
Chapter 5
Lattices and Spherical Codes

Lattices in R
n with sublattices which have an orthogonal basis are associated with

spherical codes in R
2n generated by a finite commutative group of orthogonal

matrices. They also can be used to construct homogeneous spherical curves for
transmitting a continuous alphabet source over an AWGN channel. In both cases,
the performance of the decoding process is related to the packing density of the
lattices (see (2.13)). In the continuous case, the packing density of these curves
relies on the search for projection lattices with good packing density. We present
here a survey on this topic mainly based on [18, 31, 96, 105].

5.1 Spherical and Geometrically Uniform Codes

Consider the sphere of radius a in R
n, Sn�1.a/ D fx 2 R

n; kxk D a � 0g. A
spherical code is a finite set of M points on this sphere. Usually we consider only
spherical codes on the sphere of radius one, Sn�1 D Sn�1.1/, and all the conclusions
will be extended by similarity to a sphere of radius a. Two dual optimization
(packing) problems regarding spherical codes, which have several applications in
physics, chemistry, architecture, and signal processing, can be stated as:

Problem 1 Given a dimension n and an integer number M > 0, find a spherical
code with M points such that the minimum distance between two points in the code
is the largest possible.

Problem 2 Given a dimension n and a minimum distance d > 0, find a spherical
code with the biggest number M of points such that each two of them are at distance
at least d.

Codes which are solutions for one of these problems are called optimal spherical
codes. In dimension 2, codes which are vertices of regular polygons inscribed in
S1 provide solutions for both problems. The solution of Problem 1 in dimension 3
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Fig. 5.1 Antiprism with
eight vertices

is only known up to now for 1 � M � 12 and for M D 24 [37]. As examples,
for M D 2, 3, and 4, the optimal spherical codes in R

3 are two antipodal points,
the vertices of an equilateral triangle inscribed on an “equator" and the vertices of
an inscribed regular tetrahedron in S2 � R

3, respectively. For M D 8 the optimal
spherical code in R

3 is given by the vertices, not of a cube as one could have possibly
expected, but of a regular (with same length edges) antiprism with eight vertices
(Fig. 5.1).

Other spherical codes known to be optimal for their minimum distances are the
biorthogonal codes of 2n points in R

n, obtained as all coordinate permutations of the
vectors .0; 0; : : : ; 0; ˙1/, and the simplex code which is the n-dimensional version
of the triangle and tetrahedron vertices. It has M D nC1 points and can be described
in the unit sphere in R

nC1 as all permutations of the vector 1p
nCn2

.1; 1; : : : ; 1; �n/.

The distance between any two distinct points in this code is
q

2.nC1/

n .
Group codes as introduced by Slepian [97] and developed in subsequent articles

[11, 16, 54, 64] are defined as finite sets on an n-dimensional sphere generated by the
action of a group of orthogonal matrices. Geometrically uniform codes introduced
by Forney [42] generalize this concept by considering also infinite sets of points in
the Euclidean space having a transitive symmetry group. We consider this concept
in the context of metric spaces [29]: for X a metric space, a signal set S � X is
a geometrically uniform code if and only if for s; t in S, there is an isometry f
(depending on s; t) in X such that f .s/ D t and f .S/ D S. Geometrically uniform
codes capture the highly desirable properties that come from homogeneity: the same
distance profile, congruent Voronoi regions in the same sense as defined for lattices,
and the same error transmission probability for each codeword. One recurrent metric
space considered here is the n-dimensional flat torus, obtained by identifying the
opposite sides of an n-dimensional box and which can be defined as a quotient
T D R

n=� where � is the group of translations generated by the n independent
vectors which define this box (� is a lattice).
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5.2 Flat Tori

A 2-dimensional flat torus can be visualized as a standard torus in the 3-dimensional
space (Fig. 5.2), but it can be distinguished from the latter by being locally like a
piece of plane (flat). One flat surface in R

3 is a cylinder, obtained by identifying
the boundaries of a rectangle. The flat torus can only be realized isometrically as
a 2-dimensional surface in R

4, and it is contained in a 3-dimensional sphere. For
c D .c1; c2/ with c1; c2 positive numbers such that c2

1 C c2
2 D 1; consider the map

˚c W R
2 ! R

4, defined as ˚c.u1; u2/ D .c1 cos. u1

c1
/; c1 sin. u1

c1
/; c2 cos. u2

c2
/;

c2 sin. u2

c2
//. Observe that this map is doubly periodic, having identical images in

the translates of the rectangle Œ0; 2�c1/ � Œ0; 2�c2/ by vectors .k12�c1; k22�c2/, ki

integers, and that its image is contained in a sphere of radius one in R
4.

