMOTE) which is inspired by the analyzing local data characteristics

of the minority examples [37]. Its comparative study against basic SMOTE and two

other related generalizations applied with 3 different classifiers (J48, Naive Bayes

and k-NN) showed that it improved G-mean and F-measure on several of real world

data sets. Yet another modifications of SMOTE with respect to individual difficulty

weights of examples has been also considered in [43].

7 Neighbourhood Based Ensembles

Ensembles are another kind of methods which could be improved by the neighbour-

hood analysis. The current proposals of ensembles dedicated to class imbalanced

data are mainly extensions of known strategies as bagging, boosting or random trees.

They usually either employ pre-processing methods before learning component clas-

sifiers or embed the cost-sensitive framework in the ensemble learning process; see

their review in [14]. Previous comparative studies, such as [4, 14], have showed

that extensions of bagging ensembles are quite promising. The most popular exten-

sions pre-process bootstrap samples by under-sampling the majority class or over-

sampling the minority class to obtain a balance of class cardinalities in each boot-

strap sample. Roughly Balanced Bagging (RBBag), which is a kind of specialized

under-sampling approach leads to best improvements [30, 54].

In this section we want to show that using the neighbourhood based approach to

change distributions of minority class examples in bootstrap samples may improve

performance of bagging ensemble classifiers and result in solutions being competi-

tive to Roughly Balanced Bagging.

We focus on k-neighbourhoods in bagging ensembles, since they proved to bet-

ter render the distribution of minority class examples in Sect. 5.2. Moreover, they

have been already successfully integrated in the Neighbourhood Balanced Bag-

ging (NBBag), which we have proposed [5].

Neighbourhood Balanced Bagging is based on a different principle than all known

bagging extensions for class imbalance. First, instead of integrating bagging with

pre-processing, it keeps the standard bagging idea. What changes are probabilities

of sampling examples to bootstraps. The chance of drawing minority examples is,

sometimes radically, amplified (which is controlled by a special hyper-parameter 𝜓).

Furthermore, the amplification depends on the type of difficulty of minority example

identified according to its k-neighbourhood.

We have already shown that NBBag works in both types of bagging general-

izations: over-sampling and under-sampling [5]. In first type of generalization, it is

similar to over-sampling minority class examples into bootstraps, however, at the

Local Data Characteristics in Learning Classifiers . . . 77

same time, the probabilities of drawing majority class examples are decreased. The

size of bootstrap is kept the same as the size of the original learning set. The second

type is inspired by under-sampling generalizations, which predicts better than over-

sampling generalizations [5]. The probabilities of drawing minority class examples

are increased, while probabilities of drawing majority class examples are decreased.

Most of the extensions of bagging for imbalanced data are non-parametric [6].

They do not introduce any new parameters, which need to be adjusted during con-

struction of an ensemble of classifiers. On the one hand, one can argue that bagging

itself is a parametric method since the adequate size of the ensemble for a given prob-

lem is not known a priori. The size of the ensemble is a parameter, which may influ-

ence the performance of each of the considered extensions. On the other hand, fix-

ing this parameter enables comparison of ensembles of the same size, which should

allow to distinguish ones which perform better than the others under the same con-

ditions.

Different types of parameters are introduced in NBBag [5] to control the char-

acteristics of neighbourhood: size of neighbourhood k, and amplification factor 𝜓 .

In the experiments comparing NBBag to other bagging extensions presented in [5]

these two parameters were carefully selected to provide the best average perfor-

mance. The previous tuning of these parameters was made post-hoc, i.e., first results

were obtained for a number of promising pairs of parameter values and then the

best values were chosen. On the other hand, we need to look for more appropri-

ate approaches to tune these parameter inside learning an ensemble rather than in a

post-hoc way.

Tuning of such model parameters is a known problem in machine learning [18].

However, to our best knowledge, this problem has drawn rather limited attention in

the context of learning ensembles from imbalanced data. Class imbalance may limit

using some more advanced parameter tuning techniques. To put it simply, minority

class examples are to valuable to spare them for tuning purposes only, while majority

class examples are not. Following this observation, we investigate a basic technique

taken from tree learning. In the same way as reduced-error pruning uses training

data [47], we divide training data set into two stratified samples. The first sample is

used for training NBBag models and the second one to validate the trained models.

After the best parameters are selected, NBBag classifier is constructed on the whole

training set. Contrary to what was presented in [5], this technique does not allow to

distinguish best values of parameters for all data sets nor even for one data set when

learning of a classifier is repeated, as e.g., in cross-validation. Tuning of parameters

is performed independently for each constructed component classifier.

In the following, we present performance of two variants of Neighbourhood Bal-

anced Bagging: under-sampling (uNBBag) and over-sampling (oNBBag) with tun-

ing of k and 𝜓 parameters among a limited set of values (small k, and limited amplifi-

cation of examples weight represented by 𝜓—please consult [6] for details). Tuning

of best parameter values is performed on 2∕3 of the training set. The remaining 1∕3
of training set is used for the validation.

Now we experimentally compare classification performance of uNBBag and

oNBBag to Exactly Balanced Bagging (EBBag) [23], Over-Bagging (OverBag) [58],

78 J. Błaszczyński and J. Stefanowski

Table 12 G-mean [%] of NBBag and other bagging ensembles on real-world data

Data set EBBag OverBag uNBBag oNBBag RBBag

abalone 78.845 69.230 79.517 78.706 79.035

breast-cancer 58.175 60.718 58.465 58.795 60.091

car 96.668 96.959 96.356 96.851 96.568

cleveland 73.628 51.629 73.260 66.754 71.130

cmc 64.191 61.036 65.051 63.787 65.350

ecoli 88.178 83.896 88.435 85.380 88.430

haberman 64.144 63.329 63.742 61.779 63.533

hepatitis 79.137 75.816 78.035 74.762 79.457

scrotal-pain 73.679 74.038 72.923 71.997 75.618

solar-flare 83.710 64.649 83.149 79.994 83.421

transfusion 66.607 67.748 66.449 66.476 67.143

vehicle 95.038 94.934 95.440 95.115 95.417

yeast 84.018 63.167 84.475 79.557 85.016

and Roughly Balanced Bagging (RBBag) [22]. The size of ensembles is fixed to 50

components, J48 with exactly the same parameters as in Sect. 6 is used as compo-

nent classifier. We restrict our comparison to real-world data sets only.

The results of G-mean and sensitivity are presented in Tables 12 and 13, respec-

tively. These results were estimated by a stratified 10-fold cross-validation repeated

ten times to reduce the variance of measures.

Looking at both Tables 12 and 13, one can notice that uNBBag and RBBag stand

out as the best performing classifiers. Another observation is that over-sampling

extensions of bagging, represented by OverBag and oNBBag, provide worse perfor-

mance that under-sampling extensions. When we compare G-mean performance of

ensemble classifiers to performance of over-sampled single classifiers (see Table 10)

it is clear that ensembles provide better performance except for breast-cancer,

where ensembles are only better than single classifier trained on not pre-processed

data (i.e., base). A more detailed comparison on G-mean shows that RBBag and

uNBBag does not perform best only in case of some relatively safe data sets like:

car (both classifiers), scrotal-pain (uNBBag) or more difficult breast-
cancer (uNBBag), and cleveland (RBBag).

With respect to values of sensitivity (Table 13) uNBBag and EBBag are clearly

the best performing classifiers. uNBBag provides the best recognition of the minority

class in case of almost all of considered real-world data sets.

This analysis of classification performance of bagging extensions leads to con-

clusions, which are concordant with the ones presented in [5] and in [6]. RBBag and

uNBBag are identified as two outstanding alternatives. Moreover, an exploitation of

a relatively simple parameter tuning technique, including a dynamic adaptation of

the neighborhood size, allowed us to obtain quite satisfactory predictive performance

of NBBag.

Local Data Characteristics in Learning Classifiers . . . 79

Table 13 Sensitivity [%] of NBBag and other bagging ensembles on real-world data

Data set EBBag OverBag uNBBag oNBBag RBBag

abalone 80.925 51.224 80.776 75.851 77.045

breast-cancer 63.412 54 65.176 59.059 58.471

car 100 95.652 100 95.942 100

cleveland 80.286 30.571 79.143 63.429 69.143

cmc 70.240 50.721 68.739 63.423 64.685

ecoli 92 76 92 84 90.571

haberman 56.914 59.136 63.827 66.543 55.802

hepatitis 83.438 67.188 79.062 69.688 77.500

scrotal-pain 76.271 70.169 76.441 73.051 75.763

solar-flare 88.140 46.977 86.744 81.395 85.581

transfusion 66.517 61.236 72.697 67.753 65.674

vehicle 97.236 94.523 97.286 95.477 96.935

yeast 91.765 40.980 90.392 73.529 88.431

8 Extensions of the Neighbourhood Analysis

In this section we briefly point out potential extensions of the neighbourhood

approaches which may be useful for some applications—although they are not stud-

ied in this paper. We focus our attention on the following three issues:

Identification of Class Decomposition into Sub-concepts
The discussed neighbourhood analysis may approximate some data difficulty factors

only. In particular, it does not directly identify a decomposition of the minority class

into sub-concepts. As it was discussed in the Sect. 2.1 research of Japkowicz and her

collaborators on within-class imbalance showed that increasing the number of the

sub-concepts decreased classification performance more than increasing the global

imbalance ratio between class imbalance [24, 26]. The comprehensive summary of

other studies on the role of such class decomposition is presented in [53].

The open question is how to automatically identify such sub-concepts in real-

world data sets. In cluster-oversampling proposal, Japkowicz applied k-means clus-

tering algorithm to examples from each class separately [44]. However, it is nec-

essary to estimate the unknown number of expected clusters or to choose an opti-

mization criterion (the most popular criteria are not defined for the context of imbal-

anced data). Moreover, these kinds of algorithms are not appropriate for dealing with

complex decision boundaries or outlier examples. In our opinion there is a need for

developing a new kind of a semi-supervised algorithm (where it is necessary to deal

with presence of minority vs. majority examples inside clusters).

Highly-Dimensional Data Sets
The presented approach uses HVDM metric to calculate distances between exam-

ples. Similarly to using Euclidean metric in most of pre-processing methods it is

80 J. Błaszczyński and J. Stefanowski

more suitable for problems with relatively small or medium number of attributes.

On the other hand, highly dimensional data sets may occur in image analysis, bio-

medical data analysis, genetics or other fields. The use of such dissimilarity mea-

sures and k-nearest neighbor principle on such data sets may suffer from the curse of

dimensionality as it has been recently showed by Tomasev’s research on, so called,

hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor

classification [57].

Recall that this problem is also a challenge for standard learning of classifiers as

it increases risks of over-fitting as well as spurious findings. However, considering

it with class-imbalanced predictions presents an additional source of difficulties, as

it biases classification towards majority class for most classifiers (see, e.g., experi-

mental analyses from [3, 30]). In standard balanced classification feature selection

or projections techniques, such as: SVD or PCA, are often applied to enhance pre-

dictive performance. Even though these methods have been extensively studied, they

mey be too biased toward majority class. Although, some new class imbalance tech-

niques have been recently introduced [35], we postulate still more research also in

the context of an identification of types of examples.

Multiple Imbalanced Classes
A binary classification task is mostly studied in case of imbalanced data. This for-

mulation is justified by focus an interest on the most important class and real-world

semantics, like in medical diagnosis (distinguishing sick vs. healthy patients). On

the other hand, in some situations it may be reasonable to distinguish more classes

with low cardinalities [59].

Considering multiple minority classes makes the learning task more difficult as

relations between particular classes become more complex [59]. Internal data dis-

tributions or decision boundaries will be different than in case when some classes

are aggregated. Techniques developed for binary imbalanced problems are usually

not directly applicable to multi-class problems. Quite often they lose performance

on one class while trying to gain it on another. A brief review of current specialized

techniques is available in [49].

We could ask a question on possible generalizations of the neighbourhood analy-

sis for more than one minority class. Although it has not been studied yet, two direc-

tions could be considered. Either one can decompose the multi-class imbalanced

data set to a set of binary problems—one minority class vs. all other classes; con-

sider them independently and somehow aggregate results. According to [28] it is a

dominating strategy in specialized ensembles, see e.g., [13].

However, in such decomposition of the multiple imbalanced classes, pairwise

relations between two classes may be too strongly over-simplified and they do not

reflect more complex relations/interactions between several of classes, as one class

influences several neighboring classes at the same time. Therefore, it may be more

interesting to consider interaction of examples from various minority classes while

defining types of examples or exploiting other information from the neighbourhood

analysis—however, it is still a topic for further research.

Local Data Characteristics in Learning Classifiers . . . 81

9 Final Remarks

In this paper we follow earlier research on studying the internal characteristics of

class imbalanced data and its consequences for difficulties while learning classifiers.

We share opinions of researches [15, 25, 26, 36] who showed that the high imbalance

ratio between the minority and majority classes (measured on the global level of the

data) is not the only and not even the main reason of these difficulties. Other data

difficulty factors, such as decomposition of the minority class into many rare sub-

concepts, the effect of too strong overlapping between the classes or a presence of

too many minority examples inside the majority class region, referring to more local

characteristics of class distributions, are more influential.

Our current study on these local data characteristics and difficulties goes along

research lines introduced by Napierala and Stefanowski in [40, 42]. They have pro-

posed to capture the aforementioned data difficulty factors by considering the local

characteristics of learning examples from the minority class and by an identification

of four basic types of examples: safe, borderline, rare case and outlier. It has been

achieved by analyzing the class distribution of examples from different classes inside

a local neighborhood of the considered example which could be modeled either by

means of k-neighbours or kernels.

As the tuning the size of these two kinds of neighbourhoods with respect to char-

acteristics of given data sets have not been sufficiently studied yet, the first contri-

bution of this paper is discussing tuning methods. In our opinion simple rules of

thumb are simply not suitable. We have rather promoted tuning bandwidth of a ker-

nel neighbourhood or number k of nearest neighbours using the adapted version of

cross validation optimization methods.

Results of many experiments presented in Sect. 5 have confirmed usefulness of

these tuning methods. Moreover, they were sufficiently consistent with earlier results

of establishing categories of data set difficulty with respect to dominating types of

minority class examples [40, 42]. However, unlike the earlier studies, in this paper

we have managed to find an individual size of neighbourhood for each data sets.

A general observation is that this size is larger for easier imbalanced data while it

becomes smaller for data sets treated as more difficult to be learned.

The other contribution of the current paper is to promote incorporating the results

of analyzing this neighbourhood of minority class examples in construction of new

methods for learning classifiers from imbalanced data. We have “implemented” this

postulate by considering two main categories of methods specialized for imbal-

anced data: (1) the most popular over-sampling and (2) the generalization of bagging

ensembles which incorporates the results of an analyzing the local neighbourhood

to re-sample examples into bootstrap samples.

The experiments presented in Sect. 7 have demonstrated that Nearest Balanced

Bagging in the version of under-sampling with local tuning the size of neighbour-

hoods and the level of re-sampling achieved the best predictive results. Furthermore,

experiments presented in Sects. 5.2, and 6 have shown that the k nearest neighbours

variant has led to better predictions than the kernel neighbourhood. On the other

82 J. Błaszczyński and J. Stefanowski

hand, the kernel analysis allows to identify new types of minority class examples:

singletons in empty sub-regions (which is an extreme rarity situation being different

to single examples surrounded by k-neighbours from opposite classes—this exten-

sion may be valuable in studying medical complex data with many untypical cases

of disease, see [45]).

Issues of dealing with the local characteristics of imbalanced data may still open

several lines of future research. Besides already mentioned semi-supervised cluster-

ing for detecting small disjuncts, re-considering the neighbourhood based methods

in highly dimensional spaces or multi-class imbalanced problems one could look for

other tasks such as:

∙ Other, more sophisticated proposals of dynamic re-sampling (also under-sampling)

of both classes with respect to identified different, local characteristics of sub-

regions of imbalanced data.

∙ Considering a new type of cost-sensitive re-sampling where costs of misclassifica-

tion between classes will be taken into account while defining types of the minority

examples; Then, the cost post-posterior probability should be joined together with

an estimation of different density of examples in various sub-regions.

∙ Studying differences between outliers and real noise in imbalanced data; detecting

them, developing a new method for dealing with such noisy examples.

∙ Exploiting information about types of examples in modifications of other algo-

rithms, see e.g., promising results of the rule induction algorithm, called BRACID

[41].

∙ Studying imbalanced data streams affected by concept drifts, i.e., changes in def-

initions of target classes over time [65]; In particular, recent studies have shown

needs for developing new kinds of ensembles for the imbalanced and evolving

data streams.

Acknowledgements The research was funded by the the Polish National Science Center, grant

no. DEC-2013/11/B/ST6/00963. Close co-operation with Krystyna Napierala in research on mod-

eling types of examples and with Mateusz Lango in research on ensemble models is also acknowl-

edged.

References

1. Aggarwal, C.C. (Ed.): Data Classification: Algorithms and Applications. Chapman &

Hall/CRC (2015)

2. Batista, G., Prati, R., Monard, M.: A study of the behavior of several methods for balancing

machine learning training data. ACM SIGKDD Explor. Newslett. 6(1), 20–29 (2004)

3. Blagus, R., Lusa, L.: Class prediction for high-dimensional class-imbalanced data. BMC

Bioinf. 11, 523 (2010)

4. Błaszczyński, J., Stefanowski, J., Idkowiak, L.: Extending bagging for imbalanced data. In:

Proceedings of the 8th CORES 2013. Springer Series on Advances in Intelligent Systems and

Computing, vol. 226, pp. 269–278 (2013)

5. Błaszczyński, J., Stefanowski, J.: Neighbourhood sampling in bagging for imbalanced data.

Neurocomputing 150 A, 184–203 (2015)

Local Data Characteristics in Learning Classifiers . . . 83

6. Błaszczyński, J., Lango, M.: Diversity analysis on imbalanced data using neighbourhood and

roughly balanced bagging ensembles. In: Proceedings of ICAISC 2016. Lecture Notes in Com-

puter Science, vol. 9692, pp. 552–562 (2016)

7. Branco, P., Torgo, L., Ribeiro, R.: A survey of predictive modeling under imbalanced distrib-

utions. ACM Comput. Surv. (CSUR) 49(2), 31:1–31:50 (2016)

8. Chawla, N.: Data mining for imbalanced datasets: an overview. In: Maimon O., Rokach L.

(eds.) The Data Mining and Knowledge Discovery Handbook, pp. 853–867. Springer (2005)

9. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling

technique. J. Artif. Intell. Res. 16, 341–378 (2002)

10. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic fea-

tures. Mach. Learn. J. 10(1), 1213–1228 (1993)

11. Dasarathy, B.V.: NN concepts and techniques: an introductory survey. In: Nearest Neighbor

Norms, NN Pattern Classification Techniques, pp. 1–30. IEEE Press (1991)

12. Enas, G., Chai, S.: Choice of the smoothing parameter and efficiency of the k-nearest neighbour

classification. Comput. Math. Appl. 12, 308–317 (1986)

13. Fernandez, A., Lopez, V., Galar, M., Jesus, M., Herrera, F.: Analysis the classification of imbal-

anced data sets with multiple classes, binarization techniques and ad-hoc approaches. Knowl.

Based Syst. 42, 97–110 (2013)

14. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for

the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans.

Syst. Man Cybern. Part C: Appl. Rev. 99, 1–22 (2011)

15. Garcia, V., Sanchez, J.S., Mollineda, R.A.: An empirical study of the behaviour of classifiers

on imbalanced and overlapped data sets. In: Proceedings of Progress in Pattern Recognition,

Image Analysis and Applications 2007. LNCS, vol. 4756, pp. 397–406. Springer (2007)

16. Gatnar, E.: Multimodel Approach to Discrimination and Regression Issues. PWN Warszawa

(2008) (in Polish)

17. Goldstein, M.: Kn-nearest neighbour classification. IEEE Trans. Inf. Theory 627–630 (1972)

18. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: beyond the Bayesian/frequentist

divide. J. Mach. Learn. Res. 11, 61–87 (2010)

19. Han, H., Wang, W., Mao, B.: Borderline-SMOTE: a new over-sampling method in imbalanced

data sets learning. In: Proceedings of ICIC. LNCS, vol. 3644, pp. 878–887. Springer (2005)

20. He, H., Yungian, M. (eds): Imbalanced Learning. Foundations, Algorithms and Applications.

IEEE, Wiley (2013)

21. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Data Knowl. Eng. 21(9),

1263–1284 (2009)

22. Hido S., Kashima H.: Roughly balanced bagging for imbalance data. In: Proceedings of the

SIAM International Conference on Data Mining, pp. 143–152 (2008). An Extended Version

in Statistical Analysis and Data Mining, vol. 2, no. 5–6, pp. 412–426 (2009)

23. Hoens, T., Chawla, N.: Generating diverse ensembles to counter the problem of class imbal-

ance. Proc. PAKDD 2010, 488–499 (2010)

24. Japkowicz, N.: Concept-learning in the presence of between-class and within-class imbalances.

In: Proceedings of Canadian Conference on AI, vol. 2001, pp. 67–77 (2001)

25. Japkowicz, N., Stephen, S.: Class imbalance problem: a systematic study. Intell. Data Anal. J.

6(5), 429–450 (2002)

26. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explor.

Newslett. 6(1), 40–49 (2004)

27. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density

estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)

28. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog.

Artif. Intell. 5(4), 221–232 (2016)

29. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-side selection.

In: Proceedings of the 14th International Conference on Machine Learning ICML-97, pp. 179–

186 (1997)

84 J. Błaszczyński and J. Stefanowski

30. Lango, M., Stefanowski, J.: The usefulness of roughly balanced bagging for complex and high-

dimensional imbalanced data. In: Proceedings of International ECML PKDD Workshop on

New Frontiers in Mining Complex Patterns NFmCP 2015. LNAI 9607, pp. 93–107. Springer

(2015)

31. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribu-

tion. Tech. Report A-2001-2, University of Tampere (2001)

32. Lumijarvi, J., Laurikkala, J., Juhola, M.: A comparison of different heterogeneous proxim-

ity functions and Euclidean distance. Stud. Health Technol. Inform. 107(Part 2), 1362–1366

(2004)

33. Ledl, T.: Kernel density estimation: theory and application in discriminant analysis. Austrian

J. Stat. 33(3), 267–279 (2004)

34. Liu, B., Yang, Y., Webb, GT., Boughton, J.: A comparative study of bandwidth choice in kernel

density estimation for Naive Bayesian classiffication. In: Proceedings of the 13th Pacific-Asia

Conference on Advances in Knowledge Discovery and Data Mining, PAKDD ’09. LNCS, vol.

5476, pp. 302–313. Springer (2009)

35. Lin, W., Chen, J.: Class-imbalanced classifiers for high-dimensional data. Brief. Bioinform.

14(1), 13–26 (2013)

36. Lopez, V., Fernandez, A., Garcia, S., Palade, V., Herrera, F.: An insight into classification with

imbalanced data: empirical results and current trends on using data intrinsic characteristics.

Inf. Sci. 257, 113–141 (2014)

37. Maciejewski, T., Stefanowski, J.: Local neighbourhood extension of SMOTE for mining imbal-

anced data. In: Proceedings of IEEE Symposium on Computational Intelligence and Data Min-

ing, pp. 104–111 (2011)

38. Napierala, K.: Improving rule classifiers for imbalanced data. Ph.D. Thesis. Poznan University

of Technology (2013)

39. Napierala, K., Stefanowski, J., Wilk, Sz.: Learning from imbalanced data in presence of noisy

and borderline examples. In: Proceedings of 7th International Conference on RSCTC 2010.

LNAI, vol. 6086, pp. 158–167. Springer (2010)

40. Napierala, K., Stefanowski, J.: The influence of minority class distribution on learning from

imbalance data. In: Proceedings of 7th Conference on HAIS 2012. LNAI, vol. 7209, pp. 139–

150. Springer (2012)

41. Napierala, K., Stefanowski, J.: BRACID: a comprehensive approach to learning rules from

imbalanced data. J. Intell. Inf. Syst. 39(2), 335–373 (2012)

42. Napierala, K., Stefanowski, J.: Types of minority class examples and their influence on learning

classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3), 563–597 (2016)

43. Napierala, K., Stefanowski, J., Trzcielinska, M.: Local characteristics of minority examples in

pre-processing of imbalanced data. In: Andreasen, T., et al. (eds.) Proceedings of ISMIS 2014.

LNAI, vol. 8502, pp. 123–132. Springer (2014)

44. Nickerson, A., Japkowicz, N., Milios, E.: Using unsupervised learning to guide re-sampling in

imbalanced data sets. In: Proceedings of the 8th International Workshop on Artificial Intelli-

gence and Statistics, pp. 261–265 (2001)

45. Niemann, U., Spiliopoulou, M., Volzke, H., Kuhn, J.P.: Subpopulation discovery in epidemio-

logical data with subspace clustering. Found. Comput. Decis. Sci. 39(4), 271–300 (2014)

46. Prati, R., Batista, G., Monard, M.: Class imbalance versus class overlapping: an analysis of a

learning system behavior. In: Proceedings of 3rd Mexican International Conference on Artifi-

cial Intelligence, pp. 312–321 (2004)

47. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo,

CA (1993)

48. Saez, J., Luengo, J., Stefanowski, J., Herrera, F.: Addressing the noisy and borderline examples

problem in classification with imbalanced datasets via a class noise filtering method-based re-

sampling technique. Inf. Sci. 291, 184–203 (2015)

49. Seaz, J., Krawczyk, B., Wozniak, M.: Analyzing the oversampling of different classes and types

in multi-class imbalanced data. Pattern Recogn. 57, 164–178 (2016). doi:10.1016/j.atcog.2016.

03.012

http://dx.doi.org/10.1016/j.atcog.2016.03.012
http://dx.doi.org/10.1016/j.atcog.2016.03.012

Local Data Characteristics in Learning Classifiers . . . 85

50. Sheather, S.J.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)

51. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC

(1986)

52. Stefanowski, J.: Overlapping, rare examples and class decomposition in learning classifiers

from imbalanced data. In: Ramanna, S., Jain, L.C., Howlett, R.J. (eds.) Emerging Paradigms

in Machine Learning, pp. 277–306 (2013)

53. Stefanowski, J.: Dealing with data difficulty factors while learning from imbalanced data. In:

Mielniczuk, J., Matwin, S. (eds.) Challenges in Computational Statistics and Data Mining, pp.

333–363. Springer (2016)

54. Stefanowski, J.: On properties of under-sampling bagging and its extensions for imbalanced

data. In: Proceedings of the 9th International Conference on Computer Recognition Systems

CORES 2015, pp. 407–417. Springer (2016)

55. Stefanowski, J., Wilk, Sz.: Selective pre-processing of imbalanced data for improving classi-

fication performance. In: Proceedings of the 10th International Conference on DaWaK 2008.

LNCS, vol. 5182, pp. 283–292. Springer (2008)

56. Sun, Y., Wong, A., Kamel, M.: Classification of imbalanced data: a review. Int. J. Pattern

Recogn. Artif. Intell. 23(4), 687–719 (2009)

57. Tomasev, N., Mladenic, D.: Class imbalance and the curse of minority hubs. Knowl.-Based

Syst. 53, 157–172 (2013)

58. Wang, S., Yao, T.: Diversity analysis on imbalanced data sets by using ensemble models. In:

Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, pp. 324–

331 (2009)

59. Wang, S., Yao, X.: Mutliclass imbalance problems: analysis and potential solutions. IEEE

Trans. Syst. Man Cybern. Part B 42(4), 1119–1130 (2012)

60. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newslett. 6(1),

7–19 (2004)

61. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution

on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

62. Wilk, S., Stefanowski, J., Wojciechowski, S., Farion, K.J, Michalowski, W.: Application of

preprocessing methods to imbalanced clinical data: an experimental study. In: Pietka E. (ed.)

Information Technologies in Medicine, pp. 503–515. Springer (2016)

63. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res.

6, 1–34 (1997)

64. Wojciechowski, S., Wilk, Sz.: Difficulty Factors and Preprocessing in Imbalanced Data Sets:

An Experimental Study on Artificial Data. Found. Comput. Decis. Sci. 42(2), 149–176 (2017)

65. Zliobaite, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkow-

icz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. Springer

Studies in Big Data Series, pp. 91–11 (2016)

Dimensions of Semantic Similarity

Paweł Szmeja, Maria Ganzha, Marcin Paprzycki
and Wiesław Pawłowski

Abstract Semantic similarity is a broad term used to describe many tools, mod-

els and methods applied in knowledge bases, semantic graphs, text disambiguation,

ontology matching and more. Because of such broad scope it is, in a “general” case,

difficult to properly capture and formalize. So far, many models and algorithms have

been proposed that, albeit often very different in design and implementation, pro-

duce a single score (a number) each. These scores come under the single term of

semantic similarity. Whether one is comparing documents, ontologies, entities, or

terms, existing methods often propose a universal score—a single number that “cap-

tures all aspects of similarity”. In opposition to this approach, we claim that there

are many ways, in which semantic entities can be similar. We propose a division

of knowledge (and, consequently, similarity) into categories (dimensions) of seman-

tic relationships. Each dimension represents a different “type” of similarity and its

implementation is guided by an interpretation of the meaning (semantics) of that

similarity score in a particular dimension. Our proposal allows to add extra infor-

mation to the similarity score, and to highlight differences and similarities between

results of existing methods.

P. Szmeja ⋅ M. Ganzha ⋅ M. Paprzycki ⋅ W. Pawłowski

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

e-mail: Pawel.Szmeja@ibspan.waw.pl

M. Ganzha (✉)

Warsaw University of Technology, Warsaw, Poland

e-mail: Maria.Ganzha@ibspan.waw.pl

M. Paprzycki

Warsaw Management Academy, Warsaw, Poland

e-mail: Marcin.Paprzycki@ibspan.waw.pl

W. Pawłowski

Faculty of Mathematics, Physics, and Informatics,

University of Gdańsk, Gdańsk, Poland

e-mail: Wieslaw.Pawlowski@inf.ug.edu.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_3

87

88 P. Szmeja et al.

1 Introduction

Semantic similarity, understood broadly, has been applied in very different fields

such as psychology, linguistics, biology, knowledge modeling, artificial intelligence,

and others. Even though, in our work, we focus on computer science (and mathemat-

ics), the understanding of similarity in any domain is influenced by other domains.

Within the scope of computer science there are many areas of interest for similar-

ity scoring, such as graphics (e.g. face recognition), information retrieval, machine

learning, etc. In this context, semantic similarity algorithms are focused mostly on

computational linguistics and semantic reasoning, each with multiple applications.

The most popular direct areas of application are ontology matching and document

(i.e. text) similarity scoring.

To introduce some order into our considerations, let us declare specific objects
that we consider most relevant (in the scope of this work). Those are documents
(natural language texts organized in corpora), terms (e.g. atomic parts of a text),

ontologies (a representation of a knowledge base, e.g. a semantic graph) and entities
(atomic parts of a knowledge base or an ontology). We also look at entity descriptions
contained in ontologies. We mostly consider pairwise comparisons between any two

objects of the same type (e.g. two documents, and not one document and one ontol-

ogy). However, to avoid gratuitous verbosity, the focus is on comparison of entities

and their descriptions. Nevertheless, this paper presents a theoretical approach, or

a “meta-model” of semantic similarity and the presented ideas can be applied in

different fields where similarity is relevant and to objects other than entities.

To formulate specific examples we use OWL [1] (the most popular ontology

description language) and, occasionally, description logic formulas. This is done in

order to illustrate practical applicability of our ideas.

This paper is an extension and continuation of our previous work [2], where we

have briefly introduced and justified the idea of semantic similarity dimensions.

We proceed as follows. Section 2 contains a short introduction to relevant con-

cepts from the description logic. In following Sects. 3 and 4 we summarize the exist-

ing approaches (both theoretical and practical) to calculating semantic similarity. We

also briefly explore the general truths about similarity. Semantic similarity dimen-
sions are introduced in Sect. 5. Its subsections present archetypes of dimensions,

along with general information and examples. Section 6 illustrates practical appli-

cation of the dimensional similarity method in the field of ontologies, while Sect. 7

confronts the dimensional similarity score and results of other similarity methods.

Properties of similarity dimensions are examined in Sect. 8, while Sect. 9 outlines

more general use cases. Finally Sect. 10 presents a summarized case for semantic
similarity dimensions.

Dimensions of Semantic Similarity 89

2 Description Logic

Let us start with a brief introduction to description logic (DL). Information presented

here is needed in order to understand some examples given in later sections. This is

because OWL is based on DL, and OWL axioms can be written in the form of math-

ematical formulas expressed in DL. This representation gives a useful perspective

on ontological entities.

In description logic, knowledge is stored in knowledge bases that contain axioms
(also called facts). An ontology is a collection that contains knowledge and, within

the scope of this paper, is considered to be an equivalent of a knowledge base. More

formally, a knowledge base is part of a mathematical model and ontology document

(specifically in computer science) is a presentation of this model.

Each knowledge base (KB) (and each ontology) can be partitioned into TBox,

ABox and RBox. Each of those boxes contains different kinds of axioms. This division

extends to different entities and entity descriptions.

The TBox contains concepts (also called classes), i.e. the declarations and descrip-

tions of concepts. A declaration is simply a statement about the kind of an entity (in

this case—a class), and each description of a concept is constructed from concept
names, role names, constants and a set of DL constructors. The description is said

to provide the explanation of a semantic meaning of a class.

A set of classes, organized into a hierarchy, is called a taxonomy. In taxonomy

classes may have descendants (specializations) and ancestors (subsumers or gener-

alizations). A relation of subsumption in many semantic graphs has the name IS-
A e.g. “computer IS-A machine”. The IS-A relations occur very often and form

directed sub-graphs in semantic graphs. In DL every taxonomy contains a special

class—Thing (⊤), that is the “top” of the hierarchy, i.e. it has no ancestors. More-

over each concept is necessarily a descendant of ⊤, which means that every concept

in an ontology is a part of the same hierarchy. In other words every concept is of type

Thing and, in semantic graphs, there exists at least one path along the IS-A relation

between any two concepts. Thing is considered to be the root of a taxonomy tree. In

this paper, concepts with rich descriptions are called complex, as opposed to simple

concepts, descriptions of which consist only of class names and describe only the

concepts’ position within the taxonomy. Historically, simple concept descriptions

are important, because many old ontologies were formulated exclusively in terms of

taxonomies, and, consequently, some similarity algorithms consider only the taxo-

nomic part of ontologies. Taxonomies and classes are still considered central to a lot

of ontologies.

The ABox contains declarations and descriptions of individuals. Individuals are

instances of classes, i.e. each instance is of at least one type and, necessarily, of type

Thing. A description of an individual is comprised of types and assertions about

properties built from concept names, role names and constants. Property assertions

are parts of a description that are specific to each individual and together with indi-

vidual’s types describe the meaning of the entity. Individuals usually do not form a

hierarchy. They are, nevertheless, strongly tied (via the types) to the taxonomy. As a

90 P. Szmeja et al.

consequence of the meaning of subsumption, an individual that is explicitly of type

A is also of all types that are ancestors of A (including ⊤).

The RBox contains declarations and descriptions of roles (also called proper-
ties). A role description defines the role’s domain, range and characteristics (such as

symmetry, transitivity and others), which likens roles to mathematical binary rela-

tions. In OWL DL [1], an OWL variant, two types of roles are distinguished: object
properties and data properties. The range of an object property is a class, while the

range of a data property is a literal (e.g. a numerical value or a string). For both types

of roles the domain is a concept. The RBox is often considered to be a part of ABox,

as opposed to a “box” of its own. In any case the main line of division of a knowledge

base lies between ABox and TBox.

Following the division of KB into “boxes”, within the scope of this paper the

term (ontological) “entities” refers to concepts, individuals or properties. The most

relevant similarity calculation is between entities from the same “box”, although

comparison between, for instance, a class and an individual is also, theoretically,

possible (we touch upon this later).

Different varieties of DL (sometimes called profiles) determine what constructors
are available when formulating axioms, as well as what syntactic variant is allowed

(i.e. what symbol sequences are allowed). In order to clearly present our ideas, in

this paper, most examples of DL expressions are given in a simple DL formalism

EL (see Table 1), unless otherwise noted. We also discuss how the ideas may be

extended to more expressive description logics.

In what follows, concept names are denoted by capital letters A,B,C,…, indi-
vidual names by lowercase letters a, b,… , o, and role names by lowercase letters

p, r,… , z. Each name may have an optional index, e.g. C1. An expression C(a)means

that individual a is of type C. Expression r(a, b) is a role assertion and denotes that

a is related to b by role r, a being the realization of the roles domain and b its range.

Table 1 summarizes relevant DL constructors. Constructors in EL are (by defi-

nition) limited to: top concept, concept conjunction and existential quantification

(restriction). For more details about DL, its constructors, semantics, and varieties

refer to [3].

Some relations defined in DL are of special importance to similarity scoring.

Those are primarily subsumption (⊒), inclusion (⊑) and equivalence (≡). The ⊑ cor-

Table 1 DL constructors

EL Name Syntax

∗ Top concept ⊤

Bottom concept ⟂
Concept (class) C
Concept negation ¬C

∗ Concept conjunction C1 ⊓ C2
Concept disjunction C1 ⊔ C2

∗ Existential restriction ∃R.C
Universal restriction ∀R.C

Dimensions of Semantic Similarity 91

responds directly to the IS-A relation, and the⊒ combined with the⊑means the same

as the ≡. While subsumption is usually reserved for classes, the equivalence relation

can be applied to any entity and has special interpretation of “maximal similarity”.

Unsurprisingly, when two entities are equivalent, they should be treated as one and

the same entity, and their similarity score should be maximal. In similar fashion, a

negated (¬) entity should be maximally different from the entity it negates, but most

often negation is neither part of the DL profile of an ontology, nor is considered

when calculating similarity.

There are two definitions that are highly relevant to calculation of similarity, that

can be expressed in DL—the least common subsumer [4] and the most specific con-
cept [5].

The least common subsumer (LCS) of two entities X and Y is the most specific

(i.e. farthest from the root) entity that is an ancestor to both X and Y . In a taxonomy,

it is a concept that shares the most types with compared concepts, and itself is a

type (generalization) of compared concepts. In other words, the LCS is a class that

is a superclass to both X and Y . Since there may be multiple such superclasses, we

choose the one that is least general, i.e. as far from the Thing and as close to X and Y
as possible. Since LCS represents, in a sense, the most information the entities have

in common, it is sometimes treated as the central part of similarity algorithms.

The most specific concept (MSC) of an individual is a concept whose descrip-

tion is built from assertions about the individual in a way that includes every such

assertion. In other words it is a class that is built specifically to contain an individual

and in its construction is guided by the description of the individual. It is often so

specific that it only contains the one individual it was constructed for. The process of

construction of the MSC utilizes standard semantic deduction [6] and is described

in detail in [7]. The MSC is, in general case, not unique and, because of that, its

usefulness is put into question. The details are beyond the scope of this work and we

refer interested readers to [7]. Even more information about both LCS and MSC can

be found in [3–5]. In further sections we give specific examples for LCSs.

3 Similarity

There is a multitude of works dedicated to similarity across multiple domains, includ-

ing psychology and sociology [8, 9], as well as more technical fields, such as math-

ematics, computer science, or engineering (i.e. similitude [10]). To keep the text

coherent, and not to stray too far from the core ideas, in this section we present some

general observations about similarity, relevant to the main content of this work. Since

computer science is the main focus, articles relevant to this field of science are ref-

erenced throughout the text. Let us now start our general considerations.

Features of Similarity

There are many properties that may apply to a similarity measure. Most measures

reflect the following two general observations about similarity:

92 P. Szmeja et al.

∙ It grows with the commonality of objects

∙ It decreases with the difference between objects

Those two terse and laconic statements are ones of very few that, for all practical

purposes, can be applied to vast majority of formalized similarity measures. Whether

we compare documents, terms, ontologies or other objects, the factors that increase

similarity can be summarized as the commonality between objects. What contributes

to decrease of similarity is the disparity, often included in the score implicitly, as

opposite to the commonality.

Here, it should be stressed that, although other observations can be made about

similarity, there is no strong/community-wide consensus, based on which, one could

construct a general definition. Furthermore, there are a number of “features” of sim-

ilarity, both formal and informal, that have support and opposition. A notable infor-

mal feature of similarity is that, in human judgment, common features carry more

weight than disparate ones [11]. This is exemplified in measures that explicitly con-

sider only commonality and discard differences, i.e. work under the supposition that

the initial similarity is minimal (zero) and each common feature increases it. A differ-

ent approach relies on a “balancing” between commonalities and disparities, where

each of those increase and decrease similarity (respectively) that, initially, is set at a

middle score (e.g. 0.5 on a scale from 0 to 1).

Attentiveness

Another concept relevant to similarity is classification that stems from computer

graphics, and divides similarities into “Pre-attentive” and “attentive” [12, 13]. Pre-

attentive similarity is measured before “interpretation” of entities (or “stimuli”, in

graphics processing terminology), while attentive methods are used after entities

have been interpreted, classified and put into context. The “interpretation” process,

while specific to computer graphics, can be extended to semantic similarity in gen-

eral. At first glance, semantic similarity falls squarely into the attentive category,

because semantic descriptions or features are already an interpretation of entities. On

the other hand, similarity algorithms commonly do not distinguish between possible

different interpretations of the same entity. This is highly relevant in graphic data-

bases, where, for instance, searching for images most similar (to a reference image)

requires different queries, depending on whether we are interested in shape or color

palette similarity. Other, advanced features of an image may be calculated, such as

painting style, and they all require attentive methods. Extending this idea into gen-

eral semantic similarity, we may add similarity scoring with respect to provenance

(e.g. authorship) information for the same images. The different “views” on similar-

ity are, from the point of view of attentive methods, different interpretations of the

same entities. This idea is expanded upon, although with different terminology, in

later sections, where we describe semantic similarity dimensions.

Reference Similarities

Another notable point is that similarity often depends on the context, where each

feature has a weight based on subjective evaluation of importance (i.e. opinion) and

Dimensions of Semantic Similarity 93

circumstances surrounding the comparison. In human judgment, knowledge of the

person performing the comparison is very important [14] and is de facto the implicit

“knowledge base” that we score against. However, it is not directly relevant in case

of comparison of DL entities, because, the knowledge used for such comparison is

explicitly defined and available in KB. It has, however, heavy bearing on the quality

of similarity methods, because their results are often judged against human (expert)

opinions. In this way, the evaluation of a similarity algorithm is dependent not only

on the expert doing the evaluation, but also on the quality of the ontology.

There are reference sets of similarities, such as the Miller’s benchmark [15]. The

benchmark itself (building on previous work [14]) produced a set of 30 pairs of

generic terms along with a similarity score averaged from judgments of 38 students.

It was conceived as a way to gain insight into how humans score similarity. The

terms were chosen to be purposefully ambiguous, which adds another layer of (dis-

ambiguation) challenge for the similarity algorithms. Moreover, such benchmarks

are not a good reference point for big ontologies, since those are usually detailed

and contain expert knowledge of a certain domain, which means that there are no

ambiguous terms in them. Later, the benchmark was reproduced [16] with consid-

erably different results, which further questions its validity as a similarity algorithm

evaluation tool. Nevertheless, many works refer to this specific benchmark as a ref-

erence and proof of good (i.e. correct) results [17–21].

There are organized efforts to counteract the difficulties in evaluating (semi-)

automated methods of similarity scoring, such as OAEI (Ontology Alignment Evalu-

ation Initiative) [22]. This initiative is dedicated specifically to evaluating only ontol-

ogy alignment tools and its evaluations are organized into yearly editions, each with

many “tracks”. In each track there are some reference ontologies and alignments pre-

pared. By ensuring that both ontologies and reference alignments are of good qual-

ity, OAEI is able to, at least in principle, provide more meaningful evaluation results,

than simple comparison to a benchmark. Another approach was adopted by Reuters,

which publishes corpora of documents for text categorization, e.g. Reuters-21578 or

RCV1 (Reuters Corpus Volume 1). Instead of declaring an authoritative reference

categorization, the corpora may be used to compare results of different methods, or

to test improvement of a single method over its previous iteration. Other similar cor-

pora exist, e.g. Ohsumed [23] for medical documents and 20NewsGroups [24] for

newsgroup documents.

Granularity

It is worth noting that granularity of information has an influence on similarity. Infor-

mally, the more details we include in our comparison, the less impact on similar-

ity each of them will have. Consequently, a general feature of observation about an

object has a bigger weight than a detailed description of the same feature. In other

words, an expert (or an expert ontology) has a different (more detailed) view than a

layman (a general ontology). In case of human judgment, but also algorithms mod-

eled after it, taking into account that commonality carries more weight, the similarity

of a feature is likely to decrease, when we take a closer look at it. For example, a sim-

ple property, such as age of people, might be exactly the same, when we look only

94 P. Szmeja et al.

at the birth year, but will decrease with the increase of accuracy to days or even

minutes. For a layman, creatures such as monkeys and chimpanzees would be much

more similar, than in the eyes of an expert. A more general observation is that the

amount of information we have about an entity greatly influences similarity, which

is most pronounced in probabilistic methods, such as in [16], where similarity can

change, even if we add knowledge seemingly unrelated to the compared objects.

In particular, granularity of information may strongly influence human performed

quality evaluation of similarity measures (cf. [15]).

Distance and Closeness

Similarity is often considered in the context of distance between entities. The idea

comes from psychology [8] and states that entities may be put into a multi-

dimensional space, where each dimension is a separate characteristic. In such theo-

retical space, the distance between entities is the evidence of dissimilarity, which is,

informally, an inverse of similarity. While in specific applications it may be possible

to construct a finite set of dimensions [13], in general, the sheer number of possible

characteristics in semantic descriptions makes construction of general algorithms

based on this idea difficult [25]. The distance-based similarity is also applicable to

graph structures (more on this in later sections).

Similarity Ordering

It has been argued that just an ordering of concepts, with respect to similarity, is

more useful than a number. In many applications one is primarily interested in find-

ing an entity that is closest to a reference entity, the actual value of “closeness” being

secondary. In case of three objects, one reference object and two compared objects,

we might be satisfied just knowing, which of the comparison objects is more simi-

lar to the reference object, rather than learning the numerical score. This is clearly

pronounced in the difference between regular search and search based on similarity

measures. The first is a partition of the search space into entities that fit the search

criteria (i.e. the query), and those that do not. Similarity search, essentially, responds

with the complete search space, ordered by similarity. Note that, in practice, we are

usually interested only in those entities that have an extreme value of similarity—

either very high or very low. In both cases, the actual numerical scores, often are

irrelevant, as long as they are above (or below) some threshold.

4 Similarity Calculation Methods

Let us now present a, non-exhaustive, list of selected algorithms and methods of

calculation of similarity, that are both used in practice and relevant to presentation

of dimensions of semantic similarity. In order to focus on presentation of our own

ideas, rather than summarizing all existing similarity methods, we have chosen to

describe only a few methods. For a richer list of similarity methods, see [26]. Note

Dimensions of Semantic Similarity 95

that the semantic measures library (SML) [27] contains implementations of a large

number of methods described here, as well as many others.

Edge Methods

Edge-based models work on assumption that edge distance in a graph is meaningful

for similarity. Needless to say, edge-based methods require a graph structure, such as

a taxonomy. Those methods view ontologies as directed graphs, where small distance

along some edge type is the evidence of similarity, and long paths indicate dissimi-

larity. A common criticism of edge methods, when applied to ontologies, is that they

work under the assumption, that each edge in a path has the same semantic distance.

In practice, however, there is no formal evidence to back up this assumption, and

some evidence that indicates the opposite [28, 29].

The simplest approach considers similarity to be equal to the length of the shortest

path between a pair of entities (e.g. concepts) SRada(X,Y) = min(paths(X,Y)) [30],

where paths(X,Y) is the set of path lengths in an IS-A graph (see, Sect. 5). More

sophisticated methods, such as e.g. 𝑆𝑖𝑚Wu(X,Y) =
2∗depth(LCS(X,Y))
depth(X)+depth(Y)

[31], involve nor-

malization and take into account depth of the compared entities, depth of their LCS,

or length of path between the root, LCS and entities. Finally, [32] utilizes multiple

relations (not just IS-A) in a graph (multigraph). Because edge methods regularly use

simple mathematical rations, they are often applicable to the dimensional approach to

similarity, where the same formulas are used on distances along dimensions, instead

of path lengths.

Feature Methods

A big class of similarity algorithms are feature methods. In these methods, each

entity is represented by a set of semantic features and the entity similarity is equiv-

alent to similarity of feature sets. What the features are, and how to identify and

construct them, depends on the domain of application and, sometimes, on a partic-

ular implementation. For instance, in computer graphics, a set of features for each

image depends on the software, and may include shape, size, texture, color, position,

etc. In general case, however, the situation is complicated and there is no universal

algorithm of representing entities as a set of features. Feature methods are applied

in different domains (e.g. graphics [33], reasoning [34] and others) and “features”

have slightly different meaning and are constructed (or extracted) in a different way,

depending on the domain model. Usually, features are crisp (not fuzzy), i.e. a feature

either belongs to a feature set, or not. This approach makes it difficult to evaluate

similarity of features that have numerical representations, like the aforementioned

color (e.g. in the RGB color space). When put into a set, a specific numerical value

of a color is, in general, an entirely different feature than any other color value, no

matter how close the color are. This property is another reason for the division of fea-

ture methods into specific implementations (e.g. in graphics) and general formulas

(with crisp feature sets).

In ontologies there are many ways in which feature sets can be constructed from a

description of an entity. In case of concepts, the features are usually considered to be

the concept’s ancestors, its roles, instances, or a set of all of those. Details of how a

96 P. Szmeja et al.

complex description is converted into a set of features depend on particular method

and underlying logic (see, Sect. 5 and onward). A set of features of an individual

may be constructed from its types and role assertions. A usual approach is to use

only role assertions directly mentioned in the entity definition. In such approach, the

semantic descriptions with color properties (e.g. X hasColor red and Y hasColor
light-red) consider the property and its value as atomic, and do not go into detail

about possible similarity of red and light-red. It is worth noting that, in some specific

cases, the feature sets can be constructed in a very natural way. This is the case of

WordNet [35], which explicitly defines synsets (sets of synonyms) that can be, with

no additional effort, treated as feature sets. Another noteworthy property is that the

feature sets in a taxonomy may be defined as a IS-A neighborhood of a class. In such

case, the feature method is, conceptually, very close to an edge method, because they

both use very similar information as input.

In Tversky’s ratio model [11] similarity of two sets of features XF and YF is given

by the formula STv(XF,YF) =
𝛼f (XF∩YF)

𝛼f (XF∩YF)+𝛽f (XF−YF)+𝛾f (YF−XF)
, where X − Y is a set differ-

ence (relative complement of Y in X), f is a monotonically increasing function (usu-

ally set cardinality), while 𝛼, 𝛽 and 𝛾 are positive coefficients. The coefficients control

importance (“weight”) of common features and features exclusive to either set. For

different choices of values of the coefficients, Tversky’s ratio model has different

properties and produces different formulas. In particular, for 𝛼 = 𝛽 = 𝛾 = 1 and f =
| ⋅ | the model becomes the Jaccard index [36] J(XF,YF) =

|XF∩YF |

|XF∪YF |
. Some methods

[37, 38] include an ad-hoc weighting of coefficients for different features, instead of

a fixed set of coefficients for all features. Tversky also proposed a contrast model rep-

resented by the formula STvC(XF,YF) = 𝛼f (XF ∩ YF) − 𝛽f (XF − YF) − 𝛾f (YF − XF).

Information-Theoretic Methods

Methods from an information-theoretic class approach similarity from the point of

view of information theory [39] and assume that similarity is strictly related to the

amount of information each of compared entities provides. This class is represented

by Information Content (IC) model proposed by Resnik [16]. IC of an entity e is

computed from its probability p(e): IC(e) = − log(p(e)). When applied to a tex-

tual entity in a corpus, p(e) is equal to the probability that this entity appears in a

given document from the corpus. In the context of a taxonomy, probability of an

entity is inversely proportional to the number of entities it subsumes. By this def-

inition, IC is monotonically decreasing from leaves (most informative) to the root

(least informative). Resnik’s similarity is calculated from IC of the most informa-
tive common ancestor (MICA)—a common subsumer that has the maximum IC:

SRes(X,Y) = IC(MICA(X,Y)). MICA is closely related to LCS. Some works build

on Resnik’s approach by relaxing it’s reliance on the LCS. For instance, Lin pro-

posed a formula that involves the Information Content of the entities themselves,

alongside their LCS: SLin(X,Y) =
2×SRes(X,Y)
IC(X)+IC(Y)

. Other methods, such as the one pro-

posed in [40], use only the number of immediate children as a measure of IC, where

high number of children denotes low IC. Several other methods of calculating IC

have been proposed [41–43], with a lot of them focusing specifically on WordNet.

Dimensions of Semantic Similarity 97

Geometric Methods

In the geometric approach to similarity, objects are represented as points in a multi-

dimensional geometric space. Any feature of an object is converted to a number

that serves as a coordinate. This approach directly corresponds to multi-dimensional

similarity space described earlier. A set of coordinates represents the entire object

in a space. The similarity is simply calculated as the shortest geometric (usually

Euclidean) distance between two points. As such, just like any metric distance, it

has the properties of minimality, and those of a mathematical metric. Unfortunately,

many features are not easily subjected to conversion into a geometric dimension,

as it requires them to be represented as a set of points on a continuous line. While

some features have a natural representation in a geometric dimension, such as the

RGB model of color, others do not, unless they are specifically designed to have that

property (such as a brand of a product). A work on high-dimensional spaces [25]

describes other problems that are relevant when dealing with a high number of geo-

metric dimensions. In practice, only domain and problem specific implementations

of geometric methods exist, such as the one proposed in [13] for an image database.

Other Methods

Some methods do not fit neatly into the above categories and are considered “hybrid”.

Such methods (e.g. [38, 44]) use characteristics from multiple categories and com-

bine, for instance, path length with depth in taxonomy, or taxonomic neighborhood.

Often, such methods use weighted sum (with weights tuned to a specific data set) of

separate results for each considered perspective, or “sub-method”.

A decisively syntactic (i.e. non-semantic) class of methods that deserve men-

tion, are the edit distance methods, most prominent of which is the Hamming dis-

tance [45]. The general idea is that high number of edits that need to be done in order

to transform one entity into the other is indicative of dissimilarity. Different meth-

ods define “edits” in a different way, and for strings those usually include removing a

character or adding one. Edit distance is usually not applied to feature sets, although

some feature set methods compute similarity score in a way reminiscent to the edit

distance. It is, however, relevant to ideas presented in Sect. 5.

Notice that each of the methods, presented in this section, makes some assumption

as to the model of information. A feature method requires a set of features, an edge

method needs a graph, etc. In order to apply each of those methods to a knowledge

base we need to present it in a particular fashion—as a graph, a DL formula, a set

of features and so on. In order to be applied to an ontology, each method requires a

different perspective.

5 Semantic Similarity Dimensions

Let us now recall that, in their foundation, similarity and meaning (semantics) are

inherently human concepts. From this point of view, a similarity score should have

an explanation (or interpretation) that is understandable for a human. Let us con-

98 P. Szmeja et al.

sider a simple example of comparison of two physical objects. There are many ways
in which they can be similar or dissimilar, two of them being shape and color. Those

two kinds of features are independent with respect to similarity, e.g. objects can have

similar color and different shape (and vice-versa). Canonical ways of automated cal-

culation of similarity (described above) would produce a single score that would

in some way combine similarity of shape and color. However, the two similarities,

when treated separately, provide more information to a human, because they have a

clear interpretation. Therefore we can assume that a person that knows this interpre-

tation has a better understanding of how similar any two physical objects are. In this

toy example shape and color contribute to two separate dimensions of similarity.

From this, it can be conjectured that similarity of semantic entities has many dif-

ferent aspects that are being grouped together, based on what part of available data (or

knowledge) is used (regardless of the actual similarity method). Those groups rep-

resent different types (dimensions) of semantic relationships and, therefore, similar-

ity. This idea draws on the concept of knowledge dimensions originating from [46],

where authors also divided ontological knowledge into subsets (dimensions) and

applied (in [47]) to calculation of similarity in WordNet. However, there the scores

from each dimension were still combined into a final similarity score (a single num-

ber). Our idea also borrows from geometric and feature models of similarity, and is

closely related to attentiveness and multi-dimensional similarity space, described in

Sect. 3.

When approaching this from a different perspective, observe that approaches to

either grouping attributes (features), or dividing the data into (what we call) dimen-

sions were focused on results given by some predetermined method. In other words,

the starting point was a method that provided foundation to interpret the result. Our

approach starts from explaining the nature / semantics of the dimension that we are

interested in, and then finds the method that would produce said result. In this way

the recognized dimensions are interpretation driven, rather than method driven. In

fact, the same method may be used in different dimensions, as exemplified in Sect. 6.

Note that the concept of different kinds of similarity has been present in the litera-

ture, in one form or another, for a long time. For instance [48] contains a summary of

ontology matching methods and categorizes them by the kind of data they use. Sam-

ple “kinds” of methods use comparisons of entity labels, their “attributes” (in DL

terms—assertions), instances of classes, position of entities in taxonomy and oth-

ers. Categorization described in [48] complements a more general work on schema

matching [49] that presents its own division of matching methods by type. Later

work [50] reviews methods of ontology matching and distinguishes methods that use

structure of the ontologies and those that utilize entities (called structure-level and

element-level dimensions). The categorization goes deeper with dimensions such

as syntactic, semantic, external, terminological, extensional and others, some of

which overlap (for more detais, see [50]). The state of the art for ontology matching,

described in [51], contains more detailed descriptions of different matching methods

with specific examples of implementations. Later work [52], proposes a slightly dif-

ferent division into language-, linguistic-, string-, and structure-based approaches.

Another example is [53], which mentions in its opening chapters that different simi-

Dimensions of Semantic Similarity 99

larity measures have differing implicit assumptions, hinting at the existence of simi-

larity dimensions. The Gene Ontology [54] defines two types of similarity measures,

namely pairwise and groupwise, which are akin to kinds of similarity, albeit specific

to that ontology only. Another work on semantic similarity [55], classifies existing

methods for biomedical ontologies with respect to scope (what entities are taken into

account), data source (edges, nodes or other) and metric (used algorithm). Authors

of [55] observe that methods that use different metric and data produce different

results, but all claim to produce a similarity score that is “universal”. To the best of

our knowledge [46] was the first paper in which different kinds of similarity were

the explicit focus, and were given the name “dimensions”. Finally, let us also note

that an implemented ontology matching system ASMOV [56] utilizes four (lexical,
relational, internal and extensional) dimensions that are weighted and summed to

obtain the final score.

It’s important to note that, ideally, similarity dimensions should form an orthog-

onal partition of a “total” similarity. Since, as discussed previously, the distinction

lies in the kind of data used, the available knowledge should be partitioned into sub-

sets, one for each dimension. Under this characteristic, the similarity scores for each

dimension would be independent. In practice, however, such clear division is not

always possible (see, following sections).

In this context, let us now introduce selected dimensions and formalization of a

general case of pairwise comparison of entities in an ontology based on description

logic.

External and Internal Dimensions

From the point of view of the origin of data, similarity dimensions can be categorized

into external and internal ones.

External Dimensions. An External similarity dimension uses information from

outside of the main knowledge base or ontology. In case of entities, external methods

use a small (likely atomic) part of an entity description that serves as an identifier,

to find information about it in external sources. A good candidate for such an iden-

tifier is a label of an entity, because it is available for all named entities and may be

written in a natural language. A complex description is, in such case, simplified into

a single term, so that it can be easily identified and searched for in outside sources.

The assumption behind this operation is that the entity has a meaning outside of the

original knowledge base, and this meaning is relevant to calculation of similarity.

For a pairwise comparison of entities this means that the used methods are actu-

ally independent of the DL formalism used to describe the entities. The information

we use for scoring comes from an independent, external source (possibly having

its own formalization). For English words a method commonly used in ontology

alignment systems [56–58] is to utilize the English WordNet ontology and calcu-

late similarity with a method specific to WordNet (e.g. feature method that works on

synsets).

External methods have two inherent weaknesses, as they rely on: existence of a

good term that describes each compared entity, and on the quality and relevance of

the external data source.

100 P. Szmeja et al.

The External dimension gives a perspective on how similarity of entities is viewed

outside of known and specific context. The lack of this specific context causes dis-

ambiguation problems. For that reason external similarity scoring is best suited for

entities that are general and relatively insensitive to context. For instance it is useful

when performing entity resolution for duplicate detection in data analysis, because

often our data describes a broad range of items from multiple domains (e.g. items

from a big online store). One of the simplest techniques of doing that is to convert

entities into a canonical form, that serves as a representative and could be used as an

external identifier.

Internal Dimensions. Internal dimensions are those that make use of informa-

tion either explicitly provided in the knowledge base of compared entities, or inferred

from that knowledge base. In this case we are not interested in any independent out-

side sources and assume that any knowledge we might use must come from what we

already have in the knowledge base, or an ontology connected to it (e.g. via Linked

Data [59]). Vast majority of similarity methods are internal; especially, ad-hoc ones

that are restricted to a single ontology (e.g. [47] that works on WordNet only). Here,

we assume that any discussed ontology can be expressed in description logic.

Usually, in description logic, entities compared internally are of the same type,

i.e. both come from the same “box”—ABox, TBox or RBox (we compare concept

with concept, role with role, etc.), although it is possible to compare “across boxes”

(e.g. a concept with an individual), which is explained in what follows.

Note that some similarity dimensions have interpretations for both categories—

internal and external, while others are exclusive to one category.

Lexical Dimension

Lexical methods utilize dictionaries and lexical ontologies to asses similarity of enti-

ties (e.g., see [47]). In a general case of an ontology, lexical methods are external.
Entities are considered in the context of a dictionary (where they are referenced to

by an identifier) and not the original ontology. A pair of labels, or entity names, writ-

ten in a natural language can be subject to the lexical dimension similarity methods.

The methods themselves might be very complex and utilize big ontologies (such as

WordNet).

Lexical dimension is most useful when entities have uniquely identifying labels.

For that reason we can expect that, for example, comparing terms “dolphin” and

“porpoise” will yield useful results. A simple lexical method for concepts could,

for instance, extract the labels of entities and use WordNets synsets of the labels as

features, in a feature-based method. On the other hand, this is not the case when

labels are human names (e.g. Mary, Adam), because, even though technically being

labels, those are a properties of an individual, rather than unique identifiers. In dif-

ferent ontologies these might refer to different people. Similar problem arises when

identifying terms are words with multiple meanings (e.g. “seal”). Generally, any

identifier that is sensitive to context of a knowledge base (like human names) is not

a good candidate for a lexical similarity scoring. This is because in any external

similarity dimension we lose the original context. In a lexical method the additional

context we need to consider is the natural language itself (e.g. English, French etc.).

Dimensions of Semantic Similarity 101

Lexical scores might differ between languages, because of varying sets of homonyms

and many natural differences between languages. Despite this, as mentioned before,

many ontology alignment methods use external lexical similarity as a way to find

connections between ontologies that have no links defined between them. Some-

times the lexical scores are used as a bootstrap to discover other connections between

ontological entities and improve the alignment.

Informally, the lexical dimension specifies similarity of names of entities in a

dictionary. Unfortunately, it suffers from the problem common in dictionaries, i.e.

ambiguity. So-called “word sense” disambiguation is a big issue in text process-

ing [60] and semantic ontologies (e.g. applied to named entities [61]). Ambiguity of

language negatively impacts accuracy of the lexical similarity score. Notice that, in

the case of a well defined ontology, there is no ambiguity problem, because the entity

descriptions are compared directly. When comparing terms we first need to find out

what entity each term represents (what is the underlying entity) and then compare

the entities. Miller’s benchmark [15], often used to evaluate WordNet methods, does

not, unfortunately, have explicit concept descriptions, and the word sense in each

word pair needs to be decided solely on the two words in each pair.

In short, the interpretation of the lexical dimension is that entities lexically similar

have names that are similar, according to a dictionary. In order for a lexical method

to be semantic, it should not rely on any edit distance.

Co-occurrence

Another group of methods dealing mostly with the external dimension are the co-
occurrence methods. Like lexical methods, they also use a single term or label (iden-

tifier). Similarity is calculated based on a highly controversial assumption that enti-

ties that often appear together are similar. For instance, the web search co-occurrence

methods measure the number of web pages that contain both identifiers (or terms).

Methods in this dimension are often used for text similarity scoring, and work under

the assumption that words that appear together in a high number of text corpora are

similar. More advanced co-occurrence methods distinguish between different mean-

ings of words [62]. Their authors, realized that, like in the case of lexical methods,

disambiguation is an issue. In data analysis co-occurrence is used as an evidence of

similarity (called “linkage pattern”).

Co-occurrence methods usually do not take into account the reason for two enti-

ties appearing together. For instance, they do not take into account that co-occurrence

might be a result of a single event, local culture, specific names (e.g. names of sports

teams), or even a coincidence. In this way, co-occurrence is an evidence of related-

ness, but not necessarily similarity. Overall, co-occurrence methods are known to

give questionable results [28].

Co-occurrence dimension is external, because it uses many data sources (e.g.

web pages, documents etc.). A commonly used sources are those that are publicly

available, such as Wikipedia [17], or Freebase [21]. Although, in an ontology we

might construct a co-occurrence method based on an assumption that entities that

appear in a high number of axioms together are similar. Such methods would give

results that would come under the same questions as ones from other co-occurrence

102 P. Szmeja et al.

methods [28]. Moreover, since the axioms contain detailed knowledge about seman-

tic relationships between entities it is better to consider why the entities appear

together, rather than disregarding that information. For this reason the type of axiom

(e.g. RDF predicate, if available) should always play an important role in similarity

scoring.

Interpretation of a co-occurrence similarity is, simply put, that entities often

appear together and are referenced in the same contexts.

Taxonomic (Sort) Dimension

Similarity in the sort dimension (also called hierarchical or taxonomic) describes

how similar entities are, according to data from taxonomy and, therefore, uses mostly

the TBox.

Theoretically sort dimension is most easily described in terms of types of concepts

(i.e. subsumers or ancestors). For instance, in a hypothetical ontology of genetic

ancestry two classes of creatures are similar, if both are reptiles (they share a type).

Similarity increases with each type that the creatures have in common. At the same

time it decreases with each disparate type (e.g. when one creature is a lizard, and

the other a snake). This is in accordance with the general tenets of the concept of

similarity (see, Sect. 3).

Practically, taxonomy is often visualized as a graph, where nodes are concepts and

edges are IS-A relations. Because of the structure of a description logic taxonomy,

each common type of compared entities lies on some path from the root (⊤) to either

of the entities. More precisely the commonality is defined by any path to the lowest

common subsumer (LCS) of both entities. Any edge on such path is between two

common types. Any edges from ⊤ to any of the entities that does not lie between ⊤

and LCS is an evidence of dissimilarity.

Many edge-counting methods (that use taxonomic ancestry of entities, [63]),

some IC methods (like [64] or [65]) and feature methods (e.g. [66]) can be used

in this dimension.

Formally hierarchical dimension includes information exactly about DL relations

of subsumption (⊒) and, consequently, inclusion (⊑) and equivalence (≡). Recall that

a concept is a specialization of all its types (classes), including the root, and a gen-

eralization of all its children (subclasses). The root (⊤) is a generalization of any

concept. Similarity measures that work on subsumptions usually take into account

subsumers of measured classes, rather than descendants. For instance edge-counting

methods “count” classes (types) that are on a path between the LCS and the root.

Some IC methods make use of number of descendants (subsumed classes) to calcu-

late “probability” of a node. Taxonomic similarity is also linked to distance between

measured entities, either directly, or through IC of LCS.

Other than concepts, sort dimension can also be applied to roles or individuals. In

some profiles of description logic roles have their own hierarchy (e.g. H subprofile

of DL [67]) with a separate set of IS-A relations (whose domain and range are roles,

not concepts) that also form a set of data for the sort dimension. In practice, how-

ever, the hierarchies of roles are almost never rich and deep enough to provide enough

information for a useful hierarchical similarity score. Simply put, such score would

Dimensions of Semantic Similarity 103

not be useful. Individuals do not form their own hierarchy, however, there are ways

to relate entities of that type to the taxonomy, e.g. the most specific class (MSC, [7]).

Another method is to use only concept membership (asserted and inferred) for com-

pared individuals as taxonomic knowledge. In this method we essentially compare

sets of types of each compared individual, which is a good fit for a feature method,

where each type would represent a feature. Since we can construct a set of ancestors

for a concept and set of types for an individual (both ancestors and types are con-

cepts themselves) it is possible to compare concepts with individuals using a feature

method. Thus, in taxonomic dimension we can compare pairs of concepts, individ-

uals and roles as well as a concept—individual pairs.

In EL , concepts can be represented as an intersection of terms e.g. C ≡ D1 ⊓

D2 ⊓ ∃p1 ⊓ ∃p2 and E ⊑ D1 ⊓ ∃p3 ⊓ ∃p4. In this example, the knowledge that per-

tains to sort dimension is the part of the expressions that contains concept names,

namely C ≡ D1 ⊓ D2 and E ⊑ D1. The role assertions are not considered a part of

this dimension, so we do not take them into account. If we are interested in compar-

ing the two example concepts C and E with respect to subsumption (note that A ≡ B
is equivalent to A ⊑ B and B ⊑ A) we would use two expressions: C ⊑ D1 ⊓ D2 and

E ⊑ D1 that can easily be converted into sets (through itemization with respect to

intersection) [D1,D2] and [D1] respectively, and used in a feature method. For indi-

viduals a, b, assuming C(a), E(b), sort similarity of a and b is equal to sort similarity

of C and E.

The general idea of “truncating” a complex description to one containing only

symbols for concepts and constructors (to “extract” sort similarity) holds for more

expressive DLs. For instance the expression C2 ≡ D1 ⊔ ∀p1.(D2 ⊓ ∃p1.D2) does not

seem to be easily subjected to “extraction” of sort terms. In practice, however, we can

rely on semantic reasoners to build an inferred taxonomy that puts all named classes

in order with respect to subsumption (and inclusion) while taking into account com-

plex expressions [3]. New concepts, such as MSC, can also be put in a proper place

in a taxonomy with the help of semantic reasoners. It is also common for the tax-

onomy tree to be explicitly created (asserted) by the author of the knowledge base.

In sort dimension we are only interested in the existence of IS-A relation between

entities and not the reasons for existence of such relation. Combining asserted and

inferred hierarchies produces data that accurately represents taxonomic dimension.

In summary, taxonomic similarity of two entities is interpreted as the entities

being of similar type or class, or sharing a number of types. While, in layman terms

a “type” is a vague term, it has a very specific meaning in practical applications i.e.

ontologies.

Descriptive Dimension

From a theoretical point of view the descriptive dimension contains properties that

an entity “has”, as opposed to what it “is” (which is covered in taxonomic dimension).

For animals, similarities in size, weight or age belong to the descriptive dimension.

Generally speaking, descriptive dimension encapsulates attributes, characteristics,

or properties of entities. Properties such as “having a child” are also included (and

104 P. Szmeja et al.

distinct from “being a child”, which belongs to taxonomic dimension). Again, the

more disparate attributes, the less similarity and vice-versa.

In certain ontologies, clearly distinguishing between taxonomic and descriptive
data might be problematic, when it comes to entities that form a hierarchy. The dif-

ference between two dimensions, and whether they overlap or are entirely orthogo-

nal, comes down to the way the hierarchy is constructed by the authoring ontology

engineer. Let’s consider a hierarchy of classes. A taxonomy might be created in an

entirely expert-driven fashion, in which case it would not contain any explanation as

to why any given class has the subsumers that it does. It would be simply an asser-

tion of expert knowledge, stating that any instance of an example class A is of every

type that subsumes A. On the other hand the taxonomy construction might be driven

by roles of every class. Here, the reason for enclosing two classes in a subsumption

relation is that they share a role restriction. In this case, a subsumption implies that

A has a property that is shared among all its subsumers. In other words the basis for

subsumption is inheritance of role restrictions. Informally, if an information about

a role is “included” in a taxonomy (or used in its creation), then it overlaps with

the taxonomic dimension, where it is included implicitly. The descriptive dimen-

sion considers all roles explicitly. More formally, orthogonality of taxonomic and

descriptive dimensions depends on whether the ontology follows the principle of

cognitive saliency [68]. Overall, this principle states that new concepts are created

and subsumed only when there is a need to differentiate them, and put them in their

own class. This principle is, often unknowingly followed in a lot of ontologies, and

one can assume that the taxonomic and descriptive overlap is small or does not exist

at all.

Practically, in ontologies that have both subsumption relations and role restric-

tions, the taxonomy includes results of both methods described above—expert asser-

tion and inheritance. Specifically the inherited roles are the cause of partial overlap

between taxonomic and descriptive dimensions. Notice that for any two concepts,

the set of role restrictions that they have in common is at least the set of roles of their

LCS, because both concepts inherit those roles from the LCS. In a very special case,

where each class has only one non-inherited role restriction, each IS-A relation has a

corresponding role restriction. Numerically, this means that number of contributing

relations for both dimensions is exactly the same, so we can expect the results from

both dimensions to be close. Such cases are very rare in practice, where some roles

are the explicit reason for the shape of taxonomy, and some are independent of it.

In an example biological ontology of creatures, properties such as type of reproduc-

tive system are the base of phylogenetic taxonomy. Other, such as diet or geo-spatial

distribution are not considered in phylogeny. This is because they are not inherited
genetically, which is the basic requirement for a phylogenetic subsumption.

Notice that, even when considering full set of roles of a concept (both inherited

and not inherited), its cardinality might be different from the cardinality of the set

of types (ancestors). For every item in the set of types we might have any number

of role restrictions inherited for that type. In other words, every ancestor contributes

only one piece of data (one superclass for taxonomic dimension), while roles inher-

ited from the ancestor might contribute (to descriptive dimension) a different number

Dimensions of Semantic Similarity 105

(0 or more). For two concepts with complex descriptions that are on the first level

of taxonomy (i.e. direct children of ⊤), if we apply an edge-counting method, their

descriptions are essentially irrelevant for taxon omic similarity score (only distance

to each other or ⊤—their LCS—matters). In fact, this is the case in the semantic sen-
sor network ontology (SSN) [69], where concepts close to⊤ have a lot of roles. Those

roles could have big impact on a similarity score, but are disregarded by taxonomic
methods. This observation suggests that a clear way to distinguish the two discussed

dimensions is to consider only non-inherited part of complex concept description,

or, alternatively, not consider part of the description inherited from the LCS. The

lack (in practice) of full overlap of dimensions suggests that descriptive similarity is

useful along side of sort similarity and produces results with a different interpreta-

tion.

More formally, in descriptive dimension we are interested in relations that are

roles and are not of type IS-A. Hierarchy constructed from any such relation is not

taken into account. Instead, only existence of a relation and its value is considered.

In DL terms, those are either role assertions (e.g. r(a, b)) in case of individuals, or

quantified restrictions (e.g. ∃p.C, ∀t.5) in case of concept descriptions. Descriptive
dimension fits naturally with feature methods, because we can treat each role asser-

tion or restriction (a “descriptive” expression) as an item in a set of features, either

for TBox or ABox. In EL , extracting a set of such features from concept description

is simple and very similar to the method described for sort dimension (it yields sets

[∃p1,∃p2] and [∃p3,∃p4] for concepts C and E, defined earlier, respectively).

Individuals do not form a hierarchy, so comparisons between this type of entities

do not suffer from overlap with taxonomic dimension and as such are a good fit

for descriptive dimension. For a set of statements (role assertions) r(a, b), r(b, b),
r(a, c), p(a, c), t(b, 5) about individuals a, b and roles r, p and t, the first two (r(a, b),
r(b, b)) contribute to similarity of a and b, because the predicate (role) and object

(individual) are the same for both a and b. Expressions r(a, c), p(a, c) and t(b, 5)
contribute to dissimilarity of a and b, because those assertions do not share both role

and object for a subject of a or b.

Comprehensive implementation of descriptive dimension in expressive DLs is

highly problematic. While it’s relatively easy to construct a transformation of a com-

plex description to a normal form (e.g. conjunctive normal form) there is no universal

way to compare complex restrictions. For instance there is no universally accepted

method to calculate similarity of each pair of ∃r.A, ∀r.A and ∃r.B other than to

treat those as entirely different (similarity score of 0), even though intuitively we

might conclude that, since all 3 expressions pertain to the same role r, they are not

absolutely different and the similarity score should not be zero, even if its close to

it. Unfortunately, when it comes to roles in DL, the canonical approach is that they

can be either identical or not, with no degrees of similarity in-between. The binary

treatment of role restrictions or, widely speaking, features is a big weakness of many

similarity methods. Moreover, comparison of complex descriptions, especially in

expressive DLs, is a complicated problem, and is beyond the scope of this paper. For

those interested, [70] proposes a method of comparison of complex descriptions.

106 P. Szmeja et al.

It should be stressed that, unfortunately, existing methods usually do not distin-

guish between taxonomic and descriptive data, instead implicitly assuming that every

role restriction contributes to a concepts place in a taxonomy and has no additional

bearing on similarity. Consequently, there are no methods known to us that are purely

descriptive. That being said, feature set methods are a natural fit for this dimension,

because of the clear division between descriptive features, and other features.

Descriptive similarity is (informally) interpreted as standing for similarity of

properties, attributes or characteristics, i.e. the items that describe what an entity

“has”.

Other Dimensions

Up to this point we have presented four similarity dimensions that are very general

and thus widely applicable. There are many other ways to divide knowledge, as was

suggested in Sect. 5. Each of the relevant works [46–49, 53, 55] uses different kind of

semantic relations and axioms. One could even argue that any partition of knowledge

forms a set of semantic dimensions. The ones proposed in this paper were designed

(on the basis of analysis of existing methods and ontologies) to be relatively simple

in interpretation and generic enough to be available in almost any knowledge base.

There are, however, other, more specific dimensions, that are worth mentioning.

Let us start from the the membership dimension. It can be used to measure sim-

ilarity (only) between concepts by gathering and comparing sets of individuals that

are of specific type. Compared to others dimensions, this one produces simple data

even for expressive DLs, because the membership function is a binary predicate—an

individual either is or is not of a given type. From simple statements A(a), A(b), C(a)
we know that concept A has members a and b, and C has member a. This knowl-

edge can be easily used to construct a feature method. The membership dimension

is implicitly used in [7] where authors build feature sets composed of members and

calculate similarity in a way very similar to Tversky’s feature method. Because any

individual of any type A is also of all types that are ancestors of A, the membership
dimension uses data that overlays, in part, with the taxonomic dimension, but still

brings its own perspective on similarity.

Separately, the descriptive dimension contains knowledge about all of the prop-

erties without discrimination. One simple way to create a new similarity dimension

is to isolate a set of types of roles from the descriptive dimension. The resulting set

should have its own specific interpretation to be considered a separate dimension.

An example resulting from this method is the compositional dimension. It is com-

prised of roles that denote “being a part of,” “having parts,” “having ingredients,”

etc. It has a very clear interpretation and, as humans, we can often look at compo-

sition of any physical object. Formally, it is represented by roles such as hasPart,
isPartOf, isIngredient, etc. In SSN [69] this kind of relations are represented by the

hasPart role (inherited from DUL ontology). A similar role exists in WordNet [35]

(also named hasPart) and in many other ontologies.

Another “sub-descriptive” dimension is the physical dimension. It contains all

roles that describe any kind of physical characteristic. What roles are included specif-

Dimensions of Semantic Similarity 107

ically varies between ontologies. They might include size (e.g. height, width, area),

mass, color, shape and others.

A practical problem with the subdivision of the descriptive dimension is that

application of a dimension constructed by this method requires specific roles. Even

guided by the interpretation, the specific dimensions might be represented by dif-

ferent roles in different knowledge bases. In one ontology the physical dimension

would include a hasWeight and hasHeight roles, while in another by a hasArea role.

A third ontology might not contain any roles relevant to the physical dimensions

and, therefore, the physical similarity score would not be available. Any subdivision

of the descriptive dimension generally means a loss of universality, i.e. one cannot

apply our new dimension to every ontology. Another downside of this method is that

the “sub-descriptive” knowledge in a very obvious way overlaps with the descriptive
dimension. As a consequence, for instance, the compositional score and descriptive
score are not independent (in fact, one is contained within the other), and the dimen-

sions are not orthogonal. On the other hand, sub-descriptive dimensions are easy

to implement in edge methods, such as [21]. What is required is simply to use only

edges of a certain type, instead of all edges. One needs to be mindful that not all edge

types appear often enough in a graph to form an interesting and useful dimension.

Let us recall that conversion of roles into a set of features is easy for simple DLs,

but gets complicated for more expressive DLs. This is relevant for the descriptive
dimension and its sub-dimensions, where we need to compare DL expressions (role

assertions or restrictions). For a sub-dimension that contains only role p, a simple,

single-term expression, such as p.D1 is easy to parse and compare. A complicated

expression, such as p.((D1 ⊔ (∀p.D2)) ⊓ (D1 ⊔ ∀p.(∃p.D2))) is difficult to use in a

comparison with others, because the class expression under the property restriction

in the example is very complex. Moreover, it might have many equivalent forms,

which are relevant in practical implementations of similarity algorithms. The sim-

plest approach to solving this problem is to consider only the binary similarity of

complex expressions.

Section 8 contains a description of interesting properties of semantic similarity

dimensions that should be considered when designing new dimensions. Before that,

let us present an example of application of dimensions introduced up to this point.

6 Example of Multi-dimensional Similarity

Let us consider an example of dimensional similarity scores in a mock-up biolog-

ical ontology. The ontology in question (see Fig. 1) is an extract of a phylogenetic

ontology with added roles. It compares three concepts—short-beaked common dol-

phin [71], silvertip shark [72] and lesser electric ray [73] denoted D, S and R respec-

tively. Taxonomy describes the current understanding of the genetic ancestry of these

creatures. It is complemented by roles selected to best aid in presentation of the idea

of semantic similarity dimensions. The roles represent traits or features that are not

genetically inherited and, therefore, in the example the descriptive dimension does

108 P. Szmeja et al.

Fig. 1 Phylogeny example

not overlap with the taxonomic one (see, Sect. 5). Note that this is in no way a com-

plete set of information about these creatures. Data contained in these roles comes

from [71–75] and was prepared with ease of understanding of the example in mind.

Note that biology is not the main focus of this paper and accuracy of the data was

not verified. This example is meant to demonstrate usage and indicate usefulness of

similarity dimensions. Let us note that all used formulas are symmetric, normalized

and have the properties of minimality and maximality.

Data used by taxonomic methods is the hierarchy of concepts and in this example

there are 20 phylogenetic concepts (classes, including⊤). Resnik’s method [16] spec-

ifies similarity as the IC (information content) of the MICA (most informative com-

mon ancestor), which in the example is equivalent to the LCS (least

common subsumer); SRes(X,Y) = IC(MICA(X,Y)), IC(e) = − log(p(e)). According

Dimensions of Semantic Similarity 109

to this method, similarity scores are as follows: SRes(D, S) = IC(CHORDATA)
= − log(18

20
) ≈ 0.105, SRes(S,R) = IC(SELACHIMORPHA) = − log(9

20
) ≈ 0.799,

SRes(D,R) = IC(CHORDATA) ≈ 0.105. Note that this example contains only a frac-

tion of available phylogenetic classes and in a full ontology Resnik’s method would

give a different score, because IC is sensitive to the total number of concepts,

which is the basis of calculating the “probability” of a concept. Calculation of Jac-

card index J(A,B) = |Af ∩Bf |

|Af ∪Bf |
, where Af is a set of features of A and assuming that

each ancestor of a concept (including ⊤) is a feature, gives the following results:

J(D, S) = 3
16

≈ 0.188, J(S,R) = 6
14

≈ 0.429, J(D,R) = 3
16

≈ 0.188.

In the descriptive dimension, the data we use are role restrictions. We can, again,

use Jaccard index, this time using roles as features. This is an indication that we can

use one method to calculate similarity in many different dimensions. In this example

D and S have 6 roles each, while R has 4 roles. As mentioned in Sect. 5, the sim-

plest way to compare two values of a single role is to say that the similarity is binary

(1 only if those values are identical and 0 otherwise); i.e. 𝑆𝑖𝑚(r.5) and 𝑆𝑖𝑚(r.4.99)
is 0, despite their perceived numerical “closeness”. Under this condition, descrip-
tive Jaccard scores are as follows: J(D, S) = 2

10
= 0.2, J(S,R) = 0

10
= 0, J(D,R) =

0
10

= 0.

Final dimension considered here is the physical dimension that is meant to repre-

sent any physical feature, i.e. roles for mass, length and coloration. In order to better

represent difference between numerical values, a simple ratio method is used for

data values of the same role (assuming the same unit). This similarity is equal to the

smaller value divided by the larger one Sval(kr
, lr) = min(kr

,lr)
max(kr ,lr)

, where kr
and lr are val-

ues of role restrictions or assertions, about the same role r. For instance similarity

of average weight between D and S is
118
130

≈ 0.907. Total similarity is this dimen-

sion is calculated by taking arithmetic average over similarity of each relevant role.

The scores are: 𝑆𝑖𝑚
avg
ph (D, S) =

118
130 +

200
225 +1
3

≈ 0.932, 𝑆𝑖𝑚
avg
ph (S,R) =

45
225 +0+0

3
≈ 0.067,

𝑆𝑖𝑚
avg
ph (D,R) =

45
200 +0+0

3
≈ 0.075. Using the same method of simple arithmetic aver-

age the results for the entire descriptive dimension are as follows: 𝑆𝑖𝑚
avg
desc(D, S) =

118
130 +

200
225 +

10
12 +

1
4 +1+1

6
≈ 0.813, 𝑆𝑖𝑚

avg
desc(S,R) =

0+ 45
225 +0+0+

2
4 +0

6
≈ 0.117, 𝑆𝑖𝑚

avg
desc(D,R) =

0+ 45
200 +0+0+

2
4 +0

6
≈ 0.121.

Analysis of Results

Obtained similarity scores are summarized in Table 2. Observe that each method
produces different similarity scores, even in the same dimension. In the taxonomic
dimension, Resnik’s and Jaccard’s methods produce different scores. This is, for

instance, because of the assumption of Resnik that distance to the root in an ontol-

ogy (a level) is significant. The levels of example concepts do not correspond with

levels of phylogenetic classification, e.g. the dolphin does not have a biological sub-
class or superorder, so technically its order (CETACEA) is on the same ontological

level as subclass of the shark (ELASMOBRANCHII), even though intuitively (and

110 P. Szmeja et al.

Table 2 Approximate similarity scores

𝑆𝑖𝑚(D, S) 𝑆𝑖𝑚(S,R) 𝑆𝑖𝑚(D,R)
Taxonomic
Resnik 0.105 0.799 0.105

Jaccard 0.188 0.429 0.188

Descriptive
Jaccard 0.2 0.0 0.0

Arithmetic average 0.813 0.117 0.121

Physical subdimension
Arithmetic average 0.932 0.067 0.075

in accordance with biological research) an order should be more informative than a

subclass. Such structure is a good example of a graph, in which edges do not uni-

formly represent the same value of difference in specificity (this was described in

more detail in Sect. 4).

Differences between dimensions are very apparent in the results. In particular S
and R have very small descriptive similarity (Jaccard gives a score of 0), while their

taxonomic similarity is significant. Explanation of those results lays in the fact that

descriptive features from the example were not used when constructing phylogeny.

Features such as diet, type of reproduction, coloration, period of gestation, and others

vary in the same genus, so species are not classified based on those characteristics.

Purely taxonomic methods (such as Resnik’s) do not take such features into account

at all. Consequently, in this case, descriptive results are independent of taxonomy.

Another noteworthy observation is that the physical dimension score does not

coincide with the descriptive Jaccard score, even though the former is, theoretically,

a subdimension of the latter. This difference stems from difference in used meth-

ods. The physical arithmetic average method takes into account degree of difference

between values corresponding to the same role, while the descriptive one does not,

and only accepts identical values as similar. This, very simple, method works for

this example, but cannot be applied universally (e.g. because of the division by zero

problem). Unfortunately, disregarding custom ad-hoc methods (that work well, but

cannot be easily applied outside of one specific ontology), there is no good and uni-

versal method that would compare complex descriptions in expressive DLs in an

in-depth manner.

Notice that ordering of similarity changes between dimensions. Taxonomicaly S
is closer to R than to D, while descriptively S is closer to D. Taking into account

interpretation of the used dimensions this suggests that short beaked dolphins and

silvertip sharks look similar (high physical similarity), but their evolutionary ances-

try is different (low or average taxonomic score). This statement is possible because

separate dimensions of similarity have been independently evaluated and thus can be

interpreted on the basis of their own semantics. It is impossible to infer such infor-

mation from a single score.

Dimensions of Semantic Similarity 111

One dimension that was not included in the example (for sake of brevity) is the

compositional dimension. It would comprise of physical “components” of the ani-

mals with additional details, for instance, fins (e.g. small pointed dorsal fin), details

of bone structure (e.g. serrated teeth), specific organs and functions (e.g. Ampullae

of Lorenzini [76]). In this case the hasPart properties would refer to body parts.

Note that this dimension has an interpretation in the context of phylogeny that fits

the general interpretation and description from Sect. 5.

The final answer to the question of “how similar are two concepts?,” for the dol-

phin and shark, according to Resnik’s method is 0.105. According to the method of

dimensional similarity D and S have taxonomic similarity of 0.188, descriptive simi-

larity of 0.2 and physical similarity of 0.932. However, on the basis of the discussion

presented thus far we strongly argue that dimensional scores are much more infor-

mative and, thus, useful to the “end user”. We present further justification of this

statement in Sect. 10. This being the case we propose a dimensional method, which

produces multiple scores that can be organized into a dimensional similarity vector.

Let us discuss this now this idea in some detail.

7 Combining Similarity Dimensions

As discussed so far, the canonical approach to similarity scoring is to present a sin-

gle number as a result. Sometimes a range of intermediate results is calculated, in

which case a method of combining those results into one, such as a weighted sum, is

utilized. In this case, there are many weighting methods including metrics [77, 78],

machine learning [47], aggregation operators [79, 80] and others [81].

For instance, in [47] authors used a weighted sum of 5 similarity scores of Word-

Net concepts and various machine learning methods. The weights were trained

against a (human) survey similarity scores for pairs of concepts. The authors remarked

that for the scores from each dimension considered alone (for a test set of 20 pairs),

each dimension at least once (i.e. for a specific pair) provided the best score (i.e. clos-

est to training data). This led to the conclusion that the trained weights, even though

useful for this specific application, may not be a good fit for a different domain or

ontology. Nevertheless, according to [47], results from multiple dimensions are more

useful than any individual dimension used separately.

