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Abstract. This paper addresses the development of a computer-aided diagnosis
(CAD) system for early detection of diabetic retinopathy (DR), a sight threat-
ening disease, using digital fundus photography (DFP). More specifically, the
proposed CAD system is intended for detection of microaneurysms (MA) which
are the earliest indicators of DR; CAD systems for MA detection involve two
stages: coarse segmentation for candidate MA detection and fine segmentation
for false positive elimination. The system addresses the common challenges in
candidate MA detection, which includes detection of subtle MAs and MAs close
to each other and those close to blood vessels which leads to low sensitivity. The
system employs four major steps. The first step involves preprocessing of the
fundus images, which comprises of shade correction, denoising and intensity
normalization. The second step aims at the segmentation of candidate MAs
using bottom hat transform, thresholding and hit or miss transformation. The use
of modified morphological contrast enhancement and multiple structuring ele-
ments (SEs) in the hit or miss transform has improved the detection rate of MAs.
The proposed method has been validated using a set of 20 fundus images from
the DIARETDB1 database. The Free Response Operating Characteristics
(FROC) curve demonstrates that many MAs that are otherwise missed out are
detected by the proposed CAD system.

Keywords: Microaneurysm detection � Computer-aided diagnosis � Diabetic
retinopathy � Normalization � Shade correction � Structuring elements

1 Introduction

Diabetic retinopathy (DR) is the most common complication of diabetes mellitus
(DM) characterized by abnormal or damaged blood vessels in the retinal structure of
the eye. It is one of the major causes of blindness in people of 20−65 years of age [1].
Approximately 382 million people across the world have been estimated to have DM in
2013 and this can rise to 592 million by 2035 [2]. After the onset of DM, there is
increased chance for developing DR over the years. DR is asymptomatic and goes
unnoticed until it reaches the advanced stage, and it is necessary to do a timely
diagnosis with the help of better screening options and facilities [3]. Early diagnosis of
DR helps in prevention of vision loss and impairment.
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Based on the development of pathological features, DR is broadly classified into
non-proliferative DR (NPDR) and proliferative DR (PDR). Various clinical features
present through the different stages of DR are: Microaneurysm (MA), haemorrhages
(HEM), hard exudates, soft exudates, neovascularisation and macular edema. NPDR
occurs first and PDR is the advanced stage where there is development of new abnormal
blood vessels. The treatment options available at the stage of PDR such as laser pho-
tocoagulation, anti-VEGF injection, intraretinal injection and vitrectomy are found to be
less effective and do not provide the recovery of vision loss that has already taken place
[2]. MAs are small protrusions within the capillary walls that appear as minute red dots
on the retinal surface of the eye, and start to develop at the NPDR stage.

MAs are the first visible sign of DR [4]. MAs are low contrast circular structures
with size ranging from 10 µm to 100 µm, usually less than 125 µm [5]. They share
similar characteristics with other anatomical features such as HEM and blood vessels. It
is necessary to extract MAs from other MA like structures for proper diagnosis and
staging of DR. The severity of disease is indicated by the number of MAs as shown in
Table 1.

It is evident from Table 1 that accurate detection of MA without overlooking them
is essential for accurate staging of DR, which in turn is used for appropriate diagnosis
and treatment options. Early detection of MAs can help in prevention of vision loss.
People who are affected with DM must undergo regular screening to diagnose MAs at
an early stage. For screening programs for a large population which involves relatively
fewer expert ophthalmologists, a computer aided diagnosis (CAD) system can reduce
the cost and workload involved. This works aims at the detection of MAs, using digital
fundus photography (DFP) with emphasis on not missing out the difficult cases that
include subtle MAs and those that are close to each other and proximal to the blood
vessels.

This paper is organized as follows: In Sect. 2, recent work in detection of MAs in
color fundus images is reviewed. In Sect. 3, the details of the proposed methodology
for detection of MAs are presented. In Sect. 4, the results and analysis are presented.
Conclusion and future scope are discussed.

