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Chapter 9
Resistance to Inhibitors of Angiogenesis

Nili Dahan, Ksenia Magidey, and Yuval Shaked

Abstract  Angiogenesis, a process that is predominantly driven by the vascular 
endothelial growth factor (VEGF) signaling pathway, plays an essential role in 
tumor progression and metastasis. Accordingly, a range of anti-angiogenic agents, 
most of which block VEGF or its receptor, have been approved for the treatment of 
various malignant diseases. However, the clinical benefits of anti-angiogenic ther-
apy are relatively modest for several reasons, some of which are related to the 
development of therapy resistance. Since anti-angiogenic agents target the tumor-
supporting vascular system rather than the tumor cells themselves, resistance is 
dependent on the interplay between the host- and tumor-mediated pathways. In 
general, the activation of various evasive mechanisms allows for sustained tumor 
vascularization and growth despite the therapeutic blockade of the drug target. 
These mechanisms include the upregulation of bypass angiogenic pathways, pro-
angiogenic activity of infiltrating stromal cells and alternative vascularization pro-
cesses. In addition, off-target effects of anti-angiogenic drugs have implications for 
tumor aggressiveness. In this chapter, we discuss the molecular and cellular mecha-
nisms contributing to therapy resistance as well as possible strategies to improve 
the clinical outcome.

Keywords  Chemokines • Chemokine receptors • Tumor microenvironment • 
Angiogenesis • Bone marrow-derived cells

Abbreviations

BMDC	 Bone marrow-derived cell
CAF	 Cancer-associated fibroblast
CRC	 Colorectal cancer

N. Dahan • K. Magidey • Y. Shaked (*) 
Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine,  
Technion—Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa 31096, Israel
e-mail: yshaked@tx.technion.ac.il

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67932-7_9&domain=pdf
https://doi.org/10.1007/978-3-319-67932-7_9
mailto:yshaked@tx.technion.ac.il


212

ECM	 Extracellular matrix
EGF	 Epidermal growth factor
EMT	 Epithelial-mesenchymal transition
FDA	 Food and Drug Administration
FGF	 Fibroblast growth factor
GBM	 Glioblastoma multiforme
G-CSF	 Granulocyte colony stimulating factor
GIST	 Gastrointestinal stromal tumor
HCC	 Hepatocellular carcinoma
HGF	 Hepatocyte growth factor
HIF-1	 Hypoxia inducible factor-1
MDSC	 Myeloid-derived suppressor cell
NSCLC	 Non-small-cell lung cancer
OS	 Overall survival
PDGF	 Platelet-derived growth factor
PFS	 Progression-free survival
PlGF	 Placental growth factor
PNET	 Pancreatic neuroendocrine tumor
RCC	 Renal cell carcinoma
SCF	 Stem cell factor
SDF-1α	 Stromal derived factor-1α
TAM	 Tumor-associated macrophage
TEM	 Tie2-expressing monocyte
TH17	 T helper type 17
TKI	 Tyrosine kinase inhibitor
VEGF	 Vascular endothelial growth factor
VEGFR	 Vascular endothelial growth factor receptor

9.1  �Introduction

Angiogenesis, the formation of new blood vessels from existing vasculature, plays 
an essential role in tumor progression and metastasis. The angiogenic process 
involves the activation, proliferation and migration of endothelial cells toward 
angiogenic stimuli produced by the tumor and supporting stromal cells within the 
tumor microenvironment. This ultimately results in the formation of new blood ves-
sels that supply the growing tumor with nutrients and oxygen. This “angiogenic 
switch” is recognized as a rate-limiting event in tumor progression [1]. The concept 
of anti-angiogenic therapy was first proposed over four decades ago by Judah 
Folkman. He postulated that since the growth of all solid tumors is dependent on 
angiogenesis, inhibiting this process should suppress tumor growth [2]. It is now 
well-established that one of the most potent factors driving angiogenesis, and espe-
cially tumor angiogenesis, is the vascular endothelial growth factor-A (VEGF-A). 
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Based on the key role of this factor in tumor angiogenesis, numerous therapies that 
block various components of the VEGF signaling pathway have been developed [3]. 
Several such therapies have been approved for the treatment of a variety of human 
cancers and there are more in preclinical and clinical trials. However, despite the 
potent activity of these agents and the high expectations for this therapeutic strategy, 
the clinical benefits are proving to be relatively mild. In the majority of patients, 
anti-angiogenic therapy achieves transient tumor control, with only a modest gain in 
long-term survival [4]. This can be explained by several mechanisms of resistance 
that allow the tumor to evade the therapeutic inhibition of angiogenesis. Here we 
discuss the molecular and cellular events underlying resistance in different tumor 
contexts, distinguishing between tumor- and host-mediated mechanisms.

9.2  �Inhibitors of Angiogenesis: Mode of Action 
and Clinical Use

Although angiogenesis is a highly complex process, it is driven by one predominant 
key player, VEGF-A (hereafter, referred to as VEGF) in both physiological and 
pathological conditions. VEGF signals through its main receptor expressed on 
endothelial cells, VEGFR2, thereby coordinating the biological processes necessary 
for new vessel formation. These processes include: endothelial cell proliferation, 
migration, invasion and survival; chemotaxis and homing of bone-marrow-derived 
endothelial precursor cells; vascular permeability; and vasodilation [3, 5]. Whereas 
autocrine VEGF, released by endothelial cells, maintains vascular homeostasis [6], 
paracrine VEGF, released by both tumor cells and stromal myeloid cell types, 
increases vessel branching resulting in abnormal, tortuous vasculature [7]. VEGF is 
upregulated in most solid tumors. Furthermore, slight increases in tumor VEGF 
levels are sufficient to promote angiogenesis and tumor growth. Accordingly, it was 
proposed that neutralizing circulating VEGF would suppress tumor growth, as dem-
onstrated by a number of cancer models in mice [3, 8].

