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Abbreviations

ATP Adenosine triphosphate
BAP 6-benzylaminopurine
C4H Cinnamic acid 4-hydroxylase
CoA Coenzyme A
DHPL 3,4-dihydroxyphenyllactic acid
DMSO Dimethyl sulfoxide
DW Dry weight
2,4-D 2,4-dichlorophenoxyacetic acid
3′-H Hydroxycinnamoyl-hydroxyphenyllactate 3′-hydroxylase
3-H Hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase
4CL 4-coumarate CoA-ligase
HdhA Hydroxyacid dehydrogenase
HpaBC 4-hydroxyphenylacetate 3-hydroxylase
HPPD Hydroxyphenylpyruvate dioxygenase
HPPR Hydroxyphenylpyruvate reductase
HQT Hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase
HR Hairy roots
HST Hydroxycinnamoyl-CoA shikimate hydroxycinnamoyltransferase
IAA Indole-3-acetic acid
MeJA Methyl jasmonic acid
NAA 1-naphthaleneacetic acid
NAD(P)H Nicotinamide adenine dinucleotide (phosphate), reduced
PAL Phenylalanine ammonia-lyase
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pHPL 4-hydroxyphenyllactic acid
pHPP 4-hydroxyphenylpyruvic acid
RA Rosmarinic acid
RAS Rosmarinic acid synthase, hydroxycinnamoyl- 

CoA:hydroxyphenyllactate hydroxycinnamoyltransferase
SA Salicylic acid
TAL Tyrosine ammonia-lyase
TAT Tyrosine aminotransferase
YE Yeast extract

2.1  Occurrence and Structures of Rosmarinic Acid 
and Related Metabolites

Rosmarinic acid (RA) (Table 2.1) was first described in 1958 as an ester of caffeic 
acid and 3,4-dihydroxyphenyllactic acid (DHPL) extracted from rosemary 
(Rosmarinus officinalis) [140], but has since then been detected in plant species 
across the plant kingdom from hornworts to mono- and dicotyledonous plants (for 
reviews see [126, 129]). Hotspots of RA presence are the sub-family Nepetoideae 
of the Lamiaceae and the family Boraginaceae. In other plant taxa, RA often only 
occurs sporadically and may not occur in all species of the same genus [126]. RA 
and related caffeic acid esters have been isolated from hornworts (species of the 
genera Anthoceros, Folioceros, Nothothylas, Phaeoceros, Dendroceros, Megaceros;  
[6, 155, 156, 162, 163]) as well as fern species (Blechnum spec.; [68, 70, 169]). 
Furthermore, grasses [32, 109] and species of the so-called basal orders (Sarcandra 
glabra, [191]; Chloranthus spec., [129]) contain RA, whereas there are  – up to 
now – no reports from leafy mosses, liverworts and gymnosperms.

A larger number of derivatives of RA have been described, many of them occur-
ring in Salvia species (Table 2.1; [18, 79, 103, 168]). These derivatives generally 
contain RA as core structure. Metabolites often incorrectly described as caffeic acid 
oligomers contain additional 4-coumaric or caffeic acid moieties or a second RA 
molecule. Further derivatization can occur by glycosidation (e.g. RA glucosides; 
[43, 95, 165]) (see also Chap. 9 of this book), methylation (e.g. methyl rosmari-
nate, methyl lithospermate [90], methylmelitric acid [105]) or the addition of ethyl 
and butyl or hydroxycinnamoyl moieties.

Whereas the biosynthesis of RA in Lamiaceae and Boraginaceae (e.g. Coleus 
blumei, Salvia miltiorrhiza, Melissa officinalis, Anchusa officinalis, Lithospermum 
erythrorhizon) is well investigated [106, 126, 128, 129], it is less well analyzed in 
other plant taxa. The same is true for the formation of most of the above-mentioned 
RA derivatives.

There are thousands of publications on the diverse biological activities of RA 
and derivatives such as the salvianolic acids. Recent reviews on this topic have been 
published by e.g. Shetty [142], Wang [168], Bulgakov et al. [18] and Amoah et al. 
[5], and this topic will therefore not be covered in this article.
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Table 2.1 Examples for rosmarinic acid and related compounds

Structure Common name Reference
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Table 2.1 (continued)

Structure Common name Reference
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Table 2.1 (continued)

Structure Common name Reference
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Table 2.1 (continued)

Structure Common name Reference
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Table 2.1 (continued)

Structure Common name Reference
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2.2  Biosynthetic Pathway of Rosmarinic Acid

RA is derived from two distinct pathways: The general phenylpropanoid pathway 
provides the caffeic acid moiety, while DHPL is produced by a tyrosine-derived 
pathway [130, 131]. Both pathways are dependent on the shikimate pathway, which 
generates the aromatic amino acid precursors l-phenylalanine and l-tyrosine. The 
biosynthetic pathway (Fig. 2.1) has first been elucidated in Coleus blumei [130], a 
member of the family Lamiaceae, and Anchusa officinalis [36], and to a great part 
confirmed in Melissa officinalis [171, 172].

The general phenylpropanoid pathway starts with l-phenylalanine as precursor. 
The enzyme phenylalanine ammonia-lyase (PAL) is responsible for the transforma-
tion of the amino acid to trans-cinnamic acid [134]. A cytochrome P450-dependent 
enzyme, cinnamic acid 4-hydroxylase (C4H), introduces the first hydroxyl group to 
the aromatic ring in para position to form 4-coumaric acid [124]. Then, the ATP- 
dependent coenzyme A (CoA) activation of 4-coumaric acid to 4-coumaroyl-CoA is 
catalyzed by the enzyme 4-coumarate CoA-ligase (4CL) [81].

l-Tyrosine is the precursor in the formation of the second intermediary precursor 
in RA biosynthesis. Tyrosine aminotransferase (TAT) catalyzes the transamination 
of tyrosine and 2-oxoglutarate to 4-hydroxyphenylpyruvate (pHPP) and glutamate 
[36]. In a NAD(P)H-dependent step, the enzyme hydroxyphenylpyruvate reductase 
(HPPR) reduces pHPP to 4-hydroxyphenyllactic acid (pHPL) [69, 127].

The trans-esterification of the two precursors is catalyzed by rosmarinic acid 
synthase (RAS). This enzyme forms an ester of 4-coumaric acid and pHPL [127] 
and belongs to the BAHD acyltransferase superfamily in the subgroup hydroxycin-
namoyltransferases [14]. The product 4-coumaroyl-4′-hydroxyphenyllactic acid is 
hydroxylated at the 3- and 3′- positions by two cytochrome P450-dependent enzyme 
activities, caffeoyl-4′-hydroxyphenyllactate 3′-hydroxylase and 4-coumaroyl-3′,4′-
dihydroxyphenyllactate 3-hydroxylase (3’H, 3H) (Fig. 2.1) [124]. The product, RA, 
is then stored in the vacuole. For comprehensive reviews on biosynthesis, distribu-
tion and evolution of RA biosynthesis see e.g. Petersen and Simmonds [128] and 
Petersen [126].

