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Abstract. The conditions for subdivision surfaces which are piecewise
polynomial in the regular region to have continuity higher than C1 were
identified by Reif [7]. The conditions are ugly and although schemes have
been identified and implemented which satisfy them, those schemes have
not proved satisfactory from other points of view. This paper explores
what can be created using schemes which are not piecewise polynomial
in the regular regions, and the picture looks much rosier. The key ideas
are (i) use of quasi-interpolation (ii) local evaluation of coefficients in the
irregular context. A new method for determining lower bounds on the
Hölder continuity of the limit surface is also proposed.
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1 Motivation

There is a myth among commercial CAD system suppliers that “Subdivision
surfaces are adequate for animation, but they can’t be used for serious CAD
because they are not C2 at extraordinary points.”

Although this myth cannot be completely discounted (like most myths there
is some truth hidden underneath), in this raw form it is false.

1. There are subdivision surface schemes which are C2 at extraordinary vertices
(see [9,18,19] and several others). They may all have other problems, but
they are C2.

2. Lack of C2 at isolated points does not matter. The ideas of [18] could be
applied after a few hundred iterations of a standard method. This would
make the limit C2 everywhere, but it would be totally indistinguishable from
the raw limit surface. Also, there is a bivariate interpolation technique which
minimises the bending energy of the surface. This is widely regarded as good,
but the second derivatives are unbounded at the data sites.

3. The ‘raw’ forms of popular subdivision surfaces [2,4,5] are not merely not
C2. They actually have unbounded curvature at extraordinary points, and
because the unboundedness accelerates at different rates for positive and neg-
ative Gaussian curvatures, this can force regions of the limit surface close to
an extraordinary point to have the wrong sense of curvature [15,16]. Such
extreme behaviour can be eliminated easily [23,24] by tuning of the coeffi-
cients in extraordinary regions, but this does not cure the lack of C2, and is
not widely cited.
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The truth underneath is that the raw forms of the popular schemes, and even
tuned versions to a lesser extent, suffer from local distortion of the surface over
non-infinitesimal regions. It is these artifacts which are visible and objectionable
in the reflection line plots, and it is these which need to be eliminated. The
basic cause of these turns out to be the same as the cause of our inability to
tune these schemes to perfection: the inability to achieve quadratic generation
in any simple uniform stationary scheme which gives bi-polynomial pieces in the
regular regions. This was understood nearly twenty years ago [7,9,10] and that
understanding has deepened since [17].

This paper explores the idea of using schemes with fractal limit surfaces, the
analog of the quasi-spline curves of [20,21] to give the kind of behaviour which
serious CAD needs. [25] has already explored the quad grid case, and so the
focus here is on surfaces where the regular part of the mesh contains triangles.

Any full coverage of this will require many more years of work, and so this
paper merely sets out the territory and provides some initial results and some
ideas for directions which need to be explored. The exploration here is of surfaces
with a quasi-interpolating degree of three.

2 Definitions

A scheme is said to generate polynomials of degree d if for any bivariate poly-
nomial of degree d we can find a control polyhedron for which that function is
the limit.

A scheme is said to reproduce polynomials of degree d if for any bivariate
function of degree d we can find a control polyhedron for which that function is
the limit, and for which the control points all lie on the function. The limit has
to interpolate them.

The distinction between these two was not emphasised in the early papers,
but it turns out to be fairly important. Over regular grids, most subdivision
schemes can generate polynomials of low degree. Those which are B-spline based
do not reproduce them for degrees above 1.

A scheme can reproduce polynomials without being an interpolating scheme
for arbitrary data. Such a scheme is called a quasi-interpolating scheme of
degree d where d is the highest degree of polynomial which it can reproduce.