Since 2004, several drugs that target VEGF or its receptor have been approved by 
the Food and Drug Administration (FDA) for the treatment of various malignant 
diseases (Table 9.1), and there are more in clinical trials. These drugs include neu-
tralizing antibodies against VEGF and VEGFRs, soluble VEGF receptor hybrids 
(VEGF traps) and tyrosine kinase inhibitors (TKIs) with selectivity for VEGFRs. It 
should be noted that, due to their mode of action at the ATP-binding pocket, TKIs 
designed to target VEGFRs may also significantly inhibit other kinases. Nevertheless, 
their potent anti-angiogenic activity has been demonstrated in preclinical studies 
[3]. Bevacizumab, a monoclonal antibody against VEGF, was the first anti-
angiogenic drug to be approved by the FDA. It is currently used as first-line therapy 
in metastatic colorectal cancer (CRC), non-small-cell lung cancer (NSCLC) and 
renal cell carcinoma (RCC), as second-line therapy in CRC and glioblastoma mul-
tiforme (GBM), and as maintenance therapy in advanced ovarian cancer (Table 9.1). 

9  Resistance to Inhibitors of Angiogenesis



214

Ta
bl

e 
9.

1 
C

lin
ic

al
 b

en
efi

ts
 o

f 
ap

pr
ov

ed
 a

nt
i-

an
gi

og
en

ic
 d

ru
gs

D
ru

g
D

ru
g 

cl
as

s
A

pp
ro

ve
d 

us
e

T
re

at
m

en
t 

co
m

bi
na

tio
n

Im
pr

ov
em

en
t i

n 
R

R
 (

%
)

Im
pr

ov
em

en
t i

n 
PF

S 
(m

on
th

s)
Im

pr
ov

em
en

t i
n 

O
S 

(m
on

th
s)

R
ef

.

B
ev

ac
iz

um
ab

V
E

G
F-

A
 

an
tib

od
y

M
et

as
ta

tic
 C

R
C

C
he

m
ot

he
ra

py
10

4.
4

4.
7

[1
39

]
14

.1
2.

6
2.

1
[1

40
]

0
1.

4
1.

4
[1

41
]

M
et

as
ta

tic
 N

SC
L

C
C

he
m

ot
he

ra
py

20
1.

7
2

[1
42

]
10

.3
–1

4
0.

4–
0.

6
N

S
[1

43
, 

14
4]

M
et

as
ta

tic
 R

C
C

IF
N
α

12
.4

3.
3

N
S

[1
45

, 
14

6]
18

4.
8

2
[1

47
, 

14
8]

A
dv

an
ce

d 
ov

ar
ia

n 
ca

nc
er

C
he

m
ot

he
ra

py
19

N
S

N
S/

4.
8a

[1
49

, 
15

0]
N

A
3.

8
N

S
[1

51
]

G
B

M
M

on
ot

he
ra

py
O

nl
y 

ph
as

e 
II

 d
at

a 
re

po
rt

ed
[1

52
]

R
am

uc
ir

um
ab

V
E

G
FR

2 
an

tib
od

y
M

et
as

ta
tic

 G
E

J
C

he
m

ot
he

ra
py

12
1.

5
2.

2
[1

53
]

M
on

ot
he

ra
py

0.
8

0.
8

1.
4

[1
54

]
A

fli
be

rc
ep

t
V

E
G

F 
tr

ap
M

et
as

ta
tic

 C
R

C
C

he
m

ot
he

ra
py

8.
7

2.
2

1.
4

[1
55

]
So

ra
fe

ni
b

T
K

I
M

et
as

ta
tic

 R
C

C
M

on
ot

he
ra

py
8

2.
7

N
S

[1
56

, 
15

7]
M

et
as

ta
tic

 H
C

C
M

on
ot

he
ra

py
1

N
S

2.
8

[1
58

]
Su

ni
tin

ib
T

K
I

M
et

as
ta

tic
 R

C
C

M
on

ot
he

ra
py

25
6

4.
6

[1
59

, 
16

0]
M

et
as

ta
tic

 G
IS

T
M

on
ot

he
ra

py
N

A
20

.9
N

A
[1

61
]

PN
E

T
M

on
ot

he
ra

py
9.

3
5.

9
N

A
[1

62
]

Pa
zo

pa
ni

b
T

K
I

M
et

as
ta

tic
 R

C
C

M
on

ot
he

ra
py

27
5

N
S

[1
63

, 
16

4]

N. Dahan et al.



215

D
ru

g
D

ru
g 

cl
as

s
A

pp
ro

ve
d 

us
e

T
re

at
m

en
t 

co
m

bi
na

tio
n

Im
pr

ov
em

en
t i

n 
R

R
 (

%
)

Im
pr

ov
em

en
t i

n 
PF

S 
(m

on
th

s)
Im

pr
ov

em
en

t i
n 

O
S 

(m
on

th
s)

R
ef

.

A
xi

tin
ib

T
K

I
A

dv
an

ce
d 

R
C

C
M

on
ot

he
ra

py
N

A
2.