Table 2.1 (continued)

Structure Common name Reference
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Fig. 2.1 Biosynthetic pathway of rosmarinic acid and derivatives as evaluated in Plectranthus 
scutellarioides (syn. Coleus blumei) [130] and Salvia miltiorrhiza [39, 177]. Reactions specifically 
described in or proposed for Salvia miltiorrhiza are shown by dashed lines and arrows. PAL phe-
nylalanine ammonia-lyase, C4H  cinnamic acid 4-hydroxylase, 4CL  4-coumarate CoA-ligase, 
TAT  tyrosine aminotransferase, HPPR hydroxyphenylpyruvate reductase, RAS  “rosmarinic acid 
synthase” (4-hydroxycinnamoyl-CoA:4′-hydroxyphenyllactate hydroxycinnamoyltransferase), 
3H, 3’H 3- and 3′-hydroxylases
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Di et al. [39] suggested an alternative pathway in Salvia miltiorrhiza. They pro-
pose that an additional hydroxylation of pHPL to DHPL occurs prior to the esterifi-
cation. Accordingly, the product 4-coumaroyl-3′,4′-dihydroxyphenyllactate 
undergoes a single hydroxylation. While Di et al. [39] furthermore propose a direct 
formation of lithospermic acid B by coupling of two molecules of RA, Xiao et al. 
[177] suggest a sequential formation by addition of caffeic acid and DHPL in two 
separate reactions (Fig. 2.1).

2.3  Production of RA in Untransformed Aseptic In Vitro 
Cultures

Cell cultures of species of the families Lamiaceae and Boraginaceae have been 
established for the biotechnological production of RA and related compounds. 
However, although these efforts were successful at pilot scale, an industrial-scale 
production process for RA has never been established. Efforts to optimize RA pro-
duction in in vitro cultures are summarized in the following paragraphs.

2.3.1  Species from the Family Lamiaceae

Coleus blumei (syn. Solenostemon scutellarioides, Plectranthus scutellarioi-
des) The first reports on the formation of high amounts of RA in plant callus and 
cell suspension cultures are from 1977. Razzaque and Ellis [134] as well as Zenk 
et  al. [187] both used Coleus blumei, the painted nettle, to establish suspension 
cultures that accumulated up to 15% of the cell dry weight (DW) as RA. The latter 
authors also described the influence of the sucrose concentration of the medium on 
the outcome of RA production as well as the incorporation of exogenously fed 
l-phenylalanine. The same species was used by Ulbrich et al. [164] in the first bio-
technological production process, a two-phase culture system with a growth and a 
production phase. In the latter phase, a 5% sucrose solution was used for cultivation 
and a yield of 21% RA in the cell DW was achieved. Since then, in vitro cultures of 
Coleus blumei have been the most prominent system to elucidate the biosynthetic 
pathway of RA and to isolate and characterize the respective enzymes and genes 
(see below and review articles by [126, 128, 129]).

The influence of the carbohydrate source and concentration was investigated in 
more detail by Gertlowski and Petersen [54] and Petersen et al. [132]. They showed 
that sucrose is quickly cleaved into glucose and fructose. The optimal sucrose con-
centration was at 5%. Glucose as sole carbohydrate source was nearly as effective 
as sucrose while fructose led to a lower RA accumulation. The stimulating effect of 
higher sucrose concentrations on RA biosynthesis and accumulation is not due to an 
osmotic effect since partial replacement by mannitol could not promote RA forma-
tion. The onset of RA biosynthesis is independent of the sugar concentration and 
correlates with the depletion of mineral nutrients (e.g. phosphate) from the medium. 
Medium optimization was also done by Ju et  al. [80] in order to establish a 
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two- phase culture system with a growth phase and a production phase for callus as 
well as suspension cultures. Essentially the same results were obtained as described 
before: higher sucrose concentrations increased the formation and accumulation of 
RA. With 6% sucrose in the medium calli contained 33.7% RA in the DW, suspen-
sion cells accumulated RA to 10.1%.

Permeabilization was investigated in order to isolate RA from the medium 
instead of the cells and thus enable a continuous production process. For this pur-
pose, Park and Martinez [118] added dimethyl sulfoxide (DMSO) to the suspension 
cultures. This, however, resulted in loss of cell viability. Preconditioning at a lower 
DMSO concentration (0.1%) ensured cell viability at higher DMSO levels (0.5–
1.5%) and resulted in a prominent release of RA to the medium. With 0.5% DMSO, 
2.85 g RA per 100 g cell DW was found in the medium, which was 66.4% of the 
total RA production.

Immobilization of Coleus blumei cells was performed by adding luffa cubes to a 
suspension culture in order to capture the cells within the sponge-like luffa material 
[107]. Luffa is the dry fibrous material of berry endocarp of Luffa cylindrica, 
Cucurbitaceae. After 33 days of growth, the cell-inhabited cubes were placed into a 
glass column and fed with medium by spraying it from the top. The cells were via-
ble to a high percentage until 52 days but showed strongly reduced growth. RA 
production was higher (2% of the cell DW) than in the respective parent suspension 
culture (1.2%).

Approaches to further increase the production of RA were based on elicitation or 
transformation of Coleus blumei cell cultures; the latter will be described in the 
chapter “Hairy roots”. Fungal elicitor preparations (Pythium aphanidermatum) or 
methyl jasmonate (MeJA) were added to suspension cultures of Coleus blumei and 
resulted in increased activities of some biosynthetic enzymes as well as about a 
three-fold RA accumulation [153]. Interestingly, an effect of the volatile MeJA 
could also be seen when it was applied via the gas phase.

Bauer et al. [12] investigated RA accumulation in different callus cell lines trans-
formed by Agrobacterium tumefaciens and cultivated on hormone-free media. 
Growth and RA accumulation varied between different lines. The highest RA accu-
mulation was 11% of the cell DW.

Whole in vitro grown plants of Solenostemon scutellarioides were investigated 
by Dewanjee and coworkers [37, 38]. Feeding of precursors (Phe and Tyr alone and 
in combination) could increase RA levels (up to 3.1-fold) as well as the activities of 
PAL, TAT and RAS. On the other hand, phytopathogenic fungi were applied with 
best results using Alternaria alternata. This increased RA accumulation up to 1.6- 
fold (18.5 mg/100 g fresh weight).

Salvia officinalis Various varieties of culinary sage (Salvia officinalis) were com-
pared with respect to their RA accumulation in leaves and suspension cultures. The 
RA content varied between 0.89% and 7.82% of the DW, the best variety being 
“Dwarf”. In all varieties except one, leaves contained less RA than suspension cells 
[174]. A similar approach was followed by Grzegorcyzk et al. [58] who compared 
the RA content in seed-derived and in vitro regenerated sage plants as well as shoot 
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callus and cell suspension cultures after different numbers of passages. Here the 
highest RA content was found in suspension cells with around 1.9% of the cell 
DW. Hippolyte et al. [71, 72] characterized RA production in suspension cultures of 
sage further. The optimal sucrose concentration was 5%, which resulted in an RA 
content of 19% of the DW at the end of the culture period. Feeding of l- phenylalanine 
as precursor shortened the production period and enhanced RA production at 0.1 g/l 
phenylalanine in 5% sucrose medium. The highest RA accumulation of 36% of the 
cell DW could be observed in a low osmolarity medium (Heller-medium with 5% 
sucrose).

