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Abstract. We use the Poisson problem with Dirichlet boundary condi-
tions to illustrate the complications that arise from using non-matching
interface parameterizations within the framework of Isogeometric Analy-
sis on a multi-patch domain, using discontinuous Galerkin (dG) tech-
niques to couple terms across the interfaces. The dG-based discretization
of a partial differential equation is based on a modified variational form,
where one introduces additional terms that measure the discontinuity of
the values and normal derivatives across the interfaces between patches.
Without matching interface parameterizations, firstly, one needs to iden-
tify pairs of associated points on the common interface of the two patches
for correctly evaluating the additional terms. We will use reparameteri-
zations to perform this task. Secondly, suitable techniques for numerical
integration are needed to evaluate the quantities that occur in the dis-
cretization with the required level of accuracy. We explore two possible
approaches, which are based on subdivision and adaptive refinement,
respectively.

1 Introduction

Isogeometric Analysis (IgA) [5,6] uses the same spaces of spline functions for rep-
resenting the geometry of a physical domain and for performing a discretization
in the context of a PDE-based numerical simulation. This method is based on
a parameterization of the physical domain, i.e., on a geometry map that relates
the physical domain and the parameter domain.

Many approaches rely on tensor product parameterizations, where the
domain is a unit square or a unit cube. Consequently, more complex domains
have to be divided into several single patches, forming a multi-patch repre-
sentation. There exist several methods for coupling the discrete discontinuous
Galerkin IgA patch wise solution across the interfaces between single patches and
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enhancing global continuity of the solution. These include Nitsche’s [16] method
and mortar techniques [2] as well as the discontinuous Galerkin (dG) approach,
which is the focus of the present paper.

DG methods discretize the variational form of a partial differential equation
taking into account the discontinuity of the finite dimensional discretization
spaces. The publications [4,17] provide a general description of dG techniques in
the context of finite elements, which have been transferred to the isogeometric
setting in [3,12–14].

So far, only matching interface parameterizations have been studied in the
context of dG-IgA methods. More precisely, whenever two patches meet in an
interface, then the parameterizations restricted to these interfaces are assumed
to be identical (possibly after affine transformations of the parameter domains),
see [12–14,18]. On the one hand, this limitation provides the advantage that the
elements of the patches on both sides of the interface are perfectly matching,
which significantly simplifies the implementation of such methods. On the other
hand, it complicates substantially the creation of multi-patch parameterizations.

As notable exceptions we mention the recent publications [10,11], where the
authors study gaps and overlaps at the interfaces. While the theory presented
in these papers does not require any assumptions regarding matching interfaces,
such conditions are assumed to be satisfied in all the computational examples.
More precisely, the meshes of the considered domains fulfill restrictive correspon-
dence conditions, which are quite similar to the matching case. This is due to
the lack of an implementation for the non-matching case [9].

This recent work has motivated us to investigate the effect of non-matching
interface parameterizations in the context of dG-IgA in the present paper. We
aim to give a complete description of the necessary computational steps for
applying the theoretical results of [10–14,18] to the case of non-matching para-
meterizations at the interfaces. In order to keep the presentation simple, we
restrict ourselves to planar two-patch domains and we assume that the interfaces
are geometrically matching, thus they have neither overlaps nor gaps. However,
it is clear that the results from [10,11] apply to the non-matching case also, as
the theory presented there is sufficiently general.

More precisely, the assembly of the local stiffness matrices derived from the
dG bilinear form requires the computation of integrals of the type

∫
e

D bk
i (x)D′ b�

j(x)dx, (1)

where e is an interface between Ωk and Ω� in the physical domain, x ∈ e
is a point on the interface, bk

i , b�
j are isogeometric basis functions defined on

patches Ωk, Ω� ⊂ Ω of the multi-patch domain Ω ⊆ R, and D,D′ are differential
operators. As we shall see, non-matching interface parameterizations give rise to
two problems that need to be treated separately.