A scheme is called a stable generator of degree d if it generates polynomials
of degree d and if the maximum change of dth derivative with respect to addition
of perturbations of maximum amplitude ε is continuous with respect to ε with
Hölder exponent greater than 1, 0. The issue of stability is critical. The four-
point scheme is a quasi-interpolant of degree 3, but not a stable one, because
for any sequence of six data points which do not all lie on a cubic, the second
derivatives at dyadic points within the central span diverge at a rate depending
on the fourth differences of the local control points.
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3 Quadratic and Cubic Reproduction in Functional
Subdivision over a Regular Triangulation
of the Domain

This section exemplifies an approach. It does not preclude further work on
higher quasi-interpolation degrees, on different regular connectivities or on higher
arities.

3.1 Stencil Sizes

A quasi-interpolating functional subdivision scheme has the property that if the
values at all the old vertices lie on a polynomial, then new vertices will also
get vertices on that polynomial. If this property holds at every step, then the
limit surface will reproduce that polynomial, which we take as a condition for
continuity of the relevant degree, and for avoiding certain artifacts.

In order for a new vertex to have that property, the value has to be chosen
to match all polynomials of the target degree, d, which means that unless the
scheme is actually interpolating, there is a number n of conditions to be ful-
filled equal to the number of independent polynomials of that degree. These are
tabulated in Table 1.

Table 1. Stencil sizes

Degree Number

0 1

1 3

2 6

3 10

4 15

n (n + 1)(n + 2)/2

Table 2. Number of available vertices

No of rings Number of
vertices in
V-vertex stencil

Number of
vertices in
E-vertex stencil

0 1

1 7 4

13 8

2 19 10

25 14

31 18

r 3(r + 1)(r + 2)+1

We get the new value by taking a linear combination of the values at the
vertices in the stencil of the new point, and in order to be able to satisfy all
these conditions, we need to have at least as many independent coefficients in
those linear combinations. This leads to the unwelcome conclusion that high
degrees of polynomial reproduction will require very large stencils, involving a
number of rings varying at least linearly with the degree. See Table 2. Quadratics
and cubics remain (just) within sensible reach.
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We can have more coefficients (i.e. more old vertices in the footprint of the
stencil) than conditions to satisfy, and in this case the choice of the values of those
coefficients is underdetermined. This can be demanded by symmetry, since the
number of vertices in a rotationally symmetric stencil goes up with the number
of rings included.

However, in the case of the completely regular domain, symmetry also pro-
vides a way of resolving the extra freedom.

3.2 Construction of Cubic Quasi-interpolant

We know that each of the stencils must contain at least 10 entries for cubic quasi-
interpolation. There are three e-vertex stencils as well as the v-vertex stencil,
and so the total number of entries in the mask must be at least 40. We need
some understanding in order to be able to construct such a beast.

This understanding comes from two sources: the first is that the v-vertex
stencils must have 6-fold rotational symmetry, and that the e-vertex stencils
must have two mirror symmetry axes. The second is that we cannot have good
behaviour for general data if we do not have good behaviour for extruded data,
in which each mesh direction has the same value at all points along each edge
in that direction.

If the data is extruded, then the shape of a cross-section limit curve will be
given by a univariate refinement scheme whose mask is given by the row-sums
of the bivariate scheme. Further, factorisation of the mask is preserved under
the taking of row-sums. Because there are three directions for the row sums, the
desired symmetries come out in the wash.

We know a univariate scheme with cubic quasi-interpolation. This was
described by Hormann and Sabin [20]. Its mask is

2
(

[1, 1]
2

)6 [−3, 10,−3]
4

To map this to a triangular grid we need to take the [1, 1]/2 factors in pairs,
replacing each pair by

S =

⎡
⎣ 1 1

1 2 1
1 1

⎤
⎦ /8

and finding a kernel which, when multiplied by the cube of this, gives the required
row sums.

