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Abstract. The established construction of hierarchical B-splines starts
from a given sequence of nested spline spaces. In this paper we general-
ize this approach to sequences formed by spaces that are only partially
nested. This enables us to choose from a greater variety of refinement
options while constructing the underlying grid. We identify assumptions
that allow to define a hierarchical spline basis, to establish a truncation
mechanism, and to derive a completeness result. Finally, we present an
application to surface approximation that demonstrates the potential of
the proposed generalization.

Keywords: Tensor-product B-splines · Hierarchical B-splines · Adap-
tive refinement

1 Introduction

Hierarchical tensor-product B-splines are one of the major approaches to per-
form local refinement in geometric modeling and isogeometric analysis, besides
splines defined by control meshes with T-junctions (T-splines), locally refined
(LR) splines and polynomial splines over hierarchical T-meshes (PHT-splines).
See [3,16–18] and the references therein for more information on the latter three.

Hierarchical spline refinement can be traced back to the work of Forsey and
Bartels [6] on surface design using locally defined control meshes. Based on a
selection mechanism, a system of basis functions spanning the resulting hier-
archical spline space was established by Kraft in his PhD thesis [14]. Another
basis, which consists of truncated hierarchical B-splines, possesses improved prop-
erties (increased locality, partition of unity and strong stability) and has been
established more recently [8]. Its properties regarding stability, completeness and
approximation power have been analyzed in greater detail [9,19,22].

Hierarchical B-splines have found numerous applications due to their
good mathematical properties. They were used for surface reconstruction in
Computer-Aided Design [10,12]. Additionally, they were employed for perform-
ing numerical simulations using the powerful framework of isogeometric analysis
[1,2,15,20]. The recent article [7] discusses the potential of the truncated basis
for geometric design and isogeometric analysis.
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In addition to the work on applications, several authors proposed various
extensions and generalizations of the hierarchical construction. These include
extensions to Powell-Sabin splines [21], box splines and doubly hierarchical
splines as instances of more general generating systems [24], B-splines on tri-
angulations [11], hierarchical T-splines [5], and functions defined by subdivision
algorithms [23,25].

The established construction of hierarchical B-splines starts from a given
sequence of nested spline spaces. As a consequence, if the refinement process
inserts knot lines at some level, then they will automatically be present at all
higher levels, even if they are not needed in all parts of the domain. This may
lead to an unnecessary increase of the number of degrees of freedom. It should
be noted that this limitation is not present when using alternative constructions
such as T-splines, LR splines or PHT-splines.

In order to overcome the limitation caused by the sequential nature of hier-
archical B-spline refinement, while maintaining their good mathematical prop-
erties, we extend the construction to sequences formed by spaces that are only
partially nested. The proposed generalization enables us to choose from a greater
variety of refinement options while constructing the underlying grid. This addi-
tional flexibility is potentially useful when designing surfaces that possess creases
or similar features, and a related technique has been developed in the context
of subdivision surface modeling [13]. It might also open new perspectives for
adaptivity in isogeometric analysis by providing the opportunity to use different
refinement techniques (such as h- versus p-refinement) in different parts of the
computational domain.

In order to keep the presentation simple, in this paper we limit ourselves
to the discussion of partially nested refinement for bivariate spline spaces of
uniform degrees. We identify a number of assumptions that enable the definition
of a hierarchical spline basis, of a truncation operation to obtain the partition
of unity property, and the derivation of a completeness result.

The remainder of the paper consists of seven sections. We describe the frame-
work of our construction in the next section and establish a hierarchical spline
basis in Sect. 3. We then derive a characterization of the space spanned by the
basis and adapt the definition of the truncation operation to the non-nested
setting in the next two sections. The completeness properties of the basis are
analyzed in Sect. 6. We then present an application to least-squares approxima-
tion that demonstrates the power of the new construction before concluding the
paper with suggestions for future work.