Table 1. Grading of DR [5]

Sl.No Stage of DR No/Type of lesions
1 Grade 0 MA = 0;
2 Grade 1 1 � MA � 5;
3 Grade 2 5 < MA <15;
4 Grade 3 MA � 15;
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2 Literature Review

Much of the related work on detection of MAs in DFP involves the following steps in
common: The fundus images are first preprocessed to obtain better quality of the image
and to highlight the necessary features in the image. Following preprocessing, the
coarse segmentation of the fundus images is done to extract the candidate MAs.
Subsequently, features are extracted from the candidate regions to distinguish false
positives from true MAs. This step, called false positive elimination, is typically per-
formed using a supervised classifier. This work addresses the coarse segmentation of
MAs and hence review on literature relevant to this topic is presented below.

Spencer et al. [1], adopted subtractive shade correction and normalization for
preprocessing fluorescein angiogram (FA) fundus images. Bilinear top-hat transfor-
mation was used to segment regions similar to MAs and Gaussian matched filter was
employed to enhance them. Recursive region growing technique was used to extract the
candidate MAs. This scheme had the disadvantage of not detecting low contrast and
small MAs that were difficult to distinguish from the background. Moreover, those
MAs that were conglomerated were also rejected.

In Walter et al. [6], the preprocessing was carried out on a green channel image,
which provides high contrast background for dark lesions. Subtractive shade correction
was carried out to alleviate non-uniform illumination in the image. Candidate MAs
were detected by means of diameter closing and thresholding. In this study, an image
set of 115 uncompressed digital images acquired after pupil dilation were considered
were considered. The images are of size 640 � 480 with circular ROI. The major
drawback in both [1] and [6] is the use of subtractive shade correction which resulted in
degradation of images due to incorrect background approximation.

In Zhang et al. [7], an algorithm based on multi-scale correlation filtering and
dynamic thresholding was done to extract MAs. The algorithm was evaluated on two
databases namely ROC and DIARETDB1. In coarse segmentation, Gaussian kernels of
different standard deviation (r) were chosen to extract the ROIs. This was followed by
adaptive thresholding to detect and eliminate the blood vessels. Higher r value
de-emphasizes sharp gradient changes in the image, thus making it more blurry.

Antal and Hajdu [8] employed dynamic selection of optimal combination of pre-
processing steps and candidate extractor. Five preprocessing methods and five candi-
date extraction techniques were considered resulting in 25 combinations. The optimal
selection of ensemble involved individual pairs to be evaluated and the final MAs were
the fusion of MAs of each pair building up the optimal ensemble. Performance eval-
uation was tested on 199 images from three different databases namely ROC
(Retinopathy Online Challenge), DIARET2.1 database and the database from
Moorefields Eye Hospital, London, UK. The algorithm provided low false positive rate
and low false negative rate with the use of optimal combinations, but with increased
complexity and computational time taken for the system. Usage of combinational
methods improves detection but with increased computational complexity.

In Zhang et al. [9], multi scale Gaussian correlation filtering (MSCF) followed by
adaptive thresholding was used to locate all MA candidates. Region growing was
performed on the extracted MAs and the resultant regions that were of size greater than
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120 pixels were rejected. The algorithm for candidate MA detection was evaluated on
the database ROC. MSCF involved the use of five different Gaussian kernels for
matching MAs of various sizes. The coarse segmentation stage suffers from the dis-
advantage of having different scale selection which is not done automatically and could
result in inaccurate detection of MAs. Increasing the number of Gaussian kernels
further increases the complexity of the system.

Lazar and Hajdu [10] performed green channel extraction followed by local
maximum region extraction by grayscale morphological reconstruction through
breadth-first algorithm. Cross-sectional scanning was done on the image using larger
cross sections of line operators. The method was tested on the ROC database. Elimi-
nation of optic disc and vessel bifurcation have not been addressed in this paper leading
to false positives in the optic disc.

