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Abstract. Alzheimer disease (AD) is a common form of dementia affect-
ing people older than the age of 65. Moreover, AD is commonly diag-
nosed by behavioural paradormants, cognitive tests, and is followed by
brain scans. Computer Aided Diagnosis (CAD), applies medical imag-
ing and machine learning algorithms, to aid in the early diagnosis
of Alzheimer’s severity and advancement from prodromal stages i.e.
Mild Cognitive Impairment (MCI) to diagnosed Alzheimer’s disease. In
this work, SVM (support vector machine) is used for dementia stage
classification. Anatomical structures of the brain were obtained from
FreeSurfer’s processing of structural Magnetic Resonance Imaging (MRI)
data and is utilized for as features for SVM. To be more precise, the
system is processed using T1-weighted brain MRI datasets consisting
of: 150 mild cognitive impairment (MCI) patients, 80 AD patients and
130 normal controls (NC) obtained from Alzheimer Disease Neuroimag-
ing Initiative (ADNI) database. The volumes of brain structures (hip-
pocampus, medial temporal lobe, whole brain, ventricular, cortical grey
matter, entorhinal cortex and fusiform) are employed as biomarkers for
multi-class classification of AD, MCI, and NC.
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1 Introduction

Alzheimer’s disease (AD) is a common form of dementia affecting millions of
elderly people above the age of 65 worldwide. Before AD, ailments such as (MCI)
serves as an intermediary phase between normal cognitive controls (NC) and AD.
Furthermore, this MCI phase has a high conversion rate to AD. As a result, there
is a need for the development of a sensitive, precise, and specific atrophy bio-
markers for early detection of AD progression [1]. These new methods are needed
to help researchers develop new treatments for Alzheimer’s as discussed by Hua
et al. [2]. Methods for early detection may further differ by the type of imaging
biomarkers that can be applied [3–5]. For example, neuroimaging methods such
as positron emission tomography (PET), functional magnetic resonance imaging
(fMRI) and structural magnetic resonance imaging (MRI) are useful in evalua-
tion of anatomical degradation caused by the disease [6–8]. Overtime, structural
MRI of the brain has progressively become more employed in identifying struc-
tural changes in common aging diseases like Alzheimer’s [9]. Structural brain
MRI methods have the ability to utilize biomarkers that are presented in the
image. These biomarkers are able to illustrate the structural differences for a
healthy and diseased individuals. It is important to note that the methods may
vary depending on the nature of the employed imaging biomarkers [10]. In spite
of this, due to the ease of availability, non-persistent nature, and a high quality
of MR images, they are the most suitable for differentiating changes in the brain
anatomy due to disease development and progression.

As a result of the ubiquitous use of MRI in research and medicine, simul-
taneous advances in neuro-informatics have led to the materialization of many
free and commercial image analysis software packages for the last 15 years. This
includes but is not restricted to SPM, FSL, FreeSurfer, BrainVisa, Minboggle,
NeuroQuant and NeurQlab. Premature diagnosis of AD by structural MRI stud-
ies is a challenging task because of its difficulty in quantifying patterns seen in
the structural changes during early phases of AD or clinically normal phases
[11]. Patients at the early stages of AD are classified as MCI, but not all MCI
patients convert to AD. An analysis of research and clinical reports show that
5–10% of MCI patients convert to AD per year [12]. Voxel based (VBM) mor-
phometry from high-resolution T1-weighted brain MRI data has been employed
for diagnosis. Furthermore imaging biomarkers were obtained from the processed
images such as grey matter concentration maps which are registered to a refer-
ence location for facilitating voxel by voxel comparisons across subjects [13]. In
this work, we focus on the volumetric measurements of various brain structures
as they have an impact on dementia diagnosis. Specifically, MCI is known to
be effected by volume loss of brain structures like the hippocampus, MTI, the
entorhinal cortex, and the total volume of the brain and is therefore exploited
for classification.