Another work [56], calculated the score as a weighted sum of 4 intermediate

(dimensional) scores. The intermediate scores were not deemed to be individually

relevant and were only considered as parts of the weighted sum. Unfortunately,

although the authors claim that the weights were “determined experimentally”, the

specific method of choosing weights was not described. The authors also cite prob-

lems with choosing good fixed weights [82], some of which are reiterated below.

The advantage of weighted sum is that the final score includes (and combines) a

very broad range (possibly all) of available knowledge. Good set of weights offsets

the possibility of overlap of dimensions by adjusting overlapping scores. A disad-

vantage is that there is no indication that weights calculated for one ontology give

112 P. Szmeja et al.

good results for a different one and recalculation of weights is expensive and requires

a good training set (which may not be easy to deliver). Using a predefined metric or

operator is less computationally intensive, but suffers from accuracy problems [81].

Overall, to the best of our knowledge, there is no weighing method that would pro-

duce a “universal” set of weights. Universality of weights, in the context of similarity

scoring, means that one set of weights produces “good” (i.e. as compared to bench-

marks) results for any testing set. So far no good method (training or otherwise)

applicable to a wide range of ontologies and problems was found. This leads to a

conclusion that it is extremely likely that weights are problem-specific, or ontology-

specific.

In contrast, the dimensional similarity method proposed here produces a single

score for each dimension. Those scores may be presented in a structure of the dimen-
sional similarity vector, in which each cell contains a score from one dimension.

While such vector can be then weighted and “reduced” to a single number, in the

proposed approach the vector itself, as a whole, is to be used as the result.

Even though presenting the dimensional similarity vector as the final score goes

against the established methods, it has clear advantages. First, we avoid the afore-

mentioned problems with finding a good set of weights, which is very significant

since the existing research suggests there might not be a good universal one. The

gain is the amount of information that is contained within each vector cell. As men-

tioned, in Sect. 5, the interpretation of a similarity dimension is helpful when design-

ing dimensional algorithms, but it also provides useful information about the final

dimensional score. Understanding what each score stands for is helpful when decid-

ing what knowledge is relevant to our particular problem. In a sense, it is an avoidance

of the universal weights problem, because, assuming that weights represent impor-

tance, we don’t consider weighting a part of similarity scoring. Instead, the implicit

“weighting” is done after scoring in each dimension, when we apply the results to

solving a specific problem. From this perspective, we are free to use (or disregard)

data from any subset of cells from the full similarity vector. Guided by the inter-

pretation of similarity dimensions we can decide what dimensions of similarity are

useful in the context of the problem that is being addressed.

Good understanding of dimensions also helps with correct interpretation of over-

lap(s) between them. In case of a single final score it is impossible to, for example,

“subtract” the impact of a taxonomy, in cases where we are not interested in this

dimension of similarity. Moreover, since usually the weights are hidden from the

user, it is not possible to know the impact brought about by new data introduced

into an ontology, without either experimentation, or analysis of the code (i.e. reverse

engineering), or documentation of used algorithm.

For the weighted sum there is also a general question—what is the actual mean-

ing/interpretation of applied weights? If we assume the (intuitive) understanding

that weights represent importance of dimensions, we may conclude that in a survey

benchmark (like the Miller’s one [15]) dimensions had some given importance to

the participants. This approach, however, is problematic when it comes to automatic

methods, because there usually is more than one set of weights that can produce

the same weighted sum, for a single pair of entities. The hypothetical “importance”

Dimensions of Semantic Similarity 113

weights might also change on a pair by pair basis. Since the weights might not be

unique, we cannot decidedly say that they represent importance, as viewed by the

survey participants. Using a subset selected from cells of a dimensional similarity

vector we essentially make a degenerated ad-hoc weighting. What we mean by that,

is that choosing that we want only taxonomic score is equivalent to setting the weight

of taxonomic score to 1, and rest to 0. For a subset of 3 dimensions, each weight for

the chosen ones would be
1
3
, zero for the rest, and so on.

Example Revisited

To visualize the problem let us propose a few sets of weights for the example

from Sect. 6. Table 3 describes an example with three hypothetical sets of weights

w1,w2,w3. The weights are used to obtain a single similarity score for two cases—

comparison of Shark with Dolphin (SimTotal(S,D)) and Shark with Ray

(SimTotal(S,R)). The weighted sum is made from three dimensional scores

—taxonomic, descriptive and physical (values calculated in Sect. 6 are recalled in

the top part of the table).

The first set of weights w1 assigns approximately equal value to each dimension.

The resulting “total” scores are 0.41 and 0.29 for SimTotal(S,D) and SimTotal(S,R)
respectively. Second set of weights w2 indicates that the taxonomic dimension is

decidedly more important than the other two and results in the scores of 0.34 and

0.42. Lastly, w3 is a set of weights trained so that SimTotal(S,D) and SimTotal(S,R) are

close in value (the result is approximately 0.4 for both).

First, notice that for w1, because of the actual dimensional scores, the physical
dimension has the highest contribution (i.e. highest value) to similarity of Shark and

Dolphin, while the taxonomic dimension is the strongest in Shark and Ray compar-

ison. This is in no way apparent in any of the SimTotal scores.

More importantly, the final score SimTotal has a very vague interpretation for any

set of weights. All we can say about those numbers is that, depending on the weights,

similarity of Shark and Dolphin is either greater, smaller or equal to that of Shark and

Ray. The w3 case indicates that a Shark is just as similar to the Dolphin as to a Ray,

while the other two cases each produce an ordering of the two similarities. Any of

those results can be put into question, depending on the perspective. A layman would

Table 3 Similarity dimension weights example

Dolphin ray Shark

Taxonomic Descriptive Physical

0.105 0.2 0.932
0.799 0.0 0.067

SimTotal(S,D) SimTotal(S,R)
w1 0.33 0.33 0.33 0.41 0.29
w2 0.5 0.25 0.25 0.34 0.42
w3 0.47 0.20 0.33 0.40 0.40

114 P. Szmeja et al.

classify Dolphin as much closer to Shark simply because the Ray looks nothing like

the other two creatures. An expert in biology would, however, see much more dif-

ferences and similarities in all creatures and would give a different score. Finally, an

expert working specifically in phylogenetics would say that (phylogenetically) Shark

and Ray have more in common than Shark and Dolphin. Traditionally, in a survey,

the results would be averaged and produce a number that none of the participants

exactly agrees on, but is representative of the average opinion. We conjecture that

in similarity scoring, since the “average opinion” does not represent any actual per-

spective, it has a diminished usability. None of the scores—for w1, w2, w3, or average

of those, agrees with any other and yet, since the methodology is formally correct we

cannot say that any of them are wrong, unless we adopt a specific perspective, e.g. to

solve a specific problem in biology. Moreover, even from a particular perspective it

is not possible to learn from the final score what information was most important (i.e.

what were the weights for each dimension), if we only look at SimTotal. Knowing that

none of the total scores is indicative of every of the hypothetical survey participants,

led us to believe that modeling different perspectives requires different weights, and

none of the weight sets is, in general case, “more correct” than the other.

The “total” weighted sum score is contrasted with the dimensional score. Here

the result is the dimensional similarity vector with 3 cells, one for each consid-

ered dimension, e.g. SimDim(S,D) = [0.105, 0.2, 0.932] for a set of dimensions [taxo-
nomic, descriptive, physical]. Separately, each cell contains explicitly a single num-

ber, but also (implicitly) an explanation of the score in the form of interpretation

(or description) of the dimension. The information contained in the vector lets us

discern different kinds of similarity and learn that, for instance, Shark and Dolphin

have high physical likeness, but their genetic ancestry (taxonomic similarity) is low.

We can afterward decide whether this similarity dimension is relevant to solving our

specific problem, or, in other words, whether it fits our perspective. Notice that this

is useful both to an expert, and a layman. The first will learn much more from infor-

mation about similarity in genetic taxonomy, rather than overall similarity. The latter

will find more understanding in information about physical similarity of creatures,

rather than some vague “universal” similarity.

To summarize, our recommendation is that the single number score (SimTotal)

should be used whenever it is required by a methodology—e.g. as an input to another

method that accepts single number only, or to compare results with benchmark data

(which usually gives only one number for any pair of entities). In other cases we

recommend the use of the full similarity vector (SimDim), or a selected subset of

dimensional scores, especially when the similarity score is presented to a user (as

opposed to an automated system) that has a specific problem to solve. Dimensional

score, simply put, gives the user more information without (possibly overwhelming

and gratuitous) technical details of implementation and algorithm structure.

Dimensions of Semantic Similarity 115

8 Properties of Dimensions

None of the relevant works [46–49, 53, 55, 56] that present some form of division of

knowledge (collectively labeled as dimensions), in the context of similarity scoring,

gave any formal reasons to support their specific choice of dimensions. The division

of knowledge in each of the works was guided by authors intuitions and was tailored

to fit the needs of a particular implementation of a given similarity algorithm. In this

section we outline characteristics of dimensions that may support a decision as to,

which dimensions to use, as well as guidelines for creation of new dimensions.

In our approach to semantic similarity dimensions, the meaning (semantics) of

the dimension is absolutely essential. Table 4 summarizes the informal meaning (i.e.

interpretation) of dimensions described in Sect. 5.

Ideally, the meaning (semantics) of each dimensions should be easily understand-

able even to a layman. Note that each dimensions from Table 4 can be summarized

in a single sentence. Such concise summary on a high level of abstraction should

be accompanied by a more verbose explanation. For instance the meaning of “type”

in the taxonomic dimension summary is clear to an ontology engineer, but it might

be confusing to others. It is crucial that the semantics of every dimension is prop-

erly explained. This is because the explanation of the meaning is the main guideline

when it comes to actual implementation of the similarity algorithm. As noted in the

explanation of the physical dimension, we can expect that the structure, roles and

even semantics of different ontologies will vary greatly. Despite this, the same simi-

Table 4 Interpretation of dimensions

Dimension Interpretation

Lexical Entities are lexically similar, when the words

used to label them (i.e. their names) are similar

according to a dictionary

Co-occurence Objects are co-occurrence similar, when they

often appear together

Taxonomic Objects are taxonomicaly similar, when they

are of similar class, kind or type

Descriptive Objects are descriptively similar, when they

have similar properties, attributes or

characteristics

Physical Objects are physically similar, when their

physical characteristics and appearance is

similar

Compositional Objects are compositionaly similar, when they

have similar set of parts or ingredients

Membership Objects are membership similar, when they

have similar sets of representatives, instances

or members

116 P. Szmeja et al.

larity dimensions should be applicable to many ontologies. Even implementations of

taxonomic similarity might differ considerably, especially when we extend our prob-

lem space to systems that place, or relax, specific restrictions on taxonomies (e.g.

multiple inheritance, no common root, etc.). The idea behind each dimension must

be independent of any particular structure and should not make any unnecessary

assumptions. It should have meaning outside of computer science and encompass

many possible implementations within it.

A common, agreed upon, interpretation of a similarity dimension allows for direct

comparisons of similarity scores from different methods. It also allows to distinguish

that scores from different dimensions (e.g. physical and compositional) refer to a dif-

ferent kind of similarity and we can expect that they will not be related to each other,

even for the same pair of objects. A “total” similarity score has only a very vague

meaning of a “degree of similarity” and even though there is no basis for this, we

expect such scores to be close to some idealized target similarity, and, therefore, close

to each other. As is apparent from Table 2 the scores (for the same ontology) vary

depending on selected algorithm and data fed to it. This shows that there does not

exist one universal and ideal similarity, outside of artificially constructed references

(sometimes based on averages from a survey).

Even though the general understanding of what a given similarity dimension rep-

resents is always the same, its informativeness is improved when we put it in a context

of a specific ontology. For instance, in case of example from Sect. 6 the taxonomic
score has an interpretation of phylogenetic similarity (in general terms, evolution-

ary ancestry) on top of the general one (given in Table 4). In the example ontology

the taxonomy contains exclusively classes of living organisms and the position of

an entity in this taxonomy is representative of its position in evolutionary tree (phy-

logeny). Understanding of what phylogeny is and how it is constructed improves the

understanding of this dimension even more. Note that there may be many phyloge-

netic ontologies, each with (slightly) different taxonomy. The general interpretation

of the taxonomic dimension is the same for any ontology. The phylogenetic inter-

pretation of this dimension is the same for any phylogenetic ontology. The details of

a very specific interpretation of the dimensions may differ in different phylogenetic

ontologies, but the general interpretation stays the same. A well-defined semantic

similarity dimension should be interpretable on many levels. In other words, it should

have the granularity that is most useful.

Granularity

Let us now consider the fact that the granularity of a dimension is directly related

to how detailed and specific is the explanation of its interpretation. In other words

granularity is the amount of information carried in a description of a dimension.

The least granular (or informative) notion is simply what we referred throughout

this text as “universal similarity”. The “universal similarity” is mostly understood as

an intuitive concept and its meaning may be studied in the field of philosophy, not

computer science. “Semantic similarity” is almost as vague of a term, describing the

similarity of meaning. There is no formally strict definition of it and, although some

Dimensions of Semantic Similarity 117

define it as a metric. However, mathematical properties of semantic similarity are

not set in stone, as mentioned in Sect. 3.

To visualize the granularity of dimensions let us use a simple example in the

context of the MusicBrainz database [83]. MusicBrainz contains data about world-

wide music industry i.e. artists, albums, music companies, music genres etc. It is

available in many forms, one of which is LinkedBrainz—a linked data version of the

database. Usefulness of LinkedBrainz can be enhanced by exploiting the linked data

and connecting it to dbPedia, which contains information that is directly related.

Music albums in MusicBrainz are “releases” (mb:release) of type “album”

(mb:album). A descriptive similarity dimension for MusicBrainz is more informative

than just “semantic similarity” and it is applicable to any concept within MusicBrainz

in the same way as in any other knowledge base. For a mb:release, it denotes similar-

ity of all its properties such as mb:artist, mb:title, mb:label, mb:format and others.

In particular the mb:type is not included here. In simplistic terms the gain of infor-

mation stems from restricting the fields that we include in the similarity scoring to a

smaller set. This is also true if we design a similarity dimension for any specific ontol-

ogy. Doing that, however, we loose the ability to directly apply our new dimension

to any other ontology. An increase of specificity (information) means a decreased

range of possible applications. This is particularly apparent when the description of

a dimension specifically mentions a property. For instance, in order to group albums

by musical era we need to know the similarity of their release date. Such “album-

time-of-release” dimension is very specific, because it can only be applied to an

ontology that describes music albums and stores release time data. It is also very

informative—we know exactly what data is used and, since time data is numerical,

we can directly relate it to a syntactic similarity, or closeness of numbers. The possi-

ble data and algorithms used in this dimension are very restricted. Separating the data

in such dimension does not bring any immediately apparent benefit and is, frankly,

not necessary or advised. This is in stark contrast to low granularity dimensions, e.g.

descriptive similarity. Dimensions of moderate similarity are an attempt to strike a

balance. For instance, the compositional dimension is only applicable to ontologies

with appropriate roles (e.g. hasPart), but since many ontologies do in fact have such

roles, this requirement is not very restrictive. The granularities of this example are

summarized in Table 5.

In summary, a good design of similarity dimensions exhibits a balance between

informativeness and applicability. From the point of view of granularity, similarity

dimensions can be put on a spectrum between very specific syntactic similarity and

very vague (semantic) similarity. Low informativeness gives a wide range of pos-

sibilities when it comes to implementation. High granularity leaves no doubt when

it comes to the meaning of such highly granular, dimensional similarity score. The

choice of granularity should be made to best help solve a given problem, but very

high granularities are not advised.

Implementation

Implementation of dimensions may vary greatly. For instance the lexical dimension

may be implemented as a string edit distance like in the ASMOV [56] (that uses the

118 P. Szmeja et al.

Table 5 Information in similarity

Relative informativeness Similarity description Similarity interpretation

0 Similarity Likeness, closeness

1 Semantic similarity Similarity of meaning of

entities

2 Descriptive semantic similarity Similarity of meaning of

descriptions of entities

(attributes and characteristics)

3 Descriptive semantic

similarity of music albums

Similarity of meaning of

descriptions of music albums

4 Descriptive semantic

similarity of music albums in a

music ontology (MusicBrainz)

Similarity of meaning of

description of

MusicBrainz:album(s) i.e.

similarity of artist, title, label

etc.

5 Semantic similarity of release

year of albums from a music

ontology

Similarity of meaning of

numbers representing years

(e.g. numerical similarity)

6 Semantic similarity of release

year of albums from

MusicBrainz ontology

Similarity of meaning of

MusicBrainz:Release_event:date

Levenshtein distance), or as an external thesaurus lookup, like in ASCO [84] (which

actually uses both the edit distance and WordNet similarity). As explained before,

low granularity leaves a lot of room for different implementations.

In case of ontology matching taxonomic and descriptive dimensions are often

combined into one, called structural. There are many different approaches to struc-
tural similarity. For instance, CIDER [85] uses a feature vector model that combines

taxonomy and roles into one set of features. In Anchor-Flood [86], on the other hand,

the structural similarity is constructed purely from taxonomy. ASMOV [56] has an

even more disparate definition of structural dimension that involves a weighted sum

of the domain and range similarities of roles. This difference of approaches demon-

strates the importance of a good description of semantic similarity dimensions. Since

structural similarity (dimension) lacks a good description, it allows for very different

implementations. One possible definition, i.e. a dimension that combines taxonomic
and descriptive similarities would endow it with a very low granularity that places

it very close to a vague “universal” semantic similarity. In other words the mean-

ing of structural similarity is too vague (it is very different in each of the presented

examples) and, therefore, it does not provide much information.

Let us reiterate that similarity dimensions are defined primarily by their interpre-

tation and not by implementation, or even type of method used.

Dimensions of Semantic Similarity 119

9 Applications of Dimensional Semantic Similarity

In this paper, we have focused on presenting the idea of similarity dimensions on the

examples concerning pairwise comparison of ontological entities. The idea itself can

be applied to comparison of other objects, such as full ontologies, entities in semantic

graphs, documents, etc. Throughout the text we have already suggested potential

applications outside of ontological entities. Let us now reiterate and summarize these

considerations.

Analysis of multiple articles and surveys on ontology matching [50, 52, 87]

reveals that modern methods usually use multiple kinds of semantic similarity akin to

similarity dimensions. In particular there is a strong distinction between lexical
methods (also called linguistic) and others. A popular approach, exemplified in Fal-

conAO [88] is to use lexical similarity first, as an input for further parts of the match-

ing algorithm that use some kind of structural data (a graph matching algorithm in

case of FalconAO). Some methods, such as AgreementMaker [89] and COMA [90]

use multiple so-called matchers, some of which use taxonomy, relationship graph

or lexical data. Matchers that work in the same dimension use different algorithms

(e.g. some lexical matchers use edit distance, some thesaurus lookup or others). It

seems that researchers in the field of ontology matching realized that construction

of a good matching requires one to look at similarity of ontologies from many dif-

ferent perspectives. We have formalized this idea in the form of semantic similarity

dimensions.

In the field of document analysis, semantic similarity means the similarity of

meaning (in natural language) of the content of the documents i.e. text similar-

ity [91]. Within this field, similarity of other features of documents, such as author,

type of document (e.g. scientific article, a poem, news article, short story, etc.), pub-

lishing events and others is usually not considered. Those features are a good candi-

date for implementation of similarity dimensions (e.g. type of document describes

the taxonomic dimension), but require external ontology (e.g. a taxonomy of docu-

ment types), so, in some way, similarity of documents is understood as lexical simi-

larity of content of documents.

The lexical dimension, in the context of document similarity, has many features

that may be used to construct subdimensions. Features considered in practice [92]

include statistical analysis (e.g. bag of words approach), sentence length, punctu-

ation count, specific names count, synonyms, hypernyms, hyponyms and others.

Those may be divided into corpus-level (e.g. TF-IDF), document-level (e.g. bag

of words), sentence-level (e.g. extraction of subjects and objects, number of capi-

talized words) and word-level (e.g. synonyms, edit distance). Phrase-level features

are also sometimes considered, although they are used in machine translation [93]

rather than in similarity scoring. Even though many researchers have proposed mul-

tiple features [92], so far there was no attempt to group those features into classes that

would resemble the low granularity dimensional approach described in this paper.

Although those are not applied to similarity scoring, there are many dimension-like

properties relevant to text and speech analysis. Those include affect [94] (also applied

120 P. Szmeja et al.

to WordNet [95]), salience, writing style (formal or informal) and others. Theoreti-

cally, we might score text with respect to, for instance, affect similarity (dimension),

but as said before, such high level properties are not included in current document

similarity scoring methods.

Presence of similarity dimensions in semantic graphs is most pronounced in meth-

ods that use WordNet. This semantic graph offers many different kinds of edges and

sets of features. Different methods use different subsets of available information (e.g.

some methods use synsets, others bots synsets and homonyms). This dimensionality

is, however, not made explicit and, so far, those methods have not been categorized

with respect to dimensions.

10 Concluding Remarks

The notion of (semantic) similarity is, by its nature, vague and ambiguous. Many

semantic similarity measuring methods have been proposed and work well for

ontology-specific or domain-specific applications. Their approaches, however, do

not easily generalize across domains (or ontologies). The proposal of similarity
dimensions address this problem and attempts at rectify the ambiguity of similar-

ity scores.

A single, universal, score suggests how similar two entities are, but does not

answer the question: in what way are the entities actually similar? A similarity vec-

tor provides such answers by treating each similarity dimension separately. Thus, it

is possible to capture the fact that being descriptively similar is different from taxo-
nomicaly similar, or lexically similar, etc. In short, similarity dimensions add extra

meaning to similarity. Dimensional scores specify not only how similar entities are,

but also why.

Generally speaking, there are two ways of dealing with semantic similarity. First,

the overall approach, based on application of similarity dimensions, with separate

scores in each, to understand how similar entities are, and in what way. Second,

development of domain/ontology specific methods that focus on the nature of the

problem at hand. The latter approaches (e.g. [96]) work well when solving a specific

problems, but do not transfer well to other application areas. Canonically, similarity

calculating methods produce a single score that combines all aspects of semantic

similarity. It is a useful simplification that enables direct comparison of results from

different methods. However, different methods approach similarity from a “different

perspective,” use different data and capture different aspect of semantic similarity.

Moreover, since any well-defined method is formally correct, no individual score

can be said to be formally wrong.

Note also that, comparison of single number results form different methods is, by

nature, flawed. Even methods that utilize multiple intermediate similarity scores, in

the end provide a single weighted sum, which “flattens” the meaning of similarity.

Furthermore, making explicit the considered aspect of semantic similarity can be

also useful. For instance, Resnik’s method is purely taxonomic. Hence, by explicitly

Dimensions of Semantic Similarity 121

labeling it as such, one gains valuable information. For instance, someone not famil-

iar with details of Resnik’s method would not know why similarity does not change,

even if one adds a number of roles into the KB. Labeling the method as taxonomic

informs that it is insensitive to roles.

On the other hand, the proposed dimensional similarity vector presents a more

detailed (expanded) view of similarity, and allows for a more meaningful comparison

of results between methods. Another advantage of similarity dimensions is that each

one of them has a universal interpretation, that may be refined depending on con-

text and is independent of the data format. As long as this interpretation is preserved,

multiple different algorithms may be used to represent each dimension. Furthermore,

proper usage and interpretation of a specific dimension is reliant on intuitive under-

standing of general description of that dimension. In this way, the similarity vector

reflects the subjective nature of similarity.

Let us recall that there are many different and correct ways to model any given

domain or problem. The multiplicity of modeling paradigms is a well-known and

studied subject [97, 98]. It suggests that, for any domain, there is no single, exclu-

sively correct, modeling solution. We believe that the same is true for semantic

similarity, i.e. the correct “absolute” / “ultimate” similarity measure does not exist.

Instead, the similarity changes with the perspective, from which we calculate it. Here,

it should be stressed that the proposed approach recognizes this fact by its inherent

flexibility. Specifically, it allows: (i) existence of domain/ontology specific methods

to combine separate scores into a single one (as in [46]), (ii) restricting similarity

dimensions that are actually considered in a given domain (e.g. only taxonomic and

compositional dimensions are to be used), based on the “nature of the application”.

Moreover, if one is interested in similarity in a taxonomy, one needs to use only a

taxonomic method. Alternatively, if one already obtained a dimensional vector, (s)he

can utilize any part of it that is of interest in a given context. Here, again, available

dimensionality provides information useful both before and after similarity scoring.

In this way, the dimensional similarity vector provides, in a sense, a disentangle-

ment of similarity. A dimensional answer to a question of similarity is more informa-

tive not just because one receives more values, but also because each value (i.e. each

dimension) has an interpretation. This interpretation adds knowledge about the way,

in which entities are similar, on top of a numerical value representing similarity. A

single score is much more concise, but it lacks this additional information, i.e. this

information is obfuscated, when only one score is available, without any explanation

as to how it was arrived at.

In summary, similarity dimensions are a way of introducing semantics the into

semantic similarity itself. The low-granularity dimensions (presented in Sect. 5) pro-

vide a basic understanding of similarity even to a layman. For instance physical sim-

ilarity is immediately understood by everyone. High-granularity dimensions may be

created to serve very particular needs of experts in a given field. It is thus our opin-

ion that, in calculating semantic similarity, the most important part is the reason

why we calculate it. In conclusion, recognizing similarity dimensions adds meaning

to semantic similarity. Dimensional score tells us not only how entities are similar,

but also indicates why.

122 P. Szmeja et al.

References

1. https://www.w3.org/TR/owl-guide/

2. Szmeja, P., Ganzha, M., Paprzycki, M., Pawlowski, W.: Dimensions of ontological similarity.

In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 246–249.

IEEE, February 2016

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description

Logic Handbook. Cambridge University Press (2003)

4. Cohen, W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics.

In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 754–760. MIT

Press (1992)

5. Baader, F.: Least Common Subsumers and Most Specific Concepts in a Description Logic

with Existential Restrictions and Terminological Cycles (2003)

6. Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, San

Diego (1973)

7. d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive descrip-

tion logics. In: Proceedings of convegno italiano di logica computazionale (2005)

8. Shepard, Roger N.: The analysis of proximities: Multidimensional scaling with an unknown

distance function. I. Psychometrika. 27(2), 125–140 (1962). doi:10.1007/BF02289630

9. Hahn, Ulrike, Chater, Nick, Richardson, Lucy B.: Similarity as transformation. Cognition

87(1), 1–32 (2003). doi:10.1016/S0010-0277(02)00184-1

10. Asl, M.E., et al.: Similitude analysis of composite I-beams with application to subcomponent

testing of wind turbine blades. In: Experimental and Applied Mechanics, vo. 4, pp. 115–126.

Springer International Publishing (2016)

11. Tversky, A.: Features of similarity. Psycholog. Rev. 84, 327–352 (1977)

12. Nothdurft, Hans-Christoph: Feature analysis and the role of similarity in preattentive vision.

Atten. Percept. Psychophys. 52(4), 355–375 (1992)

13. Santini, Simone: Jain, Ramesh: The graphical specification of similarity queries. J. Vis. Lang.

Comput. 7(4), 403–421 (1996)

14. Rubenstein, Herbert, Goodenough, John: Contextual cor-relates of synonymy. CACM 8(10),

627–633 (1965)

15. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cognit.

Processes 6, 1–28 (1991)

16. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Pro-

ceedings of the 14th international joint conference on Artificial intelligence, pp. 448–453

(1995)

17. Milne, D., Witten, I.: An effective, low-cost measure of semantic relatedness obtained from

wikipedia links. In: Proceedings of the AAAI Workshop on Wikipedia and Artificial Intelli-

gence: an Evolving Synergy, pp. 25–30 (2008)

18. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information retrieval

by semantic similarity. IJSWIS 2(3), 55–73 (2006)

19. Sanchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new

feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)

20. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Learning relatedness measures

for entity linking. In: Proceedings of the 22nd ACM international Conference on Information

and Knowledge Management, pp. 139–148 (2013)

21. De Nies, T., et al.: A distance-based approach for semantic dissimilarity in knowledge graphs.

In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC). IEEE (2016)

22. Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/

23. http://davis.wpi.edu/xmdv/datasets/ohsumed.html

24. http://qwone.com/~jason/20Newsgroups/

25. Bohm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures

for improving the performance of multi-media databases. ACM Comput. Surv. 33(3), 322–

373 (2001)

https://www.w3.org/TR/owl-guide/
http://dx.doi.org/10.1007/BF02289630
http://dx.doi.org/10.1016/S0010-0277(02)00184-1
http://oaei.ontologymatching.org/
http://davis.wpi.edu/xmdv/datasets/ohsumed.html
http://qwone.com/~jason/20Newsgroups/

Dimensions of Semantic Similarity 123

26. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic Measures for the Comparison of

Units of Language. Concepts or Instances from Text and Knowledge Representation Analysis,

CoRR (2013)

27. Semantic Measures Library. http://www.semantic-measures-library.org/sml/

28. Bollegala, D., Matsuo, Y., Ishizuka, M.: A relational model of semantic similarity between

words using automatically extracted lexical pattern clusters from the web. In: Conference on

Empirical Methods in Natural Language Processing, EMNLP 2009, pp. 803–812. ACL and

AFNLP (2009)

29. Wan, S., Angryk, R.A.: Measuring semantic similarity using wordnet-based context vectors.

In: El-Hawary, M. (ed.) IEEE International Conference on Systems, Man and Cybernetics,

SMC 2007, pp. 908–913. IEEE Computer Society, Montreal, Quebec, Canada (2007)

30. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on

semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–19 (1989)

31. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32Nd Annual

Meeting on Association for Computational Linguistics, pp. 133–138 (1994)

32. Rhee, S.K., Lee, J., Park, M.-W., Szymczak, M.: Fra̧ckowiak, G., Ganzha, M., Paprzycki,

M.: Measuring semantic closeness of ontologically demarcated resources. Fundam. Inform.

96(4), 395–418 (2009)

33. Zhang, L., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans.

Image Process. 20(8), 2378–2386 (2011)

34. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66

(1991)

35. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge, UK (1998)

36. Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions

voisines. Bull. de la Société Vaudoise des Sci. Nat. 37, 241–272 (1901)

37. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes

from different ontologies. IEEE Trans. Knowl. Data Eng. 15, 442–456 (2003)

38. Petrakis, E.G.M., Varelas, G., Hliaoutakis, A., Raftopoulou, P.: X-similarity: computing

semantic similarity between concepts from different ontologies. J. Digit. Inf. Manag. 4, 233–

237 (2006)

39. Shannon, Claude Elwood: A mathematical theory of communication. ACM SIGMOBILE

Mob. Comput. Commun. Rev. 5(1), 3–5 (2001)

40. Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic similarity met-

ric combining features and intrinsic information content. In: Meersman, R., Tari, Z. (eds.)

OTM 2008 Confederated International Conferences CoopIS, DOA, GADA, IS, and ODBASE

2008, Monterrey, Mexico, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)

41. Zhou, Z., Wang, Y., Gu, J.: A new model of information content for semantic similarity in

WordNet. In: 2008 Second International Conference on Future Generation Communication

and Networking Symposia, FGCNS’08, vol. 3. IEEE (2008)

42. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity

in WordNet. In: Proceedings of the 16th European conference on artificial intelligence. IOS

Press (2004)

43. Sánchez, D., Batet, M., Isern, D.: Ontology-based information content computation. Knowl.-

Based Syst. 24(2), 297–303 (2011)

44. Pirró, G.: A semantic similarity metric combining features and intrinsic information content.

Data Knowl. Eng. 68, 1289–1308 (2009)

45. Hamming, Richard W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2),

147–160 (1950). doi:10.1002/j.1538-7305.1950.tb00463.x,MR0035935

46. Calle, F.J., Castro,E., Cuadra, D.: Ontological Dimensions Applied to Natural Interaction.

In: ONTORACT ’08 Proceedings of the 2008 First International Workshop on Ontologies in

Interactive Systems, p. 91–96

47. Albacete, E., Calle, J., Castro, E., Cuadra, D.: Semantic similarity measures applied to an

ontology for human-like interaction. J. Artif. Intell. Res. 44, 397–421 (2012)

http://www.semantic-measures-library.org/sml/
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x, MR 0035935

124 P. Szmeja et al.

48. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: ECAI. vol. 16

(2004)

49. Rahm, Erhard: Bernstein, Philip: A survey of approaches to auto-matic schema matching.

VLDB J. 10(4), 334–350 (2001)

50. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)

51. Lin, F.: State of the art: automatic ontology matching. Tekniska Högskolan (2007)

52. Shvaiko, Pavel: Euzenat, Jérôme: Ontology matching: state of the art and future challenges.

IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

53. Lin, D.: An information-theoretic definition of similarity. In Proceedings of the Fifteenth

International Conference on Machine Learning, pp. 296–304 (1998)

54. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.: et. al.: Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics.

25(1), pp. 25–29. Stanford University School of Medicine, California, USA, Department of

Genetics (2000)

55. Pesquita, C., Faria, D., Falca, A.O., Lord, P., Couto, F.M.: Semantic Similarity in Biomedical

Ontologies (2009)

56. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology Matching with Semantic Ver-

ification. INFOTECH Soft, Inc., 9200 S Dadeland Blvd. Suite 620, Miami, FL 33156, USA

1 University of Miami, Coral Gables, FL 33124, USA

57. Vargas-Vera, M., Nagy, M., Motta, E.: DSSim—managing uncertainty on the semantic web,

pp. 1–11 (2011). http://oro.open.ac.uk/23598/1/10.1.1.104.99635B15D.pdf

58. Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity

measures. In: Seventh IEEE/ACIS International Conference on Computer and Information

Science (icis 2008), Portland/Oregon. IEEE

59. http://linkeddata.org/

60. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. (CSUR) 41(2), 10

(2009)

61. Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation.

In: EACL, vol. 6 (2006)

62. Lund, Kevin: Burgess, Curt: Producing high-dimensional semantic spaces from lexical co-

occurrence. Behav. Res. Methods Instrum. Comput. 28(2), 203–208 (1996)

63. Pekar, V., Staab, S.: Taxonomy learning: factoring the structure of a taxonomy into a semantic

classification decision. In: Proceedings of 19th International Conference on Computational

Linguistics, pp. 1–7 (2012)

64. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxon-

omy. In: International Conference on Research on Computational Linguistics (1997)

65. Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of

semantic similarity. In: Proceedings of the 14th International Conference on World Wide

Web, pp. 107–116 (2005)

66. Harispe, S., Sánchez, D., Ranweza, S., Janaqia, S., Montmaina, J.: A framework for unifying

ontology-based semantic similarity measures: a study in the biomedical domain. J. Biomed.

Inform. 48, 38–53 (2014)

67. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-

chies. J. Log. Comput. 9(3), 385–410 (1999)

68. Blank, A.: Words and concepts in time: towards diachronic cognitive onomasiology. In:

Eckardt, R., von Heusinger, K., Schwarze, C. (eds.) Words in Time, pp. 37–66. Mouton de

Gruyter, Berlin, Germany (2013)

69. http://purl.oclc.org/NET/ssnx/ssn

70. Lehmann, K.: A Framework for Semantic Invariant Similarity Measures for ELH Concept

Descriptions. Diplomarbeit, Technishe Universitat Dresden (2012)

71. https://en.wikipedia.org/wiki/Short-beaked_common_dolphin

72. https://en.wikipedia.org/wiki/Silvertip_shark

73. https://en.wikipedia.org/wiki/Lesser_electric_ray

74. http://www.flmnh.ufl.edu/fish/gallery/descript/silvertipshark/silvertipshark.html

http://oro.open.ac.uk/23598/1/10.1.1.104.99635B15D.pdf
http://linkeddata.org/
http://purl.oclc.org/NET/ssnx/ssn
https://en.wikipedia.org/wiki/Short-beaked_common_dolphin
https://en.wikipedia.org/wiki/Silvertip_shark
https://en.wikipedia.org/wiki/Lesser_electric_ray
http://www.flmnh.ufl.edu/fish/gallery/descript/silvertipshark/silvertipshark.html

Dimensions of Semantic Similarity 125

75. http://www.arkive.org/lesser-electric-ray/narcine-brasiliensis/

76. http://www.marinebiodiversity.ca/skatesandrays/external

77. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans.

Knowl. Data Eng. 21(11), 1532–1543 (2009)

78. Zerzucha, P., Walczak, B.: Concept of (dis)similarity in data analysis. Trends Anal. Chem.

38, 116–128 (2012)

79. Detyniecki, M.: Mathematical aggregation operators and their application to video querying.

Research Report, LIP6, Paris (2001)

80. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes.

Fuzzy Sets Syst. 142, 143–161 (2004)

81. Younes, A.A., Blanchard, F., Herbin, M.: New similarity index based on the aggregation of

membership functions through OWA operator. In: 2015 Federated Conference on Computer

Science and Information Systems (FedCSIS). IEEE (2015)

82. Bach, T., Dieng-Kuntz, R.: Measuring similarity of elements in owl DL ontologies. In: The-

ory, Practice and Applications, Workshop on Contexts and Ontologies (2005)

83. MusicBrainz—The Open Music Encyclopedia. https://musicbrainz.org/

84. Le B.T., Dieng-Kuntz R., Gandon F.: Ontology matching: A machine learning approach for

building a corporate semantic web in a multi-communities organization, 14–17 April 2004

85. Gracia, J., Asooja, K.: Monolingual and cross-lingual ontology matching with CIDER-CL:

evaluation report for OAEI 2013. In: Proceedings of the 8th Ontology Matching Workshop

(OM’13), at 12th International Semantic Web Conference (ISWC’13), Syndey (Australia),

CEUR-WS, vol. 1111 October 2013. ISSN-1613-0073

86. Seddiqui, M.H., Aono. M.: Anchor-flood: results for OAEI 2009. In: Proceedings of the 4th

International Conference on Ontology Matching-Volume 551. CEUR-WS. org (2009)

87. Otero-Cerdeira, Lorena, Rodríguez-Martínez, Francisco J., Gómez-Rodríguez, Alma: Ontol-

ogy matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

88. Hu, Wei: Yuzhong, Qu: Falcon-AO: a practical ontology matching system. Web Semant. Sci.

Serv. Agents. World Wide Web 6(3), 237–239 (2008)

89. Cruz, I.F., Antonelli, F.P.: Stroe. C.: AgreementMaker: efficient matching for large real-world

schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)

90. Massmann, S., et al.: Evolution of the COMA match system. In: Proceedings of the 6th Inter-

national Conference on Ontology Matching-Volume 814. CEUR-WS. org (2011)

91. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of

text semantic similarity. In: AAAI, vol. 6 (2006)

92. Murphy, M. L.: Semantic relations and the lexicon: antonymy, synonymy and other para-

digms. Cambridge University Press (2003)

93. Li, J., Resnik, P., Daumé III.H.: Modeling syntactic and semantic structures in hierarchical

phrase-based translation. In: HLT-NAACL (2013)

94. Besnier, Niko: Language and affect. Annu. Rev. Anthropol. 19, 419–451 (1990)

95. Strapparava, C., Valitutti. A.: WordNet Affect: an Affective Extension of WordNet. In: LREC,

vol. 4 (2004)

96. Benabderrahmane, S., Smail-Tabbone, M., Poch, O., Napoli, A., Devignes, M-D.: IntelliGO a

new vector-based semantic similarity measure including annotation origin. BMC Bioinform.

11(1) (2010)

97. Goldkuhl, G.: Design theories in information systems-a need for multi-grounding. JITTA J.

Inf. Technol. Theor. Appl. 6(2), 59 (2004)

98. Dietz, J.L.G.: What is Enterprise Ontology?. Springer, Heidelberg (2006)

99. Google Knowledge Graph. https://developers.google.com/structured-data/customize/

overview

100. Open Directory Project. https://www.dmoz.org/

http://www.arkive.org/lesser-electric-ray/narcine-brasiliensis/
http://www.marinebiodiversity.ca/skatesandrays/external
https://musicbrainz.org/
https://developers.google.com/structured-data/customize/overview
https://developers.google.com/structured-data/customize/overview
https://www.dmoz.org/

Some Interesting Phenomenon Occurring
During Self-learning Process with Its
Psychological Interpretation

Ryszard Tadeusiewicz

1 Introduction

This book is dedicated for the eminent scientist, former president of IEEE and
candidate for 2018 IEEE President-Elect, wonderful man and—last but not least—
my friend, professor Jacek Zurada. Professor Zurada is one of the best experts in
(among other) computational intelligence [1], neural networks [2] and machine
learning areas [3]. Therefore selecting the material for this chapter I must prefer
scientific results related to quoted areas.

Neural networks are useful tools for solving many practical problem (e.g. [4–7]).
But every of such solution is interesting for limited number of readers, working
with similar problems and similar applications. Therefore we select more interesting
observations, which are related to the phenomena observed during the neural net-
work self-learning process. Because of same similarity to psychological processes
[8], observed during natural activity in our own mind, we call such phenomena
“artificial dreams” [9]. This name is similar to the title of Hamid Ekbia’s book [10],
but the meaning of this term in our works is slightly different. In Ekbia’s book
“artificial dreams” are presented as unrealized and unrealizable projects related to
Artificial Intelligence. In our research we do observe “artificial dreams” as spon-
taneous and unexpected processes, emerging automatically from the natural
self-learning procedures.

R. Tadeusiewicz (✉)
AGH University of Science and Technology, Krakow, Poland
e-mail: rtad@agh.edu.pl
URL: http://www.tadeusiewicz.pl

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_4

127

The phenomena under consideration are very interesting and exciting, therefore
can be mysterious, why so rare are reported by Artificial Intelligence or Computa-
tional Intelligence researchers? Yet so many people perform self-learning processes
for many purposes—so why such phenomena are still not discovered and described?

The answer is simple. Most papers describing methods and results of the
self-learning (even in neural networks, which are main tool considered in this work)
are mainly goal-oriented. The researcher or practitioner are concentrate on the
applications, not on the tool and its behavior. Authors of almost all papers first try
to obtain the best result in terms of solving of specified problem (e.g. building of
neural network based model of some process or finding the neural solution of the
pattern recognition problem). Therefore the discussion of the self-learning results
taking into account only the final result (e.g. quality of the model or correctness of
classification), while the phenomena discussed in this paper occur when the
self-learning system is not learned enough. In all works known to the author at this
time nobody see on the details of network (or other self-learning system) behavior
during the learning process. Meanwhile some phenomena observed during the
self-learning process are really interesting, because totally unexpected.

2 Self-learning and Learning

In this paper we take into consideration self-learning process, instead of more
known and more useful (from technical point of view) machine learning process.
Let us describe the main difference between such two processes, because it will be
important from the main thesis of this paper.

During the regular learning process we have the “teacher”, who teach “pupil” (in
fact it is machine) on the base of examples of properly solved tasks. In machine
learning teacher is an algorithm, powered with examples database, but the main
idea of teaching is based on simple scheme: get the knowledge from teacher and put
it the pupil. After learning process “artificial pupil” can take an exam, where quality
of learned knowledge can be evaluated and assessed. On Fig. 1 you can see how it
works on the base of gender recognition problem.

In contrast to this scheme self-learning process is based on the knowledge
discovery methods. The pupil (in fact it is still machine) can accept input data, but
there are no teacher, who can explain, what the data means. Therefore self-learning
must not only accumulate knowledge, but it must discover this knowledge without
any external help. It is in general difficult task, but many successful applications
prove this way effective. On Fig. 2 you can see how it works also on the base of
gender recognition problem. Self-learning system after connecting with many input
data can differentiate man from women, but off course cannot give the proper names
to the genders. During the exam self-learning system can give classification for new
person (sometimes proper, and sometimes not—as every artificial classification
system) using symbols of classes instead names.

128 R. Tadeusiewicz

Fig. 1 Learning and exam in supervised learning

Fig. 2 Learning and exam in unsupervised learning (self-learning)

Some Interesting Phenomenon Occurring During Self-learning … 129

There are many learning and self-learning systems, but for purpose of this paper
we selected neural networks as a tools, in which we can observe the “artificial
dreams” phenomena, discussed in our works. Neural networks are in general known
for almost everybody, but we try tell some words about simple (and interesting!)
application of self-learning neural network, which will be base for further
consideration.

3 Self-learning Neural Network

The phenomena described in this paper can be discovered, as mentioned above, in
almost all types of neural networks and for almost all methods of learning (both
supervised and unsupervised). In this paper we decided take into account such
situation:

Let we have one-layer linear neural network. It means as the input to the network
we consider n-dimensional vectors X = < x1, x2, …, xn >, the knowledge of the
network is represented by collection of weight vectors Wj = < w1j, w2j, …, wnj >
for all neurons (j = 1, 2,…, L), which outputs can be obtained by mans of simplest
and very known equation:

yj = ∑
n

i=1
wijxi ð1Þ

The network learns on the base of simple hebbian rule: If on step p we obtain the
input vector Xp = < x1p, x2p, …, xnp > than the correction of the weight vector
ΔWj (p) depends on the output value yjp calculated by the j-th neuron for Xp

according to the Eq. (1), and on the value of input vector Xp according to the
formula:

ΔWj pð Þ= η yjpXp ð2Þ

where η is the learning rate coefficient (η < 1).
Of course new value of weight vector Wj at the next step (p + 1) of the

self-learning process can be calculated by means of formula:

Wj p+1ð Þ=Wj pð Þ+ΔWj pð Þ=Wj pð Þ+ η yjpXp ð3Þ

which must be applied for all neurons (for all j = 1, 2, …, L). It is easy to find out,
that the result of such calculations are different for neurons with positive output yjp
calculated as the answer for input signal Xp, and different for neurons with negative
output. In first case the weight vector of the neuron Wj (p) is changed toward to the
position of actual input signal Xp (attraction), in second case the weight vector of
the neuron Wj (p) is changed backward to the position of actual input signal Xp

130 R. Tadeusiewicz

(repulsion). This process is presented on Fig. 3, where big ring denotes position of
input signal Xp, and the small squares denotes positions of weight vectors of the
neurons. The “migration” of the weight vectors can be observed on this plot—one
are attracted toward the input signal, where the other are pushed in opposite
direction.

The same process performed by big populations of self-learned neurons is
presented on Fig. 4.

Everybody know, what results after many steps of such self-learning process,
performed by the network connected with a real data stream. If the data are not

Fig. 3 Migration of the
weight vectors during one
step at the self-learning
process

Fig. 4 Migration of the
weight vectors in the biggest
self-learned network

Some Interesting Phenomenon Occurring During Self-learning … 131

uniformly distributed, the neurons are divided (spontaneously!) onto groups, when
every group is dedicated to the one cluster of the input data. Moreover the values of
the weights vectors of the neurons belonging to each group are more or less
precisely located in the center of selected cluster of the data. It means, that after the
self-learning process inside the neural network we have neurons, which can be used
as detectors (or sentinels) for every cluster (group of similar signals), present in
observed data stream and automatically discovered by the network.

This process described above is not ideal, because as everybody know, spon-
taneous migration of the weight vector for every independent neuron leads to many
pathologies: every attractor have many neurons as the detectors
(over-representation), and sometimes some important attractors can be omitted (no
one neuron decide to point out this region of input space). Everybody know also,
how to solve this problem: the much better solution is to use Kohonen network and
methodology of self-organizing maps.

Yes, but in this work we do not try to made the best self-organized represen-
tation of the data. Our goal is definitely other: we are searching for very simple
model of the learning of neural network, because on the base of this model we try to
show, how (and why) the learned network sometimes presents behavior, which can
be interpreted as “artificial dreams”.

4 How and Where Artificial Dreams Phenomena Can Be
Discovered?

Let assume we must design spacecraft for discovery mysterious world of distant star
and planetary robot, which will be send on the ground of totally unknown planet,
inhabited by some species of alien monsters. Our robot must collect as many
information about aliens as is possible without any a’priori knowledge (Fig. 5). The
ideal form of the main computer installed on the robot desk is self-learning neural
network, which can collect and systematize information about all creatures found
on the exotic planet. After return the spacecraft to the Earth we can obtain from the
robot main computer self-learned memory information about number of species of
aliens and about their properties, thanks to similar kind classification like shown on
Fig. 2.

For most researchers only interesting result of computer memory investigation is
like shown on Fig. 6. The way, how this classification was obtained by the
self-learning process is out of area of interest of most researchers.

Unfortunately!
The example with spacecraft and aliens was rather fantastic and science-fiction

based (in fact it was only the joke!), nevertheless the problem under consideration is
real and serious. Self-learning system are used often, eagerly and for many pur-
poses. But in fact everybody who use self-learning systems is interested only on
final result in terms of classification ability or data clustering, when the way of

132 R. Tadeusiewicz

Fig. 5 Hypothetical spacecraft robot powered by self-learning neuro-computer

Fig. 6 Content of the
memory of self-learning
spacecraft after discovery
alien planet

Some Interesting Phenomenon Occurring During Self-learning … 133

learning process is disregarded. Meanwhile we try show in this paper, that the
unstable and transitory phenomena, observed in neural networks during the
self-learning process, are also very interesting, impressive and inspiring.

Such phenomena can be discovered long time after the start of learning, when
the network knows nothing because of random values assigned to all it weights.
Self-learning process goes then automatically, so typical researcher starts per-
forming another job or goes home. At the same time moment, when such unusual
phenomena can be observed, occur long time before final point of learning process,
when the network knows (almost) everything and can be exploited according to the
plan. Such phenomena can be classified as errors of not matured enough
self-learning neural network and therefore can be disregarded. But try give them
some psychological interpretations.

5 How Manifest Artificial Dreams?

Observed phenomena can be all disregarded as learning imperfections, but some of
them can also be interpreted as “artificial dreams” performed by the artificial neural
networks. It can give us new interpretation of the human ability to the imagination,
fantasy and also poetry. It can be presented even on the base of the very simple
neural network models, but of course the most interesting results can be investi-
gated by means of the networks deployed with high level of similarity to the real
brain structures what means big level of complication of the neural structure and
also complicated forms of observed phenomena. Before we show and discuss
considered phenomena we must shot description of the example problem, in which
“artificial dreams” can be very easy encountered.

Let us assume now, that we take into account very simple example problem,
which must be solved by the neural network during the self-learning process. In this
exemplary problem we assume, that we have four clusters in the input data. Let
assume for clear and easy graphical presentation of the results, that the attractors
preset in the data (most typical examples) are localized exactly at the centers of four
subparts (quarter) of the input space (Fig. 7). The base of this space is defined by
two parameters: body form and body shape (whatever it means). In such space we
will observe process of differentiation of four various groups living beings (women,
birds, fishes, snakes) shown (one example for every class) on Fig. 7.

In this case self-learning process in simulated neural network after some thou-
sands of learning steps leads to the situation, when almost every neuron become
member of one from the four separate groups, located (in sense of localization of
weight vectors) at the points corresponding with the centers of the clusters dis-
covered in the input data stream. Three snapshots from the learning process are
presented on the Fig. 8.

Typical user of the neural network takes into account mainly last snapshot,
presenting, how many neurons are located in proper positions after the learning
process and how precisely the real values of attractors coordinates are reproduced

134 R. Tadeusiewicz

by the neurons parameters. For our consideration the medium snapshot will be most
interesting, because in presents something strange: situation, when knowledge of
the network is definitely not complete, but also the initial chaos was partially
removed. This stage of learning process is usually skipped by neural network
researchers, because apparently man cannot find anything interesting in this plots:
the learning process is not ready yet, it’s all.

Apparently.
In fact what we see on the central plot on Fig. 8 is registration of “artificial

dream”. We must only think in terms of special interpretation…

Fig. 7 The example problem. Detail description in the text

Fig. 8 Three stages of the self-learning process

Some Interesting Phenomenon Occurring During Self-learning … 135

6 Special Interpretation of the Intermediate Stages
of Learning Process

In all goal oriented investigations when using neural networks researchers are
interested in final result of learning process, which must useful and accurate.
Almost nobody takes into consideration intermediate stages shown on Fig. 8. But
when we try to understand, what can means in fact form of plotting, repeated on
Fig. 9—we must find out, that although it is not real dream, it can be interpreted as
very exciting model of artificial dream. In fact on the plotting presented on Fig. 9
we can point out the localizations of the neurons, which can recognize some
(named) objects from real world. After learning all neurons will be attributed to the
real world objects, like girls, fishes and birds. But when we have very early stage of
learning process, we can find in the population of neurons both real-world related
detectors and fantasy-world related detectors. On the line connecting points rep-
resenting for example girls with the point representing fishes we can find neurons,
which are ready to recognize objects, which parameters (features) are partially
similar to the girls shapes, and partially include features taken from the other real

Fig. 9 Parameters of self-learning neural network shows after encoding, that some of neurons
spontaneously produce imaginations of non-existing beings. There are the “artificial dreams”!

136 R. Tadeusiewicz

objects, for example fishes (e.g. tiles). Another hybrid imagination is creature
having features taken from girls and from birds. Perhaps it can be angel?

Isn’t it something known in the plots shown on Fig. 9? Obviously in real world
object like some of plotted here cannot exist. The objects of such properties cannot
also be elements of learning data stream, because input information for the network
is every time taken from the real world examples. Nevertheless in neural network
structure learning process forms neurons, which want to observe and recognize
such not real objects.

Isn’t it some kind of “artificial dreams”?
Very interesting is fact, that the fantasy-oriented objects, like presented on

Fig. 9, encountered during the learning process, never are unrestricted or simply
random. We can find only such neurons, which are able to recognize some hybrids,
fantastic, but build from the real elements. Isn’t it analogy to the tell-stories or
myths?

Limited volume of this presentation not allows us to present many other
examples of the “artificial dreams” encountered during the learning processes in
neural networks. But one more example can be also interesting, because it shows
another kind of fantasy identified in neural network behavior. This form of fantasy
can be called “making giants”. Example of such behavior of the learned network is
presented on the Fig. 10. When the network is learned by means of examples of real
world object—in the neural structures the prototypes of these objects are formed
and enhanced. This process goes over the big population of neurons and leads to the
forming of internal representation (in neural structures) of particular real objects.
Neurons belonging to these representation can recognize every real object of the
type under consideration. It is very known and regular process.

But sometimes in contrast to this regular pattern we can observe single neurons,
which parameters are formed in such way, which leads to the surprise after inter-
pretation. Let us assume, that real objects on the base of which the network was
learned during the experiment illustrated on Fig. 10, was lion. The network can
“see” many lions (of course as a collections of parameters, representing selected
data about lions—e.g. how toll is lion, how long and sharp is lion’s tooth and so
on). After some learning period inside the network we have some imagination of
real lion. This imagination, given as collection of parameters (neurons weights),
enable us to recognize every real lion. But some neurons have parameters, which
enable to recognize surreal lion, much bigger than real one, with biggest tooth and
with much more dangerous claws. The relations and proportions between param-
eters are the same, as for real lions (see on Fig. 10 relations between parameters of
real objects and relations between parameters of the imprinted in weights of refugee
neuron imagination of the “giant”—both belonging to the same line, coming from
the root of coordination system), but so big lion cannot exist. Nevertheless we can
find neuron ready for recognition of this giant, although it not exists!

Some Interesting Phenomenon Occurring During Self-learning … 137

7 Concluding Remarks

Facts and comments presented in this paper definitely aren’t very important from
the scientific point of view and also are not applicable to the practical problem
solving using neural networks. But as long as we use neural networks as the
artificial systems very similar to the structures discovered in human brain—we still
thinking about analogies between processes in our psychic and in neurocomputers.
Results of simulations presented in this paper gives us new point to such consid-
erations and we hope can be interesting for many neural network researchers bored
with new learning paradigms, new network structures and new neurocomputing
applications and searching for something absolutely different from the serious and
boring standards. This paper is something for him!

References

1. Zurada, J.M., Marks, R.J., Robinson, C.J. (eds.): Computational Intelligence: Imitating Life.
IEEE Press, New York (1994)

2. Zurada, J.M.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul,
Minnesota (1992)

Fig. 10 Another form of “artificial dream”. Description in the text

138 R. Tadeusiewicz

3. Cloete, I., Zurada, J.M. (eds.): Knowledge-Based Neurocomputing. MIT Press, Cambridge,
Massachusetts (2000)

4. Sasiada, M., Fraczek-Szczypta, A., Tadeusiewicz, R.: Efficiency testing of artificial neural
networks in predicting the properties of carbon nanomaterials as potential systems for nervous
tissue stimulation and regeneration. Bio-Algorithms and Med-Systems (2017). doi:10.1515/
bams-2016-0025

5. Mazurkiewicz, E., Tomecka-Suchoń, S., Tadeusiewicz, R.: Application of neural network
enhanced ground penetrating radar to localization of burial sites. Appl. Artif. Intell. 30(9),
844–860 (2016). doi:10.1080/08839514.2016.1274250

6. Smyczyńska, J., Hilczer, M., Smyczyńska, U., Stawerska, R., Tadeusiewicz, R., Lewiński, A.:
Artificial neural models—a novel tool for predictying the efficacy of growth hormone
(GH) therapy in children with short stature. Neuroendocrinol. Lett. 36(4), 348–353 (2015).
ISSN 0172-780X; ISSN-L 0172-780X

7. Tadeusiewicz, R.: Neural networks in mining sciences—general overview and some
representative examples. Arch. Min. Sci. 60(4), 971–984 (2015). doi:10.1515/amsc-2015-
0064

8. Tadeusiewicz, R.: Using neural networks for simplified discovery of some psychological
phenomena. In: Rutkowski, L. et al. (eds.) Artificial Intelligence and Soft Computing, LNAI
6114, pp. 104–123. Springer, Berlin, Heidelberg, New York (2010)

9. Tadeusiewicz, R., Izworski, A.: Learning in neural network—unusual effects of “Artificial
Dreams”. In: King et al. (eds.) Neural Information Processing, Lecture Notes in Computer
Science, Part I, vol. 4232, pp. 211–218, Springer, Berlin, Heidelberg, New York (2006)

10. Ekbia, H.: Artificial Dreams: The Quest for Non-Biological Intelligence, Cambridge
University Press (2008)

Some Interesting Phenomenon Occurring During Self-learning … 139

http://dx.doi.org/10.1515/bams-2016-0025
http://dx.doi.org/10.1515/bams-2016-0025
http://dx.doi.org/10.1080/08839514.2016.1274250
http://dx.doi.org/10.1515/amsc-2015-0064
http://dx.doi.org/10.1515/amsc-2015-0064

Part II
Neural Networks and Connectionist

Systems

On the Interpretation and Characterization
of Echo State Networks Dynamics:
A Complex Systems Perspective

Filippo Maria Bianchi, Lorenzo Livi and Cesare Alippi

Abstract In this chapter, we discuss recently developed methods for characteriz-

ing the dynamics of recurrent neural networks. Such methods rely on theory and

concepts coming from the field of complex systems. We focus on a class of recur-

rent networks called echo state networks. First, we present a method to analyze and

characterize the evolution of its internal state. This allows to provide a qualitative

interpretation of the network dynamics. In addition, it allows to assess the stability

of the system, a necessary requirement in many practical applications. Successively,

we focus on the identification of the onset of criticality in such networks. We discuss

an unsupervised method based on Fisher information, which can be used to tune the

network hyperparameters. With respect to standard supervised techniques, we show

that the proposed approach offers several advantages and is effective on a number of

tasks.

Keywords Echo state networks ⋅ Criticality ⋅ Recurrence quantification analysis ⋅
Fisher information matrix ⋅ Unsupervised learning

F.M. Bianchi

Machine Learning Group, Department of Physics and Technology,

UiT the Arctic University of Norway, Tromsø, Norway

e-mail: filippo.m.bianchi@uit.no

L. Livi ⋅ C. Alippi (✉)

Department of Electronics, Information, and Bioengineering,

Politecnico di Milano, Milan, Italy

e-mail: cesare.alippi@polimi.it

L. Livi

e-mail: lorenz.livi@gmail.com

L. Livi ⋅ C. Alippi

Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_5

143

144 F.M. Bianchi et al.

1 Introduction

Since the very first recurrent neural network (RNN) architectures, several attempts

have been made to describe and understand their internal dynamics [64]. Nowadays,

such efforts found renewed interest by those researchers trying to “open the black-

box” [26, 45, 46, 49]. This is mostly motivated by recent advances in various fields,

such as neuroscience [10]. In fact, understanding the inner mechanisms that drive

the inductive inference is of utmost importance for deriving novel scientific results

[48].

Research on complex dynamical systems is focusing more and more on networks

characterized by time-varying properties [2], which can be related to the topol-

ogy and/or features associated with vertices and edges (e.g., states of networked

dynamic systems). Of particular interest are those systems that also perform a com-

putation when driven by an external stimulus. RNNs, initially proposed in the 80s

[12, 42, 60], offer an example of those systems. RNNs are universal approximators

of Lebesgue measurable dynamical systems [15], with the capability of storing the

history of input signals and utilize such information for prediction [8, 23, 40, 50].

While in principle RNNs are characterized by a simple, yet powerful and flexible

model, in practice they are hard to train. In fact, in order to learn the internal con-

nection weights, the network designer has to face a series of technical issues [36].

The most important obstacles are due to the vanishing and exploding gradient [3].

In this chapter, we focus on a particular class of RNN, called Echo State Network

(ESN). The main peculiarity of ESNs is that the recurrent part, called reservoir, is

randomly generated and the connection weights are kept fixed. The only part that is

trained is the so-called readout, a memory-less component that combines the neuron

activations of the reservoir in order to reproduce a suitable output, according to the

specified task at hand. ESNs not only benefit from the presence of feedbacks like

any other RNN (the feature which gives to the system the capability to model any

complex dynamic behavior) but their sparsely interconnected reservoir of neurons

leads to a very fast and simple training procedure. In fact, unlike the complicated

and time consuming training process required by standard RNNs, a simple linear

readout can be used to solve efficiently a great variety of tasks. On the downside,

ESN is characterized by a short-term memory, making it unsuitable for application

when long-term correlations must be modeled [37].

Even if ESNs offer an important simplification for what concerns training, they

depend on hyperparameters affecting their behavior; additionally, their modus

operandi is still not fully understood and it represents an actual object of study

[6, 49]. An ESN can generate complex dynamics characterized by sharp transi-

tions between ordered and chaotic regimes. Several experimental results suggest that

ESNs achieve the highest information processing capabilities exactly on the edge of

this transition, called edge of criticality, resulting in high memory capacity (stor-

age of past events) and good performance on the modeling/prediction task at hand

(low prediction errors) [1, 5, 21, 39, 54, 58]. To determine such “critical” network

configurations, an ESN requires fine tuning of its controlling hyperparameters. This

On the Interpretation and Characterization of Echo State . . . 145

general behavior is in agreement with the widely-discussed “criticality hypothesis”

observed in many biological (complex) systems [14, 16, 41, 43, 51], including the

brain [9, 32, 35, 52, 53]. In fact, it was noted [34] that such complex systems tend to

self-organize and operate in a critical regime. Investigating weather a given complex

system operates more efficiently in the critical regime or not, requires theoretically

sound methods for detecting the onset of criticality [44].

Best-performing network configurations are typically identified through super-

vised methods, such as cross-validation and alike. In this chapter, we present recent

research results [6, 22] that focus on unsupervised approaches to characterize ESN

dynamics and to identify the edge of criticality. These approaches do not require a

validation set, an important limitation in several applications, with scarce amount

of data. Another issue of validation procedures is the need to repeat training for

each hyperparameter configuration taken into account. Through the proposed unsu-

pervised approaches, hyperparameters are tuned in advance and training is per-

formed just once, at the end. Finally, cross validation considers only the performance

obtained on the given task, treating the network as black box. Instead, the presented

methods offer insights on the functioning, by modeling dynamics with more easily

interpretable tools.

Different unsupervised approaches to identify configurations that maximize ESN

computation capability have been proposed in the literature. These, are quickly

reviewed in Sect. 2 after an overview on the ESN architecture. In Sect. 3, we address

the issue of interpretability of ESN dynamics by relying on recurrence plots and

recurrence quantification analysis [6] to characterize the evolution of the internal

states. When the network is driven by a specific input signal, these instruments can

be used to monitor its degree of stability, for a given configuration of its hyperpara-

meters. In Sect. 4, we define an unsupervised methodology for tuning ESN hyperpa-

rameters by means of sensitivity analyses [22]. In particular, we present a theoretical

framework based on Fisher information matrix [55, 62] and its related connection

with criticality. Conclusions and future research directions are provided in Sect. 5.

2 Echo State Networks

A schematic representation of an ESN is shown in Fig. 1. An ESN consists of a reser-

voir of Nr nodes characterized by a non-linear transfer function f (⋅). At time t, the

network is driven by the input 𝐱[t] ∈ ℝNi and produces the output 𝐲[t] ∈ ℝNo , being

Ni and No the dimensionalities of input and output, respectively. The weight matri-

ces 𝐖r
r ∈ ℝNr×Nr (reservoir internal connections), 𝐖r

i ∈ ℝNi×Nr (input-to-reservoir

connections), and 𝐖r
o ∈ ℝNo×Nr (output-to-reservoir feedback connections) contain

values in the [−1, 1] interval drawn from a uniform distribution.

ESN is a discrete-time nonlinear system with feedback, whose model reads:

146 F.M. Bianchi et al.

Wo
r

Wo
i

Wr
o

Wr
r

Wr
i

y

h

x

z-1

z-1

Fig. 1 Schematic depiction of the ESN architecture. The circles represent input 𝐱, state, 𝐡, and

output, 𝐲, respectively. Solid squares 𝐖o
r and 𝐖o

i , are the trainable matrices, respectively, of the

readout, while dashed squares, 𝐖r
r, 𝐖

r
o, and 𝐖r

i , are randomly initialized matrices. The polygon

represents the non-linear transformation performed by neurons and z
-1

is the unit delay operator

𝐡[t] = f
(
𝐖r

r𝐡[t − 1] +𝐖r
i𝐱[k] +𝐖r

o𝐲[t − 1]
)
; (1)

𝐲[t] = g
(
𝐖o

r𝐡[t] +𝐖o
i 𝐱[k]

)
. (2)

Activation functions f (⋅) and g(⋅), both applied component-wise, are typically

implemented as a sigmoidal (tanh) and identity function, respectively. The output

weight matrices 𝐖o
r ∈ ℝNr×No and 𝐖o

i ∈ ℝNi×No , which connect, respectively, reser-

voir and input to the output, represent the readout of the network. The standard train-

ing procedure for such matrices requires solving a straightforward regularized least-

square problem [18].

Even though the three matrices𝐖r
r,𝐖

r
o, and𝐖r

i are generated randomly, they can

be modified in order to obtain desired properties. For instance, 𝐖o
r is controlled by a

multiplicative constant, which in this work is set to 0 to remove the output feedback

connection. 𝐖r
i is controlled by scalar parameter 𝜃IS, which determines the amount

of non-linearity introduced by the sigmoid processing units that is largest around the

origin. In particular, inputs far from zero tend to drive the activation of the neurons

towards saturation where they show more non-linearity. Finally, the parameter 𝜃RC
defines the percentage of non-zero connections in 𝐖r

r, while its spectral radius 𝜃SR
controls important properties, as discussed in the sequel.

2.1 ESN Dynamics and Stability Measures

An ESN is typically designed so that the influence of past inputs gradually fades away

and the initial state of the reservoir is eventually washed out. This is formalized by

the Echo State Property (ESP), which ensures that, given any input sequence taken

On the Interpretation and Characterization of Echo State . . . 147

from a compact set, trajectories of any two different initial states become eventually

indistinguishable. ESP was originally investigated in [18] and successively in [61];

we refer the interested reader to [25] for a more recent definition, where also the

influence of input is explicitly accounted for. In ESNs with no output feedback, as in

our case, the state update of Eq. (1) reduces to:

𝐡[t] = f (𝐖r
r𝐡[t − 1] +𝐖r

i𝐱[k]). (3)

In order to study the stability of the network, we compute the maximal local Lya-

punov exponent (𝜆) from the Jacobian of the state update (3) of the reservoir. This

quantity is used to approximate (for an autonomous system) the separation rate in

phase space of trajectories having very similar initial conditions. 𝜆 is derived from

the Jacobian at time t, which can be conveniently expressed if neurons are imple-

mented with a tanh activation function as

𝐉(𝐡[t]) = 𝕀Nr
⋅
[
1 − (h1[t])2, 1 − (h2[t])2,… , 1 − (hNr

[t])2
]T

. (4)

where hl[t] is the activation of the l-th neuron, with l = 1, 2,… ,Nr. 𝜆 is then com-

puted as

𝜆 = max
n=1,…,Nr

1
t
max

t
max∑

t=1
log

(
rn[t]

)
, (5)

being rn[t] the module of n-th eigenvalue of 𝐉(h[t]) and t
max

the total number of

time-steps in the considered trajectory.

Local, first-order approximations provided by Eq. 4 are useful to study the stabil-

ity of a (simplified) reservoir operating around the zero state, 𝟎. In fact, implementing

f (⋅) as a tanh assures f (𝟎) = 𝟎, i.e., 𝟎 is a fixed point of the ESN dynamics. Therefore,

by linearizing (3) around 𝟎 and assuming a zero-input, we obtain from (4)

𝐡[t] = 𝐉(𝟎)𝐡[t − 1] = 𝐖r
r𝐡[t − 1]. (6)

Linear stability analysis of (6) suggests that, if 𝜃SR < 1, the dynamic around 𝟎 is

stable. In the more general case, the non-linearity of the sigmoid functions in (3)

forces the norm of the state vector of the reservoir to remain bounded. Therefore,

the condition 𝜃SR < 1 looses its significance and does not guarantee stability when

the system deviates from a small region around 𝟎 [57]. Notably, it is possible to

find reservoirs (3) having 𝜃SR > 1, which still possess the ESP. In fact, the effec-

tive local gain decreases when the operating point of the neurons shifts toward the

positive/negative branch of the sigmoid, where stabilizing saturation effects start to

influence the excitability of reservoir dynamics [61]. In the more realistic and use-

ful scenario where the input driving the network is a generic (non-zero) signal, a

sufficient condition for the ESP is met if 𝐖r
r is diagonally Schur-stable, i.e., if there

exists a positive definite diagonal matrix,𝐏, such that (𝐖r
r)
T𝐏𝐖r

r − 𝐏 is negative def-

inite [61]. However, this recipe is fairly restrictive in practice as this condition might

148 F.M. Bianchi et al.

generate reservoirs that are not rich enough in terms of provided dynamics, since

the use of a conservative scaling factor might compromise the amount of memory in

the network and thus the ability to accurately model a given problem. Therefore, for

most practical purposes, the necessary condition 𝜃SR < 1 is considered “sufficient in

practice”, since the state update map is contractive with high probability, regardless

of the input and given a sufficiently large reservoir [63].

2.2 Edge of Criticality

The number of reservoir neurons and the bounds on 𝜃SR can be used for a naïve

quantification of the computational capability of a reservoir [61]. However, those

are static measures that only consider the algebraic properties of 𝐖r
r, without taking

into account other factors, such as the input scaling 𝜃IS and the particular properties

of the given input signals. Moreover, it is still not clear how, in a mathematical sense,

these stability bounds relate to the actual ESN dynamics when processing non-trivial

input signals [25]. In this context, the idea of pushing the system toward the edge

of criticality has been explored. In [5, 20, 21] it is shown that several dynamical

systems, among which randomly connected RNNs, achieved the highest computa-

tional capabilities when moving toward the unstable (sometime even chaotic) regime,

where the ESP is lost and the system enters into an oscillatory behavior. This justifies

the use of spectral radii above the unity in some practical applications.

The stable–unstable transition can be detected numerically by considering the

sign of 𝜆 (5). In fact, in autonomous systems, 𝜆 > 0 indicates that the dynamics is

chaotic. Relative to ESNs, 𝜆 was proposed to characterize reservoir dynamics and

it demonstrated its efficacy in designing a suitable network configuration in several

applications [56, 57]. Further descriptors used for characterizing the dynamics of

a reservoir are based on information-theoretic quantities, such as (average) transfer

entropy and active information storage [7]. The authors have shown that such quan-

tities peak right when 𝜆 > 0. In addition, the minimal singular value of the Jacobian

(4), denoted as 𝜂, was demonstrated to be an accurate predictor of ESN performance,

providing more accurate information regarding the ESN dynamics than both 𝜆 and

𝜃SR [56]. Hyperparameters that maximize 𝜂 generate a dynamical system that is far

from singularity, it has many degrees of freedom, a good excitability, and it separates

well the input signals in phase space [56].

3 Interpreting and Tuning ESN Through Recurrence
Quantification Analysis

Poincaré recurrence provides fundamental information for the analysis of dynami-

cal systems [29]. This follows from Poincaré’s theorem, which guarantees that the

states of a dynamic system must recur during its evolution. Recurrences contain all

On the Interpretation and Characterization of Echo State . . . 149

relevant information regarding a system behavior in phase space and can be linked

also with dynamical invariants (e.g., metric entropy) and features related to stabil-

ity. However, especially for high-dimensional complex systems, the recurrence time

elapsed between recurring states is difficult to calculate, even when assuming full

analytical knowledge of the system.

Recurrence Plots (RPs) [11, 27, 29, 30], together with the computation of dynam-

ical invariants and heuristic complexity measures called Recurrence Quantification

Analysis (RQA), offer a simple yet effective tool to analyze such recurrences start-

ing from a time-series derived from the system under analysis. RP provides a visual

representation of recurrence time and its line patterns contain information about

the duration of the recurrence [28]. RPs are constructed by considering a suitable

distance in the phase space and a threshold 𝜏RP is used to determine the recur-

rence/similarity of states during the evolution of the system.

In the following, we address the interpretability issue of ESNs by analyzing the

dynamics of the reservoir neuron activations with RPs and RQA complexity mea-

sures. Techniques based on RPs and RQA allow the designer to visualize and char-

acterize (high-dimensional) dynamical systems starting from a matrix encoding the

recurrences of the system states over time.

3.1 Representing ESN Dynamics with RP

The sequence of ESN states can be seen as a multivariate time-series 𝐡, relative to

the Nr neuron activations. An RP is constructed by calculating a t
max

× t
max

binary

matrix 𝐑. The generic element Rij is defined as

Rij = 𝛩(𝜏RP − d(𝐡[i],𝐡[j])), 1 ≤ i, j ≤ t
max

, (7)

where d(⋅, ⋅) is a dissimilarity measure operating in phase space (e.g., Euclidean,

Manhattan, or max-norm distance), 𝛩(⋅) is the Heaviside function and 𝜏RP > 0 is a

user-defined threshold used to identify recurrences. 𝜏RP can be defined in different

ways, but typically chosen to be proportional to a percentage of the average or the

maximum phase space distance between the states. Figure 2 depicts the algorithmic

steps required to generate an RP on ESN states.

Depending on the properties of the analyzed time-series, different line patterns

emerge in a RP [28]. Besides providing an immediate visualization of the system

properties, from 𝐑 it is possible to derive several complexity measures, those asso-

ciated with an RQA. Such measures are defined by the distribution of both verti-

cal/horizontal and diagonal line structures present in the RP and provide a numer-

ical characterization of the underlying dynamics. Several RQA measures are based

on the histograms P(l) and P(v), counting, respectively, the diagonal and vertical

lines having lengths l and v,

150 F.M. Bianchi et al.

P(l) =
t
max

−l∑

i,j=1
(1 − Ri−1,j−1)(1 − Ri+l,j+l)

l−1∏

k=0
Ri+k,j+k;

P(v) =
t
max

−v∑

i,j=1
(1 − Ri,j)(1 − Ri,j+v)

v−1∏

k=0
Ri,j+k.

The RQA measures considered here are summarized in Table 1; abbreviations and

notation are kept consistent with [29].

3.2 Visualize and Classify Reservoir Dynamics

In the following, we show how RPs permit to visualize, and hence classify, reservoir

dynamics when ESN is fed with inputs possessing well-known characteristics. We

consider a stable ESN described by (3); RPs are constructed following the procedure

depicted in Fig. 2. Although many classes of signals/systems exist (with related sub-

classes) [29], here we focus on the ability to discriminate between important classes

for the input signals: (i) with/without time-dependence, (ii) periodic/non-periodic

Fig. 2 When 𝐱[t] is fed as input to the Nr neurons of the ESN reservoir, the internal state is updated

to 𝐡[t] = [h1[t], h2[t],… , hNr
[t]]T , where hn[t] is the output of the n-th neuron. Once the time-series

𝐡 is generated, the RP is constructed by using a threshold 𝜏RP and a dissimilarity measure d(⋅, ⋅). If

d(𝐡[t],𝐡[i]) ≤ 𝜏RP, the cell of the RP in position (t, i) is colored in black, otherwise it is left white.

The elements in gray highlight the operations performed at time-step t. Taken from [6]

On the Interpretation and Characterization of Echo State . . . 151

300

250

200

150

100

50

(a) Gaussian white noise

100

80

60

40

20

(b) Periodic

300

250

200

150

100

50

(c) LM: laminar states

300

250

200

150

100

50

(d) LM: chaos

2000

1500

1000

500

(e) Brownian motion

50 100 150 200 250 300 20 40 60 80 100

50 100 150 200 250 300 50 100 150 200 250 300

500 1000 1500 2000 200 400 600 800 1000

1000

800

600

400

200

(f) Drift

Fig. 3 RPs generated by state sequences 𝐡 of ESNs fed with input signals taken into account. Both

axes represent time. Taken from [6]

152 F.M. Bianchi et al.

Table 1 Definition of RQA measures

RR = 1
t2
max

∑t
max

i,j=1 Rij Recurrence rate, a measure of density of recurrences in 𝐑. It

corresponds to the correlation sum, an important concept used in

chaos theory. RR can help to select 𝜏RP when performing multiple tests

on different conditions, e.g., by preserving the rate

DET =
∑tmax

l=lmin
lP(l)

∑tmax

l=1 lP(l)
Determinism level of the system, based on the percentage of diagonal

lines of minimum length lmin. A periodic system would have DET
close to unity and close to zero for a signal with no time-dependency

Lmax = max{li}
Nl
i=1 Maximum diagonal line length, with 1 ≤ Lmax ≤

√
2t

max
. li is ith

diagonal line length and Nl is the total number of diagonal lines,

defined as Nl =
∑

l≥lmin

P(l)

DIV = 1∕Lmax Mean exponential divergence in phase space, related to correlation

entropy of the system. Notably, chaotic systems do not present long

diagonal lines, as trajectories diverge exponentially fast

LAM =
∑tmax

v=vmin
vP(v)

∑tmax

v=1 vP(v)
Presence of laminar phases, which denote states of the system that do

not change or change very slowly for a number of consecutive

time-steps. vmin is the minimal vertical line length considered

ENTR =

−
t
max∑

l=1
p(l) ln(p(l))

Diagonal lines distribution, with p(l) = P(l)∕Nl. In absence of

time-dependence, ENTR ≃ 0, i.e., the diagonal lines distribution is

fully concentrated on very short lines. Conversely, ENTR increases

when the diagonal lines distribution become heterogeneous

motions, (iii) laminar behaviours, (iv) chaotic dynamics, and finally

(v) non-stationary processes. We refer to the examples depicted in Fig. 3 to discuss

the RP relative to each class.

Time-dependency: a uniformly distributed RP denotes absence of time-dependence

in the time-series. Specific RQA measures, such as DET and ENTR (Table 1), can

be used to numerically investigate the presence of time-dependency, as their val-

ues is very low if the signal is uncorrelated. For periodic signal with a strong time-

dependency, DET would be very high, but ENTR would still be low. In fact, ENTR

measures the complexity of the signal, which is low if there is no temporal structure.

Figure 3a depicts the RP generated by feeding the ESN with Gaussian white noise,

a typical example of signal with no time-dependency. Reservoir states generates a

uniform RP, which is peculiar of signals composed by realizations of statistically

independent variables.

Periodicity: every periodic system would induce long diagonal lines and the vertical

spacing provides the period of the oscillation. A periodic system is typically accom-

panied by high values for DET and Lmax, while its low complexity is expressed by

ENTR. In Fig. 3b, we show an example of periodic motion generated by reservoir

neurons, when ESN is fed with a sinusoid having a single dominating frequency. The

regularity of the diagonal lines can be immediately recognized from the figure.

On the Interpretation and Characterization of Echo State . . . 153

Laminarity: a system presents laminar phases if its state does not change or change

very slowly over a number of successive time-steps. Laminar phases can be visually

recognized in an RP by the presence of black rectangles. Every system possessing

laminar phases is characterized by high values for LAM. To provide an example,

we consider the logistic map (LM), defined by the differential equation 𝐱[t + 1] =
𝜏LM𝐱[t](1 − 𝐱[t]), where usually 𝜏LM ∈ (0, 4]; here we set the initial condition 𝐱[1] =
0.5. Figure 3c depicts RP obtained for 𝜏LM = 3.679, where the system exhibits chaos-

chaos transitions. In fact, such a RP is compatible with the one of a (mildly) chaotic

system, showing the presence of laminar phases (large black rectangles).

Chaoticity: RPs offer a particularly useful visual tool in the case of chaotic dynamics,

which are characterized by the presence of erratic and very short diagonal lines. As a

consequence, RR would be very low. ENTR is also useful to determine the degree of

chaoticity: the higher its value, the more chaotic/complex the system. Chaos is char-

acterized by trajectories diverging exponentially fast. This can be quantified with

Lmax and DIV, whose values would be respectively very low and close to one for

systems with a high degree of chaoticity. As an example, we consider a chaotic sys-

tem obtained through LM set with 𝜏LM = 4. The reservoir dynamics, as shown in the

RP in Fig. 3d, denotes fully developed chaos, as indicated by the presence of short

and erratic diagonal lines.

Non-stationarity: Peculiar line patterns observed for all nonstationary signals include

large white areas with irregular patterns denoting abrupt changes in the dynamics.

Drift is a typical form of nonstationarity, which is visually recognized in an RP by the

fading of recurrences in the upper-left and lower-right corners. In Fig. 3e, we show

an example by feeding the ESN with a well-known nonstationary signal: Brownian

motion, a random walk resulting in a nonstationary stochastic process; whose incre-

ments correspond to Gaussian white noise, a stationary process. In Fig. 3f we show

an example of drift, obtained by adding a linear trend to a sinusoid. Nonstationar-

ity can be numerically detected by considering an RQA measure called TREND (not

used in our study) and by analyzing the variation of RQA measures when time-delay

is applied to the signal (see [29] for technical details).

3.3 Recurrence Analysis to Determine ESN Stability

In this section, we show how recurrence analysis can be used to assess stability for

a given configuration. We perform two experiments: in the first one, we use RPs to

visualize reservoir dynamics when driven by a given input signal. When the reservoir

operates in a stable regime, RPs of reservoir and input show similar line patterns. In

a second experiment, We show that Lmax is anticorrelated with 𝜆 and hence it can

be considered as a reliable indicator for the (input-dependent) degree of network

stability.

To test our methodology, we consider two time-series generated respectively by

an oscillatory and by the Mackey-Glass (MG) dynamical system [47]. We chose

154 F.M. Bianchi et al.

these two signals since both of them are often considered as benchmarks for predic-

tion in the ESN literature [18, 57] and they exemplify a very regular and a mildly

chaotic system, respectively. In both experiments, we consider an ESN with no out-

put feedback, configured with a standard setting: uniformly distributed weights in

[−1, 1] for Wr
i and Wr

r, percentage of non-zero reservoir connections 𝜃RC = 25%.

The readout is trained by setting the regularization parameter in the ridge regres-

sion to 0.1. According to the standard drop-out procedure, we discarded the first 100

elements of 𝐡 in order to get rid of the ESN transient states. The number of reser-

voir neurons is set to Nr = 75. We used the Manhattan distance for evaluating the

dissimilarity in the phase space. The threshold 𝜏RP has been calculated by using a

percentage of the average dissimilarity value between the states in 𝐡. Our results are

easily reproducible by using the ESN
1

and RP
2

toolboxes available online.

The first experiment consists in generating the RP relative to the input sequence

{𝐱[t]}tmax

t=1 (sinusoid or MG time-series) and the ones relative to neuron activations

{𝐡[t]}tmax

t=1 , when the reservoir is configured with a spectral radius 𝜃SR that determines

a ordered or a chaotic dynamics.

In Fig. 4, we report the RPs relative to the input signal and the reservoir states,

generated for two different values of 𝜃SR. The left column is relative to the ESN

fed with a sinusoid and the right column to the ESN fed with the MG time-series.

As we can see, when 𝜃SR = 0.9 the ESN is stable and the dynamics of the input,

represented by the RPs in Fig. 4a and b produce very similar line patterns in the

RPs of the reservoirs, reported in Fig. 4c and d. Instead, when the spectral radius is

pushed far beyond unity, the ESN dynamics become unstable and the similarity in

the reservoir RPs is lost, as we can see from Fig. 4e and f.

In the second experiment, we evaluate the effectiveness of Lmax and DIV in deter-

mining the degree of stability in the ESN. Specifically, the higher the value of Lmax,

the more stable the system. The opposite holds for DIV, which is computed as the

reciprocal of Lmax (see Table 1). Our evaluation consists in comparing, 𝜆, a global

indicator of stability (see Eq. 5), with Lmax, the value of the longest diagonal line in

an RP, and with DIV. As before, we consider two ESN fed with the sinusoid and the

MG time-series. The correlations of these measures are reported in Table 2.

To visually assess the agreement of 𝜆 with Lmax and DIV, in Fig. 5 we show a 2D

depiction obtained by selecting a specific input scaling 𝜃IS = 0.8 and by varying 𝜃SR
in the interval [0.1, 2]. For the sinusoidal input, 𝜆 and Lmax are anticorrelated with

(Pearson) correlation equal to −0.74: the value of Lmax decreases as 𝜃SR increases,

while 𝜆, as expected, increases with 𝜃SR. Additionally, it is possible to observe that

there exists a positive correlation (0.53) between 𝜆 and DIV. Also for the MG time-

series, 𝜆 and Lmax show a good anticorrelation, with a value of −0.65. Analogously,

𝜆 and DIV are correlated with a slightly lower value of 0.57.

1
http://www.reservoir-computing.org/node/129.

2
http://www.recurrence-plot.tk/.

http://www.reservoir-computing.org/node/129
http://www.recurrence-plot.tk/

On the Interpretation and Characterization of Echo State . . . 155

1400

1200

1000

800

600

400

200

(a) Sinusoid: RP of input signal

2000

1500

1000

500

(b) MG: RP of input signal

1400

1200

1000

800

600

400

200

(c) Sinusoid: RP of neuron activa-
tions, θSR = 0.9

2000

1500

1000

500

(d) MG: RP of neuron activations,
θSR = 0.9

1400

1200

1000

800

600

400

200

(e) Sinusoid: RP of neuron activa-
tions, θSR = 1.5

200 400 600 800 1000 1200 1400 500 1000 1500 2000

200 400 600 800 1000 1200 1400 500 1000 1500 2000

200 400 600 800 1000 1200 1400 500 1000 1500 2000

2000

1500

1000

500

(f) MG: RP of neuron activations,
θSR = 1.5

Fig. 4 RPs of input signal and sequence of states of the reservoir. When 𝜃SR = 0.9, the ESN is

stable and the activations are compatible with the input dynamics. When 𝜃SR exceeds one, the

activations denote instability. Taken from [6]

156 F.M. Bianchi et al.

Table 2 Correlations between 𝜆, DIV, and Lmax for sinusoid input and MG time-series

corr(𝜆,Lmax) corr(𝜆,DIV)
Sin −0.74 0.53

MG −0.65 0.57

0 0.5 1 1.5 2

-2

-1

0

1

Lmax

DIV

(a) Sinusoid: Lmax, λ

λ

and DIV

0 0.5 1 1.5 2

-1

0

1

Lmax

DIV

(b) MG: Lmax, λ and DIV

λ

Fig. 5 Value of 𝜆 (gray solid line), value of Lmax (solid black line), and the value of DIV (dashed

black line) for the ESN fed with sinusoid input (left) and MG time-series (right). Taken from [6]

Even if in Fig. 5 we provide a visualization only for a specific value of input scal-

ing, it is important to remark that the agreement between 𝜆 and Lmax is consistent

for the entire range of 𝜃IS, confirming that statistics of the RP diagonal lines offer

consistent and solid complexity measures that are able to characterize the network

stability.

4 Detection of Critical Dynamics with Fisher Information

In the last part of this chapter, we present a theoretically motivated, unsupervised

method based on Fisher information for determining the edge of criticality in ESNs

(see [22] for details). It is proven that Fisher information is maximized for (finite-

size) systems operating near or on the edge of criticality [38]. Accordingly, the

hyperparameters, which indirectly affect ESN performance, are suitably controlled

to identify a collection of network configurations that maximize Fisher information

and computational performance. Since no assumption regarding the mathematical

model of the (input-driven) dynamic system is made, the method can handle any

type of applications. Additionally, it is independent of the particular reservoir topol-

ogy, since it operates in the hyperparameter space. This allows the network designer

to instantiate a specific architecture based on problem-dependent design choices.

However, Fisher information is notoriously difficult to compute and either requires

the probability density function or the conditional dependence of the system states

with respect to the model parameters. In the proposed framework, we take advantage

of a recently-developed non-parametric estimator of the Fisher information matrix

[4].

On the Interpretation and Characterization of Echo State . . . 157

4.1 Fisher Information Matrix and the Non-parametric
Estimator

Fisher information matrix (FIM) [62] is a symmetric positive semi-definite (PD)

matrix, whose elements are defined as follows:

Fij(p𝜽(⋅)) =
∫

p
𝜽
(𝐮)

(
𝜕 ln p

𝜽
(𝐮)

𝜕𝜃i

)(
𝜕 ln p

𝜽
(𝐮)

𝜕𝜃j

)
d𝐮, (8)

where p
𝜽
(⋅) is a parametric probability density function (PDF), which depends on

d parameters 𝜽 = [𝜃1, 𝜃2,… , 𝜃d]T ∈ 𝛩 ⊂ ℝd
; 𝛩 is the parameter space. In the ESN

framework, 𝜽 contains the hyperparameters under consideration. In (8), ln p
𝜽
(⋅) is

the log-likelihood function and ⊆ ℝD
denotes the domain of the PDF. To simplify

notation, we denote 𝐅(p
𝜽
(⋅)) as 𝐅(𝜽). The FIM contains d(d + 1)∕2 distinct entries

encoding the sensitivity of the PDF with respect to the parameters 𝜽.

Fisher information is tightly linked with statistical mechanics and, in particular,

with the field of (continuous) phase transitions. In fact, it is possible to provide a

thermodynamic interpretation of Fisher information in terms of rate of change of the

order parameter [38], quantities used to discriminate the different phases of a system.