2 Preliminaries

We consider a finite sequence of bivariate tensor-product spline spaces

V � = spanB�, � = 1, . . . , N,

which are spanned by spline bases B�. The upper index � will be called the level.
Each of the spline spaces is defined on the open unit square (0, 1)2.
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The spline bases B� consist of tensor-product B-splines that are defined by
two open knot vectors with boundary knots 0 and 1. We consider a uniform
polynomial degree p = (px, py) and use only single knots except for the boundary
knots that have multiplicity px + 1 and py + 1, respectively. The supports of the
basis functions are axis-aligned boxes in (0, 1)2.

We use the subspace relation to restrict the natural ordering of the levels to
a partial ordering. We say that level k precedes level �, denoted by k ≺ �, if k is
less than � and V k is a subspace of V �, i.e.

k ≺ � ⇔ k < � and V k ⊆ V �. (1)

The spaces are not necessarily nested. If they are, however, then the finer space
is assumed to have the higher level, i.e.

V k ⊂ V � ⇒ k ≺ �. (2)

Any finite sequence of spline spaces can be re-ordered such that this condition
is satisfied.

We present an example that will be used throughout the paper to illustrate
the discussion of notions and results.

Example. We consider C1-smooth biquadratic tensor-product spline spaces
(px = py = 2) on dyadically refined knots,

Dr,s = S2(0, 0, 0,
1
2r

, . . . ,
2r − 1

2r
, 1, 1, 1) ⊗ S2(0, 0, 0,

1
2s

, . . . ,
2s − 1

2s
, 1, 1, 1),

where S2 denotes the univariate spline space defined by a given knot sequence,
with positive integers r, s. Among them we use the spaces

V 1 = D3,3, V 2 = D4,3, V 3 = D3,4,

V 4 = V 5 = D4,4, V 6 = D5,4, V 7 = D4,6, (3)

which define the partial ordering

2 6
≺ ≺ ≺

1 4 ≺ 5
≺ ≺ ≺

3 7

(4)

of the seven levels. ♦

The functions in all spline spaces V � are Cs-smooth on (0, 1)2, where the
order of smoothness is given by

s = (px − 1, py − 1). (5)

More precisely, they possess continuous partial derivatives of order px − 1 and
py − 1 with respect to x and y, respectively. We shall denote the set of all
functions on an open subset X ⊆ (0, 1)2 with this smoothness as Cs(X).
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In addition to the spline spaces we consider an associated sequence of open
sets

π� ⊆ (0, 1)2, � = 1, . . . , N,

which will be called patches. We assume that these are mutually disjoint,

π� ∩ πk 	= ∅ ⇒ � = k.

We use the closures π� of the patches to define the domain

Ω = int
( N⋃

�=1

π�

)
⊆ (0, 1)2.

The part of the boundary of each patch that is shared with patches of a lower
level,

Γ � =
�−1⋃
k=1

πk ∩ π�,

is called the constraining boundary of the patch π�. Note that the constraining
boundary may be empty. In particular we have Γ 1 = ∅.

Example. We consider again the spaces (3), which are defined by the dyadi-
cally refined knot vectors. Figure 1a visualizes an associated sequence of patches,
which defines a subdivision of the domain Ω. In this case, the domain is also
the unit square. Additionally, Fig. 1b shows the knot lines of the spline spaces
within each patch.

♦

(a) (b)

Fig. 1. The subdivision of the domain into patches (a). The numbers (r, s) in each
patch specify the dyadically refined knot sequences that define the associated spline
spaces. The corresponding partially nested hierarchical mesh (b).
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We conclude this section by defining the partially nested hierarchical spline
space

H = {s ∈ Cs(Ω) : s|π� ∈ V �|π� ∀� = 1, . . . , N}. (6)

It consists of all the Cs-smooth functions with the property that their restric-
tions s|π� to the patches are contained in the associated spline spaces V �|π� . In
particular, the space of tensor-product polynomials of degree p, restricted to the
domain Ω, is a subspace of H.

3 Basis Functions

We define the basis by a selection procedure, which generalizes the definition of
Kraft’s basis for hierarchical B-splines. This procedure selects elements of each
spline basis B�. Among all B-splines that do not vanish on the patch π�, we
select the ones that take zero values on the constraining boundary Γ � of that
patch, i.e.,

K� = {β� ∈ B� : β�|π� 	= 0 and β�|Γ � = 0}.