A number of studies reported on shoot cultures of sage as a source for RA. MS 
agar medium supplemented with different concentrations of the long chain satu-
rated primary alcohol triacontanol showed positive effects with respect to shoot 
multiplication as well as diterpene and RA content. Highest RA concentrations of 
approximately 2% of the DW were found after addition of 20 μg/l triacontanol [59]. 
Shoots grown in liquid medium accumulated around 3% RA in the DW irrespective 
of the triacontanol concentration [55]. MeJA (50 and 100 μM) stimulated RA levels 
in liquid cultivated shoots even further to 4.1% of the DW on the fifth day after elici-
tation [56]. Shoot cultures were also cultivated in a laboratory scale sprinkle biore-
actor with a 43-fold increase in biomass after 3 weeks and a RA content of 2.6% of 
the DW [57].

Shoot cultures on solidified MS medium were used to test the effect of sodium 
salicylate on diterpene (carnosol, carnosic acid) and RA production. Although the 
amount of diterpenes was stimulated by elicitiation, the RA levels remained largely 
unaffected and growth was decreased [93]. In contrast, Ejtahed et al. [46] showed a 
two-fold increase in RA production to 1.8% of the DW in shoot cultures after addi-
tion of 250 μM salicylic acid (SA).

Salvia miltiorrhiza Salvia miltiorrhiza is an important Asian medicinal plant which 
is very well investigated with respect to its accumulation of tanshinones and pheno-
lic acids, among them RA, lithospermic acids and salvianolic acids (Table  2.1). 
Many investigations have been performed with hairy root cultures and are described 
below. In addition, undifferentiated cell cultures were the basis for the production of 
phenolic acids [42]. Morimoto et al. [112] showed that callus cultures accumulated 
1.24% of the DW as RA and 0.1% as lithospermic acid B. In shoot cultures regener-
ated from these calli, both phenolic acids accumulated in considerably higher 
amounts (6.96% RA and 6.05% lithospermic acid B). The same compounds were 
detected in Ti-transformed suspension cells (4.59% RA and 0.81% lithospermic 
acid in the cell DW) [26]. In a special 6,7-V-medium, the same cell line produced 
phenolic acids (RA 530 mg/l and lithospermic acid B 216 mg/l) as well as tanshi-
nones (220 mg/l), the latter being excreted to the medium to a considerable extent 
[21]. In an attempt to increase secondary metabolite production, yeast extract (YE) 
was used. This resulted in nearly doubled tanshinone production, while RA accu-
mulation was strongly reduced [22, 23]. MeJA (10 μmol/l) also stimulated the activ-
ities of PAL and TAT as well as RA accumulation [179]. Addition of Ca2+ ions 
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(10 mM) enhanced the accumulation of RA up to 2% of the DW. This was also 
coupled to enhanced PAL and TAT activities [101].

Stems and leaves of Salvia milthiorrhiza were used by [175] to establish callus 
cultures and to compare their efficacy to produce RA and salvianolic acid B. Stem 
callus contained more phenolic acids (1.27 ± 0.38% RA and 0.87 ± 0.20% salviano-
lic acid B in the DW) than leaf callus (0.28 ± 0.02% RA and 0.07 ± 0.03% salviano-
lic acid B).

SA (22.5 mg/l) was used as elicitor to increase the production of phenolic acids. 
Addition of SA resulted in a doubled RA accumulation 2 days after addition (to 
approximately 0.03% of the DW). At the same time, H2O2 levels increased. External 
addition of H2O2 (10 mM) also induced RA formation and it was suggested that 
H2O2 is a mediator in elicitation processes by SA [66]. Besides increase in RA for-
mation (to 1.1%), SA addition also induced Ca2+ mobilization. Extracellular addi-
tion of calcium ions (10 mM) or the calcium ionophore A23187 also enhanced RA 
levels [64]. SA was shown to lower the cytoplasmic pH by inhibition of the plasma 
membrane H+-ATPase. The RA content was increased to about 2.25-fold of the 
control level [99].

Ocimum basilicum Undifferentiated in vitro cultures of basil (Ocimum basilicum) 
were investigated by Kintzios et al. [88]. Leaf-derived suspension cultures accumu-
lated about 10% of the cell DW as RA. Immobilization in calcium alginate resulted 
in a dramatic decrease of the RA level. Immobilization in test tubes at high cell 
density (25 × 104 cells/ml; approximately 4 ml volume; mini-bioreactor), in con-
trast, resulted in highly enhanced RA production and RA concentrations of 2% of 
the cell DW could be achieved. RA was also determined in the medium with about 
5  mg/ml in the first week of the experiment [113]. Nodal shoot explants and 
suspension- cultured cells of Ocimum basilicum were incubated in a small bioreac-
tor by [87]. They reported increased growth and RA accumulation in the bioreactor- 
cultivated plant material. Highest RA levels (0.02% of the DW) were found in the 
organized plant material.

Addition of YE (0–5 g/l) positively influenced RA formation in basil callus cell 
lines from 0.67% in controls to 2.3% in the DW on medium with 5 g/l YE [63].

A red-colored cell line of basil accumulated RA and anthocyanins, both of which 
arise from the general phenylpropanoid pathway. Strazzer et al. [144] chose a stable 
anthocyanin-producing cell line that also accumulated 0.8 mg/g fresh weight RA 
and subjected these cells to mechanical stress (enhanced agitation) and light stress. 
Both treatments led to increased RA accumulation (up to 1.9 mg/g fresh weight for 
combined light and mechanical stress), and in parallel anthocyanin accumulation 
was enhanced as well. Since both biosynthetic pathways require phenylpropanoid 
precursors, the overall flux into the phenylpropanoid pathway must have increased. 
The authors also propose that both stressors might increase the formation of reactive 
oxygen species which can be quenched by both, RA and anthocyanins.

In vitro shoot regeneration from basil nodal explants was performed by [84]. 
They found highest RA levels (approximately 40 mg/g DW) in fully acclimatized 
plantlets. The effect of benzyladenine on RA accumulation was dependent on the 
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basil cultivar. In the anthocyanin-producing variety, the accumulation of anthocyanin 
and RA were inversely correlated with the benzyladenine concentration. The same 
group used different culture vessel types for the micropropagation of basil shoots. A 
prominent difference with respect to RA accumulation (approximately 16% of the 
cell DW compared to 4% in other culture systems) was observed, which was 
inversely correlated with biomass accumulation [83].

Orthosiphon aristatus Orthosiphon aristatus (Java tea) was first used as suspen-
sion culture for the production of RA by Sumaryono et al. [152] and Sumaryono and 
Proksch [151]. These cells synthesized about 1–2 μmol RA per g fresh weight. After 
elicitation with YE (4–6 g/l), RA accumulation increased to 10 μmol/g fresh weight 
3–4 days after elicitor addition; decarboxylated RA was found as well.

Cell cultures of Orthosiphon aristatus established from plants from different 
locations were analysed with respect to their growth characteristics. Highest RA 
contents ranged between 4.5% and 5.0% of the cell DW [100].

Glechoma hederacea A suspension culture of Glechoma hederacea accumulated 
up to 25.9% RA in the cell DW in CB2-medium [41] in only 7 days of culture. 
Besides, lower amounts of caffeic acid and chlorogenic acid were detected. This is 
one of the highest levels of RA accumulation described so far.