This is easily found to be

K =

⎡
⎣ −3 −3

−3 26 −3
−3 −3

⎤
⎦ /8
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which has the correct row sums to match [−3, 10,−3]/4, giving a final mask1 of
4S3K. ⎛

⎜⎜⎜⎜⎜⎜⎝

−3 −12 −18
−12 −28 −24 |

−18 −24 66 144
−12 −24 144 468 |

−3 −28 66 468 754 sym
sym

⎞
⎟⎟⎟⎟⎟⎟⎠

/1024

From this we can extract the stencils

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 −18 −3

−18 66 66 −18

−3 66 754 66 −3

−18 66 66 −18

−3 −18 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/1024

and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 −12

24 144 24

−28 468 ∗ 468 −28

24 144 24

−12 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/1024

There are enough entries in these stencils (19 and 14 respectively) to give
cubic precision, which requires 10 points, but not quite quartic, which requires 15.
In any case there is no reason why these coefficients should satisfy the quartic
quasi-interpolation conditions. Three of the four cubics and all lower degrees
are satisfied because cubic extruded data is matched for three extrusion direc-
tions (by symmetry). The fourth cubic condition is based on a linearly varying
quadratic, and this is satisfied by mirror symmetry. We therefore assert that
this set of stencils satisfies all of the constant, linear, quadratic and cubic quasi-
interpolation conditions.

The question remains whether the resulting scheme is stable in the sense that
the eigenvalues behave.
1 K here is normalised to sum to 1: the kernel is thus 4K. This factor of 4 is analogous

to the factor of 2 in the expression for the univariate scheme mentioned above.
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3.3 The Basis Function

The basis function is the effect on the surface when one control point is moved.
If we start the refinement process itself with a single unit valued control point
and all the rest with value zero (cardinal data), successive refinements converge
towards the basis function. We can get tesselations of the basis function by
convolving each of these with the unit row stencil (the row (left) eigenvector of
the component with unit eigenvalue and column (right) eigenvector of all 1s) to
get the vertices at limit points. These are shown in Fig. 1. The last of these can
be compared with the basis functions of the Butterfly [5] and Loop [4] schemes
in regular regions in Fig. 2. Our scheme has significantly smaller wriggles than
Butterfly, and is narrower than Loop. In all of these figures, the basis function
is shown as far out as the first zero entries. Note that these are not control
polyhedra, as the scheme is only quasi-interpolating and the basis function is
not a polynomial.

Fig. 1. The first four iterations, in which there is refinement, but no alteration of
existing limit points.

3.4 Continuity Analysis

We can address the determination of lower bounds on the Hölder continuity by
three routes. The first approach is to apply the bivariate approach of Cavaretta
et al. [6], which is capable of showing that whatever the data, a norm of the first
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Fig. 2. The basis functions of the butterfly scheme and of Loop in regular regions.
(also drawn at four iterations.)

difference of the second or third divided difference contracts with each refine-
ment. This is capable of putting a lower bound on the continuity of the limit
surfaces. Unfortunately I have not been able to formulate this approach and have
not therefore been able to apply this test.

The second is that of Kobbelt [11], which applies difference operators to the
powers of the refinement operation.

I suggest here that a simpler approach may be to check whether the contrac-
tivity is true for the basis function. Any other data has its limit surface expressed
at any point as a finite weighted sum of basis functions, and so if the basis func-
tion is continuous in derivative to a certain degree, then so must any other limit
surface. This can be done numerically and is covered in Sect. 3.5 below.

We can also determine upper bounds by checking the magnitudes of the
eigenvalues, which can put upper bounds on the level of continuity, by measuring
the actual continuity at specific mark points of the surface. This can also be done
numerically and is covered in Sect. 3.6 below. Sharper bounds can in principle be
determined by eigenanalysis at more mark points. Here only the triangle vertices
and triangle centres are considered.

3.5 Contractivity of Differences of the Basis Function

Because we have tesselations of the basis function at different levels, we can,
merely by convolving with appropriate difference stencils, determine how the
various differences vary from level to level.

Because it is easiest to implement, the tables below are derived by taking the
appropriate differences (up to 4th) over the entire domain and then extracting
norms. We show here the max-norm and the average absolute value.