The first one concerns the evaluation of bk
i (x) and b�

j(x) at the same position
x on the interface. Due to the use of non-matching parameterizations, a point x
will have two possibly different preimages in the parameter domains of the two
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patches joined by the interface respectively. To identify pairs of corresponding
preimages we use reparameterizations of the preimages of the interface. We also
investigate the influence of the quality of the reparameterization on the accuracy
of the overall result.

The second problem is related to the use of numerical integration methods.
We need to find a quadrature method whose exactness does not depend on
the smoothness of the integrands. We present different approaches, one result-
ing from dividing the element on which quadrature is performed and another
one making use of automatized element splitting. The performance of both
approaches is explored in numerical experiments.

The remainder of this paper is structured as follows: We establish the nota-
tion and describe the example problem we will focus on in the next section. We
then state the two issues of evaluation and numerical integration, as described
above. Section 3 treats the first problem of finding suitable reparameterizations,
while Sect. 4 is devoted to the different quadrature techniques. Results of numer-
ical experiments are presented in Sect. 5. Finally we conclude the paper.

2 Preliminaries

We recall the discontinuous Galerkin isogeometric (dG-IgA) discretization of
a given model problem and discuss the computation of the stiffness matrix
elements in the case of non-matching interface parameterizations. Hereby, we
restrict ourselves to the two-patch case shown in Fig. 1 due to better readability.
All observations generalize directly to domains with more than two patches.

2.1 The Model Problem and the Multi-patch Discretization

Given a domain Ω ⊆ R
2, we consider the Poisson problem

Find u :

{
−∇ · (α∇u) = f on Ω

u = 0 on ∂Ω,
(2)

where f is given and α > 0 is the known diffusion coefficient. We allow α to be
piecewise constant, i.e. α may take different values on every single patch (see
below).

More precisely, we consider a multi-patch domain Ω ⊆ R
2 that consists of 2

non-overlapping single patches Ω1, Ω2 such that Ω̄1 ∪ Ω̄2 = Ω̄. We use upper
indices to refer to the number of the patch, and thus αk denotes the value of the
diffusion coefficient on the k-th patch, k = 1, 2.

An interface e between the two patches is the intersection e = Ω̄1 ∩ Ω̄2. We
consider interfaces that are curve segments only and ignore the remaining ones.

Each physical patch Ωk is parameterized by an associated geometry mapping
Gk with parameter domain Ω̂k = [0, 1]2, k = 1, 2. These mappings are tensor
product spline functions

Gk(ξ) =
∑

i∈Rk

P k
i βk

i (ξ) , ξ ∈ Ω̂k, (3)
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Fig. 1. Multi-patch domain with two patches Ω1, Ω2, one interface e and geometry
mappings G1, G2. The mappings L and R will be introduced later.

which are defined by control points P k
i ∈ R

2 and tensor product B-splines βk
i ,

where Rk is the index set of the k-th patch. The lower index i identifies the i-th
degree of freedom of the k-th patch.

We do not assume that the knot vectors of the patches are identical. These
knot vectors split each parameter domain into elements. We will use open knot
vectors which implies that the boundaries of the patches are B-spline curves.

An isogeometric basis function bk
i on the physical patch Ωk is the push-

forward of a B-spline βk defined on the parameter domain Ω̂k,

bk
i (x) =

{(
βk

i ◦ (
Gk

)−1
)

(x) if x ∈ Ωk

0 otherwise.
(4)

These functions span the space which is used to derive the dG-IgA discretization.
For later reference we define the set of all edges

Γ =
2⋃

k=1

{Gk([0, 1], 0), Gk([0, 1], 1), Gk(0, [0, 1]), Gk(1, [0, 1])} (5)

of the multi-patch domain. It is the disjoint union of the set of the interface
edges

ΓC = {e ∈ Γ : e ⊆ Ω̄1 ∩ Ω̄2} (6)

and the set of boundary edges

ΓD = {e ∈ Γ : e ⊆ Ω̄k ∩ ∂Ω , k = 1, 2 }. (7)
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2.2 DG-IgA Discretization