Lavandula vera Several aspects of medium optimization and elicitation have been 
evaluated in the course of investigations on Lavandula vera suspension cultures. RA 
was identified as the main phenolic metabolite [92]. Linsmayer and Skoog medium 
was used as the basic medium. Several medium components were varied and finally 
an optimized medium presented [77, 123]. Raising the sucrose content of the 
medium from 3% to 7% strongly reduced the biomass accumulation to 45% of the 
control but at the same time dramatically enhanced the RA yield to more than sev-
enfold of the control [75]. Doubling the phosphate concentration resulted in 
enhanced growth (131%) and enhanced RA production (206% compared to the con-
trol) [74]. Reduction of the medium’s ammonium concentration to ¼ enhanced RA 
accumulation to 2.7 times of the control level (1.5% of the DW)  but still ensured 
growth. Increasing the level of ammonium ions delayed the onset of RA biosynthe-
sis and reduced the overall accumulation. Higher nitrate levels in the medium were 
reported to be beneficial for RA accumulation [76]. A combination of optimized 
medium parameters (NH4NO3, KNO3, and KH2PO4) resulted in a 27-fold RA accu-
mulation (17.9% of the cell DW) [123]. Feeding of the precursor phenylalanine 
strongly increased the amounts of caffeic acid and raised RA accumulation to 128% 
of the control level [119].

RA is mostly accumulated intracellularly. Adding the resin Amberlite XAD4 or 
a mixture of 4% polyethylene glycol and 7.5% dextran to the liquid medium as a 
two-phase culture system resulted in a release of RA to the extracellular phase. The 
total RA accumulation in presence of XAD4 was slightly increased (115% of con-
trols), but only 6.4% of the total amount of RA was adsorbed to the resin. Cultivation 
with polyethylene glycol and dextran as second phase strongly reduced biomass 

S. Pezeshki and M. Petersen



39

accumulation, although the content of RA per cell remained unchanged. About 12% 
of the total RA amount was found in the extracellular phase [122].

Further optimization of RA production by Lavandula vera cell cultures was done 
in 3 l-bioreactors with respect to dissolved oxygen concentration, agitation speed 
and temperature with the result of doubling the RA production (3.5 g/l) compared 
to shake flask cultures [52, 120, 121] .

A selection of putatively high producing cell lines was achieved by applying a 
fluorinated phenylalanine derivative. As the best result, an enhanced RA accumula-
tion from 0.5% of the cell DW to approximately 1% was observed [53].

A way of enhancing secondary metabolite production is elicitation which was 
also applied to Lavandula vera cultures. Different biotic elicitors such as bacterial 
homogenates and cell wall preparations did not result in increased RA accumulation 
[91]. An abiotic elicitor, vanadyl sulfate, was added to the culture 11  days after 
inoculation. The highest RA accumulation (280% of the control level) was observed 
with 25 mg/l vanadyl sulfate after 12 h. As an additional effect more RA was found 
extracellularly [49]. The addition of benzothiadiazole had only small effects, 
whereas elicitation with MeJA (50 μM) on day 11 enhanced RA accumulation 2.4 
times [50]. Here, the best elicitation result in Lavandula vera suspension cultures 
was about 12.6% RA in the dry cell biomass (calculated with the published data).

Lavandula officinalis Common lavender cultivated as in vitro culture was investi-
gated by Nitzsche et al. [115]. Suspension cultures contained about six to ten times 
the amount of RA as normal plants. Interestingly, here RA was also secreted to the 
medium, which has not been described frequently. Usually, secreted RA is quickly 
decomposed, e.g. by peroxidases (own unpublished observations) and thus cannot 
be identified as RA anymore. Application of jasmonic acid or stress by oxygen 
depletion changed the profile of phenolic metabolites but did not increase the RA 
content.

Satureja khuzistanica The Iranian species Satureja khuzistanica was used to estab-
lish a callus culture for RA production. On B5 medium with 5% sucrose, callus cells 
accumulated 7.5% RA in the DW [136]. Suspension cultures of the same species 
showed much higher RA contents (18% of DW) after 21 days [137]. It was shown 
that reducing the nitrogen content to ¼ decreased growth slightly and RA accumu-
lation severely to 3.8% of the cell DW.

Melissa officinalis Although Melissa officinalis, lemon balm, is one of the most 
important RA-containing medicinal plants, in vitro cultures of Melissa officinalis 
are barely investigated. Extracts of lemon balm are used against Herpes simplex 
infection due to their content of phenolic compounds; the most important of them is 
RA. Besides RA, melitric acids A and B (Table 2.1) have been detected in Melissa 
officinalis [2]. Suspension cultures of lemon balm have been characterized and used 
as source for the isolation of cDNAs and genes for PAL, 4CL and RAS. Suspension 
cultures accumulated up to 6.7% of the cell DW as RA after 6 days of cultivation. 
The effect of increased sucrose concentrations was not as prominent as observed for 
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suspension cultures of Coleus blumei [171, 172]. Hot water extracts of whole in 
vitro cultured lemon balm plants were analysed by Barros et al. [9]. They showed a 
wide variety of phenolic acids in the plant material, of which sagerinic acid 
(Table 2.1) was dominant followed by lithospermic acid and RA (which commonly 
is named as the dominant phenolic acid). Attempts to increase the RA content in 
Melissa officinalis shoot cultures by treatment with 200 ppb ozone for 3 h resulted 
in a transient increase of the RA content (30 mg/g fresh weight) at 2 h after starting 
the ozone treatment [161] .

Ocimum sanctum Holy basil (Ocimum sanctum, syn. O. tenuiflorum) is cultivated 
for medicinal and religious purposes because of its essential oil composed of several 
phenolic compounds (e.g. eugenol, isoeugenol, estragol). It also contains other phe-
nolic antioxidants, mainly RA (0.012–0.025% of the DW). Callus cultures derived 
from different plant organs showed RA concentrations of 0.14–0.27% of the DW 
[65].

Rabdosia rubescens The effect of the sucrose concentration and the ratio of NO3
− 

to NH4
+ on specialized metabolism and plant regeneration were tested by Dong 

et al. [40]. The best result with respect to RA was achieved with 5% sucrose and a 
NO3

−/NH4
+ ratio of 2:1.

Agastache rugosa The effect of MeJA on RA accumulation was investigated in 
suspension cultures of Agastache rugosa (Korean or Indian mint). 50 μM MeJA 
proved to be optimal for the stimulation of RA accumulation from 7.8 to 36.6% of 
the cell DW. Also other phenolic acids were present in higher levels. The expression 
levels of PAL, C4H and 4CL correlated well with the increase in the RA level [86].

2.3.2  Species of the Family Boraginaceae

Anchusa officinalis Anchusa officinalis was one of the first species taken into 
culture for the production of RA and the investigation of its biosynthesis. 
Suspension cultures accumulated up to 6% of the cell DW as RA and the accu-
mulation phase correlated with the linear growth phase. Early biosynthetic inves-
tigations established that 20–30% of exogenously applied, radioactively labelled 
phenylalanine or tyrosine was incorporated into RA [33]. Microspectrophotometric 
investigations suggested that RA is accumulated in the vacuoles [20]. Ellis [44] 
also studied the accumulation of RA in clonal cell lines derived from single cells 
with known productivity. This showed that high-producing mother cells did not 
result in high- producing clonal cell lines. After several subcultures each cell line 
established a quite stable level of RA production, which was not related to the 
RA production level of the mother cell. The optimization of the culture medium 
with respect to macronutrients (sucrose, alternative sugars, nitrate, phosphate 
and Ca2+) and phytohormones (2,4-D, NAA, IAA and 2-chloro-4-fluorophenoxy-
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acetic acid as auxins; BAP, kinetin and zeatin as cytokinins) was undertaken by 
De Eknamkul and Ellis [34, 35]. Surprisingly, a combination of all optimized 
levels of single macronutrients did not result in increased growth and RA pro-
duction. Variations of phytohormone contents were performed in standard 
B5-medium. The highest RA levels of 12% of the DW were achieved in medium 
with 0.25 mg/l NAA as auxin, while medium with 2,4-D showed a decrease in 
RA accumulation. In contrast to previous results, the onset of RA synthesis was 
shifted to the exponential growth phase.

