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Abstract. The IoT ecosystem is taking the whole ICT world by storm
and, in particular for currently hot topics such as Smart Cities, it is
becoming one of the key enablers for innovative applications and ser-
vices. When talking about end users, or even citizens, mobiles enter the
picture as the ultimate personal gadget, as well as relevant outlets for
most of the duties (sensing, networking, edge computing) IoT devices
are typically envisioned in the first place. Smartphones, tablets and sim-
ilar accessories are even more powerful in terms of hardware capabilities
(and function diversity) than typical embedded systems for IoT, but it
is typically the software platform (e.g., the OS and SDK) which limits
choices for the sake of security and control on the user experience. Even
a relatively open environment, such as Android, exhibits these limits, in
stark contrast to the otherwise very powerful and feature-complete func-
tionalities the underlying system (i.e., Linux) natively supports. In this
work the authors describe a fully user-friendly and platform-compliant
approach to let users break free from some of these limitations, in partic-
ular with regard to network virtualisation, for the purpose of extending
an IoT-ready Smart City use case to mobiles.
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1 Introduction

Information and communication technologies (ICT) and solutions are progress-
ing very quickly, radically changing the landscape. Recent trends, on the one
hand, pushed towards more and more powerful computing infrastructure such
as the Cloud ones, providing customizable computational resources as services
through the Internet, elastically, on demand. This allowed to think about new
offloading patterns where business logic processing is outsourced, ubiquitously
offloaded to remote server while lightweight thin client are running on local
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nodes. This, on the other hand, favoured the widespread deployment of devices,
initially mainly conceived for pervasively probing real-word/physical phenom-
ena, gradually becoming more and more powerful and ‘smart’. Network, Inter-
net and mobile computing solutions then allowed to consider this ensemble as
an ecosystem of smart objects or things, giving rise to the Internet of Things
(IoT). Tens of billions of things already populate the IoT ecosystem, allowing
to think about novel application domains such as Smart Cities, Industry 4.0,
intelligent transportation systems, e-government, to name a few, while posing
challenges related to heterogeneity, networking, scalability, security, high level
management, among others.

In particular, after its first inception, mobiles and personal devices triggered
a new wave for IoT. Indeed, rapid advances in embedded systems (especially
mobile devices), wireless sensors, and mobile communications have led to the
development of more and more powerful personal devices. Modern tablets and
even smartphones, in terms of processing capabilities, can be compared to 4–5
years old computers, so they can be also used as effective computing systems.
This introduces further complexity and uncertainty in the widely heterogeneous
IoT world, but mainly enables novel unexplored opportunities. Albeit resource-
constrained, a challenge is to think on how personal device processing, storage,
sensing and networking capabilities could be exploited in IoT applications. In this
direction, fog-edge-mist computing [17], aiming at exploiting onboard processing
capabilities to compute sensed data locally, as well as mobile crowdsensing [12],
implementing participatory and opportunistic contribution patterns for crowd-
sourced applications through mobile devices, are good examples. But several
other opportunities can arise from mobiles in IoT, by properly exploiting their
resources, ubiquity and unique combination of (built-in) technologies such as the
wide range of communication subsystems. To this extent, the good news is that
mobile hardware is ready for lots of scenarios. The bad one is that mobile OS/-
platforms are naturally constrained due to security/privacy concerns and tight
control and restrictions from manufacturers and telcos.

In this paper, we mainly focus on networking aspects, aiming at unlocking
and properly exploiting communication capabilities natively provided by per-
sonal, mobile devices in IoT contexts. This is not trivial since in geographical
contexts such as the IoT one several network issues can arise when interconnect-
ing things from different administrative domains, subject to NAT, firewalls and
similar restrictions. Advanced network features, widely available in opensource
environments such as Linux, are definitely required by several IoT scenarios (e.g.
smart city), but severely impaired under mobile OS such as Android. This is the
case of network virtualization, among others. IoT network virtualization implies
reconfiguration capabilities on mobile devices [10,11], since the physical environ-
ment (channels, topologies, routers) in IoT scenarios is not always under control
of the designer of the infrastructure, and may be opportunistically established,
e.g., volunteer-contributed. Furthermore, the configuration of most deployments
(or their extent, ownership, etc.) is usually not completely known in advance, in
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contrast to Wireless Sensor Networks (WSN) where some network virtualization
solutions have been proposed [14].