In Sopharak et al. [5], preprocessing was done on green channel image and
denoising was done using median filter, followed by subtractive shade correction using
averaging filter and contrast enhancement using contrast-limited adaptive histogram
equalization (CLAHE). Then, detection and elimination of exudates and vessels were
performed. Coarse segmentation of MAs was performed by using extended minima
transform and diameter closing. This algorithm was also adopted by Aishwarya et al.
[11] and validated on DIARETDB1 database. Subtractive shade correction resulted in
incorrect background approximation. Other demerits of this algorithm were its inability
to detect too small MAs and those MAs that were located near to the blood vasculature.
Faint vasculatures were also left undetected.

In Tavakoli et al. [12], top-hat transform was used to decrease background variation.
In order to remove small MA-like noise, averaging was done. The preprocessed image
was then subdivided into several subimages. The vascular tree was then detected and
eliminated by using Radon transform in all the subimages obtained, resulting in coarse
segmentation of MAs. Performance evaluation was done on three different retinal image
databases, the Mashhad database with 120 FA images, a local database with 50 FA
images and ROC (Retinopathy Online Challenge) with 22 images. Some MAs that were
located near to each other and too big MAs were wrongly detected as blood vessels.

Rosas-Romero et al. [4], computed the ratio of green to red channel for shade cor-
rection. This was followed by median filtering for denoising and pointwise pixel trans-
formation for spatial normalization. The ROIs were extracted using bottom-hat
transformation and thresholding techniques which are also adopted in [13]. This was
followed byhit ormiss transformation to segment theMAcandidates. Too smallMAs that
were close to each other and conglomeratedMAswere found to get eliminated in the hit or
miss transformation stage. Faint MAs were left undetected due to low contrast image.

The proposed method involves the use of a simple yet robust method namely for
accurate extraction of optic disc and blood vessels simultaneously, in a single step. This
is done by employing bottom-hat transformation which extracts only dark regions and
also performs optic disc elimination at the same time, resulting in improvement of
processing speed and reduced complexity [4]. Further, it alleviates false positives
resulting from improper segmentation of optic disc. Shade correction using green to red
channel ratio was done as a replacement to background approximation, resulting in
better image quality. In almost all related work, MAs that are close to each other and to
the blood vessels were not detected properly. This paper aims at improving the detection
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of MA candidates through the use of modified contrast enhancement technique using
morphological operations, and multiple SEs in the coarse segmentation stage.

3 Methodology

The overall flow of the proposed method is illustrated in Fig. 1. Broadly the steps
involved include preprocessing, candidate extraction for dark object filtering and finally
segmentation of candidate MAs.

3.1 Image Preprocessing

3.1.1 Shade Correction
The fundus images are affected by non-uniform illumination that results from factors
including curvature of retina, misalignment of patient’s eye and fundus camera, ocular
opacities, improper dilation of pupil, poor focus of camera and inadequate illumination.
This causes gradual decrease in illumination from the region of optic disc towards the
periphery. The red and green channels of a fundus image contain most of the image
information. The green channel of the fundus image provides the highest contrast for
all blood-filled structures while red channel exhibits highest reflectance of red color and
appears bright. On the contrary, the blue channel contains the least informative content
as blue is absorbed by most parts of the eye. Reducing non-uniform illumination by the
popular subtractive shade correction has its own demerits in choosing the appropriate
size of averaging filter for background approximation. Therefore, reduction of
non-uniform illumination has been performed by the red and green channels exploiting
the fact that the ratio of green to red channel is a constant independent of illumination.
This is computed in accordance with Eq. 1.

Fs r, cð Þ¼ fG r, cð Þ=fR r, cð Þ½ � ð1Þ

Fig. 1. Framework for coarse MA detection from color fundus images
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where Fs (r, c) is the shade corrected image, fG (r, c) is the green channel component at
the row r and at column c, fR (r, c) is the red channel component at the row r and
column c.