Su and Humphrey [145] established a high density culture of Anchusa officina-
lis with perfusion and tested several growth media. Using this technique the RA 
yield was doubled in comparison to control cultures. This, however, was only 
based on higher cell densities (38  g DW/l compared to approximately 14  g/l) 
while the RA content in the cells (approximately 3.3% of the DW) decreased 
slightly. The principle of perfusion culture was transferred to a membrane-aerated 
bioreactor. Here, the cell density was at 26 g/l and the calculated cellular RA con-
tent approximately 4.6% of the DW [146]. Optimization of the perfusion strategy 
in shake flasks led to higher productivity with respect to RA. The best result was 
obtained by growing the culture as batch culture in B5 medium with 3% sucrose 
and 0.25  mg/l NAA for 10  days, followed by perfusing the culture with B5 
medium containing 6% sucrose and the same NAA concentration at a constant 
perfusion rate of 0.1/day. The obtained cell density was 35 g/l and 11.3% RA were 
found in the cell DW [149]. This procedure has been transferred to a stirred-tank 
bioreactor with similar productivity. However, the suspension cells proved to be 
very sensitive to agitation, aeration conditions and the dissolved oxygen concen-
tration [148]. The inoculum size strongly influenced the productivity with best 
results at 4 g DW/l [147]. The results with a perfusion culture of Anchusa offici-
nalis have been summarized by Su et al. [150].

Lithospermum erythrorhizon Suspension cultures of Lithospermum erythrorhizon 
were mainly investigated with respect to their accumulation of the red pigment shi-
konin. However, unpigmented cell cultures also accumulate RA (0.55% of the DW) 
and lithospermic acid [48]. Interestingly, the accumulation of phenolic acids and 
shikonin cannot occur under the same culture conditions but require different cul-
ture media. Elicitors such as YE and MeJA were added to increase the RA amount 
up to 0.22% of the cell fresh weight [110, 111]. Elicited cell cultures were mainly 
used to investigate the biosynthetic pathway for RA in this species. Besides RA, 
Yamamoto et  al. [181, 182] identified RA-related compounds in Lithospermum 
erythrorhizon such as rhabdosiin, lithospermic acid and lithospermic acid B as well 
as lithospermic acid B glucoside (Table 2.1). Among these, lithospermic acid B was 
the predominant compound. Addition of MeJA or YE strongly increased the forma-
tion of RA by factors of 10- and 4-fold of the control cells, respectively. At the same 
time, the activities of PAL, 3H and 3’H were increased while RAS activity remained 
at a rather low level [117].
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2.3.3  Non-vascular Plant Species

Anthoceros agrestis (Anthocerotaceae) The occurrence of RA in non-vascular 
plants like the hornworts was first described by Takeda et al. [155, 156]. Hornworts 
are among the earliest land plants to evolve. Nevertheless, hornworts contain RA 
and related compounds like anthocerotonic acid, megacerotonic acid and anthocer-
odiazonin (Table 2.1) as well as other phenolic compounds [162, 163]. Cell cultures 
of Anthoceros agrestis have been established by Binding and Mordhorst [15] and 
further investigated with respect to RA accumulation and biosynthesis by Petersen 
and coworkers (e.g. [125, 165]). Not all enzymes found in Lamiaceae for RA bio-
synthesis have to date been found in Anthoceros as well and thus the biosynthetic 
pathway is still under investigation. Suspension cultures of Anthoceros agrestis can 
accumulate quite high levels of RA. Pezeshki has measured up to 9% RA in the cell 
DW in a hormone-free B5-derived medium with 1% sucrose after 2 weeks of culti-
vation [133], whereas higher sugar content (2%) resulted in a lower RA accumula-
tion. In the latter medium, however, an accumulation of RA 3′-O-β-d-glucoside at 
the beginning of the culture period was observed [165] (see also Chap. 9 of this 
book). With respect to the intracellular RA concentrations Anthoceros agrestis sus-
pension cultures are in no way inferior to cell cultures of many higher plant species. 
It must, however, be mentioned that the cell mass increase of these cultures is lower.

2.4  Production of Rosmarinic Acid in Hairy Roots

Hairy roots have become a common type of axenic plant in vitro culture due to their 
easy maintenance and rapid biomass increase. Usually hairy roots are established by 
infecting plant material with Rhizobium rhizogenes (formerly Agrobacterium rhizo-
genes) strains, which transfer genes of their Ri plasmid to the plant cells. These are 
stably integrated into the plant genome and direct the plant cells to produce roots. 
The developing roots often carry high numbers of root hairs that give the roots a 
“hairy” appearance [108]. In recent years, efforts have been made to optimize the 
production of plant metabolites in hairy root cultures of plants that contain the very 
same metabolites or to insert new pathways for small molecules or proteins of inter-
est into model plants [51, 62, 141, 160].

Hairy root cultures of members of both, the Boraginaceae and Lamiaceae, have 
been used for the production of RA and other caffeic acid derivatives. As of April 
2016, 36 scientific articles had been published on this topic.

2.4.1  Hairy Roots of Lamiaceae Species

The production of RA in hairy root cultures of plants in the Lamiaceae is well docu-
mented (Tables 2.2 and 2.3). Hairy roots have several advantages with respect to 
undifferentiated cell cultures or plants. The hairy root material contains mostly the 
same metabolites as the source plant but is more stable than undifferentiated plant 

S. Pezeshki and M. Petersen

https://doi.org/10.1007/978-3-319-67903-7_9


43

Table 2.2 Hairy root cultures of Lamiaceae species established for the production of RA and 
related compounds. For experiments with Salvia miltiorrhiza see Table 2.3

Plant species Compound Experiment Reference
Agastache foeniculum RA Establishment of HR, 4-fold higher 

production of RA (0.02% DW) than 
in non-transformed roots

[116]

Coleus blumei RA Establishment of HR and normal 
roots, comparison of biomass and 
RA content. HR had 2.8-fold higher 
RA content (5% DW). Effects of 
MeJA and YE on HR

[11]

Coleus blumei RA, caffeic acid, 
chlorogenic acid

Transformation of HR with the 
Arabidopsis thaliana PAL gene 
under the control of the constitutive 
CaMV 35S promotor decreases the 
formation of RA and chlorogenic 
acid, but enhances caffeic acid levels

[10]

Coleus blumei RA and other 
phenolic acids

Endogenously synthesized elicitor 
β-cryptogein causes excretion of RA 
from the cells to the medium

[166]

Coleus blumei RA Establishment of HR, RNAi- 
mediated suppression of HPPR or 
RAS reduced RA by 92%, 
overexpression led to RA levels of 
176% of the control HR lines (1.73% 
DW)