6
N

S
[1

65
]b

R
eg

or
af

en
ib

M
et

as
ta

tic
 C

R
C

M
on

ot
he

ra
py

0.
6

0.
2

1.
4

[1
66

]
N

in
te

da
ni

b
T

K
I

A
dv

an
ce

d 
N

SC
L

C
C

he
m

ot
he

ra
py

N
A

0.
7

1
[1

67
]c

V
an

de
ta

ni
b

T
K

I
A

dv
an

ce
d 

m
ed

ul
la

ry
 

th
yr

oi
d 

ca
nc

er
M

on
ot

he
ra

py
43

6.
2

N
A

[1
68

]

C
ab

oz
an

tin
ib

T
K

I
A

dv
an

ce
d 

m
ed

ul
la

ry
 

th
yr

oi
d 

ca
nc

er
M

on
ot

he
ra

py
28

7.
2

N
S

[1
69

]

C
R

C
 c

ol
or

ec
ta

l c
an

ce
r, 

G
B

M
 g

lio
bl

as
to

m
a 

m
ul

tif
or

m
e,

 G
E

J 
ga

st
ri

c 
an

d 
ga

st
ro

es
op

ha
ge

al
 ju

nc
tio

n 
ca

nc
er

, G
IS

T
 g

as
tr

oi
nt

es
tin

al
 s

tr
om

al
 c

an
ce

r, 
H

C
C

 h
ep

at
o-

ce
llu

la
r 

ca
rc

in
om

a,
 N

A
 n

ot
 a

va
ila

bl
e,

 N
S 

no
t s

ig
ni

fic
an

t, 
N

SC
L

C
 n

on
-s

m
al

l-
ce

ll 
lu

ng
 c

an
ce

r, 
O

S 
ov

er
al

l s
ur

vi
va

l, 
P

F
S 

pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l, 
P

N
E

T
 p

an
cr

e-
at

ic
 n

eu
ro

en
do

cr
in

e 
tu

m
or

s,
 R

C
C

 r
en

al
 c

el
l c

ar
ci

no
m

a,
 R

R
 r

es
po

ns
e 

ra
te

, T
K

I 
ty

ro
si

ne
 k

in
as

e 
in

hi
bi

to
r

a I
n 

po
or

-p
ro

gn
os

is
 p

at
ie

nt
s

b A
xi

tin
ib

 v
s.

 s
or

af
en

ib
c A

pp
ro

ve
d 

on
ly

 in
 E

ur
op

e

9  Resistance to Inhibitors of Angiogenesis



216

Of note, bevacizumab generally failed to provide significant benefits when used as 
monotherapy. However, with the exception of GBM, it has been approved for use as 
combination therapy for the treatment of the above-mentioned advanced-stage can-
cers [9]. The TKIs, sorafenib, sunitinib, pazopanib and axitinib are approved as 
monotherapies for the treatment of metastatic RCC, a highly vascularized tumor 
type. In addition, sunitinib is approved for gastrointestinal stromal tumors (GIST) 
and pancreatic neuroendocrine tumors (PNET), and sorafenib for hepatocellular 
carcinoma (HCC), for advanced-stage disease in all cases (Table 9.1). Other anti-
angiogenic therapies approved for late-stage, metastatic disease are described in 
Table 9.1. These include: ramucirumab, a VEGFR2 monoclonal antibody; afliber-
cept, a VEGF-trap that binds 3 VEGF family ligands; and other VEGFR TKIs. Anti-
angiogenic agents have also been evaluated for early-stage disease, specifically in 
the adjuvant setting, when treatment is administered after surgical removal of the 
primary tumor. It has been postulated that inhibiting angiogenesis after tumor resec-
tion would prevent local relapse or growth of micrometastases [10]. However, two 
large phase III post-operative adjuvant trials of bevacizumab in combination with 
chemotherapy in patients with early-stage CRC failed to provide significant benefits 
when compared to treatment with chemotherapy alone [11–13]. The use of anti-
angiogenic therapy in the neo-adjuvant setting in order to downsize or downstage a 
tumor before resection has also been evaluated. However, two large trials testing the 
efficacy of neoadjuvant bevacizumab in combination with chemotherapy in com-
parison to neoadjuvant chemotherapy alone in patients with primary breast cancer 
revealed conflicting findings in terms of long-term benefits [14, 15]. The diverse 
outcomes of anti-angiogenic therapy in different clinical scenarios highlight the 
effects of specific parameters, such as disease stage and cancer type, on therapy 
efficacy. However, our understanding of the underlying mechanisms is still 
incomplete.

In general, protein-based anti-angiogenic drugs, such as bevacizumab and 
aflibercept, have only shown significant activity when combined with cytotoxic che-
motherapy, whereas TKIs are effective when used as monotherapy, without an addi-
tive effect when combined with chemotherapy [10]. Conceivably, in cases where 
single-agent activity is observed, such as in RCC, therapy-induced vessel regression 
is the major mechanism of action contributing to the efficacy of therapy. In cases 
where anti-angiogenic therapies only show activity when combined with cytotoxic 
chemotherapy, such as in CRC, mechanisms other than vessel regression may play 
a role [3]. A widely-held view is that anti-angiogenic therapy improves the delivery 
of co-administered chemotherapy through a process known as “vascular normaliza-
tion”. This is based on the principle that the abnormal tumor vasculature, which is 
known to be dysfunctional, leaky and tortuous, can be “normalized” by suppressing 
VEGF signaling. The resulting improvement in vessel function and blood flow is 
presumed to increase delivery of cytotoxic agents [16]. An alternative possibility 
explaining the benefit of combined therapy is that anti-angiogenic agents block the 
activity of bone marrow-derived endothelial progenitor cells that have been shown 
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to infiltrate tumors in response to chemotherapy drugs [8, 17–19]. However, given 
that the clinical relevance of such phenomena is dependent on cancer type and drug 
class, additional unknown mechanisms likely play a role [4]. A recent study sug-
gests that the vessel phenotype of tumors contributes to the response to different 
treatment strategies. Using preclinical models and clinical samples, it was shown 
that cancers that are more responsive to bevacizumab in combination with chemo-
therapy have a stromal-vessel phenotype, where the vessels are surrounded by a 
well-developed stroma. In contrast, cancers that are more responsive to TKI mono-
therapy have a tumor-vessel phenotype, where the vessels are in close proximity to 
the tumor cells [20]. In addition, tumor-specific differences likely account for why 
certain anti-angiogenic therapies show efficacy in some cancers, but not in others, 
although the precise molecular mechanisms are not known [10].