The shade corrected image is shown in Fig. 2(b)

3.1.2 Denoising
The common types of noise that affect the fundus images are salt and pepper noise, shot
noise and Gaussian noise. In order to eliminate the effect of noise on retinal images, the
shade corrected image is denoised using a combination of median and Gaussian filter.
Median filter has been proved to be effective in removal of salt and pepper noise with
edge preservation while Gaussian filter provides effective noise attenuation for Gaus-
sian noise and Poisson noise. The result of denoised image after performing shade
correction is shown in Fig. 3(b)

Fig. 2. (a) Original image and (b) Shade corrected image by employing green to red channel
ratio

Fig. 3. (a) Shade corrected image and (b) Denoised image using median-Gaussian filter
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3.1.3 Illumination Normalization
For reducing the inter-image illumination variations, which could arise due to diversity
in ethnicity, illumination normalization of the image is performed using the pixel
transformation using Eq. 2 [4].

Ia(r, c) =
rn

rI
Ib r, cð Þ�lI þ 2rIð Þþ ln�2rn ð2Þ

where Ia(r, c) and Ib r, cð Þ are the image grayscale values at position (r, c) after and
before normalization, rI is the standard deviation of the image, rn is the reference
standard deviation, median of standard deviation of all images,lI is the mean of the
image, ln is the reference mean, median of mean of all images.

In this step, the mean and standard deviation of all the images get transformed to
the reference mean and standard deviation value. Normalization of grayscale content
plays an important role during thresholding. Proper normalization helps in choosing a
single threshold value for all images. The images before and after normalization are
shown in Fig. 4.

3.2 Bottom-Hat Transformation

The algorithm utilizes morphological techniques to perform dark region extraction. The
dark regions present in the retinal images areMAs, blood vessels, HEMand noise. The goal
of the first step is that the red regions corresponding to the local minima of original image
should be enhanced, while the bright regions like the optic disc corresponding to the local
maxima namely should be eliminated. Bottom-hat transformation otherwise called black
top-hat has been used in the proposed method for extraction of dark regions. Bottom-hat
operation involves subtraction of input image from the morphologically closed image.

fbh ¼ ½ðf � bÞ � f � ð3Þ

Fig. 4. (a) Denoised image and (b) Normalized image
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where f is the input image to this stage, b is the structuring element used for closing
operation, � is the closing operator, fbh is the bottom-hat transformed image.

The closing operation is performed using an SE of disk size ‘9’, which is chosen
empirically as the appropriate size of MAs. Choosing the appropriate size of SE is
important in extracting all MAs. Performing two-dimensional bottom-hat transform
results in isolation of certain regions of blood vessels which may be misclassified as
MAs. In order to reduce the occurrence of false positives, 1D bottom-hat operation is
performed row-wise and column-wise, the results of which will be combined using
logical AND operation in the final step. The results of bottom-hat transformation are
presented in Fig. 5(a−c)

3.3 Contrast Enhancement

To further enhance the faint MAs, contrast enhancement is performed using morpho-
logical techniques. CLAHE proves to be inefficient since it does not pick up many MAs
which are of low contrast. To improve the sensitivity, a combination of top-hat and
bottom-hat transform is used for enhancement which retains almost all MAs in the
thresholding stage. Enhancement is performed using the expression in Eq. 4.

AE ¼A þ ATH � ABH ð4Þ

where A is the input image (result of previous processing step), ATH is the top-hat
transformed image and ABH is the bottom-hat transformed image (result of employing
different size of SE), AE is the enhanced image.

Fig. 5. (a) Results of 2D bottom-hat, (b) 1D bottom-hat over every column and (c) 1D
bottom-hat over every row, (d–f) Results of contrast enhanced image for corresponding 2D and
1D bottom-hat results using morphological enhancement.
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This technique improves the contrast selectively for dark lesions and blood vessels
for an SE of size chosen to be 9 and 20 pixels.