The discontinuous Galerkin isogeometric (dG-IgA) discretization space considers
the subspace

Vh = span {bk
i : i ∈ Rk, k = 1, . . . , n} ⊆

2∏
k=1

H1
(
Ωk

)
, (8)

of the broken Sobolev space, see [17]. Functions in Vh are continuously differ-
entiable on the interior of the single patches but not necessarily smooth across
interface edges. This smoothness of the solution is achieved approximately by
introducing a penalty term that considers the jump of the solution across the
interface. Before stating the final variational formulation we need to define aver-
ages and jumps, see [4,17].

For each patch index k, any function v ∈ ∏2
k=1 H1

(
Ωk

)
has a well-defined

trace along any edge e ⊂ ∂Ωk. Thus, any such function v defines two traces on
the interface e ∈ ΓC , which we denote as v|Ω1e and v|Ω2e , respectively. We use
them to define the average

{v}e =
1
2

(v|Ω1e + v|Ω2e ) (9)

and the jump
[v]e = v|Ω1e − v|Ω2e (10)

across the interface e ∈ ΓC .
These definitions are further extended to boundary edges e ∈ ΓD,

{v}e = v|Ωk and [v]e = v|Ωk , k = 1, 2. (11)

The dG-IgA discretization

Find u ∈ Vh : a(u, v) = F (v) ∀v ∈ Vh (12)

of the Poisson problem (2) uses the bilinear form

a(u, v) =
2∑

k=1

ak
1(u, v) − 1

2

∑
e∈ΓC∪ΓD

(
ae
2,1(u, v) + ae

2,2(u, v)
)

+
∑

e∈ΓC∪ΓD

ae
3(u, v)

(13)
with

ak
1(u, v) =

∫
Ωk

αk∇u · ∇vdΩ, (14)

ae
2,1(u, v) =

∫
e

{∇u · n}e[v]ede, ae
2,2(u, v) =

∫
e

{∇v · n}e[u]ede, (15)

ae
3(u, v) =

∫
e

δ

h
[u]e[v]ede (16)
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and the linear form
F (v) =

∫
Ω

fvdΩ. (17)

The second group of terms ae
2,1 and ae

2,2 considers normal vectors n = ne of the
interface e, which need to comply with the chosen orientation of the edges (deter-
mined by the patch numbering). The last terms ae

3 in the bilinear form are the
penalty terms mentioned before, which involve the sufficiently large parameter
δ. They depend on the element size h, i.e. on the length of the knot spans1.

A detailed derivation of the dG discretization is given in [17]. The adaptation
to the isogeometric setting is discussed in the thesis [3], which also comments on
the choice of the δ, and in the recent article [12].

The discretization (12) defines the associated dG norm

‖u‖2dG =
2∑

k=1

ak
1(u, u) +

∑
e∈ΓC∪ΓD

ae
3(u, u), (18)

where in a1(u, u) the gradient of u is restricted to Ωk, see again [12].
The coefficients uk

i of the approximate solution

uh =
2∑

k=1

∑
i∈Rk

uk
i bk

i (19)

are found by solving the linear system Su = b with

S =
(
s(i,k),(j,�)

)
(i,k),(j,�)

,

b =
(
b(j,�)

)
(j,�)

,

u =
(
uk

i

)
(i,k)

,

where

s(i,k),(j,�) = a
(
bk
i , b�

j

)
, i ∈ Rk, j ∈ R�, k, � = 1, 2, and

b(j,�) = F
(
b�
j

)
, j ∈ R�, � = 1, 2.

2.3 Integrals Along Interfaces

Evaluating the forms in (13) involves integrals along interfaces, which pose con-
siderable difficulties. We discuss the evaluation of these quantities in more detail,
considering again the domain shown in Fig. 1. As a representative example we
shall focus on ae

2,1. All observations generalize directly to other terms.