Each set K� of selected functions defines the shadow of the associated patch π�,

π̂� = suppK� =
⋃

β�∈K�

suppβ�.

We collect the selected B-splines of all levels into the set

K =
N⋃

�=1

K�. (7)

We will denote this set of functions as PNHB-splines, since it consists of hierar-
chical B-splines defined by a partially nested sequence of spline spaces.

Example. We consider the PNHB-splines on the subdivision of the domain
which was shown in Fig. 1a. The selected functions for the levels 2 and 6 are
visualized in Fig. 2a and b.

The constraining boundary of π2 consists of the line segment on the border
with π1. The set K2 consists of 30 tensor-product B-splines (note the Greville
points on the domain boundary). The shadow defined by them extends into the
patches π4 and π7, covering π4 fully and π7 partially.

The constraining boundary of π6 consists of three line segments. The set
K6 contains 144 tensor-product B-splines. The shadow defined by them is equal
to the patch, since the only non-constraining patch boundary is located on the
boundary of the domain Ω. ♦

The following condition is essential for proving the linear independence of
the PNHB-splines:
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(a) (b)

Fig. 2. Constraining boundaries (dark blue line segments), shadows (blue and light
blue) and selected basis functions (represented by their Greville points, which are
shown as red dots) of the patches (shown in blue) π2 (a) and π6 (b) for the domain
subdivision shown in Fig. 1. Patches of lower levels are shown in green. For the latter
patch, the shadow is equal to the patch itself. (Color figure online)

Assumption. If the shadow π̂� of the patch of level � intersects another patch
πk of a different level k, then the first level is lower than the second one,

π̂� ∩ πk 	= ∅ ⇒ � ≤ k. (SOA)

This will be called the Shadow Ordering Assumption (SOA).

We will use this assumption in the remainder of the paper. Since we will make
several further assumptions throughout the paper, we provide Table 1 containing
their names and acronyms, in order to guide the reader.

Table 1. Assumptions and acronyms.

Name Acronym Defined on page

Shadow Ordering Assumption SOA 5

Shadow Compatibility Assumption SCA 7

Constraining Boundary Alignment CBA 8

Full Boundary Alignment FBA 14

Support Intersection Condition SIC 15

SOA enables us to obtain our first result:

Theorem 1. The PNHB-splines are linearly independent on Ω if SOA holds.

Proof. The proof of linear independence follows an idea originally formulated
in [14], see also [8]. However, we will repeat it here in order to keep this paper
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self-contained and in order to adapt it to the current setting. We need to prove
the implication

N∑
�=1

∑
β�∈K�

dβ�β� = 0 ⇒ dβ� = 0 ∀β� ∈ K� ∀� = 1, . . . , N. (8)

We first restrict the sum in (8) to π1. Due to SOA only functions β1 ∈ K1 are
non-zero on π1. The local linear independence of the B-splines B1 gives dβ1 = 0
for all β1 ∈ K1. This implies that the sum in (8) involves only functions with
� > 1.

We now consider the restriction of the sum to π2. Again, according to SOA
only the functions β2 ∈ K2 take non-zero values there. As the B-splines in B2

are locally linearly independent, we conclude that dβ2 = 0 for all β2 ∈ K2. By
repeatedly using the above argument, we eventually exhaust all the terms in (8),
which concludes the proof of linear independence. ��

While the selection mechanism and SOA guarantee linear independence, they
do not ensure that the spline space spanned by PNHB-splines contains a class
of functions that guarantees certain approximation properties, such as tensor-
product polynomials of degree p. This is shown in the following example:

Example. We consider the two biquadratic spline spaces

V 1 = D3,0, V 2 = D1,1 (9)

and the two patches

π1 = (0,
1
2
) × (0, 1), π2 = (

1
2
, 1) × (0, 1). (10)

The first set K1 of selected functions consists of 18 tensor-product B-splines and
defines the shadow π̂1 = (0, 3

4 ) × (0, 1). The second set K2 of selected functions
contains only 4 functions. The functions in K1 ∪ K2 are linearly independent
but cannot represent any biquadratic function on Ω. This can be seen easily by
analyzing the space which is spanned by the 4 functions in K2 and noting that
only these functions take non-zero values on (34 , 1) × (0, 1). ♦

4 The Spline Space

Consequently, we need to introduce further assumptions. We replace SOA by a
stronger condition, which will be used in the remainder of this paper.