Although anti-angiogenic therapy has been incorporated into the standard pro-
tocol for certain cancer types, there are a number of concerns, the foremost being 
its modest clinical benefits. The gain in progression-free survival (PFS) and overall 
survival (OS) is generally in the order of months. In addition, initial response rates 
and gains in PFS do not always translate into significant improvements in OS 
(Table  9.1). These limited clinical benefits strongly suggest that tumors treated 
with anti-angiogenic agents develop resistance to therapy. Such resistance can be 
classified as intrinsic, where tumors are unresponsive from the beginning of treat-
ment, and acquired, where tumors initially respond but then progress during the 
course of treatment [21]. Thus, there is an urgent need to overcome these limita-
tions and to develop improved strategies for the treatment of cancer at all stages of 
the disease.

9.3  �Mechanisms of Resistance to Inhibitors of Angiogenesis

There is a growing interest in understanding the mechanisms underlying both 
acquired and intrinsic resistance to anti-angiogenic therapy. Classical drug resis-
tance mechanisms involve the clonal selection of tumor cells harboring genomic 
mutations that either alter the drug target or affect drug uptake or efflux [22]. 
However, since anti-angiogenic therapy targets the vascular supply of the tumor 
mass rather than the tumor cells themselves, resistance in this case is mainly indirect 
and involves an interplay between tumoral cues and host-mediated pathways. In 
addition, given that endothelial cells are more genetically stable than tumor cells, 
they are less likely to acquire mutations after exposure to such drugs [23]. In gen-
eral, resistance to anti-angiogenic therapy is manifested by the activation of alterna-
tive mechanisms that sustain tumor vascularization and growth while the specific 
target of the drug remains inhibited [21]. These evasive mechanisms are described 
in detail below. A graphical summary is shown in Fig. 9.1.

9  Resistance to Inhibitors of Angiogenesis
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9.3.1  �Upregulation of Alternative Angiogenic Pathways

Tumor angiogenesis is mainly driven by the VEGF signaling pathway. However, 
there are also numerous complementary non-VEGF pathways that contribute to 
blood vessel formation. Tumor hypoxia, which occurs as a direct result of anti-
angiogenic therapy, modulates the interplay between these various angiogenic path-
ways via the master regulator, hypoxia inducible factor-1 (HIF-1), a transcription 
factor that regulates the expression of multiple pro-angiogenic genes [24]. The acti-
vation of alternative or compensatory angiogenic pathways allows for persistent 
neovascularization despite VEGF inhibition and represents the most common means 
by which tumors evade the blockade of angiogenesis. Preclinical trials in a murine 
pancreatic cancer model demonstrated an initial response to anti-VEGFR2 therapy 
(DC101) followed by restoration of tumor growth and vascularization shortly after 
initiation of therapy. Interestingly, at the time of progression, these tumors expressed 
higher levels of various pro-angiogenic factors such as fibroblast growth factor 
(FGF) 1 and 2, ephrin A1 and A2 and angiopoietin 1. Similarly, tumor cells sub-
jected to hypoxic conditions upregulated most of these genes. Blocking both VEGF 
and FGF signaling attenuated revascularization and slowed tumor growth, suggest-
ing that upregulation of FGF signaling contributes to anti-angiogenic therapy resis-
tance [25]. Several additional pro-angiogenic factors have been implicated in 

Fig. 9.1  Mechanisms of resistance to anti-angiogenic therapy. Tumors develop resistance to anti-
angiogenic therapy via a range of tumor- and host-mediated processes. These evasive mechanisms 
sustain tumor vascularization and/or progression despite the blockade of VEGF signaling imposed 
by anti-angiogenic agents. Increased tumor hypoxia, which occurs as a direct result of anti-
angiogenic therapy, drives many of these processes. The processes are not mutually exclusive, and 
some are interdependent (indicated by thin arrows). BMDC, bone marrow-derived cell; EMT, 
epithelial-mesenchymal transition
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resistance to anti-angiogenic therapy in various murine tumor models. These 
include: placental growth factor, PlGF [26]; platelet-derived growth factor, PDGF 
[27]; hepatocyte growth factor, HGF, and its receptor, c-Met [28, 29]; epidermal 
growth factor, EGF [30]; interleukin-8, IL-8 [31]; granulocyte colony stimulating 
factor, G-CSF, and Bv8 [32], among others (recently reviewed in [33]). Similar to 
the seminal study of Casanovas et al. [25], the above-mentioned studies report ele-
vated levels of the specific factor in resistant tumors and that dual inhibition of the 
VEGF pathway and the specific factor or its pathway enhances therapeutic out-
come. It should be noted that these upregulated pro-angiogenic factors may be 
derived from tumor cells or host stromal cells residing within the tumor microenvi-
ronment. The former case involves a direct response of tumor cells to hypoxia. In 
the latter case, stromal cells may be responding to cues from the tumor, environ-
mental signals or systemic effects of the drug [10, 34].