Kloppel et al. applied support vector machine (SVM) to classify grey matter
segments in T1-weighted MR scans obtained from diagnosed AD patients and
the NCs obtained from two centers with dissimilar scanning equipment in order
to generalize across different medical centers [14]. Magnin et al. proposed a new
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classification method of whole-brain (1.5-T) MRI to discriminate AD patients
from NC subjects based on SVMs [15]. Here brain is divided into five regions
of interest by using a previously developed anatomically labelled template for
the brain and created a mask to exclude voxels of the skull. Vemuri et al. [16]
developed a tool for Alzheimer’s diagnosis through structural classification of
MRI using SVM. As the dimension of these brain structures is collinear, it is
essential to know which of them is more likely linked to severity of illness; the
amount of atrophy in the other explains further variation in overall symptom
severity. The studies in this field typically evaluate the diagnostic accuracy of AD
and MCI patients with healthy control subjects. This study proposes volumetric
measurement of hippocampus, medial temporal lobe, ventricles, amygdala, whole
brain volume, cortical grey matter and entorhinal cortex and fusiform structures
used as MRI biomarkers to predict different forms of dementia including the AD
and the MCI. The MRI database scan for the proposed work has been taken from
the AD Neuroimaging Initiative (ADNI) [17]. FreeSurfer software is employed
to obtain hippocampal, MTL, and whole brain volumes, as well as ventricles,
amygdala and cortical grey matter by cortical and sub-cortical segmentation.
Furthermore, the SVM classification from LibSVM package is utilized for multi-
class classification of AD, MCI and NC.

The organization of this paper is as follows. In Sect. 2, possible volume bio-
markers of AD are discussed. In the first part of Sect. 3, the dataset and the
FreeSurfer tool are briefly presented, followed by explaining the inner work-
ings of SVM for Alzheimer’s classifications. The whole process of classification
is given in Fig. 1. Section 4 is devoted for discussing the performance of the
presented method. Finally, in Sect. 5 the conclusion and the future work are
communicated.

Fig. 1. Flowchart

2 Volume Biomarkers of AD

Manual volumetric measurements of brain structures is regarded as “the gold
standard” for detecting symptoms of AD. However, it is time consuming and has
an operator bias. In comparison, automatic measuring methods such as voxel-
based morphometry (VBM) are fast and are extensively employed in the field
[23–25]. However, this method is not to define every gyrus in the brain and
is criticized by some to have confounding issues [26]. Lies et al. has addressed
some of these issues where it is found that a VBM method is measuring the same
effects as “the gold standard” concerning to the subcortical brain structures [27].
Overall, major structures in the brain like hippocampus, medical temporal lobe,



266 K.R. Kruthika et al.

ventricles, amygdala, cortical grey matter, entorhinal cortex and the whole brain
volume are investigated for indications of atrophy that lead to AD.

2.1 Hippocampus

The hippocampus creates the majority of the temporal lobe and is commonly
used for AD diagnosis. Moreover, hippocampal atrophy is a well-known cause
of dementia [9]. Specifically, hippocampal atrophy differentiates the three main
disease stages of AD, MCI and NC [21]. It is also speculated that a low hip-
pocampus volume can be utilized as a new diagnostic criterion for MCI patients
with high risks of AD conversion [11].

2.2 Medial Temporal Lobe

The medial temporal lobe (MTL) region contains structures that are key in long-
term memory. As a result, a structural MRI of the MTL’s atrophy is an effective
indicator for the initial diagnosis of AD. Visser et al. reported these results in
1999 among 45 patients in their study [17].

2.3 Ventricles

Ventricles are cavities in the cerebral hemispheres filled with cerebrospinal fluid.
Furthermore, their volume variations indicate the existence of AD. These cav-
ities are found to expand in size steadily in AD patients [20]. In particular,
Apostolova et al. has reported that the use of cerebral ventricular volume for
measurement of AD development. They claimed that the hemispheric atrophy
rate calculated by ventricular enlargement correlates strongly with changes on
cognitive tests and are able to capture significant variations among levels the
stages of Alzheimer’s [18].

2.4 Amygdala

Amygdala is a primary limbic structure anatomically interconnected with the
neocortex. In particular, the amygdala serves as a structure for how emotions
are processed. In cases of AD, neural lost and alterations in glial cell population
have been reported. In support, Poulin et al. reported the magnitude of amygdala
atrophy is considerable in AD stages [19].