Assumption. If the shadow π̂� of the patch of level � intersects another patch
πk of a different level k, then the first level precedes the second one,

π̂� ∩ πk 	= ∅ ⇒ � = k or � ≺ k. (SCA)

This will be called the Shadow Compatibility Assumption (SCA).
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In other words, the shadow π̂� intersects only patches that correspond to
spaces containing V � as a subspace.

Example. We consider again the situation shown in Figs. 1 and 2. The shadow
π̂2 intersects π4 and π7. SCA is satisfied since 2 ≺ 4 and 2 ≺ 7, see (4). ♦

This condition obviously implies (SOA). However, it turns out that SCA does
not yet suffice to prove that the space spanned by the PNHB-splines contains a
class of functions, which would guarantee certain approximation properties (e.g.
polynomials). We need to impose a condition on the location of the constraining
boundaries.

Assumption. For each level �, the constraining boundary Γ � of the patch π�

is aligned with the knot lines of the spline space V �. This will be called the
Constraining Boundary Alignment (CBA) condition.

More precisely, the constraining boundary Γ � is either empty or is formed by
horizontal segments, vertical segments and isolated vertices, where not all these
features need to be present. We assume that the segments are all located on knot
lines of V � and that the vertices are intersections of knot lines.

We will use both assumptions CBA and SCA in the remainder of the paper.
Under these assumptions we can characterize the spline space that is generated
by the PNHB-splines:

Theorem 2. The PNHB-splines span the partially nested hierarchical spline
space H if both SCA and CBA are satisfied.

We will need a technical lemma to prove this result. This lemma uses the
notion of homogeneous boundary conditions of order s. A function f is said to
satisfy these conditions at a point (x, y) if (ϑf)(x, y) = 0, where the operator

ϑ =
( ∂i

∂xi

∂j

∂yj

)
i=0,...,sx;j=0,...,sy

transforms a function into a matrix of dimension p that contains all the partial
derivatives up to order s. (Note here that 0 denotes the null matrix of dimen-
sion p, not a scalar.) In particular, this operator contains the evaluation of its
argument as its first element.

Lemma 1. The selected functions of level � span the subspace

spanK�|π� = {f ∈ V � : (ϑf)|Γ � = 0}|π�

of the associated spline space V �|π� on the patch π�, which consists of the restric-
tions f |π� of all functions f ∈ V � that satisfy homogeneous boundary conditions
of order s on the constraining boundary Γ �, provided that CBA holds.
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Proof. First, we show that all selected functions of level � satisfy the homoge-
neous boundary conditions of order s on the constraining boundary Γ �.

Consider a selected tensor-product B-spline β� ∈ K�. None of the points
(x, y) ∈ Γ � of the constraining boundary belongs to the interior of the support
suppβ�. This point thus either belongs to the support’s boundary, or it is even
farther away. The tensor-product B-spline β� satisfies homogeneous boundary
conditions of order s at (x, y) in both cases, since it is Cs-smooth.

Second, we show that the restriction f |π� of any function f ∈ V �, which
satisfies the homogeneous boundary conditions of order s on the constraining
boundary Γ �, can be represented as a linear combination of the selected functions
K�. Obviously, the restriction possesses a representation of the form

f(x) =
∑

β�∈B�

suppβ�∩π� �=∅

cβ�β�(x), x ∈ π�. (11)

We consider a function β� ∈ B� \ K� that does not vanish on π�. There exists
an isolated vertex v or a (horizontal or vertical) segment L of the constraining
boundary such that β� takes non-zero values there.

In the case of an isolated vertex, the matrix (ϑf)(v) depends on px × py

spline coefficients due to CBA, and one of them is cβ� . The matrix has the same
dimensions, cf. (5), and the linear mapping that transforms the spline coefficients
into the matrix elements has full rank, simply because the spline function can
take any values of (ϑf)(v). Thus we conclude that cβ� = 0 if (ϑf)(v) = 0.