There is a wealth of clinical evidence showing that circulating levels of pro-
angiogenic factors are elevated just prior to disease progression or during the relapse 
phase in cancer patients treated with angiogenesis inhibitors suggesting that these 
factors contribute to the development of acquired resistance [35–40]. There are also 
cases in which patients do not respond at all to anti-angiogenic therapy suggestive 
of intrinsic resistance. In late stage malignancies, pre-existing upregulation of alter-
native pro-angiogenic pathways may compensate for the inhibition of VEGF signal-
ing [21].

9.3.2  �Pro-angiogenic Effects of Local and Bone Marrow-
Derived Stromal Cells

The release of pro-angiogenic factors in response to anti-angiogenic therapy acti-
vates local stromal cells and stimulates the recruitment of bone marrow-derived 
cells (BMDCs) to the tumor environment. BMDCs include vascular progenitors, 
which differentiate into cells that make up physical components of the blood vessel 
walls, and pro-inflammatory monocytes, which produce a diverse assortment of 
soluble factors that regulate vascular cell survival, proliferation and motility as well 
as extracellular matrix (ECM) remodeling [21, 41].

The effect of hypoxia on BMDC recruitment was described by Du et al. in an 
orthotopic model of GBM. They demonstrated that HIF-1α, the direct effector of 
hypoxia, promotes angiogenesis and tumor growth by inducing an influx of various 
pro-angiogenic bone-marrow derived CD45+ myeloid cells as well as endothelial 
and pericyte progenitor cells to the tumor [42]. In addition, treating tumor-bearing 
mice with vascular-disrupting agents, which cause massive tumor hypoxia, triggers 
an acute mobilization of circulating endothelial progenitor cells that home to the 
tumor margins in sufficient numbers to facilitate revascularization [17]. Thus, 
therapy-induced hypoxia represents a major contributing factor to resistance via the 
action of recruited BMDCs.

9  Resistance to Inhibitors of Angiogenesis
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The involvement of specific BMDC types and local stromal cells in resistance to 
anti-angiogenic therapy is described below:

Immature myeloid cells, also known as CD11b+Gr1+myeloid-derived suppres-
sor cells (MDSCs), produce a variety of factors that influence endothelial cell 
behavior resulting in new vessel formation [41]. Shojaei et al. demonstrated that 
tumors resistant to anti-VEGF therapy exhibit higher levels of infiltrating MDSCs 
in comparison to therapy-sensitive tumors [43]. This is due to an upregulation of 
G-CSF and Bv8 [32], factors that promote the mobilization of MDSCs from the 
bone marrow and their infiltration to tumor tissue [44]. In pancreatic tumor models 
that are resistant to anti-VEGF therapy, increased levels of proinflammatory factors 
including several CXCR2 ligands, IL-1α, IL-1β and Angptl-2 stimulate the recruit-
ment of CD11b+ myeloid cells to the tumor environment [45]. In agreement with the 
above-mentioned studies, blocking chemotherapy-induced infiltration of MDSCs to 
tumors using Bv8 neutralizing antibodies enhances therapy outcome in mouse mod-
els of pancreatic cancer [46]. In another study, it was suggested that tumor-infiltrating 
T helper type 17 (TH17) cells and IL-17 induce the recruitment of immature myeloid 
cells to the tumor microenvironment. Blocking TH17 cell function renders resistant 
tumors sensitive to anti-VEGF therapy [47].

Tumor-associated macrophages (TAMs) are recruited to tumors as monocytes 
from the circulation and, as they extravasate across the tumor vasculature, they dif-
ferentiate into macrophages. In the tumor environment, TAMs are predominantly 
polarized towards an M2-like phenotype underlying their ability to promote tumor 
growth and angiogenesis [48]. TAMs promote angiogenesis mostly through their 
production of VEGF [41]. However, TAM-derived PlGF can also stimulate angio-
genesis in some tumors, representing a possible mechanism for acquired resistance 
to VEGF/VEGFR-targeted therapies [49]. In HCC xenografts, sorafenib increases 
CXCL12 levels and TAM infiltration. Furthermore, depletion of TAMs enhances 
the inhibitory effect of therapy on tumor angiogenesis, growth and metastasis dem-
onstrating the contribution of TAMs to therapy resistance [50].

Tie2-expressing monocytes (TEMs) represent a distinct subpopulation of TAMs 
expressing the angiopoietin receptor, Tie2. They physically associate with vessels 
and secrete growth factors and matrix-remodeling proteins that stimulate the angio-
genic process in a paracrine manner [51]. TEMs are recruited and activated via 
endothelial cell- and tumor-secreted chemoattractants, Ang2 and CXCL12, respec-
tively [52, 53]. Their recruitment to spontaneously growing tumors promotes angio-
genesis [54]. Furthermore, TEMs infiltrate hypoxic tumors treated with a 
vascular-disrupting agent, and inhibiting such infiltration enhances treatment effi-
cacy [53]. Lastly, dual targeting of VEGF and Ang2 has been shown to delay tumor 
growth and improve the outcome of anti-angiogenic therapy in preclinical studies 
[55–57]. These collective findings highlight the possible contribution of TEMs to 
resistance to anti-angiogenic therapy.