3.4 Thresholding

Following enhancement, thresholding is performed. Binarization is applied to both 2D
and 1D bottom-hat results using Otsu’s method. Empirical choice of threshold value
being employed is avoided using Otsu’s thresholding. The results of thresholding
operation on these outputs are presented in Fig. 6(d−f), respectively.

3.5 Hit or Miss Transformation

The thresholded image contains all the dark candidates that include MAs, blood vessels
and HEMs. Appropriate methods have to be used to detect only the candidate MAs and
eliminate other non-MA structures. This two-step procedure is performed using a single
technique, hit or miss transformation on both 2D and 1D images separately. Hit or miss
transformation is a morphological technique that can extract specific shapes of interest.
Blood vessel removal is automatically achieved by the hit or miss transform, due to its
ability to discriminate structures based on shape. Though HEMs are also roughly
circular, they are much larger and the size-based discrimination of hit-or miss trans-
formation is capable of eliminating HEMs in the detection process. The proposed
algorithm uses SEs to exactly match the size of MAs while removing other non-MA
structures and noise simultaneously, resulting in detection of MA candidates alone.
Circular SEs are built using inner and outer disk structures separated by a black ground
with a small white region located inside the inner disk as shown in Fig. 8. The size of
inner white region is limited to a radius of 3 pixels so as to discard regions smaller than

Fig. 6. (a-c) Results of enhanced bottom-hat transformed images and (d-f) corresponding
thresholded images.
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this, which correspond to noise. Don’t care condition is introduced inside the inner disk
for providing flexibility to match all MAs with varying sizes and irregular shapes and
also outside the outer disk to detect other neighbourhood MAs. The black background
helps in removal of blood vessels and in detection of two or more MAs as separate
structures. Unlike MAs, blood vessels do not have the black background and thus gets
eliminated in the process. MAs near to each other and close to the vasculature often get
missed out. Those MAs which are clubbed together and are of size larger than the SE
are also not detected. Therefore, selection of single SE cannot detect those MAs which
are of large and small sizes when compared to the typical size and also those which are
clubbed together or overlapped with each other.

To improve sensitivity of MA detection, SEs of different sizes are chosen to
accommodate all possible MA candidates that do not fit in the particular size of SE.
MAs are irregular shaped structures that are approximately 9 pixels in size. Thus the
optimum size of circular SE is chosen with an inner radius of 9 pixels and outer radius
of 11 pixels with a 2 pixel gap for the black background. Thus the lower limit on the
detected regions of 3 pixels is imposed by the white region while the don’t care region
imposes an upper limit on the inner radius of up to 9 pixels. Similarly, other sizes of
SEs are chosen with inner and outer radii of 6 and 7 pixels, 13 and 15 pixels, 18 and 20
pixels respectively. Smaller SE with 6 ad 7 pixels radii is chosen to detect smaller MAs
and those that were partially detected in the binarization stage, also retaining MAs that
are close to each other providing a gap of 1 pixel. The large radii SE of 13 and 15
pixels are used to detect larger MAs, and those MAs that were clubbed together in
thresholded image are detected using SE of 18 and 20 pixels radii. By adopting various
SEs, a significant increase in the detection results was achieved. The optimum size SE
(9 and 11 radii) is shown in Fig. 7. The corresponding candidate MA extracted is
shown in Fig. 8. The resulting images of different SEs are combined using logical OR
operation for their respective 2D and 1D images in the latter stage.

3.6 Extraction of Connected Components

The extracted candidate MAs do not cover the entire region encompassed by the MA.
To recover the entire shape of MA and to eliminate those regions of blood vessels that
are still detected in the hit or miss transformation stage, extraction of connected

Fig. 7. Optimum size of SE
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components as in Eq. 5 is performed with 3 iterations on the binary image resulting
from hit or miss transform.

XK ¼ XK�1 	 bð Þ \ f ð5Þ

where XK-1 is the image dilated with the structuring element ‘b’, until the complete
shape of the component is extracted,

⊕ is the dilating operator,
b is the suitable 5 � 5 square SE for performing dilation operation,
f is the thresholded image used for extraction of connected components,
XK is the extracted component image.