1 For simplicity we consider uniform knots only. If this is not the case then one may
consider quasi-uniform knots instead, choosing a parameter that controls the size of
all knot spans.
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In this situation we obtain

ae
2,1(u, v) =

∫
e

(∇u|Ω1 · n) v|Ω1 + (∇u|Ω2 · n) v|Ω1

− (∇u|Ω1 · n) v|Ω2 − (∇u|Ω2 · n) v|Ω2de.

The stiffness matrix is a combination of several matrices, each of which is con-
tributed by one of the four forms in (13) defining it. In particular we focus on
the contribution of ae

2,1.
Taking into account that

b2i |Ω1 = 0 , ∇b2i |Ω1 = 0 ∀i ∈ R2,

b1i |Ω2 = 0 , ∇b1i |Ω2 = 0 ∀i ∈ R1,

we find that only the expressions

ae
2,1

(
bk
i , b�

j

)
= (−1)�+1

∫
e

(∇bk
i |Ωk · n

)
b�
j |Ω�de (20)

contribute to the element s(i,k),(j,�) of the stiffness matrix.
In order to compute these values we use an appropriate numerical quadrature

rule, which means that we have to evaluate these products on the interface e.
This is no major problem if k = � since the integral involves only one trace in
this case. However, the situation is more complicated if k �= � since the (possibly
different) parameterizations of the interface need to be taken into account. In
the remainder of this section we discuss the evaluation of ae

2,1

(
b1i , b

2
j

)
in more

detail.
The interface

e = G1([0, 1]2) ∩ G2([0, 1]2) = G1(1, [0, 1]) = G2(0, [0, 1]) (21)

is parameterized by the restrictions

L = G1|(G1)−1(e) and R = G2|(G2)−1(e), (22)

see Fig. 1. These two different representations of the same interface are related
by the reparameterizations

λ : [0, 1] → {1} × [0, 1] (23)

and

 : [0, 1] → {0} × [0, 1] (24)

via
L ◦ λ = R ◦ 
. (25)

The construction of suitable reparameterizations λ and 
 is the first major prob-
lem related to the evaluation of this term. We will discuss it in the next section.
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These parameterizations will be used to represent the edge as

e = (L ◦ λ)([0, 1]) = (G1 ◦ λ)([0, 1]) = (G2 ◦ 
)([0, 1]) = (R ◦ 
)([0, 1]). (26)

Finally we define P = L ◦ λ = R ◦ 
 and arrive at

− ae
2,1

(
b1i , b

2
j

)
=

∫
e

(∇b1i (x)|Ω1 · n(x)
)
b2j (x)|Ω2dx

=
∫

e

[(∇G1(x)
)−1 ∇β1

i

(
(G1)−1(x)

) |Ω1 · n(x)
]
β2

j

(
(G2)−1(x)

) |Ω2dx

=
∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i

(
L−1 (P (t))

) · n (P (t))
]
β2

j

(
R−1 (P (t))

) ‖Ṗ (t)‖dt

=
∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i (λ(t)) · n (P (t))
]
β2

j (
(t)) ‖Ṗ (t)‖dt.

The integral in the last line is evaluated by a quadrature rule. However, the
choice of the quadrature rule, which is the second major problem related to the
evaluation of this term, is nontrivial and will be discussed further in Sect. 4. In
fact, the choice of the rules needs to take the different knots of the functions β1

i ,
β2

j , λ and 
 into account. While one will generally choose the same knots for λ

and 
, the knots of β1
i and β2

j are subject to a non-linear transformation and
cannot be assumed to be identical.

3 Finding the Reparameterizations

It is quite common in the literature to assume matching parameterizations or
almost matching ones, see [5, p. 4148], [6, p. 87], [12–14,18]. In this situation,
the choice of the reparameterizations λ and 
 is trivial, as they are simply lin-
ear parameterizations (possibly reversing the orientation) of the preimages of
the interface in the parameter domains. However, the restriction to matching
parameterizations poses constraints on the construction of multi-patch para-
meterizations, making it essentially impossible to parameterize the individual
patches separately. This fact motivates us to study the non-matching case.