Focusing on such specific aspects, the main contribution of this paper lies in
relaxing these limitations by proposing a level-2/level-3 tunneling-based solution
for IoT virtual networking adopting standard UNIX tools and mobile-native
services under Android environments.

To this purpose, the remainder of the paper is organised as follows: Sect. 2
lays out the problem and related work in literature, in Sect. 3 the approach to
the solution is described, Sect. 4 outlines a usage scenario together with a brief
evaluation of the core mechanisms here outlined, and Sect. 5 closes the work with
a summary of the results and hints to future work.

2 Background and Related Work

Network virtualization is a quite hot topic in IoT. Several works address related
issues from different perspectives, including software defined networking (SDN),
network functions virtualization and service function chains. A survey on the
topic is available in [8], mainly focusing on the application of SDN paradigm
to IoT contexts. An interesting solution is proposed in [14], integrating nodes
(resource-constrained or otherwise) into a secured virtual network or IoTVN,
enabling end-to-end communication among IoT nodes. The main focus is on pro-
viding a lightweight solution able to run on resource constrained device, while
security and other issues are left to future work. A slightly different approach
that could be somehow related to the networking topic is the opportunistic IoT
one. In [13] an IoT framework is proposed extending opportunistic networking
towards participatory sensing with the main aim of enabling information shar-
ing among things to support mobile social networking. Similarly, opportunistic
mobile networking is addressed in [19] dealing with low level data forwarding
issues through a framework able to support and optimize opportunistic sensing.
The underlying technologies are mainly based on ad-hoc network solutions.

Although promising, all these approaches partially solve the problem of con-
necting remote nodes in a geographical IoT context with network barriers. Ad-hoc
networks and similar approaches have limited scope, while, on the other hand,
the SDN approach is not lightweight and could be hardly adapted to resource
constrained devices. Furthermore, restrictions from operating systems and soft-
ware platform running on mobile devices require to attack the problem case by
case, dealing with specific platform-dependent issues. The target of this paper is
Android, aiming to implement virtual network/VPN mechanisms for IoT.

To this purpose, there are various solutions for VPN functionality under
UNIX-derived systems, and even OS-native (i.e., kernel-space) VPN-enabling
interfaces are available under ubiquitous Linux-based systems specifically.
Indeed, under Linux tunnels may be natively instantiated using /dev/tun inter-
face [2,6]. Such a mechanism has the following modes of operation:

– tun (OSI level 3 frames should be written to the device and read from it)
– tap (OSI level 2 frames)
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On Android accessing /dev/tun requires root permissions, which cannot be
granted to an application without “rooting” the device. Moreover, any function-
ality implemented in kernel-space requires the ability to install loadable kernel
modules (LKM), another option which is not available without administrative
privileges.

3 The Proposed Solution

In order to implement virtual networking/VPN mechanisms for mobiles in the
IoT context, the authors base on existing solution coming from IoT and Cloud,
more specifically on Stack4Things (S4T) [15]. Stack4Things is an OpenStack-
based IoT framework that helps in managing IoT device fleets without caring
about their physical location, their network configuration, their underlying tech-
nology. It is a Cloud-oriented horizontal solution providing IoT object virtual-
ization, customization, and orchestration.

Among S4Tcloud-enabled services are node remoting and network virtualiza-
tion. The basic remoting mechanisms are based on the creation of generic TCP
tunnels over WebSocket (WS), a way to get client-initiated connectivity to any
server-side local (or remote) service. In this sense, the authors devised the design
and implementation of an incremental enhancement to standard WS-based facil-
ities, i.e., a reverse tunneling technique, as a way to provide server-initiated,
e.g., Cloud-triggered, connectivity to any board/mobile-hosted service. Beyond
mere remoting, level-agnostic network virtualization needs mechanisms to over-
lay network- and datalink-level addressing and traffic forwarding on top of such
a facility. In [16] the authors describe a model of tunnel-based layering employed
for Cloud-enabled setup of virtualized bridged networks among nodes across the
Internet, and Fig. 1 shows a conceptual depiction of the aforementioned model.

Fig. 1. Stack4Things tunnel-based layering: model.