Because of the symmetry of the basis, we need only take the first differences
in one direction giving Table 3. Similarly the three second differences are just
symmetric versions of a single one giving Table 4. We can get the four 3rd dif-
ferences just by evaluating two of them giving Table 5. The same is true of the
4th differences giving Table 6.



C2 Subdivision 209

In each table are five columns. The second is the sum of the absolute values
of the relevant difference, taken over the tesselations of the basis function shown
in Fig. 1. The third is the ratio between each such value and the one above. The
fourth column is the maximum absolute value of the relevant difference, and
again the fifth holds the ratio between successive refinements.

Table 3. First differences: Because the entries in the second column are sums, the
ratios need to be divided by 4 to get the actual ratio of norms. (There are four times
as many triangles and therefore four times as many difference entries in each row
compared with the previous.) With this correction, both ratios are converging nicely
to 1/2, which, because it is less than one indicates that the scheme is convergent, with
a continuous limit.

Level Σ|d| Ratio |d|max Ratio

0 1.954658364122 0.6252769189585

1 4.4209983756427 2.2617754881314 0.3706062878079 0.5927074494053

2 9.457042987369 2.1391193083155 0.2077661161766 0.5606114170526

3 19.150115219234 2.0249580386608 0.1054197019496 0.5073960272712

4 38.430854767130 2.0068210727280 0.0529147334585 0.5019434932932

Table 4. Differences of first divided differences: The ratios in the third column
now need to be divided by 4, but also multiplied by 2, because the raw figures are
differences rather than divided differences. Those in the fifth column now need to be
multiplied by 2. Again, the ratios are nicely converging to 1/2 which is well below 1,
and so we can deduce that the scheme is C1.

Level Σ|d| Ratio |d|max Ratio

0 1.954658364122 0.625276918958

1 5.195647796224 2.658084855947 0.509341262301 0.260578150970

2 5.915246892456 1.138500361158 0.148838512720 0.292217661784

3 6.111079357843 1.033106389124 0.039238461919 0.263631107314

4 6.162914058208 1.008482085950 0.009987309486 0.254528567085

3.6 Eigenvalue Analysis

This is very straightforward, as we can work solely with the kernel, which is very
simple.

4K =

⎛
⎜⎜⎜⎜⎝

−3 −3

−3 26 −3

−3 −3

⎞
⎟⎟⎟⎟⎠ /2
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Table 5. Differences of second divided differences: We have two different third
differences in use here. The ratios in the third column now need to be divided by 4,
but also multiplied by 4, because the raw figures are differences rather than divided
differences. Those in the fifth column now need to be multiplied by 4. Yet again, the
ratios are nicely converging to 1/2 which is well below 1, and so we can deduce that
the scheme is C2.

Level Σ|d| Ratio |d|max Ratio

0 6.3472772348861 1.7968990864628

1 6.7026946541919 1.0559952568878 0.4211556586767 0.2343791378434

2 4.2440378797963 0.6331838310942 0.0783173770441 0.1859582684705

3 2.2718369140307 0.5353008098362 0.0103408828255 0.1320381659330

4 1.1575101905374 0.5095040860497 0.0013108955912 0.1267682472874

Level Σ|d| Ratio |d|max Ratio

0 8.457483383656 2.175810559215

1 19.80725893292 2.341980236248 1.479495404617 0.679974365576

2 18.91360654972 0.954882581874 0.365260442678 0.246881768972

3 11.64307651131 0.615592614804 0.053058514549 0.145262142707

4 6.249221667750 0.536732852496 0.006830399904 0.128733342097

Table 6. Differences of third divided differences: We have three different fourth
differences in use here. The ratios in the third column now need to be divided by 4,
but also multiplied by 8, because the raw figures are differences rather than divided
differences. Those in the fifth column now need to be multiplied by 8. It looks as though
we can infer C3.