2.5 Whole Brain

Volumetric MRI studies have found relationships between increasing age and
decreasing brain volumes. In particular, there is an age-correlated decrease in
hippocampal, temporal, frontal lobe structure volumes, and an increase in cere-
brospinal spaces [20]. Moreover, there are more sensitive predictors of AD and
MCI are achievable by exploiting the whole brain’s atrophy rate along with the
hippocampal volume [21].
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2.6 Cortical Grey Matter

MRI measurements of cortical grey matter and abnormal white matter are inde-
pendently connected with dementia severity. Both biomarkers have their own
contributions to the performance in MCI domains as well. For example, quanti-
tative MRI provides a strong conformation that cortical grey matter volume are
related to atrophy and abnormal white matter volume are separately related to
the dementia severity in AD subjects [22].

2.7 Entorhinal Cortex

Entorhinal cortex is a key pre-processor that stimulates the nearby hippocampus.
It serves as an area for memory and navigation. Examinations have confirmed
this assumption; also, few observations illustrate that entorhinal cortex is the
primary part which is affected in MCI cases even earlier than hippocampus.

3 Materials and Methods

3.1 Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). The ADNI was collectively launched
by six non-profit organizations in 2003: the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and
available at adni.loni.usc.edu. It aims to assess whether structural MRI, positron
emission tomography (PET), biomarkers, as well as clinical and neuropsycho-
logical assessments can be collectively measure the progression of MCI and early
AD. The dataset is divided into categories of AD, MCI and NC, where MCI
consists of EMCI and LMCI as shown in Table 1.

Table 1. Overview of the MRI dataset

Class # of subjects # of males/females Age (mean ± std)

AD 200 103/97 75.40 ± 7.61

EMCI 150 77/73 73.24 ± 6.19

LMCI 150 73/77 74.10 ± 7.73

NC 200 73/102 76.49 ± 6.78

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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3.2 FreeSurfer Processing

FreeSurfer is one of the most widely used software today for volumetric analysis
of the brain. It is indeed a set of tools for cortical analysis and visualization and
sub-cortical segmentation of MRI data [28]. Accurate and reliable segmentation
is a necessity for volumetric analysis of dementia disease. Here, sub-cortical and
cortical volumetric measurements were computed by FreeSurfer (version 5.3.0)
using atlas based labelling of region of interest (ROI) [29]. Statistical output files
generated during FreeSurfer processing stream was used to obtain hippocampus
volume and intra-cranial volume (ICV). The volumes of medial temporal lobe,
ventricles, amygdala, CGM, entorhinal cortex, fusiform, and the whole brain
was computed using anatomical ROI segmentation analysis of their given file:
aparc.a2009s+aseg.mgz. The volume of each structure is found by counting the
voxels of each of these coloured and labelled structure using an .mgz image
that FreeSurfer outputs by using MATLAB. Each volume calculated was then
normalized by dividing them with the intra-cranial volume (ICV). The ICV was
found from surfer.nmr.mgh.harvard.edu with three aseg.stat files available at 7
head-sized corrections to reduce inter-individual variation. FreeSurfer processing
is computationally expensive and takes several hours to process a single image.
Therefore, in order to reduce computational time, eight images are processed in
parallel using GNU Parallel on an 8 core machine.

Support Vector Machine. Support vector machine is a machine learning
method that classifies binary classes by finding a class boundary. This bound-
ary, the hyper plane, is used to find the maximum margin in the given training
data. The training data samples along the hyper planes near the class boundary
are called support vectors and the margin is the distance between the support
vectors and the class boundary hyperplanes. The SVM classifier is based on the
concept of decision planes that define decision boundaries. A decision plane is
one that separates between assets of objects having different class memberships.
Furthermore, a classification task usually involves training and testing data,
which consists of some data instances. Where each instance in the training set
contains one target value (class labels) and several attributes (features). SVMs
have an advantage that its objective function is convex; however, it can only
guarantee to converge to a local minimum. Moreover, it is fundamentally a two-
class classifier. One commonly used approach to tackle problems involving more
than two classes is the one-versus-the-rest approach and is as followed:

Given a training data set with labels {(x1, y1), ...(xn, yn)} where xi ∈ Rn

and yi ∈ {+1,−1} and a non-linear map φ(), that maps to a higher dimensional
space, Rn RH the SVM technique solves:

min
ω,ξi,b

{1
2
‖ω‖2 + C

∑
ξi} (1)