More precisely, we consider situations where the condition (25) cannot be
satisfied by considering linear reparameterizations λ and 
. Clearly, the condi-
tion does not determine λ and 
 uniquely. We fix one of the mappings, say λ,
and compute the remaining one, 
. Figure 2 visualizes the relations between the
mappings.

The unknown mapping 
 satisfies 
 = R−1 ◦ L ◦ λ. We compute it by least-
squares approximation of point samples, as follows:

1. For a given number N of samples, we evaluate


i = R−1 ◦ L ◦ λ

(
i

N

)
(27)
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Fig. 2. Multi-patch domain with geometry maps G1 and G2, their restrictions L and
R to the preimages of the interface and reparameterizations λ and �

by performing the closest point computations


i = argmin
ξ∈{0}×[0,1]

∥∥∥∥L ◦ λ

(
i

N

)
− R(ξ)

∥∥∥∥ , i = 0, . . . , N, (28)

where ‖ · ‖ is the Euclidean norm. This formulation also applies to the case
of geometrically inexact interfaces (cf. [10,11]).

2. We choose a suitable spline space (e.g. linear, quadratic or cubic splines with
a few uniformly distributed inner knots) and find the control points cj ∈
{0} × [0, 1] of the associated B-splines Nj , j = 1, . . . , m, by solving the linear
least-squares problem

N∑
i=1

⎛
⎝ m∑

j=1

cjNj

(
i

N

)
− 
i

⎞
⎠

2

−→ min, (29)

cf. [7]. The influence of the choice of the spline space for 
 will be discussed later
in Sect. 5. The given reparameterization λ is chosen as a linear polynomial.

We will refer to the case where at least one of the mappings λ and 
 is
different from the identity as non-matching parameterizations at the interface.
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4 Numerical Integration

The evaluation of

ae
2,1

(
b1i , b

2
j

)
=

∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i (λ(t)) · n (P (t))
]
β2

j (
(t)) ‖Ṗ (t)‖dt

(30)
requires integration with respect to the parameter t, which varies in the parame-
ter domain [0, 1]. This is done by applying numerical quadrature and we present
several strategies for doing so.

4.1 Gauss Quadrature with Exact Splitting

Gauss quadrature can be applied to segments of analytic functions. Conse-
quently, we split the parameter domain [0, 1] into segments (separated by junc-
tions) where the integrand satisfies this requirement. Three types of junctions
arise:

– the inverse images λ−1(κ1
i ) of the knots κ1

i that were used to define the
B-splines β1

j ,
– the inverse images 
−1(κ2

i ) that were used to define the B-splines β2
j , and

– the knots τi that were used to define the B-splines Nj in (29).

These types are visualized in Fig. 3.
Consequently we perform Gauss quadrature with exact splitting by applying the
following algorithm:

– Compute all junction points (all three types) in [0, 1],
– sort the junction points, subdivide the domain into segments accordingly,
– subdivide the resulting segments if they are too long,
– apply a Gauss quadrature rule to each segment and sum up the contributions.

As a disadvantage, the inversion of λ and 
 is costly and has to be done with
high accuracy, as the sorting depends on it. Furthermore, the method may result
in many segments of varying lengths.

We use Gauss quadrature with p + 1 nodes per element (which exactly inte-
grates polynomials of degree 2p + 1), where p is the degree used for defining the
dG-IgA discretization, cf. [15].