This fact provides an important link between the concept of criticality and statistical

modeling of complex systems. It emerges that the critical phase of a thermodynamic

system can be mathematically described as that region of the phase space where the

order parameters vanish and their derivatives diverge. This implies that, on the crit-

ical region, FIM diverges as well, hence providing a quantitative, well-justified tool

for detecting the onset of criticality in both theoretical models and computational

simulations [59]. In the ESN framework considered here, we identify the edge of

criticality as the region in parameter space where the Fisher information is maxi-

mized. Figure 6 provides an intuitive illustration, linking criticality and ESNs.

Calculation of the FIM (8) requires full analytical knowledge of the PDF. How-

ever, in many experimental settings either the PDF underlying the observed data is

unknown or the relation linking the variation of the control parameters 𝜽 and the

resulting p
𝜽
(⋅) depends on an unknown function. Recently, a non-parametric estima-

tor of the FIM based on divergence measure

D
𝛼

(p, q) = 1
4𝛼(1 − 𝛼) ∫

(𝛼p(𝐮)(1 − 𝛼)q(𝐮))2
𝛼p(𝐮)(1 − 𝛼)q(𝐮)

d𝐮 − (2𝛼 − 1)2, (9)

was proposed [4], with 𝛼 ∈ (0, 1); p(⋅) and q(⋅) are PDFs both supported on . D
𝛼

belongs to the family of f -divergences and it can be computed directly by means of

an extension of the Friedman-Rafsky multi-variate two-sample test statistic [13].

FIM can be approximated by using a proper f -divergence measure computed

between the parametric PDF of interest and a perturbed version of it [17]. Notably,

by expanding Eq. 9 up to the second order we obtain:

158 F.M. Bianchi et al.

Fig. 6 The approach based on FIM maximization used to identify a continuous phase transition

can be adopted also to characterize dynamics in ESNs. In this context, ESN hyperparameters (e.g.,

spectral radius, input scaling) play the same role of the control parameters in a thermodynamic

system. FIM can be used to identify the critical region in the ESN hyperparameter space, where the

computational capability is maximized. Taken from [22]

D
𝛼

(p
𝜽
, p

̂𝜽
) ≃ 1

2
𝐫T𝐅(𝜽)𝐫, (10)

where ̂𝜽 = 𝜽 + 𝐫, being 𝐫 ∼ (𝟎, 𝜎2𝐈d×d) a small normally distributed perturbation

vector with standard deviation 𝜎.

In the following, we omit 𝜽 and we refer to the estimated FIM as ̂𝐅. According to

[4], FIM can be estimated through least-square optimization:

̂𝐅hvec = (𝐑T𝐑)−1𝐑T𝐯
𝜽
, (11)

where 𝐯
𝜽
= [v

𝜽
(𝐫1),… , v

𝜽
(𝐫M)]T , with v

𝜽
(𝐫i) = 2D

𝛼

(p
𝜽
, p

̂𝜽i
), i = 1,… ,M, and

D
𝛼

(⋅, ⋅) is computed by means of the Friedman-Rafsky test. 𝐑 is a matrix con-

taining all M perturbation vectors 𝐫i arranged as column vectors, and ̂𝐅hvec is the

half-vector representation of ̂𝐅. Note that a vector representation ̂𝐅vec of ̂𝐅 reads as
[
f11,… , fm1, f12,… , fmn

]T
. Since ̂𝐅 is symmetric, it can be represented through the

half-vector representation, ̂𝐅hvec, which is obtained by eliminating all superdiagonal

elements of ̂𝐅 from ̂𝐅vec [24]. ̂𝐅hvec in Eq. 11 is hence defined as
[
̂f11,… ,

̂fdd, ̂f12,… ,

̂fd(d−1)
]T

, where the diagonal elements are located in the first components of the

vector.

4.2 Tuning ESN by Exploiting FIM Properties

In the following, we define the procedure to identify the edge of criticality, here

defined as parameter configurations ⊂ 𝛩 that maximize the ESN computational

On the Interpretation and Characterization of Echo State . . . 159

Collect ESN
activations

Sθ = {h[k]}K
k=1

Non-parametric
estimation
of FIM F̂(θ)

Evaluate
determinant

of F̂(θ)

Initial parameter
configuration θ0

Input signal
x[1], . . . ,x[K]

arg max
θ∗∈Θ

det(F̂(θ∗))

Select new ESN hyperparameters θ

Fig. 7 Schematic, high-level description of the proposed procedure. Taken from [22]

capability. Figure 7 shows a schematic description of the main phases involved in the

proposed method.

In order to determine , we introduce an algorithm that take advantage of the

FIM properties on a system undergoing a continuous phase transition. FIM defines

a metric tensor for the smooth manifold of parametric PDFs embedded in 𝛩 [38],

providing thus a geometric characterization of the system under analysis. It is pos-

sible to prove [33] that corresponds to a region in 𝛩 characterized by the largest

volume (high concentration of parametric PDFs). This geometric result is reflected

in the determinant det(𝐅(𝜽)), which is monotonically related to the aforementioned

volume in parameter space. Therefore, considering that the FIM is a PD matrix, and

hence its determinant is always non-negative, we identify with all those hyperpa-

rameters 𝜽
∗

for which:

𝜽
∗ = arg max

𝜽∈𝛩
det(𝐅(𝜽)). (12)

Algorithm 1 delivers the pseudo-code of the proposed procedure. The impact pro-

vided by the variation of the control parameters 𝜽 on the resulting ESN state cannot

be described analytically without making further assumptions [31]: the (unknown)

input signal driving the network plays an important role in the resulting ESN dynam-

ics. Therefore, in order to calculate 𝐅(𝜽), in Algorithm 1 we rely on the non-

parametric FIM estimator described in Sect. 4.1. The estimation of the FIM for a

given 𝜽 is performed by analyzing the sequence
𝜽
= {𝐡[t]}tmax

t=1 of reservoir neu-

ron activations. Since 𝐡[t] ∈ [−1, 1]Nr , the domain of the PDF in (8) is defined as

 = [−1, 1]Nr . Additional sequences of activations,
̂𝜽j

, are considered (see line 7),

which are obtained by perturbing M times the current network configuration 𝜽 under

analysis, and processing the same input 𝐱. Perturbations are introduced by means of

a small zero-mean noise with spherical covariance matrix, thus characterized by a

single scalar parameter 𝜎 controlling the magnitude of the perturbation. FIM is esti-

mated according to Eq. 11. In order to make the estimation more robust, we follow

an ensemble approach and perform a number of trials (see line 3). The determinant

is computed only once on the resulting average FIM, which is obtained by using T
different (and independent) random realizations of the ESN architecture (see line

16).

160 F.M. Bianchi et al.

Algorithm 1 Procedure for determining an ESN configuration on the edge of criti-

cality.

Input: An ESN architecture, input 𝐱 = {x[i]}tmax
i=1 , quantized parameter space 𝛩, standard deviation

𝜎 for the perturbations, number of trials T and perturbations M.

Output: A configuration 𝜽
∗ ∈

1: Select an initial parameter configuration, 𝜽 ∈ 𝛩; maximum 𝜂 = 0
2: loop
3: for t = 1 to T do
4: Randomly initialize the ESN weight matrices

5: Configure ESN with 𝜽 and process input 𝐱
6: Collect the related activations

𝜽
= {𝐡[i]}tmax

i=1
7: for j = 1 to M do
8: Generate a perturbation vector 𝐫j ∼ (𝟎, 𝜎2𝐈d×d)
9: Randomly initialize the ESN weight matrices

10: Configure ESN with perturbed version ̂𝜽j = 𝜽 + 𝐫j and process input 𝐱
11: Collect the related activations

̂𝜽j
= {𝐡[i]}tmax

i=1
12: end for
13: Define

̂𝜽
= ∪M

j=1 ̂𝜽j

14: Estimate the FIM 𝐅(t)(𝜽) of trial t using
𝜽

and
̂𝜽

with the non-parametric estimator

introduced in Sect. 4.1

15: end for
16: Compute the average FIM, 𝐅(𝜽), using all 𝐅(t)(𝜽), t = 1,… ,T
17: if det(𝐅(𝜽)) > 𝜂 then
18: Update 𝜂 = det(𝐅(𝜽)) and 𝜽

∗ = 𝜽

19: end if
20: if Stop criterion is met then
21: return 𝜽

∗

22: else
23: Select a new 𝜽 ∈ 𝛩 based on a suitable search scheme

24: end if
25: end loop

4.3 Results

In the following, we compare the agreement between the hyperparameter config-

urations identified by the unsupervised FIM-based approach as the edge of criti-

cality, with the configurations where supervised performance measures are maxi-

mized. Specifically, we consider the prediction accuracy, defined as 𝛾 = max{1 −
NRMSE, 0}, where NRMSE is the Normalized Root Mean Squared Error of the

ESN. Then, we account the memory capacity (MC), which quantifies the capability

of ESN to remember previous inputs, relative to an i.i.d. signal. MC is measured

as the squared correlation coefficient between the desired output, which is the input

signal delayed by different delays 𝛿 > 0, and the observed network output 𝐲[t]:

MC =
𝛿

max∑

𝛿=1

cov
2 (𝐱[t − 𝛿], 𝐲[t])

var (𝐱[t − 𝛿]) var (𝐲[t])
. (13)

On the Interpretation and Characterization of Echo State . . . 161

MC is computed by training several readout layers, one for each delay 𝛿 ∈ {1, 10,… ,

100}, while keeping fixed input and reservoir layers.

To test the effectiveness of the identified edge of criticality in terms of forecast

accuracy, we consider the prediction of the sinusoid and the MG time-series. We

also take into account the NARMA task,

𝐲[t + 1] = 0.3𝐲[t] + 0.05𝐲[t]
(r−1∑

i=0
𝐲[t − i]

)

+ 1.5𝐱[t − r]𝐱[t] + 0.1, (14)

being 𝐱[t] an i.i.d. uniform noise in [0, 1].
In addition to the spectral radius 𝜃SR and the input scaling 𝜃IS, we consider also

the effect of the density of the reservoir connections 𝜃RC as a core hyperparameter.

The hyperparameters are searched in a discretized space through a grid search, which

considers 10 different configurations for each parameter. Specifically, we search for

the spectral radius 𝜃SR in [0.4, 1.6], input scaling 𝜃IS in [0.3, 0.8], and reservoir con-

nectivity 𝜃RC in [0.1, 0.7], evaluating a total of 1000 hyperparameter configurations.

Since we considered a parameter space with three dimensions, the related edge of

criticality is a two-dimensional manifold embedded in such a three-dimensional

space. For each hyperparameter configuration, in Algorithm 1 we perform T = 10
independent trials and M = 80 perturbations to compute the ensemble average of the

FIM; the variance for the perturbations is set to 𝜎

2 = 0.25. In each trial, we sample

new (and independent) input and reservoir connection weights (Wr
i and Wr

r).

In Fig. 8, we report the critical regions of the parameter space identified in each

test by: maximization of FIM determinant, denoted by 𝜙, zero-crossing of MLLE

(𝜆), and maximization of minimum singular value of the Jacobian (𝜂). The light

gray manifold corresponds to the regions in parameter space where the performance

of the network is maximized and the dark gray manifolds represent 𝜙, 𝜆, and 𝜂. In

Table 3, we report the numerical values of the correlations between the light gray

manifold and the dark gray ones.

The numerical values of the correlations are reported in Table 3. As it is possible

to notice in Fig. 8a, the critical regions identified by each one of the three methods

follow with good accuracy the region of the hyperparameter space where MC is

maximized. The degrees of correlation for the MC task are described in Table 3. It

is interesting to note that 𝜆 shows a very high correlation (81%) preforming better

than 𝜂 for this task. The correlation between 𝜙 and the region with maximum MC is

also very high (75%), showing that both 𝜙 and 𝜆 can be used as reliable indicators

to identify the optimal configurations that enhance the short-term memory capacity

of ESNs. The p-values for each correlation measure are lower than 0.05, indicating

statistical significance of the results.

Relative to the prediction of the sinusoid, as it is possible to observe in Fig. 8b,

both 𝜙 and 𝜂 are consistent with 𝛾 , while 𝜆 shows a lower agreement. From Table 3,

we see that 𝜙 achieves the best results, all the measures have positive degrees of

correlation with 𝛾 and small p-values (hence statistical significance).

162 F.M. Bianchi et al.

Fig. 8 In each figure, the light gray manifold represents configurations of spectral radius (𝜃SR),

input scaling (𝜃IS), and reservoir connectivity (𝜃RC) that maximize Memory Capacity (MC) or pre-

diction accuracy (𝛾). The dark gray manifolds represent (from left to right): configurations where

the FIM determinant is maximized (𝜙); configurations where MLLE crosses zero (𝜆); configura-

tions where mSVJ is maximized (𝜂). Taken from [22]

On the Interpretation and Characterization of Echo State . . . 163

Table 3 Correlations between the regions where FIM determinant is maximized (𝜙), MLLE

crosses zero (𝜆), minimum singular value of the Jacobian is maximized (𝜂) and performances are

maximized (𝛾/MC). Best results are shown in bold, p-values are reported in brackets

Test Corr (𝜙, 𝛾/MC) (𝜆, 𝛾/MC) Corr (𝜂, 𝛾/MC)

MC 0.75 (1e-5) 0.81 (1e-8) 0.65 (1e-4)

Predict—SIN 0.58 (0.02) 0.52 (1e-3) 0.56 (1e-3)

Predict—MG 0.71 (1e-5) 0.66 (1e-4) 0.38 (0.06)

Predict—NARMA 0.52 (0.01) 0.25 (0.22) 0.48 (0.02)

In MG test, both 𝜙 and 𝜆 provide better results than 𝜂 to identify the optimal

configuration, as we can see from Fig. 8c and the results in the table. Notably, the

correlation between 𝛾 and 𝜂 has a p-value beyond the confidence level 0.05, suggest-

ing that correlations are not different from zero.

According to the results shown in Fig. 8d and Table 3, in the NARMA task 𝜙 and

𝜂 perform significantly better than 𝜆 for identifying the critical region. If fact, the

correlation between 𝛾 and 𝜆 is low and not statistically significant. Even in this case,

the best results in terms of correlation are achieved by 𝜙.

5 Concluding Remarks and Future Research Perspectives

In this chapter, we presented recent research developments for the characterization

and tuning of echo state networks. We have shown how recurrence plots can be gen-

erated from reservoir neurons activations and exploited by the designer as visual

tools to analyze the response of the network to a specific input. Recurrence plots

provide an immediate visual interpretation of network stability: short and erratic

diagonal lines denote instability/chaoticity, while long diagonal lines denote regu-

larity (e.g., a periodic motion). Through the recurrence quantification analysis, the

designer can deduce important and consistent conclusions about the behavior of the

network, depending on the actual input driving the system and the current configu-

rations of the hyperparameters.

Successively, we discussed a method that establishes a connection between the

notion of continuous phase transition, echo state networks, and Fisher information.

Based on this interplay, we have developed a principled approach to configure ESNs

on the edge of criticality, where computational capability (defined in terms of pre-

diction performance and short-term memory capacity) is maximized. The proposed

methodology is completely unsupervised and it opens new perspectives for analyz-

ing the dynamics of driven recurrent neural networks. Fisher information requires

analytic knowledge of the distribution ruling the system. To address this issue, we

have followed an ensemble estimation approach based on a recently proposed non-

parametric FIM estimator, which, thanks to a graph-based representation of the data,

is also applicable to high-dimensional densities. This last aspect plays a fundamental

164 F.M. Bianchi et al.

role in our domain of application, since we analyze the network through a multivari-

ate sequence of reservoir neuron activations; hence the number of dimensions is

determined by the number of reservoir neurons. We evaluated the proposed method

on benchmarks of short-term memory capacity and prediction accuracy, to identify

the ESN hyperparameters maximizing the computational capability. We compared

our method with established criteria based on the sign of the maximum local Lya-

punov exponent and the minimum singular value of the Jacobian. Our experiments

demonstrated that the FIM-based approach achieves comparable or even better accu-

racy than the two other indicators in identifying the onset of criticality.

The methodologies discussed here are independent of the particular task at hand

and offer an insight on the dynamics and actual functioning of the network. In this

sense, the proposed framework of analysis represents a step forward to the under-

standing of these systems that, even if are capable of solving efficiently a variety

of tasks, are often treated as black boxes. We believe that, the linkage of methods

from the complex systems field with recurrent neural networks offers the potential

to disclose a whole new set of opportunities for further studies and applications.

Our future directions point toward graph-based approaches, which demonstrated to

be powerful tools to represent complex systems and to model their dynamics when

observed through time-series [19].

References

1. Aljadeff, J., Stern, M., Sharpee, T.: Transition to chaos in random networks with cell-type-

specific connectivity. Phys. Rev. Lett. 114, 088101 (2015). doi:10.1103/PhysRevLett.114.

088101

2. Barzel, B., Barabási, A.-L.: Universality in network dynamics. Nat. Phys. 9(10), 673–681

(2013). doi:10.1038/nphys2741

3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is

difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). ISSN 1045-9227. doi:10.1109/72.

279181

4. Berisha, V., Hero, A.Q. III.: Empirical non-parametric estimation of the Fisher information.

IEEE Signal Process. Lett. 22(7), 988–992 (2015). ISSN 1070-9908. doi:10.1109/LSP.2014.

2378514

5. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in

recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004). doi:10.1162/

089976604323057443

6. Bianchi, F.M., Livi, L., Alippi, C.: Investigating echo state networks dynamics by means of

recurrence analysis. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016). doi:10.1109/TNNLS.

2016.2630802

7. Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information processing in echo

state networks at the edge of chaos. Theory Biosci. 131(3), 205–213 (2012). doi:10.1007/

s12064-011-0146-8

8. Charles, A., Yin, D., Rozell, C.: Distributed sequence memory of multidimensional inputs in

recurrent networks. arXiv:1605.08346 (2016)

9. De Arcangelis, L., Lombardi, F., Herrmann, H.J.: Criticality in the brain. J. Stat. Mech. Theory

Exp. 2014(3), P03026 (2014). doi:10.1088/1742-5468/2014/03/P03026

http://dx.doi.org/10.1103/PhysRevLett.114.088101
http://dx.doi.org/10.1103/PhysRevLett.114.088101
http://dx.doi.org/10.1038/nphys2741
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/LSP.2014.2378514
http://dx.doi.org/10.1109/LSP.2014.2378514
http://dx.doi.org/10.1162/089976604323057443
http://dx.doi.org/10.1162/089976604323057443
http://dx.doi.org/10.1109/TNNLS.2016.2630802
http://dx.doi.org/10.1109/TNNLS.2016.2630802
http://dx.doi.org/10.1007/s12064-011-0146-8
http://dx.doi.org/10.1007/s12064-011-0146-8
http://arxiv.org/abs/1605.08346
http://dx.doi.org/10.1088/1742-5468/2014/03/P03026

On the Interpretation and Characterization of Echo State . . . 165

10. Enel, P., Procyk, E., Quilodran, R., Dominey, P.F.: Reservoir computing properties of neural

dynamics in prefrontal cortex. PLoS Comput. Biol. 12(6), e1004967 (2016). doi:10.1371/

journal.pcbi.1004967

11. Eroglu, D., Peron, T.K.D.M., Marwan, N., Rodrigues, F.A., da Costa, L.F., Sebek, M., Kiss,

I.Z., Kurths, J.: Entropy of weighted recurrence plots. Phys. Rev. E 90(4), 042919 (2014).

doi:10.1103/PhysRevE.90.042919

12. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990). ISSN 0364-0213.

doi:10.1016/0364-0213(90)90002-E

13. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald-Wolfowitz and Smirnov

two-sample tests. Ann. Stat. 7(4), 697–717 (1979)

14. Grigolini, P.: Emergence of biological complexity: criticality, renewal and memory. Chaos,

Solitons Fractals (2015). doi:10.1016/j.chaos.2015.07.025

15. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network mod-

els. Neural Netw. 17(8–9), 1061–1085 (2004). ISSN 0893-6080. doi:10.1016/j.neunet.2004.

06.009

16. Hidalgo, J., Grilli, J., Suweis, S., Muñoz, M.A., Banavar, J.R., Maritan, A.: Information-based

fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. 111(28),

10095–10100 (2014). doi:10.1073/pnas.1319166111

17. Hidalgo, J., Grilli, J., Suweis, S., Maritan, A., Muñoz, M.A.: Cooperation, competition and

the emergence of criticality in communities of adaptive systems. J. Stat. Mech. Theory Exp.

2016(3), 033203 (2016). doi:10.1088/1742-5468/2016/03/033203

18. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with

an erratum note. Bonn, Germany: German National Research Center for Information Technol-

ogy GMD Technical Report, vol. 148, p. 34 (2001)

19. Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Sci. Rep. 5,

(2015). doi:10.1038/srep15508

20. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent computation.

Phys. D Nonlinear Phenom. 42(1), 12–37 (1990). doi:10.1016/0167-2789(90)90064-V

21. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for

neural circuit models. Neural Netw. 20(3), 323–334 (2007). doi:10.1016/j.neunet.2007.04.017

22. Livi, L., Bianchi, F.M., Alippi, C.: Determination of the edge of criticality in echo state net-

works through Fisher information maximization. IEEE Trans. Neural Netw. Learn. Syst. 1–12

(2017). doi:10.1109/TNNLS.2016.2644268

23. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. PLoS

Comput. Biol. 3(1), e165 (2007). doi:10.1371/journal.pcbi.0020165.eor

24. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and

Econometrics. Wiley, New York (1995)

25. Manjunath, G., Jaeger, H.: Echo state property linked to an input: Exploring a fundamental

characteristic of recurrent neural networks. Neural Comput. 25(3), 671–696 (2013). doi:10.

1162/NECO_a_00411

26. Marichal, R.L., Piñeiro, J.D.: Analysis of multiple quasi-periodic orbits in recurrent neural

networks. Neurocomputing 162, 85–95 (2015). doi:10.1016/j.neucom.2015.04.001

27. Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifur-

cat. Chaos 21(04), 1003–1017 (2011). doi:10.1142/S0218127411029008

28. Marwan, N., Kurths, J.: Line structures in recurrence plots. Phys. Lett. A 336(4), 349–357

(2005). doi:10.1016/j.physleta.2004.12.056

29. Marwan, N., Carmen, M., Thiel, R.M., Kurths, J.: Recurrence plots for the analysis of complex

systems. Phys. Rep. 438(5), 237–329 (2007). doi:10.1016/j.physrep.2006.11.001

30. Marwan, N., Schinkel, S., Kurths, J.: Recurrence plots 25 years later-Gaining confidence in

dynamical transitions. EPL (Europhys. Lett.) 101(2), 20007 (2013). doi:10.1209/0295-5075/

101/20007

31. Massar, M., Massar, S.: Mean-field theory of echo state networks. Phys. Rev. E 87(4), 042809

(2013). doi:10.1103/PhysRevE.87.042809

http://dx.doi.org/10.1371/journal.pcbi.1004967
http://dx.doi.org/10.1371/journal.pcbi.1004967
http://dx.doi.org/10.1103/PhysRevE.90.042919
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/j.chaos.2015.07.025
http://dx.doi.org/10.1016/j.neunet.2004.06.009
http://dx.doi.org/10.1016/j.neunet.2004.06.009
http://dx.doi.org/10.1073/pnas.1319166111
http://dx.doi.org/10.1088/1742-5468/2016/03/033203
http://dx.doi.org/10.1038/srep15508
http://dx.doi.org/10.1016/0167-2789(90)90064-V
http://dx.doi.org/10.1016/j.neunet.2007.04.017
http://dx.doi.org/10.1109/TNNLS.2016.2644268
http://dx.doi.org/10.1371/journal.pcbi.0020165.eor
http://dx.doi.org/10.1162/NECO_a_00411
http://dx.doi.org/10.1162/NECO_a_00411
http://dx.doi.org/10.1016/j.neucom.2015.04.001
http://dx.doi.org/10.1142/S0218127411029008
http://dx.doi.org/10.1016/j.physleta.2004.12.056
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1209/0295-5075/101/20007
http://dx.doi.org/10.1209/0295-5075/101/20007
http://dx.doi.org/10.1103/PhysRevE.87.042809

166 F.M. Bianchi et al.

32. Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H.J., Plenz, D.: Criticality as a signature

of healthy neural systems. Front. Syst. Neurosci. 9, 22 (2015). doi:10.3389/fnsys.2015.00022

33. Mastromatteo, I., Marsili, M.: On the criticality of inferred models. J. Stat. Mech. Theory Exp.

2011(10), P10012 (2011). doi:10.1088/1742-5468/2011/10/P10012

34. Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144(2), 268–

302 (2011). doi:10.1007/s10955-011-0229-4

35. Mora, T., Deny, S., Marre, O.: Dynamical criticality in the collective activity of a population of

retinal neurons. Phys. Rev. Lett. 114(7), 078105 (2015). doi:10.1103/PhysRevLett.114.078105

36. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.

arXiv:1211.5063 (2012)

37. Peng, Y., Lei, M., Li, J.-B., Peng, X.-Y.: A novel hybridization of echo state networks and

multiplicative seasonal ARIMA model for mobile communication traffic series forecasting.

Neural Comput. Appl. 24(3–4), 883–890 (2014)

38. Prokopenko, M., Lizier, J.T., Obst, O., Wang, X.R.: Relating Fisher information to order para-

meters. Phys. Rev. E 84(4), 041116 (2011). doi:10.1103/PhysRevE.84.041116

39. Rajan, K., Abbott, L.F., Sompolinsky, H.: Stimulus-dependent suppression of chaos in recur-

rent neural networks. Phys. Rev. E 82(1), 011903 (2010). doi:10.1103/PhysRevE.82.011903

40. Reinhart, R.F., Steil, J.J.: Regularization and stability in reservoir networks with output feed-

back. Neurocomputing 90, 96–105 (2012). doi:10.1016/j.neucom.2012.01.032

41. Roli, A., Villani, M., Filisetti, A., Serra, R.: Dynamical criticality: overview and open ques-

tions. arXiv:1512.05259 (2015)

42. Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.: Sequential thought processes

in pdp models. V 2, 3–57 (1986)

43. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H.,

Van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature

461(7260), 53–59 (2009). doi:10.1038/nature08227

44. Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W., Dakos, V., van De Kop-

pel, J., van De Leemput, I.A., Levin, S.A., van Nes, E.H., Pascual, M., Vandermeer, J.: Antic-

ipating critical transitions. Science 338(6105), 344–348 (2012). doi:10.1126/science.1225244

45. Schiller, U.D., Steil, J.J.: Analyzing the weight dynamics of recurrent learning algorithms.

Neurocomputing 63, 5–23 (2005). doi:10.1016/j.neucom.2004.04.006

46. Shen, Y., Wang, J.: An improved algebraic criterion for global exponential stability of recurrent

neural networks with time-varying delays. IEEE Trans. Neural Netw. 19(3), 528–531 (2008).

ISSN 1045-9227. doi:10.1109/TNN.2007.911751

47. Steil, J.J.: Memory in backpropagation-decorrelation o(n) efficient online recurrent learning.

In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) Artificial Neural Networks: For-

mal Models and Their Applications-ICANN 2005, pp. 649–654. Springer, Berlin, Heidelberg

(2005)

48. Sussillo, D.: Neural circuits as computational dynamical systems. Curr. Opin. Neurobiol. 25,

156–163 (2014). doi:10.1016/j.conb.2014.01.008

49. Sussillo, D., Barak, O.: Opening the black box: low-dimensional dynamics in high-dimensional

recurrent neural networks. Neural Comput. 25(3), 626–649 (2013). doi:10.1162/NECO_a_

00409

50. Tiňo, P., Rodan, A.: Short term memory in input-driven linear dynamical systems. Neurocom-

puting 112, 58–63 (2013). doi:10.1016/j.neucom.2012.12.041

51. Tkačik, G., Bialek, W.: Information processing in living systems. Ann. Rev. Condens. Matter

Phys. 7(1), 89–117 (2016). doi:10.1146/annurev-conmatphys-031214-014803

52. Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S.E., Berry, M.J., Bialek, W.: Thermo-

dynamics and signatures of criticality in a network of neurons. Proc. Natl. Acad. Sci. 112(37),

11508–11513 (2015). doi:10.1073/pnas.1514188112

53. Torres, J.J., Marro, J.: Brain performance versus phase transitions. Sci. Rep. 5 (2015). doi:10.

1038/srep12216

54. Toyoizumi, T., Abbott, L.F.: Beyond the edge of chaos: amplification and temporal integration

by recurrent networks in the chaotic regime. Phys. Rev. E 84(5), 051908 (2011). doi:10.1103/

PhysRevE.84.051908

http://dx.doi.org/10.3389/fnsys.2015.00022
http://dx.doi.org/10.1088/1742-5468/2011/10/P10012
http://dx.doi.org/10.1007/s10955-011-0229-4
http://dx.doi.org/10.1103/PhysRevLett.114.078105
http://arxiv.org/abs/1211.5063
http://dx.doi.org/10.1103/PhysRevE.84.041116
http://dx.doi.org/10.1103/PhysRevE.82.011903
http://dx.doi.org/10.1016/j.neucom.2012.01.032
http://arxiv.org/abs/1512.05259
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1126/science.1225244
http://dx.doi.org/10.1016/j.neucom.2004.04.006
http://dx.doi.org/10.1109/TNN.2007.911751
http://dx.doi.org/10.1016/j.conb.2014.01.008
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1016/j.neucom.2012.12.041
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014803
http://dx.doi.org/10.1073/pnas.1514188112
http://dx.doi.org/10.1038/srep12216
http://dx.doi.org/10.1038/srep12216
http://dx.doi.org/10.1103/PhysRevE.84.051908
http://dx.doi.org/10.1103/PhysRevE.84.051908

On the Interpretation and Characterization of Echo State . . . 167

55. Toyoizumi, T., Aihara, K., Amari, S.-I.: Fisher information for spike-based population decod-

ing. Phys. Rev. Lett. 97(9), 098102 (2006). doi:10.1103/PhysRevLett.97.098102

56. Verstraeten, D., Schrauwen, B.: On the quantification of dynamics in reservoir computing. In:

Artificial Neural Networks–ICANN 2009, pp. 985–994. Springer, Berlin (2009). doi:10.1007/

978-3-642-04274-4_101

57. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of

reservoir computing methods. Neural Netw. 20(3), 391–403 (2007). ISSN 0893-6080. doi:10.

1016/j.neunet.2007.04.003. Echo State Networks and Liquid State Machines

58. Wainrib, G., Touboul, J.: Topological and dynamical complexity of random neural networks.

Phys. Rev. Lett. 110, 118101 (2013). doi:10.1103/PhysRevLett.110.118101

59. Wang, X., Lizier, J., Prokopenko, M.: Fisher information at the edge of chaos in random

boolean networks. Artif. Life 17(4), 315–329 (2011). ISSN 1064-5462. doi:10.1162/artl_a_

00041

60. Werbos, P.J.: Backpropagation: past and future. Proc. IEEE Int. Conf. Neural Netw. 1, 343–353

(1988). doi:10.1109/ICNN.1988.23866

61. Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural Netw. 35, 1–9

(2012). doi:10.1016/j.neunet.2012.07.005

62. Zegers, P.: Fisher information properties. Entropy 17(7), 4918–4939 (2015). doi:10.3390/

e17074918

63. Zhang, B., Miller, D.J., Wang, Y.: Nonlinear system modeling with random matrices: echo

state networks revisited. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 175–182 (2012). ISSN

2162-237X. doi:10.1109/TNNLS.2011.2178562

64. Zhang, Y., Wang, J.: Global exponential stability of recurrent neural networks for synthesizing

linear feedback control systems via pole assignment. IEEE Trans. Neural Netw. 13(3), 633–644

(2002). ISSN 1045-9227. doi:10.1109/TNN.2002.1000129

http://dx.doi.org/10.1103/PhysRevLett.97.098102
http://dx.doi.org/10.1007/978-3-642-04274-4_101
http://dx.doi.org/10.1007/978-3-642-04274-4_101
http://dx.doi.org/10.1016/j.neunet.2007.04.003
http://dx.doi.org/10.1016/j.neunet.2007.04.003
http://dx.doi.org/10.1103/PhysRevLett.110.118101
http://dx.doi.org/10.1162/artl_a_00041
http://dx.doi.org/10.1162/artl_a_00041
http://dx.doi.org/10.1109/ICNN.1988.23866
http://dx.doi.org/10.1016/j.neunet.2012.07.005
http://dx.doi.org/10.3390/e17074918
http://dx.doi.org/10.3390/e17074918
http://dx.doi.org/10.1109/TNNLS.2011.2178562
http://dx.doi.org/10.1109/TNN.2002.1000129

Optimization of Ensemble Neural
Networks with Type-1 and Interval Type-2
Fuzzy Integration for Forecasting
the Taiwan Stock Exchange

Martha Pulido, Patricia Melin and Olivia Mendoza

Abstract This paper describes an optimization method based on particle swarm
optimization for ensemble neural networks with type-1 and type-2 fuzzy aggre-
gation for forecasting complex time series. The time series that was considered in
this paper to compare the hybrid approach with traditional methods is the Taiwan
Stock Exchange (TAIEX), and the results shown are for the optimization of the
structure of the ensemble neural network with type-1 and type-2 fuzzy integration.
Simulation results show that ensemble approach produces good prediction of the
Taiwan Stock Exchange.

Keywords Ensemble neural networks ⋅ Time series ⋅ Particle swarm ⋅ Fuzzy
system

1 Introduction

Time series are usually analyzed to understand the past and to predict the future,
enabling managers or policy makers to make properly informed decisions. Time
series analysis quantifies the main features in data, like the random variation. These
facts, combined with improved computing power, have made time series methods
widely applicable in government, industry, and commerce. In most branches of
science, engineering, and commerce, there are variables measured sequentially in
time. Reserve banks record interest rates and exchange rates each day. The
government statistics department will compute the country’s gross domestic
product on a yearly basis. Newspapers publish yesterday’s noon temperatures for
capital cities from around the world. Meteorological offices record rainfall at many
different sites with differing resolutions. When a variable is measured sequentially
in time over or at a fixed interval, known as the sampling interval, the resulting data
form a time series [1].

M. Pulido ⋅ P. Melin (✉) ⋅ O. Mendoza
Tijuana Institute of Technology, Tijuana, México, USA
e-mail: pmelin@tectijuana.edu.mx; pmelin@tectijuana.mx

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_6

169

Time series predictions are very important because based on them we can
analyze past events to know the possible behavior of futures events and thus can
take preventive or corrective decisions to help avoid unwanted circumstances.

The choice and implementation of an appropriate method for prediction has
always been a major issue for enterprises that seek to ensure the profitability and
survival of business. The predictions give the company the ability to make deci-
sions in the medium and long term, and due to the accuracy or inaccuracy of data
this could mean predicted growth or profits and financial losses. It is very important
for companies to know the behavior that will be the future development of their
business, and thus be able to make decisions that improve the company’s activities,
and avoid unwanted situations, which in some cases can lead to the company’s
failure. In this paper we propose a hybrid approach for time series prediction by
using an ensemble neural network and its with optimization with particle swarm
optimization. In the literature there have been recent produced work of time series
[2–10].

2 Preliminaries

In this section we present basic concepts that are used in this proposed method:

2.1 Time Series and Prediction

The word “prediction” comes from the Latin prognosticum, which means I know in
advance. Prediction is to issue a statement about what is likely to happen in the
future, based on analysis and considerations of experiments. Making a forecast is to
obtain knowledge about uncertain events that are important in decision-making [6].
Time series prediction tries to predict the future based on past data, it take a series of
real data xt − n, . . . , xt − 2, 0 xt − 1, xt and then obtains the prediction of the data
xt + 1, xt +2, . . . , xn +n. The goal of time series prediction or a model is to observe
the series of real data, so that future data may be accurately predicted [1, 11].

2.2 Neural Networks

Neural networks Neural networks (NNs) are composed of many elements (Artificial
Neurons), grouped into layers and are highly interconnected (with the synapses),
this structure has several inputs and outputs, which are trained to react (or give
values) in a way you want to input stimuli. These systems emulate in some way, the
human brain. Neural networks are required to learn to behave (Learning) and

170 M. Pulido et al.

someone should be responsible for the teaching or training (Training), based on
prior knowledge of the environment problem [12, 13].

2.3 Ensemble Neural Networks

An Ensemble Neural Network is a learning paradigm where many neural networks
are jointly used to solve a problem [14]. A Neural network ensemble is a learning
paradigm where a collection of a finite number of neural networks is trained for the
same task [15]. It originates from Hansen and Salamon’s work [16], which shows
that the generalization ability of a neural network system can be significantly
improved through ensembling a number of neural networks, i.e. training many
neural networks and then combining their predictions. Since this technology
behaves remarkably well, recently it has become a very hot topic in both neural
networks and machine learning communities [17], and has already been success-
fully applied to diverse areas such as face recognition [18, 19], optical character
recognition [20–22], scientific image analysis [23], medical diagnosis [24, 25],
seismic signals classification [26], etc.

In general, a neural network ensemble is constructed in two steps, i.e. training a
number of component neural networks and then combining the component
predictions.

There are also many other approaches for training the component neural net-
works. Examples are as follows. Hampshire and Waibel [22] utilize different object
functions to train distinct component neural networks.

2.4 Fuzzy Systems as Methods of Integration

There exists a diversity of methods of integration or aggregation of information, and
we mention some of these methods below.

Fuzzy logic was proposed for the first time in the mid-sixties at the University of
California Berkeley by the brilliant engineer Lofty A. Zadeh., who proposed what
it’s called the principle of incompatibility: “As the complexity of system increases,
our ability to be precise instructions and build on their behavior decreases to the
threshold beyond which the accuracy and meaning are mutually exclusive char-
acteristics.” Then introduced the concept of a fuzzy set, under which lies the idea
that the elements on which to build human thinking are not numbers but linguistic
labels. Fuzzy logic can represent the common knowledge as a form of language that
is mostly qualitative and not necessarily a quantity in a mathematical language that
means of fuzzy set theory and function characteristics associated with them [12].

Optimization of Ensemble Neural Networks with Type-1 … 171

2.5 Optimization

The process of optimization is the process of obtaining the ‘best’, if it is possible to
measure and change what is ‘good’ or ‘bad’. In practice, one wishes the ‘most’ or
‘maximum’ (e.g., salary) or the ‘least’ or ‘minimum’ (e.g., expenses). Therefore,
the word ‘optimum’ is takes the meaning of ‘maximum’ or ‘minimum’ de pending
on the circumstances; ‘optimum’ is a technical term which implies quantitative
measurement and is a stronger word than ‘best’ which is more appropriate for
everyday use. Likewise, the word ‘optimize’, which means to achieve an optimum,
is a stronger word than ‘improve’. Optimization theory is the branch of mathematics
encompassing the quantitative study of optima and methods for finding them.
Optimization practice, on the other hand, is the collection of techniques, methods,
procedures, and algorithms that can be used to find the optima [27].

2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optimization method proposed
by R. Eberhart and J. Kennedy [28] in 1995. PSO is a search algorithm based on the
behavior of biological communities that exhibits individual and social behavior
[29], and examples of these communities are groups of birds, schools of fish and
swarms of bees [29].

A PSO algorithm maintains a swarm of particles, where each particle represents
a potential solution. In analogy with the paradigms of evolutionary computation, a
swarm is similar to a population, while a particle is similar to an individual. In
simple terms, the particles are “flown” through a multidimensional search space,
where the position of each particle is adjusted according to its own experience and
that of its neighbors. Let xi denote the position i in the search space at time step t,
unless otherwise stated, t denotes discrete time steps. The position of the particle is
changed by adding a velocity, vi(t), to the current position, i.e.

xi t+1ð Þ= xiðtÞ+ vi t+1ð Þ
with xið0Þ ∼ U Xmin,Xmaxð Þ. ð1Þ

3 Problem Statement and Proposed Method

The goal of this work was to implement Particle Swarm Optimization to optimize
the ensemble neural network architectures. In this cases the optimization is for each
of the modules, and thus to find a neural network architecture that yields optimum
results in each of the Time Series to be considered. In Fig. 1 we have the historical
data of each time series prediction, then the data is provided to the modules that will

172 M. Pulido et al.

be optimized with the particle swarm optimization for the ensemble network, and
then these modules are integrated with integration based on type-1 and type-2
Fuzzy Integration.

Historical data of the Taiwan Stock Exchange time series was used for the
ensemble neural network trainings, where each module was fed with the same
information, unlike the modular networks, where each module is fed with different
data, which leads to architectures that are not uniform.

The Taiwan Stock Exchange (Taiwan Stock Exchange Corporation) is a finan-
cial institution that was founded in 1961 in Taipei and began to operate as stock
exchange on 9 February 1962. The Financial Supervisory Commission regulates it.
The index of the Taiwan Stock Exchange is the TWSE [30].

Data of the Taiwan Stock Exchange time series: We are using 800 points that
correspond to a period from 03/04/2011 to 05/07/2014 (as shown in Fig. 2). We
used 70% of the data for the ensemble neural network trainings and 30% to test the
network [30].

Fig. 1 General architecture of the proposed ensemble model

28

28.5

29

29.5

30

30.5

31

0 500 1000

Taiwan

Taiwan

Fig. 2 Taiwan Stock
Exchange

Optimization of Ensemble Neural Networks with Type-1 … 173

The objective function is defined to minimize the prediction error as follows:

EM = ∑D
i=1 ai − xij j ̸D

� �
ð2Þ

where a, corresponds to the predicted data depending on the output of the network
modules, X represents real data, D the Number of Data points and EM is the total
prediction error.

The corresponding particle structure is shown in Fig. 3.
Figure 3 represents the Particle Structure to optimize the ensemble neural net-

work, where the parameters that are optimized are the number of modules, number
of layers, and number of neurons of the ensemble neural network. PSO determines
the number of modules, number of layers and number of neurons per layer that the
neural network ensemble should have, to meet the objective of achieving the better
Prediction error.

The parameters for the particle swarm optimization algorithm are: 100 Particles,
100 iterations, Cognitive Component (C1) = 2, Social Component (C2) = 2,
Constriction coefficient of linear increase (C) = (0–0.9) and Inertia weight with
linear decrease (W) = (0.9–0). We consider a number of 1–5 modules, number of
layers of 1–3 and neurons number from 1 to 30.

The aggregation of the responses of the optimized ensemble neural network is
performed with type-1 and type-2 fuzzy systems. In this work the fuzzy system
consists of 5 inputs depending on the number of modules of the neural network
ensemble and one output is used. Each input and output linguistic variable of the
fuzzy system uses 2 Gaussian membership functions. The performance of the
type-2 fuzzy aggregators is analyzed under different levels of uncertainty to find out
the best design of the membership functions for the 32 rules of the fuzzy system.
Previous tests have been performed only with a three input fuzzy system and the
fuzzy system changes according to the responses of the neural network to give us
better prediction error. In the type-2 fuzzy system we also change the levels of
uncertainty to obtain the best prediction error.

Figure 4 shows a fuzzy system consisting of 5 inputs depending on the number
of modules of the neural network ensemble and one output. Each input and output
linguistic variable of the fuzzy system uses 2 Gaussian membership functions. The
performance of the type-2 fuzzy aggregators is analyzed under different levels of
uncertainty to find out the best design of the membership functions for the 32 rules
of the fuzzy system. Previous experiments were performed with triangular, and
Gaussian and the Gaussian produced the best results of the prediction.

Number of
Modules

Number of
Layers

Neurons 1 ... Neurons n

Fig. 3 Particle structure to optimize the ensemble neural network

174 M. Pulido et al.

Figure 5 represents the 32 possible rules of the fuzzy system; we have 5 inputs
in the fuzzy system with 2 membership functions, and the outputs with 2 mem-
bership functions. These fuzzy rules are used for both the type-1 and type-2 fuzzy
systems. In previous work several tests were performed with 3 inputs, and the
prediction error obtained was significant and the number of rules was greater, and
this is why we changed to 2 inputs.

4 Simulation Results

In this section we present the simulation results obtained with the genetic algorithm
and particle swarm optimization for the Taiwan Stock Exchange.

We consider working with a genetic algorithm to optimize the structure of an
ensemble neural network and the best architecture obtained was the following
(shown in Fig. 6).

In this architecture we have two layers in each module. In module 1, in the first
layer we have 23 neurons and the second layer we have 9 neurons, and In module 2
we used 9 neurons in the first layer and the second layer we have 15 neurons the

System Dollar: 5 inputs, 1 outputs, 32 rules

Prediction1 (2)

Prediction2 (2)

Prediction3 (2)

Prediction (2)

Prediction5 (2)

Prediction (2)

Dollar

(mamdani)

32 rules

Fig. 4 Fuzzy inference system for integration of the ensemble neural network

Optimization of Ensemble Neural Networks with Type-1 … 175

Levenberg-Marquardt (LM) training method was used; 3 delays for the network
were considered.

Table 1 shows the particle swarm optimization results (as shown in Fig. 6)
where the prediction error is of 0.0013066.

Fig. 5 Rules of the type-2 fuzzy system

176 M. Pulido et al.

Fuzzy integration is performed initially by implementing a type-1 fuzzy system
in which the best result is in experiment of row number 8 of Table 2 with an error
of: 0.0235.

Fig. 6 Prediction with the optimized ensemble neural network with GA of the TAIEX

Table 1 Particle swarm optimization result for the ensemble neural network

No. Iterations Particles Number
of modules

Number
of layers

Number
of neurons

Duration Prediction
error

1 100 100 2 3 13, 16, 2
18, 20, 18

01:48:30 0.002147

2 100 100 2 2 3, 9
14, 19

01:03:09 0.0021653

3 100 100 2 2 20, 4
10, 7

01:21:02 0.0024006

4 100 100 2 2 16, 19
3, 12

01:29:02 0.0019454

5 100 100 2 2 19, 19
24, 17

02:20:22 0.0024575

6 100 100 2 3 21, 14, 23
14, 24, 20

01:21:07 0.0018404

7 100 100 2 2 23, 9
9, 15

01:19:08 0.0013065

8 100 100 2 2 15, 17
9, 22

01:13:20 0.0018956

9 100 100 2 2 20, 16 01:13:35 0.0023377

10 100 100 2 2 23, 8
10, 17

01:04:23 0.0023204

Optimization of Ensemble Neural Networks with Type-1 … 177

As a second phase, to integrate the results of the optimized ensemble neural
network a type-2 fuzzy system is implemented, where the best results that are
obtained are as follows: with a degree uncertainty of 0.3 a forecast error of 0.01098
is obtained, with a degree of uncertainty of 0.4 the error is of 0.01122 and with a
degree of uncertainty of 0.5 the error is of 0.001244, as shown in Table 3.

Figure 7 shows the plot of real data against the predicted data generated by the
ensemble neural network optimized with the particle swarm optimization.

Table 2 Result PSO for the type-1 fuzzy integration of the TAIEX

Experiments Prediction error with fuzzy integration type-1

Experiment 1 0.0473
Experiment 2 0.0422
Experiment 3 0.0442
Experiment 4 0.0981
Experiment 5 0.0253
Experiment 6 0.0253
Experiment 7 0.0253
Experiment 8 0.0235
Experiment 9 0.0253
Experiment 10 0.0253

Table 3 Result PSO for the type-2 fuzzy integration of the TAIEX

Experiment Prediction error 0.3
uncertainty

Prediction error 0.4
uncertainty

Prediction error 0.5
uncertainty

Experiment 1 0.0335 0.033 0.0372
Experiment 2 0.0299 0.5494 0.01968
Experiment 3 0.0382 0.0382 0.0387
Experiment 4 0.0197 0.0222 0.0243
Experiment 5 0.0433 0.0435 0.0488
Experiment 6 0.0121 0.0119 0.0131
Experiment 7 0.01098 0.01122 0.01244
Experiment 8 0.0387 0.0277 0.0368
Experiment 9 0.0435 0.0499 0.0485
Experiment 10 0.0227 0.0229 0.0239

178 M. Pulido et al.

5 Conclusions

The best result when applying the particle swarm to optimize the ensemble neural
network was: 0.0013066 (as shown in Fig. 6 and Table 1). Implemented a type 2
fuzzy system for ensemble neural network, in which the results where for the best
evolution as obtained a degree of uncertainty of 0.3 yielded a forecast error of
0.01098, with an 0.4 uncertainty error: 0.01122, and 0.5 uncertainty error of
0.01244, as shown in Table 3. After achieving these results, we have verified
efficiency of the algorithms applied to optimize the neural network ensemble
architecture. In this case, the method was efficient but it also has certain disad-
vantages, sometimes the results are not as good, but genetic algorithms can be
considered as good technique a for solving search and optimization problems.

Acknowledgements We would like to express our gratitude to the CONACYT, Tijuana Institute
of Technology for the facilities and resources granted for the development of this research.

References

1. Cowpertwait, P., Metcalfe, A.: Time Series. In: Introductory Time Series with R, pp. 2–5.
Springer, Heidelberg (2009)

2. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural
networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Netw. 13(6), 1395–1408 (2002)

3. Castillo, O., Melin, P.: Simulation and forecasting complex economic time series using neural
networks and fuzzy logic. In: Proceeding of the International Neural Networks Conference,
vol. 3, pp. 1805–1810 (2001)

Days
500 550 600 650 700 750 800

C
lo

si
ng

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8
Taiwan Stock Exchange

Real Data
Prediction Data

Fig. 7 Prediction with the
optimized ensemble neural
network with PSO of the
TAIEX

Optimization of Ensemble Neural Networks with Type-1 … 179

4. Castillo, O., Melin, P.: Simulation and forecasting complex financial time series using neural
networks and fuzzy logic. In: Proceedings the IEEE the International Conference on Systems,
Man and Cybernetics, vol. 4, pp. 2664–2669 (2001)

5. Karnik, N., Mendel, M.: Applications of type-2 fuzzy logic systems to forecasting of
time-series. Inf. Sci. 120(1–4), 89–111 (1999)

6. Kehagias, A., Petridis, V.: Predictive modular neural networks for time series classification.
Neural Netw. 10(1), 31–49 (2000), 245–250 (1997)

7. Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series
using a fuzzy neural network. Inf. Sci. 112(1–4), 125–136 (1998)

8. Melin, P., Castillo, O., Gonzalez, S., Cota, J., Trujillo, W., Osuna, P.: Design of Modular
Neural Networks with Fuzzy Integration Applied to Time Series Prediction, vol. 41/2007,
pp. 265–273. Springer, Heidelberg (2007)

9. Yadav, R.N., Kalra, P.K., John, J.: Time series prediction with single multiplicative neuron
model, soft computing for time series prediction. Appl. Soft Comput. 7(4), 1157–1163 (2007)

10. Zhao, L., Yang, Y.: PSO-based single multiplicative neuron model for time series prediction.
Expert Syst. Appl. Part 2 36(2), 2805–2812 (2009)

11. Brockwell, P.T., Davis, R.A.: Introduction to Time Series and Forecasting. Springer. New
York, pp 1–219 (2002)

12. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall (1996)
13. Multaba, I.M., Hussain, M.A.: Application of neural networks and other learning. In:

Technologies in Process Engineering. Imperial Collage Press (2001)
14. Sharkey, A.: Combining Artificial Neural Nets: Ensemble And Modular Multi-net Systems.

Springer, London (1999)
15. Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. In:

Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information
Processing Systems, Denver, CO, vol. 8, pp. 190–196. MIT Press, Cambridge, MA (1996)

16. Hansen, L.K., Salomon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach.
Intell. 12(10), 993–1001 (1990)

17. Sharkey, A.: One combining Artificial of Neural Nets. Department of Computer Science
University of Sheffield, U.K. (1996)

18. Gutta, S., Wechsler, H.: Face recognition using hybrid classifier systems. In: Proceedings of
the ICNN-96, Washington, DC, pp. 1017–1022. IEEE Computer Society Press, Los Alamitos,
CA (1996)

19. Huang, F.J., Huang, Z., Zhang, H.-J., Chen, T.H.: Pose invariant face recognition. In:
Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture
Recognition, Grenoble, France. IEEE Computer Society Press, Los Alamitos, CA (2000)

20. Drucker, H., Schapire, R., Simard, P.: Improving performance in neural networks using a
boosting algorithm. In: Hanson, S.J., Cowan Giles, J.D. (eds.) Advances in Neural
Information Processing Systems, Denver, CO, vol. 5, pp. 42–49. Morgan Kaufmann, San
Mateo, CA (1993)

21. Hampshire, J., Waibel, A.: A novel objective function for improved phoneme recognition
using time- delay neural networks. IEEE Trans. Neural Netw. 1(2), 216–228 (1990)

22. Mao, J.: A case study on bagging, boosting and basic ensembles of neural networks for OCR.
In: Proceedings of the IJCNN-98, Anchorage, AK, vol. 3, pp. 1828–1833. IEEE Computer
Society Press, Los Alamitos, CA (1998)

23. Cherkauer, K.J.: Human expert level performance on a scientific image analysis task by a
system using combined artificial neural networks. In: Chan, P., Stolfo, S., Wolpert, D. (eds.)
Proceedings of the AAAI-96 Workshop on Integrating Multiple Learned Models for
Improving and Scaling Machine Learning Algorithms, Portland, OR, AAAI, pp. 15–21. Press,
Menlo Park, CA (1996)

24. Cunningham, P., Carney, J., Jacob, S.: Stability problems with artificial neural networks and
the ensemble solution. Artif. Intell. Med. 20(3), 217–225 (2000)

25. Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung cancer cell identification based on
artificial neural network ensembles. Artif. Intell. Med. 24(1), 25–36 (2002)

180 M. Pulido et al.

26. Shimshon, Y.N.: Intrator classification of seimic signal by integrating ensemble of neural
networks. IEEE Trans. Signal Process. 461(5), 1194–1201 (1998)

27. Antoniou, A., Sheng, W. (eds.): Practical optimization algorithms and engineering
applications. In: Introduction Optimization. Springer, pp. 1–4 (2007)

28. Eberhart, R., Kennedy, J.: A new optimizer using swarm theory. In: Proceedings of the 6th
International Symposium Micro Machine and Human Science (MHS), pp. 39–43, October
1995

29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference Neural Network (ICNN), Nov. 1995, vol. 4, pp. 1942–1948

30. Taiwan Bank Database: www.twse.com.tw/en (April 03, 2011)

Optimization of Ensemble Neural Networks with Type-1 … 181

http://www.twse.com.tw/en

Deep Neural Networks—A Brief History

Krzysztof J. Cios

Abstract In this chapter we describe Deep Neural Networks (DNN), their history,
and some related work.

1 Introduction

DNN are one of the most efficient tools that belong to a broader area called deep
learning. DNN process input information in a hierarchical way, where each sub-
sequent level of processing extracts more abstract/global/invariant features. In other
words, DNN (semi) automatically learn key features from data and then aggregate
them for some purpose, such as recognizing objects in the images.

We shall illustrate how DNN work by the use of an example from the area of
face recognition. There, the inputs are images from which at the first level (first
hidden layer) of processing simple image characteristics such as edges are
extracted. At the second and subsequent levels, more complex parts of an image are
formed to finally, at the output layer, recognize human faces. This is in contrast to
using a traditional approach where in the first step, known as preprocessing, an
expert guides the process of extracting key features, and then they are used for
recognizing faces. The common part of these two, very different, approaches is that
at the output layer the labeled data are needed to perform supervised learning, i.e.,
assign names/labels to faces.

Although DNN can in general work in all three basic learning modes, namely,
supervised, unsupervised, and semi-supervised, so far the majority of successful
DNN applications used the semi-supervised mode where (almost) unsupervised

K.J. Cios (✉)
Department of Computer Science, Virginia Commonwealth University,
Richmond, VA 23284, USA
e-mail: kcios@vcu.edu

K.J. Cios
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
Bałtycka 5, 44-100 Gliwice, Poland

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_7

183

extracting of key features by the hidden layers was followed by a supervised
learning at the output layer. In the fully supervised DNN mode the most frequently
used algorithm is backpropagation with a ramp/rectifier activation function, which
is very efficient in networks with many layers. The supervised approach, however,
contradicts the very idea of deep learning as it is just a classical backpropagation
learning with a sigmoid replaced by the ramp function, (f(x) = max f(0, x)). At the
other end of the spectrum, fully unsupervised DNN, little progress has been
reported so far.

DNN, as well as other types of neural networks, were inspired by the need to
solve difficult for computers problems, such as image recognition but that are easily
solvable by humans. Specifically, they were inspired by our, although still very
vague, understanding of how human brain processes information. Depending on a
goal of brain modeling we distinguish two approaches. If the goal is to model
brain’s neural circuits, the area called neuroinformatics or computational neuro-
science, a key question validating the generated model is: How well does it fit the
experimental biological data? In this approach, the neuron model frequently used is
the spiking one with the appropriate learning rule. On the other hand, if the goal is
to solve a practical problem, such as face recognition, then the validation question
changes to: Is the model efficient? As in the latter case it is not important whether a
simple or complex neuron model or any specific learning rule is used. This type of
modeling is known as neuromorphic computing.

A digression about capacity of a human brain. It has about 10−11 neurons and
trillions of synaptic connections, which endows it with enormous storage capacity.
If we define storage capacity as the ratio of the number of patterns that can be stored
and retrieved, to the size of the network, then a network consisting of N neurons can
retrieve correctly P stored patterns, according to this formula: P < N/(4 * ln(N)).
Thus, a network with 104 neurons can store only 271 patterns and with 1011

neurons it grows to 109 patterns. The latter number of patterns is more than enough
for a human to store and remember every single image, word, situation etc.
encountered during a lifetime. In fact, the human brain has even bigger storage
capacity because a group of neurons can store not just one but many different
patterns, the phenomenon known as polysynchrony [10]. Fortunately, most people
do not remember everything from the time they are born, although there are well
documented cases of individuals who remembered everything from their past, day
by day. By comparison, current artificial neural networks are incomparably smaller,
with the largest using up to tens of thousands of neurons. One of the reasons for the
size is that neural networks are designed to solve domain- specific problems, versus
solving problems for many domains at the same time. For example, one network is
designed to solve an image recognition problem while another a natural language
processing problem, but there are no attempts to design a single network for solving
problems from both domains.

Our focus here is on DNN, including those that use spiking neuron models and
the corresponding learning rules. We start by defining key building blocks of all
DNN. They are: (a) a neuron model, which performs basic computations, (b) a

184 K.J. Cios

learning rule, which updates the weights/synapses between the neurons, and (c) a
network architecture, which specifies how the neurons are topologically arranged
and interconnected.

2 Neuron Models

A wide spectrum of neuron models from very simple to spiking ones is described
next. Notice that increasing biological detail of an artificial neuron model also
increases its computational complexity.

The first simple model of a neuron, called the threshold neuron, was developed
by McCulloch and Pitts [19]. It calculates a dot product between the input vector
and the weight vector of a neuron, and if it is higher than its transfer function (like a
step function) it fires/generates an output of 1 (otherwise 0).

The first spiking neuron model was developed by Hodgkin and Huxley [7], for
which they later received a Nobel Prize. They modeled squid’s giant neuron and
they treated each component of the neuron, including its membrane, as electrical
component. The model is described by:

C
dV
dt

= Ie − gK̄n4ðV −EKÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{IK

− gN̄am3hðV −ENaÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{INa

− gLðV −ELÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{IL

where:

Ie stimulus/injected current
V voltage/membrane potential
L leakage current
K potassium and Na = sodium channels
g conductances, e.g., gNa = 120 mS/cm2; gK = 36 mS/cm2; gL = 0.3 mS/cm2

E reversal potentials, e.g., ENa = 115 mV, EK = −12 mV, EL = 10.6 mV
n, m, h channel gating/activation variables: n = n(t), m = m(t), h = h(t).

To better understand it let us look at its equivalent electric circuit, shown in
Fig. 1. The membrane is modeled as capacitor, Cm, while potassium and sodium ion
channels as conductances (g = 1/R; R being resistance). V is the neuron’s mem-
brane potential, i.e., difference between its intracellular (inside of the neuron) and
extracellular potentials. According to Kirchhoff’s law the sum of the currents is zero
so the current through the membrane, C dV/dt, can be written in a shorter form as:

C dV ̸dt = Ie − IK − INa − IL

Figure 2 illustrates generation of an action potential/spike by the flows of
sodium and potassium ions, represented as conductances.

Deep Neural Networks—A Brief History 185

McGregor [20] defined a simpler than Hodgkin-Huxley spiking neuron model,
one that belongs to a group of integrate-and-fire models.

It is described by these equations:

S=
1 E≥Th
0 E<Th

�

dE
dt

=
−E+GK ⋅ ðEK −EÞ+Ge ⋅ ðEe −EÞ+Gi ⋅ ðEi −EÞ+ SCN

Tmem
dGK

dt
=

−GK +B ⋅ S
TGK

dTh
dt

=
− ðTh −Th0Þ+ c ⋅E

TTh

where:

V membrane potential
Vr membrane resting potential

Fig. 1 Hodgkin and
Huxley’s model circuit
representation

Fig. 2 Generation of an
action potential by sodium
and potassium ions flows

186 K.J. Cios

VK potassium resting potential
Vi inhibitory resting potential
Ve excitatory resting potential

Transmembrane potentials: E=V−Vr; EK =VK −Vr; Ei =Vi −Vr; Ee =Ve −Vr

Transmembrane conductances: GK = gK ̸G;Gi = gsi ̸G;Ge = gse ̸G

G membrane resting conductance
gK potassium resting conductance
gsi inhibitory resting conductance
gse excitatory resting conductance
TGK decay of GK time constant
Th threshold value
Th0 resting value of threshold
Tth decay of threshold constant
Tmem membrane time constant

Tmem =C ̸G
Current throughmembrane: SCN=SC ̸G

SC current injected to cell (corresponds to Ie in the HH model)
c rise of threshold c ∈ [0, 1]
C membrane capacitance
B postfiring potassium increment.

Its corresponding electric circuit, shown in Fig. 3, is similar to Hodgkin and
Huxley’s. It models the potassium channel, refractory properties, adaptation to
stimuli, and mimics excitatory and inhibitory post synaptic potentials (EPSP and
IPSP, respectively) of a neuron. The PSPs are illustrated in Fig. 4. We will refer
back to these potentials when we later describe learning rules.

The working of the McGregor’s model is illustrated in Fig. 5, using a “network”
of only three neurons: two pre-synaptic (one excitatory and one inhibitory) that feed

Fig. 3 McGregor’s model
circuit representation

Deep Neural Networks—A Brief History 187

into one post-synaptic neuron [26]. We can see the spikes that are generated by both
types of pre-synaptic neurons, shown in the bottom panel of Fig. 5. The positive
excitatory (Ge) and negative inhibitory (Gi) inputs feed into a post-synaptic neuron
that integrates them and when the sum rises above its threshold (Th) the
post-synaptic neuron fires a spike; four such spikes are generated by the
post-synaptic neuron, which is shown in the top panel (E)) of Fig. 5. Notice that the
threshold of the neuron (Th) changes over time.

The simplest spiking neuron model was developed by Izhikevich [9]. It does not
model any of the biological neuron functions except that it accurately mimics
several types/shapes of the postsynaptic potentials (spikes) generated by human
brain neurons. It is described by:

v′ =0.04v2 + 5v+140− u+ I

u′ = aðbv− uÞ,

�

where
if v > 30, then v = c, u = u + d,

Fig. 4 Example excitatory
and inhibitory post synaptic
potentials

Fig. 5 The input
pre-synaptic signals (Ge and
Gi) make the post-synaptic
neuron (E) to fire four spikes

188 K.J. Cios

• v is membrane potential
• u is membrane recovery variable
• I is input current

It models over a dozen different post-synaptic firing patterns, four of which are
shown in the bottom part of Fig. 6; they correspond to the parameter settings shown
in the top part of Fig. 6.

Izhikevich model became very popular because its simplicity allows for building
networks consisting of thousands of such neurons. While using it, however, we
found that increasing the strength of the stimulus caused it to fire with higher and
higher frequency (no upper bound). This is not biologically plausible as neurons
cannot fire during the absolute refractory period, needed for restoration of their
membrane potentials, no matter the strength of the input. We thus corrected the
condition for the neuron firing [29] by changing it

from

if v > 30, then v = c, u = u + d

to

if v > 30:
if

Fig. 6 Two types of excitatory (the first two) and two types of inhibitory neurons firing patterns
(taken from http://www.izhikevich.org/publications/spikes.htm)

Deep Neural Networks—A Brief History 189

http://www.izhikevich.org/publications/spikes.htm

dt > dtmin: v = c, u = u + d, spike
else
v = 30, no spike

That is, we added additional check (ifdt > dtmin) to account for refractory
property of neurons. Figure 7a illustrates firings of the four types of original
Izhikevich neurons, while Fig. 7b shows firings of neurons after our modification.
The modified model was used for modeling multi-column multi-layer model of
neocortex, which was not possible to do using the original Izhikevich model [30].

3 Learning Rules

Let us start by noticing that almost all learning rules are based to some degree on
Konorski’s observation:

IF a presynaptic neuron “j” repeatedly fires a postsynaptic neuron “i” within a short time

THEN the synaptic strength between the two is increased, otherwise it is decreased.

The credit for the above observation most often is given to Hebb [4] although
Konorski published it a year earlier [13]. The practical learning rules, i.e., equations
corresponding to the above observation were specified much later by computational
scientists [28, 31].

Fig. 7 a Unbounded firing of
the original Izhikevich model
neurons; b Firing of the
neurons after Strack et al. [30]
modification accounting for
absolute refractory periods

190 K.J. Cios

Similar case, of not giving credit to the original inventor, involves a popular
backpropagation learning rule that was first specified by statisticians Robbins and
Monroe [23]: they called it a stochastic approximation method. However, the credit
for the rule in neural networks literature was given to Rumelhart et al. [24] before it
was found that Werbos [33] specified the rule, a dozen years before them.

The simplest learning rule, called Perceptron, for one-layer feed-forward neural
networks, was defined by Rosenblatt [25]. Backpropagation rule is in fact the
Perceptron’s rule extension to many-layer networks. Extending it to such networks,
however, became possible only after the step threshold function used in the Per-
ceptron was replaced with a differentiable sigmoid function. This seemingly small
change led to an explosion in neural networks research that stagnated for almost
20 years after Minsky and Papert [21] stated that neural networks were useless for
solving complex problems.

Kohonen [12] specified winner-takes-all learning rule. This rule more closely
than Perceptron or backpropagation mimics the learning processes taking place in
biological neural circuits. It states that only the neuron whose weight vector (sy-
napse) is the closest to the input’s vector is the winner and as such increases its
weight to get it even closer to the input pattern vector. Often, a number of neurons
in close neighborhood of the winning neuron also adjust their weights.

The first rule for networks of spiking neurons, called Spike Time-Dependent
Plasticity (STDP), was specified by Song et al. [28]. Swiercz et al. [31] specified
another rule for spiking neurons called Synaptic Activity Plasticity Rule (SAPR).
The two rules are compared in Fig. 8. Konorski’s observation is translated, in both
rules, into the following recipe:

The adjustment of the strength of synaptic connections between pre-synaptic neuron “j” and
post-synaptic neuron “i” takes place every time the postsynaptic neuron “i” fires, according
to the function specified either by STDP or SAPR. If Δt is positive that means the
pre-synaptic neuron fired before the post-synaptic neuron and the strength between the two
is increased. If Δt is negative it means that the pre-synaptic neuron fired after the
post-synaptic neuron fired and the strength between the two is decreased.

Fig. 8 Comparison of the SAPR and STDP: the latter is fixed while the former depends on the
shape of excitatory and inhibitory post synaptic functions of neurons

Deep Neural Networks—A Brief History 191

The difference between the two rules is that SAPR uses a function that is
continuous and differentiable (important in several applications); it is also dynamic
because it uses actual post-synaptic potential functions to modify the connection
strengths between the neurons. In other words, the adjustments depend on the shape
of SAPR, which in turn depends on the shape of the chosen postsynaptic functions
in a given neural circuit. The left part of the SAPR function in Fig. 8 (to the left of
the y axis) is the chosen inhibitory PSP while the right part is the chosen excitatory
PSP; see again the two function shapes in Fig. 4. In contrast, the STDP rule uses a
static function meaning that the adjustments are always the same; they do not
depend on the shape of inhibitory/excitatory PSPs for a given Δt.

4 Network Architecture

As stated above, DNN use a hierarchical architecture, vaguely mimicking the
brain’s hierarchical way of performing cognitive tasks. This architecture is one of
the key distinguishing factors between several types of neural networks and DNN.
It follows that neural networks with just one hidden layer, such as SVM, RBF, or
Kohonen’s self-organizing feature map, are not DNN. As a digression, a popular
decision tree algorithm does not perform deep learning either, in spite of its hier-
archical architecture, since it uses original features and not a hierarchy of trans-
formed features.

Hierarchical processing of information in the brain was first discovered by
neurophysiologists Hubel and Wiesel [8] who studied the cat’s visual system; for
this work they were awarded a Nobel Prize. Not only they observed the brain’s
hierarchical way of processing information but also that at each level of processing
the brain extracts more general features performed by complex cells, that aggregate
the features extracted at the previous level to, at the end of this process, recognize
some objects in the input image. At the first level, the brain focuses on recognizing
specific simple patterns in the input images, such as vertical or horizontal elements
present in input images, which are extracted by simple cells. Hubel and Wiesel were
thus originators of the key ideas leading to development of DNN. It is easy to
notice, see Figs. 9 and 10, that the DNN of today use very similar architectures.

We explain Hubel and Wiesel’s work in some detail using Fig. 9. A very simple
model of the cat’s visual processing system can be implemented using neuron
model of McCulloh and Pitts, which outputs/fires a 1 when the sum of its inputs is
above its threshold, and outputs a 0 otherwise. By changing its threshold value, the
neuron can perform logical operations of conjunction and disjunction. A conjunc-
tion is achieved as follows: if the threshold is relatively high, say, 3, then inputs
from 3 presynaptic neurons (of 1 each) are required to fire it. Such neurons can
recognize different line orientations in the images, such as vertical, horizontal, or
diagonal. The neuron can also perform a disjunction if its threshold is relatively
low, say, 1; then the input (of 1) from any of the three presynaptic neurons fires it.
This is illustrated in Fig. 9, where in the first column we see image of digit 2.

192 K.J. Cios

The four neurons, the simple cells, in the first (hidden) layer perform conjunctions
to recognize three-element line patterns, while the four neurons, the complex cells,
in the second layer perform disjunctions that aggregate the simple patterns into
more complex ones until, at the output layer, digit 2 is recognized. In the parlance
of DNN the conjunction is called convolution, the disjunction a spatial pooling, the
simple cell a feature extractor/detector, and the complex cell a feature
aggregator/analyzer. The difference between the just described very simple scheme
and DNN is that feature extraction in DNN happens (almost) without human
intervention (we describe later how DNN do it).

The first researcher to design a direct precursor of DNN, using Hubel and
Wiesel’s discoveries, was Fukushima [3] who called his network Neocognitron.
Figure 10a illustrates how key features of an image of letter A are first picked up by
simple cells (S) and then aggregated by complex cells (C), in order to recognize
letter A at the output. S-layer of simple cells extracts features from the previous
stage in the hierarchy, while the C-layer of complex cells ensures tolerance for
shifts of features extracted by the S-layer.

DNN became popular and the term “deep learning” was coined and widely
accepted around 2010 due to the development of efficient learning algorithms and
hardware speed-ups such as the use of GPUs. In particular, LeCun [16–18], Hinton
[5, 6] and Krizhevski [14] made significant impact on the field. Comparison of
architecture of Neocognitron shown in Fig. 10a with the DNN architecture of
LeCun’s convolutional network shown in Fig. 10b shows their great similarity.

As aforementioned, the first few layers of DNN perform feature extraction using
unsupervised learning, and only the top layer weights (i.e., those between the last
hidden and output layer) are trained in a supervised mode. In DNN the most often
used approach to perform feature extraction between the input and hidden layer(s)

Fig. 9 a Illustration of how the simple and complex cells extract specific features from input
images; b Implementation of how the features are extracted and aggregated (using three hidden
layers) in Neocognitron to recognize digit 2 (both pictures are taken from Kandel et al. Principles
of Neural Science, 5th edition, [11]

Deep Neural Networks—A Brief History 193

is to use an idea of autoencoder. Other method often used to perform unsupervised
learning (always a form of clustering) is a Boltzman machine.

We now explain how an autoencoder works using a feed-forward neural network
with backpropagation learning in a vertical composition, meaning that the same
operation that is performed by the first hidden layer on the original input, is also
performed by the second layer on the output of the first hidden layer, etc. Let us also
assume that our input is an image of size n × n and that the number of neurons in
the first hidden layer is p, with p smaller than n2 (this condition is not required but
using it makes it easier to understand and explain). The task of the autoencoder is to
learn outputs of the first hidden layer in such a way that after learning we can
reconstruct (using outputs of the hidden layer) the inputs with a very small dis-
tortion. In other words, the autoencoder learns a compressed (lower dimensional)
version of the inputs. In that respect, the autoencoder is similar to PCA and per-
forms clustering.

Fig. 10 a Fukushima’s Neocognitron architecture, and b LeCun’s convolutional neural network
architecture

194 K.J. Cios

Loosely speaking, the outputs of the first hidden layer neurons are trained to
recognize some specific features, as linear combinations of the original image
features, such as edges, in different positions and orientations. This is what is meant
by saying that new features are automatically learned/extracted by deep neural
networks. The same process is repeated at the output of the second hidden layer,
which takes as input the output of the first hidden layer. The outcome of doing it is
that the previously extracted features, say, edges, are aggregated into more complex
features, say silhouettes of objects. Supervised learning is only then used to train the
weights between the last hidden and the output layer in order to assign labels to the
input images.

Instead of describing Neocognitron or convolutional neural network of LeCun
for which many excellent online resources exist, we describe below a network
called IRNN (Image Recognition Neural Network), which was inspired by the
works of Hubel and Wiesel and Fukushima [2]. In the IRNN the hidden layers
perform explicit clustering operations of the (sub) images for the purpose of
extracting key features at each level of hierarchical processing. IRNN consists of an
input layer, an output layer, and one or more hidden layers, as shown in Fig. 11.
The Sensory layer extracts local features from the images. The role of the hidden
layer(s) is to aggregate local features to generate higher level semi-global features.
The output layer, in a supervised mode, associates the semi-global features with the
known labels. Notice that IRNN operates like a semi-supervised convolutional
DNN. It uses windowing, which is based on a biological observation that a neuron
connected to the sensory system receives inputs from only a portion of the sensory
neurons.

Associa ve

Sensory

IRNN

Feature Aggrega ng

Set of input images

Person 2 Person 1 Fig. 11 IRNN’s architecture:
unsupervised part consists of
the sensory and feature
aggregating layers while the
associative part is supervised

Deep Neural Networks—A Brief History 195

Figure 11 shows stacks of neurons represented by small balls. How they are
generated and what they represent is explained in Fig. 12. We see there three
(hashed) subimages/windows of the three input images, which are clustered using a
novel image similarity measure [2]. If the first two subimages are similar (as shown)
they are clustered together in neuron n1. Since subimage 3 was found quite different
from the subimages 1 and 2, it creates its own cluster, so the second neuron, n2, is
generated. The weights w1 and w2 are initially set to the first subimage pixel values
vector but are later updated to represent cluster center (thus representing an “av-
erage” subimage). At the end of scanning of entire images the result might be as the
one shown in Fig. 13. Notice, that at the center more neurons (clusters) were
created to represent image details, such as nose, eyes and mouth, while at the
periphery where background was about the same in all images only single
neurons/clusters were needed.

The same process is repeated on the outputs of the sensory layer to aggregate the
local features into more complex semi-global features. Clustering of subimages at
each level is performed with all other layers disabled. Finally, the associative layer
associates the images with recognition codes—like Person 1 or Person 2—using
winner-takes-all learning rule. Note that the number of clusters/neurons in the
IRNN is not predetermined by the user: it depends only on a similarity between the
subimages. Characteristic feature of the IRNN is that if new data become available
the already trained network can be used in two ways. If the new data points are
labeled then additional training continues with the new data. However, if new data
are not labeled only the output layer needs to be trained.

The networks described so far, including convolutional DNN, used only simple,
non spiking, neuron models as their basic processing units. But is it possible to
perform deep learning using networks of spiking neurons? Shin et al. [27] used such
a network for face recognition, without any preprocessing of the images. The
network self-organizes at each level of its hierarchical processing. Even at the
output layer spiking neurons are used for labeling faces, in contrast to more popular

n1

n2

w1

w2

subimage 113

subimage 223

subimage 333 Stack of 2 sensory
neurons, n1 and n2,

corresponding
to subimage 3

Image 1

Image 2

Image 3

Fig. 12 Explanation of clustering of subimages into a number of clusters/neurons

196 K.J. Cios

use of supervised methods such as backpropagation; similar approach was later
used in Cao, et al. [1]. Specifically, the spiking neuron model used was McGregor’s
with SAPR and STDP learning rules for self-organization of the neurons;
self-organization in essence being a clustering operation. Figure 14 shows archi-
tecture of this a network. The sensory layer serves as relay of the input image but
increases the input dimension, from an image of size n × m to an image of size
3n × 3m. The only hidden layer, the Feature Extraction layer, is composed of

1 1 1 1 1 1 1 1

1 1 2 2 3 1 1 1

1 2 2 3 4 2 2 1

1 2 4 5 3 2 1 1

1 1 3 6 5 3 1 1

1 2 4 4 5 3 1 1

1 1 2 2 2 1 1 1

1 1 1 1 1 1 1 1

Fig. 13 A hypothetical result of clustering of a set of registered face images

Fig. 14 Architecture of the network of spiking neurons; a High-level block diagram. b Recurrent
synaptic connections between the excitatory neurons in the feature extraction layer. c Synaptic
connections between the excitatory neurons in the sensory/feature extraction layer and the
inhibitory neurons in the feature extraction layer (taken from Shin et al. [27] paper)

Deep Neural Networks—A Brief History 197

excitatory and inhibitory neurons, while keeping their ratio close to the one
observed in human brain. Notice that no supervised training is performed by this
layer. Instead, multiple submitting of the input images is required until there is a
negligible change in the result of self-organization. It was shown that using SAPR
rule gave better results in recognizing face images than using STDP. The Recog-
nition layer also uses spiking neurons: the neuron that spikes the most for a known
input face image “recognizes” the person. The network performed particularly well
on rotated and partially occluded images. In short, the network uses raw images for
input, extracts key features without any training between the sensory and feature
extracting layers. This is in contrast to using an autoencoder that can be seen as a
supervised training method where the label is the compressed pattern of the input
pattern.

5 Problems with DNN Learning

Popular literature paints the advent of DNN as the panacea for solving difficult
problems, such as image recognition, hand written character recognition, etc.
Moreover, that it is done with high confidence/accuracy and without the need for
human participation. Unfortunately, history of science tells us that new technologies
are often accompanied by a high dose of hype, and DNN are no exception to this.
As described below, two groups of researchers have shown spectacular failing of
DNN on image recognitions tasks that are trivial for humans.

In one experiment, the researchers used a trained DNN and ran it on slightly
modified images, called adversarial examples. The network has seen the original
images (before modification) in training. The modification was such that that there
was no perceptible to the human eye difference between the original and adversarial
image; the latter had only slightly different statistical properties. For example, there
was no way to tell the difference between the image of a dog and its slightly
modified image. However, when the latter was input to the AlexNet (open source
implementation of a convolutional neural network), which was trained on the
original image of the dog, it failed to recognize it [32].

In another work, the researchers took the opposite approach. Namely, they
modified (using genetic algorithms) the image used in training in such a way that it
had no resemblance whatsoever to the original image. For example, an image
looking like a TV static noise was not only recognized by LeNet (part of Caffe
software package) say, as peacock, but also was very certain (accuracy of 99.6%)
about its recognition decision [22].

198 K.J. Cios

6 Conclusions

The described above DNN shortcomings do not outweigh their many advantages.
However, lots of research is needed to answer the question of why they failed in
those experiments. I think it is increasingly more important for the computational
researchers to team up with neuroscientists to come up with better algorithms for
image recognition so that the algorithms cannot be so easily fooled [15]. That may
require, in the first place, more work by the neuroscientists to better understand
processes used by the brain in recognition tasks.

The easy fooling of DNN in some recognition tasks, which are easily recognized
by humans, poses a very serious cybersecurity risk. Modern society heavily relies
on machine learning techniques, like DNN, for performing many everyday tasks
such as medical diagnosis, self-driving cars, investing financial assets, and even in a
legal system. Since the researchers have shown that it is relatively easy to come up
with adversarial examples, the automated systems we so much now depend on can
produce possibly disastrous results. It is thus increasingly important for researchers
to add safety features to deep learning algorithms they are developing, something
that software engineers have been doing for a long time to assure safety of their
code. To start with, researchers should routinely use in training adversarial exam-
ples, in addition to original ones, to make their systems more secure.

References

1. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for
energy-efficient object recognition. Int. J. Comput. Vis. (2014)

2. Cios, K.J., Shin, I.: Image recognition neural network: IRNN. Neurocomputing 7(2), 159–185
(1995)

3. Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism for
pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

4. Hebb DO. 1949. The Organization of Behavior. Wiley
5. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural

Comput. 18, 1527–1554 (2006)
6. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006)
7. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its

application to conduction and excitation in nerve. J. Physiol. 177, 500–544 (1952)
8. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture

in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)
9. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14, 1569–

1572 (2003)
10. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–

282 (2006)
11. Kandel E.R., et al.: Principles of Neural Science, 5th edn. McGraw-Hill (2013)
12. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern.

43, 59–69 (1982)

Deep Neural Networks—A Brief History 199

13. Konorski J.: Conditioned Reflexes and Neuron Organization. Cambridge University Press,
Cambridge (267 pp.); Reprinted with a supplementary chapter in 1968 by Hafner Publ. Co.,
New York (1948)

14. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional
neural networks. In: NIPS’ 2012 (2012)

15. Lim, H.K., Keniston, L.P., Cios, K.J.: Modeling of multisensory convergence with a network
of spiking neurons: a reverse engineering approach. IEEE Trans. Biomed. Eng. 58(7), 1940–
1949 (2011)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. In: Proceedings of IEEE, vol. 86, no. 11, pp. 2278–2324 (1998)

17. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision.
In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 253–256. IEEE (2010)

18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
19. McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity.

Bull. Math. Biophys. 5, 115–133 (1943)
20. MacGregor, R.J.: Neural and Brain Modeling. Academic Press (1987)
21. Minsky, M., Papert, S.: An Introduction to Computational Geometry. MIT Press (1969)
22. Nguyen, A., Yosinski, J., Clune, J.: Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images (2014). arXiv:1412.1897v2 [cs.CV] 18
Dec 2014

23. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407
(1951)

24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

25. Rosenblatt, F.: The Perceptron—a perceiving and recognizing automaton. Report 85-460-1,
Cornell Aeronautical Laboratory (1957)

26. Sala, D.M., Cios, K.J.: Solving graph algorithms with networks of spiking neurons. IEEE
Trans. Neural Netw. 10(4), 953–957 (1999)

27. Shin, J.H., Smith, D., Swiercz, W., Staley, K., Rickard, T., Montero, J., Kurgan, L., Cios, K.
J.: Recognition of partially occluded and rotated images with a network of spiking neurons.
IEEE Trans. Neural Netw. 21(11), 1697–1708 (2010)

28. Song, S., Miller, K.D., Abbot, L.F.: Competitive Hebbian learning through spike
timing-dependent synaptic plasticity. Nat. Neurosci. 3(9) (2000)

29. Strack, B., Jacobs, K., Cios, K.J.: Biological restraint on the Izhikevich neuron model
essential for seizure modeling. In: Proceedings of 6th International IEEE EMBS Conference
on Neural Engineering, San Diego, 6–8 Nov, pp. 395–398 (2013)

30. Strack, B., Jacobs, K., Cios, K.J.: Simulating vertical and horizontal inhibition with short term
dynamics in a multi-column multi-layer model of Neocortex. Int. J. Neural Syst. 24(5),
1440002 [19 pp.] (2014)

31. Swiercz, W., Cios, K.J., Staley, K., et al.: New synaptic plasticity rule for networks of spiking
neurons. IEEE Trans. Neural Netw. 17(1), 94–105 (2006)

32. Szeged, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, D., Fergus, R.:
Intriguing properties of neural networks. In: International Conference on Learning Repre-
sentations (2014)

33. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral
sciences. Ph.D. thesis, Harvard University (1974)

200 K.J. Cios

Part III
Intelligent Technologies

in Systems Modeling

Techniques for Construction
and Integration of Rule Bases

Grzegorz J. Nalepa

Abstract This chapter discusses issues in the practical integration approaches for

intelligent rule-based systems. In it selected issues that need to be addressed for per-

forming integration of rule based systems are identified and discussed. These include

high level modeling techniques for rule bases, integration architectures for rule-based

systems, and rule interoperability challenges. In the chapter a short review of differ-

ent rule types and languages used to express them is given. Moreover, important

issues regarding construction of complex rule bases are introduced. Furthermore,

the execution issues of rule bases are considered, with the emphasis on addressing

the structure identified during modeling. Finally, main approaches to integration and

interoperability of rule-based systems are given.

1 Introduction

Intelligent systems that use rules for capturing and executing knowledge have been

a widely used technology for several decades. Rule-based shells are a commonly

referred technology supporting the execution of such systems. Originally developed

for rule-based expert systems [22, 32, 39], shells are software frameworks that sup-

port knowledge engineers by providing a rule language for encoding the rule base

and a generic inference engine for execution. CLIPS (C Language Integrated Pro-

duction System) [22, 64] is probably the one best known. Currently, the CLIPS rule

language is a multi paradigm programming language that provides support for rule-

based, object-oriented and procedural programming. The wide spread and accep-

tance of CLIPS resulted in the development of Jess [19]. While the differences in the

language were minimal, Jess was entirely written in Java which improved its integra-

tion capabilities. Today construction of rule-based systems (RBS) is a well-studied

field with important handbooks available [22, 32].

G.J. Nalepa (✉)

AGH University of Science and Technology, al. A. Mickiewicza 30,

30-059 Krakow, Poland

e-mail: gjn@agh.edu.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_8

203

204 G.J. Nalepa

The development of intelligent systems in last decades shows that rule-based sys-

tems (RBS) are still a technology of great potential and many applications [24]. How-

ever, it is also clear that rules, while very useful, need to be integrated with other

paradigms. This integration concerns not only other models of data and knowledge

processing, but also software development and implementation paradigms. Practi-

cal integration approaches for intelligent systems are and probably will be an area

of active research. This also gives motivation for this chapter. Its objective is the

identification of selected issues that need to be addressed for performing integra-

tion of rule based systems. These issues include: (1) high level modeling techniques

for rule bases, (2) integration architectures for rule-based systems, and (3) and rule

interoperability. They will be discussed in the reminder of the chapter.

It is important to note, that this chapter has mostly the knowledge engineering

perspective on knowledge representation [7, 29]. It means we assume that the rule-

base is interactively developed by knowledge engineers using knowledge acquired

from human experts. While it was the first and original perspective in knowledge-

based systems, for several decades there have been number of advanced methods

for an automatic construction of rule sets from data [16, 69]. Today, many classic

machine learning [17] algorithms are available to build and optimize rule sets and

decision trees [66], that in general correspond to rule-based knowledge. These meth-

ods are commonly used in data mining [27] systems, including recent works in learn-

ing (mining) from data streams, e.g. [67]. While the perspective on rules and their

applications is slightly different (see the discussion on rule types in the next section),

some of problems identified in this chapter remain the challenge. This includes han-

dling large rules sets through structuring, integration of rule-based components, as

well as rule interoperability issues.

The structure of the chapter is as follows. In Sect. 2 a short review of different rule

types and languages used to express them is given. Then in Sect. 3 important issues

regarding construction of complex rule bases are introduced, including modeling,

structuring, and analysis. Section 4 is devoted to the execution issues of rule bases;

the emphasis is put on addressing the structure identified during modeling. Next, in

Sect. 5 main approaches to integration of rule-based systems are given. The presen-

tation of problems ends in Sect. 6 where important tools for rule interoperability are

presented. The chapter is summarized in Sect. 7.

2 Expressing Rules with Rule Languages

Rules are often simply considered conditional statements, that are evaluated or exe-

cuted to make decision. Rules can also express constraints or regularities. There

might be different sources of rules, and thus diverse ways to construct them. They

can be provided based on knowledge possessed by human experts and then acquired

and properly represented in the knowledge engineering process. Another common

case is the automatic construction of rules and rule sets based on the available data.

In computational intelligence [33] number of data mining techniques are used for

this purpose, e.g. [16].

Techniques for Construction and Integration of Rule Bases 205

To evaluate and execute rules a special mechanism has to be implemented. In

the common case, its role is to check to conditional part of the rule and if required

run the decision/derivation part. The basic form of rules as well as the construction

of the execution mechanism may seem straightforward. However, in practice proper

formulation of rules, and rule sets turns out to be quite challenging. Not only, rules

express different kinds of knowledge acquired from experts or harvested from the

available data, but also the use of this knowledge can differ. Example tasks include

(but are not limited to) identification/classification, or decision/control. Therefore,

number of rule types are identified in the literature.

2.1 Types of Rules

Considering logical aspects of inference with rules a basic distinction could be on

deductive and abductive (derivation) rules (used in forward and backwards chaining

respectively). Moreover, concepts of facts (rules with no condition) and constraint
rules (defining certain conditions that must hold) [7] are introduced. In [75] an inter-

esting classification is proposed. It is oriented on rule exchange and follows OMG

MDA [44]. On the “computation independent” level three general types of rules

are identified: integrity, derivation, and reaction. An extended classification is pro-

vided by the RuleML organization [58]: integrity, derivation, reaction, production,

and transformation rules. Furthermore, in business rules approach [26] a high level

BR classification scheme is considered with: terms, facts, and rules. Then the fol-

lowing types of rules are identified: mandatory constraint, guideline, action enabler,

computation, inference. Finally, in machine learning [17] and data mining [27] asso-
ciation rules, expressing certain correlation between features (attributes) are consid-

ered, as well as classification rules. However, the later can be simply interpreted as

derivations.

2.2 Rule Languages

In general, rules need to be encoded in some kind of notation for computer process-

ing, with the use of rule language. First of all, a rule language can be a certain well-

defined notation for encoding and storing rules. In such a case only its syntax has

to be defined. Such a language can be oriented on rule execution, thus being close

(in terms of its goals) to general programming languages. Examples of such lan-

guages are CLIPS, Jess, or Drools. Another objective might be rule interchange and

translation. In such a case the language should offer a richer syntax, that allows for

expressing different types of rules (perhaps not all of them would be present in every

rule base). Examples of such languages are RuleML and RIF. In the case of these lan-

guages the semantics of rules is also considered, although not always fully defined.