Subject to the constraints:

yi(φT (xi)w + b) ≥ 1 − ξi, i = 1, 2...n (2)
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ξi ≥ 0, i = 1, 2...n (3)

specifically w and b define linear classifiers in a feature space. According to
Cover’s theorem, a non-linear mapping function φ is performed allowing trans-
formed samples to be more likely linearly separable [30]. A regularizer parameter
C allows control over penalty assignment to errors model. Slack variable ξ are
introduced to account for non-separable data involved with permitted errors

Owing to the higher dimensionality of vector variable w, the primal function
in Eq. (1) is solved by its Lagrangian dual problem which consists of maximizing:

Ld =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjφ(xi)φ(xj) (4)

subject to constraints ∑

i

αiyi = 0, i = 1, 2...n (5)

C ≥ αi ≥ 0, i = 1, 2...n (6)

where αi are Lagrange multipliers corresponding to Eq. (2). It can be noted that
all φ mappings used in the SVM learning occur in the form of inner products.
Furthermore, Boster et al. proposed a way to model more complicated relation-
ships by replacing the inner product with a kernel function (such as a Gaussian
radial basis function, polynomial kernel or a linear kernel) [31]. This allows us to
define a kernel function K where the inner products in the original space (xi, xj)
replaced with inner products in the transformed space [φ(xi).φ(xj)]:

K(xi, xj) = φ(xi).φ(xj) (7)

This kind of kernel function allows us to simplify the solution of the dual prob-
lem considerably. This is because it avoids the computation of the inner prod-
ucts in the transformed space [φ(xi).φ(xj)]. Though φ mapping can be explicitly
expressed for a linear or polynomial kernel, there is no explicit form of φ map-
ping corresponding to the Gaussian kernel. Moreover, it can be demonstrated
that the expansion is an infinite-dimensional functional [32]. Mercer’s theorem
avoids to explicitly calculate φ in these cases, and then, by introducing (7) into
(4), the dual problem can be finally stated as [33]:

Ld =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjK(xi, xj) (8)

After the dual problem is solved, w =
∑n

i=1 αiyiφ(xi) and express the final
result as a decision f(x). Where any test data x is in the original (lower) dimen-
sional feature space:

f(x) = sgn((
n∑

i=1

αiyiK(xi, xj) + b)) (9)
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Furthermore, b can be easily computed from the αi that are neither zero
nor C.

The shape of the discriminant function depends on the kind of kernel func-
tions adopted. A common kernel type that fulfills Mercer’s condition is the
Gaussian radial basis function where γ controls the shape of the peaks and
the data points are transformed to a higher dimension:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0 (10)

where γ is a free parameter inversely proportional to the width of the Gaussian
kernel.

A small γ means a Gaussian with a large variance resulting a stronger influ-
ence of xj . In other words, if xj is a support vector, a small γ implies the class of
this support vector will have influence that has a high bias on deciding the class
of the vector xi even if the distance between them is large. If γ is large, then
variance is small implying that the support vector does not have a wide-spread
influence (a low bias). A low bias is utilized because the cost of misclassification
is penalized heavily. However, a large γ leads to a high bias and low variance
models and vice versa.

The FreeSurfer tool is used to take volume of different brain regions such as
medial temporal lobe, ventricles, amygdala, cortical grey matter (CGM), entorhi-
nal cortex, and fusiform in each subject. In the training data, each row is a
sample, and the columns consists the above stated feature and labels for each
sample. For example, hippocampus training data for AD vs. NC classification
consists 400 rows and each row represents a sample/subject; one column consists
the feature for each sample; and one more column with labels: here +1 for AD
and −1 for NC. All training data is prepared in a similar manner for all the
aforementioned brain regions.

The data is scaled before SVM is applied [34], The main advantage of scaling
is to avoid attributes in greater numeric ranges dominating those in smaller
numeric ranges. Another advantage is to avoid numerical difficulties during the
calculation. In order to develop an SVM, penalization parameter C; and kernel
parameter γ must be tuned. The best C and γ hyper-parameters are found
using Grid-Search. Grid search is when given a set of models (which differ from
each other in their parameter values, which lie on a grid), train each of the
models and evaluate it using 5 - fold cross-validation. Then select the one that
performed best. The best C value is 512 and γ is 0.03125. Finally, from 700
subjects’ data, 75% training and 25% testing data are taken randomly, and used
for training and then to evaluate the model’s performance respectively. Here we
have implemented SVM using the libSVM [35] software package.