The parallel boundaries of each of these rectangles will be “glued” together and
form a 2-dimensional surface with zero curvature – the flat torus Tc. For each
pair c under the above condition, we have a flat torus, and the sphere S3 in R

4

can be obtained as the union (foliation) of these tori. In Fig. 5.3 we can see for
c D .0:8; 0:6/, the tessellation of the plane given by the associated torus map.
Note also that ˚�1

c .c1; 0; c2; 0/ is the lattice given by the vertices of the rectangles.
Spherical codes in R

4 which are the image through a torus map of lattices in R
2

with rectangular sublattices, as the one in the example of Fig. 5.3, present special
homogeneous properties to be discussed in the next sections.

We next describe how any sphere in even dimensions n D 2L can be considered
as foliated by L-dimensional flat tori. Inequalities relating the distances on a flat
torus in R

2L and on its associated hyperbox in R
L to be used in the next sections are

also presented.
The unit sphere S2L�1 � R

2L can be foliated by flat tori (also called Clifford tori)

as follows. For each unit vector c D .c1; c2; :::; cL/ 2 SL�1; ci > 0;

LX
iD1

c2
i D 1, and

u D .u1; u2; : : : ; uL/ 2 R
L, let ˚c W RL ! R

2L be defined as

˚c.u/ D
�

c1 cos

�
u1

c1

�
; c1 sin

�
u1

c1

�
; : : : ; cL cos

�
uL

cL

�
; cL sin

�
uL

cL

��
: (5.1)

Fig. 5.2 A view of the
2-dimensional flat torus
which only can be realized
in R

4
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Fig. 5.3 The tessellation of the plane associated to c D.0:8; 0:6/ 2 S1, and a lattice � (black dots)
which contains 2�c1Z � 2�c2Z as a rectangular sublattice. In this case �c(�/ is a spherical code
with M D 8

The image of this periodic map ˚c is the torus Tc, a flat L-dimensional surface
contained in the unit sphere S2L�1, and Tc is also the image of an L-dimensional
box Pc,

Pc D fu 2 R
LI 0 � ui < 2�ci; 1 � i � Lg: (5.2)

The restriction of ˚c to Pc is injective.
For c 2 SL�1 and ci � 0, if ci D 0 for some 1 � i � L, we may replace in (5.1)

the coordinates related to ci by 0 and obtain a degenerated flat torus Tc, which is
an embedding of a .L � k/-dimensional box in R

2L, where k is the number of zero
coordinates of c.

The Gaussian curvature of a torus Tc is zero, and Tc can be cut and flattened into
the box, Pc, just as a cylinder in R

3 can be cut and flattened into a 2-dimensional
rectangle [103]. Since the inner product h@˚c=@ui; @˚c=@uji D ıij, where ıij is the
Kronecker delta function, the application ˚c is a local isometry, which means that
any measure of length, area, and volume up to dimension L � k on Tc is the same of
the corresponding pre-image in the box Pc.

We say that the family of flat tori Tc and their degenerations, with c D
.c1; c2; :::; cL/, kck D 1, ci � 0, defined above is a foliation on the unit sphere
of S2L�1 � R

2L: This means that any vector of S2L�1 belongs to one and only one of
these flat tori.

The following results [105, 107] allow to relate the distances between two points
in R

L and their spherical image on a flat tori in R
2L.
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Proposition 5.1 [[105, 107]] Let Tb and Tc be two flat tori, defined by unit vectors
b and c with nonnegative coordinates. The minimum distance d.Tc; Tb/ between two
points ˚c.u/ and ˚c.v/ on these flat tori is

d.Tc; Tb/ D kc � bk D
 

LX
iD1

.ci � bi/
2

!1=2

: (5.3)

The distance between two points ˚c.u/ and ˚c.v/ on the same torus Tc, defined by
a vector c D .c1; � � � ; cL/, is given by

jj˚c.u/ � ˚c.v/jj D 2

rX
c2

i sin2.
ui � vi

2ci
/ (5.4)

and it is bounded according to the next proposition [105].

Proposition 5.2 ([106]) Let c D.c1; c2; :::; cL/ 2 S2L�1, ci > 0, c� D min
1�i�L

ci ¤ 0,

� D ku � vk for u; v 2 Pc. Suppose 0 < � � c� , then

2�

�
� sin

�
�

2c�

�
2c� � k˚c.u/ � ˚c.v/k � 2 sin

ı

2
� �:

Note that this last proposition shows that, for small values, the distance in R
2L

between two points in a flat torus can be approached by the distance of the original
points in the box Pc in half of the dimension.

The upcoming Sect. 5.3 is a strongly geometrical approach to commutative group
codes presenting their connections with flat tori and quotient of lattices which
allows the establishment of specific upper bounds on the number of points of those
codes. Some results on constructions which may approach those bounds for optimal
commutative group codes are discussed. Remarks on commutative group codes
considered on graphs are also included. Section 5.4.1 summarizes a construction
of spherical codes on layers of flat tori with some comparisons with well-known
spherical codes. In Sect. 5.4.2 the homogeneous structure of flat tori and lattices
come together again now in a coding scheme for transmitting continuous alphabet
source over an AWGN channel. The search for projection lattices with good packing
density plays a crucial role in this case.