206 G.J. Nalepa

Formalized languages are an important class of rule languages. Both syntax and

semantics of such languages is formally defined. In most of the cases such languages

serve not only to represent rules, but are more general knowledge representation

languages [29]. Examples include F-Logic [36], or more recently Description Log-

ics [2]. In our research we proposed a dedicated formalized language for rules based

on attributive logic [53] called XTT2 [54]. With formalized languages the inference

is well-defined, and interchange much simplified. The design issue can also be bet-

ter addressed. A limitation can be a lower flexibility and expressiveness compared to

solutions like CLIPS. This is due to the fact that “programming rule languages” have

often vague (undefined) semantics. A clear benefit of formalized solution is also the

possibility of formal model checking and verification.

From the perspective of this chapter an important and large group of rule lan-

guages are attributive languages. Knowledge representation based on attributes is

very common and intuitive, as it is related to technical ways of presentation. In such a

case the behavior of a physical system is described by providing the values of system

variables. This kind of logic approach is used in various applications e.g. relational

database tables [13], attributive decision tables and trees [37, 60], and attributive

RBS [40]. In order to define characteristics of the system one selects some specific

set of attributes and assigns them some values. This way of describing an object and

system properties is both simple and intuitive. Such languages provide a number of

features, making them efficient tool for practical representation and manipulation of

knowledge. After [40], these features can be as follows: introducing variables (the

same attribute can take different values and there is no need to introduce new proposi-

tional symbols), specification of constraints (using relations between attribute values

it is possible to specify constraints), and parametrization (attributes are parameters to

be instantiated). Thanks to these advantages, the attributive logic is more expressive

than the propositional logic.

3 From Construction of Rule Sets to Design of Rule Bases

Basic discussion of rule-based systems is commonly focused on building single

rules, or constructing relatively small sets of rules. This is justified in simple cases,

or studies of rule extraction algorithms. However, in engineering practice the size,

structure, properties, and quality of such rule sets is very important. These chal-

lenges give motivation to consider proper building of rule bases as a dedicated design

process. In such a process certain activities, often ordered as phases can be identified:

∙ rule base modeling—may include selection of a certain representation mechanism

that can simply the design. Very often these are visual forms of rule sets, such as

decision tables or decision trees.

∙ structure identification—where relation between groups of rules are identified.

∙ analysis—allows for assuring the quality of the rule base.

We discuss these issues next.

Techniques for Construction and Integration of Rule Bases 207

3.1 Rulebase Modeling

Rule base modeling is an evolutionary process. Due to the large amount of rules or

complex dependencies, the modeled knowledge may not reflect the acquired knowl-

edge in an appropriate way. Therefore, in order to make the modeling process more

efficient a number of visual methods are developed. The visual (or semi-visual) lan-

guages facilitate modeling phase making it more transparent for the knowledge engi-

neer. As the number of rules identified in the system is increasing, it may be difficult

to model and manage them. Thus, in complex systems having rule sets consisting

of thousands of rules, various forms of rule set representation are used. Such forms

as tables or trees are logically equivalent to a set of single rules, but they are easier

to understand. Moreover decision diagrams are also used [40]. They represent the

decision making process in a the form of graph, so a more general structure than a

tree). In some cases basic decision tables, or diagrams can also be built automatically

from computational intelligence models [11].

Decision tables are used to group similar rules. Rules grouped into a table usu-

ally correspond to the canonical set of rules, i.e. a rule set satisfying the assumptions

that [40]: all rules use the same propositional symbols in the same order, and rules

differ only with respect to using the negation symbol before the propositional sym-

bol. A set of rules which is not in the canonical form, can always be transformed

to an equivalent canonical set. Typically, such canonical sets of rules are used for

creating decision tables. In the basic binary decision table each rule is specified in

a single row, in which the first n columns specify conditions under which specific

conclusion is fulfilled.

To enhance the expressive power and knowledge representation capabilities

Attributive Logic can be used, for Attribute-Value Pair Table (AV-Pair Table) or [40]

for Attributive Decision Table (AD-Table). A row of an AD-Table represents a rule,

expressed as follows:

ri ∶ (p1 = vi1) ∧ (p2 = vi2) ∧⋯ ∧ (pn = vin) → h1 = wi1 ∧ h2 = wi2 ∧⋯ ∧ hm = wim

Conditions of such a rule can take several values from a specified domain. Moreover,

this approach can be extended in order to allow for specifying an attribute value as

an interval or a subset of the domain [40]. An example of such a table determining

a rented car category based on the driver age and driving license holding period is

presented in Table 1.

Decision trees allow for organizing rules in a hierarchical manner. As they show

the dependencies between conditions and decisions, this clarifies the thinking about

the consequences of certain decisions being made [25]. A decision tree has a

flowchart-like structure in which a node represent an attribute and branches from

such a node represent the attribute values. The end nodes (leaves) represent the final

decision values. Such a form of knowledge representation allows for clear presen-

tation of the decision process. Unfortunately, decision trees become much more

complex if each attribute has a large number of different values because of the

208 G.J. Nalepa

Table 1 An example of decision table

Driver age Driving license holding period Rented car category

<18 Any None

<21 <2 A

<21 >=2 {A, B}

>=21 <2 {A, B, C}

>=21 >=2 {A, B, C, D}

none

A A, B A, B, C A, B, C, D

< 18 < 21 >= 21

< 2 < 2>= 2 >= 2

driver age

driver license
holding period

rented car
category

Fig. 1 An example of a decision tree corresponding to the decision table

redundancy of nodes. An example of a decision tree corresponding to the decision

table from Table 1 is presented in Fig. 1.

Both trees and tables are also useful from practical point of view, as they provide

a visual representation of the rule base. We assume after [40] that the transformation

between rules, tables, and trees is always possible (having some syntactic restric-

tions). These visual models help during the design process of rule bases.

3.2 Structure

Large rule sets should more commonly be referred to as “rule bases” as rules in such

a set are most often interrelated. Relations of rules in a rule base can be expressed

explicitly in rule bodies. Examples include rules for decision control, where exe-

cution of certain rules explicitly calls another rules. Moreover, there are cases of

rewriting systems, where some rules can be modified by others. Furthermore, rule

sets can be explicitly partitioned into groups operating in or regarding given situ-

ations. There might also occur implicit relations between rules. Probably the most

common and important case is when rules that share the same attributes. Even if such

rules are not grouped together they could be related to similar situations, or objects.

What makes such cases even more complicated are logical relations between rules.

Techniques for Construction and Integration of Rule Bases 209

This can result in contradicting or excluding which can lead to unexpected operation

of the system as a whole. There are different solutions to address these issues.

A simple solution, common in rule-based shells, is the introduction of modular-

ization of the rule base. CLIPS offers functionality for organizing rules into so-called

modules. They allow for the restriction of access to their elements from other mod-

ules, and can be compared to global and local scoping in other programming lan-

guages. In CLIPS each module has its own pattern-matching network for rules and

its own agenda (rules to be fired). Jess provides a similar module mechanism that

helps to manage large rule bases. Modules provide a control mechanism: rules in a

module will fire only when this module has the focus, and only one module can have

focus at a time. In general, although any Jess rule can be activated at any time, only

rules in a module having focus will fire. In certain cases this mechanism can improve

management of the rule base., as the large set of rules can be partitioned into smaller

ones. It also has positive impact on the performance of the inference process as not

all of the rules need to be analyzed. A similar approach was employed in the Drools

system [8]. However, as Drools moved away from CLIPS-like inference in large rule

bases to a dedicated process engine, it will be described in the subsequent section on

inference.

Another approach is to introduce the structure into the model of the knowledge

base during the design. Use of visual representation methods such as decision tables

can simplify grouping of rules sharing the same attributes [72]. A decision tree can

also be used to represent a group of rules but emphasizing the inference process.

There exist hybrid representations such as XTT2 (eXtended Tabular Trees) that com-

bine tables with trees [54]. While tables group rules with the same attributes, a high

level inference network allows to control the inference process. The tables can be

connected during the design process to denote relations between groups of rules.

These connections can be further used by the inference engine to optimize the infer-

ence process. For more detail see [46]. In [50] a complete design and integration

approach for formalized rule-based systems was introduced. It is called Semantic
Knowledge Engineering (SKE) as it put emphasis on the proper interpretation of

rule based knowledge as well as on its integration with other software engineering

paradigms. In the subsequent parts of this chapter we will briefly discuss how infer-

ence control and integration are handled in SKE.

3.3 Analysis

Rule-based systems are widely used in areas where high performance and reliability

are important. In some cases a failure of such system may have serious consequences.

Therefore, it is crucial to ensure that the system will work correctly in every possible

situation.

Verification and validation were discussed by many authors, including [1, 55,

57, 61]. Verification concerns proving correctness of the set of rules in terms of

some verifiable characteristics [4]. In fact features such as consistency, completeness,

210 G.J. Nalepa

and various features of correctness may be efficiently checked only by using formal

methods [41]. In turn, validation is related to checking if the system provides correct

answers to specific inputs. In other words, validation consists in assuring that the

system is sound and fits the user requirements.

According to [76] verification and validation procedures of the system can be

understood as one of the following: anomaly detection, formal verification, parallel

use, rule base visualization to aid review, code review, testing. That study shows,

that verification of the rule based systems is dominated by testing and code review.

This approach highly depends on human skills, since incorrectly written test may

produce wrong results. Formal verification and anomaly detection are not so widely

used despite the fact that those methods usually have strong logical foundations and

in most cases exceed testing and debugging approach.

According to comparison of existing verification tools in [71] one can draw a con-

clusion, that the main reason why formal verification is not widely used among expert

system developers is that it requires formal knowledge representation. In fact, most

of these tools are usually based on propositional or predicate logic. Melodia [10]

uses propositional logic and flat rule base. Clint [15], Cover [63], use predicate logic

and a flat rule base. Moreover, Indepth [43] introduces a hierarchical representation,

Covadis [65] uses simple production rules language with a flat rule base. However,

common expert system shells such as CLIPS, Jess or Drools do not provide for-

mal knowledge representation, so it is not possible to apply formal methods to these

tools. Although there are some analysis tools that are dedicated to aforementioned

shells like CrsvClips [14], Drools Verifier [12], their aim is not to provide formal

verification, but to offer a framework for writing tests.

Verification of knowledge in RBS is typically considered the last stage of the

design procedure [39]. It is assumed to be performed on a complete, specified knowl-

edge base [62, 73], as such it is costly and difficult. In the SKE approach we advocate

for approaches that introduce a formalized description of rule base. Thanks to them

formal verification of the rule base is possible during its design. A verification frame-

work for XTT2 knowledge bases called HalVA was introduced in [47]. It allows for

verification of formal properties such as determinism, or local completeness, as well

a redundancy (subsumption). The toolset works on the XTT2 table level and is inte-

grated as a module of the HeaRT [48] inference engine, that can be called during the

design of the rulebase. Its full description can be found in [50].

4 Execution of Rule Bases

4.1 Inference in Rule Bases

In RBS the execution of rule base is related to the automated inference process per-

formed by an inference engine. It uses specific algorithms to analyze the contents of

the rule base, identify rules that can be fired, and fires them. It is generally assumed

that the engine and algorithm are independent from the encoded knowledge and

Techniques for Construction and Integration of Rule Bases 211

allow for processing knowledge from any domain. Important aspects that determine

operations of the inference engine include the inference mode and tasks. Inference
mode defines how the knowledge contained in the rule base is processed [32]. For-

ward chaining is the data-driven (or bottom-up) reasoning. This mode of reasoning

starts from the existing knowledge stored as facts and continues until no further con-

clusions can be drawn. Backward chaining is a reverse process to forward chaining

and is called goal-driven reasoning. In this mode the system has a goal (a hypo-

thetical solution) and the inference engine attempts to find the evidence to prove

it with the help of the facts stored within fact base. Both inference modes can be

applied to different kinds of problems. However, according to [22] forward chaining

is a natural way to design expert systems for analysis and interpretation. An infer-
ence task is a scenario of using rules that is performed by inference engine working

in a given inference mode. Thus, it is important to distinguish between inference

modes, like forward and backward chaining, and inference tasks. Therefore, a given

inference task can be performed in different inference modes. Examples include final
consequence that determines the evaluation of a given set of rules in order to infer

all possible conclusions based on the existing facts and the facts drawn during infer-

ence. consequence reduction forces an inference engine to answer question if a given

hypothesis can be proved to be true according to existing facts. Executing this task,

an inference engine tries to find such sequence of rules that allows for expressing the

hypothesis by means of the existing facts.

A typical forward chaining inference process performed in RBS is an iterative

process consisting of the following steps: match, conflict set resolution, action,

return. Among these four steps, the first step is the bottleneck of inference because it

requires to match facts stored within fact base to rules in order to check if a given rule

has satisfied conditions. An important and now commonly used algorithm is called

Rete [18]. This algorithm allows for avoiding the Naïve approach and makes the

match step much more efficient. Knowledge compilation is used where each knowl-

edge base is compiled and the set of all rules is transformed into so-called discrimi-

nation network that represents all the rules in the form of directed and acyclic graph.

Each node of this graph corresponds to single condition of a certain rule. The second

idea is to store the information concerning facts satisfying certain condition within

corresponding node. Thanks to that, operations performed during this step are lim-

ited to monitor only changes (adding or removing) made in the fact base. When such

change is observed, it is passed through the network in order to identify rules having

satisfied their conditions. As many unnecessary rules can be fired, we shall refer to

the inference scheme as a blind one.

State saving mechanism implemented in Rete is not very efficient. The structure

of the network is often redundant, and the number of elements stored in memory

may be combinatorially explosive. To address these problems an improved algorithm

called TREAT was proposed by Miranker [45]. The conflict set is explicitly retained

across production system cycles which allows for advancements over Rete. Both

Rete and TREAT offer static networks. The structures of the networks are defined

212 G.J. Nalepa

arbitrary by the design engineer and look mostly the same for all kinds of knowledge

bases. This often leads to the creation of networks that are not optimal for some

knowledge bases. To address this problem a new discrimination network algorithm

called Gator [28] was proposed. It is based on Rete, but additionally implements

mechanisms for optimizing network structure according to specific knowledge base

characteristic.

4.2 Improving Inference in Structured Rule Bases

Modularization of knowledge base helps managing rules, and improves efficiency of

rule-based system execution. The structuring of the rule base can be used during the

inference process. CLIPS modules allow for restriction of access to their elements

from other modules, and can be compared to global and local scoping in other pro-

gramming languages. In CLIPS each module has its own pattern-matching network

for its rules and its own agenda. When a run command is given, the agenda of the

module which is the current focus is executed. Rule execution continues until another

module becomes the current focus, no rules are left on the agenda, or the return func-

tion is used from the RHS of a rule. Whenever a module that was focused on runs

out of rules on its agenda, the current focus is removed from the focus stack and the

next module on the focus stack becomes the current focus. Before a rule executes,

the current module is changed to the module in which the executing rule is defined.

The current focus can be dynamically switched. A similar mechanism is present in

Jess.

The Drools platform introduced a RuleFlow tool. It is a workflow and process

engine that allows advanced integration of processes and rules. It provides a graphi-

cal interface for processes and rules modeling. Drools have built-in a functionality to

define the structure of the rulebase which can determine the order of the rules evalu-

ation and execution. The rules can be grouped in a ruleflow-groups which defines the

subset of rules that are evaluated and executed. The ruleflow-groups have a graphical

representation as the nodes on the ruleflow diagram. The ruleflow-groups are con-

nected with the links what determines the order of its evaluation. A ruleflow diagram

is a graphical description of a sequence of steps that the rule engine needs to take,

where the order is important.

More recently, Drools moved from a dedicated flow control engine into the inte-

gration of rule-based reasoning system with a complete Business Process Manage-

ment systems in Drools 5. In this case rule-based subsystems can be called arbitrarily

by a high-level flow control mechanism. In this case it is a Business Process engine

jBPM. This approach to controlling the rule-based inference will be described in the

section regarding integration of RBS.

Techniques for Construction and Integration of Rule Bases 213

4.3 Inference Control in SKE

In the SKE approach the rule base is composed of extended decision tables in the

XTT2 notation. Any table can have input links (inputs) as well as output links (out-

puts). Links are related to the possible inference order. Tables to which no connec-

tions point are referred to as input (or start) tables. Tables with no connections point-

ing to other tables are referred to as output tables. All the other tables (ones having

both input and output links) are referred to as middle tables.

We consider a network of tables connected according to the following principles:

there is at least one input table, there is at least one output table, there is zero or more

middle tables, and all the tables are interconnected. The aim is to choose the inference

order. The basic principle is that before firing a table, all the immediately preceding

tables must have already been fired. The structure of the network imposes a partial

order with respect to the order of table firing. Firing the table involves processing in a

sequence all the rules in the table. In [46] several dedicated algorithms for inference

control were described. This approach is only suitable for relatively small knowledge

bases, where the manual analysis is possible. Therefore, more complex modes are

considered, including DDI (Data-Driven Inference), TDI (Token-Driven Inference),

and GDI (Goal-Driven Inference).

The Data-Driven Inference algorithm identifies start tables, and puts all the tables

that are linked to the initial ones in the XTT2 network into a FIFO queue. When there

are no more tables to be added to the queue, the algorithm fires selected tables in the

order they are popped from the queue. The forward-chaining strategy is suitable for

simple tree-like inference structures. However, it has limitations in a general case,

because it cannot determine tables having multiple dependents. The Token-Driven
Inference approach is based on monitoring the partial inference order defined by

the network structure with tokens assigned to tables. A table can be fired only when

there is a token at each input. Intuitively, a token is a flag signaling that the necessary

data generated by the preceding table is ready for use. The Goal-Driven inference
approach works backwards with respect to selecting the tables necessary for a spe-

cific task, and then fires the tables forward so as to achieve the goal. One or more

output tables are identified as the ones that can generate the desired goal values and

are put into a LIFO queue. As a consequence, only the tables that lead to the desired

solution are fired, and no rules are fired without purpose. All of the mentioned infer-

ence modes are implemented as a part of a dedicated inference engine for SKE called

HeaRT [48].

5 Integration of Rule-Based Systems

Historically, rule-based systems were considered as stand alone. This meant such a

systems was an independent software component (sometimes integrated in a hard-

ware systems). As such, it was fully responsible to process input data, perform

214 G.J. Nalepa

processing, and then appropriate decision making and ultimately produce output

data, or carry out control actions. Therefore, with time, in classic RBS systems such

as CLIPS, number of additional libraries were created to support such an environ-

ment. Today however, such an approach seems redundant and it is rather rare. RBS

are considered software components, that have to be integrated in a larger software

environment using some well-defined software engineering approaches [70]. There-

fore, here we give a short account of main architectures to integrate rule-based sys-

tems with a larger software environment.

The already mentioned, classic approach with standalone systems can be consid-

ered a homogeneous one. As in such a case the RBS should be able to provide not

just the decision making, but also vital part of interfaces on the software runtime

level. An important aspect is in fact related to the rule language level. In this case,

the rule language should be powerful enough to program all of these features, as it

is the only language available for the system designer. This results is the design of

expressive rule languages like in the case of CLIPS with additional programming

libraries, or language extensions such as COOL [23].

An alternative approach is to restrict the role of the RBS only to decision making.

In this case, the remaining functionality is delegated to another systems or compo-

nents. The RBS only needs to posses interfaces allowing for such lower-level integra-

tion. It also operates as intelligent middleware, not a stand-alone system. Therefore,

such an architecture can be simply referred to as heterogeneous one.

5.1 Heterogeneous Integration

The rule-based component can be integrated with a larger software system using

common software design patterns [20]. An example of such an approach was previ-

ously proposed in [50]. It is related to bridging knowledge engineering with software

engineering [70]. Historically, when the software systems became more complex,

the engineering process became more and more declarative in order to model the

systems in a more comprehensive way. It made the design stage independent of pro-

gramming languages, which resulted in a number of approaches. One of the best

examples is the MDA (Model-Driven Architecture) approach [44]. Since there is no

direct “bridge” between declarative design and sequential implementation, a sub-

stantial work is needed to turn a design into a running application. This problem is

often referred to as a semantic gap between a design and its implementation [42]. It

is worth noting that while the conceptual design can sometimes be partially formally

analyzed, the full formal analysis is impossible in most cases [52]. However, there is

no way to assure that even a fully formally correct model would translate to a correct

code in a programming language. Moreover, if an application is automatically gener-

ated from a designed conceptual model, then any changes in the generated code have

to be synchronized with the design. Another issue is the common lack of separation

between core software logic, interfaces, and presentation layers.

Techniques for Construction and Integration of Rule Bases 215

Some of the methodologies e.g. the MDA, and the design approaches e.g. the

MVC (Model-View-Controller) [9] try to address this issue. The main goal is to

avoid semantic gaps, mainly the gap between the design and the implementation. In

order to do so, the following elements should be developed: a rich and expressive

design method, a high-level runtime environment, and an effective design process.

Methodologies which embody all of these elements should eventually shorten the

development time, improve software quality, and transform the “implementation”

into the runtime-integration and introduce the so-called “executable design”.

Using these ideas the heterogeneous integration of a RBS may be considered on

several levels:

∙ runtime level: the application is composed of the rule-based model run by the

inference engine integrated with the external interfaces.

∙ service level: the rule-based core is exposed to external applications using a

network-based protocol. This allows for a SOA (Service-Oriented Architecture)-

like integration [3] where the rule-based logic is designed and deployed using an

embedded inference engine.

∙ design level: integration considers a scenario, where the application has a clearly

identified logic-related part, which is designed using visual design method for

rules (such as decision table, or decision trees), and then translated to a domain-

specific representation.

∙ rule language level: in this case rule expressions can be mixed with another pro-

gramming language, and both syntax and semantics are mixed. However, this

allows for an easy integration of rule-based code with rich features of another

programming environment (e.g. Java).

We will now discuss how these are integrated in the SKE.

5.2 Integration in the SKE Approach

The SKE approach provides a heterogeneous solution through a clear separation of
core business logic. Eventually it can shorten the development time by transform-

ing the “implementation” into the runtime-integration with rule-based model. The

approach introduces a strong separation of the core application logic from the inter-

faces. In fact, it is assumed that the MVC-like software design pattern is used. The

intelligent application is decomposed into a Model that captures the logic, a View

that corresponds to different interfaces, and a Controller that links these two. The

SKE architecture provides means for the design and implementation of software

logic and the integration of this logic with the presentation layer. The emphasis is on

a rich and formally designed and analyzed knowledge-based model. It is important

to observe that as opposed to standard software engineering approaches there are no

differences in the semantics of design methods. Thanks to the XTT-based logic core,

the knowledge base is represented using a formalized knowledge model. This allows

for using formal analysis of the model and avoiding common evaluation problems.

216 G.J. Nalepa

Fig. 2 Heterogeneous

system architecture [50]

Callbacks

Interface

Interface

Rules

Inference Engine Procedural/OO Runtime

Logic Core Communication

UI

C
VM

Hybrid runtime
Intelligent system

Such an analysis can be provided at the design stage, which allows for a gradual

refinement of the designed system (Fig. 2).

The concept of the model considered here is based on certain concepts related

to classic control theory and dynamic system modeling. The primary assumption is

that the rule-based model is a model of a dynamic system having a certain state. The

state is described using attributes that represent important properties of the system.

A statement that an attribute has a given value can be interpreted as a fact in terms of

classic expert systems. The concept of the state is similar to the one in dynamic sys-

tems and state-machines. The current state of the system is considered as a complete

set of values of all the attributes at the instant of time. The dynamics of the system

(transitions between states) is modeled with the use of rules described by a logical

representation. The conditional part of a rule is an expression related to the state to

be matched. The decision part includes statements that modify a system state in case

the rule is fired (the proper decision) and actions that do not change attribute values,

thus the state. This is a declarative model.

In general, the values of the XTT attributes in the model can be modified by an

independent external system (or user). This case concerns attributes representing

some process variables, which are taken into account in the inference process, but

depend only on the environment and external systems. As such, the variables cannot

be directly changed by the XTT system. Values of those variables are obtained as

a result of some measurement or observation process, and are assumed to be put into

the inference system via a blackboard communication method [30].

To connect the internal system memory with the external environment, callbacks
are used. These are dedicated functions related to system attributes. Callbacks are

invoked to get and send attribute values from and to the environment. The values

of internal attributes can only be modified by the inference process itself. In such a

case, values of attributes are obtained at certain stages of reasoning as the result of

the operations performed in the decision part of XTT rules.

Techniques for Construction and Integration of Rule Bases 217

The integration of a heterogeneous system is considered mainly at the at the run-

time, service and design levels.

∙ runtime level: the application is composed of the rule-based model run by the infer-

ence engine integrated with the external interfaces using the callback mechanisms.

The model is run by the XTT inference engine that uses callbacks to communicate

with front-ends implemented with other languages e.g. Java.

∙ service level: the rule-based core is exposed to external applications using a

network-based protocol. This allows for a SOA-like integration [3] where the XTT

logic is designed and deployed using the dedicated inference engine. The state of

the XTT-based system can be modified with the use of callbacks triggered by

attribute changes.

∙ Design level: integration considers a scenario, where the application has a clearly

identified logic-related part, which is designed using the XTT method, and then

translated to a domain-specific representation. As an example, in [51] the transla-

tion from XTT to the UML notation is discussed.

An important issue is the integration of rules and processes that will be discussed

next.

5.3 Integration of Rules and Business Process System

Drools 5 platform includes several integrated modules including Drools Expert
and jBPM [68]. The former is a business rules execution engine. It implements an

extended version of Rete, called ReteOO. Improvements include the object-oriented

type system that allows for tight integration with Java. In fact the whole platform

is implemented in JavaEE. JBPM is a full-fledged process execution engine. It exe-

cutes business process models encoded in the BPMN notation [59]. This notation

includes dedicated syntactic constructs, so-called rule tasks. Thanks to them it is

possible to delegate the execution of details of business process logic to a rule-bases

system. Practically it can be any system implemented in Drools. However, from the

design transparency perspective a reasonable approach is to connect only restricted

well-defined subsystems, or even single modules (tables).

Following the previously defined levels, such a scenario for integration is mainly

runtime-oriented. While proper design tools are currently not available for Drools,

with some extensions this integration can also be reflected on the design level. Pre-

liminary work in this direction was presented in [38], where a web design frame-

works for business process with rules where presented. Drools also allows for

service-level integration, as the whole runtime environment is web-enabled. It sup-

ports the orchestration of web services using rules. Execution of such solutions is

supported by the runtime environment.

218 G.J. Nalepa

6 Rule Interoperability

Having complete, possibly verified and validated system, it is desirable to ensure

method for sharing knowledge with other systems, representations and tools. Fur-

thermore, with the increasing number of rules application areas, the number of dif-

ferent rule representations is also growing. The differences between these represen-

tations cause that the rule-based knowledge cannot be easily shared among different

rule bases. Usually, the naive translation methods do not take rule base semantics

into account what leads the semantics mismatch before and after translation. This

problem is called rule interoperability problem and it has been known since classic

expert systems [22]. Today it returns because of novel nature of rules applications

in business technologies. In the context of this problem, a lot of research has been

conducted. The goal is to facilitate the process of interoperability between represen-

tations by providing intermediate and formalized format for knowledge translation.

In general, the methodology of interoperability must take two aspects into account:

syntax that is used for knowledge encoding and semantics. On each of these two

levels some problems can be identified, including ambiguous semantics, different

expressiveness, and syntactic power.

Over the time, many different methods and approaches to the knowledge inter-

operability problem were developed. Some of them are general-purpose i.e. aim at

providing framework for translation between many different representations. His-

torically, first of such approaches that were developed was called Knowledge Inter-

change Framework. Due to the difficulty of maintaining of such approaches, there is

very few technologies use this framework. This is why, modern methods providing

wide support for many different representations, are usually divided into so-called

dialects. Each dialect has a well-defined semantics and thus is intended to translation

of rules expressed in some well-defined representations. Rule Interchange Frame-
work consists of several dialects providing support for example for production rules.

Apart from the methods supporting many different representations, more specialized

approaches are also developed. Many of the existing technologies are dedicated for

a certain set of representations that share similar assumptions and thus have sim-

ilar semantics. Rule Markup Language is an example of such technologies that is

dedicated for representations used mainly within Semantic Web. In turn, Production
Rule Representation allows for expressing production rules that perform actions and

thus allow for changing system state.

Knowledge Interchange Framework (KIF) [21] constitutes one of the first imple-

mentation of formal knowledge interoperability approach that uses unified interme-

diate representation model providing declarative semantics. KIF was intended to be

a formal language for the translation of knowledge among disparate computer pro-

grams providing possibility of precise definition of knowledge semantics. It was not

limited only to rules but supports also other representation techniques like frames,

graphs, natural language, etc. It is important to note that KIF was not intended as a

primary language for interaction with human users (though it can be used for this

purpose). Different programs could interact with their users in whatever forms that

Techniques for Construction and Integration of Rule Bases 219

are most appropriate to their applications. The formal definition (specification) of

KIF provides very complex meta-model consisting of large number of classes. More-

over, its complexity led to very weak tool support and currently there is no tools that

support KIF even partially.

Rule Interchange Format (RIF) [34, 35] is a result of research conducted by Rule

Interchange Format Working Group. This group was established by the World Wide

Web Consortium (W3C) in 2005 to create a standard for exchanging rules among

rule systems, in particular among web rule engines. Although originally envisioned

by many as a rule layer for the Semantic Web, in reality the design of RIF is based on

the observation that there are many rule languages in existence, and what is needed

to exchange rules between them. In RIF rule systems fall into three main categories:

first-order, logic-programming, and action rules. These paradigms share little in

terms of syntax and semantics. Moreover, there are large differences between sys-

tems even within the same paradigm. The approach taken by the group was to design

a family of languages, called dialects with rigorously specified syntax and semantics

of different rule systems.

Production Rule Representation (PRR) [58] is an OMG standard for production

rule representation, that addresses the need for a representation of production rules in

UML models (i.e. business rule modeling as part of a modeling process). It adopts the

rule classification scheme supplied by the RuleML Initiative and supports only pro-

duction rules. It provides the MOF-based metamodel and profile that are composed

of a core structure referred to as PRR Core and a non-normative abstract OCL-based

syntax for the expressions, defined as an extended PRR Core metamodel referred to

as PRR OCL [58].

Rule Markup Language (RuleML) [5, 6] is defined by the RuleML Initiative.
1

This initiative aims at developing an open, vendor neutral XML/RDF-based rule

language allowing for exchange of rules between various systems including: distrib-

uted software components on the web, heterogeneous client-server systems found

within large corporations, etc. RuleML is intended to be used in Semantic Web and

this is why it offers XML-based language syntax for rules. In turn, the abstract syn-

tax of this language is specified by means of a version of Extended BNF, similar

to EBNF notation used for XML. RuleML provides an underlying formalism which

precisely defines semantics of the language. This formalism is based on the partial

logic [31] and provides a formal meaning for RuleML knowledge bases written in the

abstract syntax. The foundation for the kernel of RuleML is the Datalog (constructor-

function-free) sublanguage of Horn logic. Its expressiveness allows for expressing

both forward (bottom-up) and backward (top-down) rules in XML. It also supports

different kind of rules: derivation rules, transformation rules, reaction rules and pro-

duction rules. The formal model of RuleML is comprehensively described in [74].

Interoperability problems exist not only with rule bases design by knowledge

engineers but also with rule sets built with data mining tools. This short review of

existing tools for translating rules bases gives a certain insight to the main problems

encountered when translating one rule set into another. Clearly a proper formaliza-

1
See http://www.ruleml.org.

http://www.ruleml.org

220 G.J. Nalepa

tion of both syntax and semantics of rules can be useful in such translation. How-

ever, few methods and tools support such formalization, which turns out to be quite

tedious. Finally, collaborative tools for knowledge engineering, such as semantic

wikis can improve the way rule-based knowledge is created, and shared [49].

7 Concluding Remarks

The objective of this chapter was to emphasize and discuss selected important

challenges in integration of rule-based systems. They include modeling techniques

for structures rule bases, integration architectures using software engineering par-

adigms, as well as rule interoperability issues. These challenges exist both in rule

bases developed by knowledge engineers using expert knowledge, and in cases where

rule sets are built by data mining approaches [56], in computational intelligence par-

adigm [33]. We gave examples of selected tools, and techniques to address these

challenges.

References

1. Andert, E.P.: Integrated knowledge-based system design and validation for solving problems in

uncertain environments. Int. J. Man-Mach. Stud. 36(2), 357–373 (1992). http://www.reviews.

com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=144453

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-

sity Press (2003)

3. Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture

(SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press (2006)

4. Boehm, B.W.: Verifying and validating software requirements and design specifications. IEEE

Softw. 1(1), 75–88 (1984)

5. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of web rules.

In: M. Dean, J. Hall, A. Rotolo, S. Tabet (eds.) Semantic Web Rules—International Sympo-

sium, RuleML 2010, Washington, DC, USA, 21–23 Oct 2010. Proceedings. Lecture Notes in

Computer Science, vol. 6403, pp. 162–178. Springer (2010). doi:10.1007/978-3-642-16289-

3

6. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: a markup language for seman-

tic web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proceedings

of SWWS’01, The First Semantic Web Working Symposium, Stanford University, Califor-

nia, USA, 30 July–1 Aug 2001, pp. 381–401 (2001). http://www.semanticweb.org/SWWS/

program/full/paper20.pdf

7. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning, 1st edn. Morgan

Kaufmann (2004)

8. Browne, P.: JBoss Drools Business Rules. Packt Publishing (2009)

9. Burbeck, S.: Applications programming in Smalltalk-80(TM): How to use Model-View-

Controller (MVC). Department of Computer Science, University of Illinois, Urbana-

Champaign, Technical report (1992)

http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=144453
http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=144453
http://dx.doi.org/10.1007/978-3-642-16289-3
http://dx.doi.org/10.1007/978-3-642-16289-3
http://www.semanticweb.org/SWWS/program/full/paper20.pdf
http://www.semanticweb.org/SWWS/program/full/paper20.pdf

Techniques for Construction and Integration of Rule Bases 221

10. Charles, E., Dubois, O.: Melodia: logical methods for checking knowledge bases. In: Ayel,

M., Laurent, J.P. (eds.) Validation, Verification and Test of Knowledge-Based Systems, pp.

95–105. Wiley, New York (1991). http://portal.acm.org/citation.cfm?id=130251.130258

11. Chorowski, J., Zurada, J.M.: Extracting rules from neural networks as decision diagrams. IEEE

Trans. Neural Netw. 22(12), 2435–2446 (2011). doi:10.1109/TNN.2011.2106163

12. Community, J.: Drools verifier. http://community.jboss.org/wiki/DroolsVerifier (2009)

13. Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to Design,

Implementation, and Management, 2nd edn. Addison-Wesley (1999)

14. Culbert, S.: Expert system verifications and validation. In: Proceedings of First AAAI Work-

shop on V,V & Testing, Aug 1988

15. De Raedt, L., Sablon, G., Bruynooghe, M.: Using interactive concept-learning for knowledge

base validation and verification. In: Ayel, M., Laurent, J. (eds.) Validation, Verification and

Testing of Knowledge Based Systems, pp. 177–190. Wiley (1991)

16. Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for rule-based data

understanding. In: Proceedings of the IEEE, pp. 771–805 (2004)

17. Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data.

Cambridge University Press, New York (2012)

18. Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match problem. Artif.

Intell. 19(1), 17–37 (1982)

19. Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning (2003)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, 1st edn. Addison-Wesley

Pub Co. (1995)

21. Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format Version 3.0 Reference Manual

(1992)

22. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming, 4th edn. Thomson

Course Technology, Boston, MA, United States (2005). ISBN 0-534-38447-1

23. Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson (2005)

24. Giurca, A., Gašević, D., Taveter, K. (eds.): Handbook of Research on Emerging Rule-Based

Languages and Technologies: Open Solutions and Approaches. Information Science Refer-

ence, Hershey, New York (2009)

25. Graham, I.: Business Rules Management and Service Oriented Architecture. Wiley (2006)

26. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules

Approach. Wiley (2001)

27. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher

(2000)

28. Hanson, E.N., Hasan, M.S.: Gator: An Optimized Discrimination Network for Active Data-

base Rule Condition Testing. Technical Report 93-036, CIS Department University of Florida

(1993)

29. van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation.

Elsevier Science (2007)

30. Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)

31. Herre, H., Jaspars, J.O.M., Wagner, G.: Partial logics with two kinds of negation as a foundation

for knowledge-based reasoning. Centrum voor Wiskunde en Informatica (CWI) 158, 35 (1995)

32. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison-Wesley (1999). ISBN 0-201-

87686-8

33. Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer

(2015). doi:10.1007/978-3-662-43505-2

34. Kifer, M.: Rule interchange format: the framework. In: Calvanese, D., Lausen, G. (eds.) Web

Reasoning and Rule Systems, Second International Conference, RR 2008, Karlsruhe, Ger-

many, 31 Oct–1 Nov 2008. Proceedings. Lecture Notes in Computer Science, vol. 5341, pp.

1–11. Springer (2008). doi:10.1007/978-3-540-88737-9_1

35. Kifer, M., Boley, H.: RIF overview. W3C working draft, W3C. http://www.w3.org/TR/rif-

overview (2009)

http://portal.acm.org/citation.cfm?id=130251.130258
http://dx.doi.org/10.1109/TNN.2011.2106163
http://community.jboss.org/wiki/DroolsVerifier
http://dx.doi.org/10.1007/978-3-662-43505-2
http://dx.doi.org/10.1007/978-3-540-88737-9_1
http://www.w3.org/TR/rif-overview
http://www.w3.org/TR/rif-overview

222 G.J. Nalepa

36. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based lan-

guages. J. ACM 42(4), 741–843 (1995). doi:10.1145/210332.210335

37. Klösgen, W., Żytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery.

Oxford University Press, New York (2002)

38. Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx

BPMN editor. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing:

11th International Conference, ICAISC 2012: Zakopane, Poland, 29 Apr–3 May 2012. Lec-

ture Notes in Artificial Intelligence, vol. 7268, pp. 573–581. Springer (2012). http://www.

springerlink.com/content/u654r0m56882np77/

39. Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)

40. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Berlin, Heidelberg (2006)

41. Ligęza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gašević, D., Taveter,

K. (eds.) Handbook of Research on Emerging Rule-Based Languages and Technologies: Open

Solutions and Approaches, pp. 273–301. IGI Global, Hershey, New York (2009)

42. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture, 1st

edn. Addison-Wesley Professional (2002)

43. Meseguer, P.: Incremental verification of rule-based expert systems. In: Proceedings of the 10th

European conference on Artificial intelligence, ECAI ’92, pp. 840–844. Wiley, New York, NY,

USA (1992). http://portal.acm.org/citation.cfm?id=145448.147581

44. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG (2003)

45. Miranker, D.P.: TREAT: A Better Match Algorithm for AI Production Systems; Long Version.

Technical Report 87-58, University of Texas (1987)

46. Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized

rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Pro-

gramming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 305–312.

Springer, Berlin, Heidelberg (2011)

47. Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: HalVA—rule analysis framework for XTT2

rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Program-

ming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 337–344. Springer,

Berlin, Heidelberg (2011). http://www.springerlink.com/content/c276374nh9682jm6/

48. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., et al. (eds.)

Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010:

Zakopane, Poland, 13–17 June 2010, Pt. II. Lecture Notes in Artificial Intelligence, vol. 6114,

pp. 598–605. Springer (2010)

49. Nalepa, G.J.: Loki—semantic wiki with logical knowledge representation. In: Nguyen, N.T.

(ed.) Transactions on Computational Collective Intelligence III. Lecture Notes in Com-

puter Science, vol. 6560, pp. 96–114. Springer (2011). http://www.springerlink.com/content/

y91w134g03344376/

50. Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa

AGH, Kraków (2011)

51. Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-

based business rules. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 22(4), 485–524 (2012). doi:10.

1142/S021819401250012X, http://www.worldscientific.com

52. Nalepa, G.J., Ligęza, A.: Conceptual modelling and automated implementation of rule-based

systems. In: Software Engineering: Evolution and Emerging Technologies. Frontiers in Artifi-

cial Intelligence and Applications, vol. 130, pp. 330–340. IOS Press, Amsterdam (2005)

53. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems. Int.

J. Appl. Math. Comput. Sci. 20(1), 35–53 (2010)

54. Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2

method. Int. J. Artif. Intell. Tools 20(6), 1107–1125 (2011)

55. Nazareth, D.L.: Issues in the verification of knowledge in rule-based systems. Int. J. Man-

Mach. Stud. 30(3), 255–271 (1989). http://www.reviews.com/reviewer/quickreview/frameset_

toplevel.cfm?bib_id=69244

http://dx.doi.org/10.1145/210332.210335
http://www.springerlink.com/content/u654r0m56882np77/
http://www.springerlink.com/content/u654r0m56882np77/
http://portal.acm.org/citation.cfm?id=145448.147581
http://www.springerlink.com/content/c276374nh9682jm6/
http://www.springerlink.com/content/y91w134g03344376/
http://www.springerlink.com/content/y91w134g03344376/
http://dx.doi.org/10.1142/S021819401250012X
http://dx.doi.org/10.1142/S021819401250012X
http://www.worldscientific.com
http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=69244
http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=69244

Techniques for Construction and Integration of Rule Bases 223

56. Nguyen, M.N., Zurada, J.M., Rajapakse, J.C.: Toward better understanding of protein sec-

ondary structure: Extracting prediction rules. IEEE/ACM Trans. Comput. Biol. Bioinform.

8(3), 858–864 (2011). doi:10.1109/TCBB.2010.16

57. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Checking an expert systems knowledge

base for consistency and completeness. In: IJCAI, pp. 375–378 (1985). http://dli.iiit.ac.in/ijcai/

IJCAI-85-VOL1/PDF/070.pdf

58. OMG: Production Rule Representation (OMG PRR) version 1.0 specification. Technical

Report formal/2009-12-01, Object Management Group (2009). http://www.omg.org/spec/

PRR/1.0

59. OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical

Report formal/2011-01-03, Object Management Group (2011)

60. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Pub-

lishers, Dordrecht/Boston/London (1991)

61. Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int.

J. Man-Mach. Stud. 38(4), 661–688 (1993). http://users.cs.cf.ac.uk/A.D.Preece/publications/

download/ijhcs1993.pdf

62. Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int.

J. Man-Mach. Stud. 38, 161–181 (1993)

63. Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-based sys-

tems. Knowl. Eng. Rev. 7(02), 115–141 (1992). doi:10.1017/S026988890000624X

64. Riley, G.: CLIPS—A Tool for Building Expert Systems. http://clipsrules.sourceforge.net

(2008)

65. Rousset, M.C.: On the consistency of knowledge bases: the COVADIS system. In: ECAI, pp.

79–84 (1988)

66. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data

streams. Inf. Sci. 266, 1–15 (2014). doi:10.1016/j.ins.2013.12.060

67. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams

based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014).

doi:10.1109/TKDE.2013.34

68. Salatino, M.: jBPM Developer Guide. Packt Publishing Ltd (2009)

69. Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for

nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). doi:10.1109/TNN.

2002.1000125

70. Sommerville, I.: Software Engineering, 7th edn. International Computer Science. Pearson Edu-

cation Limited (2004)

71. Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-based sys-

tems. IEEE Trans. Knowl. Data Eng. 11, 202–212 (1999). doi:10.1109/69.755629

72. Vanthienen, J., Dries, E., Keppens, J.: Clustering knowledge in tabular knowledge bases. In:

ICTAI, pp. 88–95 (1996)

73. Vermesan, A.I., Coenen, F. (eds.): Validation and Verification of Knowledge Based Systems.

Theory, Tools and Practice. Kluwer Academic Publisher, Boston (1999)

74. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML—towards a

general web rule language framework. In: Web Intelligence, pp. 628–631. IEEE Computer

Society (2004). doi:10.1109/WI.2004.134, http://doi.ieeecomputersociety.org

75. Wagner, G., Damásio, C.V., Antoniou, G.: Towards a general web rule language. Int. J. Web

Eng. Technol. 2(2/3), 181–206 (2005). doi:10.1504/IJWET.2005.008483

76. Zacharias, V.: Development and verification of rule based systems—a survey of developers.

In: Proceedings of the International Symposium on Rule Representation, Interchange and Rea-

soning on the Web, RuleML ’08, pp. 6–16. Springer, Berlin, Heidelberg (2008). doi:10.1007/

978-3-540-88808-6_4

http://dx.doi.org/10.1109/TCBB.2010.16
http://dli.iiit.ac.in/ijcai/IJCAI-85-VOL1/PDF/070.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-85-VOL1/PDF/070.pdf
http://www.omg.org/spec/PRR/1.0
http://www.omg.org/spec/PRR/1.0
http://users.cs.cf.ac.uk/A.D.Preece/publications/download/ijhcs1993.pdf
http://users.cs.cf.ac.uk/A.D.Preece/publications/download/ijhcs1993.pdf
http://dx.doi.org/10.1017/S026988890000624X
http://clipsrules.sourceforge.net
http://dx.doi.org/10.1016/j.ins.2013.12.060
http://dx.doi.org/10.1109/TKDE.2013.34
http://dx.doi.org/10.1109/TNN.2002.1000125
http://dx.doi.org/10.1109/TNN.2002.1000125
http://dx.doi.org/10.1109/69.755629
http://dx.doi.org/10.1109/WI.2004.134
http://doi.ieeecomputersociety.org
http://dx.doi.org/10.1504/IJWET.2005.008483
http://dx.doi.org/10.1007/978-3-540-88808-6_4
http://dx.doi.org/10.1007/978-3-540-88808-6_4

New Aspects of Interpretability of Fuzzy
Systems for Nonlinear Modeling

Krystian Łapa, Krzysztof Cpałka and Leszek Rutkowski

Abstract Fuzzy systems are well suited for nonlinear modeling. They can be effec-

tively used if their structure and structure parameters are properly chosen. Moreover,

it should be ensured that system rules are clear and interpretable. In this paper we

propose a new algorithm for automatic learning and new interpretability criteria of

fuzzy systems. Interpretability criteria are related to all aspects of those systems, not

only their fuzzy sets and rules. Therefore, proposed criteria also concern parameter-

ized triangular norms, discretization points and weights of importance from the rule

base. As of the present time similar solutions have not been discussed in the litera-

ture. The proposed criteria are taken into account in the learning process, which is

carried out with the use of a new learning algorithm. It was created by combining the

genetic and the firework algorithms (this particular combination makes it possible

to automatically choose not only system parameters but also its structure). It is an

important advantage as most of the learning algorithms can only select system para-

meters when their structure has been specified by the designer. Proposed solutions

were tested using typical simulation problems of nonlinear modeling.

K. Łapa ⋅ K. Cpałka ⋅ L. Rutkowski (✉)

Institute of Computational Intelligence, Czestochowa University of Technology,

Al. Armii Krajowej 36, 42-200 Częstochowa, Poland

e-mail: leszek.rutkowski@iisi.pcz.pl

K. Łapa

e-mail: krystian.lapa@iisi.pcz.pl

K. Cpałka

e-mail: krzysztof.cpalka@iisi.pcz.pl

L. Rutkowski

Information Technology Institute, Academy of Social Sciences,

Ul. Sienkiewicza 9, 90-113 Łódź, Poland

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_9

225

226 K. Łapa et al.

1 Introduction

Modeling is creation of simplified models of objects. It provides predictability,

increases safety, reduces running costs, provides the ability to control, explains the

principles of operation, etc. Most modeling problems are nonlinear [7]. Fuzzy sys-

tems work within this application range. This paper deals with interpretability of

fuzzy systems which can be used in nonlinear modeling.

1.1 Model Representation

The model is expected, among others, to work accurately and perform readable

(interpretable) operations. This last feature allows one to acquire knowledge about

how a given object works. There are three different representations of a model related

to the possibility of its interpretation: white-box, gray-box and black-box. White-box

modeling uses phenomenological model, which is the mathematical description [13,

43, 61]. White-box models are readable but often simplified. Simplifying assump-

tions usually refer to characteristics idealization and linearization, skipping the sat-

uration phenomenon, friction, etc. In black-box methods behavior of the object is

modeled on the basis of the cause-and-effect relationships [35, 63, 88, 103]. Black-

box models are accurate, but mostly not interpretable. From the point of view of

interpretability, gray-box models are the most important methods. They offer a sat-

isfactory compromise between accuracy and interpretability. Gray-box models often

base on computational intelligence methods, e.g. decision trees [6, 51, 64], fuzzy

systems [17, 30, 42, 44, 72, 76, 78, 94, 99–102], neural networks [23, 25, 41] etc.

In this work we discuss fuzzy systems since they use clear and intuitive fuzzy

rules [72]. These rules take the form of IF…THEN…, which provides good oppor-

tunities for interpretation. Fuzzy systems can be used in direct or indirect nonlinear

modeling [55, 70]. In indirect modeling they can, for example, explain the idea of

switching component models in the methods of sectoral non-linearity [45] or model

coefficients of so-called matrices of state variables [65], thus explaining elemen-

tary dependences which occur in the object. They can also model derogations of

state variable matrix coefficients from their linear counterparts while explaining the

source of nonlinearity [8]. Generally, fuzzy systems are used not only for non-linear

modeling but also for classification. In particular, they are used e.g. in medical diag-

nostics, economics, controlling, forecasting, biometrics, databases, natural language

processing, image processing, and many others. In each of these applications inter-

pretation of the knowledge stored in the system is of great importance.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 227

1.2 Interpretability of Fuzzy Systems

In the past researchers mainly paid attention to the accuracy of fuzzy systems while

ignoring issues of their interpretability. However, in the 1990s they started to notice

the fact that a large number of rules or fuzzy sets in those rules is not conducive to the

readability of the rule base. Then, they began to form solutions which related to the

term of “interpretability”. Nowadays fuzzy system designers are trying to reach an

acceptable compromise between accuracy and interpretability [31, 40, 54, 81, 83,

90, 95]. It is more difficult in the case of modeling than in the case of classification,

because any change in the system structure developed to improve rules readability

may result in deterioration of accuracy.

In the literature a number of papers on the subject of interpretability of fuzzy

systems can be found. Their authors have proposed among the others:

∙ Solutions aimed at reducing the number of fuzzy rules [1, 4, 31, 33, 40, 50, 54],

reducing the number of fuzzy sets [34] and aimed at reducing the number of system

inputs [4, 91, 93]. Limitations were also related to the number of antecedences

in fuzzy rules. The optimal number was most often set to Miller number, which

equals 7 ± 2 [2, 4, 40, 66]. Miller number was designated in 1956 by George

Miller and it represents the maximum pieces of information that can be directly

distinguished by a human [59]. The use of restrictions in a system structure was

often associated with a reduction of redundant elements and merging of similar

ones [15, 34, 36, 38, 46, 67, 84].

∙ Solutions related to correct notation of fuzzy rules [4, 50], correct activation of

fuzzy rules [2, 26, 54], distinguishability and interdependence of fuzzy sets (e.g.

their overlapping) [57, 58, 66] as well as solutions on issues such as: complemen-

tarity, fitting in with data, etc. [9, 28, 31].

∙ Solutions related to fuzzy systems construction aimed at interpretability. In the

papers [15, 18, 19, 22, 68, 72–75, 79, 80, 86, 87] the use of additional weights

of importance of the rules, antecedences, consequences and system inputs was

proposed. In the paper [82] a dynamic structure of connections between fuzzy

sets and rules was considered. It was proposed, among others, in order to reduce

system complexity and to simplify the rule-based notation. In the papers [15, 27]

parameterized triangular norms were used (as precise aggregation operators) in

order to increase accuracy, and in the paper [27] the authors reviewed parame-

terized triangular norms in terms of their suitability for the construction of fuzzy

systems. In the paper [15] the authors used an extended (precise) defuzzification

mechanism in which the number of discretization points does not have to be equal

to the number of rules. This was suggested, among others, in order to increase

accuracy of the system with a fixed number of rules and to provide opportunities

to reduce the complexity of rules.

228 K. Łapa et al.

1.3 Attempts at Systematizing Solutions for Interpretability of
Rule-Based Systems

The literature abounds in numerous attempts to systematize solutions for inter-

pretability (e.g. [32, 83, 85]). The systematics presented in [32] deserves a spe-

cial attention. Its authors have proposed division of solutions for interpretability into

four groups-quadrants: (a) Quadrant concerning solutions aimed at reducing com-

plexity at fuzzy rules level (it takes into account, among others, the number of fuzzy

rules, the number of antecedences in each rule and using Miller number), (b) quad-

rant concerning solutions aimed at reducing the complexity at the fuzzy partitioning

level (it takes into account, among others, the number of fuzzy sets associated with

various inputs and outputs and the number of inputs), (c) quadrant concerning solu-

tions aimed at increasing semantic readability at the fuzzy rules’ level (it takes into

account, among others, the consistency of the rules, activation level of rules and

readability of rule-based notation), and (d) quadrant concerning solutions aimed at

increasing semantic readability at the fuzzy partitioning level (it takes into account,

among others, a coverage degree of the input data by fuzzy sets, normalization of

fuzzy sets, distinctness of fuzzy sets and fuzzy sets complementarity).

An interesting semantics has also been proposed in [3], which can complement the

semantics proposed in [32]. In this semantic interpretability criteria were divided in

terms of their readability of the knowledge accumulated in the system and a different

importance was symbolically assigned to the criteria. There are: (a) very important

criteria (for the complexity of fuzzy rules and notation readability), (b) important

criteria (for the semantics of rules and fuzzy sets, including the criteria for order-

ing fuzzy sets, semantic phrases used, sharing of fuzzy sets by a number of rules,

etc.), and (c) the least important criteria (for the normalization of fuzzy sets, their

complementarity, coverage of input data area, etc.).

1.4 Solutions Proposed in This Paper

The solutions proposed in this paper can be summarized as follows (Fig. 1): (a) In

this paper the issue of interpretability has been treated comprehensively in terms

of semantics considered in Sect. 1.3. Moreover, the proposed interpretability criteria

apply to all aspects of fuzzy system designing. In particular, they include, among oth-

ers, interpretability of fuzzy sets and rules, parameterized triangular norms, weights

of importance and discretization points. This approach gives a broader look at the

issue of interpretability, going beyond the concept of interpretability conception of

a fuzzy set and fuzzy rule (most often discussed in the literature). (b) In this paper

we propose a new hybrid algorithm for selection of the structure and parameters of

a fuzzy system, constructed on the basis of the genetic [24, 29, 96, 98] and the fire-

work [89] algorithms. This algorithm uses the idea of the genetic algorithm based

on the biological evolution of species for the selection of the system structure (3)

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 229

precise aggregation
operators

precise defuzzification
mechanism

I. Impact on interpretability
by appropriate structure of a fuzzy system

Fuzzy system for knowledge extraction
fuzzy sets fuzzy rules

weights of importance
of fuzzy sets

weights of importance
of fuzzy rules

system structure system parameters

II. Impact on
interpretability
by appropriate

approach to
a learning process

a new hybrid
genetic-firework

algorithm

III. Impact on interpretability
by minimization of appropriate interpretability criteria

a new complexity
criterion

a new criterion
for fuzzy sets' readability

a new criterion
for fuzzy rules' readability

a new criterion of weights
of importance readability

a new criterion of aggregation
operators' readability

a new criterion
of defuzzification readability

Fig. 1 Summary of the solutions proposed in this work

and the idea of the firework algorithm based on the behavior of exploding fireworks

for the selection of system structure parameters (3). The vast majority of algorithms

presented in the literature can select system parameters only when its structure has

been indicated by the designer (selected earlier by trial and error). Moreover, our

algorithm takes into account all the interpretability criteria considered in this paper

and it belongs to the methods based on populations [11, 49, 52, 53, 60, 62, 72].

It can be noted that the solutions proposed in this paper relate to interpretability

directly and indirectly. The direct approach formulates appropriate criteria (Sect. 4)

and uses them in the automatic process of fuzzy system selection. The indirect

approach uses precise aggregation and inference operators in system design. They

were proposed in our previous work [15, 16, 77] and called flexible. Their use allows

for achieving good accuracy with a simpler system structure. Therefore, it makes a

good starting point for direct impact on interpretability of a rule-based system. The

use of the learning algorithm also affects the indirect impact on interpretability. It

creates a good opportunity to find an appropriate trade-off between interpretability

and accuracy.

2 Description of a Neuro-Fuzzy System for Non-linear
Modeling

Further on in this paper a typical multi-input, multi-output Mamdani-type flexible

fuzzy system will be considered [15, 16, 71, 72]. This system performs mapping

𝐗 → 𝐘, where 𝐗 ⊂ 𝐑n
and 𝐘 ⊂ 𝐑m

.

230 K. Łapa et al.

2.1 Rule Base

The rule base of the considered system consists of a collection of N fuzzy rules Rk
,

k = 1,… ,N. Each rule Rk
takes the following form:

Rk ∶

[(
IF
(
x̄1 isAk

1

) |||wA
k,1 AND…AND

(
x̄n isAk

n
) |||wA

k,n
THEN

(
y1 isBk

1

) |wB
1,k,… ,

(
ym isBk

m
) |wB

m,k

) |||wrule
k

]
, (1)

where n is the number of inputs, m is the number of outputs, �̄� =
[
x̄1,… , x̄n

]
∈ 𝐗 is

a vector of input signals (input linguistic variables for the singleton type fuzzifica-

tion used), 𝐲 =
[
y1,… , ym

]
∈ 𝐘 is a vector of output linguistic variables, Ak

1,… ,Ak
n

are input fuzzy sets characterized by membership functions 𝜇Ak
i

(
xi
)

(i = 1,… , n),

Bk
1,… ,Bk

m are output fuzzy sets characterized by membership functions 𝜇Bk
j

(
yj
)

(j = 1,… ,m), wA
k,i ∈ [0, 1] are weights of antecedents, wB

j,k ∈ [0, 1] are weights of

consequences, wrule
k ∈ [0, 1] are weights of rules.

Fuzzy sets Ak
i and Bk

j are fuzzy values of linguistic variables representing val-

ues such as e.g. ‘very low’, ‘low’, ‘medium low’, ‘medium’, ‘medium high’, ‘high’,

‘very high’, ‘near [value]’, etc. Later in this paper we consider the system, in which

membership functions 𝜇Ak
i

(
xi
)

and 𝜇Bk
j

(
yj
)

of fuzzy sets Ak
i and Bk

j are Gaussian

functions, represented as follows:

𝜇 (x) = exp
(
−
(x − x̄

𝜎

)2)
. (2)

Selection of a membership function allowed us to give more detailed information in

Sects. 3.1 and 4.2. The Gaussian function reflects well the industrial, natural, medical

and social processes; however, our solutions may be related to any other membership

function.

The flexibility of the system (3) is a result of using: (a) weights in the rule base,

(b) precise aggregation operators of antecedences and rules (Sect. 2.3), (c) precise

inference operators (Sect. 2.3), and (d) a precise defuzzification process (Sect. 2.2).

2.2 Defuzzification Process

Defuzzification is used to determine output signals of fuzzy system ȳj for given input

signals. This is carried out as follows:

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 231

ȳj =

Rj∑
r=1

ȳdefj,r ⋅

N
↔

S
∗

k=1

⎧⎪⎨⎪⎩
↔

T
∗
{

𝜏k (�̄�) , 𝜇Bk
j

(
ȳdefj,r

)
;

1,wB
j,k, p

imp

}
;

wrule
k , pagr

⎫⎪⎬⎪⎭
Rj∑
r=1

N
↔

S
∗

k=1

⎧⎪⎨⎪⎩
↔

T
∗
{

𝜏k (�̄�) , 𝜇Bk
j

(
ȳdefj,r

)
;

1,wB
j,k, p

imp

}
;

wrule
k , pagr

⎫⎪⎬⎪⎭

, (3)

where 𝜏k (�̄�) is the activation level of the rule k. It is determined for the input signals

vector �̄� and defined as follows:

𝜏k (�̄�) =
n

↔

T
∗

i=1

{
𝜇Ak

i

(
x̄i
)
;wA

k,i, p
𝜏

}
, (4)

and
↔

T
∗
{⋅} and

↔

S
∗
{⋅} are Dombi parameterized triangular norms with weights of

arguments (Sect. 2.3), p𝜏 is a shape parameter of t-norm used for aggregation of

antecedences, pimp
is a shape parameter of t-norm used for inference, pagr is a shape

parameter of t-conorm used for aggregation of inferences from rules, and ȳdefj,r (r =
1,… ,Rj) are discretization points.

Discretization points are points in space𝐘, which are related to the defuzzification

and they are independent of the rule base (1). In these points discretization of output

fuzzy sets and fuzzy sets obtained in response to the input signals of the system

�̄� is performed. The most frequently used defuzzification methods (Center of area,

Center of gravity, Fuzzy mean, Weighted fuzzy mean, Quality method, etc., [48, 72])

associate the number of discretization points with the number of output fuzzy sets

(rules). In the system considered in this paper the number of discretization points

Rj for any output j does not have to equal the number of rules N. This creates good

opportunities for increasing the interpretability and accuracy of the fuzzy system.

This issue was discussed in detail in our previous papers [15, 16]. In these papers

detailed information on derivation of the formula (3) and linking it with the rule base

of the form (1) can also be found.

2.3 Aggregation and Inference Operators

In this section parameterized Dombi-type triangular norms with weights of argu-

ments, used in Eqs. (3) and (4), are considered. Their use contributes indirectly to

an increase of the interpretability of the system (3). This is due to high working pre-

cision of these operators, which allows for achieving the expected accuracy of the

system (3) with a smaller number of rules N.

Parameterized Dombi-type triangular norms with weights of arguments have the

following form:

232 K. Łapa et al.

⎧⎪⎪⎨⎪⎪⎩

↔

T
∗
{𝐚;𝐰, p} =

n
↔

T
∗

i=1

{
ai;
wi, p

}
=

(
1 +
(n∑

i=1

(
wi⋅(1−ai)

1−wi⋅(1−ai)
)p) 1

p

)−1

↔

S
∗
{𝐚;𝐰, p} =

n
↔

S
∗

i=1

{
ai;
wi, p

}
= 1 −

(
1 +
(n∑

i=1

(
wi⋅ai

1−wi⋅ai

)p) 1
p

)−1

,

(5)

where p ∈ [0,∞) and parameters w1,… ,wn ∈ [0, 1] are weights of arguments

a1,… , an ∈ [0, 1]. Operators of the form (5) were formed from the combination of

two types of triangular norms. The first type comprises parameterized Dombi-type

triangular norms (marked with the symbol “↔.”). Their way of working depends on

the value of the parameter p. By changing value of the parameter p it is possible to

achieve similar behavior to typical non-parametric norms, such as min/max norms,

Hamacher norms, Łukasiewicz norms, algebraic norms, etc. Apart from the Dombi-

type norms, in the literature many other types of parameterized triangular norms

(e.g. Frank, Dubois and Prade, Schweizer and Skalar, Weber, Yager, Yu, etc.) can be

found. The second type of triangular norms used in the construction of operators of

the form (5) are standard triangular norms with weights of arguments (marked with

the symbol “∗”) [15, 16]. They can be described as follows:

⎧⎪⎨⎪⎩
T∗ {𝐚;𝐰} =

n
T∗
i=1

{
ai;wi

}
=

n
T
i=1

{
1 − wi ⋅

(
1 − ai

)}
S∗ {𝐚;𝐰} =

n
S∗
i=1

{
ai;wi

}
=

n
S
i=1

{
ai ⋅ wi

}
.

(6)

Examples of triangular norms with weights of arguments are standard algebraic

norms: ⎧⎪⎨⎪⎩
T∗ {𝐚;𝐰} =

n∏
i=1

(
1 +
(
ai − 1

)
⋅ wi
)

S∗ {𝐚;𝐰} = 1 −
n∏
i=1

(
1 − ai ⋅ wi

)
.

(7)

The idea of operation of triangular norms with weights of arguments (especially

the idea of reducing arguments with weights equal to 0) can be summarized as fol-

lows: T∗ {a1, a2;w1, 0
}
= a1, T∗ {a1, a2; 1, 1} = T

{
a1, a2

}
, S∗
{
a1, a2;w1, 0

}
= a1

i S∗
{
a1, a2; 1, 1

}
= S
{
a1, a2

}
. More detailed information on the operators of the

forms (5)–(7) can be found in our previous papers [15, 16].

3 Description of a New Fuzzy System Learning Algorithm

The proposed hybrid genetic-firework algorithm aims at selection of the structure

and parameters of the fuzzy system (3) (Fig. 1). The purpose of the algorithm is also

to minimize interpretability criteria presented in Sect. 4.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 233

The proposed algorithm belongs to so-called population-based algorithms. They

provide a method for solving optimization problems. They can be defined as search

procedures based on the mechanisms of natural selection and inheritance and they

use the evolutionary principle of survival of the fittest individuals. What differs pop-

ulation algorithms from traditional optimization methods, among others, is that they

(a) do not process task parameters directly, but their encoded form, (b) do not conduct

a search starting from a single point, but from a population of points, (c) use only the

objective function and not its derivatives, and (d) use probabilistic, not determinis-

tic selection rules. Owing it to the above mentioned features, population algorithms

have the advantage over other optimization techniques such as analytical, inspection,

random methods, etc. [72].

3.1 Encoding of Potential Solutions

Encoding of population of potential solutions used in the algorithm refers to the

Pittsburgh approach [37]. A single individual of the population (𝐗ch) is therefore

an object that encodes the complete structure of the fuzzy system (3) (𝐗str
ch) and its

parameters (𝐗par
ch):

𝐗ch =
{
𝐗str

ch ,𝐗
par
ch

}
. (8)

Part 𝐗str
ch of the individual 𝐗ch encodes the whole structure of the fuzzy system

(3) in a binary form, which has the following form:

𝐗str
ch =

⎧⎪⎪⎨⎪⎪⎩

x1,… , xn,
A1
1, ...,A

1
n, ...,A

Nmax
1 , ...,ANmax

n ,

B1
1, ...,B

1
m, ...,B

Nmax
1 , ...,BNmax

m ,

rule1, ..., ruleNmax,
ȳdef1,1 , ..., ȳ

def
1,Rmax, ..., ȳ

def
m,1, ..., ȳ

def
m,Rmax

⎫⎪⎪⎬⎪⎪⎭
=
{
Xstr
ch,1, ...,X

str
ch,Lstr

}
, (9)

where ch = 1, ...,Npop is the index of an individual in a population, Npop is the

number of individuals in a population, Nmax is the maximum (allowed) number of

rules in the system (3) (selected individually for the considered problem),Rmax is the

maximum (allowed) number of discretization points in the system (3) (also selected

individually for the considered problem) and Lstr is the number of the individual

components 𝐗str
ch (referred to as genes from now on), which is determined as follows:

Lstr = Nmax ⋅ (n + m + 1) + n + Rmax ⋅ m. (10)

In the encoding procedure of 𝐗str
ch it is assumed that each individual of the popula-

tion encodes the maximum number of rules Nmax indicated by the user and number

of discretization points Rmax. The algorithm searches the real number of the system

(3) rules in the range N ∈ [1,Nmax] and the real number of discretization points in

234 K. Łapa et al.

the range Rj ∈ [1,Rmax] (j = 1,… ,m). Therefore, it is a different approach than in

the conventional methods of learning, in which the user (mostly using the trial-and-

error method) had to clearly indicate N and Rj.

The principle adopted in the encoding procedure 𝐗str
ch is such that the gene

with value 0 of the individual 𝐗str
ch excludes the associated element from the

target system structure (3) and vice versa. This element can be: a rule

(rulek, k = 1,… ,Nmax), an antecedence (Ak
i , i = 1,… , n, k = 1,… ,Nmax), a con-

sequence (Bk
j , j = 1, ...,m, k = 1, ...,Nmax), an input (x̄i, i = 1,… , n) and a discretiza-

tion point (ȳr, r = 1,… ,Rmax).

Part 𝐗par
ch of the individual 𝐗ch encodes the real parameters of the fuzzy system

and it has the following form:

𝐗par
ch =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̄A1,1, 𝜎
A
1,1,… , x̄An,1, 𝜎

A
n,1,…

x̄A1,Nmax, 𝜎
A
1,Nmax,… , x̄An,Nmax, 𝜎

A
n,Nmax,

ȳB1,1, 𝜎
B
1,1,… , ȳBm,1, 𝜎

B
m,1,…

ȳB1,Nmax, 𝜎
B
1,Nmax,… , ȳBm,Nmax, 𝜎

B
m,Nmax,

wA
1,1,… ,wA

1,n,… ,wA
Nmax,1,… ,wA

Nmax,n,

wB
1,1,… ,wB

m,1,… ,wB
1,Nmax,… ,wB

m,Nmax,

wrule
1 ,… ,wrule

Nmax,

p𝜏 , pimp
, pagr ,

ȳdef1,1 ,… , ȳdef1,Rmax,… , ȳdefm,1,… , ȳdefm,Rmax

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=
{
Xpar
ch,1,… ,Xpar

ch,Lpar

}
, (11)

where

{
x̄Ai,k, 𝜎

A
i,k

}
are membership function parameters (2) of input fuzzy sets

Ak
1,… ,Ak

n,

{
ȳBj,k, 𝜎

B
j,k

}
are membership function parameters (2) of output fuzzy sets

Bk
1,… ,Bk

m and Lpar is the number of components of individual 𝐗par
ch , determined as

follows:

Lpar = Nmax ⋅ (3 ⋅ n + 3 ⋅ m + 1) + Rmax ⋅ m + 3. (12)

In the encoding procedure of 𝐗par
ch it is assumed that only genes 𝐗par

ch , whose coun-

terparts in 𝐗str
ch are equal to 1, are considered in the construction of the system (3).

Moreover, analyzing 𝐗str
ch of the form (9) the actual number of inputs encoded in the

individual 𝐗ch can be easily indicated:

nch =
n∑
i=1

𝐗str
ch
{
xi
}
, (13)

where 𝐗str
ch

{
xi
}

is the parameter of the individual 𝐗str
ch associated with the input xi.

The adoption of this notation greatly facilitated, among others, notation of inter-

pretability criteria considered in Sect. 4. Similarly to nch, the actual number of rules

Nch, the actual number of discretization points Rj,ch for any input j, the number of

input fuzzy sets nantch and the number of output fuzzy sets nconch can be deter-

mined. They are taken into account in the target structure of the fuzzy system (3)

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 235

encoded in the individual 𝐗ch. On the basis of the notation used in (13), function

noifs (⋅), which allows us to determine the number of fuzzy sets for the input i, can

also be defined as follows:

noifs (i) =
Nch∑
k=1

𝐗str
ch
{
rulek

}
⋅ 𝐗str

ch
{
Ak
i
}
. (14)

Function noofs (⋅), which allows us to determine the number of fuzzy sets for the

output j, can be defined analogously. Functions noifs (⋅) and noofs (⋅) are used in

Sect. 4.2.

3.2 Evaluation of Potential Solutions

As already mentioned, each individual in the population (𝐗ch) encodes parameters

𝐗par
ch (formula (11)) and structure 𝐗str

ch (formula (9)) of a single system (3). The pur-

pose of the algorithm is to minimize the value of the evaluation function specified

for the individual 𝐗ch in the following way:

f f
(
𝐗ch
)
= T∗

{
f facc

(
𝐗ch
)
, f f int

(
𝐗ch
)
;

wf facc,wf f int

}
, (15)

where component f facc
(
𝐗ch
)

specifies the accuracy of the system (3), component

f f int
(
𝐗ch
)

specifies interpretability of the system (3) according to the adopted inter-

pretability criteria, T∗ {⋅} is a weighted algebraic triangular norm of the form (7),

wf facc ∈ [0, 1] represents weight of the component f facc
(
𝐗ch
)

and wf f int ∈ [0, 1]
represents weight of the component f f int

(
𝐗ch
)
. Values of weights wf facc and wf f int

result from expectations of the user regarding the ratio between the accuracy of the

system (3) and its interpretability.

Component f facc
(
𝐗ch
)

is determined as follows:

f facc (𝐗) = 1
m

m∑
j=1

1
Z

Z∑
z=1

|||dz,j − ȳz,j
|||

max
z=1,...,Z

{
dz,j
}
− min

z=1,...,Z

{
dz,j
} , (16)

where Z is the number of sets of a learning sequence, dz,j is the desired output value

of output j for input vector z (z = 1, ...,Z), ȳz,j is the real output value j calculated by

the system for the input vector �̄�z. Equation (16) takes into account the normaliza-

tion of errors at different outputs of the system (3) in order to eliminate significant

differences between them.

Component f f int
(
𝐗ch
)

takes into account interpretability criteria proposed in

Sect. 4. Their aggregation is realized as follows:

236 K. Łapa et al.

f f int
(
𝐗ch
)
= T∗

{
f f intA

(
𝐗ch
)
, f f intB

(
𝐗ch
)
, ...;

wf f intA,wf f intB, ...

}
, (17)

where f f intA (⋅), f f intB (⋅), ... are functions representing considered interpretability

criteria defined in Sect. 4, wf f intA ∈ [0, 1], wf f intB ∈ [0, 1],... are weights of impor-

tance of function f f intA (⋅), f f intB (⋅),... and T∗ {⋅} is weighted algebraic triangular

norm of the form (7). The values of weights in Eq. (17) can be selected on the basis

of suggestions given in the paper [3], which was done in our simulations.

In most applications, the objective adopted in the design phase is to obtain a single

fuzzy system. It is expected that the system will be characterized by good accuracy

and interpretability. But if it was necessary to obtain a set of solutions with differ-

ent proportions of accuracy-interpretability (in terms of Eq. (15)), then possibilities

offered by the methods based on Pareto fronts [21] could be used instead of criteria

aggregation.

3.3 Processing of Potential Solutions

The hybrid genetic-firework algorithm under consideration works according to the

steps shown in Fig. 2.

Step 1. Initiation of population

In this step the population of individuals 𝐗ch, ch = 1,… ,Npop is initialized. These

individuals are interpreted as fireworks. Fireworks are defined as locations of their

“explosion”. Each gene Xstr
ch,g of these individuals (affecting the form of the fuzzy

system structure (3)) is initially drawn from the set {0, 1} and each gene Xpar
ch,g (deter-

mining the values of the structure parameters) is initially drawn taking into account

any possible limitations on its value.

Step 2. Evaluation of individuals

In this step evaluation of Npop individuals (referred to as fireworks) belonging to the

population is performed by using the evaluation function f f
(
𝐗ch
)

of the form (15).

Step 3. Generation of sparks

The idea of this step is to generate sparks from the fireworks in order to exploit the

search space. In this step only individuals 𝐗par
ch which encode parameters are mod-

ified. Individuals 𝐗str
ch encoding structure are not modified-a change of those indi-

viduals is performed in the next step. If individuals encoding structure are modified

with the same intensity as the ones encoding parameters, the algorithm has a small

chance to find a satisfactory solution. The approach proposed in our algorithm indi-

cates a set of structures (resulting from the population) and then looks for a solutions

in their surrounding (with close/similar values of parameters). In turn, a mechanism

for generating random sparks (described in the next step) allows us to search for new

structures of the system (3).

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 237

Fig. 2 Block schema of the

hybrid genetic-firework

algorithm

moving selected individuals to the new population

evaluation of fireworks

generation of sparks by each firework

generation of additional sparks

evaluation of sparks

creation of a new population of fireworks

initiation of fireworks population

stopstart

replacing the old population by the new one

stopping criterion

yesno
presentation of the best individual

moving the best firework to the new population

The operation of sparks generation discussed in this step involves determination

of the number of sparks for each firework. This number is dependent on the value of

the firework fitness function (15). If the value of the adaptation function of a firework

is smaller (in minimization problem), the number of its sparks is greater. The number

of sparks for the firework 𝐗ch is determined as follows:

sch = Nspa ⋅
max
{
f f
(
𝐗1
)
,… , f f

(
𝐗Npop

)}
− ff
(
𝐗ch
)
+ 𝜉

Npop∑
i=1

(
max
{
f f
(
𝐗1
)
,… , f f

(
𝐗Npop

)}
− ff
(
𝐗i
))

+ 𝜉

, (18)

where Nspa is a parameter of the algorithm which controls the number of created

sparks and 𝜉 is a small real number which prevents dividing by 0. The algorithm

assumes that the target number of sparks for each firework (denoted as ŝch) has to

be within the range
[
b ⋅ Nspa, a ⋅ Nspa

]
, while parameters a and b of the algorithm

should meet the assumption a < b < 1. Value a ⋅ Nspa is the minimum number of

generated sparks (value a has to be relatively low), value b ⋅ Nspa is the maximum

number of generated sparks (value b has to be greater than a, but not greater than 1).

In this way, the worst fireworks in a population always receive at leastNspa ⋅ a sparks

and the best fireworks get maximum Nspa ⋅ b sparks. It is calculated as follows:

238 K. Łapa et al.

ŝch =
⎧⎪⎨⎪⎩
round (Nspa ⋅ a) for sch < Nspa ⋅ a
round

(
sch
)

for sch ∈ (Nspa ⋅ a,Nspa ⋅ b)
round (Nspa ⋅ b) for sch > Nspa ⋅ b

, (19)

where round (⋅) is a function approximating the real value of the argument to the

nearest integer. After this operation, the total number of sparks generated by all fire-

works is divided between fireworks included in the population.

Before sparks are generated it is necessary to determine the area of their location.

The amplitude of explosion has to be determined for this purpose:

ampch = amp ⋅
f f
(
𝐗ch
)
− min

{
f f
(
𝐗1
)
,… , f f

(
𝐗Npop

)}
+ 𝜉

Npop∑
i=1

(
f f
(
𝐗i
)
− min

{
f f
(
𝐗1
)
,… , f f

(
𝐗Npop

)})
+ 𝜉

, (20)

where amp is the algorithm parameter indicating the maximum amplitude of explo-

sion. Its value is inversely proportional to the value of the evaluation function. The

high amplitude means that “good” individuals generate sparks in their surround-

ings and vice versa. After the number of sparks and their amplitude are determined,

the number of genes for further modification (round
(
Lpar ⋅ Ur (0, 1)

)
is calculated

individually for each 𝐗par
ch (function Ur (0, 1) returns the real value of random unit

interval). Next, for each spark (a clone of the firework), the round
(
Lpar ⋅ Ur (0, 1)

)
randomly chosen genes 𝐗par

ch are modified as follows:

Xpar
ch,g ∶= Xpar

ch,g + ampch ⋅ Ur (−1, 1) , (21)

where Ur (−1, 1) is a random number of the range [−1, 1]. Update of the individual

genes 𝐗par
ch , according to the relation (21), is called “generation of sparks”. Created

sparks are evaluated using the defined evaluation function (15).

Step 4. Generation of additional sparks

Generating additional sparks in order to explore the search space involves random

selection of Nsparnd fireworks from the set of Npop fireworks. Then, the part encod-

ing parameters 𝐗par
ch and the part encoding structure 𝐗str

ch are modified for each of

the selected Nsparnd fireworks. Modification of the part 𝐗par
ch encoding parameters

starts with determination of the directions of sparks propagation. This is similar to

the previous step but the procedure for updating selected genes of the individual 𝐗par
ch

is different. The revision is performed as follows:

Xpar
ch,g ∶= Xpar

ch,g ⋅ Ug (1, 1) , (22)

where Ug (1, 1) is a real number drawn from the Gaussian distribution (normal distri-

bution). Modification of selected individuals 𝐗str
ch encoding the structure takes place

using a mutation operator (known from the genetic algorithm). For each gene of

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 239

modified individuals 𝐗str
ch a number from the range [0, 1] is drawn. If it is lower than

so-called probability of mutation pm ∈ (0, 1) (which is a parameter of the algorithm),

then the value of the gene is changed to its opposite value (i.e. from 0 to 1 or vice

versa). Created sparks are evaluated using the defined fitness function (15).

Step 5. Creation of a new population of individuals

The new population of individuals is joined by the currently best firework (having

the lowest value of the minimized fitness function of the form (15)) and Npop − 1
individuals selected from the sparks generated in the last two steps and other fire-

works are chosen. The selection of Npop − 1 individuals is done using the roulette

wheel method. Selection probability of the individual 𝐗ch is determined as follows:

p
(
𝐗ch
)
=

Npop+Nspa∑
ch2=1

‖‖‖𝐗ch − 𝐗ch2
‖‖‖

f f
(
𝐗ch

) , (23)

where ‖⋅‖ is an adopted method of calculating the distance (e.g. Euclidean, Manhat-

tan type, etc.).

Step 6. Replacement of the population

In this step the old population of individuals is replaced by the population generated

in the previous step. In the new population all individuals are treated as fireworks.

Stopping criterion check is also performed. In turn, the stopping criterion may take

into account achievement of the threshold value of the evaluation function by the best

individual from the population or performance of the maximum allowed number of

the algorithm steps. If this condition is not met, the algorithm goes back to step 3.

4 New Interpretability Criteria of a Fuzzy System for
Nonlinear Modeling

In this section new interpretability criteria of the form (3) which can be used in non-

linear modeling issues are described. Those criteria are general measures of inter-

pretability, whose values are in the range [0, 1]. Due to that, they can be used in the

function of the form (17) and minimized. The purpose of this minimization is to

reduce the complexity of the system (3) (especially the rules of the form (1)) and to

increase its interpretability.

The advantages of interpretability measures proposed in this section can be sum-

marized as follows:

∙ They were designed taking into account both semantics discussed in Sect. 1.3, in

particular all the quadrants considered in the paper [32].

240 K. Łapa et al.

∙ They were adapted to the general specifics of the rule base. They also refer to the

aspects of the system (3) flexibility (presented in Sect. 2) and are used to evalu-

ate readability of weights of importance, parameters of triangular norms and dis-

cretization points of the defuzzification mechanism. Apart from a single paper

(this paper appeared in the field of discretization points interpretability enforce-

ment [56]) no similar issues have been considered in the literature so far.

An additional advantage of the proposed criteria is drawing attention to the fact

that interpretability of fuzzy systems is an issue that can be considered more compre-

hensively, without focusing only on the “fuzzy set” or “fuzzy rule” notions (Fig. 1).

4.1 Complexity Evaluation Criterion

This criterion allows us to evaluate complexity of the fuzzy system (3). It bases on

the genes analysis of the individual 𝐗str
ch encoding the structure of the form (9). It

takes into account the number of fuzzy rules of the form (1), antecedences of rules,

consequences of rules, inputs and discretization points.

The method of operation of the considered criterion is shown in Fig. 3 and it is

expressed as follows:

f f intA
(
𝐗ch
)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

𝐗str
ch

{
xi
}
⋅
Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ 𝐗str

ch

{
Ak
i

}
+

+
m∑
j=1

Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ 𝐗str

ch

{
Bk
j

}
+

+
m∑
j=1

Rmax∑
r=1

𝐗str
ch

{
ȳdefj,r

}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Nch ⋅

(
nch + m

)
+ m ⋅ Rmax

, (24)

(a) (b) (c)
1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

4A1

4A2

4B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1B1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1B1

2A1

2B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

Fig. 3 Three exemplary cases obtained for criterion (24): a negative, b intermediate, c preferred

(low complexity of the system (3), low criterion value). Discretization points are denoted as black

circles

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 241

where 𝐗str
ch

{
xi
}

are parameters of 𝐗str
ch associated with the input xi, etc. A detailed

explanation of the adopted notation is given in the context of the formula (13).

4.2 Fuzzy Sets Readability Evaluation Criterion

In this section two criteria related to readability of fuzzy sets are proposed. The first

one concerns the position of fuzzy sets while the other refers to the consistency of

their shape. The criteria have been adapted to the membership function (2) consid-

ered in this paper, but they can be easily adapted to some other membership func-

tions.

Fuzzy sets position evaluation criterion

The criterion under consideration makes it possible to evaluate the correctness of the

input and output fuzzy sets’ distribution. Incorrect distribution of fuzzy sets results

from their overlapping and their remoteness. The distribution of fuzzy sets can be

evaluated, among others, by analyzing the intersections of adjacent fuzzy sets. The

considered criterion takes into account two points of intersection for each pair of

adjacent fuzzy sets. The use of the first intersection point allows us to assess the

distance between fuzzy sets while the use of the other allows us to assess overlapping.

The method of operation of the considered criterion is shown in Fig. 4 and it is

expressed as follows:

(a) (b) (c)
1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1A2

1B1

2A1

A

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

x2x2x2

Fig. 4 Three exemplary cases obtained for criterion (25): a negative, b intermediate, c preferred

(correct distribution of fuzzy sets, low criterion value)

242 K. Łapa et al.

f f intB
(
𝐗ch
)
=

= 1
2⋅(nch+m)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

noifs(i)−1∑
k=1

⎛⎜⎜⎜⎜⎝

2 ⋅ |||cintB − inter1
(
Ak
i ,A

k+1
i

)|||+
+inter2

(
Ak
i ,A

k+1
i

)
n∑
i=1

noifs(i)−1

⎞⎟⎟⎟⎟⎠
+

+
m∑
j=1

noofs(j)−1∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 ⋅
||||cintB − inter1

(
Bk
j ,B

k+1
j

)||||+
+inter2

(
Bk
j ,B

k+1
j

)
m∑
j=1

noofs(j)−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(25)

where cintB determines the desired value of the membership function at the intersec-

tion point between two adjacent fuzzy sets (in the simulations we adopted value 0.5),

noifs (i) is a function of the form (14) which determines the number of active fuzzy

sets for i-th input, noofs (j) is a function which analogously determines the number

of active fuzzy sets for j-th output, inter1 (⋅) and inter2 (⋅) are the functions which

determine the values of two intersection points of fuzzy sets. In the case where the

sets are expressed by the Gaussian function of the form (2), then functions inter1 (⋅)
and inter2 (⋅) take the following form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

inter1
(
Ak
i ,A

k+1
i

)
= exp

⎛⎜⎜⎝−
1
2

(
𝐗supp

ch

{
x̄Ai,k
}
+𝐗supp

ch

{
x̄Ai,k+1

}
𝐗supp

ch

{
𝜎
A
i,k

}
+𝐗supp

ch

{
𝜎
A
i,k+1

}
)2⎞⎟⎟⎠

inter2
(
Ak
i ,A

k+1
i

)
= exp

⎛⎜⎜⎝−
1
2

(
𝐗supp

ch

{
x̄Ai,k
}
+𝐗supp

ch

{
x̄Ai,k+1

}
𝐗supp

ch

{
𝜎
A
i,k

}
−𝐗supp

ch

{
𝜎
A
i,k+1

}
)2⎞⎟⎟⎠

, (26)

where 𝐗supp
ch is a temporary set of the system parameters, containing parameters of

input and output fuzzy sets sorted in relation to the centers of these sets:

𝐗supp
ch =

⎧⎪⎪⎨⎪⎪⎩

x̄A1,1, 𝜎
A
1,1, x̄

A
1,2, 𝜎

A
1,2,… ,

x̄Anch,1, 𝜎
A
nch,1

, x̄Anch,2, 𝜎
A
nch,2

,… ,

ȳB1,1, 𝜎
B
1,1, ȳ

B
2,Nch

, 𝜎
B
2,Nch

,… ,

ȳBm,Nch
, 𝜎

B
m,Nch

, ȳBm,Nch
, 𝜎

B
m,Nch

,…

⎫⎪⎪⎬⎪⎪⎭
. (27)

Criterion for assessing similarity of fuzzy sets width

The considered criterion is a cohesion measure of the widths of input and output

fuzzy sets. It is of a great importance for semantic readability of the fuzzy system

(3) rule base, because it facilitates the understanding of the rule-based notation (1).

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 243

(a) (b) (c)
1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

1A1

1A2

1B1

2A1

2A2

2B1

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

Fig. 5 Three exemplary cases obtained for criterion (28): a negative, b intermediate, c preferred

(minor differences between the widths of fuzzy sets, low criterion value)

The method of operation of this criterion is shown in Fig. 5 and it is expressed as

follows:

f f intC
(
𝐗ch
)
=

⎛⎜⎜⎜⎜⎝

n∑
i=1

𝐗str
ch

{
xi
}
⋅
Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ shx

(
𝐗ch, i, k

)
+

+
m∑
j=1

⋅
Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ shy

(
𝐗ch, j, k

)
⎞⎟⎟⎟⎟⎠

nch + m
, (28)

where shx
(
𝐗ch, i, k

)
and shy

(
𝐗ch, j, k

)
are functions used to determine the propor-

tion between the widths of fuzzy sets, working analogously for input and output

fuzzy sets. Function shx
(
𝐗ch, i, k

)
is defined as follows:

shx
(
𝐗ch, i, k

)
=

= 1 −
min

(
𝐗par

ch

{
𝜎
A
i,k

}
,

1
Nch

Nmax∑
l=1

(
𝐗str

ch {rulel}⋅𝐗par
ch

{
𝜎
A
i,l

}))

max

(
𝐗par

ch

{
𝜎
A
i,k

}
,

1
Nch

Nmax∑
l=1

(
𝐗str

ch {rulel}⋅𝐗par
ch

{
𝜎
A
i,l

})) , (29)

where 𝐗par
ch

{
𝜎
A
i,k

}
is a gene of the individual 𝐗par

ch associated with the parameter 𝜎
A
i,k.

A function shy
(
𝐗ch, j, k

)
related to the outputs can be determined in a similar way.

4.3 Fuzzy Rules Readability Evaluation Criteria

In this section two criteria related to the readability of fuzzy rules are presented: the

criterion considering uniformity of covering data points with input fuzzy sets and

the criterion limiting the number of simultaneously activated fuzzy rules.

244 K. Łapa et al.

(a) (b) (c)
1A1

1A2

2A1

2A2

3A1

3A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

1A1

1A2

2A1
3A1

3A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

1A1

1A2

2A1
3A1

3A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

Fig. 6 Three exemplary cases obtained for criterion (30): a negative, b intermediate, c preferred

(good matching of fuzzy sets to the data, low criterion value). Location of the signals coming from

the learning sequence sample is denoted as a triangle

Criterion for assessing coverage of the data space by input fuzzy sets

The considered criterion allows one to evaluate matching of input fuzzy sets to the

input data. For properly positioned input fuzzy sets associated with the input i, the

sum of memberships determined for the signal given on the input i is equal to 1. This

assumption is valid for all system inputs (3) and it is evaluated in the context of the

whole learning sequence
{
�̄�z,𝐝z

}
(z = 1,… ,Z).

The method of operation of the considered criterion is shown in Fig. 6 and it is

expressed as follows:

f f intD
(
𝐗ch
)
=

Z∑
z=1

n∑
i=1

⎛⎜⎜⎜⎝
𝐗str

ch

{
xi
}
⋅

⋅max

{|||||1 −
Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ 𝜇Ak

i

(
x̄z,i
)||||| , 1
}⎞⎟⎟⎟⎠

Z ⋅ nch
. (30)

Criterion for assessing fuzzy rules activity

The considered criterion makes it possible to evaluate activation level of the rules

in the system (3). The proper rule activation level (1) is achieved when for each set

from the learning sequence activation of a single rule from the rule base occurs and

activation of the other rules is minimal. Activation level of the rule k of the system

(3) is expressed using Eq. (4).