[73]

Coleus blumei RA Comparison of different tissues 
revealed high stability of production 
of RA in HR

[13]

Coleus forskohlii RA and other 
natural products

Analysis of various media for HR 
cultures with respect to biomass and 
RA accumulation. Comparison of the 
elicitors YE, SA and MeJA. Increase 
of RA content up to 3.4-fold higher 
with MeJA than control

[98]

Dracocephalum 
kotschyi

RA and 
flavonoids

Establishment of HR, up to 15-times 
higher production of RA in HR than 
in non-transformed roots (max. 
0.15% DW)

[47]

Dracocephalum 
moldavica

RA Establishment of HR, analysis of 
different media, tenfold higher RA 
content than in untransformed roots 
(7.8% DW)

[173]

Hyssopus officinalis RA and other 
phenolic acids

Comparison of different media with 
respect to RA amount. Highest value 
was 6% DW, 60% higher than in 
callus, cell suspension culture and 
1 year old field plant roots. Detection 
of nine other phenolic acids in HR

[89]

(continued)
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Table 2.2 (continued)

Plant species Compound Experiment Reference
Nepeta cataria RA Elicitation of HR cultures with 

auxins and polyamines led to 
increase in biomass and RA 
accumulation (1.92% DW)

[185]

Ocimum basilicum RA and related 
phenolic acids

Comparison of various clones of HR 
cultures with respect to RA amount. 
Highest amount was 14.1% DW

[154]

Ocimum basilicum RA Increased production of RA in HR 
and elicited HR compared with 
untreated or untransformed roots. 
Exudation of RA into medium upon 
treatment with Pythium ultimum

[8]

Ocimum basilicum RA and other 
antioxidants

Production of RA as major 
antioxidant, dependent on cultivar 
(up to 7.6% DW)

[143]

Salvia officinalis RA Comparison of two lines of HR 
cultures transformed with different 
strains of Agrobacterium and with 
untransformed HR, up to 2.3-fold 
increase in RA accumulation 
(approx. 4.5% DW)

[60]

Salvia officinalis RA Comparison of shoot and HR 
cultures with respect to accumulation 
of antioxidants and biomass (shoot 
2.6%, HR 3.5% DW)

[57]

Salvia wagneriana RA Establishment of culture, no 
elicitation of RA with JA

[135]

DW dry weight, HR hairy roots, JA jasmonic acid, MeJA methyl jasmonic acid, SA salicylic acid, 
YE yeast extract

cells. Moreover, the yield of RA and other caffeic acid derivatives can be increased 
by eliciting with e.g. MeJA or SA.

A problem remains during the downstream processing of the phenolic acids: the 
extraction of RA from cells and organs is a tedious process. For biotechnological 
use, exudation of the phenolic metabolites into the medium would be an important 
step for a simpler and cheaper production. Two publications deal with this problem. 
In 2002, Bais and coworkers treated hairy roots of RA-producing Ocimum basili-
cum with Pythium ultimum. Upon this fungal in situ challenge, the hairy roots pro-
duced droplets on the roots tips with concentrated RA solutions. This behavior was 
absent with other fungi or in untreated roots. It has been hypothesized that this 
strategy might be useful for the plant root to prevent infections with soil pathogens, 
as RA showed effective antimicrobial activity [8].

The oomycete Phytophthora cryptogea produces ß-cryptogein. This protein-
aceous elicitor causes activation of phenylpropanoid metabolism via stimulation of 
calcium-dependent pathways. By transforming Rhizobium rhizogenes with the cod-
ing sequence for β-cryptogein, Vuković and her colleagues obtained modified 
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Coleus blumei hairy root clones with the ability to produce the elicitor endoge-
nously. These cultures were able to secrete RA and caffeic acid into the culture 
medium [166].

A modulation of product amounts can not only be achieved by changing the 
medium or eliciting the root culture, but also by manipulating the expression pattern 
of genes for enzymes of RA biosynthesis. Hücherig and Petersen [73] used tech-
niques of RNAi suppression and overexpression with a constitutive promotor to 
modulate gene expression for HPPR and RAS in hairy roots of Coleus blumei. They 
showed that the insertion of interfering hairpin RNA of both genes led to decreased 
expression values of HPPR and RAS and accordingly to reduced RA accumulation. 
One HPPR-RNAi-line accumulated only about 8% of the RA amount found in con-
trol lines (1.73% of DW in controls). In contrast, an overexpression of these genes 
led to a 1.8-fold increase in RA accumulation compared to control lines.

By far the most publications on RA production in hairy roots are dealing with the 
plant Salvia miltiorrhiza (Table  2.3), the red or Chinese sage, named for its red 
ochre-colored roots. It is an important plant in traditional Chinese medicine, also 
known as Danshen, Dan Shen or Tan Shen. Two substance groups dominate the 
constituents of the plant extracts, namely phenolic acids (RA, lithospermic acids, 
and salvianolic acids) and diterpenes (tanshinones). Danshen is employed for the 
treatment of various diseases associated with malfunctioning blood flow, cardiovas-
cular and cerebrovascular diseases, such as coronary heart disease, hypertension, 
angina pectoris, ischemic strokes and hyperlipidemia. It is used in various phyto-
pharmaceutical forms, for oral application or injection, as solids, liquids or aerosols, 
as single preparation or in combination with other drugs. Clinical and pharmaco-
logical studies of bioactive metabolites isolated from Danshen have focused on 
Danshensu, which is DHPL, salvianolic acid B and tanshinone IIA [30, 190].

Xiao et  al. [177] investigated the production of lithospermic acid B in hairy 
roots. It has been hypothesized that lithospermic acid B is directly derived from 
RA. After elicitation of hairy root cultures of S. miltiorrhiza with silver ions (Ag+), 
they investigated accumulation of RA, lithospermic acid B and intermediates of the 
RA biosynthetic pathway as well as gene expression of enzymes involved in this 
pathway and found an inverse proportionality of RA and lithospermic acid accumu-
lation after elicitation. This finding, combined with metabolic profiling and gene 
activity measurements, led to the conclusion that RA is the precursor of lithosper-
mic acid B.

Other publications presented a genetic engineering approach to stimulate the 
accumulation of phenolic acids in S. miltiorrhiza. Xiao et al. [178] used an overex-
pression/suppression approach to manipulate the expression patterns of genes of the 
RA biosynthetic pathway. The upregulation of the single genes for c4h, tat and hppr 
as well as suppression of the 4-hydroxyphenylpyruvate dioxygenase gene (hppd) led 
to an increase of RA, lithospermic acid B or both. The gene product HPPD partici-
pates in the tyrosine catabolic pathway by catalyzing the conversion of 
4- hydroxphenylpyruvate to homogentisate. A co-overexpression of tat and hppr 
resulted in the highest accumulation of both RA and lithospermic acid, 4.3 and 3.2- 
fold higher than in the wild type, respectively.
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Table 2.3 Hairy root cultures of Salvia miltiorrhiza (Lamiaceae) established for the production 
of RA and related compounds

Compounds Experiment Reference
Lithospermic acid B, 
RA and related 
compounds

Establishment of HR, comparison of different media 
with respect to accumulation of lithospermic acid B 
(between 0.73 and 1.61% DW) and RA (0.48% DW) 
and increase of biomass