Level Σ|d| Ratio |d|max Ratio

0 12.30937074944 3.593798172925

1 9.351603172048 0.759714152932 0.786811211287 0.218935837080

2 3.573727352791 0.382151304652 0.086012788579 0.109318204095

3 1.044397941094 0.292243318527 0.008115334957 0.094350329662

4 0.280368542187 0.268449918518 0.000710776028 0.087584311946

Level Σ|d| Ratio |d|max Ratio

0 16.91248082729 4.351621118431

1 37.84281382575 2.23756728608 2.95899080923 0.679974365576

2 24.47335784142 0.646710837997 0.511077643651 0.172720253829

3 7.817348127387 0.319422785301 0.051984063931 0.101714611423

4 2.094546402655 0.267935669299 0.004790014051 0.092143893521

Level Σ|d| Ratio |d|max Ratio

0 10.70181694529 2.314131729739

1 5.6719938630861 0.5300028856857 0.4288936385916 0.1853367434013

2 1.8838035407895 0.3321236916438 0.0439635901700 0.1025046450080

3 0.5026102536695 0.2668060882075 0.0040813827780 0.0928355205346

4 0.1320672373545 0.2627627200007 0.0003559242029 0.0872067684662
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The stencils are⎛
⎜⎜⎜⎜⎝

0 0

0 26 0

0 0

⎞
⎟⎟⎟⎟⎠ /2 and

⎛
⎜⎜⎜⎜⎝

0

−3 ∗ −3

0

⎞
⎟⎟⎟⎟⎠ /2

The subdivision matrix at vertices for the zero frequency Fourier component
becomes ⎡

⎢⎢⎢⎣
26/2
−3/2 −3/2

0 −6/2 0

0 26/2 0
. . .

⎤
⎥⎥⎥⎦

whose only non-zero eigenvalues are 26/2 and −3/2. Those of higher frequency
Fourier components are never larger.

We may therefore determine the Hölder continuity at vertices to be

6 − log2(13) = 6 − 3.7004 = 2.2996,

because each S factor increases the Holder continuity by 2.
The subdivision matrix at triangle centres for the zero frequency Fourier

component becomes ⎡
⎢⎢⎢⎣

−6/2
26/2 0
−3/2 −3/2 0

−3/2 0 −3/2
. . .

⎤
⎥⎥⎥⎦

whose only nonzero eigenvalue is −3. Those of higher frequency Fourier compo-
nents are never larger.

The Hölder continuity here is 6 − log2(3) = 4.41
In fact the continuity might be less than 2.2996, because this analysis only

tells us about the continuity at the dyadic points, giving upper bounds on the
level of continuity. Other mark points might have different (worse) behaviour.
There are an infinite number of them and this is why the joint spectral radius
calculation is such a lot of work. However, getting two upper bounds on the right
side of 2 means that the method has not failed this test.

4 Triangulations with Extraordinary Vertices

The handling of extraordinary vertices requires amazingly little additional analy-
sis. If a scheme has quadratic or cubic precision, it will have linear precision. We
can therefore choose a desired natural configuration, for example by taking that
of any C2 scheme, and the coefficients computed to give the reproduction proper-
ties will automatically make that natural configuration a self-fulfilling prophecy.
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We have three types of stencil to determine:

(i) That of the EV itself.
Here use of symmetry resolves the underdeterminedness.

(ii) Those of new vertices2 lying within the support of the EV: i.e. whose sten-
cils contain the EV in their interior, so that the topology of the stencil is
affected asymmetrically by the presence of the EV.

This is where most of the work lies, in that the vertices which need to
be taken into account have to be chosen. The EV spoils the regularity of
the topology. Calculating the coefficients to give the required reproduction
properties applies as in the regular case.

(iii) Those of vertices lying further out, in what we can term the ‘far field’. Here
the topology of the stencil is regular, but the geometry is influenced by the
natural configuration. Thus the actual coefficients will differ from the regu-
lar case. This effect propagates unboundedly, although hopefully reducing
with distance. However, we can choose to resolve the underdeterminedness
by minimising the difference from the regular case. Because of the regress
of regularity around the extraordinary vertices, if the stencils converge fast
enough towards the regular case, we do not have to worry about continuity
at any points other than the extraordinary vertices themselves. This means
that eigenanalysis at the EVs is a sufficient tool. Thus most of the really
hard work is done in the regular case.