The method of operation of the considered criterion is shown in Fig. 7 and it is

expressed as follows:

f f intE
(
𝐗ch
)
= 1 − 1

Z

Z∑
z=1

(
max

k=1,…,Nmax

{
𝐗str

ch

{
rulek

}
⋅ 𝜏k
(
�̄�z
)})2

Nmax∑
k=1

𝐗str
ch

{
rulek

}
⋅ 𝜏k
(
�̄�z
) . (31)

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 245

(a) (b) (c)
1A1

3A2

2A1

2A2

3A1

1A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

1A1

3A2

2A1

2A2

3A1

1A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

1A1

3A2

2A1

2A2

3A1

1A2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

Fig. 7 Three exemplary cases obtained for criterion (31): a negative, b intermediate, c preferred

(a small number of fuzzy rules activated at the same time, low criterion value). Location of signals

coming from the learning sequence sample is denoted as a triangle

4.4 Criterion for Assessing the Readability of Weight Values
in the Fuzzy Rule Base

The use of weights in the rules base of the fuzzy system has many advantages: (a) it

increases the flexibility of the problem description, (b) it allows for the introduction

of a hierarchy of importance in the rules base, and (c) it increases the accuracy of

the system [15, 39, 86]. However, weights in the rule base may sometimes affect

readability of fuzzy systems [69]. In the system of the form (3), weights have speci-

fied interpretation in the context of rules of the form (1) and dedicated aggregation

operators of the forms (5) and (6), used for their processing. Therefore, it seems that

this usage of weights positively affects the readability of the system (3).

The considered criterion allows us to evaluate readability of weight values from

the rule base of the form (1) of the system (3). Preferred values of weights are those

which are close to the values of the set {0.0, 0.5, 1.0}. Then, they can be easily labeled

as: “not important”, “important” and “very important”.

The method of operation of the considered criterion is shown in Fig. 8 and it is

expressed as follows:

f f intF
(
𝐗ch
)
=

= 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nmax∑
k=1

𝐗str
ch {rulek}⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

𝐗str
ch

{
xi
}
⋅ 𝐗str

ch

{
Ak
i

}
⋅ 𝜇w

(
wA
i,k

)
+

+
m∑
j=1

𝐗str
ch

{
Bk
j

}
⋅ 𝜇w

(
wB
i,k

)
+

+
Nmax∑
k=1

𝜇w
(
wrule
k

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝

Nmax∑
k=1

𝐗str
ch {rulek}⋅

⎛⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

𝐗str
ch

{
xi
}
⋅ 𝐗str

ch

{
Ak
i

}
+

+
m∑
j=1

𝐗str
ch

{
Bk
j

}
+ 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

,

(32)

where 𝜇w (⋅) is a function “promoting” values 0.0, 0.5 and 1.0, expressed as follows:

246 K. Łapa et al.

(a) (b) (c)

R1

1A1

1A2

1B1

R2

2A1

2A2

2B1

R3

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

R1

1A1

1A2

1B1

R2

2A1

2A2

2B1

R3

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

R1

1A1

1A2

1B1

R2

2A1

2A2

2B1

R3

3A1

3A2

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

Fig. 8 Three exemplary cases obtained for criterion (32): a negative, b intermediate, c preferred

(good readability of weights, low criterion value). Weights’ values are denoted as rectangles.

“Black” rectangles indicate value of weight equal to 1.0 and “white” ones indicate value of weight

equal to 0.0

𝜇w (x) =

⎧⎪⎪⎨⎪⎪⎩

a−x
a

for x ∈ [0, a]
x−a
b−a

for x ∈ (a, b]
c−x
c−b

for x ∈ (b, c]
x−c
1−c

for x ∈ (c, 1]

, (33)

where a = 0.25, b = 0.50, and c = 0.75.

4.5 Criterion for Assessing the Readability of Triangular
Norms

The considered criterion allows one to evaluate readability of the shape parameter of

parametrized triangular norms with weights of arguments of the form (5) described

in Sect. 2.3. In the system (3) these norms are used for aggregation of antecedences

(they have a parameter p𝜏), generation of inferences from the rules (they have a para-

meter pimp
) and aggregation of inferences from the rules (they have a parameter pagr).

The precision of their operation can usually achieve a better accuracy of the system

[15, 27, 72]. This allows for a better use of abilities of the rule base (1) without sub-

stantially increasing the number of rules. Moreover, application of the norms of the

form (5) facilitates the selection of aggregation operators for the system (3), which

takes place automatically by changing the shape parameter and not by the trial-and-

error method.

The readable parameter of the norms (5) is the one for which norms (5) approx-

imate the shape of the typical, nonparametric triangular norms. This is because it

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 247

Table 1 A set of values of the parameter of Dombi-type parametrized triangular norms of the form

(5), for which their shape approximates the shape of typical and non-parametric triangular norms

Parameter value Non-parametrized norm Similarity

p = 0.00 Drastic Full

p = 0.43 Algebraic High

p = 0.71 Łukasiewicz High

p = 1.00 Hamacher Full

p → ∞ Min/max Full

is assumed that operation of nonparametric norms (e.g. minimum/maximum oper-

ator) is more intuitive. Table 1 contains a set of selected values of the parameter of

Dombi-type parametrized triangular norms of the form (5), for which their shape

approximates the shape of typical and non-parametric triangular norms [47]. The

data presented in the table were generated for the two-argument norms with an accu-

racy of 0.01.

The method of operation of the considered criterion is shown in Fig. 9 and it is

expressed as follows:

f f intG
(
𝐗ch
)
= 1

3
(
𝜇p
(
𝐗par

ch {p𝜏}
)
+ 𝜇p

(
𝐗par

ch

{
pimp}) + 𝜇p

(
𝐗par

ch {pagr}
))

, (34)

where 𝜇p(⋅) is a function “promoting” values presented in Table 1. The formula of

function 𝜇p (x) is as follows:

𝜇p (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a−x
a

for x ∈ [0, a]
x−a
b−a

for x ∈ (a, b]
c−x
c−b

for x ∈ (b, c]
x−c
d−c

for x ∈ (c, d]
e−x
e−d

for x ∈ (d, e]
x−e
f−e

for x ∈ (e, f
]

g−x
g−f

for x ∈ (f , g
]

x−g
h−g

for x ∈ (g, h
]
,

(35)

where a = 0.21, b = 0.43, c = 0.57, d = 0.71, e = 0.85, f = 1.00, g = 1.20, h =
10.00.

248 K. Łapa et al.

(a) (b) (c)
pT

pimp

pagr

0.00 1.00 10.00p

µ pp()
1.00

0.00

pT

pimp

pagr

0.00 1.00 10.00p

µ pp()
1.00

0.00

pT

pimp

pagr

0.00 1.00 10.00p

µ pp()
1.00

0.00

Fig. 9 Three exemplary cases obtained for criterion (34): a negative, b intermediate, c preferred

(good readability of parameters of Dombi-type norm, low criterion value)

(a) (b) (c)
1B1

2B1
3B1

y

µ y()
1.00

0.00

1B1
2B1

3B1

y

µ y()
1.00

0.00

1B1
2B1

3B1

y

µ y()
1.00

0.00

Fig. 10 Three exemplary cases obtained for criterion (36): a negative, b intermediate, c preferred

(properly distributed discretization points, low criterion value). Discretization points are denoted

as black circles

4.6 Criterion for Assessing the Defuzzification Mechanism

The considered criterion allows us to evaluate distribution of discretization points

of the system (3) described in Sect. 2.2. Points distributed correctly are the ones

which are placed close to the centers of output fuzzy sets and in their borders (for

the proposed criterion this is controlled by the parameter cintH). Properly spaced

discretization points increase precision of the defuzzification operator, which can

help to increase accuracy of the system (3). This is due to the fact that a greater

number of discretization points increases the importance of the shape of fuzzy sets,

which makes it possible to achieve better accuracy of the system without increasing

the number of rules. The other advantages of the defuzzification operator used are

described in Sect. 2.2.

The method of operation of the considered criterion is shown in Fig. 10 and it is

expressed as follows:

f f intH
(
𝐗ch
)
=

=

m∑
j=1

Nmax∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐗str
ch

{
Bk
j

}
⋅

⋅
⎛⎜⎜⎝

1 − max
{
𝜇Bk

j

(
ȳdefj,1

)
, ..., 𝜇Bk

j

(
ȳdefj,Rj

)}
+

+
||||cintH−max

{
𝜇Bk

j

(
ȳdefj,1

)
, ..., 𝜇Bk

j

(
ȳdefj,Rj

)}||||
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2⋅

m∑
j=1

Nmax∑
k=1

(
𝐗str

ch

{
Bk
j

}) ,

(36)

where cintH ∈ [0, 1] is a parameter specifying the desired value of membership func-

tion in the “redundant” discretization points.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 249

Table 2 Simulation problems discussed

No. Test set name Number of

input attributes

Number of

output attributes

Number of sets Problem label

1. Airfoil

self-noise [12]

5 1 1503 ASN

2. Box & Jenkins

gas furnace [10]

6 1 290 BJG

3. Energy efficient

[92]

8 2 768 EE

4. Concrete slump

[97]

7 3 103 CS

5. Van der Pol

oscillator [5]

2 2 1000 VPO

6. Brusselator [14] 2 2 1000 BR

5 Simulations

The set of issues examined in the simulations is shown in Table 2. The purpose of

the simulations was to obtain systems of the forms (3) characterized by the lowest

values of elements of the forms (16) and (17).

The method of conducting simulations and interpreting the results can be sum-

marized as follows:

∙ In the simulations we used the fuzzy system of the form (3). We used the new

hybrid genetic-firework algorithm described in Sect. 3 to select its structure and

parameters. In this process the new interpretability criteria described in Sect. 4

were taken into account.

∙ The simulations were performed for seven different variants of weights of the eval-

uation function (15): from the one focused on accuracy (W1) to the one focused

on interpretability (W7). The set of these variants is shown in Table 3.

∙ The simulations were performed taking into account all the criteria described in

Sect. 4. The function of the form (17) was used for aggregation of these criteria.

They have the following weight values: wf f intA = 0.5, wf f intB = 1.0, wf f intC = 0.5,

wf f intD = 0.5, wf f intE = 0.2, wf f intF = 0.2, wf f intG = 0.2, wf f intH = 0.2. These val-

ues refer to the semantics presented in [3].

∙ Each simulation (for each variant W1...W7) was repeated 100 times, each time

drawing a population of individuals of the form (8). The obtained results were

averaged and they are presented in Table 7 and in Fig. 17. Due to the varying com-

plexity of the considered simulation problems, Fig. 17 is indicative.

250 K. Łapa et al.

Table 3 A set of variants of the weights of the evaluation function (15)

Variant wf facc wf f int Description

W1 1.00 0.10 Focused on high accuracy

W2 0.85 0.25 Focused on accuracy

W3 0.70 0.40 Intermediate between W2 and W4

W4 0.55 0.55 Taking into account the compromise between

interpretability and accuracy

W5 0.40 0.70 Intermediate between W4 and W6

W6 0.25 0.85 Focused on interpretability

W7 0.10 1.00 Focused on good interpretability

Table 4 A set of parameters of the hybrid genetic-firework algorithm

Description Notation Value

Number of iterations Niter 1000

Number of fireworks Npop 10

Parameter controlling the number of sparks Nspa 100

Number of additional sparks Nsparnd 10

Parameter limiting the minimum number of sparks a 0.02

Parameter limiting the maximum number of sparks b 0.40

Maximum amplitude of explosion amp 0.50

Table 5 A set of parameters of the fuzzy system of the form (3) described in Sect. 2

Description Notation Value

Maximum number of rules Nmax 7

Maximum number of discretization points Rmax 21

Minimum value of Dombi-norm parameters p 0.00

Maximum value of Dombi-norm parameters p̄ 10.00

Expected intersection point of fuzzy sets cintB 0.5

Parameter concerning distribution of discretization points cintH 0.5

∙ A set of parameters of the hybrid genetic-firework algorithm is presented in Table 4

and a set of parameters of the fuzzy system of the form (3) is presented in Table 5.

Moreover, the Eq. (23) uses the Euclidean measure.

The remarks on the way of interpretation of fuzzy rules of the form (1) obtained

in simulations can be summarized as follows:

∙ The fuzzy rules are presented in Table 6 and in Figs. 11, 12, 13, 14, 15 and 16.

Each fuzzy set and each fuzzy rule has a weight of importance represented in the

Figs. 11, 12, 13, 14, 15 and 16 by the rectangle. Filling of the rectangle depends on

the weight value: full filling means that weight value is 1.0 and an empty rectangle

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 251

Table 6 Summary with examples of fuzzy rules in the form of (1) of the fuzzy system (3) for

variant W6

ASN

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R1∶ IF

⎛⎜⎜⎜⎜⎜⎝

frequency[1] is medium |i AND
angle[2] is high |n AND

chord length[3] is medium |i AND
fs velocity[4] is low |v

⎞⎟⎟⎟⎟⎟⎠
THEN

(
pressure[1]islow |i) |i

R2∶ IF

⎛⎜⎜⎜⎜⎜⎜⎝

frequency[1]islow |i AND
angle[2]islow |i AND

chord length[3]islow |n AND
fs velocity[4]ishigh |i AND
displacement[5]islow |i

⎞⎟⎟⎟⎟⎟⎟⎠
THEN

(
pressure[1]ishigh |v) |i

R3∶ IF
⎛⎜⎜⎜⎝

frequency[1]ishigh |iAND
chord length[3]ishigh |iAND
displacement[4]ishigh |i

⎞⎟⎟⎟⎠
THEN

(
pressure[1]ismedium |i) |i

.

BJG

⎧⎪⎪⎨⎪⎪⎩

R1∶ IF
⎛⎜⎜⎜⎝
gas flow(t − 2)[2] is near 55.55 |i AND
gas flow(t − 5)[5] is near −1.61 |i AND

gas flow(t − 6)[6] is near −1.73 |i
⎞⎟⎟⎟⎠
THEN

(
CO2[1] is high |i) |i

R2∶ IF
(
gas flow(t − 1)[1] is low |i) THEN

(
CO2[1] is low |v) |i

R3∶ IF
(
gas flow(t − 1)[1] is high |i) THEN

(
CO2[1]ismedium |v) |i

.

EE

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R1∶ IF

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

compactness[1] is high |i AND
surface area[2]islow |i AND
roof area[4]ismedium |i AND
height[5] is near 5.35 |i AND
orientation[6] is low |v AND

glazing area[7] is low |i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

THEN

(
heating[1] is low |i AND

cooling[2] is high |i
)
|i

R2∶ IF

(
roof area[4] is low |i AND
glazing area[7] is high |i

)
THEN

(
heating[1] is high |i AND
cooling[2] is medium |i

)
|i

R3∶ IF

⎛⎜⎜⎜⎜⎜⎜⎝

compactness[1] is low |i AND
surface area[2] is high |i AND

wall area[3] is near 343.93 |i AND
roof area[4] is high |i AND
orientation[6] is high |i

⎞⎟⎟⎟⎟⎟⎟⎠
THEN

(
cooling[2] is low |i) |i

.

CS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R1∶ IF
⎛⎜⎜⎜⎝

cement[1] is low |i AND
coarse aggr.[6] is near 741.26 |i AND

fine aggr.[7] is near 696.57 |i
⎞⎟⎟⎟⎠
THEN

⎛⎜⎜⎜⎝
slump[1] is low |i AND
flow[2] is high |i AND
strength[3] is low |i

⎞⎟⎟⎟⎠
|i

R2∶ IF

⎛⎜⎜⎜⎜⎜⎝

cement[1] is high |i AND
slag[2] is near 123.55 |i AND
fly ash[3] is near 108.30 |i AND

water[4] is near 191.53 |i

⎞⎟⎟⎟⎟⎟⎠
THEN

(
slump[1] is high |i AND
mpa[3] is medium |i

)
|i

R3∶ IF
(
sp[5] is near 7.06 |v) THEN

(
flow[2] is low |i AND
strength[3] is high |i

)
|i

.

VPO

⎧⎪⎪⎨⎪⎪⎩

R1∶ IF

(
x(t)[1] is low |i AND

y(t)[2] is high |i
)

THEN
(
x(t + 1)[1] is low |i) |i

R2∶ IF
(
x(t)[1] is high |v) THEN

(
x(t + 1)[1] is high |i AND

y(t + 1)[2] is high |i
)

|i
R3∶ IF

(
x(t)[1] is medium |i AND

y(t)[2] is low |i
)

THEN

(
x(t + 1)[1] is medium |i AND

y(t + 1)[2] is low |i
)
|i

.

BR

⎧⎪⎪⎨⎪⎪⎩

R1∶ IF
(
y(t)[2] is near − 0.02 |i) THEN

(
x(t + 1)[1] is low |i AND

y(t + 1)[2] is low |i
)

|i
R2∶ IF

(
x(t)[1] is high |i) THEN

(
x(t + 1)[1] is high |v AND

y(t + 1)[2] is high |i
)

|i
R3∶ IF

(
x(t)[1] is low |i) THEN

(
x(t + 1)[1] is medium |v AND

y(t + 1)[2] is medium |v
)
|i

.

252 K. Łapa et al.

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A3

1A4

1B1

R2

2A1

2A2

2A3

2A4

2A5

2B1

R3

3A1

3A3

3A5

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

y1

µ y()1
1.00

0.00

p

µ pp()
1.00

0.00

-127.13 13292.32

2.22 19.41

0.06 0.25

30.28 72.37

0.00 0.03

101.45 128.93

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A3

1A5

1B1

R2

2A1

2A3

2A4

2A5

2B1

R3

3A1

3A2

3A3

3A5

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

y1

µ y()1
1.00

0.00

p

µ pp()
1.00

0.00

-541.13 11949.64

8.36 19.70

0.07 0.28

31.43 102.71

0.00 0.04

86.04 132.07

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A3

1A4

1B1

R2

2A1

2A2

2A3

2B1

R3

3A1

3A2

3A3

3A4

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

y1

µ y()1
1.00

0.00

p

µ pp()
1.00

0.00

-1347.13 12214.96

-2.79 13.87

0.01 0.30

26.58 61.69

atrybut
zredukowany

112.67 145.07

Fig. 11 Exemplary representation of the fuzzy system rules (3) for the ASN problem and variants:

a W2, b W4, c W6

means that the weight is 0.0. Graphic representation of fuzzy rules also takes into

account the values of parameters of Dombi-type norm of the form (5).

∙ Weight symbols in notation of rules of the form (1) were replaced by linguistic

labels (Table 6). They are: ‘v’ when weight value is greater than 0.75 (very impor-
tant), ‘i’ when weight value is in the range [0.25, 0.75] (important), ‘n’ when

weight value is less than 0.25 (not important).
∙ Names of input fuzzy sets Ak

i and output fuzzy sets Bk
j in notation of rules of

the form (1) were replaced by the following linguistic labels: ‘very low’, ‘low’,

‘medium low’, ‘medium’, ‘medium high’, ‘high’, ‘very high’ (Table 6). Fuzzy sets,

which were reduced in the system, were not included in the notation of rules (1).

Sometimes in the literature these sets are described as ‘don′t care’ sets [72]. If the

fuzzy system has only one fuzzy set assigned to a specific input or output, its label

is set to ‘near [value]’.
∙ Names of inputs and outputs in notation of the rules of the form (1) were replaced

by linguistic labels taken from the description of the described simulation prob-

lems (Table 6). Moreover, these names were extended by input or output index

placed in square brackets (e.g. ‘frequency[1]’). It makes it possible to clearly asso-

ciate general notation of fuzzy sets (i.e. Ak
i , B

k
j), presented in Figs. 11, 12, 13, 14,

15 and 16, with linguistic labels used in rules notation presented in Table 6.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 253

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A2

1A5

1A6

1B1

R2

2A1

2B1

R3

3A1

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

y5

µ y()5
1.00

0.00

p

µ pp()
1.00

0.00

48.22 56.17

46.97 64.85

atrybut
zredukowany

atrybut
zredukowany

-5.05 1.83

-5.41 2.00

45.37 61.57

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A6

1B1

R2

2A1

2A2

2A3

2A5

2A6

2B1

R3

3A1

3A2

3A4

3A5

3A6

3B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

y5

µ y()5
1.00

0.00

p

µ pp()
1.00

0.00

49.23 63.26

47.71 58.44

33.42 70.98

42.76 60.59

-1.64 3.73

-2.17 1.69

45.18 59.93

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A3

1A5

1B1

R2

2A1

2A2

2A3

2A4

2A5

2A6

2B1

R3

3A1

3A3

3A4

3A5

3A6

3B1

R4

4A1

4A2

4A4

4A6

4B1

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

y5

µ y()5
1.00

0.00

p

µ pp()
1.00

0.00

48.46 58.39

49.66 61.14

44.55 61.18

47.44 60.71

-2.16 0.52

-2.62 0.84

47.95 63.61

Fig. 12 Exemplary representation of the fuzzy system rules (3) for the BJG problem and variants:

a W2, b W4, c W6

The conclusions from the simulations can be summarized as follows:

∙ The fuzzy sets for variant W2 (column a in Figs. 11, 12, 13, 14, 15 and 16) are

characterized by low readability. However, the systems related to these sets work

with high accuracy. The accuracy is similar to the one obtained in variant W1

focused on accuracy. It is also comparable to the results obtained using methods

of other authors which focused on accuracy [20, 65, 92].

∙ The fuzzy sets for variant W4 (column b in Figs. 11, 12, 13, 14, 15 and 16) have

good interpretability. Number of rules for this variant is in the range from 3 to 4

with a good accuracy of the system (Fig. 17). This is a good basis for interpretation

of these rules.

∙ The fuzzy sets for variant W6 (column c in Figs. 11, 12, 13, 14, 15 and 16), have

very good interpretability. In these cases reduction of system outputs often occurs,

and the number of rules is usually equal to 3. Moreover, the system accuracy is

acceptable (Fig. 17).

254 K. Łapa et al.

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A3

1A5

1A6

1A7

1A8

1B1

1B2

R2

2A1

2A2

2A4

2A5

2A6

2A7

2B1

2B2

R3

3A1

3A2

3A3

3A4

3A5

3A6

3A8

3B1

3B2

R4

4A1

4A2

4A3

4A4

4A5

4A6

4A8

4B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

x8

µ x()8
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

0.59 0.80

537.99 749.21

307.72 400.50

94.37 148.79

4.36 6.76

2.31 4.53

0.04 0.17

1.98 5.12

5.42 39.07

10.79 49.37

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A3

1A4

1A5

1A7

1A8

1B1

R2

2A1

2A2

2A3

2A4

2A5

2A6

2A7

2A8

2B1

2B2

R3

3A4

3A5

3A7

3A8

3B1

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

x8

µ x()8
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

0.66 0.90

605.13 849.84

293.85 402.29

101.18 165.65

3.49 6.46

2.11 5.62

0.06 0.36

1.97 5.04

17.14 36.56

19.60 49.85

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1A4

1A5

1A6

1A7

1B1

1B2

R2

2A4

2A7

2B1

2B2

R3

3A1

3A2

3A3

3A4

3A6

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

x8

µ x()8
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

0.59 0.82

572.15 726.29

220.29 467.56

111.46 173.19

3.53 7.17

2.60 4.73

0.11 0.33

atrybut
zredukowany

22.08 39.36

20.10 43.90

Fig. 13 Exemplary representation of the fuzzy system rules (3) for the EE problem and variants:

a W2, b W4, c W6

∙ The results for intermediate variants W3 and W5 and extreme variants W1 and W7

are shown in Table 7 and in Fig. 17. They show dependence between the system

accuracy (3) and its interpretability. The results are (as expected) differential. This

is also reflected in Figs. 11, 12, 13, 14, 15 and 16.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 255

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A2

1A3

1A4

1A6

1B1

1B2

1B3

R2

2A1

2A2

2A4

2A6

2A7

2B1

2B2

2B3

R3

3A2

3A3

3A4

3A5

3A6

3B1

3B2

3B3

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

y3

µ y()3
1.00

0.00

p

µ pp()
1.00

0.00

132.55 380.33

29.58 147.25

21.92 185.69

169.44 235.65

1.90 17.23

752.20 967.82

596.17 826.83

2.15 32.47

14.96 78.65

19.50 51.14

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A2

1A3

1A4

1A5

1A7

1B1

1B2

R2

2A2

2A3

2A4

2A5

2A7

2B3

R3

3A2

3A3

3A4

3A5

3A6

3B1

3B2

R4

4A1

4A2

4A3

4A4

4A5

4A6

4A7

4B2

4B3

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

y3

µ y()3
1.00

0.00

p

µ pp()
1.00

0.00

74.59 293.20

37.10 196.18

74.19 244.74

153.75 228.50

5.94 16.70

656.40 912.87

659.07 784.88

2.77 23.64

8.80 76.64

26.92 52.31

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A6

1A7

1B1

1B2

1B3

R2

2A1

2A2

2A3

2A4

2B1

2B3

R3

3A5

3B2

3B3

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

x3

µ x()3
1.00

0.00

x4

µ x()4
1.00

0.00

x5

µ x()5
1.00

0.00

x6

µ x()6
1.00

0.00

x7

µ x()7
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

y3

µ y()3
1.00

0.00

p

µ pp()
1.00

0.00

228.42 330.40

4.18 242.91

-22.82 239.42

159.17 223.88

0.12 14.00

544.47 938.04

570.37 822.77

13.19 25.38

36.59 54.38

30.47 47.71

Fig. 14 Exemplary representation of fuzzy rules of the system (3) for the CS problem and variants:

a W2, b W4, c W6

∙ The average number of rules Nch, antecedences nantch, consequences nconch,

inputs nch and discretization points Rj,ch was different for different simulation vari-

ants (Fig. 17). Values of these components decrease for cases characterized by

greater interpretability.

256 K. Łapa et al.

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1B1

1B2

R2

2A1

2A2

2B1

2B2

R3

3A1

3A2

3B1

R4

4A1

4A2

4B1

R5

5A1

5B1

5B2

R6

6A1

6A2

6B1

6B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

-0.04 0.05

-0.11 0.09

-0.05 0.07

-0.11 0.09

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1B1

R2

2A1

2B1

2B2

R3

3A1

3A2

3B1

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

-0.04 0.04

-0.05 0.07

-0.05 0.06

-0.03 0.06

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1B1

1B2

R2

2A2

2B1

2B2

R3

3A1

3A2

3B1

3B2

R4

4A2

4B2

R5

5A1

5B1

R6

6A1

6A2

6B1

6B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

-0.06 0.06

-0.10 0.10

-0.07 0.07

-0.15 0.11

Fig. 15 Exemplary representation of fuzzy rules of the system (3) for the VPO problem and vari-

ants: a W2, b W4, c W6

(a) (b) (c)

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A2

1B1

1B2

R2

2A1

2A2

2B1

R3

3A2

3B1

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

-0.24 1.17

-0.87 2.11

0.07 1.16

-0.86 2.31

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A2

1B1

1B2

R2

2A1

2B1

2B2

R3

3A1

3B1

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

0.41 1.19

-0.47 0.44

-0.01 1.28

0.03 1.95

R1

pτ

pimp

pagr

0.00 1.00 10.00

1A1

1A2

1B1

R2

2A1

2A2

2B2

R3

3A1

3A2

3B1

3B2

x1

µ x()1
1.00

0.00

x2

µ x()2
1.00

0.00

y1

µ y()1
1.00

0.00

y2

µ y()2
1.00

0.00

p

µ pp()
1.00

0.00

0.96 1.20

0.19 2.02

0.77 1.33

0.99 1.94

Fig. 16 Exemplary representation of fuzzy rules of the system (3) for the BR problem and variants:

a W2, b W4, c W6

∙ The results obtained for the AGF algorithm are in all aspects better than the ones

obtained for the AGS algorithm (genetic algorithm cooperating with evolution-

ary strategy). The AGS algorithm was tested as a primary algorithm in order to

compare obtained results.

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 257

0.18

0.06
3.48 5.79RMSE

ff
ac
c

0.18

0.06
2.93 3.70Nch

ff
ac
c

0.18

0.06
4.32 11.65nantch

ff
ac
c

0.18

0.06
3.14 5.21nconch

ff
ac
c

0.18

0.06
3.73 4.25nch

ff
ac
c

0.18

0.06
3.14 6.13

ff
ac
c

0.18

0.06
0.00 0.25ffintA

ff
ac
c

0.18

0.06
0.00 0.59ffintB

ff
ac
c

0.18

0.06
0.23 0.38ffintC

ff
ac
c

0.18

0.06
0.09 0.15ffintD

ff
ac
c

0.18

0.06
0.11 0.57ffintE

ff
ac
c

0.18

0.06
0.02 0.12ffintF

ff
ac
c

0.18

0.06
0.38 0.83ffintG

ff
ac
c

0.18

0.06
0.44 0.88ffintH

ff
ac
c

0.18

0.06
0.23 0.84ffint

ff
ac
c

Rj,ch

Fig. 17 Graphical presentation of the components of the evaluation function of the forms of (15)

and (17) averaged in the context of all the problems of simulation and performed 100 times. These

values were referred to the component f facc (⋅) defined by Eq. (16)

258 K. Łapa et al.

Table 7 Values of the evaluation function (15) components and RMSE, averaged for 100 repeti-

tions of the hybrid genetic-firework algorithm (AGF) and the genetic algorithm cooperating with

the evolutionary strategy (AGS). The best results in the context of considered variants are in bold

Problem Algorithm W1 W2 W3 W4 W5 W6 W7

ASN AGS 5.635 5.358 8.192 8.246 8.314 8.391 8.286

AGF 4.777 4.553 6.930 6.903 7.059 6.960 6.999
ffacc 0.098 0.094 0.150 0.149 0.150 0.149 0.153

ffint 0.736 0.791 0.272 0.245 0.270 0.245 0.260

BJG AGS 1.329 1.275 1.203 1.430 1.950 3.828 4.015

AGF 1.062 0.993 0.966 1.148 1.557 3.257 3.245
ffacc 0.052 0.048 0.048 0.054 0.078 0.181 0.180

ffint 0.723 0.787 0.653 0.587 0.434 0.280 0.278

EE AGS 6.541 7.074 7.330 7.433 7.787 8.312 8.101

AGF 5.624 5.950 6.268 6.445 6.725 7.060 7.441
ffacc 0.082 0.084 0.090 0.093 0.096 0.102 0.110

ffint 0.705 0.781 0.436 0.444 0.421 0.402 0.377

CS AGS 20.833 19.767 22.103 25.400 25.793 26.783 26.448

AGF 16.668 16.082 17.800 20.458 20.900 22.225 21.288
ffacc 0.158 0.157 0.178 0.198 0.201 0.211 0.207

ffint 0.763 0.750 0.492 0.370 0.377 0.352 0.346

VPO AGS 0.033 0.034 0.045 0.054 0.053 0.054 0.053

AGF 0.027 0.028 0.037 0.044 0.044 0.044 0.045
ffacc 0.065 0.062 0.083 0.151 0.152 0.150 0.159

ffint 0.784 0.860 0.529 0.272 0.251 0.248 0.274

BR AGS 0.187 0.182 0.195 0.259 0.348 0.441 0.435

AGF 0.152 0.146 0.167 0.219 0.302 0.353 0.364
ffacc 0.033 0.033 0.041 0.052 0.087 0.105 0.118

ffint 0.796 0.855 0.471 0.379 0.356 0.287 0.280

6 Conclusions

In this paper we have proposed a complex approach to the design of fuzzy systems. It

has been developed for applications in the field of nonlinear modeling, but it can also

be used in classification issues. The new aspects of the proposed approach include:

(a) the hybrid genetic-firework algorithm and (b) the interpretability criteria of fuzzy

systems.

The genetic-firework algorithm was created by combining the genetic and fire-

work algorithms. Not only can the algorithm select parameters of the fuzzy system

rules but, owing it to the particular combination of the two algorithms, it can also

select its structure. All this creates a significant advantage of the proposed algorithm.

The proposed new interpretability criteria of fuzzy systems are related to all com-

ponents of fuzzy systems: fuzzy sets, fuzzy rules, weights of importance of rules,

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 259

weights of importance of the rules antecedences, weights of importance of rules

consequences, discretization points of the system, shape parameters of used aggre-

gation and inference operators. Therefore, these criteria do not focus only on fuzzy

sets and rules, as it is often the case in the solutions proposed by other authors.

In the simulations we have obtained systems characterized not only by a good

accuracy but also a suitable readability in terms of the proposed criteria. Therefore,

the solutions proposed in this paper (the algorithm and the criteria) allow one to

use the abilities of the fuzzy system more comprehensively and at the same time to

receive good results.

In our future papers on interpretability of fuzzy systems we are planning to,

among others, develop a new hybrid algorithm searching Pareto fronts (associ-

ated with accuracy and interpretability), generalize our discussion for any member-

ship function and parametrized triangular norms of different type. We find the pre-

obtained results encouraging so as to continue our research studies in this particular

direction.

Acknowledgements The project was financed by the National Science Centre (Poland) on the basis

of the decision number DEC-2012/05/B/ST7/02138.

References

1. Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.: A multi-objective evolution-

ary approach to concurrently learn rule and data base soft linguistic fuzzy rule-based systems.

IEEE Trans. Fuzzy Syst. 17, 1106–1122 (2009)

2. Alonso, J.M., Magdalena, L., Cordón, O.: Embedding HILK in a three-objective evolution-

ary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. In:

4th International Workshop on Genetic and Evolving Fuzzy Systems (GEFS2010), pp. 15–20

(2010)

3. Alonso, J.M.: Modeling highly interpretable fuzzy systems. Eur. Centre Soft Comput. (2010)

4. Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling method-

ology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Comput.

15(10), 1959–1980 (2011)

5. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain

parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on

Decision and Control, pp. 4042–4048 (2008)

6. Amor, N.B., Salem, B., Zied, E.: Naive Bayes vs decision trees in intrusion detection systems.

In: Proceedings of the 2004 ACM Symposium on Applied Computing (2004)

7. Andrieu, C., Doucet, A.: Particle filtering for partially observed Gaussian state space models.

JR Stat. Soc. B 64(4), 827–836 (2002)

8. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for non-linear correction

modelling of dynamic objects with genetic programming. In: Artificial Intelligence and Soft

Computing. Lecture Notes in Computer Science, vol. 9120, pp. 318–329 (2015)

9. Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of fuzzy systems

through a multi-objective evolutionary approach based on a novel interpretability index. Soft

Comput. 13, 437–449 (2009)

10. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Fran-

cisco (1970)

260 K. Łapa et al.

11. Brasileiro, Í., Santos, I., Soares, A., Rablo, R., Mazullo, F.: Ant colony optimization applied

to the problem of choosing the best combination among M combinations of shortest paths in

transparent optical networks. J. Artif. Intell. Soft Comput. Res. 6(4), 231–242 (2016)

12. Brooks, T.F., Pope, D.S., Marcolini, A.M.: Airfoil self-noise and prediction. Technical report,

NASA RP-1218 (1989)

13. Chen, K.: Global modeling of different vehicles. IEEE Veh. Technol. Mag. 4(2), 80–89 (2009)

14. Chen, X., Abraham, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid sys-

tems. In: Proceedings of the 25th International Conference on Computer Aided Verification,

vol. 8044, pp. 258–263 (2013)

15. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems.

IEEE Trans. Neural Netw. 20, 701–714 (2009)

16. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for non-

linear classification. In: Nonlinear Analysis Series A: Theory, Methods and Applications, vol.

71, pp. 1659–1672. Elsevier (2009)

17. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)

18. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy sys-

tems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

19. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005

IEEE International Joint Conference on Neural Networks IJCNN ’05, vol. 3, pp. 1764–1769

(2005)

20. Cyran, A.K., Kozielski, S., Peters, F.P., Stanczyk, U., Wakulicz-Deja, A.: Adaptable graphical

user interfaces for player-based applications. Adv. Intell. Soft Comput. 59, 69–76 (2009)

21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

22. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R.: Biocybernetics and biomedical engi-

neering EXIT, Warszawa (2013)

23. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type

kernel regression neural networks in a non-stationary environment. In: Artificial Intelligence

and Soft Computing, vol. 7267, pp. 47–54. Springer (2012)

24. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity prop-

agation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5, 239–246 (2015)

25. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion

neural networks in a non-stationary environment. In: International Conference on Parallel

Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 7203, pp. 90–

98. Springer (2012)

26. Espinosa, J., Vandewalle, J.: Constructing fuzzy models with linguistic integrity from numer-

ical data-AFRELI algorithm. IEEE Trans. Fuzzy Syst. 8, 591–600 (2000)

27. Farahbod, F., Eftekhari, M.: Comparsion of different T-norm operators in classification prob-

lems. Int. J. Fuzzy Logic Syst. 2(3), 33–41 (2012)

28. Fazendeiro, P., de Oliveira, J.V., Pedrycz, W.: A multiobjective design of a patient and

anaesthetist-friendly neuromuscular blockade controller. IEEE Trans. Biomed. Eng. 54, 1667–

1678 (2007)

29. Fraser, A., Burnell, D.: Computer Models in Genetics. McGraw-Hill, New York (1970)

30. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy

systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, vol. 119, p.

123 (2005)

31. Gacto, M.J., Alcalá, R., Herrera, F.: Integration of an index to preserve the semantic inter-

pretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy sys-

tems. IEEE Trans. Fuzzy Syst. 18(3), 515–531 (2010)

32. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an

overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

33. Gorzalczany, M.B., Rudzinski, F.: Accuracy vs. interpretability of fuzzy rule-based classifiers:

an evolutionary approach. In: Proceedings of the 2012 International Conference on Swarm and

Evolutionary Computation SIDE’12, pp. 222–230 (2012)

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 261

34. Guillaume, S., Charnomordic, B.: Generating an interpretable family of fuzzy partitions from

data. IEEE Trans. Fuzzy Syst. 12(3), 324–335 (2004)

35. Ibrahim, S.S., Bamatraf, M.A.: Interpretation trained neural networks based on genetic algo-

rithms. Int. J. Artif. Intell. Appl. (IJAIA) 4(1), 13–22 (2013)

36. Icke, I., Rosenberg, A.: Multi-objective genetic programming for visual analytics. In: Silva, S.,

et al. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 322–334 (2011)

37. Ishibuchi, H., Nakashima, T., Murata, T.: Comparsion of the Michigan and Pittsburgh

approaches to the design of fuzzy classification systems. Electron. Commun. Jpn. Part 3 80(12),

379–387 (1997)

38. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems

for multidimensional pattern classification problems. IEEE Trans. SMC B Cybern. 29, 601–

618 (1999)

39. Ishibuchi, H.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans.

Fuzzy Syst. 13(4), 428–436 (2005)

40. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by

multiobjective fuzzy genetics-based machine learning. Int. J. Approximate Reasoning 44, 4–31

(2007)

41. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the Parzen-type kernel regression

neural network and order statistics for learning in a non-stationary environment. In: Interna-

tional Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial

Intelligence, vol. 7267, pp. 90–98. Springer (2012)

42. Kacprzyk, J.: Studies in Computational Intelligence, vol. 143 (2008)

43. Kaczorek, T.: A modified state variable diagram method for determination of positive real-

izations of linear continous-time systems with delays. Int. J. Appl. Math. Comput. Sci. 22(4),

897–905 (2012)

44. Kar, S., Das, S., Ghosh, P.K.: Applications of neuro-fuzzy systems: a brief review and future

outline. Appl. Soft Comput. 15, 243–259 (2014)

45. Kamyar, M.: Takagi-Sugeno fuzzy modeling for process control industrial automation. In:

Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer

Engineering (2008)

46. Kenesei, T., Abonyi, J.: Interpretable support vector machines in regression and classification-

application in process engineering. Hung. J. Ind. Chem. 35, 101–108 (2007)

47. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers (2000)

48. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst.

108(2), 159–178 (1999)

49. Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization

via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118

(2016)

50. Liu, F., Quek, C., Ng, G.S.: A novel generic hebbian ordering-based fuzzy rule base reduction

approach to Mamdani neuro-fuzzy system. Neural Comput. 19, 1656–1680 (2007)

51. Loh, W.-Y.: Classification and regression trees. Wiley Interdisc. Rev.: Data Min. Knowl. Dis-

covery 1(1), 14–23 (2011)

52. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear mod-

elling using different criteria of interpretability. Lect. Notes Comput. Sci. 8467, 217–232

(2014)

53. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control

systems using selected multi-population algorithms. Lect. Notes Comput. Sci. 9120, 247–260

(2015)

54. Marquez, A.A, Marquez, F.A., Peregrin, A.: A multi-objective evolutionary algorithm with an

interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzifi-

cation. IEEE Int. Conf. Fuzzy Syst. 1–7 (2010)

55. Mehran, K.: Takagi-Sugeno fuzzy modeling for process control. In: Industrial Automation,

Robotics and Artificial Intelligence (EEE8005) (2008)

262 K. Łapa et al.

56. Mencar, C., Castellano, G., Fanelli, A.M.: Some fundamental interpretability issues in fuzzy

modeling. In: Proceedings of the Joint 4th Conference of the European Society for Fuzzy Logic

and Technology, pp. 100–105 (2005)

57. Mencar, C., Castellano, G., Fanelli, A.M.: On the role of interpretability in fuzzy data mining.

Int. J. Uncertainty Fuzziness Knowl. Based Syst. 521–537 (2007)

58. Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy

knowledge bases: a cointension based approach. Int. J. Approximate Reasoning 52(4), 501–

518 (2011)

59. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for

processing information. Psychol. Rev. 63, 81–97 (1956)

60. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-

like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–

282 (2015)

61. Musa, A.A.H., Muawia, M.A.: Analysis of the DC motor speed control using state variable

transition matrix. Int. J. Sci. Res. (IJSR) 2758–2763 (2012)

62. Nguyen, K.P., Fujita, G., Dieu, V.N.: Cuckoo search algorithm for optimal placement and sizing

of static VAR compensator in large-scale power systems. J. Artif. Intell. Soft Comput. Res.

6(2), 59–68 (2016)

63. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant

control study. Int. J. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)

64. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift.

In: International Conference on Artificial Intelligence and Soft Computing. Lecture Notes in

Artificial Intelligence, vol. 7894, pp. 459–473. Springer (2013)

65. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic sys-

tems. Lect. Notes Artif. Intell. 697–705 (2012)

66. Pulkkinen, P., Koivisto, H.: A dynamically constrained multiobjective genetic fuzzy system

for regression problems. IEEE Trans. Fuzzy Syst. 18(1), 161–177 (2010)

67. Riid, A., Rustern, E.: Interpretability improvement of fuzzy systems: reducing the number of

unique singletons in zeroth order Takagi-Sugeno systems. IEEE Int. Conf. Fuzzy Syst. 1–6

(2010)

68. Riid, A., Rustern, E.: Interpretability, interpolation and rule weights in linguistic fuzzy mod-

eling. In: Petrosino, A., et al. (eds.) WILF 2011. LNAI, vol. 6857, pp. 91–98 (2011)

69. Riid, A., Rustern, E.: Adaptability, interpretability and rule weights in fuzzy rule-based sys-

tems. Inf. Sci. 257(1), 301–312 (2014)

70. Rosfariedzah, R., Nagarajan, R., Rahim, M.: Fuzzy variable structure control with reduced-

order observer for micro satellite stabilization in space. In: Proceedings of the International

Conference on Man-Machine Systems (ICoMMS), pp. 11–13 (2009)

71. Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers (2004)

72. Rutkowski, L.: Computational Intelligence. Springer (2008)

73. Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE

International Conference on Fuzzy Systems, 2001, Melbourne, pp. 1428–1431 (2001)

74. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: 2nd Euro-

International Symposium on Computation Intelligence, vol. 76, pp. 85–90, Kosice, Slovakia,

16–19 June 2002

75. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Con-

trol Cybern. 31(2), 297–308 (2002)

76. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Pro-

ceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1031–1036,

Budapest, 26–29 July 2004

77. Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi-triangular norms with

applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 140–151 (2005)

78. Rutkowski, L., Cpałka, K.: Flexible neuro fuzzy systems. IEEE Trans. Neural Netw. 14(2003),

554–574 (2013)

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling 263

79. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial

machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2),

1238–1247 (2012)

80. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial

machine tool based on neuro-fuzzy approach. Lect. Notes Artif. Intell. 114, 645–650 (2010)

81. Sánchez, G., Jiménez, F., Sánchez, J.M., Alcaraz, J.M.: A multi-objective neuro-evolutionary

algorithm to obtain interpretable fuzzy models. In: Current Topics in Artificial Intelligence.

Lecture Notes in Computer Science, vol. 5988, pp. 51–60 (2010)

82. Scherer, R.: Neuro-fuzzy systems with relation matrix. Artif. Intell. Soft Comput. 6113, 210–

215 (2010)

83. Shukla, P.K., Tripathi, S.P.: A review on the interpretability-accuracy trade-off in evolutionary

multi-objective fuzzy systems (EMOFS). Information 3, 256–277 (2012)

84. Shukla, P.K., Tripathi, S.P.: Handling high dimensionality and interpretability-accuracy trade-

off issues in evolutionary multiobjective fuzzy classifiers. Int. J. Sci. Eng. Res. 5(6), 665–671

(2014)

85. Shukla, P.K., Tripathi, S.P.: A new approach for tuning interval type-2 fuzzy knowledge bases

using genetic algorithms. J. Uncertainty Anal. Appl. 2, 4 (2014)

86. Siminski, K.: Rule weights in a neuro-fuzzy system with a hierarchical domain partition. Int.

J. Appl. Math. Comput. Sci. 20(2), 337–347 (2010)

87. Singh, L., Kumar, S., Paul, S.: Automatic simultaneous architecture and parameter search in

fuzzy neural network learning using novel variable length crossover differential evolution. In:

IEEE International Conference on Fuzzy Systems, pp. 1795–1802 (2008)

88. Tadeusiewicz, R.: Place and role of intelligent systems in computer science. Comput. Methods

Mater. Sci. 10(4), 193–206 (2010)

89. Tan, Y., Shi, Y., Tan, K.C.: Fireworks algorithm for optimization. In: ICSI 2010, Part I. LNCS,

vol. 6145, pp. 355–364 (2010)

90. Tan, C.: More than Accuracy: Interpretability. @MLDG 08/15/2013. https://chenhaot.com/

pubs/mldg-interpretability.pdf (2013)

91. Tikk, D., Gedeon, T., Wong, K.: A feature ranking algorithm for fuzzy modeling problems. In:

Interpretability Issues in Fuzzy Modeling, pp. 176–192. Springer (2003)

92. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential

buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

93. Vanhoucke, V., Silipo, R.: Interpretability in multidimensional classification. In: Interpretabil-

ity Issues in Fuzzy Modeling, pp. 193–217. Springer (2003)

94. Viharos, Z.J., Kis, K.B.: Survey on neuro-fuzzy systems and their applications in technical

diagnostics. In: 13th IMEKO TC10 Workshop on Technical Diagnostics Advanced Measure-

ment Tools in Technical Diagnostics for Systems’ Reliability and Safety (2014)

95. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-objective hierarchical genetic algo-

rithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets Syst. 149(1), 149–

186 (2005)

96. Yang, C.H., Moi, S.H., Lin, Y.D., Chuang, L.Y.: Genetic algorithm combined with a local

search method for identifying susceptibility genes. J. Artif. Intell. Soft Comput. Res. 6, 203–

212 (2016)

97. Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural

networks. Cement Concr. Compos. 29(6), 474–480 (2007)

98. Yin, Z., O’Sullivan C, Brabazon A.: An analysis of the performance of genetic programming

for realised volatility forecas. J. Artif. Intell. Soft Computing Res. 6, 155–172 (2016)

99. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global

features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

100. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using character-

istic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016)

101. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification

aimed at minimizing the number of global features. Lect. Notes Comput. Sci. 9693, 218–231

(2016)

https://chenhaot.com/pubs/mldg-interpretability.pdf
https://chenhaot.com/pubs/mldg-interpretability.pdf

264 K. Łapa et al.

102. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verifica-

tion based on a hybrid approach. Lect. Notes Comput. Sci. 9693, 232–246 (2016)

103. Żurada, J.M.: Introduction to Artificial Neural Systems. Jaico Publishing House (2005)

On the Intuitionistic Fuzzy Sets of n-th Type

Krassimir T. Atanassov and Peter Vassilev

Abstract A survey and new results, related to the intuitionistic fuzzy sets of n-th

type are given. Some open problems are formulated.

1 Introduction

The idea for Intuitionistic Fuzzy Sets (IFSs, see [4, 5]) from n-th type (IFS-nT) was

introduced by the first author in 1989 (see [2]) and illustrated for the case of second

type in [3]. In [2], the geometrical interpretation of the IFS-2T is given. The results

of this paper were extended sequentially in [3, 4, 17].

During last 2–3 years, some colleagues re-discovered the concept of IFS-2T and

more general, IFS-nT, but using for them (incorrectly) the name Pythagorean fuzzy

sets (see, e.g. [7–10, 12–14, 18–20, 26–31]). Really, the so-called Pythagorean fuzzy

sets coincide exactly with IFS-2T and if we like to use the new name, the IFS-nT

probably must be called Fermatian fuzzy sets. But, the truth is that these new names

only generate a terminological chaos! Of course, this situation is not a new one. The

IFSs were introduced in June 1983 in [1]. Using the same name, but in another sense,

more than an year later, Takeuti and Titani published paper [22]. In 1993, changing

cosmetically the form of IFSs, Gau and Buehrer introduced the concept of vague

K.T. Atanassov (✉) ⋅ P. Vassilev

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G.

Bonchev Str., bl. 105, 1113 Sofia, Bulgaria

e-mail: krat@bas.bg; k.t.atanassov@gmail.com

P. Vassilev

e-mail: peter.vassilev@gmail.com

K.T. Atanassov

Intelligent Systems LaboratoryAsen Zlatarov University, 8010 Bourgas, Bulgaria

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_10

265

266 K.T. Atanassov and P. Vassilev

sets [11]. For these sets, H. Bustince and P. Burillo proved in [6] that they coincide

totally with IFSs.

With the aim to stop the use of different names for the IFS-nTs and having in mind

that this name exists already 28 years, below we give the basic theoretical results of

IFS-nTs and we hope that in future the colleagues will start using the original name

of these sets. The sense of the name “intuitionistic” for the IFSs is discussed in details

in [5] and all discussion from there is valid for the IFS-nTs, too.

In the end of the paper, we formulate some problems, related to the IFS-nTs.

2 A Second Type of IFSs

Following the definition of the concept of IFS, here we will introduce the concept of

IFS of second type (IFS-2T) [3].

Let a set E be fixed. An IFS-2T A∗
in E is an object of the following form:

A∗ = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ E}

where the functions 𝜇A ∶ E → [0, 1] and 𝜈A ∶ E → [0, 1] define respectively the

degree of membership and the degree of non-membership of the elements x ∈ E,

and for every x ∈ E:

0 ≤ 𝜇A(x)2 + 𝜈A(x)2 ≤ 1.

Every ordinary fuzzy set has the form:

{⟨x, 𝜇A(x),
√

1 − 𝜇A(x)2⟩|x ∈ E}.

If

𝜋A(x) =
√

1 − 𝜇

2
A(x) − 𝜈

2
A(x),

then 𝜋A(x) is the degree of non-determinacy of the element x ∈ E to the set A. In

case of ordinary fuzzy sets, 𝜋A(x) = 0 for every x ∈ E.

For simplicity below we will write A instead of A∗
.

Obviously, for all real numbers a, b ∈ [0, 1], if

0 ≤ a + b ≤ 1,

then

0 ≤ a2 + b2 ≤ 1.

Unlike the geometrical interpretation of the ordinary IFSs (see [4, 5]), the geomet-

rical interpretation of the IFS–2Ts has the form shown in Fig. 1. The interpretation

function is denoted by gA, and gA ∶ E → F.

On the Intuitionistic Fuzzy Sets of n-th Type 267

Fig. 1 Geometrical

interpretation of IFS-2Ts

A(x)

A(x)

F

E

x

g

(0,0) (1,0)

(0,1)

Fig. 2 Geometrical

interpretation of the two

modal operators over IFS-2T

�

g
A
(x)

gA(x)
g♦A(x)�

�

Here, the inequality

0 ≤ a + b ≤ 1

between coordinates ⟨a, b⟩ of the point fA(x) ∈ F changes to the inequality

0 ≤ a2 + b2 ≤ 1

between coordinates ⟨a, b⟩ of the point gA(x) ∈ F.

Here we will define over the IFS-2Ts analogues of only first two modal operators

over IFSs.

A = {⟨x, 𝜇A(x),
√
1 − 𝜇A(x)2⟩|x ∈ E};

♢A = {⟨x,
√
1 − 𝜈A(x)2, 𝜈A(x)⟩|x ∈ E}.

The geometrical interpretation of the two modal operators over IFS-2T is almost

identical to its IFS version—the difference is only in the form of the figure F (see

Fig. 2).

3 IFS-nTs

Let a set E be fixed. Let n > 0 be a real number. An IFS-nT A∗
in E is an object of

the following form:

268 K.T. Atanassov and P. Vassilev

A∗ = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ E} (1)

where the functions 𝜇A ∶ E → [0, 1] and 𝜈A ∶ E → [0, 1] define respectively the

degree of membership and the degree of non-membership of the elements x ∈ E,

and for every x ∈ E:

0 ≤ 𝜇A(x)n + 𝜈A(x)n ≤ 1. (2)

With the above aim we check that the new definition is correct.

Let

𝜋A(x) =
(
1 − ((𝜇A(x))n + (𝜈A(x))n)

) 1
n
. (3)

For every two IFS-nTs A and B the following relations and operations can be

defined:

A ⊂ B iff (∀x ∈ E)(𝜇A(x) ≤ 𝜇B(x)&𝜈A(x) ≥ 𝜈B(x));
A ⊃ B iffB ⊂ A;
A = B iff (∀x ∈ E)(𝜇A(x) = 𝜇B(x)&𝜈A(x) = 𝜈B(x))
¬A = {⟨x, 𝜈A(x), 𝜇A(x)⟩|x ∈ E}
A ∩ B = {⟨x,min(𝜇A(x), 𝜇B(x)),max(𝜈A(x), 𝜈B(x))⟩|x ∈ E};
A ∪ B = {⟨x,max(𝜇A(x), 𝜇B(x)),min(𝜈A(x), 𝜈B(x))⟩|x ∈ E};

We will introduce only the most important properties of these operations.

Theorem 1 Let n > 0 be a real number. For every three IFS-nTs A,B and C:

(a) A ∪ B = B ∪ A;
(b) A ∩ B = B ∩ A;
(c) (A ∪ B) ∪ C = A ∪ (B ∪ C);
(d) (A ∩ B) ∩ C = A ∩ (B ∩ C);
(e) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C);
(f) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Let for every IFS-nT A, the IFS-topological operators have the forms

C(A) = {⟨x,K,L⟩|x ∈ E},whereK = sup
x∈E

𝜇A(x),L = inf
x∈E

𝜈A(x);

I(A) = {⟨x, k, l⟩|x ∈ E},where k = inf
x∈E

𝜇A(x), l = sup
x∈E

𝜈A(x).

We call again these operators “closure” and “interior”, respectively, and for them

the following assertion holds:

Theorem 2 For each n > 0 and every two IFS-nTs A and B:

(a) I(A) ⊂ A ⊂ C(A);
(b) C(C(A)) = C(A);
(c) C(I(A)) = I(A);

On the Intuitionistic Fuzzy Sets of n-th Type 269

(d) I(C(A)) = C(A);
(e) I(I(A)) = I(A);
(f) C(A ∪ B) = C(A) ∪ C(B);
(g) C(A ∩ B) ⊂ C(A) ∪ C(B);
(i) I(A ∪ B) ⊃ I(A) ∪ I(B);
(j) I(A ∩ B) = I(A) ∩ I(B);
(l) I(A) = C(A).

Now, we can define for each real number n > 0:

A = {⟨x, 𝜇A(x), (1 − ((𝜇A(x))n)
1
n ⟩|x ∈ E},

♢A = {⟨x, (1 − (𝜈A(x))n)
1
n , 𝜈A(x)⟩|x ∈ E}.

Obviously, for every IFS-nT A:

A ⊂ A ⊂ ♢A.

These operators may be extended by analogy with the IFS-case (see, e.g. [5]) for

every 𝛼, 𝛽 ∈ [0, 1]:

D
𝛼

A = {⟨x, ((𝜇A(x))n + 𝛼

n(𝜋A(x))n)
1
n , ((𝜈A(x))n + (1 − 𝛼

n)(𝜋A(x))n)
1
n ⟩|x ∈ E},

F
𝛼,𝛽

A = {⟨x, ((𝜇A(x))n + 𝛼

n(𝜋A(x))n)
1
n , ((𝜈A(x))n + 𝛽

n(𝜋A(x))n)
1
n ⟩|x ∈ E},

where 0 ≤ 𝛼

n + 𝛽

n ≤ 1,

G
𝛼,𝛽

A = {⟨x, 𝛼𝜇A(x), 𝛽𝜈A(x)⟩|x ∈ E},

H
𝛼,𝛽

A = {⟨x, 𝛼𝜇A(x), ((𝜈A(x))n + 𝛽

n(𝜋A(x))n)
1
n ⟩|x ∈ E},

J
𝛼,𝛽

A = {⟨x, ((𝜇A(x))n + 𝛼

n(𝜋A(x))n)
1
n , 𝛽𝜈A(x)⟩|x ∈ E},

H∗
𝛼,𝛽

A = {⟨x, 𝛼𝜇A(x), ((𝜈A(x))n + 𝛽

n(1 − 𝛼

n(𝜇A(x))n − (𝜈A(x))n))
1
n ⟩|x ∈ E},

J∗
𝛼,𝛽

A = {⟨x, ((𝜇A(x))n + 𝛼

n(1 − (𝜇A(x))n − 𝛽

n(𝜈A(x))n))
1
n , 𝛽𝜈A(x)⟩|x ∈ E},

The basic properties of the standard IFSs are valid here, too. For example, the

following assertions can be proved by the way, as for the standard IFS case.

Theorem 3 For each natural number n > 0, for each IFS-nT A, and for every two
real numbers 𝛼, 𝛽 ∈ [0, 1]:

270 K.T. Atanassov and P. Vassilev

¬D
𝛼

¬(A) = D(1−𝛼n)(A),

¬F
𝛼,𝛽

¬(A) = F
𝛽,𝛼

(A), if 𝛼n + 𝛽

n ≤ 1,

¬G
𝛼,𝛽

¬(A) = G
𝛽,𝛼

(A),

¬H
𝛼,𝛽

¬(A) = J
𝛽,𝛼

(A),

¬J
𝛼,𝛽

¬(A) = H
𝛽,𝛼

(A),

¬H∗
𝛼,𝛽

¬(A) = J∗
𝛽,𝛼

(A),

¬J∗
𝛼,𝛽

¬(A) = H∗
𝛽,𝛼

(A).

Theorem 4 For each natural number n > 0, for each IFS-nT A, and for every four
real numbers 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0, 1], so that 𝛼n + 𝛽

n ≤ 1 and 𝛾n + 𝛿

n ≤ 1:

F
𝛼,𝛽

(F
𝛾,𝛿

(A)) = F
𝛼
n+𝛾n−𝛼n𝛾n−𝛼n𝛿n,𝛽n+𝛿n−𝛽n𝛾n−𝛽n𝛿n(A),

G
𝛼,𝛽

(G
𝛾,𝛿

(A)) = G
𝛼
n
𝛾
n
,𝛽

n
𝛿
n(A).

4 Uses of IFS-nT and Additional Results

IFS-2T find their use in image enhancement [15]. Another type of intuitionistic fuzzy

sets also used in image enhancement are the intuitionistic fuzzy sets of root type [16],

with (1), such that √
𝜇A(x)
2

+
√
𝜈A(x)
2

≤ 1. (4)

This definition does not conform to the general notion considered in [17], where

the authors studied the properties of sets of IFS-nT, namely (1), satisfying (2), where

n ∈ (0,+∞).
It is interesting to investigate if other types of IFS-nT may be successfully applied

for image enhancement.

Remark 1 Note that for n ≥ 1 (2) may be also stated in an equivalent form:

(
𝜇A(x)n + 𝜈A(x)n

) 1
n ≤ 1. (5)

Remark 2 (cf. [17]) If 0 < n < m < ∞ it is fulfilled that an IFS-nT is also an IFS-

mT.

On the Intuitionistic Fuzzy Sets of n-th Type 271

It seems these results are not well known, since an article discussing a particular case

of this investigation has appeared recently [21]. Further investigation was done by P.

Vassilev in [23] for the extended modal operator analogous to F
𝛼,𝛽

and Gn
𝛼,𝛽

over the

IFSs. More thorough investigation was done by P. Vassilev for the pointwise operator

Fn
𝛼(x),𝛽(x) in his Ph.D. thesis [24]. Namely, the following result is established there:

Theorem 5 ([24, Theorem 2.47]) Let A be an IFS-nT (n ∈ (0,∞)) over E and B is
an IFS over E. Then the pointwise operator

Fn
B ∶ IFS-nT(E) → IFS-nT(E)

is given by
Fn
B(A) = {⟨x, �̂�A(x), �̂�A(x)⟩|x ∈ E},

where
�̂�A(x) = (𝜇n

A(x) + 𝜇B(x)𝜋∗
A(x))

1
n

�̂�A(x) = (𝜈nA(x) + 𝜈B(x)𝜋∗
A(x))

1
n

and
𝜋

∗
A(x) = 1 − 𝜇

n
A(x) − 𝜈

n
A(x)

Remark 3 If B is taken as an IFS-nT, the resulting operator will coincide with the

one in the previous section.

Recognizing that (5) may be viewed as distance generated by Minkowski’s norm 𝜑n
for n ≥ 1 and by an appropriate subnorm for n ∈ (0, 1) to the point (0, 0), P. Vassilev

introduced a unified metric approach to the notion IFS-nT by introducing the notion

d
𝜑

-IFS [24, 25]. It is noteworthy that while both notions describe the same triples

as sets, one way that the “hesitancy function” may be defined for IFS-nT (a slightly

different version of 𝜋A from (3)):

𝜋

∗
A(x) = 1 − 𝜇

n
A(x) − 𝜈

n
A(x) (6)

does not, in general, coincide with the way it is defined for d
𝜑

-IFS:

𝜋d(A)(x) = 1 − 𝜑((𝜇A(x), 𝜈A(x))). (7)

which in the case of 𝜑n norms coincides with:

𝜋d
𝜑n
(A)(x) = 1 − (𝜇A(x)n + 𝜈A(x)n)

1
n

The exception to this is for n = 1, where (3), (6), (7) are identical, which in our

view reinforces the idea that IFS are the most natural among the IFS-nTs.

272 K.T. Atanassov and P. Vassilev

5 Analogues of Mappings of Complex Numbers

Following [5, p. 51], we can easily introduce by analogy the n-analogue (for n ≥ 1)

for complex numbers a + ib and a − ib, with the constraints a ∈ [0, 1], b ∈ [−1, 1]
and the condition

an + |b|n ≤ 1

Then a a transformation formula analogous to [5, (3.4)] is the following (for n ≥ 1):

f (a, b) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⟨(
an

2

) 1
n
,

(
an

2
+ bn

) 1
n

⟩

, for b ≥ 0
⟨(

an

2
+ |b|n

) 1
n
,

(
an

2

) 1
n

⟩

, for b ≤ 0

The fact that f is a bijection is easy to check. We will start by showing that f is an

injection.

Let us be given (a, b) and (c, d) such that |a − c| + ||b| − |d|| ≠ 0, a, c ∈ [0, 1]
x0, x1 ∈ [0, 1], b, d ∈ [−1, 1].

Then f (a, b) ≠ f (c, d). The case when b and d are of the same sign is obvious. Let

us suppose, without loss of generality that b ≥ 0 and d ≤ 0.
Then f (a, b) = f (c, d) is equivalent to:

{
an

2
= cn

2
+ |d|n

an

2
+ bn = cn

2

But the above is only possible when a = b = c = d = 0. Hence, f is an injection.

It remains to prove that for any (x, y) ∈ [0, 1] × [0, 1] such that xn + yn ≤ 1, there

exists (x0, y0) ∈ [0, 1] × [−1, 1] with xn0 + |y0|n ≤ 1 and f (x0, y0) = (x, y).
We will consider the three possible cases.

In Case 1: x = y, we have x0 = 2
1
n x, y0 = 0. Since, 2xn ≤ 1,we have x ≤ 1

2
1
n
, hence

x0 ∈ [0, 1], y0 ∈ [−1, 1].
Let Case 2: x > y, be fulfilled. Then y < 1

2
1
n
. Hence, x0 = 2

1
n y < 1 and we deter-

mine that |y0| = (xn − yn)
1
n , i.e. y0 = −(xn − yn)

1
n . It is easy to check that x0 ∈

[0, 1], y0 ∈ [−1, 0].
Analogously, let Case 3: x < y be fulfilled. Then x < 1

2
1
n
.Hence, x0 = 2

1
n x < 1 and

we determine that y0 = (yn − xn)
1
n . It is easy to check that x0 ∈ [0, 1], y0 ∈ [0, 1].

Thus we have shown that for any point (x, y) there is a pre-image with f . Thus, f
is a bijection.

As a result of this, if we take two conjugate complex points a + ib and a − ib,
their repsective images with f are in relation negation similarly to the the situation

On the Intuitionistic Fuzzy Sets of n-th Type 273

described in [5]. That is

¬f (a, b) = f (a,−b),

i.e. the intuitionistic fuzzy pairs which after the transformation correspond to these

two points are negations of one another.

6 Conclusion

In the future we plan to work on the development of the theory of IFSnT pointing

our attention to:

Open Problem 1. What specific for particular IFSnT operators may be defined?

Open Problem 2. Can the defined above operators be modified in the sense of [5]?

Open Problem 3. What other negation operators may be defined over IFSnT?

Open Problem 4. What other implications may be defined over IFSnT?

Acknowledgements The authors are thankful for the support provided by the Bulgarian National

Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach to Deci-

sion Making”.

References

1. Atanassov K.: Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in

Central Sci.—Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.). Reprinted in: Int. J.

Bioautomation, Vol. 20(S1), 2016, S1-S6 (in English)

2. Atanassov K.: Geometrical interpretations of the elements of the intuitionistic fuzzy objects.

Preprint IM-MFAIS, 1–89. Sofia (1989). Reprinted in: Int. J. Bioautomation. 20(S1), S27–S42

(2016)

3. Atanassov, K.: A second type of intuitionistic fuzzy sets. BUSEFAL 56, 66–70 (1993)

4. Atanassov, K.: Intuitionistic fuzzy sets. Springer, Heidelberg (1999)

5. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Heidelberg (2012)

6. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy. Sets. Syst. 79(3),

403–405 (1996)

7. Dick, S., Yager, R., Yazdanbakhsh, O.: On Pythagorean and complex fuzzy set operations.

IEEE Trans. Fuzzy. Syst. 24(5), 1009–1021 (2016)

8. Garg, H.: A novel correlation coefficients between Pythagorean fuzzy sets and its applications

to decision-making processes. Int. J. Intell. Syst. 31(12), 1234–1252 (2016)

9. Garg, H.: A new generalized Pythagorean fuzzy information aggregation using Einstein oper-

ations and its application to decision making. Int. J. Intell. Syst. 31(9), 886–920 (2016)

10. Garg, H.: A novel accuracy function under interval-valued pythagorean fuzzy environment for

solving multicriteria decision making problem. J. Intell. Fuzzy. Syst. 31(1), 529–540 (2016)

11. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE. Trans. Syst. Man. Cybern. 23, 610–614 (1993)

12. Gou, X., Xu, Z., Ren, P.: The properties of continuous Pythagorean fuzzy information. Int. J.

Intell. Syst. 31(5), 401–424 (2016)

13. Liu, J., Zeng, S., Pan, T.: Pythagorean fuzzy dependent ordered weighted averaging operator

and its application to multiple attribute decision making. Gummi. Fasern. Kunststoffe. 69(14),

2036–2042 (2016)

274 K.T. Atanassov and P. Vassilev

14. Ma, Z., Xu, Z.: Symmetric pythagorean fuzzy weighted geometric/averaging operators and

their application in multicriteria decision-making problems. Int. J. Intell. Syst. 31(12), 1198–

1219 (2016)

15. Palaniappan, N., Srinivasan, R.: Applications of intuitionistic fuzzy sets of root type in image

processing. In: North American Fuzzy Information Processing Society (NAFIPS). Annual

Conference (2009)

16. Palaniapan, N., Srinivasan, R., Parvathi, R.: Some operations on intuitionistic fuzzy sets of

root type. Notes. Intuit. Fuzzy Sets. 12(3), 20–29 (2006)

17. Vassilev, P., Parvathi, R., Atanassov, K.: Note on intuitionistic fuzzy sets of p-th type. Issues.

Intuit. Fuzzy Sets. Gener. Nets. 6, 43–50 (2008)

18. Peng, X., Yang, Y.: Fundamental properties of interval-valued pythagorean fuzzy aggregation

operators. Int. J. Intell. Syst. 31(5), 444–487 (2016)

19. Peng, X., Yang, Y.: Pythagorean fuzzy Choquet integral based MABAC method for multiple

attribute group decision making. Int. J. Intell. Syst. 31(10), 989–1020 (2016)

20. Ren, P., Xu, Z., Gou, X.: Pythagorean fuzzy TODIM approach to multi-criteria decision mak-

ing. J. Appl. Soft. Comput. 42, 246–259 (2016)

21. Srinivasan, R., Begum, S.S.: Some properties on intuitionistic fuzzy sets of third type. Ann.

Fuzzy Math. Inform. 10(5), 799–804 (2015)

22. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb.

Log. 49(3), 851–866 (1984)

23. Vassilev, P.: The generalized modal operator Fp
𝛼,𝛽

over p-intuitionistic fuzzy sets. Notes. Intuit.

Fuzzy. Sets. 15(4), 19–24 (2009)

24. Vassilev, P.: Intuitionistic fuzzy sets with membership and non-membership functions in metric

relation, Ph.D. thesis defended on 18.03.2013, Institute of Biophysics and Biomedical Engi-

neering, Bulgarian Academy of Sciences (in Bulgarian)

25. Vassilev, P.: Intuitionistic fuzzy sets generated by Archimedean metrics and ultrametrics. In:

Recent Contributions in Intelligent Systems, Studies in Computational Intelligence 657, pp.

339–378 Springer, Cham (2017)

26. Yager, R.R.: Pythagorean membership grades in multi-criteria decision making. IEEE Trans.

Fuzzy Syst. 22, 958–965 (2014)

27. Yager, R.R.: Properties and applications of Pythagorean fuzzy sets. Stud. Fuzziness. Soft. Com-

put. 332, 119–136 (2016)

28. Zeng, S., Chen, J., Li, X.: A hybrid method for Pythagorean fuzzy multiple-criteria decision

making. Int. J. Inf. Technol. Decis. Mak. 15(2), 403–422 (2016)

29. Zhang, C., Li, D., Ren, R.: Pythagorean fuzzy multigranulation rough set over two universes

and its applications in merger and acquisition. Int. J. Intell. Syst. 31(9), 921–943 (2016)

30. Zhang, X.: A Novel approach based on similarity measure for Pythagorean fuzzy multiple

criteria group decision making. Int. J. Intell. Syst. 31(6), 593–611 (2016)

31. Zhang, X.: Multicriteria Pthagorean fuzzy decision analysis: a hierarchical QUALIFLEX

approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016)

Part IV
Intelligent Technologies in Decision
Making, Optimization and Control

MCTS/UCT in Solving Real-Life Problems

Jacek Mańdziuk

Abstract Monte Carlo Tree Search (MCTS) supported by the Upper Confidence

Bounds Applied to Trees (UCT) method, i.e. MCTS/UCT, since its onset in 2006,

has been one of the state-of-the-art techniques in game-playing domain. In particu-

lar, the recent breakthroughing success of this method (combined with deep neural

networks trained with the reinforcement learning algorithm) in the game of Go, made

its leading position even stronger than before. In this paper we summarize our studies

in application of MCTS/UCT to domains other than games, with particular empha-

sis on hard real-life problems which possess a large degree of uncertainty due to

existence of certain stochastic factors in their definition. The two example prob-

lems of this nature considered in this work are Capacitated Vehicle Routing Problem

with Traffic Jams and Risk-Aware Project Scheduling Problem. Our results show that

MCTS/UCT is a viable method in these two domains, efficiently dealing with uncer-

tainty by means of on-line adaptation of the core MCTS simulations to the current

situation (actual realization of the stochastic components).

Keywords Monte Carlo Tree Search ⋅Upper Confidence Bounds Applied to Trees ⋅
Dynamic Vehicle Routing Problem ⋅ Traffic jams ⋅ Project scheduling

1 Introduction

Monte Carlo Tree Search (MCTS) [2] is a simulation-based method of searching

a problem space represented in a tree-based form. A typical example are classical

board games (e.g. chess, checkers, Othello, Go, etc.) in which possible game contin-

uations from the current game state can be represented in the form of the so-called

game tree. The method is particularly well-suited to games for which a meaningful

J. Mańdziuk (✉)

Faculty of Mathematics and Information Science,

Warsaw University of Technology, Warsaw, Poland

e-mail: j.mandziuk@mini.pw.edu.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_11

277

278 J. Mańdziuk

and compact evaluation function is not known (e.g. Go [6, 21], Havannah [27] or

Arimaa [26]).

The most popular implementation of the MCTS method was proposed in 2006 by

Kocsis and Szepesvari [10] under the name Upper Confidence Bounds Applied to

Trees (UCT) and soon after became one of the state-of-the-art approaches in game-

playing domain. In this paper we summarize our recent results related to application

of MCTS/UCT to domains other than games, showing plausibility and strong poten-

tial of the method in solving hard and varying in time real-life optimization problems.

The remainder of the paper is structured as follows. In the next section the

MCTS/UCT approach is presented and its application to games is briefly discussed.

In Sect. 3 the Capacitated Vehicle Routing Problem with Traffic Jams is introduced

along with proposed UCT-based solution method, and its comparative results with

two most popular swarm optimization algorithms, specifically developed and tuned

for solving this problem. In Sect. 4 the Resource Constrained Projet Scheduling Prob-

lem (frequently considered in scheduling problems domain) is briefly recalled and

its non-deterministic version—Risk-Aware Project Scheduling Problem—proposed,

accompanied by the UCT-based approach and its results versus the outcomes of

the heuristic solver, typically applied in this area. The main qualitative observations

related to general applicability of the UCT method and its synergetic combinations
with domain knowledge heuristics conclude the paper is Sect. 5.

2 Monte Carlo Tree Search

The MCTS algorithm is an iterative simulation-based method of searching the prob-

lem space, in the case potential solutions of the problem can be represented as paths

in a specifically designed problem tree. In the problem tree, nodes represent possi-

ble problem states (or partial solutions) and edges correspond to possible actions.

Application of an action in a given state leads to a new state, located one level below

in the problem tree (a child node). In the current state of the problem, application

of MCTS relies on performing massive simulations, from the node representing that

state (the root node of a tree). Certainly for complex problems the respective tree

based representation is too big to fit in memory and only a part of it is kept and

maintained online by the method. The problem tree is gradually extended usually

by adding one new node in each of the performed simulations. More precisely, each

simulation consists of the four following phases, depicted in Fig. 1.

Selection: starting from the root node, traverse the tree down until a leaf node is

reached. In each node, choose the child node according to some in-tree node selection
policy;

Expansion: if the leaf node is not terminal, choose a continuation which falls out of

the tree and allocate a new child node. This new node is added to the tree and serves

as the starting point for the next phase;

MCTS/UCT in Solving Real-Life Problems 279

Fig. 1 Four phases of the MCTS algorithm. The figure replicates an illustration presented in [3]

for games domain. In other optimization problem domains, instead of playing a game and prop-

agating its outcome, the system explores a full path to the solution state and back-propagates the

corresponding goal value

Simulation: starting from a state associated to the newly expanded node, perform

a full game simulation (i.e. to the terminal state) choosing the subsequent states

according to some out-of-the-tree selection policy;

Backpropagation: once the simulation reaches a terminal state (i.e. the one which

corresponds to some solution of the problem being solved) read out the solution

value (score) and propagate it along the solution path, all the way back to the root

node. Update the average solution score and increment the number od visits of each

in-tree node including the newly-added one.

When the time allotted for the simulations is exhausted, an action leading to the

state with the highest average score among the root child states is selected to be per-

formed as a part of real (i.e. not simulated) solution. In the out-of-the-tree selection
procedure the next node to be visited is usually selected uniformly among all pos-

sible choices (as the Monte Carlo part of the method’s name suggests), the in-tree
selection policy may vary, depending on particular problem being solved. One of the

most popular choices is the Upper Confidence Bounds Applied to Trees (UCT) [10]

selection method, described in the next section.

2.1 Upper Confidence Bounds Applied to Trees

The main purpose of the in-tree selection policy is to choose the nodes in a way

that maintains a balance between exploration of the less frequently simulated actions

(nodes) and exploitation of the already promising ones. In order to serve this purpose

the action selection process follows the following procedure:

If, in the currently simulated node s, there exist some actions which have not been

yet visited, one of them is uniformly selected, and the corresponding state is assigned

280 J. Mańdziuk

as the successor node. Otherwise, an action a∗ to be performed is chosen according

to the following rule:

a∗ = arg max
a∈A(s)

⎧
⎪
⎨
⎪
⎩

Q(s, a) + C

√
ln [N(s)]
N(s, a)

⎫
⎪
⎬
⎪
⎭

(1)

whereA(s)—is a set of actions available in s;Q(s, a)—is an assessment of performing

action a in state s based on previous simulations; N(s)—is a number of previous

simulations going through state s; N(s, a)—is a number of times an action a has been

sampled in state s; C—is a coefficient defining an impact of the latter component

(exploration) in (1).

It can be theoretically proven that the simulation-based assessment of Q(s, a), for

each node s and each action a in s, converges to its true (real) value when the number

of simulations tends to infinity.

2.2 MCTS/UCT in Games — a Short Overview

MCTS/UCT is renowned for being the state-of-the-art algorithm for searching a

game tree in a variety of games. It is particularly useful in complex games with

high branching factors such as Go or Hex [1], for which a compact evaluation func-

tion is not known. Since the introduction of MCTS/UCT to a domain of General

Game Playing (GGP) [8, 28] in 2007, it has also become a backbone of almost all

the strongest players [25]. GGP deals with creating autonomous agents capable of

playing many games with a high level of competence. The term was proposed by

Stanford Logic Group in 2005, together with the introduction of the GGP Compe-

tition as the official world championships. Our player, called MINI-Player [23, 24],

has been our annual entry to the competition in the years 2012, 2013 and 2014.

The most remarkable success of MCTS/UCT in games was related to the game

of Go, where majority of the strongest programs, e.g. MoGo [7], CrazyStone [5]

or the latest accomplishment AlphaGo [21] use variants of MCTS. In contrast to all

variations of the min-max alpha-beta search, the MCTS is an aheuristic, knowledge-

free [12, 13] method, which means that it does not require any game-specific

knowledge except for the rules of move generation and definition of the goal states

with their assigned payoffs. Consequently, in principle, the MCTS/UCT method is

applicable to a wide variety of search and decision-making problems. Two examples

of such application domains are presented in the following sections.

MCTS/UCT in Solving Real-Life Problems 281

3 Capacitated Vehicle Routing Problem with Traffic Jams

Capacitated Vehicle Routing Problem (CVRP) is a widely-known NP-hard optimiza-

tion problem, whose goal is to define a set of routes of a minimum cumulative length

(cost), given a certain number of homogeneous trucks (with some pre-defined capac-

ity) and a certain set of clients (each of them defined by a 2D location and requested

demand of goods to be delivered). The trucks start and end their routes in a depot

(having a certain 2D location). Each client must be served by exactly one truck and in

one shot, i.e. multiple visits to one client are not allowed. Roughly speaking, CVRP

combines the multiple-tour formulation of the Traveling Salesman Problem with the

Bin Packing Problem. For its formal definition and a review of Operational Research

and Computational Intelligence approaches please refer, for example, to [17].

In our previous paper [14], the baseline problem formulation was further extended

and complicated by adding stochastically defined events—traffic jams—occurring

on the atomic parts of the routes (edges) and resulting in temporal increase of the cost

of traversal (of such a jammed edge). The effective problem formulation is abbrevi-

ated as CVRPwTJ, i.e. CVRP with Traffic Jams.

Highly dynamic nature of CVRPwTJ (stemming from frequently changing traffic

conditions), requires the methods used to solving it to be able to swiftly and almost

instantly adapt to frequent, on-line changes of the cost function values.

3.1 MCTS/UCT Approach to CVRPwTJ

In the approach proposed in [14], the MCTS/UCT is applied to a specifically defined

set of UCT trees, each devoted to a particular truck and representing possible con-

tinuations of the currently committed part of the route of that truck. In the first step

an initial solution is build, for the static version of the problem (there are no traffic

jams imposed yet) using the modified version [19] of the Savings algorithm [4].

Suppose the initial solution is composed of k routes, i.e. k trucks are employed. In

such a case the initial set of UCT trees is composed of k degenerated trees—each in

the form of a path with the first and the last elements being a depot and the internal

nodes representing clients to be served in a given order defined by the initial solution.

At each time step the internal UCT simulations are performed simultaneously for

all k trees, which are gradually extended by adding one leaf node at each simula-

tion (cf. Sect. 2.1). While the general simulation scheme follows the classical UCT

pattern, there are several differences reflecting the specificity of the CVRPwTJ [14].

In particular, since shorter solutions are preferred over the longer ones, the UCT

formula (1) is modified to the following version (2), which favors lower Q(s, a) out-

comes:

a∗ = arg max
a∈A(s)

⎧
⎪
⎨
⎪
⎩

C

√
ln [N(s)]
N(s, a)

− Q(s, a)
⎫
⎪
⎬
⎪
⎭

(2)

282 J. Mańdziuk

The other pertinent difference is that the next compound step (simultaneous move-

ment of all k trucks) is a result of a combined knowledge obtained from all k trees

(not one tree as in the typical UCT implementation). To this end, once in each tree the

most promising action is selected, then these k selected actions are sorted in descend-

ing order based on their UCT values (i.e. values of C
√

ln[N(s)]
N(s,a)

− Q(s, a) in (2)) and

afterwards executed in this order. This way, execution of higher-ranked actions may

disable some of lower-ranked ones. In such a case the next-best candidates in the

respective UCT trees are selected as replacements (for these disabled actions). Please

consult [14] for the details.

After an assumed number of internal simulations are executed, the real (actual)

movement of k trucks is simultaneously made (concurrently in all k trees) following

the smallest Q(s, a) values among the child nodes.

3.2 Possible Actions in the UCT Trees

As previously stated nodes in the jth UCT tree represent possible variants of the

remaining part of the jth route, i.e. the order of service of clients remaining for the

jth truck. The edges coming out from a given node in the jth tree represent potential

actions to be applied to the jth route or to a combination of this route and some other

route. Three types of actions, differing by the level of complexity, were proposed,

denoted by: level-0, level-1 and level-2, which modify 0, 1 and 2 existing routes,

respectively. Each action has some legality conditions which must be fulfilled in

order for this action to be available (see [14] for further explanation).

Level-0 and level-1 actions are listed in Table 1. All of them are self-explanatory.

This selection of actions was complemented by the set of four more complex, level-
2 actions (denoted A9–A12), which operate on (any) two routes. Since, all pairs of

routes are considered, there can be many realizations of each of these actions in

one time step, depending on the number of route pairs fulfilling legality conditions.

While these four actions differ by implementation details (described in [14]), their

underpinning idea is to exchange customers between two routes so as to locally min-

imize the total travel cost. As a special case of this exchange mechanism a merge

operation is considered as action A12.

Generally speaking all 13 actions are rooted in the following rationale: if the con-

sidered candidate edge is not jammed then traverse it, otherwise make an attempt

to enhance the planned route (by avoiding a traffic jam) by means of local changes

in the planned orders of visited clients. In theory, one might proceed with defin-

ing even more complex actions, e.g., the ones involving three or more routes, but

such approach immediately becomes infeasible due to computational complexity

explosion.

MCTS/UCT in Solving Real-Life Problems 283

Table 1 Actions of the types level-0 and level-1
Ac. L. Action description

A0 0 Continue the planned (non-jammed) route

A1 0 Continue the planned (jammed) route

A2 1 Move the current client at the end of a route (just before returning to the depot)

A3 1 Move the current client X into locally optimal place in a route, i.e. between

clients B and C so as to minimize |BX| + |XC| − |BC|
A4 1 Insert the first found client to whom there is no TJ before the current client (as

the first one)

A5 1 Reverse the route (except for the depot which remains the closing element)

A6 1 Insert the client to whom the edge from the current state is the cheapest as the

first one

Due to greedy nature of this action, the score Q in (2) is multiplied by a penalty

(discouraging) factor > 1
A7 1 Insert the client to whom the edge from the current state is the second cheapest

as the first one

Due to greedy nature of this action, the score Q in (2) is multiplied by a penalty

(discouraging) factor > 1
A8 1 The current route is finished (by immediately moving to a depot)

A new route is commenced from the depot with all customers left inherited

from the finished route

Ac. denotes the code of an action, L. is level-type

3.3 Results

The above-described UCT-based approach was experimentally verified on a set of

widely-known static benchmarks downloaded from the CVRP webpage [18]. In

each case the initial conditions (i.e. the number of available trucks, their capacity,

clients requests’ sizes, and the coordinates of a depot and customers) are included

in the benchmark set definition. These (static) CVRP instances were transformed

into dynamic versions (CVRPwTJ) by imposing traffic jams with uniform probabil-

ity distributions. More precisely, at (the beginning of) each time step of the solving

method, on each edge eij a traffic jam was defined with a certain probabilityP. In such

a case, the regular cost cij of traversing this edge was multiplied by the traffic inten-

sity I(eij) (sampled from a certain probability distribution) for a randomly selected

number of steps L(eij). In order to prevent intensities of traffic jams from exponential

growth, if a traffic jam was selected for an already jammed edge, then its intensity

remained unchanged and only its length (L(eij)) was increased by a newly-sampled

value. Traffic jams’ steering parameters tested in the experiments belonged to the

following ranges:

P ∈ {0.02, 0.05, 0.15}, I = UINT [10, 20], L = UINT [2, 5], (3)

284 J. Mańdziuk

where UINT [a, b] denotes random uniform selection of any integer x, such that

a ≤ x ≤ b. Based on the initial calibration tests, the value of C in (2) was set to 1.8
multiplied by the length of the initial solution found for the static instance. The size

of benchmark sets ranged from 19 to 150 and the number of available trucks varied

from 2 to 14.

The proposed simulation-based approach was compared on a common ground

with selected population-based methods. The selection of comparative methods

included Ant Colony Optimization (ACO) [14, 15], Tabu Search (TS) [16], Genetic

Algorithms (GA) [16], and Particle Swarm Optimization (PSO) [15]. Since the focus

of this paper is on making qualitative conclusions related to the universality of the

MCTS/UCT in solving dynamic optimization problems the exact numerical results

are not presented - they can be accessed in the above-cited papers [14–16].

On a general note, the UCT method applied to CVRPwTJ outperformed the com-

petitive methods by a clear margin, except for the GA version specifically tailored

and optimized for this task, which nevertheless turned out to be slightly inferior

to proposed UCT forest. The main advantage of the UCT was visible in the case of

P = 0.15, i.e. the most dynamic situation with frequent traffic jams generated in sub-

sequent time steps. In this case all differences in results were statistically significant

(in favor of UCT).

Generally speaking, UCT is a much more repeatable (stable) method, with signif-

icantly lower standard deviation of results. Furthermore, it is easier to parameterize

than GA, i.e. its main competitor. UCT yielded results of similar quality over a wide

range of C selections, between 0.9 and 1.8 (note that theoretically advisable value of

that parameter equals

√
2).

4 Risk-Aware Project Scheduling Problem

The other problem considered in this paper to illustrate the usage of the UCT algo-

rithm is the Resource-Constrained Project Scheduling Problem (RCPSP) and its

extension Risk Aware Project Scheduling Problems (RAPSP). RCPSP is a popu-

lar NP-complete [22] optimization problem, especially interesting due to its almost

direct applicability to real-life scenarios. While the problem closely fits to various

static project scheduling cases, it is—on the other hand—too simplistic to cover a

wide range of possible situations that may potentially occur during project execution.

For this reason, a new class of related problems, namely RAPSP, was proposed

in our previous papers [29, 30], so as to address unpredictable, non-deterministic

aspects of real-life project scheduling and execution. In addition to standard formu-

lation of RCPSP (whose goal is to find a legal schedule that minimizes the makespan

of the project), the new model built on top of RCPSP introduces several new con-

cepts:

MCTS/UCT in Solving Real-Life Problems 285

1. non-deterministic activity durations taking into account unavoidable mistakes

in estimations;

2. non-renewable resources—as in multi-mode RCPSP;

3. risks—unpredictable external events that may influence the project characteris-

tics in various ways;

4. risk responses—special, optional activities (not required for completion of the

project) whose effects influence project parameters (analogically to risks).

In particular the last facet of RAPSP, i.e. optional risk responses, which can be pro-
actively or post-factum applied to mitigate (or eliminate) potential risks, makes the

problem interesting for at least two reasons. First of all, the inclusion of risk manage-

ment process makes the problem fit even closer to actual real-life scenarios. Second

of all, a dynamic characteristic of the RAPSP formulation makes it an especially

well-suited testbed for various AI- and CI-based approaches.

As mentioned above, RCPSP is a relatively popular NP-complete optimization

problem, with various practical realizations. For the sake of brevity of the paper,

we’ll skip its formal definition here (which can be found, for instance, in [22]) and

describe the problem informally. A single-mode deterministic RCPSP instance spans

a number of activities as well as capacitated renewable resources. All activities are

required to be completed in order for the whole project to be finished. Each activity

has a certain time span and requires certain resources, i.e. cannot be started unless

sufficient amounts of resources of each required type are available. Furthermore,

activities may have predecessors (activities that must be performed beforehand).

Typically, activities are not preemptive (once started they cannot be split into several

smaller activities).

Below we briefly sketch the newly-added RAPSP concepts that extend the above

RCPSP formulation.

Non-deterministic activities Unlike in RCPSP, RAPSP activities’ durations are not

constant, but rather are random variables sampled from a pre-defined probability dis-

tributions. In our implementation, the actual values of variables (their realizations)

become known at start of the corresponding activity.