[25]

Phenolic acids Methyl viologen inhibited biomass production and 
decreased content of phenolic acids in HR

[24]

Phenolic acids, RA and 
lithospermic acid B, 
other natural products

Increase of phenolic acids and other natural products 
and biomass upon elicitation with YE (up to 2.89% 
lithospermic acid B and 2.98% RA in DW)

[27]

RA and related 
compounds

Comparison of two elicitors, YE and silver ions. 
Increase of RA accumulation and gene expression for 
enzymes of RA biosynthesis for both elicitors, effects 
with YE higher (up to 8% DW)

[183]

RA and lithospermic 
acid B

Elicitation of HR with MeJA increased RA and 
lithospermic acid B approx. 2–8-fold higher than 
untreated control (RA up to 6.02% DW, lithospermic 
acid B up to 19.3% DW). Gene expression was elevated 
for RA biosynthesis genes

[176]

RA, salvianolic acid B, 
DHPL (danshensu)

Dependence of phenolic acid content on concentration 
of MeJA elicitor in medium and growth stage of 
HR. Accumulation in DW, RA 14.35%, salvianolic acid 
B 1.59%, DHPL 0.51%

[29]

RA and lithospermic 
acid B

Elicitation of HR cultures with Ag+ led to approx. 
3-fold increase of lithospermic acid B (to 18.8% DW), 
while RA content decreased. Analysis of gene 
expression and intermediates suggest RA as precursor 
for lithospermic acid B

[177]

RA and lithospermic 
acid B

Overexpression of genes of RA biosynthesis and 
suppression of genes for by-products led to 3.2–4.3-fold 
increase of phenolic acids in HR compared to 
untransformed wildtypes

[178]

RA, salvianolic acids Effects of MeJA and YE on accumulation of RA and 
salvianolic acids. MeJA elevated the accumulation of 
salvianolic acid B up to 7.11% and RA up to 3.38% 
DW, YE increased RA content up to 5.71% DW but 
suppressed salvianolic acids

[189]

Salvianolic acids and 
RA

Effects of sugar and other nutrients of the medium on 
accumulation of salvianolic acids in whole plants, 
seedlings and HR

[170]

Phenolic acids, RA and 
lithospermic acid B

Effects of various concentrations of abscisic acid and 
fluridone on growth and accumulation of phenolic acids 
in HR

[31]

(continued)
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Using the overexpression of allene oxide cyclase, Gu et al. [61] were also able to 
enhance the accumulation of secondary metabolites, namely tanshinone IIA, RA 
and lithospermic acid B in hairy roots of Salvia miltiorrhiza. Allene oxide cyclase 
catalyzes a reaction in the pathway toward jasmonates, which are a group of phyto-
hormones that are induced in response to various stresses [16]. Jasmonates are 
known to trigger plant defence mechanisms, especially the production of secondary 
metabolites. MeJA, for instance, is an important elicitor. Overexpression of the 
Salvia miltiorrhiza allene oxide cyclase gene in hairy root cultures led also to an 
increase in RA biosynthetic genes encoding PAL, HPPR and 4CL.

2.4.2  Hairy Roots of Boraginaceae Species

Two species of the Boraginaceae family (Lithospermum erythrorhizon and 
Eritrichium sericeum) have been used to establish hairy roots for the production of 
RA and related compounds (Table  2.4). Lithospermum erythrorhizon, the purple 
gromwell, accumulates RA, lithospermic acid and rabdosiin, a condensation prod-
uct of two molecules of RA (Table 2.1). Another interesting natural substance from 
this species is shikonin, a prenylated naphthoquinone. The content of phenolic 

Table 2.3 (continued)

Compounds Experiment Reference
RA, lithospermic acid 
B and other natural 
products

Overexpression of allene oxide cyclase promoted 
biosynthesis of natural products in HR, RA increased 
2.1-fold compared to wildtype (up to 0.28% DW), 
lithospermic acid B accumulated 1.8-fold more than 
wildtype and 2.3-fold more than blank vector control 
(up to 1.90% DW)

[61]

RA, salvianolic acid B 
and caffeic acid

Gene expression study of RA biosynthetic genes after 
elicitation with MeJA, LC-MS-analysis of phenolic 
acids. Both expression and accumulation were elevated 
several hours after induction

[97]

RA, lithospermic acid 
B

[Ring-13C]-labeled phenylalanine and UPLC/Q-TOF 
measurement to analyze the biosynthetic pathway of 
phenolic acids

[39]

RA, salvianolic acid B 
and tanshinones

Endophytic bacteria decrease the production of 
phenolic acids and biomass and increase the production 
of tanshinones

[184]

RA and salvianolic 
acid B

Treatment of HR with MeJA and fungal extracts, 
expression and activity analysis of phenylpropanoid and 
tyrosine-derived pathway (RA max 4.5% DW)

[188]

RA, salvianolic acid B 
and tanshinones

Silver ions as elicitor for secondary metabolites, 
analysis of gene expression (up to 1.5% DW)

[180]

RA and salvianolic 
acid B

Study on transcription factors for RA biosynthesis [67]

DW dry weight, HR hairy roots, JA jasmonic acid, MeJA methyl jasmonic acid, SA salicylic acid, 
YE yeast extract
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compounds in hairy roots was considerably lower than in suspension cultures and 
RA was hardly detectable [181]. Thus, this culture system is inferior for biotechno-
logical uses.

Bulgakov et al. [19] described interesting effects of the agrobacterial rolC gene. 
This gene is located on the Ri plasmid, which is transferred during infection of the 
plant with Rhizobium rhizogenes. RolC causes inhibition of phenolic acid produc-
tion (namely RA and rabdosiin) in Lithospermum erythrorhizon and Eritrichium 
sericeum callus and hairy root cultures, leading to depletion of both substances to a 
level two- to three-fold lower than in untransformed plant material. Yet, the effects 
are reversible with cantharidin, an inhibitor of serine/threonine phosphatases, which 
has led to the hypothesis, that rolC affects shikimate metabolism via a set of regula-
tory phosphatases, which in return can be affected by cantharidin. This finding was 
unexpected because several publications had demonstrated that transgenic hairy 
roots bearing the rolC gene can produce more secondary metabolites without fur-
ther treatment than untransformed cultures.

2.5  Production of Rosmarinic Acid and Related Caffeic Acid 
Esters in Microorganisms

In recent years, several efforts to introduce a biosynthetic pathway for RA and 
related phenolic metabolites into Escherichia coli have been reported. The first step 
was taken by Kim et  al. [85] who inserted coding sequences for 4CL and 
hydroxycinnamoyl- CoA shikimate hydroxycinnamoyltransferase (HST) or 
hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HQT) into E. coli 
and fed different hydroxycinnamic acids to the bacteria. These were capable to pro-
duce hydroxycinnamoylshikimate or hydroxycinnamoylquinate, metabolites 
closely related to RA. They circumvented the necessity to introduce enzymes neces-
sary to hydroxylate the benzene ring, which, in plants, requires cytochrome P450s. 