The images after extraction of connected components contain portions of blood
vessels along with extracted MAs which are eliminated by performing logical AND
operation on 2D and 1D images. The 1D image along vertical column will recover only
vertically oriented blood vessels and 1D image along every row will recover only
horizontal blood vessels and 2D image extraction will result in recovering both hori-
zontal and vertical blood vessels. Hence the common portions of blood vessels are

Fig. 8. (a) Results of hit or miss transformation with 2D thresholded image, (b-c) with 1D
thresholded image.

Fig. 9. (a) Candidate MAs after extraction of connected components, (b) Fundus image with the
detected MAs after coarse segmentation.
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alone extracted by performing AND operation of images, reducing the occurrence of
false positives. The results of extraction of connected components after performing
logical AND operation is shown in Fig. 9.

4 Results and Conclusion

4.1 Database Description

The color fundus images considered in the study were taken from DIARETDB1 data-
base. All the images were captured with the 50° field-of-view digital fundus camera.
There are totally 89 images which were taken in the Kuopio University hospital. Out of
the 89 images, 84 contain at least mild non-proliferative signs (MA) of the diabetic

Table 2. Various structuring elements used to perform hit or miss transformation

Inner & Outer
Radiuses

Necessity

6 & 7 To fit in MAs that were partially detected in the binarization stage also
retaining MAs that are close to each other

9 & 11 Optimum size of MAs with a gap of 2 pixels
13 & 15 To detect Large MAs
18 & 20 To detect MAs that are clubbed together and detected as single element

during binarization.

Fig. 10. FROC plots comparing the coarse segmentation results of the proposed method (curve
marked in blue) with the previously used method (curve marked in red). (Color figure online)
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retinopathy and 5 are considered as normal which do not contain any signs of diabetic
retinopathy. Ground truth images annotated by expert groups are provided for reference.

4.2 Coarse Segmentation Results

The performance of MA detection using the proposed method is analyzed using FROC
curve obtained using varying the threshold value in the binarization stage. The FROC
curve plots average number of false positives to the sensitivity obtained for varying
values of threshold. A set of 20 images each with approximately 30 to 50 MAs were
considered. The FROC curve for the proposed method was obtained with the use of
contrast enhancement through modified morphological enhancement, also employing
the use of combination of all four SEs whose size and role are tabulated in Table 2.
This plot was compared to the FROC curve obtained through the use of only the
optimum size of SE in the hit or miss transformation stage, with no contrast
enhancement. The results are shown in Fig. 10. It can be observed from the results that
there is drastic up shift in the curve obtained through the proposed method, verifying
that the sensitivity of MA detection has been improved. This improvement in MA
detection rate is because of the ability of the proposed work to capture the difficult
cases including small MAs, faint MAs, and MAs close to each other and to the
vasculature, which are overloaded by the existing systems. In future, this work could be
extended by incorporating fine segmentation to eliminate false positives. Increase in
false positives in the attempt to increase the sensitivity of the system can therefore be
addressed by the fine segmentation stage.

4.3 Conclusion

The result of coarse segmentation stage has not been reported in many papers. Only the
performance of the classifier employed in the fine segmentation stage (false positive
eliminated) has been discussed much. As a result, there is no true picture on the number
of missed out MAs during coarse segmentation. This paper has successfully reported
the results of coarse segmentation thus presenting the true sensitivity rate. From the
coarse segmentation results obtained, it can be seen that the proposed method has
achieved higher sensitivity by detecting almost all MAs that were difficult to detect
otherwise. The contrast enhancement using modified morphological enhancement
improved the detection of faint MAs that were difficult to distinguish from the back-
ground. Choosing and employing different SEs for detection of MAs greatly improved
sensitivity by picking up the MAs that were getting missed out in other methods of
detection process. Improving MA detection rate in the coarse segmentation is important
to achieve an overall high sensitivity. Further reduction of false positives is carried out
in the fine segmentation stage.
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