Pericytes, the periendothelial support cells of the microvasculature, are derived 
from local or bone marrow-derived mesenchymal stem cells. They provide impor-
tant support for blood vessel formation, structure and function. Furthermore, tight 
cross-talk between pericytes and endothelial cells maintains blood vessel integrity 
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[58]. While anti-angiogenic therapy reduces tumor vascularity, the vessels that 
remain are functional, distinctively thin and tightly covered with pericytes [21, 59, 
60]. Owing to their important role in maintaining vessel integrity, the remaining 
pericytes, along with basement membrane-associated cells, facilitate a rapid 
regrowth of blood vessels after cessation of treatment with angiogenesis inhibitors 
[61]. Importantly, pericytes mediate endothelial cell quiescence and survival and 
therefore their presence presumably reduces responsiveness to anti-angiogenic ther-
apy [21]. The underlying molecular mechanism involves pericyte-induced survival 
signals that induce an autocrine activation loop of VEGF signaling and anti-
apoptotic Bcl-w expression in tumor endothelial cells [62]. Additional pericyte-
derived endothelial survival signals, specifically via the Ang1/Tie2 and EGF 
pathways, may also contribute to anti-angiogenic therapy resistance [30, 63]. 
Accordingly, it has been suggested that targeting both endothelial cells and peri-
cytes may improve the efficacy of anti-angiogenic therapy. Indeed, such dual target-
ing improves therapy outcome in a variety of murine tumor models [63–65]. 
However, severe reduction in pericyte coverage damages the integrity of the vascu-
lature, enabling local intravasation of tumor cells thereby facilitating metastasis 
[66]. In support of this concept, a recent study demonstrated that TKI-induced peri-
cyte depletion enhances metastasis due to increased vessel leakiness and hypoxia-
associated epithelial-mesenchymal transition (EMT) [67]. Collectively, enhanced 
as well as reduced pericyte coverage contribute to anti-angiogenic therapy resis-
tance via different mechanisms.

Cancer-associated fibroblasts (CAFs) are tumor-localized, activated fibroblasts 
originating from connective tissue fibroblasts proximal to neoplasms or from local 
and bone marrow-derived mesenchymal stem/progenitor cells. They promote angio-
genesis by producing a variety of pro-angiogenic signaling factors, chemoattrac-
tants and ECM-degrading enzymes [41]. Crawford et al. showed that the upregulation 
of PDGF-C in CAFs from anti-VEGF resistant tumors compensates for the inhibi-
tion of VEGF-dependent angiogenesis. Furthermore, CAFs isolated from resistant 
tumors can stimulate the growth of therapy-sensitive tumors even when VEGF is 
inhibited. This suggests that, once activated by the tumor environment, CAFs retain 
their ability to induce angiogenesis independent of tumor cells [27].

9.3.3  �Alternative Vascularization Mechanisms

Primary tumors and metastases may gain access to a blood supply via mechanisms 
that are independent of classical sprouting angiogenesis. These alternative vascular-
ization mechanisms are not affected by antiangiogenic drugs and therefore repre-
sent another mode of resistance to such therapy [68].

Vessel co-option refers to the migration of tumor cells along existing and estab-
lished blood vessels in the host organ to invade healthy tissue. This process is mostly 
observed in highly vascularized tissues such as brain, lungs and liver, where tumor 
cells can co-opt the abundant pre-existing blood vessels [69]. Preclinical and clinical 
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data show that glioblastomas become more infiltrative with the use of anti-
angiogenic therapy, facilitating vessel co-option [42, 70–74]. In addition, vessel 
co-option has been implicated in resistance to anti-angiogenic therapy in HCC [75] 
and metastases in lymph nodes [76], brain [77], liver [78] and lung [79].

Vasculogenic mimicry is a mechanism by which highly aggressive tumor cells 
form vessel-like structures in an angiogenesis-independent manner. These vessel-
like structures may connect to the endothelial-lined vasculature to provide a perfu-
sion pathway for the transport of fluid, nutrients and oxygen to the core of the 
malignant mass [68, 80]. Since its first description in uveal melanoma [81], vascu-
logenic mimicry has been observed in several tumor types and is associated with 
poor prognosis [82]. By virtue of their plasticity, tumor cells can dedifferentiate and 
acquire expression of vascular markers thereby “mimicking” endothelial cells dur-
ing this process [81, 83, 84]. However, despite expression of various vascular mark-
ers, such tumor cells are resilient to treatment with angiogenesis inhibitors [84–87]. 
Furthermore, antiangiogenic treatment has been shown to induce vasculogenic 
mimicry in preclinical models of various cancers [86, 87]. This may be due to 
treatment-induced hypoxia that upregulates vasculogenic mimicry pathways in 
tumor cells [88, 89]. Collectively, anti-angiogenic therapy not only triggers alterna-
tive vascularization mechanisms, but may also select for more aggressive tumor 
cells with an intrinsic ability to evade the blockade of angiogenesis.

9.3.4  �The Host Response to Inhibitors of Angiogenesis: 
Implications for Tumor Aggressiveness