4.2 Gauss Quadrature with Uniform Splitting

A computationally simpler approach is to use uniform subdivision, as follows:

– Split the domain [0, 1] uniformly into M segments, where M is a multiple of
the number of knot spans used to define the B-splines Nj in (29),

– apply a Gauss quadrature rule to each segment and sum up the contributions.
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Fig. 3. Exact splitting of a knot span and application of a quadrature rule to each
subsegment

As we shall see later, it is mandatory to use large values of M in order to reach
the desired level of accuracy. This is due to the fact that the junctions of the first
two types listed in the previous section may still be located within the segments
obtained by uniform splitting. On the other hand, the use of uniform refinement
also creates many small segments that could be merged into larger ones without
compromising the accuracy. This can be exploited by using adaptive quadrature.

4.3 Adaptive Gauss Quadrature

We recall the main idea of adaptive quadrature, cf. [8]. In order to evaluate the
integral

I =
∫ b

a

f(x)dx (31)

of an integrable function f over an interval [a, b] adaptively one computes two
different estimates I1 and I2 of I by using two different integration methods.
One assumes that one of these estimates, say I1, is more accurate than the
other. Next, one computes the relative distance between I1 and I2 taking into
account a given (or chosen) tolerance tol, e.g. machine precision. If the difference
is small enough, one chooses I1 as the value of the integral

∫ b

a
f(x)dx. If this is

not the case one splits the interval [a, b] into two subintervals,

[a, b] = [a,m] ∪ [m, b] , where m =
a + b

2
,
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and evalues I by summing up the two contributions. This means that one applies
the procedure of computing two different estimates and checking their relative
difference to both subintervals. Adaptive quadrature is therefore a recursive pro-
cedure, which is summarized in Algorithm 1.

Algorithm 1. Adaptive Quadrature: Basic routine.
adaptiveQuadrature(f, a, b, tol)
1: Input: f , a , b , tol where f is an integrable function, a and b are the interval

boundaries and tol is a given tolerance
2: Choose knots ui and weights wi , i = 1, . . . , n .
3: Compute I1 =

∑n
i=1 wif(ui) .

4: Choose knots ũi and weights w̃i , i = 1, . . . , m .
5: Compute I2 =

∑m
i=1 w̃if(ũi) .

6: if |I1 − I2| ≤ tol ·|I1| then
7: Return I1
8: else
9: Return

adaptiveQuadrature

(

f, a,
a + b

2
, tol

)

+ adaptiveQuadrature

(

f,
a + b

2
, b, tol

)

.

10: end if

Note that the stopping criterion has to be chosen with care and in fact line 6
in the algorithm is a slight oversimplification of it. See [8] for further information.

We apply this procedure to the knot spans that were used to define the
B-splines Nj in (29). Therefore we choose I1 as a Gauss quadrature rule with
p + 1 quadrature knots, where again p is the degree of the basis functions in
the dG-IgA discretization space. For the computation of I2 we split the interval
manually into two halves, apply a Gauss quadrature rule of the same order on
both halves, and sum up. The tolerance tol is set to machine precision.

As an advantage, adaptive quadrature can be performed without inverting
the reparameterizations. Moreover, it avoids the oversegmentation problem that
was present for the previous approach. We observed experimentally that the
adaptive procedure accurately detects the junction points and subdivides the
domain accordingly. Clearly, the implementation is more costly and requires a
recursive algorithm.

5 Numerical Results

We examine the performance of the quadrature methods presented in Sect. 4
as well as the influence of the accuracy of the reparameterization. All exper-
iments were performed using G+Smo2, an object-oriented C++ IgA library
named “Geometry + Simulation Modules”.
2 G+Smo: gs.jku.at.
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5.1 Reference Results

As a reference we will first show the convergence plot of the solution of the
Poisson equation in the case of matching parameterizations, i.e. for λ = 
 = id.
In this case we can restrict ourselves to a simple quadrature rule. There is no
need for using more elaborate versions of numerical integration. Furthermore,
since λ = 
 = id, we do not need to consider the influence of the quality of
the reparameterization. More precisely, we consider the two-patch domain with
biquadratic matching interface parameterizations shown in Fig. 4, left.

Fig. 4. Patch and its control net. Left: matching parameterizations at the interface.
Right: non-matching parameterizations at the interface.