4 Results and Discussions

The simulated results presented are obtained using an 8 Core machine with 8
Giga Bytes of random access memory and 3 Mega Bytes of cache.
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The area under the curve (AUC) of a two-class classification of combinations
of the prodromal stages of dementia are shown in Table 2. AUC analysis, a
commonly chosen metric, is chosen to compare the performance of classification
models. The predominate reason for using AUC as an alternative to accuracy is
that it is not as sensitive to differences between the class distribution within the
training and test samples [36,37]. To be precise, an AUC driven analysis helps
in deciding a correct model when one may have been trained on a skewed data
set.

Table 2. AUC of different combinations of the stages of dementia using SVM

Brain AD/ AD/ MCI/ LMCI/ EMCI/ EMCI/ EMCI/ LMCI/

structure MCI NC NC AD AD LMCI NC NC

Hippocampus 0.7913 0.9575 0.6409 0.5294 0.8794 0.8114 0.3694 0.7184

Medial
temporal lobe

0.7787 0.915 0.5939 0.6658 0.8559 0.6523 0.5069 0.6376

Ventricles 0.6232 0.6569 0.5225 0.5481 0.6971 0.5068 0.3944 0.5543

Amygdala 0.7899 0.8382 0.5331 0.6604 0.8647 0.5977 0.4486 0.6212

Cortical grey
Matter

0.8123 0.8333 0.4722 0.7166 0.8 0.5909 0.4833 0.6111

Whole Brain 0.7831 0.8448 0.5498 0.7594 0.8882 0.6182 0.6153 0.596

Entorhinal
cortex

0.6541 0.7059 0.5397 0.5856 0.8118 0.6682 0.4208 0.5808

Fusiform 0.7451 0.799 0.5311 0.6123 0.7912 0.6795 0.4264 0.7285

Combined 0.6457 0.7974 0.6157 0.5642 0.7441 0.6886 0.5986 0.6717

From Table 2, features from the hippocampus are shown to act as better dis-
criminators for most stages of dementia except for LMCI/AD and EMCI/NC.
This is in support of the argument that, the hippocampus acts as a sensitive bio-
marker for earlier stages of dementia. The second highest performing biomarker
is utilizing the medial temporal lobe (MTL). Though MTL as a biomarker does
not perform as the best discriminator for any individual combination, it performs
the best on average. Ventricles and entorhinal cortex structures are shown to be
below average discriminators, as they do not even discriminate one combination
of dementia stage. Moreover, despite combining all the biomarkers, it does not
perform as the best discriminators overall and only excels at EMCI/NC classi-
fication. The CGM biomarker performs well for AD/MCI and LMCI/AD. The
whole brain performs well for AD/LMCI and EMCI/AD, and EMCI/NC. The
Fusiform performs best for LMCI from NC. The combined features perform well
for MCI, EMCI discrimination from NC. The performance curve for AD/MCI,
AD/NC and MCI/NC using the hippocampus features are shown in Figs. 2, 3,
4, 5, 6 and 7.
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Fig. 2. ROC curve plotted for Hip-
pocampus features of AD vs. NC

Fig. 3. ROC curve plotted for Hip-
pocampus features of AD vs. MCI

Fig. 4. ROC curve plotted for Hip-
pocampus features of MCI vs. NC

Fig. 5. ROC curve plotted for Com-
bined features of AD vs. NC

Fig. 6. ROC curves plotted for Com-
bined features of AD vs. MCI

Fig. 7. ROC curve plotted for Com-
bined features of MCI vs. NC

5 Conclusions and Future Work

In this study we examined the accuracy and reliability of multi class classification
based on ROC using volumetric measurements of different brain structures for
an accurate diagnosis of dementia stages. Hippocampal volume measurements
are the best discriminate for transitions of: AD from NC, AD from MCI, and
NC from MCI. The results obtained are satisfactory and are based on a data-
base of hippocampus features. This database consisted of: 400 images for AD
vs. NC, 500 images for AD vs. MCI, and 500 images for NC vs. MCI. Moreover,
we were able to achieve an AUC value 95.75%, 79.13% and 64.09% respectively.
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For future work, will be on the use of raw data to classify stages of dementia
using a deep learning approach such as a convolutional neural network. Further-
more, we would like to explore the performance of utilizing combined features of
hippocampus, CGM, and volume of the entire brain and how they complement
each other on the several stages of dementia classification.
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