In fact at large distances from an EV we have two possible strategies

(iii.i) to be pure, and insist that all stencils are determined correctly.
In fact, if we are careful, the perturbation of the coefficients from the

regular case reduces fast enough with distance that after a certain distance
it can be approximated accurately enough (to machine precision) by some
simple form, which can be combined when more than one EV is present
in the control polyhedron.

(iii.ii) just to revert to the regular stencil for all new vertices whose support does
not touch the EV.

This avoids a lot of implementation problems, and will not spoil the
continuity at the EV, because only control points within, or on the bound-
ary of, the support of the EV influence the shape of the limit surface in
the immediate neighbourhood of the EV. It will not spoil the continuity
anywhere else either, because everywhere outside that neighbourhood has
its continuity governed by the regular case.

However, we can expect something to go wrong, and an obvious symp-
tom to be expected will be the appearance of artifacts in the region
between the two regimes.

A practical resolution might well be to use (iii.ii) to avoid overlapping influ-
ences from more than one EV. In regions where more than one EV has a sig-
nificant effect, who can say what the desired surface should be? As refinement
2 In the case of schemes having multiple kinds of e- and f-vertices (for example, that

of [9] or of higher arity) each kind will need individual calculations of this type.
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proceeds, the threshold between the two regimes can move in more slowly than
the refinement rate, and the artifacts should therefore be spread out and diluted.

4.1 Conformal Characteristic Map

In [13] David Levin conjectured that a stationary subdivision scheme giving the
characteristic map

u + iv = (s + it)6/n

would require a EV mask of unbounded size. Here we have a non-stationary
scheme, because the stencils depend on the local layout of control points in the
domain, and the corresponding conjecture is that the influence of the presence
of the extraordinary point extends unboundedly, even though the EV itself is
only accessed by the stencils of a finite number of nearby new vertices.

In the far field we find that the rate of convergence to the regular case turns
out to be significantly slower if we enforce cubic reproduction than if we only
enforce quadratic, despite the fact that what we are trying to be close to does
have cubic precision when the geometry is regular. The Tables 7, 8, 9 and 10 in
Annex 2 report E1 = Σiδ

2
i and E2 = maxi|δi| for reproduction of degrees 2 and

3, for v-vertices along rays from the EV of valencies 5 and 7.

4.2 Other Characteristic Maps

The choice of the conformal characteristic map is entirely an aesthetic one. It
would be equally possible to choose as arbitrary natural configuration that of
Loop or of the Butterfly scheme. Anything, in fact, which can be shown to be
1:1 and have its characteristic map join smoothly enough to its scaled instance
under the next ring.

4.3 Moving Least Squares

Since presentation of the paper I have seen the recent work of Ivrissimtzis. This
uses a combination of a standard subdivision scheme (in this Loop, Butterfly or
even the degree 1 box-spline) to determine approximate new vertex positions,
which are then refined by projection on to a local least squares fit to some
subset of the old vertices. This work is following a line which can be traced
back through the work of Boyé, Guennebaud and Schlick [22], Levin [14] and
McLain [1]. It looks to be almost equivalent to the above ideas, in that it gives a
quasi-interpolant (if enough local points lie on a polynomial, the new point will
lie on that polynomial), but goes, apparently, more directly to the new points
(projecting rather than first computing coefficients).

5 Directions Still Needing Exploration

5.1 Stronger Proof of Degree of Continuity

The analysis of the regular case above is unsatisfactory, with different approaches
giving different opinions. The method of chapter seven in Cavaretta et al. [6]
needs to be made to work.
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5.2 End and Edge Conditions

Before these ideas can be applied to practical situations, the detail of what to do
at the edges of the domain of interest needs to be articulated. Unfortunately we
do not yet even have end conditions adequately explored for univariate quasi-
splines, and this must obviously come first.