Figure 5 demonstrates the convergence behaviour of the numerical solutions
that were obtained for various values of the element size h that was used to
define the dG-IgA discretization. We consider a problem with a known solution
and measure the error as the difference to it. The quadrature method we used is
Gauss quadrature with three quadrature knots. A convergence rate of three for
the L2 error and of two for the dG error is clearly visible. This is in accordance
with the theoretical predictions, see [1,6].

5.2 Influence of the Quadrature Rule

We now consider a different parameterization of the same computational domain,
with non-matching parameterizations of the interface, see Fig. 4, right. Again we
use biquadratic patches. Now we need to use a more complicated integration
technique, and we consider the three approaches that were described in Sect. 4.

Figure 6, top and bottom, visualizes the convergence behaviour measured in
the L2 and dG norms respectively. Each plot contains four curves, corresponding
to four different numerical quadrature techniques. More precisely, we consider
Gauss quadrature with exact splitting (yellow), Gauss quadrature with uniform
splitting into 10 (blue) and into 30 (red) segments, and adaptive Gauss quadra-
ture (purple). We observe that the first and the last method perform better than
the results based on uniform splitting and they achieve the optimal convergence
rates (compare with Fig. 5). In particular we note that using uniform quadrature
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Fig. 5. Matching parameterizations at the interface, convergence behaviour of error in
different norms: L2 norm (blue curve), dG norm (red curve). (Color figure online)

leads to a reduced order of convergence for smaller mesh sizes h. Even the use
of a very fine but uniform segmentation (30 (red) instead of 10 (blue) segments)
does not improve this significantly.

Based on these observations we decided to use solely adaptive and exact
Gauss quadrature in the remaining example.

5.3 Influence of the Reparameterization

Next we analyse the influence of the quality of the representation of the repa-
rameterization. Consider again the parameterization of the domain in Fig. 4,
right, with non-matching parameterizations of the interface. We compare three
different choices of the reparameterizations λ and 
.

For the first reparameterization, which generates the results represented by
the blue curve in Fig. 7, we choose polynomials λ and 
 such that the equation
L ◦ λ = R ◦ 
 is exactly satisfied. In this case it was possible to find such
polynomials, due to the particular construction of the example. However, this
would be impossible in general and it is used here to generate a reference result.

The second and third reparameterizations (red and yellow curves) were
obtained using the Algorithm from Sect. 3 to find 
, while λ was chosen as a
linear polynomial. The second reparameterization uses a linear spline with 8
segments and has an L2 error of 1.3 · 10−2, and the third reparameterization
uses a cubic spline with 4 segments and has an L2 error of 3.1 · 10−15.

Figure 7 compares the errors in the L2 (top) and dG norms (bottom) for the
three reparameterizations. We observe that using a high quality reparameteriza-
tion is essential for the convergence of the method. Depending on the accuracy of
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Fig. 6. Influence of the quadrature rule. Top: Convergence behavior of the error in L2
norm. Bottom: Convergence behavior of the error in dG norm. Blue and red curves:
10 and 30 uniform segments per t-knot span. Yellow curves: exact splitting of the knot
spans. Purple curves: adaptive quadrature. Note that the yellow curve coincides with
the purple one for smaller values of h. Exact representation of the reparameterizations
λ and �. (Color figure online)

the reparameterization, h-refinement only works until it reaches a critical mesh
size, where further refinement does not have any effect.

The plots show the results obtained by using adaptive Gauss quadrature.
The exact method gives virtually identical results.

5.4 Comparison of Exact and Adaptive Quadrature

We perform an experimental comparison of the computational complexity of
exact and adaptive quadrature for the domain in Fig. 4, right.