Targeting the host-mediated angiogenic process that supports tumor growth has its 
limitations. As detailed in the previous sections, anti-angiogenic therapies may 
trigger an array of evasive mechanisms that involve the activity of host cells such 
as pro-inflammatory myeloid cells and endothelial progenitor cells in the tumor 
microenvironment. Furthermore, anti-angiogenic therapy has been shown to aug-
ment the invasive and metastatic potential of tumors despite overall inhibition of 
tumor growth [90, 91]. This seemingly paradoxical phenomenon is proposed to 
arise, at least in part, from a direct response of the host to anti-angiogenic therapy, 
independent of the tumor. Ebos et al. showed that short-term sunitinib treatment of 
mice prior to intravenous injection of tumor cells accelerates metastasis and 
reduces survival. Similarly, adjuvant short-term sunitinib treatment after resection 
of the primary tumor enhances spontaneous metastatic tumor burden [90]. The 
mechanisms underlying this effect may involve a drug-induced change in the levels 
of circulating factors implicated in tumor progression. For example, healthy, 
tumor-free mice treated with VEGF receptor TKIs exhibit a dose-dependent 
increase in the levels of circulating G-CSF, SDF-1α, SCF and osteopontin demon-
strating a systemic tumor-independent response to therapy [92]. Similarly, cancer 
patients treated with sunitinib exhibit increased circulating levels of 
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pro-angiogenic factors [93, 94]. In theory, such systemic host-mediated responses 
could promote the formation of “pre-metastatic niches” in distant organs, thereby 
facilitating metastasis [95]. The deleterious effect of anti-angiogenic therapy on 
the host vasculature represents another factor that may explain increased metasta-
sis in response to such therapy. The systemic action of VEGF receptor TKIs may 
damage the integrity of the vasculature by targeting endothelial cells as well as 
pericytes. This facilitates local intravasation of invasive tumor cells and creates 
permissive niches for extravasation of tumor cells in target organs [67, 96, 97].

It should be emphasized that several steps are required for disease progression 
from a local primary tumor to established metastatic disease. These include loss of 
cellular adhesion, increased motility, intravasation, survival in the bloodstream, 
homing, extravasation, seeding of micrometastases, and finally colonization and 
growth at a distant site [98]. Therefore, it is conceivable that the above-mentioned 
host-mediated responses act in concert with tumor-derived effects to promote over-
all tumor aggressiveness in response to anti-angiogenic therapy. Paez-Ribes et al. 
demonstrated that the anti-VEGFR2 antibody, DC101, and VEGF receptor TKI, 
sunitinib, promote local primary tumor invasion and metastasis in mouse models of 
pancreatic neuroendocrine carcinoma and glioblastoma. The researchers suggest 
that therapy-induced hypoxia in the primary tumor triggers a switch to a hyperinva-
sive condition in tumor cells [91]. In agreement with this, several preclinical studies 
demonstrate that VEGF-targeted therapies cause tumor cells to undergo hypoxia-
associated EMT, thereby promoting invasion and metastasis [67, 99, 100]. 
Collectively, both host- and tumor-dependent responses to anti-angiogenic therapy 
contribute to the invasive and metastatic potential of treated tumors.

Whether anti-angiogenic therapy causes increased tumor aggressiveness in 
patients is still a debatable issue. A retrospective analysis found no evidence for 
accelerated tumor growth in metastatic RCC patients treated with sunitinib [101]. 
Similarly, a meta-analysis of several randomized phase III trials of bevacizumab 
found no evidence for accelerated disease progression after discontinuation of 
therapy in patients with metastatic renal, pancreatic, breast and colorectal cancer 
[102]. On the other hand, rapid tumor regrowth has been reported after treatment 
discontinuation in RCC patients receiving sunitinib or sorafenib [103, 104], and in 
CRC patients receiving bevacizumab and chemotherapy [105]. In addition, several 
clinical studies describe an increased infiltrative growth pattern of glioblastomas 
in response to anti-angiogenic therapy [70, 71, 73]. The differences in preclinical 
and clinical findings may be explained by the animal model used, tumor type, 
disease stage, drug type, dosage, duration of treatment, or combination with che-
motherapy [10].

Other anti-cancer treatment modalities, such as chemotherapy, radiation and sur-
gery, can also produce undesirable pro-angiogenic and pro-metastatic effects that 
arise from the response of the host to therapy. Accordingly, blunting this host 
response using combinatorial therapies may improve treatment outcomes [34]. For 
example, the elevation in circulating endothelial progenitor cell levels following 
treatment with chemotherapeutic or vascular-disrupting agents can be blocked using 
anti-VEGF or anti-VEGFR2 neutralizing antibodies. This combinatorial treatment 
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enhances therapy efficacy and delays tumor regrowth in comparison to cytotoxic 
therapy alone [18]. Recent preclinical studies suggest that the reverse may be true 
as well; cytotoxic therapy can be used to blunt tumor aggressiveness induced by 
anti-angiogenic drugs thereby improving treatment efficacy. For example, concur-
rent paclitaxel chemotherapy was shown to block the increase in primary tumor 
local invasion and distant metastases induced by anti-VEGFR2 antibody (DC101) 
therapy in mouse models of breast cancer [106]. In addition, co-administration of 
chemotherapy counteracted the sunitinib-induced increase in metastasis in mice 
bearing early stage Lewis lung carcinoma [107]. Thus, add-on therapy that counter-
acts host- or tumor-dependent responses represents a possible strategy to overcome 
increased tumor aggressiveness and resistance in response to anti-angiogenic 
therapy.

9.4  �Future Directions

The limited clinical benefits of anti-angiogenic therapy contrast with findings of 
preclinical studies conducted over the last two decades that demonstrate treatment 
efficacy. This can be explained by the disparity between preclinical models used to 
test efficacy and clinical scenarios. Due in part to ethical issues, patients enrolled in 
clinical trials are generally at an advanced stage of the disease. In contrast, preclini-
cal experimental setups mostly involve localized primary tumors, with suppression 
of tumor growth after a short-term drug exposure considered a sign of efficacy. 
Therefore, more relevant preclinical models should be used to study the effects of 
anti-angiogenic therapy at all stages of disease, including metastatic and adjuvant 
settings, with clinically-relevant endpoints [108].