Risks Risks represent unpredictable (typically external) events which may possibly

influence project’s execution, and as such are non-deterministic in nature. Despite

differences stemming from their practical meaning, they share a common descrip-

tion pattern, which includes realization conditions, occurrence probabilities, and

effects. Three types of risks (temporal decrease of renewable resource amount, disap-

pearance of non-renewable resource, and underestimation of certain project’s activ-

ities) were employed in our experiments model. Please consult our previous papers

[30, 32] for their exact definitions and parameterizations.

Observe that in practice effects of a currently active risks may influence some

activities in progress, making them, for instance, illegal (e.g., the amount of available

renewable resource may drop below the required level). There are several ways to

deal with this kind of situation, for example, an activity may be canceled or split into

286 J. Mańdziuk

two. For the sake of simplicity, in the current system implementation, we assume

that risks do not affect activities in progress.

Risk responses Risk responses represent various actions that may be taken to man-

age or handle project risks. They may be performed both reactively (post factum) and

proactively, and their effects will take place whether or not any risks have actually

occurred. In this sense, risk responses are independent of risks themselves. Each

risk response consists in increase of a certain renewable/non-renewable resource

amount using (other) non-renewable resources (e.g. financial budget). Observe that

risk responses are activities which are not (in principle) required to be performed for

the project to be successfully finished. Just like any activity, risk responses may have

positive duration and may require resources. After completion of a risk response, its

effect will materialize and influence the project’s realization.

Heuristic solver Due to NP-completeness of RCPSP and RAPSP, application of any

brute-force method is infeasible except for small instances of a problem. Instead, a

typical approach is based on using some heuristics that guide the scheduling (search)

process. A particular heuristic solver (HS) used in our studies employs a prioritiza-

tion rule and Parallel Schedule Generation Scheme (PSGS) to generate a schedule.

In each time step, all legal activities are commenced according to the order defined

by the selected prioritization rule. Only when all eligible activities have been started

does the algorithm advances to the next time step.

Employing the above approach in solving RAPSP requires certain modifications

so as to accommodate risks and risk responses. In short, simulating typical human

behavior, HS realizes the project by devising a baseline schedule, then following it as

long as possible, and regenerating it in case of major deviations. Therefore, decision

points (time steps in which a new baseline schedule is devised) are defined in any

of the three following situations: either the effects of a new risk or risk response

have just materialized, or there is a certain delay in the current baseline schedule

(greater than 2 time units/steps), or for the first time in the project’s execution a new

risk response has become eligible. In all other cases (time units) a valid currently

adopted baseline schedule should be followed.

A new baseline schedule, whenever necessary, is defined by the HS by creating a

number of randomly chosen legal combinations of risk responses that can be started

immediately and a randomly sampled priority rule (from a set of such rules, see

below). For each such combination a new schedule is simulated starting with exe-

cution of the selected risk responses. Afterwards, the RAPSP project is converted

to a simplified deterministic version, in which all activities durations are set as the

expected values of their distributions. Next, for this deterministic project a schedule

is generated according to PSGS and selected priority rule. This schedule combined

with the respective set of risk responses, becomes a candidate for a baseline sched-

ule. Among certain number of such candidate schedules, the one with the shortest

makespan is finally chosen, as the baseline schedule for the RAPSP project under

consideration and lasts till the next decision point.

Our current implementation of HS relies on a set of five simple priority rules:

1. Duration—preference for activities with greatest duration;

MCTS/UCT in Solving Real-Life Problems 287

2. LateFinish (LF)—choosing activities with earlier LF first;

3. LateStart (LS)—choosing activities with earlier LS first;

4. Slack (SL)—preferring activities with low Slack values;

5. DurationWithSuccessors—considering summed duration of the activity and its

direct successors;

6. SuccessorsCount—based on the total number of direct and indirect successors of

the activity.

LF, LS and SL are calculated using a classical technique called Critical Path Analy-

sis [9].

4.1 MCTS/UCT Approach to RAPS

This section describes our UCT-based approach to solving RAPSP instances. First, a

straightforward application of UCT to the above-described model is proposed, which

is then enhanced by adding heuristic domain knowledge to guide the UCT simula-

tions.

Basic UCT Basic UCT (BasicUCT) method is a straightforward application of

the simulation-based UCT approach to solving RAPSP problem. In short, each

BasicUCT simulation covers full realization of the project from its current state until

its completion (a success) or detection it can no longer be completed (a failure). Three

types of actions are eligible in each node of the UCT tree: (1) starting a new (legal)

activity, (2) starting a new (legal) risk response, and (3) noop—i.e. waiting till next

time unit. Observe, that only the third action (noop) advances the project in time.

Consequently, it is possible to start multiple activities and/or risk responses in the

same time unit.

Due to highly dynamic nature of RAPSP stemming from various possible real-

izations of a significant number of random variables, the number of possible project

states can be expected to be explosive for real-life situations. On the other hand, one

can safely assume that minute differences in the current project realization or histor-

ical information about the project’s development can be safely ignored in the current

decision-making process. The above reasoning leads to the idea of clustering pos-

sible states in the UCT tree, i.e. associate UCT statistics not with the exact project

states but with their “generic” (simplified) representations. The detailed description

of this state-simplification process can be found in [30, 32]. State-simplification pro-

cedure imposes adequate modification of the UCT formula (1):

Q(s, a) ∶= Q(s∗, a)
N(s, a) ∶= N(s∗, a)
N(s) ∶=

∑
a∈A(s) N(s∗, a)

(4)

where s∗ denotes a simplified project state representation.

288 J. Mańdziuk

Finally, specificity of the RAPSP imposes some modifications in the Monte-Carlo

rollouts policy, as fully random state selection can be easily proven not sensible as,

for instance, it never makes sense to wait till the next time unit (the end of the current

unit) when there are no activities, risk responses or effects in progress. In order to

address this property of RAPSP a fairly simple rule-of-thumb policy was developed:

1. if there are any legal activities, then start a randomly sampled one, with proba-

bility 0.9;

2. otherwise, if there are any legal risk responses, then start a randomly sampled

one with probability 0.5;

3. otherwise move to next time unit.

The above probability values were optimized based on some initial tests.

Proactive UCT The other realization of the UCT method in project scheduling is

Proactive UCT (ProUCT) method [29, 30], which incorporates domain knowledge

(the heuristic solver) into BasicUCT simulations. In more detail, while performing

simulations there are only two kinds of available actions: either starting a legal risk

response or letting the HS algorithm create a baseline schedule (as described above)

which is then followed for a number of time units. As soon as a decision point is

reached or a predefined maximum number of time units passes, the control of the

system is transferred back to the UCT part. In other words, each UCT action encom-

passes and governs the process of HS application for several time units. Please note,

that since risk responses are handled by the UCT component of ProUCT, they are

excluded from the HS operational scheme.

Furthermore, these two components are combined in a truly synergetic way, i.e.

the task duration statistics gathered during the UCT simulations are additionally

passed to the HS module in the form of the expected activity durations to improve

HS accuracy. Finally, since there are only two kinds of possible actions (starting a

legal risk response or invoking the HS algorithm to create a new baseline schedule),

whenever at least one eligible risk response is available, a random one is started with

probability 0.8. Otherwise, the HS module is called.

4.2 Results

In this section both UCT approaches (BasicUCT and ProUCT) are briefly compared

with the application of a plain heuristic RAPSP solver HS (which, as stated above,

relies on exactly the same heuristical principles as the ProUCT implementation).

Problem Instances Test cases of the RAPSP were generated by modifying RCPSP

instances provided by the PSPLIB Library [11, 20]—a standard and widely-known

reference site in this domain. Transformation process developed to that extent con-

sisted of two phases. Firstly, all activity duration values were replaced with random

variables with known distributions—thus converting RCPSP into Stochastic RCPSP

(with the use of Beta distribution—the de facto standard in project management

MCTS/UCT in Solving Real-Life Problems 289

area). Secondly, three types of risks and corresponding risk responses were added

(the exact parameters, e.g. lengths, realization probabilities, and budget constraints

are presented in detail in [32]). Observe that even though the transformation proce-

dure is deterministic, the resulting RAPSP instances are not, i.e. multiple realizations

of the same project may have different durations even with the same strategy due to

different realizations of random variables describing project risks.

In order to thoroughly compare tested methods on projects with various charac-

teristics, 3 transformation modes were introduced in the source paper [32], namely:

Temporary Effects with Separate Budgets (TSep) In this mode non-renewable

resource risks and risk responses would have temporary effects, lasting 10–30 and

40 time units, respectively. Consequently, no combination of risks and risk responses

could render the project unsuccessful by making it impossible to finish all required

activities. Each risk response category would have a separate budget (a non-

renewable resource).

Temporary Effects with Shared Budget (TSh) TSh differed from TSep only in

that a common budget was introduced for all 3 types of risk responses. Projects of

TSh type allowed for more flexibility in deciding about risk responses since more

legal risk responses combinations were available, thus making the task even more

complex and more dynamic than in the previous case.

Permanent Effects with Separate Budgets (PSep) In this mode risk response bud-

gets were again separate, but non-renewable resource risk and risk-response effects

were permanent. Consequently, certain combinations of risks could, in principle,

lead to a project failure. This threat could be multiplied by poor risk response budget

management.

For the sake of space savings the third type of transformation, which significantly

differs from the former two by the possibility of the project’s failure and therefore

requires application of slightly different success measures, will be omitted here.

Testing Procedure Due to highly non-deterministic nature of the task, the solvers

were tested on several thousand problem instances, in total, so as to obtain meaning-

ful results. Each tested problem instance was solved by each and every algorithm.

Furthermore, for each instance, the same seed was used for a random number gen-

erator for all solvers, i.e. should all the solvers make the same decisions for a given

problem instance, the yielded results would all be the same (the same risks would

materialize at the same times).

Projects with 30, 60 and 120 activities were considered in the experiment, with the

problem instance quantities respectively equal to 480, 480 and 100, for each project

size and each of the two transformation modes (2120 test runs in total). Two statistics

were calculated: the average relative project duration and the win rate. In the first

(length-based) comparison, for each project instance the best performing method

(or more than one method in the case of ties) was assigned a result of 100%, and

the remaining ones had values proportionally higher. The latter statistic (win rate)

simply equaled the number of experiments in which a given solver accomplished

290 J. Mańdziuk

(a) Duration (b) Win rate

Fig. 2 TSep: relative project durations (left) and solvers win rates (right). a Duration b Win rate

(a) Duration (b) Win rate

Fig. 3 TSh: relative project durations (left) and solvers win rates (right). a Duration b Win rate

the best result (the relative project duration of 100%) divided by the total number of

experiments. Win rates might not sum up to 100% as multiple solvers could achieve

the same result for any given problem instance. Solvers’ internal parameters were set

up based on some number of preliminary tests devoted to their calibration.

Results Results for the projects obtained using the TSep transformation are presented

in Fig. 2a and b, respectively. It can be seen from the figures that BasicUCT fared

visibly worse than the two other methods, and that ProUCT accomplished slightly

(though statistically significantly) better outcomes than HS.

Similar qualitative results were obtained in the case of TSh experiment, which

involved one shared non-renewable resource treated as a risk-response budget. This

new feature added another layer of complexity to the problem, and consequently

more sophisticated risk-management strategies were possible and also more risk

response related decisions were available in practice. Figure 3a and b show that also

in this case ProUCT achieved a (statistically significant) victory over competitive

methods. This can be attributed to the proactive nature of the ProUCT algorithm

and its clearly being better-suited for dealing with risk responses via the use of UCT

algorithm than BasicUCT. Statistical significance of the differences in the results

obtained by any two solvers was verified using Wilcoxon signed-rank test [31].

5 Conclusions

This study and related works indicate that the applicability of MCTS/UCT method

extends beyond games domain where it has already established itself the state-of-

MCTS/UCT in Solving Real-Life Problems 291

the-art approach. While the method is, in principle, aheuristic it turns out that taking

advantage of domain knowledge has a twofold advantage over vanilla UCT. First of

all, efficient application of domain knowledge allows for shrinking the UCT tree,

by either grouping some of the states or by restricting the edges in the tree to truly

relevant actions only. Both these possibilities were demonstrated in this paper in the

case of CVRPwTJ and RAPSP—two NP-hard scheduling tasks. For both of them a

problem-tuned application of the MCTS/UCT algorithm proved to be a stronger (or

at least competitive) approach than heuristic-based solution techniques used hith-

erto. The results suggest that in the case of complex and highly dynamic problems

the synergistic UCT + heuristic approach outperforms application of each of the

component methods in isolation.

References

1. Arneson, B., Hayward, R.B., Henderson, P.: Monte Carlo tree search in hex. IEEE Trans. Com-

put. Intell. AI Games 2(4), 251–258 (2010)

2. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,

Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search meth-

ods. IEEE Trans. Comput. Intell. AI in Games 4(1), 1–43 (2012)

3. Chaslot, G., Winands, M.H., Szita, I., Van den Herik, H.J.: Cross-entropy for Monte-Carlo tree

search. ICGA J. 31(3), 145–156 (2008)

4. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery

points. Operat. Res. 12(4), 568–581 (1964)

5. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: Com-

puters and Games, pp. 72–83. Springer (2007)

6. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., Teytaud, O.: The

grand challenge of computer go: Monte Carlo tree search and extensions. Commun. ACM

55(3), 106–113 (2012)

7. Gelly, S., Silver, D.: Achieving master level play in 9 × 9 computer go. AAAI. 8, 1537–1540

(2008)

8. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the AAAI competi-

tion. AI Mag. 26(2), 62–72 (2005)

9. Kelley, J.E., Walker, M.R.: Critical-path planning and scheduling. IRE-AIEE-ACM ’59 (East-

ern), ACM (1959) 160–173

10. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Proceedings of the 17th

European conference on Machine Learning. ECML’06, pp. 282–293. Springer, Berlin, Heidel-

berg (2006)

11. Kolisch, R., Sprecher, A.: PSPLIB—a project scheduling library. Eur. J. Oper. Res. 96, 205–

216 (1996)

12. Mańdziuk, J.: Computational intelligence in mind games. In: Duch, W., Mańdziuk, J. (eds.)

Challenges for Computational Intelligence. Studies in Computational Intelligence, vol. 63, pp.

407–442. Springer, Berlin, Heidelberg (2007)

13. Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligent Game Playing. Vol-

ume 276 of Studies in Computational Intelligence. Springer, Berlin, Heidelberg (2010)

14. Mańdziuk, J., Świechowski, M.: Simulation-based approach to vehicle routing problem with

traffic jams. In: 4th IEEE Symposium on Computational Intelligence for Human-like Intelli-

gence (CIHLI16), pp. 1–8. Athens, Greece, IEEE (2016)

15. Mańdziuk, J., Świechowski, M.: Swarm intelligence in solving stochastic capacitated vehicle

routing problem. In: International Conference on Artificial Intelligence and Soft Computing

(ICAISC), Zakopane, Poland, LNAI, vol. 10246, pp. 543–552. Springer (2017)

292 J. Mańdziuk

16. Mańdziuk, J., Świechowski, M.: UCT in capacitated vehicle routing problem with traffic jams.

Inf. Sci. vol. 406–407, pp. 42–56. Elsevier (2017)

17. Mańdziuk, J., Żychowski, A.: A memetic approach to vehicle routing problem with dynamic

requests. Appl. Soft Comput. 48, 522–534 (2016)

18. NEO. Networking and Emerging Optmization: (2013). http://neo.lcc.uma.es/vrp/vrp-

instances/capacitated-vrp-instances/

19. Pichpibul, T., Kawtummachai, R.: An improved Clarke and Wright savings algorithm for the

capacitated vehicle routing problem. Sci. Asia, 307–318 (2012)

20. PSPLIB: Project Scheduling Problem Library—PSPLIB. http://www.om-db.wi.tum.de/psplib/

main.html

21. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go

with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

22. Słowiński, R., Wȩ glarz, J.: Advances in Project Scheduling. Studies in Production and Engi-

neering Economics. Elsevier Science Limited (1989)

23. Świechowski, M., Mańdziuk, J.: Self-adaptation of playing strategies in general game playing.

IEEE Trans. Comput. Intell. AI Games 6(4), 367–381 (2014)

24. Świechowski, M., Mańdziuk, J., Ong, Y.S.: Specialization of a UCT-based general game play-

ing program to single-player games. IEEE Trans. Comput. Intell. AI Games 8(3), 218–228

(2016)

25. Świechowski, M., Park, H., Mańdziuk, J., Kim, K.: Recent advances in general game playing.

Sci. World J. (2015). http://dx.doi.org/10.1155/2015/986262

26. Syed, O., Syed, A.: Arimaa—a new game designed to be difficult for computers. ICGA 26,

138–139 (2003)

27. Teytaud, F., Teytaud, O.: Creating an upper-confidence-tree program for havannah. In:

Advances in Computer Games, pp. 65–74. Springer (2010)

28. Walȩdzik, K., Mańdziuk, J.: An automatically-generated evaluation function in general game

playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)

29. Walȩdzik, K., Mańdziuk, J., Zadrożny, S.: Proactive and reactive risk-aware project schedul-

ing. In: 2nd IEEE Symposium on Computational Intelligence for Human-like Intelligence

(CIHLI14), pp. 94–101. Orlando, FL, USA, IEEE (2014)

30. Walȩdzik, K., Mańdziuk, J., Zadrożny, S.: Risk-aware project scheduling for projects with var-

ied risk levels. In: 3rd IEEE Symposium on Computational Intelligence for Human-like Intel-

ligence (CIHLI15), pp. 1642–1649. Cape Town, South Africa, IEEE (2015)

31. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

32. Walȩdzik, K., Mańdziuk, J., Applying Hybrid Monte Carlo Tree Search Methods to Risk-Aware

Project Scheduling Problem, Inf. Sci, (2017). (in press). http://dx.doi.org/10.1016/j.ins.2017.

08.049

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://www.om-db.wi.tum.de/psplib/main.html
http://www.om-db.wi.tum.de/psplib/main.html
http://dx.doi.org/10.1155/2015/986262
http://dx.doi.org/10.1016/j.ins.2017.08.049
http://dx.doi.org/10.1016/j.ins.2017.08.049

Interactive Cone Contraction
for Evolutionary Mutliple Objective
Optimization

Miłosz Kadziński, Michał K. Tomczyk and Roman Słowiński

Abstract We present a new interactive evolutionary algorithm for Multiple Objec-

tive Optimization (MOO) which combines the NSGA-II method with a cone contrac-

tion method. It requires the Decision Maker (DM) to provide preference information

in form of a reference point and pairwise comparisons of solutions from a current

population. This information is represented with a compatible Achievement Scalar-

izing Function (ASF) which is used to guide the evolutionary search towards the

most preferred region of the Pareto front. The performance of the proposed algorithm

is illustrated on a set of benchmark problems. The experimental results confirm its

ability to converge quickly to the DM’s most preferred region. Its competitive advan-

tage over the state-of-the-art method, called NEMO-0, is increasing when the DM

provides a richer preference information composed of a greater number of pairwise

comparisons of solutions.

Keywords Multiple objective optimization ⋅ Achievement scalarizing

function ⋅ Preference cone ⋅ Cone contraction ⋅ Pairwise comparisons

M. Kadziński ⋅ M.K. Tomczyk ⋅ R. Słowiński (✉)

Institute of Computing Science, Poznań University of Technology,

60-965 Poznań, Poland

e-mail: roman.slowinski@cs.put.poznan.pl

M. Kadziński

e-mail: milosz.kadzinski@cs.put.poznan.pl

M.K. Tomczyk

e-mail: michal.tomczyk@cs.put.poznan.pl

R. Słowiński

Systems Research Institute Polish Academy of Sciences, 01-447 Warsaw, Poland

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_12

293

294 M. Kadziński et al.

1 Introduction

Multiple Objective Optimization (MOO) is concerned with problems involving sev-

eral objectives to be optimized simultaneously, subject to a set of constraints [3]. It

has been applied in many domains, including engineering design, economics, man-

agement, transportation, and production. In all these fields, decision making needs

to account for multiple conflicting viewpoints, which implies that there is no objec-

tively best solution. Consequently, MOO methods aim at identifying a set of non-

dominated solutions, which form a Pareto front in the objective space.

In the recent years, Evolutionary Multiple Objective Optimization (EMO) meth-

ods are prevailing in decision contexts where an entire Pareto front needs to be

approximated [1]. These algorithms mimic the process of natural evolution by pro-

gressively modifying a set of solutions through mutation, recombination, and selec-

tion [9]. Due to a smart simulation of the principles of reproduction and survival of

the fittest, EMO methods have proven their suitability for finding a well-distributed

set of non-dominated solutions, being a good approximation of the Pareto front, in

many real-world optimization problems [3].

Nonetheless, when using EMO for approximating an entire Pareto front, one

needs to be aware of some concerns. Firstly, evaluating a large set of very diverse

solutions contained in the approximation of the Pareto front with the aim of identi-

fying the most preferred solution may be demanding for the Decision Maker (DM)

in terms of the required cognitive effort. Secondly, generation of an entire represen-

tation of the Pareto front may be resource intensive. Thirdly, when the number of

objectives increases, a selection pressure imposed by the traditional EMO methods

may be insufficient to ensure a satisfactory quality of approximation and distribution.

To address these problems, one has proposed to guide the evolutionary optimiza-

tion by integrating interactively some preference information provided by the DM. In

this way, the search may be focused on the DM’s most preferred region of the Pareto

front, the pace of convergence increases, and the pressure is strengthened enough to

effectively deal with many-objective problems.

The existing interactive evolutionary algorithms account for preference informa-

tion provided in different forms and employ various preference models. When it

comes to the former, the prevailing trend in MOO consists in asking the DM to com-

pare some pairs of solutions from a current population (see, e.g., [4] and [13]). On

the practical side, this allows to avoid by the DM a direct reference to some technical

parameters. From the methodological viewpoint, the inference of a preference model

reproducing such natural holistic preferences necessitates looking for the rational

basis through which the desired pairwise comparisons were made [10].

As far as models used to represent DM’s preferences are concerned, the majority

of interactive evolutionary algorithms incorporate value functions. In particular, in

[7] and [2] one employed, respectively, polynomial or non-linear complex functions.

Conversely, [13] and [4] proposed to use an additive value model. Whichever the

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 295

form of the function, the scores it provides allow comprehensive evaluation of the

solutions in a given population. Such results can be used to guide the evolutionary

search.

In this paper, we propose a new interactive approach to MOO, which combines

an evolutionary algorithm, called NSGA-II [8], with an interactive cone contraction

method originally conceived to deal with a limited number of solutions [10]. We

require the DM to define a reference point and provide – at regular intervals – pair-

wise comparisons of some solutions. These pairwise comparisons are represented

with an Achievement Scalarizing Function (ASF) [15]. The directions of the iso-

quants of all compatible ASFs form a preference cone in the objective space, which

is gradually contracted when more pairwise comparisons are provided. The solu-

tions which are situated within the cone correspond better to the DM’s preferences.

To promote such solutions in the optimization run, we modify NSGA-II so that it

accounts for distances of the solutions from the reference point according to a com-

patible ASF which is the most discriminant with respect to the solutions compared

pairwise by the DM. The phases of preference elicitation and evolutionary search

alternate until the population is well-converged.

The use of the proposed algorithm is illustrated by examples revealing its ability

to focus the search on the DM’s most preferred region. We also discuss results of the

experiments concerning the quality of population constructed by the method, as well

as its convergence speed for different benchmark problems and various simulated

decision making policies.

2 Concepts: Definitions and Notation

Multiple Objective Optimization. We consider MOO problem in which a set of

solutions A = {a1, a2,…} is evaluated in view of m conflicting objectives, F =
{f1, f2,… , fm}. Each solution ai ∈ A is associated with an evaluation vector denoted

by f (ai) = [f1(ai), f2(ai),… , fm(ai)]. Without loss of generality, we assume that for all

objectives less is preferred to more. Thus, a general formulation of a MOO problem

is:

Minimize {f1(ai), f2(ai),… , fm(ai)}
subject to ai ∈ S, (1)

where S is a non-empty feasible region.

Non-dominated Solutions. Solution ai ∈ A is non-dominated if and only if there is

no other ak ∈ A such that ak is at least as good as ai with respect to all objectives,

and strictly better for at least one objective.

296 M. Kadziński et al.

Preference Model. We require the DM to provide some desired values on all objec-

tives which contribute to the definition of a reference point z̄ = {z̄1,… , z̄m}. Most

often, reference points correspond to objective values that the DM would like to

achieve. To represent preferences of the DM and comprehensively judge the quality

of solutions, we use an achievement scalarizing function. It provides a distance of

solution ai ∈ A from reference point z̄. ASF is defined as follows [15]:

s(ai, 𝜆, f) = maxj{𝜆j(fj(ai) − z̄j)} + 𝜌

m∑

j=1
(fj(ai) − z̄j), (2)

where 𝜆 = [𝜆1,… , 𝜆m] is a weighting vector, 𝜆j ≥ 0, j = 1,… ,m, and 𝜌 > 0 is an

augmentation multiplier. Clearly, the less s(ai, 𝜆, f), the more ai is preferred to the

DM.

Preference Information. During the optimization run, we expect the DM to answer

pairwise elicitation questions in the form “which one do you prefer, ai or ak?”

for ai, ak ∈ A [6]. The pairs to be compared are either selected by the DM or

drawn randomly. Using ASF, we assume that it is suitable for representing the

DM’s preferences. Thus, answering ai by the DM (denoted by ai ≻DM ak) imposes

s(ai, 𝜆, f) < s(ak, 𝜆, f), and indication of ak as more preferred implies an inverse

inequality. Hence, ai ≻DM ak ⇒ ∃j∀l 𝜆l(fl(ai) − z̄l) + 𝛾 ≤ 𝜆j(fj(ak) − z̄j), where 𝛾 =
𝜌

∑m
j=1 𝜆j(fj(ai) − fj(ak)). In this regard, the set of constraints E(DM) given below

translates all pairwise comparisons provided by the DM to a compatible ASF:

for all ai ≻DM ak ∶
[
(
𝜆1(f1(ai) − z̄1) + 𝛾 + 𝜀 ≤ 𝜆j(fj(ak) − z̄j)

)
∧(

𝜆2(f2(ai) − z̄2) + 𝛾 + 𝜀 ≤ 𝜆j(fj(ak) − z̄j)
)
∧

...(
𝜆m(fm(ai) − z̄m) + 𝛾 + 𝜀 ≤ 𝜆j(fj(ak) − z̄j)

)
] ,

for some j = 1,… ,m

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

E(DM)

where 𝜀 is an arbitrarily small positive value.

If 𝜀
∗ = max 𝜀, s.t. E(DM), is greater than 0, the set of compatible ASFs s(DM) is

non-empty. Otherwise, the provided preference information is inconsistent with the

assumed preference model, which means that there is no ASF that would reproduce

all pairwise comparisons provided by the DM.

Representative Achievement Scalarizing Function. If s(DM) ≠ ∅, there is usu-

ally more than one compatible ASF. In this paper, to evaluate a set of solutions we

will use a single compatible ASF sR ∈ s(DM), which is obtained by maximizing

𝜀, subject to E(DM). It aims at discriminating comprehensive values of solutions

compared pairwise by the DM. However, since E(DM) is non-linear, to identify the

most discriminant ASF, we will use Monte Carlo simulation [14]. For this purpose,

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 297

we sample a large set of weights 𝜆 from a uniform distribution, and select the one

for which s(ak, 𝜆, f) − s(ai, 𝜆, f) for any ai ≻DM ak is maximal. Clearly, sR imposes a

complete order on set A. In particular, ai is preferred to ak according to sR (ai ≻sR ak)
iff sR(ai, 𝜆R, f) < sR(ak, 𝜆R, f).

Dealing with Incompatibility of Preference Information. If there is no ASF com-

patible with the DM’s preferences, some constraints underlying the inconsistency

need to be removed from E(DM). For this purpose, the procedure removes the con-

straints representing the oldest pairwise comparisons. Once the set of constraints

becomes feasible, the method reintroduces the removed constraints starting from

these corresponding to the newest pairwise comparisons until feasibility is main-

tained [5].

3 Interactive Cone Contraction for Evolutionary Multiple
Objective Optimization

The EMO methods aim to approximate an entire Pareto front. In this paper, we refer

to Non-dominated Sorting Genetic Algorithm II (NSGA-II) [8], which starts the

search with the initialization of random population P0 composed of N solutions.

In iteration t, N offspring solutions Qt are created using the usual genetic opera-

tors applied to the parents Pt. Then, both sets of solutions are combined to obtain

population Rt = Pt ∪ Qt of size 2N. The new population (Pt+1) is constructed by:

∙ incorporating the best Pareto fronts (1, 2, …, l) from Rt that entirely fit in Pt+1
(i.e.,

∑l
k=1 |k| ≤ N);

∙ filling the remaining slots (N −
∑l

k=1 |k|) in Pt+1 with the best solutions from

l+1 according to the crowding distance operator.

The process is iterated until a stopping criterion is met (usually, the algorithm is run

for a fixed number of generations).

The proposed algorithm combines NSGA-II with an interactive cone contrac-

tion method [10]. The major difference consists in asking the DM to provide ref-

erence point z̄ and to answer a single pairwise comparison question at regular elic-

itation intervals (EI). Analogously to NSGA-II, the method incorporates fast non-

dominated sorting algorithm as a primary criterion when constructing a new pop-

ulation. When it comes to the secondary criterion, instead of promoting solutions

with the greatest crowding distance, we favor these whose distance from z̄ is the

least according to a representative ASF, sR. Algorithm 1 describes the use of the

proposed method for the t-th generation.

298 M. Kadziński et al.

Algorithm 1 A single iteration of the interactive evolutionary cone contraction

method for constructing the t-th generation (adapted from [12]).

Rt = Pt ∪ Qt
if Time to ask the DM then

Elicit DM’s pairwise comparison

Determine the most discriminant achievement scalarizing function sR
end if
 = 𝚏𝚊𝚜𝚝-𝚗𝚘𝚗-𝚍𝚘𝚖𝚒𝚗𝚊𝚝𝚎𝚍-𝚜𝚘𝚛𝚝(𝚁𝚝)
Pt+1 = ∅ and i = 1
while |Pt+1| + |i| ≤ N do

Pt+1 = Pt+1 ∪ i
i = i + 1

end while
Sort(i, ≻sR)
Pt+1 = Pt+1 ∪ i[1 ∶ (N − |Pt+1|)]
Qt+1 = 𝚖𝚊𝚔𝚎-𝚗𝚎𝚠-𝚙𝚘𝚙(𝙿𝚝+𝟷)

t = t + 1

4 Experimental Results

In this section, we study the performance of the proposed interactive evolutionary

algorithm on a set of benchmark MOO problems involving from 2 to 5 objectives.

Our method (let us denote it by ECC-MRW – evolutionary cone contraction – the
most representative weights) is compared against NSGA-II and NEMO-0 [4]. The

latter method is similar to ECC-MRW with the proviso that it incorporates a general

additive value function as an internal preference model.

In order to model the interaction, we simulate an artificial DM applying some pre-

defined preference model UDM for indicating more preferred option in each pair of

solutions selected by the algorithm. In particular, we use either linear or Chebycheff

function defined as follows:

ULIN
DM (ai) =

m∑

j=1
wjfj(ai), (3)

and UCHEB
DM (ai) = maxj=1,…,m{wjfj(ai)}, (4)

where wj, j = 1,… ,m, is a weight of the j-th objective. Note that since all objectives

are of cost-type, these functions are to be minimized.

The solutions presented to the DM are non-dominated and, whenever possible,

they have the least distance from z̄ for some compatible ASF. In out tests, we assumed

z̄j = 0, for j = 1,… ,m, thus, focusing more on investigating the impact of pairwise

comparisons.

Regarding generation of offspring population, to fill the mating pool we perform

tournament selection with size of 5. We generate offspring by simulated binary

crossover with probability of 1.0 and distribution index of 10 for NSGA-II. For

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 299

NEMO-0 and ECC-MRW the distribution index is set to 1.0 in order to ensure the

convergence of the population. Furthermore, we apply polynomial mutation with

probability of 1∕v (where v is the number of decision variables) and distribution

index of 10 for all the algorithms.

4.1 Illustrative Examples

In this subsection, we use 2-objective benchmark problems ZDT1 and DTLZ2 for

an initial graphical presentation of the convergence and accuracy of the proposed

method. We assume that elicitation interval EI is equal to 8, population size is

set to N = 50, whereas two accounted artificial DM’s Chebycheff value functions

are parameterized with the following weights (w1,w2) for: UCHEB
DM,1 − (0.5, 0.5) and

UCHEB
DM,2 − (0.3, 0.7).
Figure 1 shows the typical results of ECC-MRW, NEMO-0, and NSGA-II after

40, 80, and 200 generations for ZDT1 with a convex Pareto front and a DM whose

value system is simulated with UCHEB
DM,1 . NSGA-II attempts to approximate the entire

Pareto front and gets there only after 200 generations. Conversely, ECC-MRW and

NEMO-0 focus the search only on the region which is relevant from the DM’s per-

spective. For example, after 80 generations both interactive algorithms converged to

the DM’s most preferred region, however, ECC-MRW reached a desired part of the

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.20 0.40 0.60 0.80 1.00

NSGA-II (GEN=40)
NEMO-0 (GEN=40)
ECC-MRW (GEN=40)
NSGA-II (GEN=80)
NEMO-0 (GEN=80)
ECC-MRW (GEN=80)
NSGA-II (GEN=200)
NEMO-0 (GEN=200)
ECC-MRW (GEN=200)
Pareto Front

0.25

0.35

0.45

0.55

0.25 0.35 0.45 0.55

1f

2f

Fig. 1 Exemplary results of ECC-MRW, NEMO-0, and NSGA-II on ZDT1 after 40, 80, and 200

generations for UCHEB
1 ((w1,w2) = (0.5, 0.5))

300 M. Kadziński et al.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.20 0.40 0.60 0.80 1.00

NSGA-II (GEN=40)
NEMO-0 (GEN=40)
ECC-MRW (GEN=40)
NSGA-II (GEN=80)
NEMO-0 (GEN=80)
ECC-MRW (GEN=80)
NSGA-II (GEN=200)
NEMO-0 (GEN=200)
ECC-MRW (GEN=200)
Pareto Front

0.15

0.25

0.35

0.50 0.60 0.70

1f

2f

Fig. 2 Exemplary results of ECC-MRW, NEMO-0, and NSGA-II on ZDT1 after 40, 80, and 200

generations for UCHEB
2 ((w1,w2) = (0.3, 0.7))

Pareto front faster. This proves that incorporation of pairwise comparisons into the

evolutionary search allows speeding up the convergence of the optimization algo-

rithm.

Figure 2 shows the results for the same test problem though with a different DM’s

value function UCHEB
DM,2 . Again, with progressive specification of preference infor-

mation, the interactive evolutionary algorithms are able to systematically focus the

search. Clearly, with more pairwise comparisons, they have a more precise under-

standing of the DM’s needs. Moreover, the pace of convergence of ECC-MRW is

confirmed to be faster than that of NEMO-0. Referring to the form of UCHEB
DM,2 , let us

remind that the greater the weight, the more important it is to minimize the respec-

tive objective. Since in this case w2 = 0.7 > w1 = 0.3, the interactive evolutionary

algorithms put more attention on optimizing f2 rather than f1, thus, converging to

a different part of the Pareto front than when being guided with UCHEB
DM,1 with equal

weights w1 = w2 = 0.5 (see Fig. 1).

Such characteristic performance of the accounted MOO algorithms is confirmed

for DTLZ2 with a concave Pareto front (see Figs. 3 and 4). In this case, the advantage

of ECC-MRW over NEMO-0 is even more evident. Indeed, ECC-MRW focuses on

the most interesting regions of the Pareto front faster and more accurately. The latter

is particularly visible in the sub-figures presented in the bottom-left corners, which

exhibit populations created after 200 generations. This is not surprising, as given an

artificial DM with the Chebycheff value function, an ASF-based preference model

is able to better capture the DM’s preferences.

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 301

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.25 0.50 0.75 1.00 1.25 1.50

NSGA-II (GEN=40)
NEMO-0 (GEN=40)
ECC-MRW (GEN=40)
NSGA-II (GEN=80)
NEMO-0 (GEN=80)
ECC-MRW (GEN=80)
NSGA-II (GEN=200)
NEMO-0 (GEN=200)
ECC-MRW (GEN=200)
Pareto Front0.65

0.75

0.65 0.75

1f

2f

Fig. 3 Exemplary results of ECC-MRW, NEMO-0, and NSGA-II on DTLZ2 after 40, 80, and 200

generations for UCHEB
1 ((w1,w2) = (0.5, 0.5))

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.25 0.50 0.75 1.00 1.25 1.50

NSGA-II (GEN=40)
NEMO-0 (GEN=40)
ECC-MRW (GEN=40)
NSGA-II (GEN=80)
NEMO-0 (GEN=80)
ECC-MRW (GEN=80)
NSGA-II (GEN=200)
NEMO-0 (GEN=200)
ECC-MRW (GEN=200)
Pareto Front0.25

0.35

0.45

0.80 0.90 1.00

1f

2f

Fig. 4 Exemplary results of ECC-MRW, NEMO-0, and NSGA-II on DTLZ2 after 40, 80, and 200

generations for UCHEB
2 ((w1,w2) = (0.3, 0.7))

302 M. Kadziński et al.

4.2 Convergence in Terms of the Best-in-population and
Average-of-population Values

In this subsection, we study the convergence of the proposed interactive evolutionary

algorithm. For this purpose, we examine the relative value differences Urel
DM of the

solutions the algorithm constructs:

Urel
DM(ai) = [UDM(ai) − UDM(aw)]∕UDM(aw), (5)

where aw is the true Pareto-optimal solution that is the best in view of the assumed

DM’s value function UDM . For each population, these can be used to derive two

convergence measures [5, 11]:

∙ best-in-population relative value difference, denoted by BRVD, i.e., Urel
DM(a

∗) of

the best solution a∗ according to UDM contained in a given population found by

the algorithm; this convergence measure indicates how far is the best solution in

the population from the Pareto-optimal solution that is truly the best in view of the

assumed DM’s value function UDM; the same value function is used to designate

the best solution in the population;

∙ average-of-population relative value difference, denoted by ARVD, i.e., mean

Urel
DM(ai) for all solutions ai in a given population found by the algorithm; this

convergence measure indicates how far is an average solution in the population

from the Pareto-optimal solution that is truly the best in view of the assumed DM’s

value function UDM; the same value function is used to calculate the average value

of solutions in the population; this measure says whether the algorithm is appro-

priately focusing the search on the region of the greatest interest to the DM.

All results have been averaged over 100 independent runs, each for different weight

vectors of the DM’s assumed value function drawn from a uniform distribution using

the Hit-And-Run algorithm [14].

Figures 5 and 6 present the convergence plots for the best and average conver-

gence measures (BRVD and ARVD) for, respectively, ZDT2 and DTLZ2 (the exact

simulation parameters are provided in Table 1). Note that to make the differences

between BRVD and ARVD for NSGA-II, NEMO-0, and ECC-MRW more evident,

we have used a logarithmic scale for the vertical axes in these figures. These plots

demonstrate:

∙ a competitive advantage that the interactive evolutionary algorithms gain over

NSGA-II when they accumulate a sufficient number of pairwise comparisons to

get a good understanding of the DM’s preferences;

∙ a difference between best-in-population and average-of-population convergence

measures; for example, this difference tends to be small for interactive algorithms

and very large for NSGA-II;

∙ a generation number at which the performance of algorithms stabilizes due to

either converging to the most preferred region (in case of ECC-MRW and NEMO-

0) or getting stuck as a result of insufficient selection pressure (in case of NSGA-

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 303

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

0 50 100 150 200 250 300 350 400

C
on

ve
rg

en
ce

 m
ea

su
re

 =
 B

R
V

D
 o

r A
R

V
D

Generation

NSGA-II BRVD

NSGA-II ARVD

NEMO-0 BRVD

NEMO-0 ARVD

ECC-MRW BRVD

ECC-MRW ARVD

Fig. 5 Best and average convergence measures (BRVD and ARVD) in successive generations of

ECC-MRW, NEMO-0, and NSGA-II applied to ZDT2 with m = 2 objectives and the DM’s Cheby-

cheff value function

0.0001

0.0010

0.0100

0.1000

1.0000

0 50 100 150 200 250

C
on

ve
rg

en
ce

 m
ea

su
re

 =
 B

R
V

D
 o

r A
R

V
D

Generation

NSGA-II BRVD

NSGA-II ARVD

NEMO-0 BRVD

NEMO-0 ARVD

ECC-MRW BRVD

ECC-MRW ARVD

Fig. 6 Best and average convergence measures (BRVD and ARVD) in successive generations

of ECC-MRW, NEMO-0, and NSGA-II applied to DTLZ2 with m = 3 objectives and the DM’s

Chebycheff value function

II); note that such a number can be interpreted in terms of accuracy in identifying

the DM’s most preferred solution, or the Pareto front; in fact, low values of con-

vergence measures BRVD and ARVD for ECC-MRW confirm that the proposed

algorithm works well.

304 M. Kadziński et al.

To comprehensively compare the performance of ECC-MRW, NEMO-0, and

NSGA-II on various benchmark MOO problems, we focused our attention on the

convergence measures BRVD and ARVD. We tested the algorithms against the fol-

lowing benchmark problems: ZDT1, ZDT2, DTLZ1, DTLZ2, DTLZ3, and DTLZ4.

For DTLZ1 test problem we reduced the distance-related bias from 100.0 to 1.0 in

order to focus more on the analysis of the convergence of the algorithms towards the

most preferred region. For each of the problems, in Tables 1 and 2 we provide an

experimental setting. It consists of the assumed DM’s value function, characteristics

of the problem (numbers of objectives m and decision variables v), population size

N, and number of generations for which the algorithms was run G. The elicitation

interval EI was adjusted so that the DM provided 50 pairwise comparisons through-

out G generations. Moreover, when presenting the results in Tables 1 and 2, for each

problem we distinguish in bold the best performing algorithm as well as the one(s)

that did not prove to be significantly worse than it according to a Mann-Whitney-U

test with 5% significance level.

In Table 1, we present the minimal values of BRVD and ARVD throughout G
generations for three algorithms and eleven different settings. For clarity of presen-

tation, the results presented in the main part of the table have been multiplied by

factor p whose value (from 103 to 105, reported in the table) depends on the specific

setting. We also provide an average rank of each algorithm across 100 simulation

runs with different DM’s value functions, e.g., Rank = 1 means that the algorithm

was the best with respect to BRVD (or ARVD) in all 100 runs.

When it comes to the quality of the best constructed solution (BRVD), ECC-

MRW is significantly better than NEMO-0 for all settings involving the DM’s Cheby-

cheff value function. This is confirmed by the mean values as well as by the expected

ranks. For ECC-MRW, the lowest (the worse) such rank is equal to 1.4 (see DTLZ4),

whereas for NEMO-0 the highest (the best) rank is 1.8 (see DTLZ1). Also, low stan-

dard deviation (SD) confirms the robustness of ECC-MRW in terms of its ability for

dealing with different decision policies.

As far as the average value of the entire best population is concerned (ARVD),

ECC-MRW is superior to other methods for the vast majority of considered settings

involving UCHEB
DM . In fact, for many of these settings, ARVD for ECC-MRW is more

advantageous than BRVD for NEMO-0, which indicates that on average all solutions

returned by ECC-MRW are more preferred to the best solution constructed with

NEMO-0. Nonetheless, for few considered variants of DTLZ, the advantage of ECC-

MRW over NEMO-0 is not statistically significant.

Conversely, for a unique test problem ZDT1 that incorporated the DM’s linear

value function ULIN
DM , NEMO-0 proved to be more advantageous than ECC-MRW.

Finally, whichever the considered problem, NSGA-II is much worse than both inter-

active evolutionary algorithms. It is not surprising since the latter ones construct

only solutions that are relevant from the DM’s point of view.

To evaluate the performance of the algorithms throughout all G generations, we

also consider the average values of BRVD and ARVD over G generations. These are

presented in Table 2, using the same convention as in Table 1. The conclusions that

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 305

Ta
bl

e1
M

in
im

a
l

(b
e
s
t)

v
a
lu

e
s

o
f

B
R

V
D

(fi
rs

t
ro

w
)

a
n
d

A
R

V
D

(s
e
c
o
n
d

ro
w

)
th

ro
u
g
h
o
u
t
G

g
e
n
e
ra

ti
o
n
s
,
a
n
d

th
e

e
x
p
e
c
te

d
ra

n
k
Ra

nk
(r

e
s
u
lt

s
a
v
e
ra

g
e
d

o
v
e
r
10
0

r
u
n
s
;

S
D

=
s
ta

n
d
a
rd

d
e
v
ia

ti
o
n
)

P
ro

b
le

m
P

a
ra

m
e
te

rs
N

S
G

A
-I

I
N

E
M

O
-0

E
C

C
-M

R
W

M
e
a
n

S
D

Ra
nk

M
e
a
n

S
D

Ra
nk

M
e
a
n

S
D

Ra
nk

Z
D

T
1

m
=

2
v

=
3
0

E
I

=
6

3
9
.4

2
1
5
.6

0
2
.6

2.
22

3.
82

1.
1

5
8
.2

0
1
0
6
.6

4
2
.3

U
LI
N

D
M

N
=

5
0

G
=

3
0
0

p
=
10

5
1
5
8
0
.1

6
1
0
5
1
.1

7
3
.0

4.
28

7.
76

1.
1

1
0
7
.3

3
1
6
3
.0

1
1
.9

Z
D

T
1

m
=

2
v

=
3
0

E
I

=
6

3
5
.3

6
3
.0

5
3
.0

0
.5

5
2
.6

2
2
.0

0.
00

0.
00

1.
0

U
C
H
EB

D
M

N
=

5
0

G
=

3
0
0

p
=
10

5
2
6
9
.9

4
7
0
.9

7
3
.0

1
.0

8
2
.9

1
1
.6

0.
90

1.
76

1.
4

Z
D

T
2

m
=

2
v

=
3
0

E
I

=
8

3
.5

2
2
.9

0
2
.8

2
.3

7
8
.3

5
2
.1

0.
55

2.
84

1.
2

U
C
H
EB

D
M

N
=

5
0

G
=

4
0
0

p
=
10

3
3
2
7
.6

1
1
3
1
.0

2
3
.0

3
.7

2
1
1
.1

0
1
.8

2.
25

5.
99

1.
2

D
T

L
Z

1
m

=
3

v
=

5
E

I
=

8
1
0
.5

9
6
.7

1
2
.9

5
.0

3
8
.5

4
2
.0

0.
69

1.
46

1.
1

N
=

8
0

G
=

4
0
0

p
=
10

5
1
4
5
.1

3
3
1
.9

0
3
.0

7
.4

5
1
1
.9

8
1
.8

2.
52

5.
79

1.
2

U
C
H
EB

D
M

m
=

5
v

=
5

E
I

=
1
2

3
4
.7

3
1
8
.8

3
3
.0

7
.5

0
1
0
.4

2
1
.8

2.
37

2.
74

1.
3

N
=

2
0
0

G
=

6
0
0

p
=
10

3
3
9
7
.9

9
8
4
.6

3
3
.0

9.
16

11
.8

5
1.

5
6.

33
7.

12
1.

5
D

T
L

Z
2

m
=

3
v

=
1
0

E
I

=
5

9
.7

3
7
.8

0
2
.8

9
.8

8
2
5
.0

3
2
.0

0.
73

1.
99

1.
2

N
=

8
0

G
=

2
5
0

p
=
10

3
2
9
6
.9

2
9
0
.0

3
3
.0

11
.4

2
27

.3
7

1.
5

4.
15

7.
47

1.
5

U
C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
7

2
6
.7

4
1
7
.2

6
2
.8

1
9
.1

4
3
4
.2

6
2
.0

2.
13

3.
73

1.
2

N
=

2
0
0

G
=

3
5
0

p
=
10

3
3
3
9
.2

1
6
1
.3

5
3
.0

2
0
.7

7
3
4
.7

9
1
.6

10
.9

2
16

.8
4

1.
4

D
T

L
Z

3
m

=
3

v
=

1
0

E
I

=
1
0

5
0
.9

1
3
5
.0

8
2
.9

2
6
.2

5
3
1
.3

1
2
.1

3.
61

3.
85

1.
0

N
=

8
0

G
=

5
0
0

p
=
10

3
4
7
5
.3

6
1
0
5
.4

7
3
.0

5
2
.6

3
4
4
.3

1
2
.0

8.
30

8.
31

1.
0

U
C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
1
4

1
7
1
.2

3
1
4
0
.3

7
3
.0

1
5
.2

5
2
6
.3

9
1
.8

5.
74

9.
11

1.
2

N
=

2
0
0

G
=

7
0
0

p
=
10

3
2
1
5
0
.8

3
2
6
9
.6

2
3
.0

3
9
.0

4
4
2
.9

7
1
.8

16
.1

0
20

.2
3

1.
3

D
T

L
Z

4
m

=
3

v
=

1
0

E
I

=
1
0

6
.0

8
5
.9

7
2
.4

1
6
.8

4
4
2
.7

0
2
.2

5.
01

20
.6

9
1.

4
N

=
8
0

G
=

5
0
0

p
=
10

3
2
7
6
.2

4
9
2
.3

3
3
.0

1
7
.1

9
4
2
.6

3
1
.6

9.
48

24
.9

7
1.

4
U

C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
1
4

7
.0

2
6
.6

0
2
.7

7
.9

5
1
1
.4

9
2
.2

2.
93

6.
04

1.
2

N
=

2
0
0

G
=

7
0
0

p
=
10

3
2
3
0
.4

7
4
5
.9

3
3
.0

14
.4

7
23

.3
2

1.
4

10
.7

2
19

.2
3

1.
6

306 M. Kadziński et al.

Ta
bl

e
2

A
v
e
ra

g
e

v
a
lu

e
s

o
f

B
R

V
D

(fi
rs

t
ro

w
)

a
n
d

A
R

V
D

(s
e
c
o
n
d

ro
w

)
th

ro
u
g
h
o
u
t
G

g
e
n
e
ra

ti
o
n
s

a
n
d

th
e

e
x
p
e
c
te

d
ra

n
k
Ra

nk
(r

e
s
u
lt

s
a
v
e
ra

g
e
d

o
v
e
r
10
0

r
u
n
s
;

S
D

=
s
ta

n
d
a
rd

d
e
v
ia

ti
o
n
)

P
ro

b
le

m
P

a
ra

m
e
te

rs
N

S
G

A
-I

I
N

E
M

O
-0

E
C

C
-M

R
W

M
e
a
n

S
D

Ra
nk

M
e
a
n

S
D

Ra
nk

M
e
a
n

S
D

Ra
nk

Z
D

T
1

m
=

2
v

=
3
0

E
I

=
6

6
.6

3
2
.9

7
2
.9

5.
09

2.
26

1.
6

5.
08

2.
50

1.
5

U
LI
N

D
M

N
=

5
0

G
=

3
0
0

p
=
10

3
2
3
.2

6
6
.0

6
3
.0

7.
72

3.
09

1.
6

7.
68

3.
51

1.
4

Z
D

T
1

m
=

2
v

=
3
0

E
I

=
6

7
.7

2
3
.5

9
2
.9

5
.9

2
3
.1

1
1
.9

5.
07

2.
76

1.
2

U
C
H
EB

D
M

N
=

5
0

G
=

3
0
0

p
=
10

3
4
0
.1

6
1
1
.7

3
3
.0

1
3
.1

6
6
.6

0
1
.9

11
.2

8
5.

94
1.

2
Z

D
T

2
m

=
2

v
=

3
0

E
I

=
8

1
5
.6

8
9
.9

8
2
.5

1
4
.7

5
9
.6

2
2
.0

13
.1

5
8.

29
1.

6
U

C
H
EB

D
M

N
=

5
0

G
=

4
0
0

p
=
10

2
4
6
.1

7
1
7
.3

3
3
.0

1
9
.0

1
1
1
.2

9
1
.7

17
.1

9
9.

46
1.

3
D

T
L

Z
1

m
=

3
v

=
5

E
I

=
8

2
.0

0
1
.1

7
2
.7

1
.6

7
1
.2

9
2
.1

0.
85

0.
49

1.
2

N
=

8
0

G
=

4
0
0

p
=
10

2
2
3
.0

5
4
.0

4
3
.0

8
.1

4
2
.5

0
2
.0

4.
75

1.
17

1.
1

U
C
H
EB

D
M

m
=

5
v

=
5

E
I

=
1
2

4
.3

2
3
.0

4
2
.9

1
.1

6
1
.1

7
1
.5

0.
74

0.
37

1.
6

N
=

2
0
0

G
=

6
0
0

p
=
10

2
6
9
.0

8
1
6
.2

4
3
.0

5
.0

4
2
.3

2
1
.9

2.
81

0.
95

1.
1

D
T

L
Z

2
m

=
3

v
=

1
0

E
I

=
5

1
.3

9
0
.9

7
2
.6

1
.8

9
3
.4

3
1
.7

0.
84

0.
98

1.
6

N
=

8
0

G
=

2
5
0

p
=
10

2
3
1
.7

4
8
.7

4
3
.0

5
.1

8
3
.9

0
1
.7

3.
55

1.
59

1.
3

U
C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
7

4
.2

5
2
.6

6
2
.7

2.
44

3.
43

1.
7

1.
22

0.
89

1.
6

N
=

2
0
0

G
=

3
5
0

p
=
10

2
5
3
.0

3
1
0
.3

2
3
.0

4
.7

4
3
.7

0
1
.6

3.
43

1.
43

1.
4

D
T

L
Z

3
m

=
3

v
=

1
0

E
I

=
1
0

1
3
.2

0
9
.2

2
2
.6

1
3
.1

2
9
.7

5
2
.3

7.
72

5.
65

1.
1

N
=

8
0

G
=

5
0
0

p
=
10

2
1
0
5
.0

0
2
1
.3

2
2
.9

7
4
.8

3
2
7
.7

8
2
.1

40
.0

9
14

.4
8

1.
1

U
C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
1
4

2
2
.3

5
1
5
.4

5
2
.9

6
.2

5
5
.2

5
1
.7

3.
88

2.
27

1.
4

N
=

2
0
0

G
=

7
0
0

p
=
10

2
3
0
7
.3

8
6
9
.4

6
3
.0

3
5
.9

8
1
7
.1

8
1
.9

18
.8

7
7.

79
1.

1
D

T
L

Z
4

m
=

3
v

=
1
0

E
I

=
1
0

0.
94

0.
73

1.
7

2
.3

5
4
.0

5
2
.1

1
.8

1
2
.3

7
2
.2

N
=

8
0

G
=

5
0
0

p
=
10

2
2
8
.4

0
9
.4

9
3
.0

4.
59

4.
23

1.
5

3.
93

2.
45

1.
5

U
C
H
EB

D
M

m
=

5
v

=
1
0

E
I

=
1
4

1.
06

1.
06

1.
8

1.
63

2.
62

1.
7

1
.6

4
1
.1

7
2
.5

N
=

2
0
0

G
=

7
0
0

p
=
10

2
2
7
.3

2
9
.6

6
3
.0

3.
79

2.
97

1.
4

3.
82

1.
65

1.
6

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 307

can be derived from their analysis are similar to those for the minimal (best found)

values. The major differences are the following:

∙ for a problem involving the DM’s linear value function, ECC-MRW is competitive

to NEMO-0; this suggests that using ASF as an internal preference model within

the algorithm might get to the more preferred region faster, even when pairwise

comparison questions are answered with ULIN
DM ;

∙ when the DM’s Chebycheff value function is used, the difference between NEMO-

0 and ECC-MRW is smaller; this indicates that in the initial generations, the algo-

rithms attain similar results, while ECC-MRW gains a competitive advantage only

when it cumulates more preference information;

∙ NSGA-II is more advantageous in terms of BRVD, compared to the results

reported in Table 1; this derives from the fact that even if NSGA-II is not able

to discover solutions which are very relevant from the DM’s point of view, it finds

some reasonably good solution quickly.

5 Conclusions and Future Research

In this paper, we presented an interactive evolutionary algorithm, called ECC-MRW,

for dealing with multiple objective optimization problems. The proposed method

requires the DM to provide a reference point and successively compare pairs of

solutions from a current population. Such preference information is represented by

a compatible instance of an achievement scalarizing function. We use the scores of

solutions derived from an application of the most discriminant compatible function

to modify the selection procedure originally used in NSGA-II. This allows the algo-

rithm to guide the evolutionary search towards the region of the greatest interest to

the DM.

Our empirical results show that the proposed method works well. First, we illus-

trated its ability to focus the search by presenting populations obtained at different

stages of the optimization run. We proved that the algorithm was able to converge

to different parts of the Pareto front depending on various weights put in the value

function of a hypothetical DM. Secondly, we presented results concerning the speed

of convergence to the DM’s most preferred region and accuracy in finding the user-

preferred solutions. Our method proved to vastly outperform NSGA-II for all con-

sidered test functions. Its competitive advantage over the state-of-the-art method,

called NEMO-0, was particularly visible when the DM provided a richer prefer-

ence information, i.e., relatively more pairwise comparisons of solutions. Then, for

many benchmark problems, an average quality of the solutions constructed with

ECC-MRW was more advantageous than a quality of the best solution obtained with

NEMO-0.

We envisage the following future research directions:

∙ designing interactive evolutionary algorithms that would take into all compatible

achievement scalarizing functions instead of solely the most discriminant one, and

308 M. Kadziński et al.

incorporating the outcomes of robustness analysis involving all these functions

into the selection procedure;

∙ studying the performance of algorithms for different elicitation intervals, starting

generations for preference elicitation [11], and interaction patterns [7];

∙ proposing adaptive strategies for preference elicitation that would ask the DM for

comparing pairs of solutions only when it is needed, thus, decreasing the cognitive

effort required from the DM;

∙ developing methods for graphical presentation of the populations constructed by

the algorithms during the entire optimization run rather than only these obtained

after arbitrarily selected few generations.

Acknowledgements Miłosz Kadziński and Michał Tomczyk acknowledge financial support from

the Polish National Science Center (grant no. DEC-2013/11/D/ST6/03056).

References

1. Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization: Theoreti-

cal Advances and Applications (Advanced Information and Knowledge Processing). Springer,

New York (2005)

2. Battiti, R., Passerini, A.: Brain-computer evolutionary multiobjective optimization: a genetic

algorithm adapting to the decision maker. IEEE Trans. Evol. Comput. 14(5), 671–687 (2010)

3. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective optimization: interac-

tive and evolutionary approaches. LNCS, vol. 5252. Springer, Berlin (2008)

4. Branke, J., Greco, S., Słowiński, R., Zielniewicz, P.: Learning value functions in interactive

evolutionary multiobjective optimization. IEEE Trans. Evolut. Comput. 19(1), 88–102 (2015)

5. Branke, J., Corrente, S., Greco, S., Słowiński, R., Zielniewicz, P.: Using Choquet intergral as

preference model in interactive evolutionary multiobjective optimization. Eur. J. Oper. Res.

250(3), 884–901 (2016)

6. Ciomek, K., Kadziński, M., Tervonen, T.: Heuristics for prioritizing pair-wise elicitation ques-

tions with additive multi-attribute value models. Omega 71, 27–45 (2017)

7. Deb, K., Sinha, A., Korhonen, P., Wallenius, J.: An interactive evolutionary multiobjective

optimization method based on progressively approximated value functions. IEEE Trans. Evo-

lut. Comput. 14(5), 723–730 (2010)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algo-

rithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

9. Fonseca, C., Fleming, P.: Genetic algorithms for multiobjective optimization: Formulation, dis-

cussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic

Algorithms, pp. 416–423 (1993)

10. Kadziński, M., Słowiński, R.: Interactive robust cone contraction method for multiple objective

optimization problems. Int. J. Inf. Technol. Decis. Making 11(2), 327–357 (2012)

11. Kadziński, M., Tervonen, T., Tomczyk, M., Dekker, R.: Evaluation of multi-objective opti-

mization approaches for solving green supply chain design problem. Omega 68, 168–184

(2017)

12. Kadziński, M., Tomczyk, M.: Interactive Evolutionary Multiple Objective Optimization for

Group Decision. Group Decision and Negotiation 26(4), 693–728 (2017)

13. Phelps, S., Köksalan, M.: An interactive evolutionary metaheuristic for multi-objective com-

binatorial optimization. Manag. Sci. 49(12), 1726–1738 (2003)

Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization 309

14. Tervonen, T., van Valkenhoef, G., Basturk, N., Postmus, D.: Hit-And-Run enables efficient

weight generation for simulation-based multiple criteria decision analysis. Eur. J. Oper. Res.

224(3), 552–559 (2013)

15. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to

vector optimization problems. OR Spektrum 8, 73–87 (1986)

A Review of Fuzzy and Mathematic
Methods for Dynamic Parameter
Adaptation in the Firefly Algorithm

Oscar Castillo, Carlos Soto and Fevrier Valdez

Abstract The firefly algorithm is a bioinspired metaheuristic based on the firefly’s
behavior. This paper presents a review on previous works on parameters analysis
and dynamical parameter adjustment, using different mathematical approches and
fuzzy logic.

Keywords Firefly algorithm ⋅ Parameter adaptation ⋅ Optimization problems ⋅
Mathematical functions ⋅ Fuzzy adaptation

1 Introduction

The metaheuristic algorithms for search and optimization divide their work into two
tasks. The first consist in making an exploration or localization of promising areas,
where the best solutions may be, and the second task, the exploitation, which
consist on concentrating in the areas where the best solutions were found to con-
tinue with the search.

The firefly algorithm (FA) has been proved to be very efficient in solving
multimodal, nonlinear, global optimization problems, classification problems, and
image processing. The fireflies are beetles from the Lampyridae family; which the
main characteristic are their wings. Exist over 2000 species of fireflies; their
brightness comes from the special luminal organs under the abdomen. The flashing
light of the fireflies shines in a specific way for each species. Each shining way is an
optical sign that helps the fireflies to find their couple. The light can also work as a
defense mechanism. This characteristic inspired Xin-She Yang in 2008 to design
the firefly algorithm [27].

O. Castillo (✉) ⋅ C. Soto ⋅ F. Valdez
Tijuana Institute of Technology, Tijuana, BC, Mexico
e-mail: ocastillo@tectijuana.mx

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_13

311

This paper is organized as follow. Section 2 describes the firefly algorithm.
Section 3 is about parameter tuning and dynamic adjustment. Section 4 presents a
summary of previous works with FA and where a dynamical adjustment of the FA
parameters is carried out. Section 5 presents some final comments.

2 Firefly Algorithm

The FA uses three idealized rules:

1. Fireflies are unisex so that one firefly will be attracted to other fireflies regardless
of their sex.

2. The attractiveness is proportional to the brightness, and decreases when the
distance increases between two fireflies. Thus for any two flashing fireflies, the
less bright one will move towards the brighter one. If there is no brighter one
than a particular firefly, then it will move randomly.

3. The brightness of a firefly is determined by the landscape of the objective
function.

As it is shown in Fig. 1, the algorithm begins defining the number of fireflies to
use and the number of iterations. The parameters α, β and γ, controlling the
exploration and exploitation, must be initialized, and the optimization function must
be defined. The next step in the algorithm is the main cycle. The firefly algorithm is
based on the attraction between the fireflies depending its light intensity, in the
algorithm one firefly is selected and then its light intensity is compared with all the
other fireflies. If the light intensity of a firefly A is less bright than the firefly B, then
the firefly A is move towards the firefly B. If not, the firefly has only a random
movement. This process continues until all the iterations are over or a stop criterion
is reached.

2.1 Firefly’s Movement

The firefly moves according to the following equation.

xi+1 = xi + β0e
− γ r2ij xi − xj

� �
+ αε1 ð1Þ

The FA movement consists of three terms to determine the next position of the
firefly. The actual position of the firefly is represented by the vector xi, the second
term manage the exploitation where β0 is the initial attraction of the firefly, γ is the
constriction factor, r is the Euclidean distance between the position of the firefly xi
and the firefly xj. The last term manage the exploration where α is the parameter that
controls how much randomness is allow the firefly to have in its movement and ε1

312 O. Castillo et al.

is a vector that contains random numbers drawn from a Gaussian distribution or
uniform distribution at time t. If β0 = 0, it becomes a simple random walk, or β0 is
the attractiveness at the distance r = 0. On the other hand, if γ = 0, FA reduces to a
variant of particle swarm optimization.

Fig. 1 FA flowchart

A Review of Fuzzy and Mathematic Methods … 313

2.2 Light Intensity and Attractiveness

The variation of light intensity and formulation of the attractiveness are very
important in the firefly algorithm. The attractiveness of a firefly is determined by its
brightness, which can be associated with the encoded fitness function.

As a firefly’s attractiveness is proportional to the light intensity that is seen by
adjacent fireflies, we can now define the variation of attractiveness β with the
distance rij between firefly i and firefly j. The light intensity decreases with the
distance from its source, and light is also absorbed by the enviroment, this is why
the attractiveness varies with the degree of absorption γ.

The light intensity is presented in the equation below,

I rð Þ= Is
r2
, ð2Þ

where Is is the intensity at the source. For a given medium with a fixed light
absorption coefficient γ, the light intensity I varies with the distance r.

I = I0e− γr, ð3Þ

where I0 is the original light intensity and combining Eqs. 2 and 3, we have.

I rð Þ= I0e− γr2 , ð4Þ

as a firefly’s attractiveness is proportional to the light intensity that is seen by
adjacent fireflies, we can now define the attractiveness β of a firefly by

β= β0e
− γr2 , ð5Þ

where β0 is the attractiveness at r = 0. Some studies suggest β0 = 1 can be used for
most applications.

The attractiveness function β(r) can be anymonotonically decreasing functions [27].

2.3 Restriction Coefficient

The γ parameter is the absorption coefficient for the light and controls the variation
of the attractiveness (and light intensity), and its values determine the speed of the
convergence of the FA. In theory, γ ∈ 0,∞�j . But if γ is very large, then the light
intensity decreases too quickly and would result in stagnation, thus the second term
(4) becomes negligible. On the other hand if γ is very small then the exponential

factor: e− γr2ij → 1 and would suffer from premature convergence [27]. But this rule
is not always true as was report in [9] were the experiments show that with
γ =0.008 the highest success rate was achieved.

314 O. Castillo et al.

In [3] is mentioned that for most applications its value varies from 0.01 to 100,
but they used γ =1 for their simulations. Other experiments set the light absorption
coefficient as 0.00006≤ γ ≤ 0.4 and they recommend the fixed value of 0.02 of their
method [28].

However, we can set γ =
ffiffiffi
L

p
, where L is the scale. Or we can set γ =O 1ð Þ if the

scaling variations are not significant, then.
For the population size n we can use 15 ≤ n ≤ 100, or 25 ≤ n ≤ 40 [24].

But there are some cases when a small number of fireflies is more efficient as in [28]
although increasing the population helps to improve the search because more
fireflies are distributed throughout the search space.

2.4 Distance

The variable r in the second term on (1) is the distance between any two fireflies
i and j at vector xi and vector xj, is the Cartesian distance,

rij =

ffi
∑
d

k=1
xi, k − xj, k
� �2s

, ð6Þ

where xi, k is the kth component of the spatial coordinate xi of the ith firefly.
Although the distance r is not limited to the Euclidean distance. If necessary another
type of distance can be use in the n-dimensional hyperspace depending on the type
of problem or our interest. Any measure that can effectively characterize the
quantities of interest in the optimization problem can be used as the distance r [1].
For example [18] uses distance r as the difference between the scores of two fireflies
(solutions). The Hamming distance is used in [9] to represent the structural dif-
ferences between candidate (firefly or solution) genotypes.

2.5 Randomization

The component of uncertainty in (1) is the third term in the equation. This com-
ponent adds randomization to the algorithm that helps to explore various regions of
the search space and has diversity of solutions [24]. With the adequate control of
exploration, the algorithm can jump out of any local optimum and the global
optimum can be reached.

Some experiments suggest α → 1 at the start of the iterations and finishing with
a α → 0. The formula presented below is representing this idea.

A Review of Fuzzy and Mathematic Methods … 315

αt = α0δ
t, 0 < δ<1 ð7Þ

where α0 is the initial randomness scaling factor, and δ is a cooling factor, and it
can be use as δ=0.95 to 0.97. If α0 is associated with the scalings of design
variables FA will be more efficient. Let L be the average scale of the problem of
interest, we can set α0 = 0.01L initially. The factor 0.01 comes from the fact that
random walks requires a number of steps to reach the target while balancing the
local exploitation without jumping too far in a few steps, for most problems 0.001
to 0.01 can be used [24].

Another formula for the control of randomness was presented in [27], and the
implementation is as follows:

Δ=1−
10− 4

0.9

� � 1
MAX GEN

,

α t+1ð Þ = 1−Δð Þ*αt,
ð8Þ

where Δ determines the step size of the random walk, MAX_GEN is the maximum
number of iterations and t is the generation counter. The parameter α t+1ð Þ descends
with the increasing of the generation counter.

In [3] they replaced the α by α*Sj, where the scaling parameters Sj in the d
dimensions are determined by the actual scales of the problem of interest, and is
calculated by:

Sj = ujlj ð9Þ

where j = 1,2,…,d, uj and lj are the lower and upper bound. Also in this paper it is
reported that value of the parameter α less than 0.01 do not affect the optimization
results.

With the goal of giving a better exploration behavior to the FA the following
formula is proposed:

∝ = ∝∞ + ∝0 −∝∞ð Þe− t, ð10Þ

where t∈ 0,Max Iteration½ � is the time for simulations and Max_Iteration is the
maximum number of iterations. ∝0 is the initial randomization parameter while ∝∞
is the final value [25].

Referring to the vector of random numbers ε1 it can be drawn from a Gaussian
distribution or Uniform distribution [27]. However, the appropriate distribution
depends on the problem to be solved, more precisely, on a fitness landscape that
maps each position in the search space into fitness value. When the fitness land-
scape is flat, uniform distribution is more preferable for the stochastic search pro-
cess, whilst in rougher fitness landscapes Gaussian distribution should be more
appropriate. Various probability distributions were used to study their impact on the
algorithm, they used Uniform, Gaussian, Lévi flights, chaotic maps, and the

316 O. Castillo et al.

Random sampling in turbulent fractal cloud. Here’s concluded that in some cases
the selection of the more appropriate randomized method can even significantly
improve the results of the original FA (Gaussian). The best results were observed by
the Random Sampling in Turbulent Fractal Cloud and Kent chaotic map [8].

The original FA doesn’t consider the current global best “gbest”, and adding an
extra term can make an improvement [27].

λϵ2 gbest− xið Þ ð11Þ

In [24] an analysis on the number of iterations needed to achieve a certain level
of accuracy is showed, here we see that the number of iterations it isn’t affected
much by dimensionality and for higher dimensional problems the number of iter-
ations does not increase significantly. The analysis above mentioned was on the
algorithm worst-case scenario.

3 Parameter Control

Parameter control is an open question problem, a quest for the right technique that
can show mathematically how the performance of the algorithm is affected by the
parameters and use this information to make the right adjustment for improvement.
The works that have been done until this moment propose very simple cases, strict
conditions and sometimes unrealistic assumptions, but there are no theoretical
results, so the problem remains unsolved [24].

3.1 Parameter Tuning

The convergence rate of the algorithms is related to the eigenvalues that control the
parameters and the randomness when we represent as a vector equation once
establishing an algorithm as a set of interacting Markov chains. The difficulty of
finding this eigenvalue makes the tuning of parameters a very hard problem. The
aim of parameter tuning is to find the best parameter setting so that an algorithm can
perform well for a wider range of problems, at the end, this optimization problem
requires a higher level of optimization methods [24]. One approach to develop a
successful framework for self-tuning algorithms was in [23] having good results.
Here the FA algorithm is used to tune itself.

A Review of Fuzzy and Mathematic Methods … 317

3.2 Parameter Control

After tuning the parameters of an algorithm very often, they remain fixed during
iterations, on the other hand for dynamic parameter control they vary during the
iterations, searching for the global optimal. This is also an optimization problem
unresolved. In the next lines, we are going to point out the considered factors to
construct a fuzzy controller in others studies.

The use of fuzzy logic has been widely use for controlling the parameters of
metaheuristic to get an improve in the performance. Knowing the difficult task of
choosing the correct values of the parameters to have a good balance between
exploration and exploitation, [15] use ACO for doing this work focusing on the
alpha parameter who has a big effect on the diversity and can control the conver-
gence, for the fuzzy control inputs they use the error and change of error with
respect to an average branching factor reference level. And an improvement was
observed but when they try to attack optimization problems with benchmark
functions their proposed strategy fail due to the lack of heuristic information.

Another proposal that improves the performance of the algorithm in this case
PSO is [16] where three approaches using fuzzy control was presented, here two
parameters, the cognitive factor, and social factor, are change dynamically during
execution via a control using fuzzy logic; the inputs consider were iteration,
diversity and error. The results show two of the fuzzy controllers helps to improve
the algorithm. In another study, only using three tests functions, the inputs con-
sidered are the current best performance evaluation and the current inertia weight;
the output variable is the inertia weight [5].

The importance of knowing how much influence a parameter has in the algo-
rithm is crucial for implementing an efficient fuzzy control system [17]. In [4] only
one input (generations) is use for the fuzzy control system and one parameter its
values is dynamically decreasing.

4 FA Applications

FA is potentially more powerful than other existing algorithms such as PSO. And
it’s being used in many areas, for example: benchmark reliability-redundancy
optimization problems [19], benchmark engineering problems [22], path planning
[21], dynamic environment optimization problems [1, 6, 14], neural network
training [13], image and data clustering [10, 29], generate optimized fuzzy models
[12]. Some study leaves the door open for more research where varying an added
parameter can make an improvement on the convergence of the algorithm [26].

318 O. Castillo et al.

4.1 Firefly Algorithm Parameter Adjustment

The strategy for setting the optimal values of the adjustable parameters on [18] is
trial-and-error, the results show an Hybridizing Firefly Algorithm improvement in
the fitness of the optimal solution was obtained with a significant reduction of the
execution time.

Using the combination of different techniques can obtain good results: Learning
Automata for adapting a parameter, Genetic Algorithm for sharing information
between the populations [7].

For a job scheduling application the FA’s parameters were set doing experiments
and statistical analysis, in this case (the values may be specific to this problem) the
best values were:

100 fireflies, 25 generations, α = 0.5, β = 1 and γ = 0.1. They found the most
influencing factor was α, followed by β, a number of fireflies, generations and
finally γ [11].

The virtue of FA is a natural attraction and how it works for a firefly and his
close neighbors.

4.2 Fuzzy Control for Parameter Adjustment

An important factor to consider in the design of a fuzzy parameter controller is the
iteration, diversity, and error which are used in [20]. But also choosing the right
combination of parameters is important, in this case, the results obtained do not
improve the original algorithm, this may be because they only focus on controlling
the parameters that are responsible for the convergence but forgot to reduce the
parameter responsible for the randomness.

Different analysis leaves to different implementations, [2] considers the param-
eters α (control the exploration) and γ (coefficient of light restriction) to be ones to
control. As inputs to the fuzzy control system they use the variable Count for
referring to the generations and Delta that is defined in 12:

Delta countð Þ= fitnessofthebestsolution countð Þ
− fitnessofbestsolution tillcountð Þ ð12Þ

With the proposed method they reported an increased performance in FA for
solving traveling salesman problems.

A Review of Fuzzy and Mathematic Methods … 319

5 Conclusions

There is no correct technique for tuning or dynamically controlling the parameters
of an algorithm, so following a framework is very helpful. It is worth pointing out
the need for investigating how to improve the frameworks that already exists or
create new ones.

For parameter tuning, experiments and stadistical studies is often use and proven
to improve the performance so it shoul be the first technique to try, but the dis-
advantage is setting will only work for this specific problem. In the case of
parameter control a combination of fuzzy logic or another metaheurictic or com-
putational intelligent technique as neural network or learning automata improves
the performance.

References

1. Abshouri, A.A., et al.: New Firefly Algorithm based on Multi swarm & Learning Automata in
Dynamic Environments

2. Bidar, M., Rashidy Kanan, H.: Modified firefly algorithm using fuzzy tuned parameters. In:
2013 13th Iranian Conference on Fuzzy Systems (IFSC), pp. 1–4. IEEE (2013)

3. Brajevic, I., Tuba, M.: Cuckoo Search and Firefly Algorithm: Theory and Applications.
Presented at the (2014)

4. Castillo, O., et al. (eds.): Recent Advances on Hybrid Approaches for Designing Intelligent
Systems. Springer International Publishing, Cham (2014)

5. Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), pp. 101–106. IEEE
(2001)

6. Farahani, S.M., et al.: A multiswarm based firefly algorithm in dynamic environments 3, 68–
72 (2011)

7. Farahani, S.M., et al.: Some hybrid models to improve firefly algorithm performance. 8(12),
97–117 (2012)

8. Fister, I., et al.: Cuckoo Search and Firefly Algorithm: Theory and Applications. Presented at
the (2014)

9. Husselmann, A.V, Hawick, K.A.: Cuckoo Search and Firefly Algorithm: Theory and
Applications. Presented at the (2014)

10. Jitpakdee, P., et al.: Fuzzy-Based Firefly Algotithm for Data Clustering (2013)
11. Khadwilard, A., et al.: Application of firefly algorithm and its parameter setting for job shop

scheduling. J. Ind. Technol. 8 (2012)
12. Kumar, S., et al.: Fuzzy model identification: a firefly optimization approach. Int. J. Comput.

Appl. 58(6), 1–8
13. Nandy, S., et al.: Analysis of a Nature Inspired Firefly Algorithm based Back-propagation

Neural Network Training (2012). arXiv:1206.5
14. Nasiri, B., Meybodi, M.R.: Speciation based firefly algorithm for optimization in dynamic

environments (2012). http://www.ceser.in/ceserp/index.php/ijai/article/view/2359
15. Neyoy, H., et al.: Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics:

Theory and Applications. Presented at the (2015)
16. Olivas, F., et al.: Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics.

Springer International Publishing, Cham (2015)

320 O. Castillo et al.

http://www.ceser.in/ceserp/index.php/ijai/article/view/2359

17. Pérez, J., et al.: Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics:
Theory and Applications. Presented at the (2015)

18. Salomie, I., et al.: Cuckoo Search and Firefly Algorithm: Theory and Applications. Presented
at the (2014)

19. dos Santos Coelho, L., et al.: A chaotic firefly algorithm applied to reliability-redundancy
optimization. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 517–521.
IEEE (2011)

20. Solano-Aragón, C., Castillo, O.: Fuzzy Logic Augmentation of Nature-Inspired Optimization
Metaheuristics: Theory and Applications. Presented at the (2015)

21. Wang, G., et al.: A Modified firefly algorithm for UCAV path planning. Int. J. Hybrid Inf.
Technol. 5(3), 123–144

22. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int.
J. Bio-Inspired Comput. 2(2), 78 (2010)

23. Yang, X.-S., et al.: A framework for self-tuning optimization algorithm. Neural Comput.
Appl. 23(7–8), 2051–2057 (2013)

24. Yang, X.-S. (ed.): Cuckoo Search and Firefly Algorithm. Springer International Publishing,
Cham (2014)

25. Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications
(2010)

26. Yang, X.-S.: Firefly algorithm, levy flights and global optimization 10 (2010)
27. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms (2008)
28. Yousif, A., et al.: Cuckoo Search and Firefly Algorithm: Theory and Applications. Presented

at the (2014)
29. Image Clustering using Fuzzy-based Firefly Algorithm | Parisut Jitpakdee—Academia.edu.

https://www.academia.edu/5870258/Image_Clustering_using_Fuzzy-based_Firefly_
Algorithm

A Review of Fuzzy and Mathematic Methods … 321

https://www.academia.edu/5870258/Image_Clustering_using_Fuzzy-based_Firefly_Algorithm
https://www.academia.edu/5870258/Image_Clustering_using_Fuzzy-based_Firefly_Algorithm

Part V
Applications of Intelligent Technologies

Computational Intelligence Methods
in Personalized Pharmacotherapy

Adam E. Gawęda and Michael E. Brier

Abstract Effective pharmacologic therapy of chronic diseases remains a challenge
to physicians. Individual dose-response characteristics of patients may vary sig-
nificantly across patient populations. In addition, due to the chronic nature of the
process, they may change over time within individual patients as well. Current state
of the art protocols for dose adjustment of pharmacologic agents rely heavily on
data from drug approval process and physician’s expertise. However, they do not
directly incorporate the wealth of knowledge hidden in patient data collected in the
course of the treatment. In this chapter, we review the application of two Com-
putational Intelligence methods, Artificial Neural Networks and Fuzzy Set Theory,
to personalized pharmacologic treatment of a chronic condition using patient data
stored in Electronic Medical Records. As the application example, we use anemia
management in patients with renal failure. To demonstrate the potential of Com-
putational Intelligence methods in improving the disease management, we discuss
three human studies in which the discussed methods proved to be an effective
decision support aid to the physician.

1 Introduction

Pharmacologic treatment of chronic conditions frequently resembles a trial and
error process within a feedback loop. An initial dose of a pharmacologic agent is
first selected based on a standard reference. The patient is then monitored for
therapeutic response and adverse events. Subsequently, the dose is adjusted fol-
lowing the observed patient response. If the response is not sufficient, the dose may
be increased. If one or more adverse events are observed, the dose is decreased or

A.E. Gawęda (✉) ⋅ M.E. Brier
Department of Medicine, University of Louisville, Louisville, KY, USA
e-mail: adam.gaweda@louisville.edu

M.E. Brier
e-mail: michael.brier@louisville.edu

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_14

325

even withheld. This trial and error process continues until an optimal balance is
achieved between the desired response and adverse events.

For many pharmacologic agents, the relationship between the dose and response
is non-linear and time-varying. To facilitate the administration of such agents,
practitioners have traditionally used standard protocols derived from official drug
approval data collected. Traditionally, such data have been analyzed using well
established population statistics looking at an average dose-response relationship
within a population of studied subjects. To achieve optimal drug response in an
individual patient, a medical practitioner must combine the knowledge encoded in
such “population-based” protocols with a considerable amount of experience and
expertise. Achieving a desired response on an individual basis is further compli-
cated by other concurrent medications and comorbidities, specific for each patient.

In this chapter, we use anemia of End Stage Renal Disease (ESRD) as an
example of a chronic condition. Anemia is a very common comorbidity in ESRD
and is the result of insufficient production of erythropoietin, a hormone responsible
for stimulating red cell production in the bone marrow. Clinically, anemia is defined
as insufficient amount of healthy red blood cells or hemoglobin. Hemoglobin is the
main part of red blood cells and is responsible for oxygen delivery to tissues to
promote energy metabolism. For a long time, repeated blood transfusions had been
the standard of care for anemia treatment in ESRD. Nowadays, Erythropoiesis
Stimulating Agents (ESA) are the primary form of treatment [1, 2]. However,
effective ESA dosing is challenging due to significant variability in hemoglobin
response across patient populations. Furthermore, large ESA doses without
observable hemoglobin response have been associated with adverse cardiovascular
events [3, 4]. Because of this, the US Food and Drug Administration (FDA) stip-
ulates ESA treatment individualization to decrease the risk of blood transfusions.
Furthermore, changes in reimbursement policy by Medicare, which provides cov-
erage for a large majority of ESRD patients, have led to an evolution of ESA dosing
patterns that results in lower average hemoglobin levels and more transfusions [5].

Ever since the introduction of ESA’s, nephrologists have been administering this
agent according to standardized protocols combining information from the regu-
latory guidelines with their own experience and expertise. In January 2010, the
FDA called for clinical studies to establish better dosing approaches for ESA’s,
including computer-directed algorithms [6]. In this chapter we specifically focus on
the application of two Computational Intelligence methods, Artificial Neural Net-
works (ANN) and Fuzzy Set Theory (FST) to perform dose-response modeling and
individualized dosing of ESA’s in anemia management in ESRD patients.

The chapter is organized as follows. In Sect. 2, we review reported examples in
which ANN’s and Fuzzy Models have been applied to data-driven ESA
dose-response modeling in ESRD patients. We look at the application of Fuzzy
Models for the same purpose. In Sect. 3, we review the results of several clinical
studies in which these techniques have been employed in conjunction with modern
control theoretic tools, to facilitate individualized ESA dosing in ESRD patients.
Section 4 summarizes the review.

326 A.E. Gawęda and M.E. Brier

2 Computational Intelligence Approaches to Drug
Response Modeling

2.1 Artificial Neural Networks

Until the late twentieth century, traditional approaches to pharmacologic modeling
heavily relied on physiology-based models. Due to the complex multidimensional
nature of the human body, these physiologic models contained large numbers of
interrelated parameters which posed an extreme challenge when estimating such
models from clinical data. In certain situations, where the predictive capabilities of
a pharmacologic model are of primary interest, nonlinear data-driven black-box
modeling techniques, such as Artificial Neural Networks are a valuable alternative
as the modeling tool of choice in pharmacology.

One of the first reported applications of ANN’s in pharmacology dates back to
1995 [7, 8]. These early examples include the prediction of peak and trough con-
centrations of gentamicin [7] and the delayed renal allograft function as a guide to
initiate immunosuppression therapy in kidney transplant recipients [8]. In both
cases, the ANN’s were found to be superior to the state-of-the-art approach at the
time, the nonlinear mixed effect modeling (NONMEM). A similar finding was
reported by Chow et al. [9] who used the ANN to model the serum concentration of
tobramycin in pediatric patients. Camps-Valls et al. [10] investigated the applica-
tion of three types of ANN’s: Multilayer Perceptron (MLP), Finite Impulse
Response (FIR) network, and Elman network to prediction of cyclosporine con-
centration in kidney transplant recipients. They found all three ANN models to be
robust and accurate for this purpose.

The first applications of ANN to ESA dose-response modeling were reported in
2003 [11, 12]. Martin-Guerrero et al. [12] applied MLP, FIR, and Elman networks to
perform longitudinal modeling of hemoglobin response to subcutaneous ESA. The
models were trained to predict hemoglobin concentration one month ahead from an
input vector containing patient characteristics (age, weight), current hemoglobin and
iron stores concentration, as well as previously received dose of ESA and iron. The
networks were trained on data from 110 patients. Model selection was performed
using cross-validation. The authors found that all three analyzed ANN types achieved
similar performance measures in terms of mean absolute (MAE) and root mean
square (RMSE) prediction error. Due to the short time sequence of the input infor-
mation, the authors concluded that the recurrent ANN’s (Elman, FIR) did not offer a
significant advantage over the MLP, as demonstrated by the validation results. In
[11], we reported the results of using two different ANN types: MLP and Radial
Basis Function (RBF) network, to the task of predicting average hematocrit response
to ESA dose. Hematocrit is the measure of red blood cell volume in relation to the
total volume of the blood and has been used interchangeably with hemoglobin as the
clinical biomarker of anemia. The ANN models were trained on data from 209
patients undergoing hemodialysis treatments at the University of Louisville Kidney
Disease Program. Patient-specific Leave-One-Out cross-validation was performed to

Computational Intelligence Methods … 327

train the models. The models predicted one month ahead average hematocrit from an
input vector containing monthly average hematocrit levels, their standard deviations,
as well as average ESA doses over past two months. No patient specific covariates
were included in the input vector. The optimal MLP network contained 10 hidden
neurons with hyperbolic tangent activation functions (Fig. 1). The ANN’s were
benchmarked against a linear autoregressive (ARX) model. Statistical analysis of the
performance measures (RMSE and normalized RMSE) revealed superiority of both
ANN models over the ARX model, with the MLP slightly outperforming the RBF
network.

In a largest study of this kind to date, Barbieri et al. [13] developed an ANN
model for 3 month ahead prediction of hemoglobin concentration in response to
ESA and iron dose. They used data from a cohort of 1558 ESRD patients and
similarly to other researchers, found that the ANN models delivered a highly
accurate predictive performance.

Yet another approach to ANN-based ESA dose-response modeling in anemia
patients was proposed by Gabutti et al. [14]. They evaluated two types of ANN
models: MLP and Generalized Feedforward Network (GFN) as a tool to identify
most important clinical and biological covariates determining patient’s respon-
siveness to ESA and to predict monthly ESA dose requirement in individual

Fig. 1 Architecture of the Multilayer Perceptron network for one step ahead prediction of
hematocrit in response to ESA [11]. Legend: Hctavg—average hematocrit, HctSD—standard
deviation of hematocrit, ESAavg—average ESA dose, k—time step (month)

328 A.E. Gawęda and M.E. Brier

patients. The ANN models were trained on a classification problem of predicting
hemoglobin <11.0 g/dL using data of 432 patients from 29 dialysis facilities. The
performance measures used were sensitivity and specificity. In the context of ESA
dose selection, hemoglobin < 11.0 g/dL was used as a trigger to increase the ESA
dose. In the task of ESA dose requirement prediction, the ANN model was found to
be superior to a linear regression (sensitivity 78% versus 40% at 50% specificity).
Furthermore, the ANN model for predicting dose adjustments proved superior to a
nephrologist following European best practice guidelines detecting 48 versus 25%
patients requiring ESA dose increase.

2.2 Fuzzy Set Models

First reported use of fuzzy set theory in pharmacology dates back to 1997 [15]. In
this application, fuzzy rule-based model was created to predict serum concentration
of lithium. In addition to dosing data and serum creatinine levels, the model
incorporated as input information patient specific characteristics, such as age and
weight. Interestingly, these covariates were found not to be instrumental in pre-
dicting the lithium concentration. Based on the reported performance metrics, the
authors concluded that fuzzy set models are a feasible alternative to standard
analytical methods used in pharmacology.

In [16] fuzzy sets were applied as an alternative to probabilistic methods to
create a physiologically based pharmacokinetic model of diazepam disposition. In
this approach, fuzzy sets were used as a means to represent uncertainty in physi-
ologic model parameters. The authors postulated that fuzzy set theory can suc-
cessfully represent the vagueness and imprecision associated with minimal drug
discovery data.

In the context of modeling ESA response in ESRD patients, we applied fuzzy
sets to represent imprecision involved in the classification of the dose-response
profile in an individual patient [17]. We developed a model to predict hemoglobin
response to a change in ESA dose associated with different dose-response profiles.
We compared three methods of dose-response classification: one group (population
approach), crisp classification, and fuzzy classification. Comparison of the mean
square prediction error of hemoglobin revealed that fuzzy set classification of the
dose-response profile significantly improves the predictive capacity of the model
over the population approach and the crisp classification.

3 Computational Intelligence Approach to Drug Dosing

In this section we review three clinical studies in human subjects, in which we
successfully demonstrated the use of Artificial Neural Networks and Fuzzy Set
Models to optimize ESA dosing in patients with anemia due to End Stage Renal

Computational Intelligence Methods … 329

Disease. We specifically focus on two control methods: Neural Predictive Control
and Fuzzy Multiple Model Predictive Control.