In the case of a segment L we choose a (sub-) segment L′ which is contained
in only one knot span, and consider the tensor-product Bernstein–Bézier (BB)
representation of f with respect to a sufficiently small axis-aligned box in π� with
this segment on its boundary. More precisely, this box is chosen such that it is
simultaneously located within π� and in one of the tensor-product knot spans
of V �.

The elements of the matrix (ϑf)|L′ depend on the px + 1 columns (each of
height py) of adjacent BB coefficients for a horizontal segment, and on the py +1
rows (each of width px) of adjacent BB coefficients for a vertical segment. The
matrix is equal to the null matrix on L′ if and only if all these BB coefficients
are equal to zero.

Due to CBA, these BB coefficients depend on the same number of spline
coefficients, and cβ� is one of them. The linear mapping that transforms the
spline coefficients into the considered BB coefficients has full rank, since any
tensor-product polynomial of degree p is contained in the spline space V �. Thus
we conclude that cβ� = 0 if (ϑf)|L′ = 0. ��

We now proceed with the proof of the Theorem:

Proof (Theorem 2). Given a function f ∈ H, we consider its restriction to the
patch of level 1 and find a representation

f(x) =
∑

β1∈K1

cβ1β1(x), x ∈ π1. (12)
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It exists since f |π1 ∈ V |π1 according to the definition of H and because the
associated constraining boundary is empty. We use this local representation to
derive the globally defined level 1 representation

f1(x) =
∑

β1∈K1

cβ1β1(x), x ∈ Ω.

We now proceed by iterating over the remaining levels � = 2, . . . , N . In each
level, we consider the restriction of

f −
�−1∑
k=1

fk

to the patch π� and its local representation

f(x) −
�−1∑
k=1

fk(x) =
∑

β�∈K�

cβ�β�(x), x ∈ π�, (13)

which leads to the globally defined level � representation

f �(x) =
∑

β�∈K�

cβ�β�(x), x ∈ Ω. (14)

The existence of a local representation (13) with respect to the full basis B� is
guaranteed by f |π� ∈ V |π� according to the definition of H, and by using SCA.
This confirms that the function on the left-hand side of (13) is contained in
V �|π� . Additionally, we use the fact that

f(x) −
�−1∑
j=1

f j(x) = 0, x ∈ πk, k < �, (15)

which follows immediately from the definition of f j . Combining this observation
with the Cs-smoothness of f gives the homogeneous boundary conditions of order
s on the constraining boundary Γ �. Finally, these conditions enable us to apply
Lemma 1, which confirms that only the selected functions K� ⊆ B� are needed
in (13).

We conclude the proof by noting that (15) is satisfied since Eqs. (13) and
(14) imply

f(x) −
�−1∑
k=1

fk(x) = f �(x), x ∈ π�,

while SOA (which is implied by SCA) means that increasing the level � does not
affect the values on patches of lower levels. Thus, we finally choose � = N + 1 in
(15) and arrive at

f(x) =
N∑

k=1

fk(x), x ∈ Ω.

��
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In particular, this proves that every tensor-product polynomial of degree p
can be represented as a linear combination of PNHB-splines, since these poly-
nomials belong to the partially nested hierarchical spline space.

5 Truncation

We define the truncated PNHB-splines by suitably generalizing the truncation
mechanism, which has been established in [8]. These functions are linearly inde-
pendent, form a partition of unity, and span the partially nested hierarchical
spline space H.

We consider a fixed level � > 1 and a function

f ∈ span
�−1⋃
k=1

Kk, (16)

which is a linear combination of all tensor-product B-splines that have been
selected at lower levels. SCA then implies that

f |πk ∈ V k|πk , k = 1, . . . , �,

for all levels that do not exceed �. When restricted to the patch π�, this function
possesses a unique local representation

f(x) =
∑

β�∈B�

suppβ�∩π� �=∅

cβ�β�(x), x ∈ π�, (17)

as a linear combination of tensor-product B-splines in B�. We now define the
truncation of f with respect to K� as the globally defined function

(trunc�f)(x) = f(x) −
∑

β�∈K�

cβ�β�(x), x ∈ Ω, (18)

where the coefficients c�
β are taken from the representation (17). Combining this

definition with (16) implies that

trunc�f ∈ span
�⋃

k=1

Kk.