5.3 Extension to Higher Degrees

In principle exactly similar constructions can be made, choosing coefficients
to give any desired quasi-interpolation degree. Because the stencils for higher
degrees become large quadratically with degree, it is unlikely that higher degrees
will be of more than academic interest, but the academic interest is there. It
seems likely that the extension in this direction will not expose new problems
significantly different from those already seen.

5.4 Extension to Solids and Higher Dimensions

Although regular triangular grids do not have completely regular analogues in
higher dimensions, the ideas of using subdivision basis functions which reproduce
low degree polynomials without being interpolating for general data must be
relevant to IsoGeometric Analysis, overcoming the current disadvantage of sub-
division that the lack of polynomial generation gives excessive stiffness because
the artifacts contribute spurious energy to the solution.
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Ivrissimtzis for bringing the moving least squares ideas to my attention.

Annex 1: Computation of Stencil Nearest to a Regular
Stencil

In the topologically regular but geometrically irregular case, I suggest that the
nearest solution to the regular one should be chosen. This gives some measure
of continuity with respect to changing layouts in the abscissa plane. The metric
for ‘nearest’ might be chosen by more sophisticated arguments later3, but for
the moment I just use the euclidean distance in coefficient space.

Call the number of coefficients c and the number of quasi-interpolation con-
ditions n.

3 For example, to get better continuity when the set of support points needs to change
because of changes in the set of local neighbours.
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The quasi-interpolating conditions define a linear subspace of dimension c−n
in the space of dimension c − 1 of sets of coefficients: nearness to the regular
coefficients defines a complementary subspace orthogonal to it, and the solution
can be found in that subspace by solving a linear system of size n × n.

Let the set of coefficients be ai, i ∈ 1..c, and let the quasi-interpolation
conditions be

∀j ∈ 1..n Σiaifj(vi) = 0

If the regular coefficients are āi, then we can set up the system

∀i ai = āi + Σk∈1..n δkfk(vi)

and solve for the δj .

∀j ∈ 1..n 0 = Σiaifj(vi)
= Σi (āi + Σk δkfk(vi)) fj(vi)
= Σi āifj(vi) + Σi Σk δkfk(vi)fj(vi)
= Σi āifj(vi) + Σk Σi δkfk(vi)fj(vi)
= Σi āifj(vi) + Σk δkΣi fk(vi)fj(vi)⎡

⎢⎢⎣
. . .

Σi fk(vi)fj(vi)
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...
δk
...

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

...
Σi āifj(vi)

...

⎤
⎥⎥⎦

The actual coefficients can then be determined from these δj values.

∀i ai := āi + Σk δkfk(vi)

The rate of convergence with distance from the EV in an interesting natural
configuration can be measured by how Σjδ

2
j varies with distance.

Annex 2: Convergence for Conformal Characteristic Map

These figures in Tables 7, 8, 9 and 10 (E1 = Σiδ
2
i and E2 = maxi|δi|) are

disappointing in that the convergence is so slow. A conjecture that the rate of
convergence would be d−6 has been soundly disproved by these calculations.

Table 7. Valency = 5, reproduction
degree = 2

Distance E1 E2

2 0.0266273481 0.00859447462

4 0.0029902673 0.00098588428

8 0.0004904519 0.00014386747

16 0.000117032 0.00003354449

Table 8. Valency = 5, reproduction
degree = 3

Distance E1 E2

2 0.043294222 0.0178461598

4 0.035778240 0.0131572241

8 0.020705507 0.0069547056

16 0.01054870 0.0035061301
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Table 9. Valency = 7, reproduction
degree = 2

Distance E1 E2

2 0.03776611323 0.0112682406

4 0.00295127833 0.0010064401

8 0.00022928609 0.0000913945

16 0.0000595678 0.0000175042

Table 10. Valency = 7, reproduction
degree = 3

Distance E1 E2

2 0.1065766380 0.0439985659

4 0.0327818713 0.0132975787

8 0.0142165239 0.0051765249

16 0.0074573353 0.0025183365
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