Thus the ability to establish virtual networks among mobiles (as well as
between a mobile and a server) requires at the very least core mechanisms to
instantiate VPN-like tunnels between the corresponding endpoints. One way to
actually create a tunnel between two Linux-like machines is using SOCAT [5].
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This is a very simple program which can pipe two open file descriptors, like
sockets, back-and-forth.

The most suitable way of creating tunnels on Android is to extend the
VpnService class from Android API [7]. This class provides a simple way to
create a L3 tun device. Actually VpnService is a thin wrapper around /dev/tun,
which is opened in tun mode [4]. By default, a /dev/tun-based tunnel prepends
(and expects to be prepended) each packet with the Packet Info (PI) structure:
that is a 4 byte [3,6] struct with 2 fields: flags (2 bytes) and ether type (2 bytes).
It doesn’t seem very useful though, especially in L2 mode, but in L3 mode it
allows to send IPv6 packets along with IPv4. Without PI only IPv4 packets
might be sent. PI can be disabled by opening a tunnel with iff-no-pi option.
Thus, in order to emulate /dev/tun on Android fully, tap mode along with PI
support have been implemented leveraging the Java-based Android SDK.

Getting back to standard UNIX tooling, as leveraged in our solution, an
essential requirement is fulfilled by Termux1. Termux is an open source app pro-
viding an Android terminal emulator and, more importantly for our purposes, a
minimal Android-hosted Linux environment, and a fully Linux-compatible user-
land, unlike the Android-native environment. A unique feature of Termux is
that it works directly with no rooting, or other complex procedure required
(e.g., no user input). A base system is installed automatically by the app itself,
and additional packages are then available by means of the Debian-compatible
APT package manager.

A software running in Termux may then expect availability of standard,
widespread userland UNIX tools, such as SOCAT, to be already installed in the
environment, or at least readily provisionable by just invoking the package man-
ager to download and install the corresponding software package. Plain SOCAT
cannot be used on Android for piping to /dev/tun for an already stated reason:
root permissions are required for that. Instead, we have created a script, which
emulates socat binary, but actually creates a tunnel using Java application. For
that, we used Android Broadcasts [1] to pass tunnel creation intentions to the
APK which would actually create them.

On a first tunnel creation intent, Android forces the application to ask for
consent from a user to open a tunnel. This is a security measure to prevent
easy sniffing of the user traffic by an application. The consent dialog is created
by Android OS and it explains to a user possible consequences of giving to an
application access to tunneling the traffic through it. Consequently, to use a
SOCAT-emulation script, the APK GUI should be opened first, to show the
consent confirmation dialog to the user. Once consent is given, tunnels may be
emulated behind scenes, thus not bothering further the user.

4 A Smart City Use Case

As described in [9], a Smart City developer may rely on an effective approach
for interaction among Cloud-controlled smart objects, e.g., to let a mobile entity
1 https://termux.com/.

https://termux.com/
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Fig. 2. VPN join, followed by service discovery

dynamically discover services and directly consume them, without the mediation
of the Cloud at the application level, in a totally distributed fashion. However,
for some popular service discovery frameworks, e.g., AllJoyn2, the underlying
technologies may require the discovery phase to be carried out within a single
broadcast domain. Packing all services for the Smart City within such a global
scope may incur in scalability issues.

Leaving aside other functionalities the Cloud, as described in [9], may provide
(e.g., plugin injection, complex event processing), the virtual network instantia-
tion and deallocation functionalities provided by Stack4Things can be very help-
ful in this regard. In fact, an, e.g., smart car, featuring an in-dash infotainment
system based on a mass-market mobile OS (i.e., Android), may be dynamically
added to virtual networks of much smaller scope, depending on the city area
(e.g., a geofence-delimited one) it is traversing, discovering and consuming only
the services that are listening within the broadcast domain associated with that
specific area.

A service discovery-enabled client needs to be deployed dash-side for the
set of services that the smart car is supposed to discover and consume, as well
as discovery-enabled services on the relevant Smart City objects, such as, e.g.,
smart traffic lights and smart streetlights.