Consequently, we are now able to apply truncation of the next higher level � + 1
to trunc�f .

For future reference we note that the trunction with respect to level � does
not change the value of the function on patches of previous levels,

f |πk = (trunc�f)|πk if k < �. (19)
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This is a direct consequence of SOA. We also note that

(trunc�f)|π� ∈ span(B� \ K�)|π� . (20)

This can be confirmed by combining the local representation (17) with the defi-
nition (18) of the truncation.

We define truncated PNHB-splines of level � by applying the truncation
repeatedly to the selected tensor-product splines in K�,

T � = truncN · · · trunc�+1K� = { truncN · · · trunc�+1β� : β� ∈ K� }. (21)

Collecting the contributions from all levels gives the set of truncated PNHB-
splines

T =
N⋃

�=1

T �. (22)

Lemma 2. We assume SCA and consider a selected B-spline β� ∈ K� of level
� and a lower level k ≤ �. Then

(truncN · · · trunc�+1β�)|πk =

{
0 if k < �

β�|πk if k = �.
(23)

Moreover, for larger levels k > � we have

(truncN · · · trunc�+1β�)|πk ∈ span(Bk \ Kk)|πk . (24)

Proof. Due to SCA we have that

β�|πk =

{
0 if k < �

β�|πk if k = �.

This implies (23) since the truncations with respect to the levels �+1, . . . , N do
not change the values on πk according to (19).

To prove (24) we first observe that (20) gives

(trunck · · · trunc�+1β�)|πk ∈ span(Bk \ Kk)|πk ,

and note that the remaining truncations with respect to the levels k + 1, . . . , N
do not change the values on πk according to (19). ��
Proposition 1. The truncated PNHB-splines are linearly independent if SCA
is satisfied.

Proof. We use Eq. (23) and proceed as in the proof of Theorem1. ��
Proposition 2. The truncated PNHB-splines span the partially nested hierar-
chical spline space H if both SCA and CBA hold.
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Proof. The definition of truncation implies that every function in T can be
represented with respect to K. Indeed, a function truncN · · · trunc�+1β� for
β� ∈ K� is obtained by subtracting contributions of functions included in Kk

for k = � + 1, . . . , N . Hence, it can be written as a linear combination of func-
tions in K, and consequently, spanT ⊆ span K. Since both T and K are linearly
independent, and since |T | = |K|, we conclude that spanT = spanK. Finally,
we use Theorem 2 to complete the proof. ��

Similar to [9] we show that the functions in T preserve the coefficients of the
corresponding selected functions in K�.

Theorem 3 (Preservation of coefficients). Any function f ∈ H possesses
local representations

f(x) =
∑

βk∈Bk

suppβk∩πk �=∅

cβkβk(x), x ∈ πk, (25)

on the patches. The representation with respect to the truncated PNHB-splines
inherits the coefficients cβk from these local representations,

f(x) =
N∑

�=1

∑
β�∈K�

cβ�(truncN · · · trunc�+1β�)(x), x ∈ Ω,

provided that SCA and CBA are valid.

Proof. Proposition 2 guarantees that there exists a representation of f ∈ H with
respect to T ,

f(x) =
N∑

�=1

∑
β�∈K�

dβ�(truncN · · · trunc�+1β�)(x), x ∈ Ω,

with certain coefficients dβ� . We consider the restriction of this representation
to the patch πk of level k. None of the terms obtained for � > k contributes to
this restriction, according to (23). This also implies that the PNHB-splines of
level k are simply tensor-product splines on πk. Using these two observations we
obtain

f(x) =
k−1∑
�=1

∑
β�∈K�

dβ�(truncN · · · trunc�+1β�)(x) +
∑

βk∈Kk

dβkβk(x), x ∈ πk.

(26)
We note that the first sum is contained in (Bk\Kk)|πk , due to (24). Consequently
we may use the linear inpendence of the tensor-product B-splines (Bk)|πk on the
patch of level k to conclude

dβk = cβk , ∀βk ∈ Kk,

by comparing the coefficients of (25) and (26). ��
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The property of preservation of coefficients implies that the functions in T
form a partition of unity:

Corollary 1. The sum of the truncated PNHB-splines is the constant function
with value 1 if both SCA and CBA are valid.