3.1 Neural Predictive Control

In [18] we proposed an approach to personalized ESA dosing based on the concept
of Model Predictive Control (MPC). MPC is a modern control technique based on
the interaction between a process model and an optimization algorithm to minimize
an objective function defining the control goal (Fig. 2). In our application, the
model was represented as a Multi-Layer Perceptron ANN predicting hemoglobin
one month ahead based on the previous two monthly hemoglobin levels and eight
weekly ESA doses. The MPC was developed from clinical data of 186 ESRD
patients at the University of Louisville. In silico testing was first performed in a
cohort of 60 virtual patients to compare the MPC approach to a standard anemia
management protocol (AMP). The in silico testing proved that our proposed
ANN-based MPC (Neural Predictive Control, NPC) approach to ESA dosing
achieved the target hemoglobin level (11.5 g/dL) more precisely and more con-
sistently than a standard AMP. Following the in silico evaluation, we performed a
human study in a cohort of 9 subjects who received ESA based on MPC recom-
mendation for a period of 6 months. While the difference in achieved hemoglobin
between the AMP and MPC was not as impressive as in the in silico trial, the NPC
approach achieved better hemoglobin stability.

Fig. 2 Block diagram of Neural Model Predictive Control applied in [18] and [19]. Legend: Hb—
hemoglobin, Hbpred,i—hemoglobin predicted at time step i, Hbtarget—target hemoglobin level,
ESA*—optimal ESA dose, J—objective function, Hp—prediction horizon

330 A.E. Gawęda and M.E. Brier

Following this study, we designed and performed a full scale randomized con-
trolled clinical trial of an NPC algorithm [19] for ESA dosing in ESRD patients.
This trial was performed in a cohort of 60 hemodialysis patients receiving treatment
at the University of Louisville. One half of the subjects were randomly assigned to a
control arm (ESA dose determined by a standard AMP), the other half were
assigned to a treatment arm (ESA dose determined by NPC). The subjects were
followed for 8 months. The main performance metric used in the study was the
proportion of hemoglobin levels between 11 and 12 g/dL. Hemoglobin variability
was defined as an absolute difference between the measured hemoglobin and the
median of the hemoglobin target range (11.5 g/dL). In this study, we again
demonstrated that the NPC approach resulted in a more stable hemoglobin control
when compared to a standard AMP.

3.2 Fuzzy Multiple Model Predictive Control

The NPC algorithms presented in [18, 19] used a fixed ANN model. To facilitate
truly personalized ESA dosing, we developed an MPC-based approach based on the
concept of multiple controllers, where each controller was optimized to a specific
ESA dose-response profile [20]. Each MPC corresponded to one of five
dose-response classes: extreme hyper-responder, hyper-responder, moderate
hyper-responder, intermediate responder, and hypo-responder. At each dosing
interval, the individual MPC generated a dose recommendation to achieve a target
hemoglobin specific for its dose-response class. The dose-response class was
matched to an individual patient based on an average weekly ESA dose received
over 4 weeks before dose adjustment using fuzzy sets as described previously in
[17]. The block diagram of the overall algorithm is shown in Fig. 3. Data required
by the algorithm were directly abstracted from Electronic Medical Record database.

To validate the algorithm, we performed a single-center randomized controlled
trial and compared it against the existing standard of care AMP at the University of
Louisville. We enrolled 62 hemodialysis patients and followed them for 12 months.
The primary performance metric used in the study was the proportion of hemo-
globin measurements between 10 and 12 g/dL. Over the course of the study,
subjects assigned to have ESA dose guided by the MMPC algorithm achieved
10.6% more hemoglobin levels within target range, compared to a standard
AMP. Furthermore, subjects receiving MMPC-guided ESA doses, achieved sig-
nificantly lower percentage of hemoglobin levels less than 10 g/dL, which trans-
lated into two-fold decrease in blood transfusion rate.

Computational Intelligence Methods … 331

4 Conclusions

This chapter provided a brief review of two mainstream Computational Intelligence
methodologies, Artificial Neural Networks and Fuzzy Set Theory applied to the
problem of personalized pharmacotherapy using anemia management in End Stage
Renal Disease patients as a demonstration platform. Described real world appli-
cation examples, backed by the results from rigorous human studies, prove that
Computational Intelligence techniques are a viable alternative to the existing
standard of care currently used by physicians and pharmacists.

References

1. Adamson, J.W., Eschbach, J.W.: Treatment of the anemia of chronic renal failure with
recombinant human erythropoietin. Ann. Rev. Med. 41, 349–360 (1990)

2. Eschbach, J.W., et al.: Recombinant human erythropoietin in anemic patients with end-stage
renal disease. Results of a phase III multicenter clinical trial. Ann. Intern. Med. 111(12),
992–1000 (1989)

3. Pfeffer, M.A., et al.: Baseline characteristics in the Trial to Reduce Cardiovascular Events
With Aranesp Therapy (TREAT). Am. J. Kidney Dis. 54(1), 59–69 (2009)

Fig. 3 Block diagram of Fuzzy Multiple Model Predictive Control applied in [20]. Legend:
Hbk—hemoglobin at time k, ΔHbk—hemoglobin rate at time k, ESAk—ESA dose at time k,
MPC1,…,5—Model Predictive Controller for dose-response profile 1 through 5, ESA-1,…,5, k+1—

optimal ESA dose at time k for dose-response profile 1 through 5, μ1,…,5—patient’s membership
degree in dose-response profile 1 through 5, ESAk+1—optimal ESA dose at time k+1

332 A.E. Gawęda and M.E. Brier

4. Singh, A.K., et al.: Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl.
J. Med. 355(20), 2085–2098 (2006)

5. Collins, A.J., et al.: Effect of facility-level hemoglobin concentration on dialysis patient risk of
transfusion. Am. J. Kidney Dis. 63(6), 997–1006 (2014)

6. Unger, E.F., et al.: Erythropoiesis-stimulating agents–time for a reevaluation. N. Engl. J. Med.
362(3), 189–192 (2010)

7. Brier, M.E., Zurada, J.M., Aronoff, G.R.: Neural network predicted peak and trough
gentamicin concentrations. Pharm. Res. 12(3), 406–412 (1995)

8. Brier, M.E., Aronoff, G.R.: Application of artificial neural networks to clinical pharmacology.
Int. J. Clin. Pharmacol. Ther. 34(11), 510–514 (1996)

9. Chow, H.H., et al.: Application of neural networks to population pharmacokinetic data
analysis. J. Pharm. Sci. 86(7), 840–845 (1997)

10. Camps-Valls, G., et al.: Prediction of cyclosporine dosage in patients after kidney
transplantation using neural networks. IEEE Trans. Biomed. Eng. 50(4), 442–448 (2003)

11. Gaweda, A.E., et al.: Pharmacodynamic population analysis in chronic renal failure using
artificial neural networks–a comparative study. Neural Netw. 16(5–6), 841–845 (2003)

12. Martin Guerrero, J.D., et al.: Use of neural networks for dosage individualisation of
erythropoietin in patients with secondary anemia to chronic renal failure. Comput. Biol. Med.
33(4), 361–373 (2003)

13. Barbieri, C., et al.: Performance of a predictive model for long-term hemoglobin response to
Darbepoetin and iron administration in a large cohort of hemodialysis patients. PLoS ONE 11
(3), e0148938 (2016)

14. Gabutti, L., et al.: Would artificial neural networks implemented in clinical wards help
nephrologists in predicting epoetin responsiveness? BMC Nephrol. 7, 13 (2006)

15. Sproule, B.A., et al.: Fuzzy logic pharmacokinetic modeling: application to lithium
concentration prediction. Clin. Pharmacol. Ther. 62(1), 29–40 (1997)

16. Seng, K.Y., Nestorov, I., Vicini, P.: Physiologically based pharmacokinetic modeling of drug
disposition in rat and human: a fuzzy arithmetic approach. Pharm. Res. 25(8), 1771–1781
(2008)

17. Gaweda, A.E., Jacobs, A.A., Brier, M.E.: Application of fuzzy logic to predicting
erythropoietic response in hemodialysis patients. Int. J. Artif. Organs 31(12), 1035–1042
(2008)

18. Gaweda, A.E., et al.: Model predictive control of erythropoietin administration in the anemia
of ESRD. Am. J. Kidney Dis. 51(1), 71–79 (2008)

19. Brier, M.E., et al.: Randomized trial of model predictive control for improved anemia
management. Clin. J. Am. Soc. Nephrol. 5(5), 814–820 (2010)

20. Gaweda, A.E., et al.: Individualized anemia management reduces hemoglobin variability in
hemodialysis patients. J. Am. Soc. Nephrol. 25(1), 159–166 (2014)

Computational Intelligence Methods … 333

Embodying Intelligence in Autonomous
and Robotic Systems with the Use
of Cognitive Psychology and Motivation
Theories

Kowalczuk Zdzisław and Czubenko Michał

Abstract The article discusses, on a certain level of abstraction and generalization,

a coherent anthropological approach to the issue of controlling autonomous robots

or agents. A contemporary idea can be based on appropriate modeling of the human

mind using the available psychological knowledge. One of the main reasons for

developing such projects is the lack of available and effective top-down approaches

resulting from the known research on autonomous robotics. On the other hand, there

is no system that models human psychology sufficiently well for the purpose of con-

structing autonomous systems. Nevertheless, to combat this lack, several ideas have

been proposed for embodying human intelligence. We review recent progress in our

understanding of the mechanisms of cognitive computations underlying decision-

making and discuss some of the pertinent challenges identified and implemented

in several systemic solutions founded on cognitive ideas (like LIDA, CLARION,

SOAR, MANIC, DUAL, OpenCog). In particular, we highlight the idea of an Intel-

ligent System of Decision-making (ISD) based on the achievements of cognitive psy-

chology (using the aspect of ‘information path’), motivation theory (where the needs

and emotions serve as the main drives, or motivations, in the mechanism of govern-

ing autonomous systems), and several other detailed theories, which concern mem-

ory, categorization, perception, and decision-making. In the ISD system, in particu-

lar, an xEmotion subsystem covers the psychological theories on emotions, including

the appraisal, evolutionary and somatic theories.

Keywords Cognitive architecture ⋅ Cognitive development ⋅ Decision-making ⋅
Human-computer interaction ⋅ Perception ⋅ Intelligent agents

K. Zdzisław (✉) ⋅ C. Michał

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University

of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

e-mail: kova@pg.edu.pl

C. Michał

e-mail: michal.czubenko@pg.edu.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_15

335

336 K. Zdzisław and C. Michał

1 Introduction

Creating a system functioning in a human-like way, has long been a principal subject

of artificial intelligence and robotics. As can be seen from the many known results of

robotics, a significant number of artificial creatures and humanoids have been con-

structed [32], and some of them even try to communicate in natural language [55].

Moreover, considering the inner aspect, the well-known artificial neural networks

(of a convolutional type) have been conceived and applied for different system con-

trol and recognition purposes [9, 23]. All such minor steps are being made towards

creating an artificial humanoid, synthetic organism, or android robot, designed to

look and act like a human.

Artificial Intelligence is being developed in a continued effort to solve engineering

problems, such as reasoning, problem solving, knowledge representation, machine

learning, natural language processing, machine perception, and others. Eventually,

solving these problems should lead to an invented humanoid system similar to a

human being, to a certain extent. A few principal types of approaches to artificial

intelligence are worth mentioning here:

∙ cybernetic—which postulates to follow an imitation of some aspects of real, phys-

ical, or biological systems in a virtual world (using neural networks, evolution

algorithms, swarm algorithms, etc.) [53],

∙ statistic—which seeks to build rigorous, usually sophisticated, mathematical tools

necessary for statistical modeling of processes [49],

∙ symbolic (top-down, synthetic, ‘neats’, clean)—which uses high-level logic (sim-

plistic, black-box) mathematical modeling, knowledge-based processing, and

machine learning [47],

∙ sub-symbolic (bottom-up, analytic, ‘scruffies’, ad hoc, embodied)—which involves

the use of small (white-box, physical, neuronal) models to first create a low-level,

and next, by the ad hoc rules, higher-level solutions [8].

The variety of known AI branches strive for (usually partially) modeling of the

human mind, and none of them fulfills this objective fully. Modeling the human

mind can be performed by applying the symbolic (top-down) approach and the sub-

symbolic (bottom-up) method. These two approaches are complementary, and both

are related to the cybernetic method. Certainly, the statistical tools developed in a

mathematical way are of great use. Probably, solely an intelligent combination of

many methods will be able to satisfactorily reflect the effects of the human brain.

Embodied Intelligence (EI) represents the sub-symbolic approach. It is an exten-

sion of the genuine cybernetic projects from the 50s, which tried to reproduce simple

phenomena of ‘intelligence’ identified at a low level of cognition [3, 7, 8, 17]. We

can recall here the early cybernetic projects, like the construction of homeostat, a

device which retains stable despite external disturbances, or tortois, a robot which

follows an assumed intensity of light [53]. Quite promising results can be obtained

by following baby steps, that is, by simulating a certain basic functionality using

simple elements (note that the tortois had only two neurons, for instance). On the

Embodying Intelligence in Autonomous and Robotic Systems . . . 337

basis of such affirmative experience, a new branch of behavior-based robotics has

emerged [4].

Most issues, such as finding an optimal trajectory or recognition of environmen-

tal objects, require rather complex operation, whereas inference and reasoning are

relatively simple (from the biological and computer science points of view). It is

Moravec’s paradox that applies to this problem [46]:

Encoded in the large, highly evolved sensory and motor portions of the human brain is a

billion years of experience about the nature of the world and how to survive in it. The delib-

erate process we call reasoning is, I believe, the thinnest veneer of human thought, effective

only because it is supported by this much older and much more powerful, though usually

unconscious, sensorimotor knowledge. We are all prodigious olympians in perceptual and

motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new

trick, perhaps less than a hundred thousand years old. We have not yet mastered it. It is not

all that intrinsically difficult; it just seems so when we do it.

It seems natural that different achievements from the fields of embodied intelli-

gence, behavior-based robotics, and top-down approaches in AI, are indispensible in

modeling the effect of the human mind. However, to reach an intelligent interaction

of an artificial agent with the environment it is also important to clearly define what

‘embodied intelligence’ means [60].

In this paper the concept of ‘embodied intelligence’ will be understood in a

slightly different way than the ‘classical’ notion. Recall that mathematical modeling

providing a description of a hypothetical fragment of an existing reality, reflects the

behavior of a real system in a particular environment. Such an environment generates

different distal signals determining the so-called experimental setting. At each stage

of the process of modeling of physical phenomena, the results of the next simplified

mathematical model are thoroughly referenced to the previously conducted experi-

ments. This is in line with the bottom-up approach (analytic, physical, white-box).

On the other hand in natural sciences, psychology, philosophy, and cybernetics, the

top-down approach (synthetic, mathematical, black-box) is most frequently in use.

Ignorance of the aforementioned principles may easily lead to confusion and inade-

quate interpretations.

1.1 . . . Intelligence

One of the first definitions of intelligence has been proposed by Spearman in [59]:

...all branches of intellectual activity have in common one fundamental function, whereas

the remaining or specific elements of the activity seem in every case to be wholly different

from that in all the others.

It appears, however, too vague for the aim of determining the intelligence for robot

purposes. Though clear, other definitions like: “The ability to deal with cognitive
complexity” or “Goal-directed adaptive behavior” [20, 61] also seem to be overly

general. Nevertheless, due to such definitions, you can at least imagine what is the

essence of human-like intelligence:

338 K. Zdzisław and C. Michał

Definition 1 Intelligence is the ability of active processing of cognitive information

in order to adapt to the changing environment and to gain own, specific purposes or

common goals.

In an extremely simple case, an intelligent agent, by being completely focused on

searching for a source of energy necessary to survive, can function completely self-

ishly. Clearly, the latter brings to the mind the aforementioned tortois and cybernetic

theories.

1.2 Embodied . . .

Embodiment in the human case means that the entire perception of the real world

completely relies on its physical components and senses. Embodiment is also asso-

ciated with the philosophy of mind, and, in particular, with the whole mind-body

problem as formulated by Descartes [2].

Certainly, intelligence could not be developed without embodiment [60]. It is

also clear that any virtual or robotic agent ought to be designed for, and located in,

a certain environment to have a chance to implement a two-way interaction. Then

one can talk about engineered intelligence, having the environmental embodiment
(or foundation) defined as:

Mechanism under the control of an intelligence core that contains sensors and actuators

connected with this core via communication channels.

Such embodiment of a robot or agent can be easily extended with various kinds of

tools (like glasses, spectacles, drives, or even a mobile or car), which augment both

the agent’s perception and possibilities of reaction.

2 Decision Systems

The idea is to build a system that—in line with the increasing capabilities of com-

puters and their power—would be able to take autonomous decisions, according to

current circumstances. Certainly, there exist, and are being developed, increasingly

sophisticated decision-support systems, such as: expert systems [1, 5], and systems

based on Bayesian networks [16, 65] or neural networks [57, 66]. Such systems usu-

ally support human decision making (for diagnostic purposes, for instance). In most

cases they are strictly tailored to pre-defined conditions. In general, however, there

are two known paths for decision-making:

∙ classical, which finds the most optimal decision for a well-defined problem,

∙ cognitive, aiming at finding a solution to real problems defined or recognized only

partially.

Embodying Intelligence in Autonomous and Robotic Systems . . . 339

Thus the classical decision theory treats about taking decisions in a strictly optimal

sense for mathematically well-modeled tasks and well-defined problems. Whereas

the cognitive theory shows how to take proper decisions for difficult real-world prob-

lems, which are usually uncertain and not well defined [19].

An early elaboration on human decision-making processes was delivered in 1910

by Dewey [15]. According to him, there are five stages in the decision making

process: Defining the problem, Indication of its character, Finding possible solu-

tions, their Evaluation, and Selection of the appropriate solution. A similar and a bit

more universal division, referred to as GOFER, presented in 1991 [41] suggests the

following phases:

1. Goals—searching for selecting the objectives,

2. Options—considering a wider spectrum of alternative actions concerning the

goals currently considered,

3. Facts—gathering additional knowledge about actions (options) and goals,

4. Effects—evaluating (usually hypothetically) the results of the chosen options,

5. Rating—final evaluation of the decisions, and selecting the best one.

In addition, there are many other interesting approaches to the analysis of com-

plete decision processes [6, 44, 54]. Not far from, in its simplest form, the decision

making process can always be described in solely three phases [58]:

1. definition of the problem,

2. finding possible solutions,

3. selection of the optimal solution.

In order to achieve the effect of autonomous decision-making suitable for a cur-

rent situation, the system should not only take the opportunity of learning (knowl-

edge extension), understanding and recognizing (known) objects, but also it should

have some motivations which compel it to take action.

There are a great number of decision-making systems based on human motivation

factors. Human is the highest of all species in terms of adaptation to the changing

environment, thus the human system of motivation appears to be most adequate as

a template of behavior. Ethical foundations for such systems can be derived from

the existing variety of the available models of psychology and human intelligence.

These achievements have also notably contributed to artificial intelligence. Among

them one can distinguish the following types of conceptual solutions:

∙ behavioral [4, 14],

∙ BDI (Beliefs-Desires-Intentions) [13, 21, 25, 52],

∙ emotional [33, 42] (sometimes they are assigned to BDI),

∙ driven by needs [22, 43, 45, 50, 56],

∙ cognitive (LIDA, CLARION, SOAR, MANIC, DUAL, OpenCog, ...).

To give you a taste of the existing spectrum of complex systems, we will discuss

below three (in bold) of the above-listed representatives of cognitive systems.

340 K. Zdzisław and C. Michał

Fig. 1 Cognitive architecture of Lida: the grey lines represent interaction with the environment,

blue lines show low-level processing, orange lines indicate learning process, and dotted lines portray

consolidation of the memory

2.1 LIDA

Learning Intelligent Distribution Agent, LIDA, originally developed by Stan Franklin

[18], is a cognitive system which intends to model biological cognition [18, 40].

It implements an architecture of sub-sumption [8] and other aspects of the sub-

symbolic branch of AI. This is one of the most advanced projects aiming at modeling

the results of psychological and neuro-psychological theories, in particular, embod-

ied knowledge, symbolic systems of perception, different types of memory, and the

different ways of learning mechanisms, overt attention and motivation in the form of

emotion (Fig. 1).

LIDA is executed using cognitive cycles (repeated in each executive run), each of

which consists of the subprocesses of perception, selection of appropriate response

(relative to the perceived environmental facts), and implementation of the selected

reaction. Advanced cognitive processes, such as planning, can be synthesized as an

aggregate of the perception-action cycles. Motivational aspects in the LIDA system

concern feelings, which have their own valence (positive or negative), associated

with satisfaction, or pain (which evidently attributes LIDA also to the emotional

developments and solutions).

Stimuli recorded by sensors and pre-processed, are next analyzed in a work-

ing/operational memory referring to various types of long-term memory (perceptual,

episodic, declarative and procedural). Memory is instrumental in creating a current

model of actual circumstances, which constitute an executive groundwork for the

process of selecting the desired reaction (using the procedural memory). Conscious
contents are intended to add an external context to this model, and to enable learning

processes. Once selected, the reaction is directly implemented by the actuators.

Embodying Intelligence in Autonomous and Robotic Systems . . . 341

2.2 CLARION

Connectionist Learning with Adaptive Rule Induction On-line, CLARION, repre-

sents a cognitive architecture based on theories from cognitive and social psychology

[11, 62–64]. CLARION implements several AI results to ensure the effect of creat-

ing an intelligent system. CLARION’s architecture, developed and implemented by

Ron Sun, is composed of four units shown in Fig. 2:

∙ ACS – (procedural) Action Centered Sub-system,

∙ NACS – Non-Action Centered Sub-system,

∙ MS – Motivational Sub-system,

∙ MCS – Meta-Cognitive Sub-system.

In each of the above sub-systems the data and structures are represented dually: at

a higher level (overt/explicit) and at a lower level (covert/implicit). This dual repre-

sentation in CLARION, connected with (different) philosophic theories and with the

issue of memory representation [35, 51], enables autonomous learning in two ways:

bottom-up (induction) and top-down (deduction). The assumptions applied are fully

compliant with the requirements of the embodied intelligence design discussed ear-

lier.

The action oriented sub-system (ACS) is responsible for all kinds of the agent’s

reactions, both internal and external (concerning the environment). The covert

(implicit) part is implemented as a neural network, while the overt (explicit) layer

represents a rule base. The non-action centered sub-system (NACS), which mimics

the role of the semantic and episodic memories, is responsible for the storage and

delivery of knowledge. It is also divided into two parts. Its hidden part takes the

form of an associative neural network, while its explicit layer can be described with

the use of symbolic notations and rules. The inference performed in this module is

founded on similarities.

Motivation means are also important to the design of the cognitive structure of

CLARION. Corresponding motivational elements of the MS sub-system are of both

the explicit and implicit type. Explicit (higher) elements include targets (explicit

goals), such as: belonging, recognition, power, autonomy, respect, and honesty. On

the other hand, the lower motivational factors (prime movers) of the CLARION sys-

tem, realize the idea similar to the concept of needs (discussed later), which are of a

physiological nature (consider eating, drinking, sleep, security, and reproduction). In

addition, CLARION’s MS sub-system allows you to program your own secondary
needs to define a more subtle motivation (in order to achieve a certain goal).

The MCS sub-system is responsible for a meta-cognitive function resembling

attention or awareness. It monitors and regulates all other cognitive processes of the

agent and fulfills the idea of consciousness. More specifically, MCS chooses which

goals are most important, with autonomous inferencing and learning, and how to

adjust the gain of the learning process. It is also responsible for information filtering

and for selecting the method of data interpretation.

342 K. Zdzisław and C. Michał

Fig. 2 Cognitive architecture in Clarion: the orange lines present attention (in general), green lines

indicate data exchange, and red lines show interaction with the system’s environment

2.3 SOAR

State, Operator And Result, SOAR, is a cognitive architecture invented by Laird,

Newell, and Rosenbloom [10, 24, 36, 38, 39, 48]. It is one of the earliest systems

of this type (its first version is dated back to 1983), whose main purpose is behav-

ior resembling an intelligent agent. Its architecture is suitable for working in vary-

ing conditions, from routine tasks to creative, open problems. It requires appropri-

ate forms of knowledge representation, and suitable types of memories (procedural,

semantic, episodic and iconic). To be consistent with the assumptions of embodi-

ment, the agent needs to interact with the ambient world, and to learn constantly

about its features. The decision making in SOAR is based on the current situation

perceived from the environment, whereas the necessary information and knowledge

is acquired by suitable dynamic processing of the data gained through the sensors.

An internal expert system plays the role of fundamental processing unit.

SOAR’s cognitive architecture has several components concerning [37]:

Embodying Intelligence in Autonomous and Robotic Systems . . . 343

∙ memory functioning, for the task of knowledge storage,

∙ processing module of attention, used for extraction, mixing and remembering

knowledge,

∙ semantics and syntax of the language used for storage and processing of knowl-

edge.

Similarly to LIDA, SOAR is based on a certain decision cycle. A perception

sub-system manipulates the data stored in a symbolic short-term memory. Deduc-

tive rules are used to test the agent’s capabilities in the context of possible actions.

Another layer of rules is applied to suggest optimal reactions (operations) adequate to

the current situation evaluated by perception and motivational sub-systems, and next

the agent’s preferences are calculated. Finally, according to the perceived state (situ-

ation), and given a pre-processed set of possible reactions and preferences, SOAR is

ready to select one of the estimated reactions, and then to apply it using the system

actuators.

The cognitive structure of SOAR is shown in Fig. 3, where decision cycle is

implemented by the block of decision procedure. In the SOAR system, emotions

are generated in the appraisal detection block, and next they serve as reinforcement

applied in learning processes (indirectly through mood and feelings). Semantic mem-

ory is an essential element in the treatment of procedural and episodic knowledge

(using long-term memory). It allows the agent to store information about the envi-

ronment. On the other hand, the episodic memory contains the knowledge related

to the execution and effects of various types of actions, including the degree of ful-

fillment of the rules and operations performed by the agent (and others). Long-term

visual memory as well as imagination assist in the agent’s mind operations concern-

ing spatial processing.

Fig. 3 Cognitive system of SOAR (ver. 9)

344 K. Zdzisław and C. Michał

2.4 Intelligent System of Decision-Making

Intelligent System of Decision-making, ISD, as presented in the recent papers [12,

26–31, 35], is a control system of an agent that intends to covert and implement the

contemporary theory of embodied intelligence and decision theory, and in particular,

the models of cognitive psychology and motivation theory. It mimics roughly the

way people make decisions, from the arrival of the stimuli to the generation of a

reaction. As a consequence, the ultimate design of the ISD unit is the result of a

thorough modeling of human psychology embedded in elementary findings of an

extensive literature study. In practice, ISD is a universal system which can control

robots and unmanned ground vehicles, including cars, as is presented in [12]. A view

on ISD is presented in Fig. 4.

ISD is a cognitive decision-making system, which implements all of the stages

of decision-making, presented earlier. The main mechanism of decision-making in

ISD is based on the concept of needs, which are principal drives for acting. Needs are

variables programmable by the user. They can also be possibly created autonomously

Environmenttouch

USTM

sight

USTM

hear

USTM

sensory
perception

feature detection

objects/situation recognitionLTM high-level
perception

imaginationLTM current scene

observing of the results

learning

working
memory

needs [H] [ζ]

sub-emotions [κ]

emotion [ξ]

mood [Ξ]
[c]

unconscious
attention

action selection
modification

LTM

m
echanical

acoustic

thinking

acting

Environment

Fig. 4 Schematic view on the Intelligent System of Decision-making

Embodying Intelligence in Autonomous and Robotic Systems . . . 345

by the agent and adjusted for certain situations. Thus, different sets of needs may be

used to shape the characteristics (personality) of the agent, according to its envi-

ronmental conditioning. Observed objects and events, and actions performed by the

agent (namely their inner and outer results) have impact on the state of the agent’s

needs.

ISD presents also cognitive abilities with respect to the understanding of the

environment (in practice, without them the system would not be consistent). It means

that from the robotic point of view, the agent is ‘conscious’ of its environment, it

knows its position, and the position of surrounding objects and their definition. Stim-

uli perceived by the agent’s senses (sensors) are stored in an ultra-short-term memory

(USTM). Simple features of perceived objects (impressions), such as colors, shapes,

textures, etc. (like red flat rectangle), are extracted from USTM, and stored in a short-

term memory (STM). To recognize a simple impression, the agent can apply various

mechanisms, developed as filters, masks, neural networks, fuzzy systems, decision

rules and others. For example, a Haar cascade can be used for recognizing head

shapes (impressions). During extraction, certain stimuli may cause an immediate

unconscious action of the agent (like: ‘step back’ in response to pain). On the basis

of the observed features (impressions), complete discoveries/objects are ‘mentally’

created, taking into account the relative location of the features in space. In a simple

translation, the discovery consists of impressions in a specific location. Next, they

are compared to known objects stored in a long-term memory (LTM). If the ‘mind’

detects a certain level of similarity between the perceived discovery and a know

object from LTM, the discovery is recognized/identified with the object from LTM.

A suitable recognition procedure is described in [12]. Some of the discoveries may

result in half-conscious activities, previously learned through multiple repetitions.

Recognized objects are transferred to the agent’s operational memory that repre-

sents the current scene, where they are analyzed from different angles, taking into

account:

∙ the impact of external (environmental) facts/objects, as they may affect the needs

or cause sub-emotions, which can, in turn, change the agent’s proper emotion;

Remember also that both the needs and the sub-emotions must be previously stored

as connected to certain discoveries (e.g. a pink blanket from childhood can connect

with the need for security), and thus affect the agent’s current system of needs;

∙ the effect of the internal (body) facts/states, as they can also modify the agent’s

system of needs (e.g. an energy sensor connected to the need of energy, can directly

change the need of the agent, according to its value).

According to the above, the states of needs are constantly updated, creating, and

pointing to, new goals. The agent tries to find (or formulate) a conscious action to be

implemented by the system in order to fulfill its most important or painful needs [27–

29]. The action undertaken by the ISD unit is then tracked by the part of the thinking

process which is referred to as the observer of results. This process always seeks to

see a desired effect of the previous action (for instance, in the change of the degree

of fulfilment of the agent’s needs) by penetrating the contents of the operational

346 K. Zdzisław and C. Michał

memory. It is also related to the learning process in ISD. The achieved results of the

previous activities are memorized (for future searches of optimal actions).

In line with the human motivation theory, emotions are one of the most important

factors of human behavior. Systems, based on human psychology (both cognitive

and motivative), but deprived of emotions would be ineffective. Emotions in ISD

perform their function at a higher level of control than the basic ISD control ruled

by the system of needs. In our robotics applications, emotions allow us to narrow

down the set of possible reactions to those that are most adequate (in the view of the

system designer) for the current time moment and the state of the system [30, 34].

Pre-defined sub-emotions (emotions associated with identified objects) do influ-

ence the current state of the proper emotion of the agent, which strikes (assumes)

one of 24 possibilities, according to the theory of Plutchik. The degree of satisfac-

tion of all the agent’s needs, the former emotional state, and the effect of calming

down (emotion simply decays with time), all influence the state of the emotion of

the agent. Changes in emotion affect the mood, which, in turn, tune the fuzzy para-

meters of the needs models. As mentioned earlier, emotion effectively preselects

(narrows) the set of possible reactions. In addition, it can modify some reactions (for

instance, by using additional forms of expression, like wording, gestures, or facial

expressions).

There are different types of long-term memory in the ISD system [31]:

∙ semantic (abstract and realistic),

∙ episodic,

∙ procedural.

Knowledge in ISD is stored in the form of (abstract or instance) discoveries, con-

sisting of many different features/impressions (including those related to needs and

emotions), labels, and relations to other discoveries [35]. Episodic memory is used

to describe events on the time axis, and with reference to respective discoveries

stored in the semantic memory. A forgetting phenomenon decays the activity level

of remembrances (the events remembered in the episodic memory). Depending on

this level, the more frequent the remembrances (memories) are, the faster they can

be recalled. Procedural memory contains specifications (declarations) of the agent’s

actions.

3 Comparison

The above-presented systems represent a cognitive approach to the problem of

decision-making. All of them are trying to combine the bottom-up and top-down

approaches and methods. In practice, however, they are very different in the aspects

of implementation and concept. There is no great sense to compare them in terms

of parameters such as computational complexity, speed of response, accuracy and

performance of individual activities, because of the large variety of implementation

and use of these systems. Certainly, there are several useful tests for autonomous

Embodying Intelligence in Autonomous and Robotic Systems . . . 347

Table 1 Comparison of cognitive architectures

LIDA CLARION SOAR ISD

Structure Perception-action

cycles

Explicit and

implicit

sub-systems

(parallel)

Cycles Cycles with

interruptions

Stimuli Internal and

external

External Dependent on

designer

Internal and

external

Perception

memory

Slip-Net

(associative)

Connected to

working memory

Not known Impressions

Basic memory

unit

Codlet Chunk Rule Discovery

Short-time or

working memory

Global workspace

theory

Limited

(visuospatial,

auditory, other)

Symbolic

short-term

memory

Current scene and

imagination with

activation levels

(limited)

Long-time

memory structure

Perceptual,

episodic,

declarative,

procedural

Non-action

centered

subsystem

(semantic,

associative

knowledge)

Procedural,

semantic,

episodic

Semantic

(abstract and

instance),

episodic,

procedural

Drivers Not known Similar to human

needs, goals

Emotions Needs and

emotions

Emotions Feelings (positive

or negative)

Not known Appraisal (mood

and feelings)

Based on plutchik

Decision-making Based on current

environmental

situation

Rules and neural

networks

Rules and

reasoning

Motivation driven

Programming

language

Java C# Java and C++ Python

Usage Medical

diagnostic

Simulations

concerning wide

spectrum of

cognition

Simulations from

towers of Hanoi

to quakebot

Partial

simulations

cognitive systems like user-end tests for coffee-making or student behavior, but they

have a limited use, due to the lack of the necessary actuators. The utility of such

one-sided (one goal) tests is also controversial due to their selectivity, at which some

cognitive systems appear to be better than the other ones, depending on the particular

test task. However, one may always compile a multi-purpose comparison of the cog-

nitive architectures in terms of structure models, driving systems, and implementing

concepts, as has been shown in Table 1.

348 K. Zdzisław and C. Michał

4 Synchronization of Cognitive Systems

Each of the presented systems approaches the issue of modeling the human cognitive

processes in its own way. They appear to be more or less explanatory, and usually to

some extend (partially) support the psychological theories on these processes. This

knowledge allows us both to evaluate the psychological theories and generalize or

adapt the cognitive processes for autonomous agents. For example, each of presented

systems has some basic memory entity, which let the agent to comprehend particu-

lar real objects, and an overall semantic memory, necessary for grasping the actual

situation by an autonomous robot.

Note that cognitive architectures are primarily designed to make decisions under

the circumstances of autonomous work. Nevertheless modeling the environment of

the agent appears to be even more difficult than the inferencing itself. Therefore, it is

important that the developed systems also indicate how to describe the environment

for the purpose of autonomous agents (letting the necessary and inevitable interac-

tion).

For comparative purposes and definite concluding results, each of the presented

systems should be implemented on a platform of an autonomous (mobile) robot,

and then tested under identical conditions (this would be more effective than partial

simulation, certainly). In particular, the cognitive architectures should be tested at

different angles, highlighted below:

∙ perception – estimated in terms of speed and accuracy of environmental recogni-

tion,

∙ attention – to determine the importance of objects due to agent’s security and

decisions,

∙ decision-making – adequate for practical uncertainty,

∙ learning and reasoning – enabling the agent to correct its mistakes and to expand

its knowledge about the surrounding environment,

∙ computing power – necessary for proper functioning of the system.

5 Summary

The paper discusses the idea of embodied intelligence as an approach that combines

both the cognitive modeling of complex systems (top-down approach), as well as the

(bottom-up) implementation of systems designed to detect and comprehend the basic

characteristics of the environment. Needing a variety of tools, the creation of such

architecture principally relies on established theories, and thus results in workable

reformulations of several essential definitions concerning intelligence.

The agent that has the ability to actively process cognitive information using its

sensors and mechanisms to adapt itself to the changing environment and to achieve its

objectives (at least to strive for them), possesses embodied intelligence. In our pursuit

of the goal of embodied intelligence, we used a systematic approach to the cognitive

Embodying Intelligence in Autonomous and Robotic Systems . . . 349

decision-making process through the implementation of several major ideas of cog-

nitive psychology and motivation theory, which led us to design of the Intelligent

System of Decision-making (ISD).

Though the presented cognitive systems have been developed for different pur-

poses, all of them model the decision-making process in a very interesting, instruc-

tive and practicable way, using differently defined motivational aspects. In the near

future, such systems will have the opportunity to achieve a high level of sophisti-

cation in terms of both the design conception and technical implementation—with

great hope to achieve at least some level of intelligence of simple living creatures

(like lizards, for instance).

References

1. Agarwal, M., Goel, S.: Expert system and its requirement engineering process. In: International

Conference on Recent Advances and Innovations in Engineering, pp. 1–4. IEEE (2014)

2. Alsop, S.: Beyond Cartesian Dualism: Encountering Affect in the Teaching and Learning of

Science, vol. 26, Springer Science Business Media (2005)

3. Anderson, M.L.: Embodied cognition: a field guide. Artif. Intell. 149(1), 91–130 (2003)

4. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge, MA (1998)

5. Bennett, C.C., Doub, T.W.: Artificial Intelligence in Behavioral and Mental Health Care. In:

Luxton, D.D. (ed.) Artificial Intelligence in Behavioral and Mental Health Care, 2, pp. 27–51.

Elsevier (2016)

6. Brim, N., Orville, G., Glass, D.C.: Personality and Decision Processes: Studies in the Social

Psychology of Thinking. Stanford University Press (1962)

7. Brooks, R.A.: Intelligence without reason. In: International Joint Conference on Artificial Intel-

ligence, pp. 569–595. Sydney (1991)

8. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1–3), 139–159 (1991)

9. Chen, W., Qu, T., Zhou, Y., Weng, K., Wang, G., Fu, G.: Door recognition and deep learning

algorithm for visual based robot navigation. In: IEEE International Conference on Robotics

and Biomimetics IEEE, pp. 1793–1798 (2014)

10. Chown, E., Jones, R., Henninger, A.: An architecture for emotional decision-making agents. In:

Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent

Systems: part 1, pp. 352–353. ACM, Bologna (2002)

11. Coward, L., Sun, R.: Criteria for an effective theory of consciousness and some preliminary

attempts. Conscious. Cogn. 13(2), 268–301 (2004)

12. Czubenko, M., Ordys, A., Kowalczuk, Z.: Autonomous driver based on intelligent system of

decision-making. Cogn. Comput. 7(5), 569–581 (2015)

13. Damjanovic, V., Kravcik, M., Devedzic, V.: eQ: an adaptive educational hypermedia-based

BDI agent system for the semantic Web. In: Fifth IEEE International Conference on Advanced

Learning Technologies, pp. 421–423. IEEE (2005)

14. De Silva, L., Ekanayake, H.: Behavior-based robotics and the reactive paradigm a survey. In:

International Conference on Computer and Information Technology, pp. 36–43. Khulna (2008)

15. Dewey, J.: How We Think. D.C. Heath Company, Mineola, N.Y. (1910)

16. Du, P., Liu, H.y.: Study on air combat tactics decision-making based on Bayesian networks.

In: 2nd IEEE International Conference on Information Management and Engineering, pp. 252–

256. IEEE, Chengdu (2010)

17. Flemmer, R.C.: A scheme for an embodied artificial intelligence. In: 2009 4th International

Conference on Autonomous Robots and Agents, pp. 1–9. IEEE (2010)

350 K. Zdzisław and C. Michał

18. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: a systems-level architecture for cogni-

tion, emotion, and learning. IEEE Trans. Auton. Ment. Dev. 6(1), 19–41 (2014)

19. Goodwin, P., Wright, G.: Decision Analysis for Management Judgment. Wiley (2009)

20. Gottfredson, L.: The general intelligence factor. Sci. Am. Presents 9(4), 24–29 (1998)

21. Hernandez, A., El Fallah-Seghrouchni, A., Soldano, H.: Distributed learning in intentional

BDI multi-agent systems. In: Proceedings of the Fifth Mexican International Conference in

Computer Science, pp. 225–232. IEEE (2004)

22. Herve, L.G., Sorin, M.: A model of cooperative agent based on imitation and Maslow’s Pyra-

mid of needs. In: International Joint Conference on Neural Networks, pp. 1229–1236. IEEE

(2009)

23. Ji, S., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 35(1), 221–31 (2013)

24. Jones, R., Laird, J.: Constraints on the design of a high-level model of cognition. In: Proceed-

ings of the Nineteenth Annual Conference of the Cognitive Science Society (1997)

25. Korecko, S., Herich, T., Sobota, B.: JBdiEmo OCC model based emotional engine for Jadex

BDI agent system. In: 12th International Symposium on Applied Machine Intelligence and

Informatics (SAMI), pp. 299–304. IEEE, Herl’any (2014)

26. Kowalczuk, Z., Czubenko, M.: DICTOBOT an autonomous agent with the ability to commu-

nicate. In: Zeszyty Naukowe Wydziału ETI Politechniki Gdaskiej. Technologie Informacyjne,

pp. 87–92 (2010)

27. Kowalczuk, Z., Czubenko, M.: Interactive cognitive-behavioural decision making system. In:

Rutkowski, L. (ed.) Artifical Intelligence and Soft Computing Lecture Notes in Computer Sci-

ence, Lecture Notes in Artificial Intelligence, vol. 6114 (II), pp. 516–523. Springer-Verlag,

Berlin, New York (2010)

28. Kowalczuk, Z., Czubenko, M.: Model of human psychology for controlling autonomous robots.

In: 15th International Conference on Methods and Models in Automation and Robotics, pp.

31–36 (2010)

29. Kowalczuk, Z., Czubenko, M.: Intelligent decision-making system for autonomous robots. Int.

J. Appl. Math. Comput. Sci. 21(4), 621–635 (2011)

30. Kowalczuk, Z., Czubenko, M.: xEmotion—a computational model of emotions dedicated

for intelligent decision-making systems, in polish (xEmotion obliczeniowy model emocji

dedykowany dla inteligentnych systemów decyzyjnych). Pomiary, Automatyka, Robotyka

2(17), 60–65 (2013)

31. Kowalczuk, Z., Czubenko, M.: Cognitive memory for intelligent systems of decision-making,

based on human psychology. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical

and Medical Diagnostics, Advances in Intelligent Systems and Computing, vol. 230, chap.

Cognitive, pp. 379–389. Springer, Berlin, Heidelberg (2014)

32. Kowalczuk, Z., Czubenko, M.: Overview of humanoid robots, in polish (Przegld robotów

humanoidalnych). Pomiary, Automatyka, Robotyka 19(4), 67–75 (2015)

33. Kowalczuk, Z., Czubenko, M.: Computational approaches to modeling artificial emotion an

overview of the proposed solutions. Front. Robot. AI 3(21), 1–20 (2016)

34. Kowalczuk, Z., Czubenko, M.: Interpretation and Modeling of Emotions for the Governance

of Autonomous Agent-Robots with the Use of the Paradigm of Scheduling Variable Control

in preparation (2016)

35. Kowalczuk, Z., Czubenko, M., Jędruch, W.: Learning Processes in Autonomous Agents using

an Intelligent System of Decision-making. In: Kowalczuk, Z. (ed.) Advances in Intelligent

Systems and Computing, pp. 301–315. Springer, Berlin, Heidelberg New York (2016)

36. Laird, J.: The Soar Cognitive Architecture. MIT Press (2012)

37. Laird, J.: Extending the Soar cognitive architecture. In: Wang, P., Goertzel, B., Franklin, S.

(eds.) Proceedings of the Artificial General Intelligence, vol. 171, pp. 224–235. IOS Press

(2008)

38. Laird, J., Mohan, S.: A case study of knowledge integration across multiple memories in Soar.

Biologically Inspired Cognitive Archit 8, 93–99 (2014)

Embodying Intelligence in Autonomous and Robotic Systems . . . 351

39. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intelligence. Artif.

Intell. 33(1), 1–64 (1987)

40. Madl, T., Franklin, S.: Constrained incrementalist moral decision making for a biologically

inspired cognitive architecture. In: Trappl, R. (ed.) A Construction Manual for Robots’ Ethical

Systems, pp. 137–153. Springer International Publishing, Cognitive Technologies (2015)

41. Mann, L., Harmoni, R., Power, C.: The GOFER course in decision making. In: Brown, J.,

Brown, R. (eds.) Teaching Decision Making to Adolescents. Routledge Taylor and Francis

Group, New Jersey, London (1991)

42. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R.,

Bänziger, T., Roesch, E.B. (eds.) A Blueprint for Affective Computing: A Sourcebook and

Manual, pp. 21–41. Oxford University Press, Oxford, UK (2010)

43. Matsumoto, Y., Nishida, Y., Motomura, Y., Okawa, Y.: A concept of needs-oriented design

and evaluation of assistive robots based on ICF. In: International Conference on Rehabilitation

Robotics, Zurich (2011)

44. Mintzberg, H., Raisinghani, D., Théorêt, A.: The structure of ’unstructured’ decision processes.

Adm. Sci. Q. 21(2), 246–275 (1976)

45. Miwa, H., Itoh, K., Ito, D., Takanobu, H., Takanishi, A.: Introduction of the need model for

humanoid robots to generate active behavior. IEEE/RSJ Int Con Intell Robots Syst 2, 1400–

1406 (2003)

46. Moravec, H.: Mind Children. Harvard University Press, The Future of Robot and Human Intel-

ligence (1988)

47. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)

48. Nielsen, P., Koss, F., Taylor, G., Jones, R.: Communication with intelligent agents. In: Pro-

ceedings of IITSEC, pp. 824–834. Orlando, FL (2000)

49. Norvig, P.: On Chomsky and the two cultures of statistical learning. On-line essay in response

to Chomsky’s remarks ... (2011)

50. Novak, E.: Toward a mathematical model of motivation, volition, and performance. Comput.

Edu. 74, 73–80 (2014)

51. Paivio, A., Csapo, K.: Picture superiority in free recall: imagery or dual coding? Cogn. Psychol.

5(2), 176–206 (1973)

52. Pan, Y.T., Tsai, M.S.: Development a BDI-based intelligent agent architecture for distribution

systems restoration planning. In: 15th International Conference on Intelligent System Appli-

cations to Power Systems, pp. 1–6. IEEE, Curitiba (2009)

53. Pickering, A.: The Cybernetic Brain. The University of Chicago Press (2011)

54. Pijanowski, J.: The role of learning theory in building effective college ethics curricula. J. Coll.

Charact. 10(3), 1–14 (2009)

55. Rasheed, N., Amin, S.H., Sultana, U., Shakoor, R., Zareen, N., Bhatti, A.R.: Theoretical

accounts to practical models: Grounding phenomenon for abstract words in cognitive robots.

Cogn. Syst. Res. 40, 86–98 (dec 2016)

56. Ren, L., Liu, W., Liang, X.: The research on the needs model of the China network game. In:

IEEE International Conference on Communications Technology and Applications, pp. 255–

258. IEEE (2009)

57. Seepanomwan, K., Caligiore, D., Cangelosi, A., Baldassarre, G.: Generalisation, decision

making, and embodiment effects in mental rotation: a neurorobotic architecture tested with

a humanoid robot. Neural Netw. 72, 31–47 (2015)

58. Simon, H.A.: The New Science of Managment Decision. Prentice Hall PTR (1960)

59. Spearman, C.: General intelligence objectively determined and measured. Am. J. Psychol.

15(2), 201–292 (1904)

60. Starzyk, J.: Motivation in Embodied Intelligence (2008)

61. Sternberg, R.J., Salter, W.: Handbook of Human Intelligence. Cambridge University Press,

UK, Cambridge (1982)

62. Sun, R.: Moral judgment, human motivation, and neural networks. Cogn. Comput. 5(4), 566–

579 (2013)

352 K. Zdzisław and C. Michał

63. Sun, R., Helie, S.: Psychologically realistic cognitive agents: taking human cognition seriously.

J. Exp. Theor. Artif. Intell. 25(1), 65–92 (2013)

64. Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit knowledge: a bottom-up model

of skill learning. Cogn. sci. 25(2), 203–244 (2001)

65. Wang, L., Wang, M.: Modeling of combined Bayesian networks and cognitive framework for

decision-making in C2. J. Syst. Eng. Electron. 21(5), 812–820 (2010)

66. Żurada, J., Barski, M., Jędruch, W.: Artificial Neural Networks, in Polish (Sztuczne sieci neu-

ronowe). Wydawnictwo naukowe PWN, Warszawa (1996)

Evolutionary Approach for Automatic
Design of PID Controllers

Krystian Łapa and Krzysztof Cpałka

Abstract In this paper a new approach for automatic design of PID controllers is

presented. It is based on meta-heuristic hybrid algorithm which is a combination of

the genetic algorithm and the imperialist one. Main characteristic of the proposed

approach is capability to design the structure and the structure parameters of a con-

troller. It is a big advantage because it eliminates trial and error process of design

the controller structure. Moreover, the proposed approach has been developed in a

way that allows to obtain controllers taking different control criteria and a different

control object into consideration.

1 Introduction

The controller is a main component of the control system. Its purpose is to control

specified object in a way to obtain expected (or close to expected) behavior of the

object. On the other hand, the automatic control of the object lies on making con-

troller dependent on changes of measurable physical values (feedback signals) from

the object (for example: current, voltage, temperature, pressure, velocity, etc.). Fur-

thermore, control process should take different control criteria, which depend usually

on control object and control goal.

Many types of controllers can be found in the literature, such as: proportional-

integral-differential (PID) controllers, controllers based on computational intelli-

gence (e.g. neural networks [4, 42, 49, 50], fuzzy systems [7–10, 13, 14, 31–37,

45–48], clustering algorithms [11, 16, 26] and hybrid controllers (based on both PID

controller and computational intelligence methods). However, the PID controllers

correspond to the needs of most automation systems [22] and they are mostly used

K. Łapa ⋅ K. Cpałka (✉)

Institute of Computational Intelligence, Czestochowa University of Technology,

Al. Armii Krajowej 36, 42-200 Czestochowa, Poland

e-mail: krzysztof.cpalka@iisi.pcz.pl

K. Łapa

e-mail: krystian.lapa@iisi.pcz.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_16

353

354 K. Łapa and K. Cpałka

in practice [25]. Typical PID controller consists of the following elements: propor-

tional P with reinforcement parameter Kp, integral I with time constant Ti (denoted

also as Ki) and differential D with time constant Td (denoted also as Kd). The purpose

of P element is to compensate offset between expected value and real value from the

object, the purpose of I element is to compensate offsets from previous time steps

and the purpose of D element is to compensate future offsets. To achieve appropriate

quality of the controller the elements P, I and D should be properly connected and

their parameters should be properly selected.

In the literature many methods for parameters selection (tuning) can be found,

such as: Ziegler-Nichols method, methods working in a field of frequency (giving

information about the supply gain and supply phase), methods using relay tuning,

methods based on optimization of control criteria, methods with inner model, meth-

ods seeking roots of closed loop, methods using optimal module critter, methods

based on image recognition etc. Additional methods that can be used for parameters

tuning are computational intelligence methods, in particular population-based meth-

ods [2, 15, 19, 20, 24, 25, 38, 41, 44]. These methods are efficient procedures of

searching space and they are based on processing of group (population) of possible

solutions (individuals) for the problem under consideration. In these algorithms each

individual contain a set of parameters representing single controller.

Among the typical PID controllers similar controllers with modified (or reduced)

structures can be found. These include, for example, the following controllers: PI, PI

in cascade, PI with feed-forward [6, 17, 21, 28], PI or PID with additional lowpass

[21], PID with anti-windup and compensation mechanism [29], pseudo-derivative

feedback (PDF), PDF with feed-forward gain (PDFF) [40] etc.

Selection of a proper controller structure is a complex problem that usually needs

a priori expert knowledge. In practice a need for methods for automatic selection

controller parameters and structure arises. The aim of these methods is to test non-

typical combinations of feedback signals from the object, taking into account the

actual working conditions of the control system (including non-linearity and distor-

tion) and taking into account deviations from the principles of analytical design of

the regulator in order to simplify and improve the quality of control.

In this paper a method for selection the controller structure and for simultane-

ously tuning of this structure parameters is proposed. We used our experience from

the field of hybrid population-based algorithms [27] to create this method. In order to

develop this method the following problems had to be solved: (a) problem of general-

ization of the controller structure (which allows us to obtain all mentioned structures

and process any number of feedback signals), (b) problem of proper encoding of the

controller (not only its parameters), (c) problem of taking into consideration multi-

ple control criteria, (d) problem of proper processing of the population of encoded

controllers. The latter problem arises from the fact that existing population-based

algorithms are not suitable for use in the considered problem of the controller selec-

tion. For example, the genetic algorithm efficiently tunes encoded binary values, thus

it is well suited to the structure selection. In turn, the imperialist algorithm efficiently

tunes real values but it is not equipped in mechanism to tune encoded binary values,

Evolutionary Approach for Automatic Design of PID Controllers 355

thus it is well suited to parameters selection. In this paper an algorithm which is a

hybridization of both mentioned algorithms is proposed.

In Sect. 2 the proposed approach for designing control systems with possibili-

ties of a new hybrid genetic-imperialist algorithm is described. The proposed hybrid

algorithm is described in Sect. 3. Simulation results are presented in Sect. 4 and con-

clusions are placed in Sect. 5.

2 Proposed Generalized Controller Structure

In this paper an attempt for generalization of MISO (multiple input, single output)

controller structure is made. To achieve that a new structure of the controller is pro-

posed (see Fig. 1). In case of MIMO system, proposed in Fig. 1 structure should be

paralleled. Proposed structure contains CB and NB blocks (see Fig. 2) and each CB

block is adequate to the single PID structure. The main advantage of using proposed

controller structure is the possibility of selecting the most unusual/non-typical struc-

tures of the control system (for example with non-typical feedback). The goal of the

structure modification is to obtain simple structure which in the best possible way

meets the required control criteria.

The number of CB and NB blocks in a proposed controller is a parameter of algo-

rithm that arises from complexity of considered problem. In practice, the number

of controller input signals ei, i = 1, ..., I (including feedback signals from the con-

trolled object) is usually small, so the initial number of CB and NB blocks is also

small. The inputs of CB blocks might include: (a) offsets of feedback signals and

expected values of signals from the object, (b) feed-forward signals directly from

Fig. 1 Proposed

generalized controller

structure based on CB and

NB blocks, designed to

automatic selection by

evolutionary algorithm

CB NB CB CBNB NB

NB CB CBNB NBCB

NB CB CBNB NB

NB CB CBNB NB

CB

CB

+ +
+

u

regulation
signal for
controlled

object
(object
model)

Ie

2e

signals from
controlled object
(object model)

1e

1,1

2,1

I! ,1

I!,1

1, -1I

2, -1I

I! , -1I

I I!, -1

1,I

2,I

I! ,I

I I!,

indexes of
CB blocks

1,1

2,1

I! ,1

I!,1

1, -1I

2, -1I

I! , -1I

I I!, -1

1,I

2,I

I! ,I

I I!,

0

0

0

0

356 K. Łapa and K. Cpałka

Fig. 2 Proposed structure

of: a control block (CB), b
node block (NB)

CB CB

NB

NB

N

NB

A

B

(-1)Astr

(-1)Bstr

(a) (b)

the object (solutions like that are often used in the literature to improve the quality

of control), (c) cascading signals from other CB blocks connected with NB blocks.

The proposed CB block structure consists of P, I and D elements, which can be

additionally turned off (by elements acting the same way as the switch in an electrical

circuit) (see Fig. 2). Thus, the goal of tuning algorithm is to select proper (simple and

efficient) structure of controller (by modification of electrical circuit-like switches)

and simultaneously to select this structure parameters (by modification real value

parameters of P, I and D elements). The output of proposed CB block is calculated

as:

uCB (t) =
(
Pstr ⋅ Kp ⋅ eCB (t) + Istr ⋅ 1

Ti
⋅

t
∫
0
eCB (t) dt + Dstr ⋅ Td ⋅

deCB(t)
dt

)
, (1)

where binary parameters (referred as switches) Pstr
, Istr , Dstr

stand for activation

(when binary value is equal to 1) of corresponding P, I and D elements. It is worth

noting that if necessary, a different initial structure of the controller can be used

(for example with filter elements) which, however, does not affect the concept of

the proposed approach. If all switches Pstr
, Istr , Dstr

are set to 0, then the whole

CB is excluded from the system. Moreover, the evolution process promotes these

solutions, in which the number of active switches (and thus reduced the number of

P, I, D elements and CB blocks) is as small as possible (see Sect. 3.3).

The proposed NB block structure consists of two multipliers which allow signals

to change signs. The output of proposed NB block is calculated as:

uNB (t) = eNBA (t) ⋅ (−1)A
str + eNBB (t) ⋅ (−1)B

str
, (2)

where binary parameters Astr ∈ {0, 1} and Bstr ∈ {0, 1} stand for changes of signs

of input signals when binary value is equal to 1.

In the proposed method an important role plays proposed hybrid evolutionary

genetic-imperialist algorithm (see Fig. 3). Most of the recent population-based algo-

rithms cannot be directly used for the simultaneous selection of the structure and

parameters of the control system (they can process only real parameters or only

binary parameters). On the other hand, genetic algorithms could theoretically be

used for this purpose, but such an approach would not be effective (there are many

newer population-based algorithms which can obtain better results on real value

parameters-see e.g. [44]).

Evolutionary Approach for Automatic Design of PID Controllers 357

Fig. 3 The idea of the

proposed method of

automatic design of PID

controllers

The proposed algorithm is an ensemble of genetic algorithm to process binary

parameters and imperialist algorithm to process real parameters. The idea of genetic

algorithms is based on biological evolution of species (see e.g. [5]) and the idea of

imperialist algorithm (Imperialist Competitive Algorithm, ICA) is based on social

evolution (see e.g. [3]). New elements of the algorithm proposed in this paper

includes, among the others, adapting it to the processing both the binary and real

parameters and the introduction of the modified mutation operator. A detailed descrip-

tion of the proposed algorithm was presented in Sect. 3.

3 Proposed Hybrid Genetic-Imperialist Algorithm
Description

Each solution (individual) in the imperialist algorithm terminology (see e.g. [3]) is

called a colony. On the basis of the best colonies from initial population (colonies

characterized by the best values of fitness function) the empires are created (each

colony from best colonies creates an empire and became imperialist of this empire).

The rest of the colonies are spread among all empires. The colonies are a subject

to evolutionary operators which are referring to the human social evolution: the

assimilation operator and the revolution operator. Additionally, a binary mutation

of colonies takes place (mutation of structure of the controller), derived from the

genetic algorithm. After this process all empires are re-evaluated by fitness func-

tion and empires compete with each other which results in transfer of the colonies

between strongest and weakest empire from the competition. If, due to colonies trans-

fer, empire lost all colonies, it is eliminated (removed) from the whole process. Next,

a stopping criterion is checked. This criterion can be based on quality of the best

solution in the population or on the number of total iterations defined in the algo-

358 K. Łapa and K. Cpałka

Fig. 4 A block diagram of a

hybrid genetic-imperialist

algorithm for automatic

selection of the structure and

parameters of the controller

based on a linear correction

terms. The presented steps of

the algorithm are described

in detail in Sect. 3

rithm. Therefore, the purpose of the algorithm is to systematize improvement of the

solutions in terms of the value of evaluation function. The steps of the algorithm are

shown in Fig. 4 and are described in detail in further part of this section.

3.1 Encoding of the Structure and Parameters

Solutions encoded in a population are identified as 𝐗j, j = 1,… ,N (N stands for the

number of solutions in population). Each solution contains two parts: 𝐗str
j and 𝐗par

j

(𝐗j =
{
𝐗str

j ,𝐗par
j

}
). The first part 𝐗str

j encodes the structure of the controller and it

is expressed as follows:

𝐗str
j =

⎡⎢⎢⎢⎢⎣

Pstr
j,1,1, I

str
j,1,1,D

str
j,1,1,A

str
j,1,1,B

str
j,1,1,… ,

Pstr
j,1,I , I

str
j,1,I ,D

str
j,1,I ,A

str
j,1,I ,B

str
j,1,I ,… ,

Pstr
j,I!,1, I

str
j,I!,1,D

str
j,I!,1,A

str
j,I!,1,B

str
j,I!,1,… ,

Pstr
j,I!,I , I

str
j,I!,I ,D

str
j,I!,I ,A

str
j,I!,I ,B

str
j,I!,I

⎤⎥⎥⎥⎥⎦
=
[
Xstr
j,1 ,… ,Xstr

j,Lstr

]
, (3)

where each parameter Xstr
j,g , g = 1,… ,Lstr encodes information about state of the

switch (Pstr
, Istr or Dstr

) in the controller structure and about nodes NB parameters

Evolutionary Approach for Automatic Design of PID Controllers 359

(Astr
, Bstr

), Lstr = 5 ⋅ I! ⋅ I stands for amount of parameters of the solution 𝐗str
j . The

second part 𝐗par
j encodes parameters of the controller and it is expressed as follows:

𝐗par
j =

⎡⎢⎢⎢⎢⎣

Ppar
j,1,1, I

par
j,1,1,D

par
j,1,1,… ,

Ppar
j,1,I , I

par
j,1,I ,D

par
j,1,I ,…

Ppar
j,I!,1, I

par
j,I!,1,D

par
j,I!,1,… ,

Ppar
j,I!,I , I

par
j,I!,I ,D

par
j,I!,I

⎤⎥⎥⎥⎥⎦
=
[
Xpar
j,1 ,… ,Xpar

j,Lpar

]
, (4)

where each parameter Xpar
j,g , g = 1,… ,Lpar encodes information about real parameter

Kp, Ti or Td of the CB block structure of the controller, Lpar = 3 ⋅ I! ⋅ I stands for

amount of parameters of the solution 𝐗par
j .

3.2 Initialization of Initial Population

All parameters of the initial population of solutions 𝐗j are generated randomly. The

parameters of the first part of 𝐗str
j encoding the structure of the controller take the

binary values drawn from the set Xstr
j,g ∈ {0, 1}, where index of the parameter g =

1,… ,Lstr . The parameters of the second part of 𝐗par
j encoding parameters of the

controller can take real number values and they are randomly generated from ranges

selected individually for the problem under consideration (separately for each group

of parameters: P, I, D).

The example of encoding of controller structure with two feedback signals is

shown in Fig. 5a and example with simplified presentation and encoding of con-

troller structure parameters is shown in Fig. 5b.

3.3 Evaluation of the Population

In the proposed algorithm the evaluation of all solutions 𝐗j from the population

of algorithm takes an important part. This evaluation is based on properly defined

fitness function. Fitness function allows us to evaluate the controller encoded by sin-

gle solution 𝐗j. This evaluation can not only take into account many criteria but also

each criterion can be weighted. Consideration of many criteria requires an appropri-

ate aggregation of them or use of a different approach in the field of multi-criteria

optimization (see e.g. [23]). In this paper a modified weighted sum method (WSM)

(see e.g. [12]) was used. In this method the fitness function for the solutions FF
(
𝐗j
)

is defined as:

FF
(
𝐗j
)
=

M∑
m=1

wm ⋅
(
am ⋅ f fm

(
𝐗j
))2

, (5)

360 K. Łapa and K. Cpałka

CB

CB CB
1,1

2,1

1,2

1e
2e

+ +

u

indexes of
CB blocks

1e

2e

P = 0str
1,1,1

I = 1str
1,1,1

D = 0str
1,1,1

P = 0str
1,1,2

I = 0str
1,1,2

D = 0str
1,1,2

P = 1str
1,2,1

I = 1str
1,2,1

D = 1str
1,2,1

P = 0str
1,2,2

I = 0str
1,2,2

D = 0str
1,2,2

P =
par

1,2,1

I =
par

1,2,1

D =
par
1,2,1

I =
par

1,1,1

NB
1,1

NB
1,2

CB
2,2

NB
2,1

NB
2,2

0

0

A = 1str
1,1,1

A = 1str
1,1,2

A = 0str
1,2,1

A = 0str
1,2,2

B = 1str
1,1,1

B = 1str
1,1,2

B = 1str
1,2,1

B = 1str
1,2,2

(a)

(b)

Fig. 5 Example of controller with two input signals (I = 2): a controller structure and example

parameters encoding this structure, b simplified controller structure (according to structure para-

meters) with only real value parameters presented (this presentation is used in the further part of

this paper)

where f fm
(
𝐗j
)

stands for component of the fitness function connected to criterion

m (m = 1,… ,M), M stands for amount of considered criteria, wm stands for weight

correlated to the m-th criterion, am stands for normalization parameter of the m-th

criterion. Using normalization parameter (which is not a standard element of WSM)

eliminates situation where one of the components of the fitness function f fm
(
𝐗j
)

determines value of the function FF
(
𝐗j
)
.

3.4 Empires Creation

From the solutions𝐗j (called also individuals or colonies) created in the initialization

process, Ni the best solutions (based on the fitness function value) are used to create

empires. The amount of these solutions can be set freely, however in the literature

can be found a suggestions to set this number to Ni = int
(

N
10

)
(int (⋅) is a function

which approximates the number to its nearest integer) (see e.g. [3]). Each of the best

solutions creates an own empire and becomes an imperialist of it.

Next, the rest of the colonies (in amount of N − Ni) are added to the empires. Each

empire gets specified amount of colonies chosen randomly from remaining colonies.

This amount is based on the power of the empire Pk (k = 1,… ,Ni) calculated in the

following way:

Pik =

|||||||||||

FF
(
𝐗𝐢k

)
− max

s=1,…,Ni

{
FF

(
𝐗𝐢s

)}
Ni∑
q=1

(
FF

(
𝐗𝐢q

)
− max

s=1,…,Ni

{
FF

(
𝐗𝐢s

)})
|||||||||||
, (6)

Evolutionary Approach for Automatic Design of PID Controllers 361

where numerator and denominator contain normalized value of the fitness function.

The power of empire allows us to obtain amount of colonies Nick = int
(
Ni ⋅ Pik

)
.

The colonies added into empire will be denoted as 𝐗𝐢𝐜k,r =
{
𝐗𝐢𝐜strk,r,𝐗𝐢𝐜

par
k,r

}
={

Xick,r,1,… ,Xick,r,Lstr+Lpar
}

(k = 1,… ,Ni, r = 1,… ,Nick). The system of empires

and their colonies formed in this step will be subject to change as described in

Sects. 3.5 and 3.8.

3.5 Assimilation of the Colonies

The purpose of making changes in the colonies is to explore the search space of

parameters and structure for the considered problem. The purpose of exploitation

is to shift colonies closer to the imperialist of their empire (as models with the best

value of fitness function). It is made on the basis of the assimilation operator (typical

for the imperialist algorithm, see e.g. [3]). The purpose of exploration (global and

local exploration) is to make random changes in colonies, which allows to find new,

not known solutions. It is made on the basis of the revolution operator (typical for

the imperialist algorithm, see e.g. [3]) and mutation operator (typical for the genetic

algorithm, see e.g. [30]).

The assimilation operator works on part𝐗𝐜parr of the solutions𝐗𝐜r, which encodes

real parameters of the controller. It allows colonies to move towards imperialist with

using additional small random direction angle. It can be written as follows:

Xicpark,r,g ∶=
(
Xipark,g − Xicpark,r,g

)
⋅ Ur (0, 2) ⋅ Ug (−𝛾, 𝛾) , (7)

where Ug (0, 2) stands for random number from the range (0, 2) generated for assimi-

lation for each colony r, Ug (−𝛾, 𝛾) stands for random number from the range (−𝛾, 𝛾)
generated individually for each gene of each r colony, 𝛾 is a parameter defining ran-

dom angle. The assimilation operator allows us to: (1) maintain a strong position of

empires, (2) not to introduce such changes in the population of individuals that make

impossible to find the optimal solution in terms of the adopted criteria.

3.6 Revolution and Mutation

After assimilation, a revolution and mutation of the colonies take place. These oper-

ators work only on part of the parameters of solutions. For each parameter a two

random numbers are generated from the range [0, 1]. If the first number is lower than

probability of revolution pr, then the parameter is modified by a revolution opera-

tor. If the second number is lower than probability of mutation pm, the parameter is

modified by mutation operator. Both probabilities parameters are similar to standard

362 K. Łapa and K. Cpałka

mutation probability operator from the genetic algorithm. The revolution concerns

parameters of the controller (𝐗𝐜parr) and the mutation concerns parameters of the

structure of the controller (𝐗𝐜strr). Revolution operator effect can be written as fol-

lows:

Xicpark,r,g ∶= Xicpark,r,g +
(
Xic

par
k,r,g − Xicpark,r,g

)
⋅ Ug (0, 1) , (8)

where Xicpark,r,g stands for minimum acceptable value of gene, Xic
par
k,r,g stands for max-

imum acceptable value of gene. Values Xicpark,r,g and Xic
par
k,r,g arise from the specificity

of the considered problem.

The mutation concerns parameters of the controller structure. The binary para-

meters (switches) modified by the mutation parameter are inverted (from 1 to 0 and

vice-versa). Since the revolution and mutation interact intensively on colonies, the

value of pr∕m cannot be too large to not cause degeneration of the population.

3.7 Evaluation of the Population

After changes described in Sects. 3.5 and 3.6 all individuals are re-evaluated by fit-

ness function (5). The purpose of this step is to update fitness function values of the

individuals before empires competition takes place, which relies on fitness function

values of the individuals.

3.8 Competition of the Empires

The changes in empires are made in three steps. In the first one each colony 𝐗𝐢k
in the empire is compared with imperialist of this empire. If the fitness function

of the colony is better than fitness function of the imperialist (𝐗𝐢𝐜k,r), the colony

takes control over empire and replaces existing imperialist. The second step is based

on the imperialist (empires) competition. In this step the weakest empire (taking

into account the empire power) losing its weakest colony (taking into account the

fitness function of the colonies inside empire). This colony is transferred into empire

which won the main competition. The competition is based on the empire power and

probability. Total empire power is defined as follows:

Ck = FF
(
𝐗𝐢k

)
+ 𝜉 ⋅

Ncik∑
r=1

FF
(
𝐗𝐢𝐜k,r

)

Ncik
, (9)

Evolutionary Approach for Automatic Design of PID Controllers 363

where 𝜉 ∈ [0, 1] stands for importance of the colonies in the empire (it is a static

algorithm parameter). The probability of acquisition of the weakest colonies can be

calculated using total empire power which is defined as (similarly as in formula (6)):

Pick =

|||||||||||

Ck − max
s=1,…,Ni

{
Cs
}

Ni∑
q=1

(
Cq − max

s=1,…,Ni

{
Cs
})

|||||||||||
. (10)

The sum of probability of wining competition is equal to 1. For the strongest

empire this value is the highest, for the weakest empire this value is equal to 0. A

virtual roulette wheel is obtained by allocating each empire on a segment of the

wheel, which size is proportional to the probability of wining the competition by the

considered empire. Next, a single number is drawn from the unit interval. It indi-

cates the empire placed on the roulette wheel which has won the competition. Thus,

the process is analogous to the selection by the roulette wheel used in the genetic

algorithm (see e.g. [30]).

3.9 Elimination of Empty Empires

The rotation of the colonies between empires allows us to eliminate (step three) the

weakest empires. It is realized in such a way that the empires which do not have any

colonies are removed. Moreover, rotation of the weakest colonies between empires

causes that the strongest empires become weaken. Due to this process, the algorithm

is less sensitive to local minima (which is a big advantage).

3.10 Stopping Criterion

The last step of the algorithm is based on checking the number of the algorithm

iterations. If this number reaches specified value, the best solution is presented and

algorithm stops, otherwise the algorithm goes back to the step described in Sect. 3.5.

4 Simulations

In this section a simulation problem, simulation method and simulation results are

presented.

364 K. Łapa and K. Cpałka

4.1 Simulation Problem

In the simulations a problem of automatic selection of the structure and the structure

parameters for quarter car active suspension system [1, 18, 39] was considered. The

main idea of this system is shown in Fig. 6. In the controlled object a following stands

are used: mu denotes unsprung mass, ms denotes sprung mass, kt denotes tire stiff-

ness, ks denotes sprung stiffness, ds denotes sprung damping, zr denotes road profile,

zt denotes tire compression, zu denotes displacement of unsprung mass, z denotes

suspension travel, zs denotes displacement of sprung mass. Parameters of active sus-

pension controller were set as follows: mu = 48.3 kg, ms = 395.3 kg, ks = 30010
N/m, kt = 340000 N/m, ds = 145 Ns/m. Controlled object is modelled as follows:

ẋ = Ax + Bu + f, (11)

where A is a state matrix in the form:

A =

⎡⎢⎢⎢⎢⎣

0 1 0 0
− ks

ms
− ds

ms

ks
ms

ds
ms

0 0 0 1
ks
mu

ds
ms

− ks+kt
mu

− ds
ms

⎤⎥⎥⎥⎥⎦
, (12)

x is a state vector (initial values of the state vector were set to zero) described as

follows:

𝐱 =
[
x1 x2 x3 x4

]T =
[
zs

⋅
zs zu

⋅
zu
]T
, (13)

B is an input matrix represented by the formula:

B =
[
0 1

ms
0 − 1

mu

]T
, (14)

Fig. 6 Active suspension

controller (e1 = fb1,

e2 = fb2, e3 = fb3)

Evolutionary Approach for Automatic Design of PID Controllers 365

u is a vector of output signals obtained from the controller in a size equal to one

(𝐮 = [u], see Fig. 6), f is an input vector from kinematic extortion described by the

following equation:

f =
[
0 0 0 − kt

mu

]T
⋅ zr. (15)

For the purposes of simulation, we used the discrete form of Eqs. (11)–(15), which

were discretized with time step Ts. It is worth to mention that in the practical part

of implementation, in the microprocessor system the Eq. (1) is also subject to dis-

cretization of step Tr (Table 1).

4.2 Simulation Method

In our simulations two cases were considered. In the first case, learning phase of the

system (in evolution process) without inclusion of signals drift and in the second

case inclusion of signals drift was used. Drift of the signals is a time constant value

which should be added to the signals’ values. Simulation for both cases was made

in a few configurations using additionally included noise of the signals and different

road profile to test the system (see Fig. 7 and Table 2). Both the drift and the noise

Table 1 Parameters of the simulations

Description Value

Range

[
Xicpark,r,g,Xic

par
k,r,g

]
for P (Kp) parameters

of the CB

[0, 2000]

Range

[
Xicpark,r,g,Xic

par
k,r,g

]
for I (1∕Ti)

parameters of the CB

[0, 50000]

Range

[
Xicpark,r,g,Xic

par
k,r,g

]
for D (Td) parameters

of the CB

[0, 20]

Range, of the control signal u of the controller

(see [39])

[−1000, 1000]

Time step of the discretization of the controller

in time domain

Ts = 0.1ms

Quantization resolution for signals u, ei,
i = 1,… , n

0.0001

Value of optional drift of the input signals e1
and e2

0.01

Optional noise range of input signals e1 and e2 [−0.004, 0.004]
Simulation length T = 8s
The number of samples of a single simulation Z = T

Ts
= 80000

Interval between subsequent controller

activations

Tr = 5 ⋅ Ts = 0.5ms

366 K. Łapa and K. Cpałka

Fig. 7 Considered road

profiles: a trapezoidal, b
sinusoidal

(a) (b)

Table 2 Simulation cases with used road profile (t-stands for trapezoidal shape of road profile,

s-stands for sinusoidal shape of road profile-see Fig. 7), signals noise and signals drift

Learning phase Testing phase

Active

system

Road profile Drift Road profile Drift Noise

(a) No t – t No No

(b) Yes t No t No No

(c) Yes t No t Yes Yes

(d) Yes t Yes t No No

(e) Yes t Yes t Yes Yes

(f) No t – s No No

(g) Yes t Yes s No No

(h) Yes t Yes s Yes Yes

of the signals results from tolerance of the used sensors and should be provided by

specifications of the hardware manufacturer. In our simulations a drift signal with

value 0.01 and random noise with amplitude [−0.004, 0.004] were used (Table 1).

Both simulation cases start from general structure of the controller shown in

Fig. 1. In this structure I = 3, therefore, the initial number of CB blocks (Fig. 2) was

18. The variants (simulation configurations) for both simulation cases are shown in

Table 2. The variants (b) and (c) relate to tests of structures obtained without taking

into account the signals drift in the evolution. The variants (d), (e), (g) and (h) relate

to tests of structures obtained taking into account the signals drift in the evolution.

The variants (a) and (f) relate to test of the system with open regulation loop (without

using a controller) and were taken into account in order to compare the results.

For both simulation cases the same parameters of the simulations (Table 1) and

the same following parameters of the algorithm were used: intensity of shifts of the

assimilation operator 𝛾 = ⟨−0.15, 0.15⟩, revolution probability pr = 0.25, mutation

probability pm = 0.15, colonies importance factor 𝜉 = 0.1, population size N = 100,

algorithm iteration number was set to 1000.

In the process of selection of the structure and the parameters of the controller we

used hybrid genetic-imperialist algorithm, whose detailed description is presented in

Sect. 3. The aim of the considered problem was to select structure and parameters of

the controller taking into account the following criteria: passenger comfort, car han-

dling, etc. It was realized by properly defined fitness function (5). The components

of the fitness function f fm
(
𝐗j
)
, m = 1,… , 7 (M = 7) are presented in the Table 3. It

Evolutionary Approach for Automatic Design of PID Controllers 367

Ta
bl
e
3

T
h
e

o
b
ta

in
e
d

v
a
lu

e
s

o
f

th
e

fi
tn

e
s
s

f
u
n
c
ti

o
n

a
n
d

it
s

c
o
m

p
o
n
e
n
ts

(
5
)

m
N

a
m

e
w
m

a m
ff

m
(𝐗

)
d

e
fi

n
it

io
n

ff
m
(𝐗

)v
a
lu

e
s

fo
r

c
o

n
s
id

e
r
e
d

s
im

u
la

ti
o

n
v
a
r
ia

n
ts

(
a
)

(
b
)

(
c
)

(
d
)

(
e
)

(
f
)

(
g
)

(
h
)

1
P

a
s
s
e
n
g
e
r

c
o
m

fo
r
t

1
.0

0
5

√
1 Z
⋅

Z ∑ z=
1
z̈2 s z

4.
2
×

10
−
1

1.
3
×

10
−
1

1.
3
×

10
−
1

1.
5
×

10
−
1

1.
6
×

10
−
1

28
.
8
×

10
−
1

15
.
4
×

10
−
1

15
.
8
×

10
−
1

2
C

a
r

h
a
n

d
li

n
g

0
.2

5
2
0
0
0

√
1 Z
×

Z ∑ z=
1
z2 t z

6.
5
×

10
−
4

4.
4
×

10
−
4

4.
5
×

10
−
4

4.
4
×

10
−
4

4.
7
×

10
−
4

33
.
3
×

10
−
4

21
.
5
×

10
−
4

21
.
4
×

10
−
4

3
S

u
s
p
e
n
s
io

n

m
a
x
.
tr

a
v
e
l

0
.1

0
2
0

m
ax

z=
1.
.
.
.
.
Z

{ | |z
z| |}

21
.
9
×

10
−
3

29
.
1
×

10
−
3

33
.
8
×

10
−
3

28
.
1
×

10
−
3

30
.
5
×

10
−
3

11
1.
4
×

10
−
3

79
.
9
×

10
−
3

83
.
5
×

10
−
3

4
S

u
s
p
e
n
s
io

n

tr
a
v
e
l

0
.1

0
2
0

√
1 Z
⋅

Z ∑ z=
1
z2

z
4.
8
×

10
−
3

6.
2
×

10
−
3

23
.
3
×

10
−
3

6.
7
×

10
−
3

7.
2
×

10
−
3

32
.
4
×

10
−
3

20
.
6
×

10
−
3

21
.
5
×

10
−
3

5
C

o
m

p
le

x
it

y
0
.5

0
2

Ls
tr ∑ g=
1
Xs

tr j,g
–

31
.
2
×

10
−
3

31
.
2
×

10
−
3

62
.
5
×

10
−
3

62
.
5
×

10
−
3

–
62
.
5
×

10
−
3

62
.
5
×

10
−
3

6
C

o
n
tr

o
l

fo
r
c
e

0
.1

0
2
×
10

−
3

√
1 Z
⋅

Z ∑ z=
1
u2 z

–
19
.
3
×

10
2

70
.
6
×

10
2

19
.
9
×

10
2

21
.
7
×

10
2

–
47
.
3
×

10
2

49
.
0
×

10
2

7
O

s
c
il

la
ti

o
n

s
o

f

c
o

n
tr

o
ll

e
r

0
.2

5
2
×
10

−
4

O
−
1 ∑ o=
1

| | | | |u
(t o

) −
u
(t o+

1)| | | | |
–

4.
0
×
10

3
3.
7
×
10

3
4.
3
×
10

3
16
5.
1
×

10
3

–
19
.
3
×

10
3

15
0.
0
×

10
3

FF
(𝐗

j)
=

4
.7

7
1
.0

4
1
.4

7
1
.2

1
5.
44

2.
19

×
10

2
0.
71

×
10

2
5.
16

×
10

2

368 K. Łapa and K. Cpałka

Fig. 8 Minimums and

maximums of the output

signal u for fitness function

component f f7(𝐗)-see

Table 3 1t 2t 3t 4t 5t 6t

1u t()

2u t()

u t()

Fig. 9 Obtained controllers

(with simplified presentation

of their structures and their

parameters) for: a case

without using drift and noise

in the learning phase

(variants b) and c in Table 2),

b case with using drift and

noise of the signals in the

learning phase (variants d),

e, g i h in Table 2)

P =
par

1,2,1

I =
par

1,2,1

D =
par
1,2,1

I =
par

1,1,1

P =
par

1,1,1

I =
par

1,1,1

(a)

(b)

is worth to mention that the definition of criteria can be very elastic. For example, a

criterion applying to oscillations of the control signal points the absolute difference

between the values in successive amplitude oscillations until their disappearance (see

Fig. 8).

4.3 Simulation Results

The conclusions of the simulations can be summarized as follows:

∙ Controllers obtained from the evolution process are shown in Fig. 9. As might

be expected, the structure obtained without taking into account drift of the sig-

nals (see Fig. 9a) is less complex than the structure obtained with drift of the sig-

nals (see Fig. 9b). In such structure, signals from accelerator sensors were needed

to obtain satisfactory quality of the controller. Direct measure of the suspension

travel was also not necessary (a similar proposal was formulated in [43]).

∙ The structure obtained without taking into account drift of the signals works well

only in conditions similar to the ones from the learning phase (see Fig. 10b), which

are ideal. At the same time, this structure cannot cope with the tests, which take

into account drift of the signals (in real conditions) (see Fig. 10c). In particular,

the control signal u and signal z (suspension travel) reached the limit value other

than 0. The reason for this behavior is the reaction of the controller on the integral

component to the presence of a signal drift. The obtained results disqualified the

first controller for its practical use. The results obtained with the use of open loop

(without using a controller) are shown in Fig. 10a for comparison.

Evolutionary Approach for Automatic Design of PID Controllers 369

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 10 Signals obtained in the simulation for cases a–h considered in Table 2

370 K. Łapa and K. Cpałka

∙ The obtained structure which takes into account the drift of the signals copes well

with both environments: similar to those in the learning phase (see Fig. 10d) and

in the real conditions with drift and the noise of the signals taken into account (see

Fig. 10e). Moreover, this structure works well on different road profile than used

in the learning phase (see Fig. 10g, h). The results obtained with the use of open

loop (without using a controller) are shown in Fig. 10f.

∙ The procedure of selection of the controller initially takes into account three sen-

sors. The evolutionarily obtained controllers did not require signal from sensor

z̈u. It was achieved thanks to properly defined fitness function for evaluation of

the solutions in the tuning algorithm population. Properly defined components of

the fitness function allow us to take into account relevant characteristics of the

controller, such as, e.g. the reaction time of the sensor to change the measured

quantity, the price of used components included in the controller and so on.

5 Conclusions

In this paper a new method for designing both the structure and the structure para-

meters of the controllers with using hybrid genetic-imperialist algorithm was pre-

sented. It is a new algorithm created on the fusion between the genetic algorithm

and the imperialist competitive algorithm. This fusion allowed us to obtain both the

structure and the structure parameters of the controller. In the tuning process of the

algorithm a different criteria and their weights were used. The disadvantage of the

proposed method is the need for a suitably accurate model of the controlled object.

A very significant advantage of using the model is the minimization of the risk of

damaging the controlled object. The proposed method has been tested on the car

active suspension system problem and the results confirmed its effectiveness. More-

over, the method selected a simpler controller for the problem in which the drift of

the signals was not taken into account and a more complex structure when the drift

of the signals was taken into account. This proves, among others, the flexibility of

our method.

Acknowledgements The project was financed by the National Science Centre (Poland) on the basis

of the decision number DEC-2012/05/B/ST7/02138.

References

1. Agharkakli, A., Sabet, G.S., Barouz, A.: Simulation and analysis of passive and active suspen-

sion system using quarter car model for different road profile. Int. J. Eng. Trends Technol. 3(5),

636–644 (2012)

2. Ali, S.R., Aldair, A.A., Almousawi, A.K.: Design an optimal PID controller using artificial

bee colony and genetic algorithm for autonomous mobile robot. Int. J. Comput. Appl. 100(1),

6 (2014)

Evolutionary Approach for Automatic Design of PID Controllers 371

3. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimiza-

tion inspired by imperialistic competition. IEEE Congr. Evolutionary Comput. 7(4661), 4666

(2007)

4. Bas, E.: The training of multiplicative neuron model based artificial neural networks with dif-

ferential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6, 5–12 (2016)

5. Binitha, S., Sathya, S.S.: A survey of bio-inspired optimization algorithms. Int. J. Soft Comput.

Eng. (IJSCE) 2(2), 137–151 (2012)

6. Boiko, I.: Variable-structure PID controller for level process. Control Eng. Pract. 21(5), 700–

707 (2013)

7. Cpałka, K.: A Method for Designing Flexible Neuro-fuzzy systems. Lecture Notes in Artificial

Intelligence, Springer 4029, 212–219 (2006)

8. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)

9. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy sys-

tems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

10. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno. Fuzzy systems. In: Neural Networks, Pro-

ceedings of the 2005 IEEE International Joint Conference on IJCNN ’05, vol. 3, pp. 1764–1769

(2005)

11. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. Interna-

tional Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial

Intelligence, vol. 7268, pp. 56–63. Springer (2012)

12. Eckenrode, R.T.: Weighting multiple criteria. Manag. Sci. 12, 19–180 (1965)

13. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy

systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123

(2005)

14. Gaweda, A.E., Scherer, R.: Fuzzy number-based hierarchical fuzzy system. ICAIS, pp. 302–

307 (2004)

15. Ghorbani, R., Wu, Q., Wang, G.G.: Nearly optimal neural network stabilization of bipedal

standing using genetic algorithm. Eng. Appl. Artif. Intell. 20, 473–480 (2007)

16. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data

streams. In: International Conference on Artificial Intelligence and Soft Computing. Lecture

Notes in Artificial Intelligence, vol. 7268, pp. 92–99. Springer (2012)

17. Leva, A., Papadopoulos, A.V.: Tuning of event-based industrial controllers with simple stabil-

ity guarantees. J. Process Control 23, 1251–1260 (2013)

18. Lin, J., Lian, R.: Intelligent control of active suspension systems. IEEE Trans. Ind. Electron.

58(2), 618–628 (2010)

19. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear mod-

elling using different criteria of interpretability. Lect. Notes Comput. Sci. 8467, 217–232

(2014)

20. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control

systems using selected multi-population algorithms. Lect. Notes Comput. Sci. 9120, 247–260

(2015)

21. Maggio, M., Bonvini, M., Leva, A.: The PID+p controller structure and its contextual auto-

tuning. J. Process Control 22, 1237–1245 (2012)

22. Malhotra, R., Sodh, R.: Boiler flow control using PID and fuzzy logic controller. IJCSET 1(6),

315–31 (2011)

23. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.

Struct. Multidiscip. Optim. 26, 369–395 (2004)

24. Marwala, T.: Control of complex systems using Bayesian networks and genetic algorithm. IJES

5, 28–37 (2004)

25. Perng, J.-W., Chen, G.-Y., Hsieh, S.-C.: Optimal PID controller design based on PSO-RBFNN

for wind turbine systems. Energies 7, 191–209 (2014)

26. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream

data mining. Inf. Sci. 381, 46–54 (2017)

372 K. Łapa and K. Cpałka

27. Przybył, A., Łapa, K., Szczypta, J., Wang, L.: The method of evolutionary designing the elastic

controller structure. Lect. Notes Comput. Sci. 9692, 476–492 (2016)

28. Rasoanarivo, I., Brechet, S., Battiston, A., Nahid-Mobarakeh, B.: Behavioral analysis of a boost

converter with high performance source filter and a fractional-order PID controller. In: IEEE

Industry Applications Society Annual Meeting (IAS), pp. 1–6 (2012)

29. Ribića, A.I., Mataušek, M.R.: A dead-time compensating PID controller structure and robust

tuning. J. Process Control 22, 1340–1349 (2012)

30. Rutkowski, L.: Computational Intelligence. Springer (2007)

31. Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE

International Conference on Fuzzy Systems, 2001, Melbourne, pp. 1428–1431 (2001)

32. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Con-

trol Cybern. 31(2), 297–308 (2002)

33. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: 2nd Euro-

International Symposium on Computation Intelligence Location: KOSICE, SLOVAKIA Date:

16–19 Jume 2002, vol. 76, pp. 85–90 (2002)

34. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the

9th International Conference on Neural Information Processing (ICONIP’02), Orchid Country

Club, Singapore, vol. 4, pp. 1857–1861 (2002)

35. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Pro-

ceedigns of the IEEE International Conference on Fuzzy Systems, Budapest, July 26–29, vol.

2, pp. 1031–1036 (2004)

36. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial

machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2),

1238–1247 (2012)

37. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial

machine tool based on neuro-fuzzy approach. Lect. Notes Artif. Intell. 114, 645–650 (2010)

38. Saad, M.S., Jamaluddin, H., Sodh, I.Z.M.: Implementation of PID controller tuning using dif-

ferential evolution and genetic algorithms. Int. J. Innov. Comput. Inf. Control 8(11), 7761–7779

(2012)

39. Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., Paulides, J.J.H., Lomonova, E.A., Nijmeijer, H.:

Robust control of an electromagnetic active suspension system: simulations and measurements.