2 http://allseenalliance.org.

http://allseenalliance.org
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Fully client-side geofences takes care of detecting the car entering specific
areas of interest. Accordingly, addition or removal of the smart car to/from
specific virtual networks is thus triggered by the smart car itself, the latter
invoking the Cloud and passing the predefined (geofenced) area as parameter.
As soon as the smart car gets added to a new virtual network, it discovers the
services in the area and consumes them (see Fig. 2). At the application layer, the
interactions between the smart car and a specific City-provided smart object are
direct, without any mediation by the Stack4Things Cloud, which only provides
communication services at the network layer.

A preliminary evaluation in this scenario is provided in the following, focus-
ing on specific key performance indices, namely latency and throughput, related
to the aforementioned core (enabling) mechanisms: wrapped SOCAT-based tun-
neling. This is tasked at quantifying the performance of the proposed tunneling
mechanism, although it is a technology enabling a new feature in the IoT, thus
without terms of comparison in this context so far.

Table 1. Throughput and latency measurements over WiFi.

Topology/Technology iperf: throughput [Mbps] ping: latency (RTT) [ms]

direct 92.5 0.23

vpn 81.75 1.501

s4t 79.7 0.625

Table 1 reports on the set of experiments that have been conducted. The
experiments are based on the iperf3 [18] tool for measuring throughput and
the ubiquitous ping tool to gauge latency, the latter by means of ICMP echo
requests to obtain Round-Trip Time values as estimation of delay. iPerf3 works
by repeatedly sending an array of len bytes for time seconds, where len by
default is 128 KB for TCP, and the default for time is 10 s. In both cases, the
test setup consists in having a server ready, and generating traffic over TCP
(iPerf3) or ICMP requests (ping) from the client (an Android mobile, or its
emulated instance), which collects partial and final statistics. Values in the table
are averages computed over a number of 1000 samples, where each chunk of
10 samples represent a single run for the tool. Variance values have not been
included because negligible.

The first column indicates the kind of technology employed and under which
topology: in particular, direct refers to tests between two hosts directly con-
nected, over (WiFi) LAN. The vpn abbreviation refers to an OpenVPN server
to which an OpenVPN client is connected, under the same roles as the two
aforementioned hosts. Same happens for s4t, in this case with two hosts set up
as if controlled by the S4T Cloud thus connected directly over a SOCAT-based
tunnel.

For the sake of comparing under the most relevant conditions, OpenVPN
has been tested in TCP mode, and various parameters (e.g., MTU of the TUN



142 D. Bruneo et al.

interfaces, MSS for both iperf and the TCP tunnels) had already been tuned
for S4T in the implementation phases, as also discussed below. As latencies
are quite aligned in the various scenarios, the discussion has been focused on the
more interesting and insightful values obtained for the throughput metric. Albeit
actually latency may be considered the most relevant metric for the use case
under consideration, as it is key for near real-time (e.g., multimedia) applications,
and the most reliable metric in general for embedded systems, considering that
throughput is naturally more susceptible to other factors, e.g., high CPU load or
RAM usage, differences in the media interface, etc., the latter has been chosen.

It may be noticed that throughput for the S4T-based setups degrades only
slightly, as can be seen in Table 1, most likely due to the overhead of inter-
process piping. This as a result of trading off raw performance, at the price of
high application-level complexity and an (internal) ad-hoc architecture, as is the
case for OpenVPN, with the simplicity and flexibility of off-the-shelf tools acting
as separate subsystems and taking care of different facets of the communication
model, in line with the UNIX philosophy of using one (good) tool for each job.

5 Conclusions

In summary, in this work the authors have pursued the extension of an embed-
ded system-powered IoT use case, developed to enable geo-localized Smart City
services, to Android mobiles.

The involvement of personal devices featuring a tightly controlled environ-
ment, such as Android, called for the implementation of adaptations to the core
Android-supported network virtualization mechanisms, lacking, e.g., L2 inter-
face emulation. Other implementation choices, such as wrapping userspace Linux
networking tools, derived from the requirement to preserve the same behavior,
interfaces and layering model already employed by Stack4Things for embedded
systems.

In terms of future work, it should be noted, that, unlike /dev/tun on Linux,
VpnService cannot open multiple tunnels at once. However, this limitation
might be overcome by multiplexing connections to several endpoints onto the
single VpnService tunnel, in terms of Java-developed logic.
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