Proof. Since the constant function with value 1 is contained in H, we may
consider its representations (25) on all patches πk, with the coefficients
cβk = 1. Theorem 3 confirms the partition of unity property of truncated
PNHB-splines. ��

Similarly, the function truncN · · · trunck+1βk has the same Greville abscissa
as its corresponding function βk ∈ Kk from which it was derived by using
truncation.

6 Completeness

The knot lines of each spline space V � define a subdivision of the unit square
(0, 1)2 into the mesh M � of level �. More precisely, the elements of M � are
axis-aligned boxes, which are the Cartesian product of two closed intervals that
represent knot spans of V � in x- and y-direction. These elements will be denoted
as cells of level �

Another assumption, which is stronger than CBA, is required to investigate
the completeness of the PNHB-splines:

Assumption. The boundaries of the patches π� are aligned with the mesh of
level �. More precisely, each patch π� is obtained as the interior

π� = int
⋃

c∈C�

c (FBA)

of the union of a cell set C� ⊆ M �. This condition will be called the Full Boundary
Alignment (FBA) condition.

The union of the cell sets C� over all levels forms the partially nested hierar-
chical mesh.

Example. We consider again the partially nested hierarchical spline space,
which is defined by the patches and spaces shown in Fig. 1a. The partially nested
hierarchical mesh

⋃N
�=1 C� is shown in Fig. 1b. ♦

In this section we are interested in the full spline space F of degree p and
maximal smoothness s = p − (1, 1),

F = {f ∈ Cs(Ω) : f |c ∈ Πp ∀c ∈ C� ∀� = 1, . . . , N}, (27)

where Πp denotes the space of tensor-product polynomials of degree p. This
space contains the partially nested hierarchical spline space H, but it is generally
larger. A simple condition implies that both spaces are equal:
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Assumption. The support intersections of the basis functions of level � with
the associated patches π� are all connected,

suppβ� ∩ π� is connected ∀β� ∈ B�, � = 1, . . . , N. (SIC)

This will be denoted as the Support Intersection Condition (SIC).

If this assumption is satisfied in addition to all previous ones, then PNHB-
splines are complete.

Theorem 4. The PNHB-splines span the full spline space F if FBA, SIC and
SCA are satisfied.

Proof. Given a function f ∈ F , we proceed exactly as in the proof of Theorem2.
There is one modification, however, since we need to use a different argument to
confirm the existence of the local representations (12) and (13).

This is achieved with the help of a result from [19]: Each patch π� is a multi-
cell domain due to FBA. Theorem 2.12 of that paper implies that we obtain
local representations as linear combinations of tensor-product B-splines β� if
one uses several copies for functions with more than one support intersection.
More precisely, when considering the function in (13) we obtain

f(x) −
�−1∑
k=1

fk(x) =
∑

β�∈B�

∑
σ

σ is connected
component of

suppβ�∩π�

cβ�,σ β�(x) χσ(x), x ∈ π�,

where χσ(x) is the characteristic function of the connected component σ.
SIC implies that only one instance of each B-spline β� is required, as the sup-

port intersections with π� possess at most one connected component σ. Lemma 1
can be applied again and confirms that only functions β� ∈ K� need to be con-
sidered. Consequently, we can find a representation of the form (13) (and also
(12) for the first level).

The remainder of the proof applies without any modifications. ��
Since PNHB-splines span the partially nested hierarchical spline space H, we

also proved that the full spline space is equal to the partially nested hierarchical
spline space under the assumptions of the theorem. All these results apply to
truncated PNHB-splines as well.

7 An Example: Least-Squares Fitting

We consider a surface approximation problem to compare PNHB-splines with
classical tensor-product B-splines and hierarchical B-splines. We choose the func-
tion

f(x, y) = 0.6
( 10∑

i=0

10∑
j=0

dijbi(x)bj(y) + (x − 0.5)2
)

,
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which is constructed by multiplying the elements of the tensor-product basis
constructed from the univariate Bernstein polynomials

bk(t) =
(

10
k

)
tk(1 − t)10−k, for k = 0, . . . , 10,

of degree 10 with the function-valued coefficients

D = [dij ] =

⎡
⎢⎢⎢⎢⎢⎣

1 + sin(60x) 1 · · · 1 1
1 1 . . . 1 1
...