First we demonstrate the effect of using adaptive quadrature, by showing
the automatically created splitting points in Fig. 8. We used an accuracy of
10−6 instead of machine precision for this picture to obtain a clearer image.
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Fig. 7. Influence of the reparameterization. Adaptive quadrature on interface integrals.
Top: Convergence behaviour of the error in L2 norm. Bottom: Convergence behaviour
of the error in dG norm. Blue curves: Exact representation of λ and �. Red curves:
Approximation error of � ≈ 0.0131167. Yellow curves: Approximation error of � ≈
3.10616 · 10−15 (Color figure online)

Both patches were uniformly refined into 4 × 4 elements by knot insertion. The
mappings λ and 
 are cubic splines on [0, 1] with four knot spans of equal length.
Their knots τi coincide with the inverse images λ−1(κ1

i ), as the first mapping
is simply the identity. The adaptive quadrature, which is applied to the knot
spans [τi, τi+1], thus creates additional splitting points around the inverse images

−1(κ2

i ), as shown in the Figure. In this particular case, only one splitting point
(at 0.5625) is created near 
−1(κ2

2) = 0.5615 since this suffices to reach the
desired accuracy.

These results indicate that, unlike uniform Gauss quadrature, adaptive
quadrature avoids over-segmentation of the integration domains. Still, it splits
the knot spans more often than exact Gauss quadrature, which also results in a
higher number of quadrature knots and thus evaluations.
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Fig. 8. Splitting points created by adaptive quadrature - see text for details.

In order to analyze this effect, Fig. 9 compares the number of evaluations (i.e.,
quadrature knots) used by exact and adaptive Gauss quadrature for increas-
ing numbers of elements. In addition, we also show the number of root finding
operations (which are more expensive than evaluations) needed to compute the
splitting points of exact Gauss quadrature. Clearly, adaptive quadrature requires
more evaluations than exact splitting. However, for sufficiently fine discretiza-
tions, the number of evaluations in the interior of the patches dominates the
total effort.

Fig. 9. Number of quadrature knots and root finding operations needed by exact and
adaptive quadrature for increasingly finer discretizations.

6 Conclusion

We used a simple model problem to investigate the complications that arise
from using non-matching interface parameterizations within the framework of
Isogeometric Analysis on a multi-patch domain, using discontinuous Galerkin
techniques to couple terms across the interfaces. More precisely, we studied two
particular problems. Firstly, we explored the use of reparameterizations to iden-
tify pairs of associated points on the common interface. This was found to be



268 A. Seiler and B. Jüttler

useful for correctly evaluating certain terms in the dG discretization. Secondly,
we addressed the construction of a suitable procedure for numerical integration.
As demonstrated in our numerical experiments, both problems are important
for ensuring the optimal rate of convergence for the numerical simulation based
on the isogeometric dG discretization.

Future work may be devoted to the extension of the adaptive quadrature-
based approach to the three-dimensional case. Moreover, we are currently study-
ing dG-type techniques for performing multi-patch spline surface fitting with
approximate geometric smoothness across patch interfaces.
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ometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer,
Cham (2015). doi:10.1007/978-3-319-23315-4 1. NFN Technical Report No. 18 at
www.gs.jku.at

13. Langer, U., Moore, S.E.: Discontinuous galerkin isogeometric analysis of ellip-
tic pdes on surfaces. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R.,
Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineer-
ing XXII. LNCSE, vol. 104, pp. 319–326. Springer, Cham (2016). doi:10.1007/
978-3-319-18827-0 31. arXiv:1402.1185

http://arxiv.org/abs/1511.05715
http://dx.doi.org/10.1007/978-3-319-23315-4_1
https://www.gs.jku.at
http://dx.doi.org/10.1007/978-3-319-18827-0_31
http://dx.doi.org/10.1007/978-3-319-18827-0_31
http://arxiv.org/abs/1402.1185
https://arxiv.org/abs/1402.1185


Reparameterization and Adaptive Quadrature 269

14. Langer, U., Toulopoulos, I.: Analysis of multipatch discontinuous Galerkin IgA
approximations to elliptic boundary value problems. Comput. Vis. Sci. 17(5), 217–
233 (2016)
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