Table 2.4 Hairy root cultures of Boraginaceae species established for the production of RA and 
related compounds

Plant species Compounds Experiment Reference
Lithospermum 
erythrorhizon

Lithospermic acid B, 
RA, rabdosiin and 
other natural 
products

Analysis of HR in M-9 medium 
for caffeic acid derivatives and 
other natural products

[181]

Eritrichium sericeum 
and Lithospermum 
erythrorhizon

Rabdosiin and RA Presence of rolC in HR inhibits 
production of phenolic acids 
compared to control cultures. 
MeJA-triggered (1 μM) E. 
sericeum HR can accumulate up 
to 3.41% and 6.92% of the DW 
as rabdosiin and RA, 
respectively

[19]

DW dry weight, HR hairy roots, MeJA methyl jasmonic acid
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Therefore, their approach can be viewed as a biotransformation rather than a de 
novo synthesis of hydroxycinnamic acid esters. To increase the amount of acceptor 
substrates, the authors mutated different enzymes of the shikimate pathway, leading 
either to the production of quinate or shikimate esters [85].

The next step was taken by Bloch and Schmidt-Dannert in 2014 (Fig. 2.2). They 
took advantage of the fact that RAS, the key enzyme for RA production and respon-
sible for esterification of 4-coumaroyl-CoA and pHPL, can also use caffeoyl-CoA 
and DHPL as substrates, since the enzyme has a broad substrate promiscuity regard-
ing the hydroxylation in meta position [94, 138]. In plants, these hydroxyl groups 
are added after the RAS reaction by cytochrome P450 reactions. The engineered 
pathway starts for both, the acceptor and the donor, with pHPP from the bacterial 
shikimate pathway. The acceptor molecule DHPL is produced by addition and over-
expression of two enzymes, a dehydrogenase (HdhA; hydroxyacid dehydrogenase 
from Lactobacillus delbrueckii ssp. bulgaricus) and a hydroxylase complex 
(HpaBC; 4-hydroxyphenylacetate 3-hydroxylase from E. coli), using FADH2 (and 
NAD(P)H + H+) as cofactors. The donor is synthesized by using three enzymes. In 
the bacterial pathway to aromatic amino acids, pHPP is transaminated to tyrosine. 
An inserted tyrosine ammonia-lyase (TAL from Rhodobacter sphaeroides) deami-
nates tyrosine to 4-coumaric acid, which is hydroxylated with the HpaBC complex 
described above to build caffeic acid. After CoA activation with an inserted 4CL 
(At4CL2 from Arabidopsis thaliana), an introduced RAS (CbRAS from Coleus 
blumei) produces RA. Alongside RA, isorinic acid (ester of caffeic acid and pHPL) 
was observed. The introduction of RAS from other plants species, namely Lavandula 
angustifolia or Melissa officinalis, resulted in higher production of RA and isorinic 
acid (1.8 ± 0.3 μM RA, 5.3 ± 0.7 μM isorinic acid with MoRAS; approximately 
2.5 mg phenolic acids/l). Both metabolites were released into the medium and the 
amount of product was increased when appropriate precursors were fed to the 
medium. The authors stated, however, that an industrial use of this modified E. coli 
needs either feeding of expensive precursors like pHPL or DHPL, which would 
elevate production costs into unprofitable ranges or to use bacterial strains with 
upregulated shikimic acid and tyrosine biosynthetic pathways, so that the precursors 
would be produced autotrophically [17].

A similar approach was followed by Jiang et  al. [78] using a tyrosine- 
overproducing E. coli strain as a platform [7]. Furthermore, coding sequences for an 
Arabidopsis thaliana 4CL, a mutated d-lactate dehydrogenase (LDHY52A) from 
Lactobacillus pentosus [186], the HpaBC complex from E. coli BW25113 and a 
synthetic CbRAS sequence (optimized for expression in E. coli) were used. The 
final transformed E. coli strain was able to produce approximately 133 mg RA per 
litre of culture besides approximately 55 mg/l caffeoyl-phenyllactate.

Recently, Zhuang et  al. [192] achieved the formation of 18 RA analogues by 
feeding E. coli BLRA1 transformed with a 4CL from Arabidopsis thaliana and 
RAS from Coleus blumei with different donor substrates (4-coumaric acid, caffeic 
acid, ferulic acid, 3,4-dihydroxyphenylpropanoic acid and 4- hydroxyphenylpropanoic 
acid) and various acceptors (pHPL, DHPL, phenyllactic acid, mandelic acid and 
tyrosol).
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2.6  In Vitro Formation of Non-natural Hydroxycinnamic 
Acid Esters and Amides by “Rosmarinic Acid Synthase”

RAS is the essential ester-forming enzyme in the biosynthetic pathway towards RA 
[130]. In vivo, this enzyme couples a hydroxycinnamoyl unit activated as CoA thioes-
ter (4-coumaroyl-CoA, caffeoyl-CoA) to the aliphatic OH-group of a phenylpyruvate 
derivate. RAS proteins from lavender as well as Coleus blumei heterologously 
expressed in Escherichia coli displayed unexpected substrate promiscuity. The recom-
binant proteins were shown to form esters as well as amides and accepted a consider-
able variety of compounds leading to products that had not yet been described, e.g. 
hydroxycinnamoyl-d-phenylalanine, hydroxycinnamoyl-d-tyrosine, hydroxycinnam-
oyl-d-DOPA, hydroxycinnamoyl-phenethylamine, hydroxycinnamoyl- tyramine, and 
hydroxycinnamoyl-tryptamine [94, 138].

Fig. 2.2 Formation of isorinic acid and rosmarinic acid in Escherichia coli as established by 
Bloch and Schmidt-Dannert [17]. HdhA  hydroxyacid dehydrogenase from Lactobacillus del-
brueckii ssp. bulgaricus, HpaBC 4-hydroxyphenylacetate 3-hydroxylase from E. coli, TAT tyro-
sine aminotransferase (endogenous), TAL tyrosine ammonia-lyase from Rhodobacter sphaeroides, 
4CL 4-coumarate CoA-ligase (At4CL2) from Arabidopsis thaliana, RAS rosmarinic acid synthase 
from Coleus blumei. Microbial enzymes are marked by boxes
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2.7  Conclusion and Outlook

RA and related metabolites are among those specialized metabolites in plants that 
are produced at the highest levels. Often, the contents in undifferentiated cells, such 
as callus and suspension cells, are considerably higher (sometimes exceeding 30% 
of the DW) than in the source plants. Undifferentiated cells, however, often lose 
their production capacity with increasing numbers of subcultivations. This disad-
vantage is less pronounced in differentiated organs. Here HR cultures are the most 
often established production systems. Up to now, however, the RA production levels 
in HR are lower (<20% of the DW) than in undifferentiated cells. Many production 
systems have been established, mostly at laboratory scale. With the exception of 
early attempts in the 1980s [164], these have not been developed further to semi- 
industrial or industrial scale. This may be due to the lack of commercial demand for 
these phenolic acids, since, despite the many biological effects of RA and related 
phenolic acids, medicinal applications have not been developed, perhaps with 
exception of Salvia miltiorrhiza and its extracted ingredients as traditional Chinese 
medicines.

Very recent approaches have shown that RA and similar metabolites can also be 
produced in genetically modified E. coli. Here, a combination of bacterial and plant 
genes have been used and the necessity of membrane-bound cytochrome P450 
enzymes circumvented. The amount of RA produced in prokaryotic systems 
(133 mg/l; [78]) is, however until now, not competitive with plant cell cultures (e.g. 
6.4 g/l in Salvia officinalis [72]).
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