...
...

...
1 1 . . . 1 1
1 1 · · · 1 1 + sin(60y)

⎤
⎥⎥⎥⎥⎥⎦

,

see Fig. 3. Its domain is the unit square (0, 1)2. This function is fairly flat in
most parts of the domain, but has distinctive vertical and horizontal features in
the southwest and the northeast corners of the domain, which motivates us to
use partially nested spline refinement.

Fig. 3. The function considered in the fitting example.

We use a simple least-squares approximation to project this function into
spline spaces spanned by

1. biquadratic tensor-product B-splines defined on the mesh shown in Fig. 4a,
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2. hierarchical B-splines defined on the mesh shown in Fig. 4b, and
3. partially nested hierarchical B-splines defined on the mesh shown in Fig. 4c.

For tensor-product splines we consider a vertical and horizontal refinement in
the southwest and northeast corner. These knot lines propagate to the northwest
corner since tensor-product splines do not support local refinement. This is not
the case for HB-splines, where we can perform local refinement. Nevertheless,
one still needs to use nested splines spaces, which enforces the simultaneous
refinement in both directions. Therefore, we add knot lines in x- and y-direction
in both considered corners. Finally, we show the mesh used for PNHB-spline
approximation. It seems to be perfectly suited for this task as the knot line
segments are aligned with the features of the function.

Fig. 4. The meshes used for defining the approximating spline functions. Left: tensor-
product B-splines, middle: HB-splines, right: PNHB-splines.

Table 2. Numerical results of the least-squares approximation.

No. of dof. % of dof. Max. error Average error

Tensor-product B-splines 2304 100% 3.39e−3 3.81e−5

HB-splines 1633 71% 3.08e−3 4.37e−5

PNHB-splines 769 33% 8.12e−4 1.89e−5

The numerical results are reported in Table 2, which presents information
about the number of degrees of freedom, the percentage of degrees of freedom
(with respect to the tensor-product case), the maximum error between the orig-
inal function and the fitting result and the average error.

The tensor-product splines provide the baseline for these tests. The number of
control points is equal to 2304 and this is sufficient to obtain a reasonable result.
By using hierarchical B-splines we saved some degrees of freedom and obtained
a similar result. We used spline spaces Di,i for i ≤ 6. Further refinement in the
corners would substantially increase the number of degrees of freedom. Finally,
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the use of PNHB-splines leads to an additional improvement: a better approxi-
mation is obtained by using an even smaller number of degrees of freedom.

So far we constructed the meshes manually. Our current work is devoted to
the use of error estimators for automating this process.

8 Conclusion

We proposed the new construction of partially nested hierarchical B-splines in
order to overcome the limitations of the existing hierarchical spline constructions,
which are based on sequences of fully nested spline spaces. Suitable assumptions
enabled us to define a hierarchical spline basis, to establish a truncation mech-
anism, and to derive a completeness result. The application potential of the
proposed generalization has been demonstrated by a first experimental result on
least-squares approximation.

Future work will be devoted to extensions of this construction to the full
multivariate case and to refinement strategies that can guide the process of
local mesh refinement. Further, we will study alternative formulations of the
generalized truncation mechanism, in order to analyze the non-negativity of the
resulting spline basis. Also, we will investigate algorithms for assigning spaces
to patches which ensure that the various assumptions are satisfied. Finally, we
will continue to explore the application potential of our new construction. Some
results on these topics will be presented in a forthcoming paper [4].
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the Austrian Science Fund and the EC projects “EXAMPLE”, GA no. 324340 and
“MOTOR”, GA no. 678727.
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splines: an effective mathematical technology for adaptive refinement in geometric
design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–
365 (2016)

https://doi.org/10.1016/j.cad.2017.05.021
https://doi.org/10.1016/j.cad.2017.05.021


144 N. Engleitner et al.
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