Mechatronics 23, 2 (2013)

40. Stone, C., Chi-Wei, L.: Fuzzy PDFF-IIR controller for PMSM drive systems. Control Eng.

Pract. 19, 828–835 (2011)

41. Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of

controllers using selected population based algorithms. Lect. Notes Comput. Sci. 8467, 440–

454 (2014)

42. Teng, T.H., Tan, A.H., Żurada, J.M.: Self-Organizing neural networks integrating domain

knowledge and reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 889–

902 (2015)

43. Van de Wal, M., Philips, P., De Jager, B.: Actuator and sensor selection for an active vehicle

suspension aimed at robust performance. Int. J. Control 70(5), 703–720 (1998)

44. Yazdani, A.M., Ahmadi, A., Buyamin, S., Rahmat, M.F., Davoudifar, F., Rahim, H.A.: Imperi-

alist competitive algorithm-based fuzzy PID control methodology for speed tracking enhance-

ment of stepper motor. Int. J. Smart Sens. Intell. Syst. 5, 3 (2012)

45. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global

features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

46. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteris-

tic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016)

47. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification

aimed at minimizing the number of global features. Lect. Notes Comput. Sci. 9693, 218–231

(2016)

48. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An Idea of the dynamic signature verification

based on a hybrid approach. Lect. Notes Comput. Sci. 9693, 232–246 (2016)

Evolutionary Approach for Automatic Design of PID Controllers 373

49. Żurada, J.M., Jedruch, W., Barski, M.: Neural Networks. Polish Scientific Publishers, Warsaw,

Poland (1996)

50. Żurada, J.M.: Introduction to Artificial Neural Systems. Jaico Publishing House (2005)

Fuzzy-Genetic Approach to Identity
Verification Using a Handwritten Signature

Marcin Zalasiński, Krzysztof Cpałka and Leszek Rutkowski

Abstract Verification of the dynamic signature is an important issue of biomet-

rics. There are many methods for the signature verification using dynamics of the

signing process. Many of these methods are based on the so-called global features.

In this paper we propose a new approach to the signature verification using global

features. The proposed approach can be characterized as follows: (a) Classification

of the signature is performed using a fuzzy-genetic system. (b) We select an indi-

vidual set of features for each signer. (c) In the procedure of features selection we

use a genetic algorithm with appropriately designed evaluation function. It works

without access to the signatures called skilled forgeries (this is a major advantage of

the proposed approach). (d) We determine weights of importance for evolutionarily

selected features. (e) The weights are taken into account in the classification process.

(f) An additional advantage of the proposed classifier is the possibility of its work

interpretation and possibility of an analytical determination of its parameters without

machine learning. In this paper we present the simulation results for the BioSecure

signature database, distributed by the BioSecure Association.

1 Introduction

Signature is a biometric characteristic (see e.g. [13, 17, 83–87]) which is easy to

acquire and socially acceptable, so it is often used to develop effective systems for

identity verification. In the literature there are two main types of the signatures. The

M. Zalasiński ⋅ K. Cpałka (✉) ⋅ L. Rutkowski

Institute of Computational Intelligence, Czestochowa University of Technology,

Al. Armii Krajowej 36, 42-200 Czestochowa, Poland

e-mail: krzysztof.cpalka@iisi.pcz.pl

M. Zalasiński

e-mail: marcin.zalasinski@iisi.pcz.pl

L. Rutkowski

Information Technology Institute, Academy of Social Sciences,

Ul. Sienkiewicza 9, 90-113 łódź, Poland

e-mail: leszek.rutkowski@iisi.pcz.pl

© Springer International Publishing AG 2018

A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,

https://doi.org/10.1007/978-3-319-67946-4_17

375

376 M. Zalasiński et al.

first is called static signature (off-line). Analysis of this type of signature is based on

its geometric features, such as shape, size ratios, etc. (see e.g. [3, 4, 43]). The second

is called dynamic signature (on-line) and it contains information about dynamics of

the signing process. The most commonly used signals, which are the basis of the

dynamic signature analysis, include a signal of pen pressure on the tablet surface

and a signal of pen velocity. The second one is determined indirectly on the basis

of the signals describing a position of the pen on the tablet surface. There are also

other types of available signals, but the method of their processing is analogous.

Dynamic signature verification is much more effective than a static signature verifi-

cation because: (a) dynamics of the signature is very individual characteristic of the

signer, (b) it is difficult to forge, (c) waveforms describing the dynamics of the sig-

nature are difficult to translate into the process of signing, (d) waveforms describing

the dynamics of the signature can be easily analyzed.

1.1 Approaches to the Dynamic Signature Analysis Proposed
in the Literature

In the literature four main approaches to the analysis of the dynamic signature have

been presented: (a) global feature based approach (see e.g. [28, 46, 53–55, 82,

88]), (b) function based approach (see e.g. [24, 36, 40, 42, 49, 56]), (c) regional
based approach (see e.g. [11, 12, 25, 27, 34, 41, 61, 65]), (d) hybrid approach
(see e.g. [16, 52, 57]). It should also be emphasized that the algorithms for analysis

of the dynamic signature can be relatively easily used in other areas of biometric

applications, which are based on the analysis of dynamic behavior (see e.g. [15,

21]). Among the four mentioned approaches to analyze the dynamic signature, the

methods using global features deserve special attention (see e.g. [28, 44, 58, 59]).

The literature in this field contains, among others, definitions of the global features,

description of the features selection and classification algorithms based on the fea-

tures. We encourage you to read the more detailed review of the literature on the

dynamic signature verification, which has been presented in our previous papers (see

e.g. [11, 12]).

1.2 Our Approach to the Dynamic Signature Analysis

In this paper we propose a new method for the dynamic signature verification based

on global features, which stands out from the methods of other authors by the fol-

lowing characteristics:

∙ It uses a genetic algorithm (see e.g. [1, 22, 50, 62, 67, 75, 79, 81]) for the

individual selection of the features (for each signer), which among others elimi-

nates the features decreasing the accuracy of the verification (we use our previous

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 377

experiences on evolutionary algorithms, see e.g. [6]). Genetic algorithm belongs

to the computational intelligence methods (see e.g. [19, 20, 23, 38, 39, 63, 64])

In the papers of other authors different methods for the global features selection

have been described, but the selection has not been realized individually for each

user (see e.g. [28, 53, 54]). The method proposed in this paper realizes this type

of selection.

∙ It determines individually for each signer weights of importance of the features

and takes them into account in the process of the signature verification (we use

the triangular norms with the weights of arguments, proposed by us earlier, see

e.g. [71]). In the papers of other authors different methods for the determination

of weights have been described, but it has not been realized individually for each

user (see e.g. [28, 46, 55]).

∙ It takes advantage of the fuzzy set theory and fuzzy systems in the process of the

signature verification (we use our previous experiences in the field of the flexible

fuzzy systems, see e.g. [9, 10, 48, 68–70, 72–74]). In this paper we propose a new

way to use that system to the dynamic signature verification and a new method

of its parameters selection. This method allows to avoid the so-called iterative

machine learning (see e.g. [90]), which we used in our previous papers (these

papers are not related to the dynamic signature verification, but they concerned

different structures of the system, applications and methods of automatic selection

of the structure and parameters). In the papers of other authors in the field of the

dynamic signature verification we have not found this solution.

∙ It allows to interpret the knowledge accumulated in the system used to the signa-

ture verification (we use our previous experiences in the field of interpretability

of knowledge of fuzzy systems, see e.g. [5, 7, 8, 47, 48, 66, 76, 78, 89]). In the

papers of other authors different methods for the dynamic signature verification

have been described, but they were mainly focused on speed and accuracy. The

algorithm proposed in this paper works in such a way that the processing method

of the signatures and determination of the signatures descriptors (based on the val-

ues of global features) could be easily interpreted. This is an important advantage

of the algorithm.

∙ It does not require so-called skilled forgeries and reference signatures of other

signers in the training phase (this is a big advantage in the considered group

of methods). This is a consequence of properly designed evaluation function in

used genetic algorithm. Some methods proposed by other authors requires refer-

ence signatures of other users or false signatures (so-called skilled forgeries) in

the learning phase. This causes that the accuracy of the algorithm depends on

the number of users stored in the database and the effectiveness of the so-called

skilled forgers (false signatures created by them are available in popular databases

of the signatures, which are used to compare efficiency of the verification meth-

ods). Moreover, it causes problems during practical implementation. The proposed

method does not depend on the number of users in the database. It uses false sig-

natures only in the testing phase. This is achieved through appropriately structured

flexible fuzzy system, which is the one-class classifier.

378 M. Zalasiński et al.

∙ It is distinguished by the independence of the used set of features which can be

arbitrarily reduced or expanded. In other words, the proposed algorithm is flexible

because it is not sensitive to the selection of the initial set of features. Methods of

other authors are often highly dependent on the used set of features.

In the simulations we have used paid signature database BioSecure, distributed

by the BioSecure Association (see [32]).

This paper is organized into four sections. In Sect. 2 we present description of the

proposed algorithm for the signature verification based on global features. In Sect. 3

simulation results are presented. Conclusions are drawn in Sect. 4.

2 Description of the Fuzzy-Genetic Approach for Signature
Verification

The proposed method consists of two phases: learning (training on the basis of the

reference signatures) and testing (verification of the test signature). In the first phase

the selection of features is performed individually for each signer, descriptors of

features and weights of importance of features are determined. They are needed for

a proper work of the classifier in the test phase. These parameters are stored in a

database. In the second phase parameters stored for each signer in the learning phase

are downloaded from the database. Next, verification of signatures is realized on

the basis of these parameters. In the remainder of this section, learning procedure

(Sect. 2.1) and signature verification procedure (Sect. 2.2) have been described.

2.1 Description of the Learning Phase

This section describes steps of the algorithm executed in the learning phase.

Step 1 The learning phase starts by acquiring J reference signatures of the signer

i. Different types of tablets may have a different sampling frequency thus acquired

signatures should be normalized. In the normalization procedure for each user the

most typical reference signature, called base signature, is selected. It is one of the

reference signatures collected in the acquisition phase, for which a distance to the

other reference signatures is the smallest. The distance is calculated according to

the adopted distance measure (e.g. Euclidean). Training or testing signatures are

matched to the base signature using the Dynamic Time Warping algorithm (see e.g.

[2, 26, 77]), which operates on the basis of matching velocity and pressure signals.

The result of matching of two signatures is a map of their corresponding points. On

the basis of the map, trajectories of the signatures are matched. Matching using DTW

could not be done directly with the use of trajectories, because this would remove

the differences between the shapes of the signatures. It would have a very negative

impact on training. Elimination of differences in rotation of signatures is performed

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 379

by the PCA algorithm which in the literature is commonly used to make the images

rotation invariant (see e.g. [31]). A more detailed description of the normalization

techniques can be found in the literature (see e.g. [35, 45, 60]).

Step 2 In this step of the algorithm, the matrix 𝐆i is determined. The matrix contains

values of all global features which describe the dynamics of the reference signatures

of the signer i. It has the following structure:

𝐆i =
⎡
⎢
⎢
⎣

gi,1,1 … gi,N,1
⋮ ⋮

gi,1,J … gi,N,J

⎤
⎥
⎥
⎦

, (1)

where I is a number of the signers, J is a number of the signatures created by the

signer in the acquisition phase, N is a number of used global features, and gi,n,j is a

value of the global feature n, n = 1,… ,N, determined for the signature j, j = 1,… , J,

created by the signer i, i = 1,… , I. Method of determining values of 85 global fea-

tures used by us in the simulations has been described in detail in [28] and it will not

be considered in this paper.

Step 3 In this step of the algorithm, the vector �̄�i =
[
ḡi,1,… , ḡi,N

]
is determined,

where ḡi,n is an average value of n-th global feature of all J reference signatures of

the signer i:

ḡi,n =
1
J
⋅

J∑

j=1
gi,n,j. (2)

Step 4 In this step of the algorithm, evolutionary selection of subset of global fea-

tures takes place. The subset contains features which are the most characteristic for

the signer i (procedureEvolutionary Features Selection (𝐆i, �̄�𝐢)). Evo-

lutionary algorithm is a method modelled on natural evolution for solving problems,

mainly optimization ones. It is the search procedure based on the mechanisms of

natural selection and inheritance. It uses the evolutionary principle of survival of

the fittest individuals. Evolutionary algorithms differ from traditional optimization

methods, among others, in that: (a) they do not process the task parameters directly,

but their encoded form, (b) they start a search not from a single point, but from the

population of points, (c) they use only the objective function, not its derivatives,

(d) they use probabilistic rather than deterministic selection rules. As a result, they

have the advantage over other optimization techniques, for example analytical meth-

ods, random methods, etc. (see e.g. [67]). Procedure Evolutionary Features
Selection (𝐆i, �̄�𝐢) randomly generates an initial set of so-called chromosomes,

which form a population of abundance Ch. Each of them specifies other subset of

features. The chromosome is denoted as the vector 𝐱i,ch =
[
xi,ch,1,… , xi,ch,N

]
, where

xi,ch,g ∈ {0, 1} indicates whether feature g (g = 1,… ,N) encoded in the chromosome

ch (ch = 1,… ,Ch) will be used to verify the signature of the signer i (1-it will be

used, 0-it will not be used). Next, the evaluation of the chromosomes adaptation is

performed and operators of crossing and mutation are applied to the chromosomes.

380 M. Zalasiński et al.

These genetic operators provide exploitation and exploration of the searching space

of the features. This action is repeated within the next steps, so-called generations

(number of generations is a parameter of the algorithm). Thanks to the use of genetic

operators, chromosomes in each subsequent generation have got a better value of

the evaluation function (a way of its determination is given in the Sect. 2.1.2). This

means that encoded subset of features is becoming more characteristic for the consid-

ered signer i. From the population of chromosomes, in the latest generation chromo-

some with the smallest value of the evaluation function is selected (the best for min-

imization function). The selected chromosome encodes an evolutionarily selected

subset of features. It is rewritten to the vector 𝐱′i.

Step 5 In this step of the algorithm, determination of the reduced matrix of global

features 𝐆′
i and reduced vector �̄�′i of average values of global features is performed.

They are created taking into account the vector 𝐱′i, therefore they contain only infor-

mation about those features which have been evolutionarily selected for the signer i.
A number of columns of the vector �̄�′i and the matrix 𝐆′

i is N′
i , where N′

i ≤ N is a

number of features selected for the signer i.

Step 6 In this step of the algorithm, calculation of the classifier parameters used in the

test phase is performed. This procedure is calledClassifier Determination
(i, 𝐱′i ,𝐆

′
i , �̄�

′
i) and it has been described in the Sect. 2.1.3. In particular, distances

maxdi,n and weights wi,n (i = 1,… , I, n = 1,… ,N′
i) are determined individually for

the signer i. Each parameter maxdi,n determines instability of signing of the signer i
in the context of the feature n. Its value is dependent on the variability of the feature.

Each weight wi,n describes importance of the global feature n.

Step 7 In the last step of the algorithm, the following information about the signer i
are stored into a database: the vector 𝐱′i, the vector �̄�′i , and parameters of the classifier

maxdi,n and wi,n. Training phase for the signer i: (a) proceeds similarly to all signers,

but for each signer regardless, (b) in practice is performed once for each signer.

2.1.1 Evolutionary Features Selection

A purpose of the procedure Evolutionary Features Selection (𝐆i, �̄�𝐢)
is the choice of such a subset of features whose values determined for the reference

signatures of the signer i are similar to each other. This is not an easy task, because

e.g. for 85 features (the number of features which we used in the simulations) the

number of combinations is over 38 × 1024 (exactly it is

N∑

n=1
N!∕ (n! ⋅ (N − n)!)). It

is expected that the evolutionary algorithm finds a subset of the features close to

the optimum in acceptable time. Considered procedure works according to the algo-

rithm shown in Fig. 1. At the beginning, random initialization of the vectors 𝐱i,ch
takes place. The vectors are interpreted as chromosomes in the population encoding

subsets of the features. Next, evaluation of chromosomes by determining the val-

ues of their adaptation function is performed (see Sect. 2.1.2). Having the values of

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 381

stop

evaluation of the fitness of chromosomes in the population

selection of chromosomes

creation of the new population of chromosomes

initiation of chromosomes in the population

yes
no

presentation of the best chromosome

start

Fig. 1 Scheme of the procedure Evolutionary Features Selection (𝐆i, �̄�i)), consis-

tent with the scheme of the genetic algorithm

the adaptation function the stop condition of the algorithm is checked. It takes into

account the achievement of the threshold value by the function or execution by the

algorithm a certain number of generations. If the stop condition is satisfied, then

the evolutionary feature selection procedure terminates and returns the best chromo-

some from the population. It rarely takes place immediately after the initialization

of the population, so the population must be processed in a process of evolution. Its

first step is a draw of the individuals in order to apply genetic operators to them.

A typical method of individuals selection is e.g. the tournament selection (see e.g.

[51, 67]). In this method a few chromes are drawn from the entire population. These

chromosomes create so-called tournament group and the chromosome having the

best fitness function value is selected from them. Then, another tournament group

is created and one chromosome from it is selected. This process is repeated until a

new population is created. Next, pairs of chromosomes exchange genes (crossing is

applied) at random points and finally some randomly selected genes of the chromo-

somes mutate (their value changes from 0 to 1 or vice versa). The algorithm takes

into account a probability of crossover and mutation, which are its parameters. In this

way, the parent population form descendant population, which again is evaluated and

the process is repeated.

Operation of the procedure Evolutionary Features Selection (𝐆i,

�̄�i) is dependent on the following parameters:

∙ Size of the population (number of chromosomes). It specifies the number of fea-

tures subsets processed in a single step of the algorithm (so-called single genera-

tion).

∙ Number of generations. It specifies the maximum number of steps S in the evolu-

tionary feature selection algorithm for a single user.

∙ Crossover probability. It is a real number in the range [0, 1] and determines the

intensity of the crossing (gene exchange) between chromosomes. For each ran-

domly selected pair of chromosomes selected in the tournament method, a real

number in the range [0, 1] is drawn. If the number is less than the crossover prob-

ability, an exchange of genes between the chromosomes is performed. Moreover,

the number of the crossing points is also associated with this operation. At these

382 M. Zalasiński et al.

points a “cut” of binary chromosomes is performed. This process precedes the

genes exchange.

∙ Mutation probability. It is a real number in the range [0, 1] and determines the

intensity of chromosomes mutation. For each gene of each chromosome a real

number in the range [0, 1] is drawn. If the number is less than the mutation prob-

ability, the value of the gene is changed to the opposite, i.e. from 0 to 1 and vice

versa. A detailed description of the algorithm can be found, among others, in [51,

67].

We would like also to emphasize that the originality of the proposed approach

results from a specific way of determining the evaluation function of chromosomes

from the population (Calculate Ff (𝐆i, �̄�i, 𝐱i,ch)). Evaluation of the chromo-

somes is based on the similarity of features for the reference signatures created in

the training phase (described in Sect. 2.2).

2.1.2 Determination of Fitness Function

In the determination of the fitness function of the chromosome, the following para-

meters are taken into account:

∙ 𝐆i—a matrix of all global features values, determined for all reference signatures

of the signer i,
∙ �̄�i—a vector of average values of global features, averaged in the context of all

reference signatures of the signer i,
∙ 𝐱i,ch—a chromosome with index ch in the population associated with the signer i,

for which the value of the evaluation function is calculated. In the considered pro-

cedure (and only in this procedure) will be used reduced versions of the mentioned

parameters: N∗
, 𝐆∗ =

[
𝐠∗j=1,… , 𝐠∗j=J

]
, and �̄�∗. They were created on the basis of

the values of the vector 𝐱i,ch in the same way as previously described parameters:

N′
i , 𝐆

′
i, and �̄�′i (on the basis of the vector 𝐱′i).

Considered method Calculate Ff (𝐆i, �̄�i, 𝐱i,ch) starts by determination of the

covariance matrix for the matrix of all global features (Step 1). Covariance cov (𝐆∗)
is a measure of the linear correlation between global features values of the reference

signatures 𝐆∗
of the signer i (created in the acquisition phase). In the Step 2 of the

algorithm, determination of the vector of Mahalanobis distances (see e.g. [14]) 𝐦 is

performed. It contains distances between the vector of average values of the global

features �̄�∗ and the matrix of the global features values 𝐆∗
represented by the vectors

𝐠∗j , j = 1,… , J:

mj =
√

(
𝐠∗j − �̄�∗

)
(cov(𝐆∗))−1

(
𝐠∗j − �̄�∗

)T
. (3)

Mahalanobis distance well defines the similarity of the selected features vector of the

reference signature j (features indicated by the tested chromosome) 𝐠∗j to the vector

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 383

of average values of these features �̄�∗. It takes into account their mutual correlation

and individual variance (expressed by the arithmetic mean of the squared deviations

from the arithmetic mean). It should be noted that for each subset of features J dis-

tances are determined. The subset of features associated with the lowest distance is

the most valuable for the signer i in the training phase. In the last step of the algo-

rithm (Step 3), determination of the evaluation function of the chromosome 𝐱i,ch is

performed:

f f
(
𝐱i,ch

)
= 1

J
⋅

J∑

j=1
mj. (4)

Lower value of the fitness function f f
(
𝐱i,ch

)
means that the chromosome 𝐱i,ch is

“better” (subset of global features encoded in the chromosome 𝐱i,ch is the most char-

acteristic for the signer i).

2.1.3 Determination of the Classifier Parameters

In the procedure described in this section only individually selected (for the signer

i) dynamic signature features are considered (there are N′
i features). It means that in

determination of the classifier parameters only the matrix 𝐆′
i and the vector �̄�′i are

taken into account.

Procedure Classifier Determination (i, 𝐱′i,𝐆′
i, �̄�′i) starts by determi-

nation of Euclidean distances di,n,j between each global feature n encoded in the

chromosome 𝐱′i and average value of the global feature for all J signatures of the

signer i (Step 1):

di,n,j =
|
|
|
ḡi,n − gi,n,j

|
|
|
. (5)

In the Step 2 of the considered procedure, selection of maximum distance for each

global feature n is performed (from distances determined in the Step 1):

maxdi,n = max
j=1,…,J

{
di,n,j

}
. (6)

If reference signatures are more similar to each other, the tolerance of our classifier

is lower, because maxdi,n takes smaller values. In the Step 3 of the considered pro-

cedure, computation of weights wi,n is performed. Each weight is calculated on the

basis of standard deviation of n-th global feature of the signer i and average value of

distances for n-th feature of the signer i:

wi,n = 1 −

√

1
J
⋅

J∑

j=1
di,n,j2

1
J
⋅

J∑

j=1
di,n,j

. (7)

384 M. Zalasiński et al.

It should be emphasized that the distances and the weights are used in the classifi-

cation process of the signature.

2.2 Description of the Signatures Verification Phase

The purpose of the signatures verification phase is to determine whether the tested

signature, which belongs to a signer claiming to be the signer i, in fact belongs to

the signer i. In the Step 1 of the procedure a signer, whose identity should be ver-

ified, creates one test signature. In this step he also claims his identity as i. As in

the case of the learning phase, the signature has to be geometrically pre-processed.

In the Step 2 of the procedure, the following information are downloaded from the

database: information about selected features of the signer i (𝐱′i), average values of

this features calculated during training phase (�̄�i) and classifier parameters of the

signer i (maxdi,n, wi,n). In the Step 3 of the procedure, determination of the values

of the global features gtsti,n, n = 1,… ,N′
i , for the test signature is performed. The

values refer to the features which have been selected as the most characteristic for

the signer i in the training phase. In the Step 4 of the procedure, similarities of global

features values of the test signature to the average values of the global features for

the reference signatures are determined:

dtsti,n = |
|ḡi,n − gtsti,n|| . (8)

In the last step (Step 5) of the procedure, the verification of the test signature using

one-class flexible fuzzy classifier of the Mamdani type (Sect. 2.2.2) is performed. Its

structure is described in the next section. Values of the signals dtsti,n determined in

the Step 4 are given at the input of the system.

2.2.1 A New One-Class Flexible Fuzzy Classifier

In the signature verification value of the variable dtsti,n is considered. It refers to the

similarity between values of the test signature global features and average values of

these features determined for the reference signatures. It has an imprecise nature and

it is difficult to describe with classical theory of sets and two-valued logic. Therefore,

we have used the theory of fuzzy sets and we described values the “high similarity”

and “low similarity” using fuzzy sets. Then we have formulated clear fuzzy rules and

used approximate inference. As a result, we have obtained a complete fuzzy system

which for values of similarities dtsti,n (n = 1,… ,N′
i) given on inputs determines the

similarity of the values of evolutionary selected features of the test signature to the

values of the reference signatures global features. In the proposed method it is the

basis for evaluation of the reliability of the signature in Sect. 2.2.2. Our system for

signature verification works on the basis of two fuzzy rules in the form:

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 385

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

⎡
⎢
⎢
⎢
⎣

IF
(
dtsti,1isA1

i,1

)|
|
|
|
wi,1AND…

…AND
(
dtsti,N′

i
isA1

i,N′
i

)|
|
|
|
wi,N′

i
THENyiisB1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

IF
(
dtsti,1isA2

i,1

)|
|
|
|
wi,1AND…

…AND
(
dtsti,N′

i
isA2

i,N′
i

)|
|
|
|
wi,N′

i
THENyiisB2

⎤
⎥
⎥
⎥
⎦

, (9)

where:

∙ dtsti,n, i = 1,… , I, n = 1,… ,N′
i , are input linguistic variables (see e.g. [18, 30])

indicating the “similarity between the values of the global feature n of the test

signature and the average values of the global feature defined for the reference

signatures of the signer i”. Values “high” and “low” assumed by these variables

are Gaussian fuzzy sets A1
i,1,… ,A1

i,N′
i

and A2
i,1,… ,A2

i,N′
i

(see Fig. 2), described by

the membership functions 𝜇A1
i,n

and 𝜇A2
i,n

. In the case when a fuzzification of the

singleton type is used, input linguistic variables can be considered as input signals

of the system, which are determined using the formula (8).

∙ yi, i = 1,… , I, is output linguistic variable “similarity between the values of the

selected evolutionary global features of the test signature and the features of the

reference signatures of the signer i”. Value “high” assumed by this variable is the

fuzzy set B1
of the 𝛾 type, value “low” is the fuzzy set B2

of the L type (see Fig. 2).

Sets B1
and B2

are described by the membership functions 𝜇B1 and 𝜇B2 (see e.g.

[67]).

∙ maxdi,n, i = 1,… , I, n = 1,… ,N′
i , can be equated with the border values of fea-

tures of individual signers (calculated by the formula (6)) and wi,n are weights of

importance related to the global feature number n of the signer i (calculated by the

formula (7)).

Fig. 2 Input and output fuzzy sets of the one-class flexible fuzzy classifier of the Mamdani type

for signature verification of the signer i

386 M. Zalasiński et al.

2.2.2 Signature Verification

In the proposed method, the test signature is recognized as belonging to the signer i
(genuine) if the assumption ȳi > cthi is satisfied, where ȳi is the value of the output

signal of fuzzy system described by the rules (9):

ȳi =

T∗

⎧
⎪
⎨
⎪
⎩

𝜇A1
i,1

(
dtsti,1

)
,… , 𝜇A1

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

⎫
⎪
⎬
⎪
⎭

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T∗

{
𝜇A1

i,1

(
dtsti,1

)
,… , 𝜇A1

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

}

+

T∗

{
𝜇A2

i,1

(
dtsti,1

)
,… , 𝜇A2

i,N′ i

(
dtsti,N′

i

)
;

wi,1,… ,wi,N′
i

}

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(10)

where:

∙ T∗ {⋅} is the algebraic weighted t-norm (see [6, 71]) in the form:

T∗
{

a1, a2;
w1,w2

}

= T
{

1 − w1 ⋅
(
1 − a1

)
,

1 − w2 ⋅
(
1 − a2

)
}

e.g.
= .

(
1 − w1 ⋅

(
1 − a1

))
⋅
(
1 − w2 ⋅

(
1 − a2

))
,

(11)

where t-norm T {⋅} is a generalization of the usual two-valued logical conjunction

(studied in classical logic), w1 and w2 ∈ [0, 1] mean weights of importance of

the arguments a1, a2 ∈ [0, 1]. Please note that T∗ {a1, a2; 1, 1
}
= T

{
a1, a2

}
and

T∗ {a1, a2; 1, 0
}
= a1.

∙ cthi ∈ [0, 1]—coefficient determined experimentally for each signer to eliminate

disproportion between FAR (False Acceptance Rate) and FRR (False Rejection

Rate) error (see e.g. [80]).

Formula (10) was established by taking into account in the description of system

simplification resulting from the spacing of fuzzy sets, shown in Fig. 2:

{
𝜇B1 (0) = 0, 𝜇B1 (1) = 1
𝜇B2 (0) = 1, 𝜇B2 (1) = 0 . (12)

Detailed information about the system described by the rules in the form (9), which

allow to easily derive the relationship (10) on the basis of the assumption (12), can

be found e.g. in [5, 6, 8, 71, 73].

2.2.3 Interpretability of the Classifier Knowledge

In the literature one can find the conditions that must be met by the rules of the

fuzzy systems, which cause that the rules are clear. For example, in the paper [29] 4

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 387

interpretability levels have been presented (complexity at the rule base level, com-

plexity at the level of fuzzy partitions, semantics at the rule base level, semantics at

the fuzzy partition level). The rules in the form (9) meet defined levels. Moreover,

it is worth to note that in the proposed method: (a) all parameters of the rules are

determined analytically and they have their own interpretation, (b) the rules have the

same form for all signers but different values of the parameters.

2.3 Description of the Computational Complexity

In practice, the learning phase of the algorithm is performed once for each user and

the testing phase (signature verification) can be performed multiple times. A decisive

influence on the computational complexity of the learning phase has a complexity of

used genetic algorithm (see Table 2). In turn, a way of determining the global features

has a decisive influence on the computational complexity of the testing phase (mini-

mal in practice) (see Table 2). Implementation details of the proposed algorithm have

not been considered in the paper, but a need to start the process of evolution once for

each user in the learning phase should not be a problem in the practical implementa-

tion of the algorithm. However, if there is a need of processing a very large number

of users registering to the system at the same time, the algorithm could be run in a

parallel server environment. Another solution could be queuing of tasks associated

with an automatic evolutionary selection of features.

Table 1 Performance comparison of our method with other methods using BioSecure database

Method Average FAR (%) Average FRR (%) Average error (%)

Methods used in

signature evaluation

campaign 2009 [33]

– – 1.71–27.76

Horizontal

partitioning [12]

2.94 4.45 3.70

Vertical partitioning

[11]

3.13 4.15 3.64

Evolutionary selection

with PCA [88]

5.29 6.01 5.65

Our method without

evolutionary selection

3.29 3.82 3.56

Our method with

evolutionary selection

2.32 2.48 2.40

388 M. Zalasiński et al.

Table 2 Computational complexity of the proposed algorithm

Step Learning phase 1 Testing phase

1 J 1

2 J ⋅
N∑

n=1
cn 4 ⋅ N′

3 J ⋅ N
N′
∑

n=1
cn

4 S ⋅(
N + 9 + N ⋅ (2 + J) + 2⋅N∗3+9⋅N∗2+13⋅N∗

6

) N′

5 2 ⋅ N 1 + 2 ⋅ N′

6 4 ⋅ J ⋅ N –

7 4 ⋅ N –

3 Simulation Results

Simulations were performed using commercial BioSecure database which contains

signatures of 210 signers. The signatures were acquired in two sessions using the

digital graphic tablet. Each session contains 15 genuine signatures and 10 skilled

forgeries per person. During training phase we used 5 randomly selected genuine sig-

natures of each signer. During test phase we used 10 remaining genuine signatures

and all 10 skilled forgeries of each signer. The process was performed five times,

and the results were averaged. The described method is commonly used in evaluat-

ing the effectiveness of methods for the dynamic signature verification and it corre-

sponds to the standard cross validation procedure. The test was performed using the

authorial testing environment implemented in C# language. During the simulations

the following assumptions have been adopted: (a) population contains 100 chromo-

somes, (b) algorithm stops after the lapse of a determined number of 1000 gener-

ations, (c) during selection of chromosomes tournament selection method is used,

(d) crossover is performed with probability equal to 0.8 at three points, (e) mutation

is performed for each gene with probability equal to 0.02. Details concerning the

interpretation of these parameters can be found, among others, in [51, 67].

Conclusions of the simulations can be summarized as follows:

∙ The proposed method for the considered BioSecure database works with high

accuracy in comparison with the methods presented in the Table 1 and in the paper

[33]. The comparison criterion was the value of the error EER (Equal Error Rate),

which is commonly used to evaluate the accuracy of biometric methods (see e.g.

[24, 42]). In practice, also other measures, such as e.g. d′, can be used in assessing

the effectiveness of the biometric systems (see e.g. [37]). The d′ measures the sep-

aration between the means of the genuine and impostor probability distributions

in standard deviation units. Its mean value, averaged for five test sessions and all

signers, is equal to 7.58 for the BioSecure database.

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 389

0

20

40

60

80

100

5 15 25 35 45 55 65 75
index of the global feature

th
e

lev
el

of
 u

se
 th

e
fe

at
ur

es
in

 th
e

co
nt

ex
t o

f a
ll

us
er

s [
%

]

85

Fig. 3 Percentage frequency of selection of the global features of the signature in the context of

all signers for BioSecure database

∙ In simulations a common value of cthi = 0.45 was used for all signers. We adopted

the assumption that the number of false acceptance should be close to the number

of false rejection. If the algorithm working in practice has to be e.g. more sensitive

to false acceptance (e.g. in high security systems), value of cthi should be higher

than 0.45.

∙ The considered set of features does not contain features selected to verify signature

of all signers (see Fig. 3). However, there are those which were not selected at all.

Their names are not given, because the verification of a usefulness of the features

in the context of the database BioSecure was not our goal. It should be noted that

use of all available features causes increasing of ERR value to 3.56%.

4 Conclusions

In this paper we have proposed a new fuzzy-genetic biometric method for the

dynamic signature verification using global features. It is based on the appropri-

ately designed evaluation function of the genetic algorithm. It is used for individual

choice of a subset of the global features which are the most characteristic for the

reference signatures of the considered signer. Moreover, the proposed method deter-

mines the weights of importance of the evolutionarily selected global features and

uses them in the classification process. It is also worth noting that the proposed algo-

rithm works independently of the initial set of features, works without access to the

so-called skilled forgeries and uses the capabilities of the fuzzy one-class classifier,

whose knowledge can be interpreted. We would also like to emphasize that the pro-

posed method worked with very high accuracy for the BioSecure signature database

in comparison to the methods of other authors (described in the available positions

of the literature).

In our further research in the field of the dynamic signature verification we are

planning to take care of, among others, research about the relationship between the

dynamic signature verification accuracy and the number of the global features used

in the verification.

390 M. Zalasiński et al.

Acknowledgements The project was financed by the National Science Centre (Poland) on the

basis of the decision number DEC-2012/05/B/ST7/02138. The work presented in this paper was

also supported by the grant number BS/MN 1-109-301/16/P.

References

1. Arabgol, S., Ko, H.S.: Application of artificial neural network and genetic algorithm to health-

carewaste prediction. J. Artif. Intell. Soft Comput. Res. 3, 243–250 (2013)

2. Banko, Z., Janos, A.: Correlation based dynamic time warping of multivariate time series.

Expert Syst. Appl. 39, 12814–12823 (2012)

3. Batista, L., Granger, E., Sabourin, R.: Dynamic selection of generative discriminative ensem-

bles for off-line signature verification. Pattern Recogn. 45, 1326–1340 (2012)

4. Bhattacharya, I., Ghosh, P., Biswas, S.: Offline signature verification using pixel matching

technique. Proc. Technol. 10, 970–977 (2013)

5. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems.

IEEE Trans. Neural Netw. 20, 701–714 (2009)

6. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for non-

linear classification. Nonlinear Anal. Ser. A Theory Methods Appl. 71, 1659–1672 (2009)

7. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)

8. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy

systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217

(2014)

9. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy sys-

tems for nonlinear modelling. Int. J. General Syst. 42(6), 706–720 (2013)

10. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Neural Networks, Pro-

ceedings of the 2005 IEEE International Joint Conference on IJCNN ’05 vol. 3, pp. 1764–1769.

(2005)

11. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning.

Expert Syst. Appl. 41, 4170–4180 (2014)

12. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification

based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)

13. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on

the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

14. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom.

Intell. Lab. Syst. 50, 1–18 (2000)

15. Dean, D., Sridharan, S.: Dynamic visual features for audio-visual speaker verification. Comput.

Speech Lang. 24, 136–149 (2010)

16. Doroz, R., Porwik, P., Orczyk, T.: Dynamic signature verification method based on association

of features with similarity measures. Neurocomputing 171, 921–931 (2016)

17. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R.: Biocybernetics and biomedical engi-

neering. EXIT, Warszawa (2013)

18. Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for rule-based data

understanding. Proc. IEEE 92, 771–805 (2004)

19. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type

kernel regression neural networks in a non-stationary environment. In: Artificial Intelligence

and Soft Computing, vol. 7267, pp. 47–54. Springer (2012)

20. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Inter-

national Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial

Intelligence, vol. 7268, pp. 56–63. Springer (2012)

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 391

21. Ekinci, M., Aykut, M.: Human gait recognition based on kernel PCA using projections. J.

Comput. Sci. Technol. 22, 867–876 (2007)

22. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity prop-

agation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5, 239–246 (2015)

23. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion

neural networks in a non-stationary environment. In: International Conference on Parallel

Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 7203, pp. 90–

98. Springer (2012)

24. Faundez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern Recogn. 40,

981–992 (2007)

25. Faundez-Zanuy, M., Pascual-Gaspar, J.M.: Efficient on-line signature recognition based on

multi-section vector quantization. Form. Pattern Anal. Appl. 14, 37–45 (2011)

26. de Canetea, Fernandez, J., Garcia-Cerezoa, A., Garcia-Morala, I., Del Saza, P., Ochoa, E.:

Correlation based dynamic time warping of multivariate time series. Expert Syst. Appl. 40,

5648–5660 (2013)

27. Fierrez, J., Ortega-Garcia, J., Ramos, D., Gonzalez-Rodriguez, J.: HMM-based on-line signa-

ture verification: feature extraction and signature modeling. Pattern Recogn. Lett. 28, 2325–

2334 (2007)

28. Fierrez-Aguilar, J., Nanni, L., Lopez-Penalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line

signature verification system based on fusion of local and global information. In: Audio-and

Video-based Biometric Person Authentication. Lecture Notes in Computer Science, vol. 3546,

pp. 523–532 (2005)

29. Gacto, M.J., Alcala, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an

overview of interpretability measures. Inf. Sci. 181, 4340–4360 (2011)

30. Gaweda, A.E., Zurada, J.M.: Data-driven linguistic modeling using relational fuzzy rules.

IEEE Trans. Fuzzy Syst. 11, 121–134 (2003)

31. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Education Inc., London

(2008)

32. Homepage of Association BioSecure. http://biosecure.it-sudparis.eu. Accessed 22 July 2016

33. Houmani, N., Garcia-Salicetti, S., Mayoue, A., Dorizzi, B.: BioSecure sig-

nature evaluation campaign 2009 (BSEC’2009): Results. http://biometrics.it-

sudparis.eu/BSEC2009/downloads/BSEC2009_results.pdf. Accessed 22 July 2016 (2009)

34. Huang, K., Hong, Y.: Stability and style-variation modeling for on-line signature verification.

Pattern Recogn. 36, 2253–2270 (2003)

35. Ibrahim, M.T., Khan, M.A., Alimgeer, K.S., Khan, M.K., Taj, I.A., Guan, L.: Velocity and

pressure-based partitions of horizontal and vertical trajectories for on-line signature verifica-

tion. Pattern Recogn. 43, 2817–2832 (2010)

36. Jain, A.K., Griess, F.D., Connell, S.D.: On-line signature verification. Pattern Recogn. 35,

2963–2972 (2002)

37. Jain, A.K., Ross, A.: Introduction to Biometrics. In: Flynn, P., Ross, A.A., Jain, A.K. (eds.)

Handbook of Biometrics, pp. 1–22. Springer, US (2008)

38. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression

neural network and order statistics for learning in a non-stationary environment. In: Interna-

tional Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial

Intelligence, vol. 7267, pp. 90–98. Springer (2012)

39. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data

streams. In: International Conference on Artificial Intelligence and Soft Computing. Lecture

Notes in Artificial Intelligence, vol. 7268, pp. 92–99. Springer (2012)

40. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series

classification. Pattern Recogn. 44, 2231–2240 (2011)

41. Khan, M.A.U., Khan, M.K., Khan, M.A.: Velocity-image model for online signature verifica-

tion. IEEE Trans. Image Process. 15, 3540–3549 (2006)

42. Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online signature verifi-

cation method. Pattern Recogn. Lett. 26, 2400–2408 (2005)

392 M. Zalasiński et al.

43. Kumar, R., Sharma, J.D., Chanda, B.: Writer-independent off-line signature verification using

surroundedness feature. Pattern Recogn. Lett. 33, 301–308 (2012)

44. Lee, L.L., Berger, T., Aviczer, E.: Reliable on-line human signature verification systems. IEEE

Trans. Pattern Anal. Machine Intell. 18:643–647 (1996)

45. Lei, H., Govindaraju, V.: A comparative study on the consistency of features in on-line signa-

ture verification. Pattern Recogn. Lett. 26, 2483–2489 (2005)

46. Lumini, A., Nanni, L.: Ensemble of on-line signature matchers based on overcomplete feature

generation. Expert Syst. Appl. 36, 5291–5296 (2009)

47. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear mod-

elling using different criteria of interpretability. Lect. Notes Comput. Sci. 8467, 217–232

(2014)

48. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control

systems using selected multi-population algorithms. Lect. Notes Comput. Sci. 9120, 247–260

(2015)

49. Maiorana, E.: Biometric cryptosystem using function based on-line signature recognition.

Expert Syst. Appl. 37, 3454–3461 (2010)

50. Mazurowski, M.A., Habas, P.A., Zurada, J.M., Tourassi, G.D.: Decision optimization of case-

based computer aided decision systems using genetic algorithms with application to mammog-

raphy. Phys. Med. Biol. 53, 895–908 (2008)

51. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, Berlin,

Heidelberg (1998)

52. Moon, J.H., Lee, S.G., Cho, S.Y., Kim, Y.S.: A hybrid online signature verification system sup-

porting multi-confidential levels defined by data mining techniques. Int. J. Intell. Syst. Technol.

Appl. 9, 262–273 (2010)

53. Nanni, L.: An advanced multi-matcher method for on-line signature verification featuring

global features and tokenised random numbers. Neurocomputing 69, 2402–2406 (2006)

54. Nanni, L., Lumini, A.: Ensemble of Parzen window classifiers for on-line signature verification.

Neurocomputing 68, 217–224 (2005)

55. Nanni, L., Lumini, A.: Advanced methods for two-class problem formulation for on-line sig-

nature verification. Neurocomputing 69, 854–857 (2006)

56. Nanni, L., Lumini, A.: A novel local on-line signature verification system. Pattern Recogn.

Lett. 29, 559–568 (2008)

57. Nanni, L., Maiorana, E., Lumini, A., Campisi, P.: Combining local, regional and global match-

ers for a template protected on-line signature verification system. Expert Syst. Appl. 37, 3676–

3684 (2010)

58. Nelson, W., Kishon, E.: Use of dynamic features for signature verification. In: Proceedings of

the IEEE International Conference on Systems, Man, and Cyber, vol. 1, pp. 201–205 (1991)

59. Nelson, W., Turin, W., Hastie, T.: Statistical methods for on-line signature verification. Int. J.

Pattern Recogn. Artif. Intell. 8, 749–770 (1994)

60. O’Reilly, Ch., Plamondon, R.: Development of a Sigma-Lognormal representation for on-line

signatures. Pattern Recogn. 42, 3324–3337 (2009)

61. Pascual-Gaspar, J.M., Faúndez-Zanuy, M., Vivaracho, C.: Fast on-line signature recognition

based on VQ with time modelling. Eng. Appl. Artif. Intell. 24, 368–377 (2011)

62. Peteiro-Barral, D., Guijarro-Berdias, B., Pérez-Sánchez, B.: Learning from heterogeneously

distributed data sets using artificial neural networks and genetic algorithms. J. Artif. Intell.

Soft Comput. Res. 2, 5–20 (2012)

63. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift.

In: International Conference on Artificial Intelligence and Soft Computing. Lecture Notes in

Artificial Intelligence, vol. 7894, pp. 459–473. Springer (2013)

64. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream

data mining. Inf. Sci. 381, 46–54 (2017)

65. Razzak, M.I., Alhaqbani, B.: Multilevel fusion for fast online signature recognition using multi-

section VQ and time modelling. Neural Comput. Appl. 26, 1117–1127 (2015)

Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature 393

66. Rigatos, G.G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. J.

Artif. Intell. Soft Comput. Res. 4, 231–242 (2014)

67. Rutkowski, L.: Computational Intelligence. Springer, Berlin, Heidelberg (2008)

68. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Con-

trol Cybern. 31(2), 297–308 (2002)

69. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: 2nd Euro-

International Symposium on Computation Intelligence, Kosice, Slovakia, June 16–19, vol. 76,

pp. 85–90 (2002)

70. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the

9th International Conference on Neural Information Processing (ICONIP’02), Orchid Country

Club, Singapore, vol. 4, pp. 1857–1861 (2002)

71. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Netw. 14, 554–

574 (2003)

72. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Pro-

ceedings of the IEEE International Conference on Fuzzy Systems, Budapest, July 26–29, vol. 2,

pp. 1031–1036 (2004)

73. Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi triangular norms with

applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 140–151 (2005)

74. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial

machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2),

1238–1247 (2012)

75. Sivanandam, S.N., Deepa, S.N.: Introduc. Genet. Algorithms. Springer, Berlin, Heidelberg

(2008)

76. Stanovov, V., Semenkin, E., Semenkina, O.: Self-configuring hybrid evolutionary algorithm for

fuzzy imbalanced classification with adaptive instance selection. J. Artif. Intell. Soft Comput.

Res. 6, 173–188 (2016)

77. Svalina, I., Galzina, V., Lujić, R., Šimunović, G.: Correlation based dynamic time warping of

multivariate time series. Expert Syst. Appl. 40, 6055–6063 (2013)

78. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct

adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy

method. J. Artif. Intell. Soft Comput. Res. 1, 59–80 (2011)

79. Yang, C.H., Moi, S.H., Lin, Y.D., Chuang, L.Y.: Genetic algorithm combined with a local

search method for identifying susceptibility genes. J. Artif. Intell. Soft Comput. Res. 6, 203–

212 (2016)

80. Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004:

first international signature verification competition. Lect. Notes Comput. Sci. 3072, 16–22

(2004)

81. Yin, Z., O’Sullivan, C., Brabazon, A.: An analysis of the performance of genetic programming

for realised volatility forecas. J. Artif. Intell. Soft Comput. Res. 6, 155–172 (2016)

82. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global

features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

83. Zalasiński M, Cpałka, K.: A New Method Of On-line Signature Verification Using A Flexible

Fuzzy One-class Classifier, pp. 38–53. Academic Publishing House EXIT (2011)

84. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteris-

tic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016)

85. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based

on global features. In: Artificial Intelligence and Soft Computing. Lecture Notes in Computer

Science, vol. 8467, pp. 251–265. Springer (2014)

86. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification

aimed at minimizing the number of global features. Lect. Notes Comput. Sci. 9693, 218–231

(2016)

87. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using

hybrid partitioning. in: Artificial Intelligence and Soft Computing. Lecture Notes in Computer

Science, vol. 8467, pp. 236–250. Springer (2014)

394 M. Zalasiński et al.

88. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic

signature global features. Lect. Notes Artif. Intell. 7895, 113–121 (2013)

89. Zhao, W., Lun, R., Espy, D.D., Reinthal, M.A.: Realtime motion assessment for rehabilitation

exercises: integration of kinematic modeling with fuzzy inference. J. Artif. Intell. Soft Comput.

Res. 4, 267–286 (2014)

90. Żurada, J.M.: Introduction to Artificial Neural Systems. Jaico Publishing House (2005)

A Method of Design and Optimization
for SiC-Based Grid-Connected AC-DC
Converters

S. Piasecki, R. Szmurlo, J. Rabkowski and M.P. Kazmierkowski

Abstract This chapter presents a method of design and optimization dedicated for
three-phase AC-DC converters. The main idea of presented work is to provide a
tool which supports design process and helps to achieve desired properties:
efficiency, volume, weight and system cost. The proposed design method is
described in the chapter with special attention to calculations regarding power
section of the converter. Newly introduced technology of SiC power devices is in
scope of author’s analysis. Features of proposed method are illustrated by three
SiC-based laboratory models rated at 10 an 20 kVA respectively. Each model is a
result of the optimization process performed at different input requirements related
to volume and efficiency. Finally, performance all models is verified during
operation with 3 × 400 V AC grid.

1 Introduction

There is no doubt that a technology of Silicon Carbide power devices has become a
permanent part of the power electronics picture. Today, statements about lower
on-state resistances and higher switching speeds in comparison to Silicon devices
sound quite obvious. New possibilities in a number of power electronics applica-
tions allow to achieve higher efficiency and power density of the applied converters
[1, 2]. However, a cost of SiC transistors and diodes is still higher than Si

S. Piasecki ⋅ R. Szmurlo ⋅ J. Rabkowski ⋅ M.P. Kazmierkowski (✉)
Warsaw University of Technology, Institute of Control and Ind. Electronics,
Warsaw, Poland
e-mail: mpk@isep.pw.edu.pl

S. Piasecki
e-mail: szymon.piasecki@ee.pw.edu.pl

R. Szmurlo
e-mail: robert.szmurlo@ee.pw.edu.pl

J. Rabkowski
e-mail: jacek.rabkowski@ee.pw.edu.pl

© Springer International Publishing AG 2018
A.E. Gawęda et al. (eds.), Advances in Data Analysis with Computational
Intelligence Methods, Studies in Computational Intelligence 738,
https://doi.org/10.1007/978-3-319-67946-4_18

395

counterparts, but may be compensated by strongly improved parameters of power
converters. A common knowledge is also a fact that a simple replacement of the Si
devices by SiC counterparts is not the best move. In most cases power electronic
converters should be completely redesigned when a new technology is being
introduced. Especially, when passive components—parts of the filters—contribute
in the volume and, especially, power losses. This is exactly the case of the
grid-connected AC-DC converter (see Fig. 1), which contains power section
(three-phase, fully controlled bridge) and three-phase filter. Relations between all
components of the converter are complex and a design process contains number of
different variables. Therefore, additional support to the designer seems to be
interesting option and multi-objective analysis might be considered in this case. The
design process shows a decisive impact on the expected properties of the converter
and obtained functionalities. Typically, high power quality as well as high effi-
ciency are required, moreover, low price and volume of the converter should be also
maintained. This means that conflicting objectives need to be combined during a
design and production process [3, 4].

Solving of the multi-dimensional design problems with conflicting objectives
can be supported by Multi-Objective Optimization (MOO) methods, successfully
implemented in power electronics [5, 6]. In the design process of power electronic
system, as the result of performed optimization, the sets of “the best” design
parameters are expected. Usually, there is no one, optimal solution, for analysed
and optimized problem but a set of different solutions, different trade-offs.

One of the key components of the AC-DC converter, specifically power section,
are power devices. Operation conditions related to performance of the switching
devices (nominal current, switching speed, on-state resistance, surface for heat
dissipation) determine the number of system parameters, such as cooling section,
grid filter, DC-link voltage level and others, as is presented in Fig. 1.

AC-DC Converter

DC-link
- voltage level
- capacitance
- type of capacitor

Power sec on
- power devices
- switching frequency
- cooling system

Filter
- type
- parameters
- technology/materials

m
inim

iza
on

Cost
Volume
Weight
Losses

Fig. 1 Main parameters of the AC-DC converter and expected design objectives of the system

396 S. Piasecki et al.

In the presented paper a MOO is applied to assist process of the AC-DC con-
verter design with special attention paid to analysis of SiC based power transistors.
The developed optimization tool, allows to analyze how changes of one or more
design variables will affect system parameters and desired properties of the con-
verter and finally achieve the design parameters which any change would bring no
benefit according to assumed criteria—so called Pareto optimum [7]. The imple-
mentation of proposed methodology enables this analysis to be performed in early
stage of the design process, giving the engineer a general overview of the available
possibilities and choices.

Selected optimization criteria (design objectives) for the AC-DC converter are
general properties of this system: volume, efficiency, weight, power quality and
price. The optimization parameters are design variables (see Fig. 1): grid filter (type
of the filter, values of elements, type of used material and element), type of power
switches, cooling system, switching frequency, DC-link capacitance, type of
DC-link capacitor and DC-link voltage level (see Fig. 1).

2 Design and Optimization Methodology

Several methodologies have been proposed to design and optimize power electronic
circuits [8–13]. Complexity level of applied models and mathematical equations are
different, usually they rise with precision of the obtained results. Actually, whole
optimization process is more complicated with advanced models complicate, time
required for calculations is also increased. Moreover, some approaches require
implementation of various simulation environments for analysis of different phys-
ical phenomena (thermal, electrical, etc). Therefore, an objective of the presented
methodology is to support process of the AC-DC converter design utilizing
parameters of available on the market components in order to achieve fast tool,
suitable for industrial applications. The methodology is composed by three main
parts: the design procedure, the database with parameters of available on the market
components and the multi-objective evolutionary optimization block, as is pre-
sented in Fig. 2.

The first part of the process is the design procedure. Based on experts knowledge
in electrical engineering, especially in power electronics, this part allows to analyse
surface of available solutions for various operation conditions of the converter.
Several mathematical scripts are employed to obtain general system parameters (as
currents, voltages, grid filter parameters, DC capacitance, etc.) for different
switching frequencies, DC voltages, thermal resistances of the heatsink and per-
formance of the cooling system. All obtained parameters are collected as matrix of
general system parameters—available designs. The described methodology is
dedicated for 2-level converter, but by modification of applied scripts may be
extended to multilevel topologies.

Detailed parameters of the system components: inductors, semiconductors and
capacitors are used in optimization calculations. Here only existing on the market,

A Method of Design and Optimization … 397

commercially available component are considered. Selected parameters of com-
ponents are implemented in proposed Components Database (see Fig. 3) on the
base of datasheets provided by the producers. Thus, the designer selects elements
which are considered in optimization process by their implementation in the
Database. At current stage of procedure’s development capacitors, inductors and
semiconductors are analysed, however, proposed methodology can be applied for
other system components.

The next step of analysis is the optimization process. The discussed methodol-
ogy treats design and optimization of the AC-DC converter as a problem with finite
number of alternatives, therefore, the discrete optimization methods, in particular
Genetic Algorithms (GAs) are employed. GAs use mechanisms inspired by bio-
logical evolution, such as reproduction, mutation, recombination, and selection, and
for the all GA techniques the main idea is to select from given population the fittest
individuals as in case of natural selection (survival of the fittest). The selection is
carried out based on given criteria (cost function), while the fittest measure can be
expressed by performance indices. The whole optimization process is based on
populations which evolve during generations. In each generation, the individuals
from the population are evaluated according to established criteria. The fittest are
selected to the next generation and create new population. The new population is
subjected to evolution (evolutionary operations, e.g. mutation, crossover) and
whole process is repeated till termination conditions are fulfilled.

Based on several scripts components from database are matched with particular
designs from matrix of general parameters according to current/voltage limitations.
Employing genetic algorithm the known operation conditions (general system

Design
Procedure

Designer

- Ini al parameters
- Constraints

General
Parameters

Components
Database

Op miza on
Procedure

- Preferences

Op mized
Design

Parameters

(Design Objec ves)

Fig. 2 Simplified block
diagram of proposed design
and optimization
methodology of AC-DC
converter

398 S. Piasecki et al.

parameters) are combined with particular component’s parameters. Using dedicated
mathematical models and formulas Local Performance Indices related to volume,
weight, losses and price are obtained (see Fig. 3). Finally, after n-generations fittest
individuals (according to establish by the designer objectives) are selected. Due to
relatively high number of generations (>100 000), the calculated parameters are the

Input
Parameters

Objectives

Constraints

Design
methodology

(computational scripts)

General Parameters of
the System

variations of parmeters:
UDC, fsw, Rth, CSPI, ...

 Inductors
Database (L)

Matching components
(genetic algorithm)

Local Performance Indices
(Losses, Weight, Price,

Volume)

Global Performance Indices
(∑Losses, ∑Weight, ∑Price,

∑Volume)

Fittest Individuals

Surface of available
designs (solutions)

 Capacitors
Database (C)

Semiconductors
Database (S)

Components Database
(based on producer’s datasheets)

OptimizationN generations
P population size

Optimized design parameters
(with specified operation conditions)

Designer

Fig. 3 Detailed signal flow diagram of proposed design and optimization methodology

A Method of Design and Optimization … 399

best ones from all available solutions. Implementation of particular genetic algo-
rithm allows to achieve optimization results in hours instead of months and years
(calculation of all available solutions) for operation on big database (over 1000
components) and wide number of general parameters (available designs).

The proposed methodology has been successfully implemented as closed com-
puting environment presented in [14]. This article in details presents part of pro-
posed procedure related to calculation of parameters for SiC power switches.

3 SiC Transistor Calculations

The choice of SiC semiconductor devices for AC-DC converter is not a simple issue
according to needed complex calculations, which include thermal modeling of the
elements. Due to proposed Semiconductors Database (see Fig. 3) various scenarios
with discrete semiconductors, Schottky diodes as well as integrated modules may
be considered. As market of SiC power devices is rapidly increasing by means of
rising number of devices and manufacturers, this database is growing very fast.

To check possible system performance of power devices combined
electro-thermal calculations are performed. The idea of analysis is to find thermal
steady-state of the devices (in discrete or module package) mounted on a heatsink
using both electrical and thermal equations. The block diagram is presented in
Fig. 4.

Calculations start for junction temperature equal to ambient (here assumed to be
25 °C), which is a base to find actual values of the thermal-dependent parameters
(on-state resistances, voltages, switching energies etc). All parameters are taken
from datasheets and collected in the developed Semiconductors Database where are
linearized versus junction temperature. In the case of most common SiC MOSFETs
on-state resistance is main temperature-dependent parameter but some other
parameters as switching energies are also changing with the junction temperature.
In Schottky diodes a series resistance is rising with junction temperature while
threshold voltage is slightly decreasing. Together with known General Parameters
(nominal power, DC-link voltage, switching frequency, power factor etc.) these
parameters are applied to determine the conduction and switching power losses in
diodes and transistors. Well-known equations describing switching power losses in
three-phase converter are applied, while equations for the conduction power losses
averaged over single fundamental period were corrected. It is also crucial to take
into account a reverse conduction of SiC MOSFETs, which is better explained in
[15]. In the next step a calculation of the case and junction temperatures takes place
using parameters such as thermal resistances of the power modules and the heat-
sink. This procedure is repeated until the analyzed system reaches a thermal
steady-state, which is expected to reflect a situation in the real circuit for given
circuit parameters. Calculated power losses for a 10 kVA AC-DC converter for
25 mΩ and 80 mΩ SiC MOSFETs have been presented in Fig. 5.

400 S. Piasecki et al.

4 Power Semiconductors Optimization

The proposed optimization methodology has been implemented as standalone
system to optimize the grid-connected AC-DC converter. The application was
implemented in Java using Grails framework and calculation scripts are executed by
GNU Octave. The system runs on a virtual machine based on Linux Ubuntu and has
allocated 8 virtual processors (Intel Xeon X5460) clocked at 3.16 GHz and 4 GB of
RAM. The database of components uses the MySQL database server on the same
machine. Applied evolutionary algorithms are implemented from the MOEA
Framework. The selected optimization algorithm is executed with specified by the
designer size of the population (P) and a maximum number of evaluations of the
objective function (N) performed during calculation of EA.

Semiconductor Calculations

Losses
Index

(SLOSSES)

Weight
Index

(with cooling
system)

(SWEIGHT)

Volume
Index

(with cooling
system)

(SVOLUME)

Matching Devices Selection
(Database, current/voltage limitations)

Local Performance Indices

Price
Index
(SPRICE)

Electro-thermal calculations

TJ=TA

x=f(TJ)

PC, PSW

TC, TJ

Steady
state?

NoYes

Semiconductors Database
(Datasheets)

[INOM, UNOM, rON, Tjt, TC, Esw, UM,
IM, ...]

General Parameters
(operation conditions)

[PN, UGRID, fG, ΔUDC, grid filter,
filter parameters, fsw, UDC, Rth,

CSPI, ...]

Fig. 4 Block diagram of the procedure for power transistors selection, electro-thermal modelling
and local performance indices estimation

A Method of Design and Optimization … 401

Operation and performance of the proposed methodology with 5 selected genetic
algorithms (OMOPSO, NSGAIII, SPEA 2, SMPSO, eMOEA) has been verified
through series of numerical analysis. For investigation of the system performance a
four objectives are included: volume, weight, price and losses with the same weight
coefficients. Achieved results are compared with reference according to 4 quality
indicators: Spacing, Generational Distance, Hyper Volume and Elapsed Time to
evaluate the obtained 4-dimensional space. Indicators, illustrated in Fig. 6, are
defined as follows:

(1) Spacing (SP)—indicator gives information how evenly are distributed the
results along the known Pareto front;

(2) Hyper Volume (HV)—gives information about the volume (in the objective
space) covered by non-dominated set of solutions for problem where all
objectives need to be minimized. Larger values of the HV indicator are
required;

Fig. 5 Calculated power losses in the 10 kVA converter for two different power modules with
80 mΩ (a) and 25 mΩ (b) MOSFETs versus switching frequency and the heatsink thermal
resistance

O
bj

ec
ve

 2

Objec ve 1

Reference

Obtained
Results

Hyper Volume (HV)

Spacing (SP)

Genera onal Distance (GD)

Fig. 6 Quality indicators
used for evaluation of the
obtained optimization results
—two objective (2
dimensional) representation

402 S. Piasecki et al.

(3) Generational Distance (GD)—this indicator gives information how far (on
average) are obtained results from true Pareto front. A value of GD equal zero
indicates that all calculated elements are on true Pareto front.

(4) Elapsed Time—time calculated from the beginning of the optimization process.

For performance analysis a Semiconductors Database with 300 records com-
bined with 16426 General Parameters Vectors was used. In this case the number of
all possible combinations is equal 300 * 16426 = 4 927 800. As a reference, the
result obtained with 200 000 evaluations (N) of the NSGAIII algorithm with initial
population size (P) equal 50 has been selected. Optimization process involves four
discussed objectives: volume, weight, losses and price with assumption that all
criteria should be minimized with the same weight coefficient. Because the
graphical visualization of 4 objectives would be unreadable, the results with quality
indicators are presented. In Fig. 7 quality indicators (obtained based on reference)
are presented for analysis with N = 20 000 evaluations. It can be observed, that all

(a) (b)

0 0.5 1 1.5 2

x 104

0

5

10

15

20

25

30

35

40

45

Ev.number [-]

Sp
ac

in
g

[-]

OMOPSO
NSGAIII
SPEA2
SMPSO
eMOEA

0 0.5 1 1.5 2

x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ev.number [-]

G
en

. D
is

t.
[-]

OMOPSO
NSGAIII
SPEA2
SMPSO
eMOEA

(c) (d)

0 0.5 1 1.5 2

x 104

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ev.number [-]

H
yp

. V
ol

. [
-]

OMOPSO
NSGAIII
SPEA2
SMPSO
eMOEA

0 0.5 1 1.5 2

x 104

0

20

40

60

80

100

Ev.number [-]

Ti
m

e
[s

]
OMOPSO
NSGAIII
SPEA2
SMPSO
eMOEA

Fig. 7 Performance of the optimization algorithms. The quality indicators obtained for N = 20 000
evaluations for 5 analyzed evolutionary algorithms and constant population (P = 50); a Spacing;
b Generational distance; c Hyper volume d Elapsed time, all versus number of evaluations (Ev.
Number)

A Method of Design and Optimization … 403

analyzed algorithms allow to achieve acceptable results already for N = 2 000,
however, analyzed number of available choices is only 4 927 800. It is assumed that
N = 20 000 is more than enough to obtain optimized parameters for analyzed
Semiconductors Database.

5 Laboratory Demonstrators

The proposed design and optimization method was applied for design of the three
laboratory models of grid-connected AC-DC converters with SiC power switches.
Each converter has been designed with different requirements related to Volume and
Efficiency objectives. The first model was designed to achieve high efficiency (in-
cluding the LCL filter). The second aimed in high power density (also determined
with the LCL filter). Finally, the third model was designed as a compromise
between high efficiency and high power density. Additional assumptions were that
only SiC power switches are considered for the models and converters are con-
nected to 3 × 400 V grid with closed loop control. Due to limitation of the noise
generated by passive components of the filter and available performance of used
control platform the switching frequency was established to be in range from 16 up
to 80 kHz.

All design parameters of the converters are collected in Table 1. It can be seen
that the second and third models have the same grid filter. The reason is the EMI
noise—applied measurement system was not stable during grid connected operation
at 80 kHz switching frequency with converter side inductance (LC) lower than 250
uH, despite the fact that it resulted from the analytical calculations. This issue will
be investigated in future works of the authors.

Efficiency of the discussed models has been evaluated by an experimental
investigation. System configuration during experiments is presented in Fig. 8a,
obtained efficiency versus output power characteristics of the models are presented
in Fig. 8b. For efficiency measurements the Yokogawa WT1806 Power Analyzer
was used. All converters are connected to the grid through LCL filters, with
parameters as presented in Table 1, measured efficiency includes losses in power
section of the converter and passive components of the filter (see Fig. 8a).

Analyzed models achieve high efficiency (99.1% with LCL filter) or high power
density (5.23 kW/dm3), according to established design objectives. Experimentally
obtained performance space related to two main objectives: Volume (expressed by
1/Power Density) and Efficiency (expressed by summarized losses) is presented in
Fig. 9. Moreover, figure presents main parameters of constructed models. Obtained
results are compared to theoretical parameters calculated by the procedure. The
main source of obtained, around 20%, error are calculations related to magnetic
components. For estimation of losses in the inductors a Modified Steinmetz
Equation [16] is used, while parameters for the equation are selected based on
material’s datasheet provided by producers and laboratory measurements. Volume

404 S. Piasecki et al.

of the inductors is estimated based on peak energy stored in magnetic components,
according to equation [17]:

LVOLUME =
1
2
⋅ sfL Volume ⋅ ∑ ðL ⋅ I2L MAXÞ, ð1Þ

where L—inductance, IL_MAX—maximum current of the inductor, sfL_Volume—

volume scaling factor (related to the material of the core and applied technology),
selected to 0.6 dm3/J, based on [17] and laboratory measurements. This part of the
procedure is under development and will be extended by dedicated scripts for
magnetic components design.

Table 1 Parameters of the analyzed laboratory AC-DC converter models

Parameter High efficiency High
efficiency/power
density

High power density

Rated power (PN) 10 [kVA] 10 [kVA] 20 [kVA]
AC nominal
voltage (UAC)

230 [V RMS] 230 [V RMS] 230 [V RMS]

AC nominal
current (IAC)

14.5 [A RMS] 14.5 [A RMS] 28.9 [A RMS]

DC nominal
voltage (UDC)

580–700 [V DC] 580–700 [V DC] 580–700 [V DC]

DC nominal
current (IDC)

14.3–17.3 [A DC] 14.3–17.3 [A DC] 28.5–34.4 [A DC]

Switching
frequency (fsw)

16–24 [kHz] 40 [kHz] 80 [kHz]

Parameters of LCL
filter
Converter side
inductor (LC)

LC = 1.5 [mH] LC = 250 [µH] LC = 250 [µH]

LC core type 1f, ferrite 1f, E64/15 3F3 1f, ferrite
Filter capacitance
(CLCL)

CLCL = 5 [µF] CLCL = 5 [µF] CLCL = 5 [µF]

Grid side inductor
(LG)

LG = 100 [µH] LG = 100 [µH] LG = 100 [µH]

LG core type 1f, ferrite 1f, ferrite, E64/10 1f, ferrite
DC-link
capacitance (CDC)

162 [µF] 100 [µF] 118 [µF]

Power devices CCS050M12CM2 6 × C2M0025120D 12 × C2M0080120D
6 × C4D20120D 6 × C4D20120A

Heatsink 1 × Fisher SK92
220 mm
(RTH = 0.9 K/W)

2 × Fisher
LAM-5-150
(RTH = 0.25 °C/W)

2 × Fisher
LAM-5-150
(RTH = 0.25 °C/W)

A Method of Design and Optimization … 405

6 Experimental Investigation

In the further step of experimental investigation the SiC-based demonstrators were
verified during grid-connected mode with closed loop control. As a control method
the Direct Power Control with Space Vector Modulator (DPC-SVM) is used. The
well-known DPC scheme [18] has been extended by additional Phase Locked Loop
algorithm, positive and negative Voltage Sequence Extraction module (based on

(a)

(b)

Fig. 8 Efficiency evaluation of analyzed SiC based AC-DC models for various operation
conditions; a system configuration during experiment; b efficiency versus output power
characteristics

406 S. Piasecki et al.

DSGOGI [19]) and Harmonics Compensation block, as presented in Fig. 10 [19].
Harmonic compensation functionality was realized based on band-pass filters, as
described in [19]. This algorithm was implemented on dSpace 1006 platform and
used to control each of investigated converters in various operation conditions.

Experimental investigations allow to confirm properties of the SiC based con-
verters in terms of high-efficiency but also improved functionalities of the
demonstrators during operation with distorted grid voltage.

In Fig. 11 steady state operation of the high-efficient model as an inverter with
nominal power and UDC = 700 V is presented. High efficiency and high quality of
processed power (Ithd1, Uthd1) are illustrated by screen from Yokogawa Analyzer.
Figure 12 illustrates additional functionality of the control method which allows for
stable and uninterrupted operation of the converter under grid voltage disturbances.
Despite voltage distorted by harmonics and dip grid side currents are controlled,
balanced and close to sinusoidal.

Figure 13 presents steady state operation of the high-efficient and compact
model as active rectifier under nominal load (10 kW) and UDC = 700 V with
40 kHz switching frequency. High efficiency (98.57%), as well as high quality of
processed power (Ithd1, Uthd1) are also illustrated by screen from Yokogawa
Analyzer. In Fig. 14 harmonics compensation of the grid side current functionality
is presented when converter operates with grid voltage distorted by 5% of 5th, 7th
and 11th harmonics. Despite distortion grid side current THD is 1% (without
compensation 30%).

100 110 120 130 140 150 160 170 180 190 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Losses (Power Sec on +
 LCL filter) [W]

1/Power Density
 [dm3/kVA]

Experimental Models

High-efficient Model

Eficcient and Compact Model

High Power Density Model

Volume: 10.6 [dm3]
Power Density: 0.94 [kW/dm3]
Weight: 15.7 [kg]
Cost: 946 [€]
Efficiency: 99.1%

Volume: 3.16 [dm3]
Power Density: 3.16 [kW/dm3]
Weight: 5.24 [kg]
Price: 1093 [€]
Efficiency: 98.8%

Volume: 3.82 [dm3]
Power Density: 5.23 [kW/dm3]
Weight: 5.45 [kg]
Price: 953 [€]
Efficiency: 98.2%

210 220 230 240 250

Calculated Models

Fig. 9 The 2 objectives (1/Power Density vs Losses) performance space and main parameters of
SiC based laboratory models

A Method of Design and Optimization … 407

abc
αβ

αβ
dq

PLL
Harmonics

Comp.

dq
αβ

Qref
Uq_ref Ud_ref

DSOGI

abc
αβ

+

Uαβ_pos

Uq

Uαβ_neg

Uαβ_mod

Uq_ref

Ud_ref

100Hz
Filter

+

HC

VSE

VSE

PLL

UDCF

GRID
FILTER

UABC

LU

Grid IABC

φ
Uαβ Uαβ_neg

PI
Controller

PI
Controller

Pest
Power

Estimator

Qest

X

UDC

UDC_ref Id_ref Pref

UDC

DC-Link Voltage Controller

PI
Controller

Uαβ

DC

AC

GCC
Converter

CDC

1S 2S 3S

SVM UDC

RES/
AL

Iαβ

Iαβ Uαβ_pos

φ'
Uαβ

Uαβ_harm

Fig. 10 Block diagram of the control method implemented in the SiC based laboratory
demonstrators

(a) (b)
UA_Grid (C1)

UDC (C4)

IA_Grid (C3)

IA_Conv (C2)

Fig. 11 Inverting operation of the high-efficient model during steady state, UDC = 700 V,
fsw = 16 kHz, POUT = 10 kW; a screen from the Yokogawa power analyzer, b current and
voltage waveforms, from the top: grid voltage of phase A (UA_Grid), grid side current of the phase
A (IA_Grid), DC-link voltage (UDC), converter side current of the phase A (IA_Conv)

408 S. Piasecki et al.

Finally, Fig. 15 presents operation of the high power density model as active
rectifier under 10 kW load with switching frequency equal 80 kHz during steady
state. Obtained efficiency is 97.9% for 700 V in DC-link.

Fig. 12 Active rectifying operation of the high-efficient model under grid voltage distorted by
40% voltage dip in two phases (voltage unbalance in third phase is caused by separating grid
transformer) and 5% of 5th and 7th harmonics. From the top: grid voltage, DC-link voltage and
grid current

(b)(a)

UDC

IA_Grid

IA_Conv

UA_Grid

Fig. 13 Active rectifying operation of the high-efficient and compact during steady state,
UDC = 700 V, fsw = 40 kHz, POUT = 10 kW; a screen from the Yokogawa power analyzer,
b current and voltage waveforms, from the top: grid voltage of phase A (UA_Grid), grid side current
of the phase A (IA_Grid), DC-link voltage (UDC), converter side current of the phase A (IA_Conv)

A Method of Design and Optimization … 409

7 Conclusions

The chapter presents the dedicated method for design and optimization of AC-DC
converters with special effort on the calculations of SiC power semiconductor
devices. For the optimization a dedicated system utilizing genetic algorithms is
used. Due to proposed Components Database performed calculations are limited to
the existing on the market components, while parameters of the components are
implemented in database using producers datasheets. Methodology for the power

(a) (b)

IA_Grid Spectrum

UA_Grid Spectrum

IABC_Grid

UABC_Grid

UDC_GCC

IDC_GCC

Fig. 14 Active rectifier operation of the high-efficient and compact model during steady state with
grid voltage distorted by 5% of 5th, 7th and 11th harmonics, UDC = 700 V, fsw = 40 kHz,
POUT = 6.3 kW; a screen from the Yokogawa power analyzer, b current and voltage waveforms,
from the top: DC-link voltage (UDC_GCC), grid voltage (UABC_Grid), DC-link current (IDC_GCC),
grid side current (IABC_Grid)

Fig. 15 Active rectifier operation of the model with high power density during steady state,
UDC = 700 V, fsw = 80 kHz, POUT = 10.5 kW; a screen from the Yokogawa power analyzer,
b current and voltage waveforms, from the top: grid voltage of phase A (UA_Grid), grid side current
of the phase A (IA_Grid), DC-link voltage (UDC), converter side current of the phase A (IA_Conv)

410 S. Piasecki et al.

semiconductor calculations is presented in details and illustrated by three laboratory
models which utilize SiC power switches. High efficiency and high power density
design scenarios are analysed, moreover, the model which is a compromise between
power density and efficiency is presented. Series of experiments confirms properties
of the designed models and possibilities offered by dedicated control method. Thus,
the presented methodology was verified in practice and provides results, which are
very close to initial assumptions. The authors believes that after necessary
improvements it may be applied to support designers of the grid-connected AC-DC
converters.

Acknowledgements This work has been supported by the National Science Center, Poland,
based on decision DEC-2012/05/B/ST7/01183.

References

1. Millan, J., Godignon, P., Perpina, X., Perez-Tomas, A., Rebollo, J.: A survey of wide bandgap
power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)

2. Dimarino, C.M., Burgos, R., Boroyevich, D.: High-temperature silicon carbide: character-
ization of state-of-the-art silicon carbide power transistors. IEEE Ind. Electron. Mag. 9(3), 19–
30 (2015)

3. Larouci, C., Boukhnifer, M., Chaibet, A.: Design of power converters by optimization under
multiphysic constraints: application to a two-time-scale AC/DC–DC converter. IEEE Trans.
Ind. Electron. 57(11), 3746–3753 (2010)

4. Ramachandran, R., Nymand, M.: Design and analysis of an ultra-high efficiency phase shifted
full bridge GaN converter. In: IEEE Applied Power Electronics Conference and Exposition
(APEC), pp. 2011–2016 (2015)

5. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

6. Chan, R.R., Sudhoff, S.D., Lee, Y., Zivi E.L.: Evolutionary optimization of power electronics
based power systems. In: 22nd Annual IEEE Applied Power Electronics Conference and
Exposition (APEC), pp. 449–456 (2007)

7. Kolar, J.W., Biela, J., Waffler, S., Friedli, T., Badstuebner, U.: Performance trends and
limitations of power electronic systems. In: 6th International Conference on Integrated Power
Electronics Systems (CIPS), pp. 1–20 (2010)

8. Friedli, T., Round, S.D., Hassler, D., Kolar, J.W.: Design and performance of a 200-kHz
all-SiC JFET current DC-link back-to-back converter. IEEE Trans. Ind. Appl. 45(5), 1868–
1878 (2009)

9. Biela, J., Badstuebner, U., Kolar, J.W.: Design of a 5-kW, 1-U, 10-kW/dm3 resonant DC–DC
converter for telecom applications. IEEE Trans. Power Electron. 24(7), 1701–1710 (2009)

10. Boillat, D.O., Krismer, F., Kolar, J.W.: Design space analysis and ρ-η pareto optimization of
LC output filters for switch-mode AC power sources. IEEE Trans. Power Elec. 30(12), 6906–
6923 (2015)

11. Ejjabraoui, K., Larouci, C., Lefranc, P., Marchand, C.: Presizing methodology of DC–DC
converters using optimization under multiphysic constraints: application to a buck converter.
IEEE Trans. Ind. Electron. 59(7), 2781–2790 (2012)

12. Busquets-Monge, B.Y.S., et al.: Power converter design optimization. a GA-based design
approach to optimization of power electronics circuits. IEEE Ind. Appl. Mag. 10(1), 32–39
(2004)

A Method of Design and Optimization … 411

13. Muhlethaler, J., Schweizer, M., Blattmann, R., Kolar, J.W., Ecklebe, A.: Optimal design of
LCL harmonic filters for three-phase PFC rectifiers. IEEE Trans. Power Electron. 28(7),
3114–3125 (2013)

14. Piasecki, S.: Research and development of multi-objective optimization procedures for
AC-DC grid converters in particular for renewable/distributed energy systems. In: PhD
Thesis. Warsaw University of Technology (2016)

15. Piasecki S., Rabkowski J., Experimental Investigations on the Grid-connected AC/DC
Converter Based on Three-phase SiC MOSFET Module, proc. of 17th European Conference
on Power Electronics and Applications (EPE ECCE Europe), (2015), 1–10

16. Reinert, J., Brockmeyer, A., De Doncker, R.W.: Calculation of losses in ferro- and
ferrimagnetic materials based on the modified Steinmetz equation. IEEE Trans. Ind. Appl. 37
(4), 1055–1061 (2001)

17. Bloemink, J.M., Green, T.C.: Reducing passive filter sizes with tuned traps for distribution
level power electronics. In: 14th European Conference on Power Electronics and Applica-
tions, pp. 1–9 (2011)

18. Kazmierkowski, M.P., Jasinski, M., Wrona, G.: DSP-based control of grid-connected power
converters operating under grid distortions. IEEE Trans. Ind. Informatics 7(2), 204–211
(2011)

19. Jasinski, M., Wrona, G., Piasecki, S.: Control of Grid Connected Converter (GCC) Under
Grid Voltage Disturbances. In: Advanced and Intelligent Control in Power Electronics and
Drives, Chap. 3, vol. 531. Cham: Springer International Publishing (2014)

412 S. Piasecki et al.

	Preface
	Contents
	Data Mining, Machine Learning, Knowledge Discovery
	Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning
	1 Introduction and Objectives
	2 Tensor Operations and Graphical Representations of Tensor Networks
	2.1 Tensor Operations and Tensor Network Diagrams

	3 Mathematical and Graphical Representation of Basic Tensor Networks
	3.1 The CP and Tucker Tensor Formats
	3.2 Operations in the Tucker Format

	4 Curse of Dimensionality and Separation of Variables for Multivariate Functions
	5 Tensor Networks Approaches for Deep Learning
	5.1 Why Tensor Networks Are Important in Deep Learning?
	5.2 Basic Features of Deep Convolutional Neural Networks
	5.3 Score Functions for Deep Convolutional Neural Networks

	6 Convolutional Arithmetic Circuits (ConvAC) Using Tensor Networks
	6.1 Hierarchical Tucker (HT) and Tree Tensor Network State (TTNS) Models
	6.2 Alternative Tensor Network Model: Tensor Train (TT) Networks
	6.3 Tensor Chain and TT/MPO Networks

	7 Deep Convolutional Rectifier Using Nonlinear Tensor Networks Decompositions
	8 MERA Tensor Networks for a Next Generation of DCNNs
	9 Conclusions and Discussions
	References

	Local Data Characteristics in Learning Classifiers from Imbalanced Data
	1 Introduction
	2 Related Research on Imbalanced Data Characteristics
	2.1 Nature of the Class Imbalance Problem
	2.2 Data Complexity and Difficulty Factors
	2.3 Local Data Characteristics in Informed Pre-processing

	3 Analyzing Neighbourhoods of Minority Class Examples
	3.1 Motivations
	3.2 Modeling k-Neighbourhood
	3.3 Modeling Kernel Neighborhood
	3.4 Experiences with Analyzing Types of Minority Examples

	4 Tuning the Neighbourhood Size
	4.1 Tuning k Value
	4.2 Tuning Kernel Bandwidth
	4.3 A New Tuning Method Based on Cross-Validation

	5 Experimental Analysis of Data Characteristics
	5.1 Experimental Setup
	5.2 Tuning Kernel Bandwidth and k-Neighbourhood
	5.3 Analyzing Types of Minority Examples

	6 Improving Pre-processing Techniques with the Neighbourhood Analysis
	7 Neighbourhood Based Ensembles
	8 Extensions of the Neighbourhood Analysis
	9 Final Remarks
	References

	Dimensions of Semantic Similarity
	1 Introduction
	2 Description Logic
	3 Similarity
	4 Similarity Calculation Methods
	5 Semantic Similarity Dimensions
	6 Example of Multi-dimensional Similarity
	7 Combining Similarity Dimensions
	8 Properties of Dimensions
	9 Applications of Dimensional Semantic Similarity
	10 Concluding Remarks
	References

	4 Some Interesting Phenomenon Occurring During Self-learning Process with Its Psychological Interpretation
	1 Introduction
	2 Self-learning and Learning
	3 Self-learning Neural Network
	4 How and Where Artificial Dreams Phenomena Can Be Discovered?
	5 How Manifest Artificial Dreams?
	6 Special Interpretation of the Intermediate Stages of Learning Process
	7 Concluding Remarks
	References

	Neural Networks and Connectionist Systems
	On the Interpretation and Characterization of Echo State Networks Dynamics: A Complex Systems Perspective
	1 Introduction
	2 Echo State Networks
	2.1 ESN Dynamics and Stability Measures
	2.2 Edge of Criticality

	3 Interpreting and Tuning ESN Through Recurrence Quantification Analysis
	3.1 Representing ESN Dynamics with RP
	3.2 Visualize and Classify Reservoir Dynamics
	3.3 Recurrence Analysis to Determine ESN Stability

	4 Detection of Critical Dynamics with Fisher Information
	4.1 Fisher Information Matrix and the Non-parametric Estimator
	4.2 Tuning ESN by Exploiting FIM Properties
	4.3 Results

	5 Concluding Remarks and Future Research Perspectives
	References

	6 Optimization of Ensemble Neural Networks with Type-1 and Interval Type-2 Fuzzy Integration for Forecasting the Taiwan Stock Exchange
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Time Series and Prediction
	2.2 Neural Networks
	2.3 Ensemble Neural Networks
	2.4 Fuzzy Systems as Methods of Integration
	2.5 Optimization
	2.6 Particle Swarm Optimization

	3 Problem Statement and Proposed Method
	4 Simulation Results
	5 Conclusions
	Acknowledgements
	References

	7 Deep Neural Networks—A Brief History
	Abstract
	1 Introduction
	2 Neuron Models
	3 Learning Rules
	4 Network Architecture
	5 Problems with DNN Learning
	6 Conclusions
	References

	Intelligent Technologies in Systems Modeling
	Techniques for Construction and Integration of Rule Bases
	1 Introduction
	2 Expressing Rules with Rule Languages
	2.1 Types of Rules
	2.2 Rule Languages

	3 From Construction of Rule Sets to Design of Rule Bases
	3.1 Rulebase Modeling
	3.2 Structure
	3.3 Analysis

	4 Execution of Rule Bases
	4.1 Inference in Rule Bases
	4.2 Improving Inference in Structured Rule Bases
	4.3 Inference Control in SKE

	5 Integration of Rule-Based Systems
	5.1 Heterogeneous Integration
	5.2 Integration in the SKE Approach
	5.3 Integration of Rules and Business Process System

	6 Rule Interoperability
	7 Concluding Remarks
	References

	New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling
	1 Introduction
	1.1 Model Representation
	1.2 Interpretability of Fuzzy Systems
	1.3 Attempts at Systematizing Solutions for Interpretability of Rule-Based Systems
	1.4 Solutions Proposed in This Paper

	2 Description of a Neuro-Fuzzy System for Non-linear Modeling
	2.1 Rule Base
	2.2 Defuzzification Process
	2.3 Aggregation and Inference Operators

	3 Description of a New Fuzzy System Learning Algorithm
	3.1 Encoding of Potential Solutions
	3.2 Evaluation of Potential Solutions
	3.3 Processing of Potential Solutions

	4 New Interpretability Criteria of a Fuzzy System for Nonlinear Modeling
	4.1 Complexity Evaluation Criterion
	4.2 Fuzzy Sets Readability Evaluation Criterion
	4.3 Fuzzy Rules Readability Evaluation Criteria
	4.4 Criterion for Assessing the Readability of Weight Values in the Fuzzy Rule Base
	4.5 Criterion for Assessing the Readability of Triangular Norms
	4.6 Criterion for Assessing the Defuzzification Mechanism

	5 Simulations
	6 Conclusions
	References

	On the Intuitionistic Fuzzy Sets of n-th Type
	1 Introduction
	2 A Second Type of IFSs
	3 IFS-nTs
	4 Uses of IFS-nT and Additional Results
	5 Analogues of Mappings of Complex Numbers
	6 Conclusion
	References

	Intelligent Technologies in Decision Making, Optimization and Control
	MCTS/UCT in Solving Real-Life Problems
	1 Introduction
	2 Monte Carlo Tree Search
	2.1 Upper Confidence Bounds Applied to Trees
	2.2 MCTS/UCT in Games --- a Short Overview

	3 Capacitated Vehicle Routing Problem with Traffic Jams
	3.1 MCTS/UCT Approach to CVRPwTJ
	3.2 Possible Actions in the UCT Trees
	3.3 Results

	4 Risk-Aware Project Scheduling Problem
	4.1 MCTS/UCT Approach to RAPS
	4.2 Results

	5 Conclusions
	References

	Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization
	1 Introduction
	2 Concepts: Definitions and Notation
	3 Interactive Cone Contraction for Evolutionary Multiple Objective Optimization
	4 Experimental Results
	4.1 Illustrative Examples
	4.2 Convergence in Terms of the Best-in-population and Average-of-population Values

	5 Conclusions and Future Research
	References

	13 A Review of Fuzzy and Mathematic Methods for Dynamic Parameter Adaptation in the Firefly Algorithm
	Abstract
	1 Introduction
	2 Firefly Algorithm
	2.1 Firefly’s Movement
	2.2 Light Intensity and Attractiveness
	2.3 Restriction Coefficient
	2.4 Distance
	2.5 Randomization

	3 Parameter Control
	3.1 Parameter Tuning
	3.2 Parameter Control

	4 FA Applications
	4.1 Firefly Algorithm Parameter Adjustment
	4.2 Fuzzy Control for Parameter Adjustment

	5 Conclusions
	References

	Applications of Intelligent Technologies
	14 Computational Intelligence Methods in Personalized Pharmacotherapy
	Abstract
	1 Introduction
	2 Computational Intelligence Approaches to Drug Response Modeling
	2.1 Artificial Neural Networks
	2.2 Fuzzy Set Models

	3 Computational Intelligence Approach to Drug Dosing
	3.1 Neural Predictive Control
	3.2 Fuzzy Multiple Model Predictive Control

	4 Conclusions
	References

	Embodying Intelligence in Autonomous and Robotic Systems with the Use of Cognitive Psychology and Motivation Theories
	1 Introduction
	1.1 �Intelligence
	1.2 Embodied �

	2 Decision Systems
	2.1 LIDA
	2.2 CLARION
	2.3 SOAR
	2.4 Intelligent System of Decision-Making

	3 Comparison
	4 Synchronization of Cognitive Systems
	5 Summary
	References

	Evolutionary Approach for Automatic Design of PID Controllers
	1 Introduction
	2 Proposed Generalized Controller Structure
	3 Proposed Hybrid Genetic-Imperialist Algorithm Description
	3.1 Encoding of the Structure and Parameters
	3.2 Initialization of Initial Population
	3.3 Evaluation of the Population
	3.4 Empires Creation
	3.5 Assimilation of the Colonies
	3.6 Revolution and Mutation
	3.7 Evaluation of the Population
	3.8 Competition of the Empires
	3.9 Elimination of Empty Empires
	3.10 Stopping Criterion

	4 Simulations
	4.1 Simulation Problem
	4.2 Simulation Method
	4.3 Simulation Results

	5 Conclusions
	References

	Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature
	1 Introduction
	1.1 Approaches to the Dynamic Signature Analysis Proposed in the Literature
	1.2 Our Approach to the Dynamic Signature Analysis

	2 Description of the Fuzzy-Genetic Approach for Signature Verification
	2.1 Description of the Learning Phase
	2.2 Description of the Signatures Verification Phase
	2.3 Description of the Computational Complexity

	3 Simulation Results
	4 Conclusions
	References

	18 A Method of Design and Optimization for SiC-Based Grid-Connected AC-DC Converters
	Abstract
	1 Introduction
	2 Design and Optimization Methodology
	3 SiC Transistor Calculations
	4 Power Semiconductors Optimization
	5 Laboratory Demonstrators
	6 Experimental Investigation
	7 Conclusions
	Acknowledgements