In theory, alternative pro-angiogenic pathways upregulated in response to anti-
angiogenic therapy may be targeted as a strategy to overcome resistance. Multi-
targeted inhibitors such as brivanib, a dual VEGFR and FGFR TKI, and nintedanib, 
a triple angiokinase inhibitor for VEGFR, FGFR and PDGFR, are being tested in 
clinical trials [109, 110]. Importantly, host-mediated evasive mechanisms induced 
in response to anti-angiogenic therapy may also be targeted in order to improve 
anti-angiogenic therapy outcomes. The major BMDC recruiting factor, SDF1α 
(CXCL12), represents a potential target for cancer therapy. Recent preclinical and 
clinical data support the use of anti-CXCL12 agents to reduce BMDC infiltration as 
a potential strategy to overcome resistance to anti-angiogenic therapy [18, 111]. 
Macrophages are key regulators in the tumor microenvironment, and have been 
implicated in resistance to anti-angiogenic therapy. Therefore, specifically blocking 
macrophage infiltration is also a potential means for overcoming resistance. 
Antibodies against the monocyte chemotactic protein, CCL2, and the macrophage-
expressed CSF-1 receptor are being tested in clinical trials as monotherapies [112–
114]. It will be interesting to test whether such agents synergistically increase 
efficacy when combined with anti-angiogenic agents in the clinical setting [115].
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As detailed throughout this review, hypoxia resulting from anti-angiogenic ther-
apy drives tumor aggressiveness and therapy resistance via tumor- and host-
mediated mechanisms. Therefore, alleviating hypoxia or targeting HIF-1 represent 
avenues for future investigation [116]. The former case would involve optimizing 
the dosage and scheduling of anti-angiogenic agents with the aim of normalizing 
the abnormal tumor vasculature as opposed to inducing rapid and excessive vessel 
pruning [16]. Indeed, tumor perfusion and oxygenation correlates with clinical ben-
efit in GBM patients treated with anti-angiogenic therapy [117–120]. Alleviating 
hypoxia would reduce processes such as EMT, vasculogenic mimicry and the selec-
tion of more aggressive tumor cells as well as affect immune and stromal cells 
within the tumor microenvironment. It is well-established that a hypoxic tumor 
environment induces BMDC recruitment and reprograms TAMs towards a pro-
tumorigenic phenotype. Therefore, alleviating hypoxia through vascular normaliza-
tion could potentially reprogram the entire tumor microenvironment [16]. Histone 
deacetylase inhibitors have been shown to strongly repress HIF-1 expression and 
their use as anti-cancer drugs is currently being explored [121]. A recent phase I 
clinical trial evaluating the use of a histone deacetylation inhibitor in combination 
with the anti-angiogenic agent, pazopanib, demonstrated durable tumor regression 
in 70% of patients with pazopanib-refractory disease [122]. Thus, epigenetic target-
ing represents a potential strategy to reverse resistance to anti-angiogenic therapy, 
possibly by targeting HIF-1. The precise molecular mechanisms and clinical bene-
fits should be further characterized.

The combination of anti-angiogenic drugs with immunotherapy represents an 
emerging strategy for cancer treatment. The rationale for using this combination is 
based on the systemic influence of VEGF on immune cell function. Specifically, 
several studies have demonstrated that an elevated level of circulating VEGF in 
tumor-bearing hosts impedes immune surveillance and destruction of tumor cells 
[123–125]. Accordingly, anti-angiogenic drugs may be used to neutralize the immu-
nosuppressive activity of VEGF. Moreover, the combination of anti-angiogenic 
therapy with immunotherapy could potentially offer a synergistic anti-cancer effect. 
In addition, it has been proposed that alleviating tumor hypoxia via vascular nor-
malization would reprogram the phenotype of the tumor microenvironment from 
immunosuppressive to immunosupportive, thereby improving the efficacy of anti-
cancer immunotherapies [16, 126]. A number of preclinical and clinical studies 
have demonstrated the benefits of this combination strategy [127–133].

Lastly, a major challenge is to identify robust biomarkers predictive of clinical 
efficacy of anti-angiogenic therapy. Currently, no validated biomarkers exist to 
select patients who will benefit from such therapy. Biomarkers under consideration 
in various cancers include circulating VEGF-A, VEGF-D, Ang2, HGF, osteopontin, 
IL6 and IL8, among others [4, 134]. With respect to VEGF as a predictive biomarker 
for bevacizumab-based treatment benefit, phase III trials have reported a correlation 
between high circulating levels of VEGF and survival benefit in metastatic breast 
and gastric cancer patients [135, 136], but not in CRC, RCC and lung cancer patients 
[137]. Other emerging areas for biomarker identification include tumor vessel imag-
ing with dynamic contrast-enhanced MRI, measurement of circulating endothelial 
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cells, expression arrays, single nucleotide polymorphisms and early pharmaco-
dynamic response to treatment, such as hypertension [138]. The incorporation of 
predictive biomarkers into routine clinical practice would maximize clinical benefit, 
reduce unnecessary toxicity and improve costs of cancer care.

9.5  �Conclusions

The development of anti-angiogenic agents is an important milestone in the field of 
cancer research. However, their clinical use is proving to be more complex than 
originally anticipated with major ongoing challenges. A prominent issue in the 
clinic is resistance to therapy resulting in only modest gains in long-term survival in 
the majority of patients. Given that anti-angiogenic agents target the tumor-
supporting vascular system comprised of a variety of host cells, and that tumor 
progression is regulated by tumor-host cell cross-talk, resistance is dependent on 
both tumor- and host-mediated mechanisms (Fig. 9.1). Understanding these mecha-
nisms is key to developing strategies to overcome therapy resistance and improve 
clinical outcome.
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