5.3 Commutative Group Codes, Flat Tori, and Lattices

5.3.1 Commutative Group Codes

Let On be the multiplicative group of orthogonal n � n matrices and Gn.M/ be the
set of all order M commutative subgroups in On.
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A spherical commutative group code C is a set of M vectors which is the orbit of
an initial vector u on the unit sphere Sn�1 � R

n by a given finite group G 2 Gn.M/,
i.e., C WD Gu D fgu; g 2 Gg : Recalling the definition of orthogonal matrix in
Sect. 2.1.1, one can see that starting from a vector in the sphere, all elements of C
will be also in the sphere, and therefore C is indeed a spherical code.

The minimum distance in C is:

d WD min
x; y 2 C

x ¤ y

jjx � yjj D min
gi ¤ I 2 G

jjgix � xjj;

where jj:jj denotes the standard Euclidean norm.
A canonical form for a commutative group G 2 Gn.M/ can be obtained from the

following result.

Proposition 5.3 ([43, p. 292]) All the matrices Oi of a commutative group O D
fOigM

iD1 of n � n orthogonal real matrices can simultaneously be put into a diagonal
block canonical form through an orthogonal matrix Q:

QTOiQ D
�

Rot

�
2�bi1

M

�
; : : : ; Rot

�
2�biq

M

�
; �2qC1.i/; : : : ; �n.i/

�
; (5.5)

where bij are integers, the blocks Rot.a/ are the ones associated with 2-dimensional
rotations by an angle of a radians:

Rot.a/ D
�

cos.a/ � sin.a/

sin.a/ cos.a/

�
;

and �l.i/ D ˙1 with l D 2q C 1; : : : ; n.
The next proposition [28, 96] describes the geometric locus of a commutative group
code. For even dimension this locus is always contained in a flat torus.

Proposition 5.4 Every commutative group code of order M is, up to isometry, equal
to a spherical code X whose initial vector is u D .u1; : : : ; un/, and its points have
the form

.Rot.ai1/.u1; u2/; : : : ; Rot.aiq/.u2q�1; u2q/; �2qC1.i/u2qC1; : : : ; �n.i/un/;

where aij D 2�bij

M
. Moreover,

1. If n D 2L, X is contained in the flat torus Tc, c D .c1; : : : ; cL/ where c2
i D

u2
2i�1 C u2

2i:

2. If n D 2L C 1 and X is not contained in a hyperplane, X D X1 [ X2, where
Xi is contained in the plane Pi D f.x1; : : : ; x2LC1/ 2 R

2LC1I x2LC1 D .�1/iung.
Also, Xi is contained in the torus Tc of a sphere in R

2L with radius .1 � u2
n/1=2,

where c2
i D u2

2i�1 C u2
2i:



5.3 Commutative Group Codes, Flat Tori, and Lattices 79

5.3.2 Lattice Connections

We say that a 2L-dimensional commutative group code is free from reflection blocks
if its generator matrix group, considered as Proposition 5.3, satisfies 2L D 2q D n.
By reflection blocks, we refer to the 2-dimensional blocks

˙
��1 0

0 1

�
;

which appear in the canonical form when 2q < n. Commutative group codes in even
dimension, whose generator matrices are free from reflections blocks, are directly
related to lattices.

For such commutative group codes C D Gu, we may consider without loss of
generality the initial vector as u D .c1; 0; c2; 0; : : : ; cL; 0/ where c D .c1; c2; :::; cL/

is a unit vector. We also will consider here ci > 0, that is, codes that are not
contained in a hyperplane of R2L. For the rotation angles aij D .2�bij/=M, where
1 � i � M, 1 � j � L as in Proposition 5.4, let vi D .ai1; : : : aiL/, 1 � i � M
and the lattice � defined as the set of all integer combinations of vi. Note that �

contains the rectangular lattice

�c D .2�c1/Z � .2�c1/Z � � � � � .2�cL/Z:

as a sublattice. The connection between these two lattices and the group code C D
Gu is given next [96].

Proposition 5.5 Let C D Gu with u D .c1; 0; c2; 0; : : : ; cL; 0/, c D .c1; c2; :::; cL/,
jjcjj D 1, ci > 0 be a commutative group code in R

2L, free from reflection blocks.
The inverse image ˚�1

c by the torus mapping (5.1) is the lattice � defined as above.

Moreover, the quotient of lattices
�

�c
is isomorphic to the generator group G.

Example 5.1 Let us consider the commutative group code C in R
4 having G

generated by the 4 � 4 matrix M with rotation blocks ŒR. 2�:1
5

/; R. 2�:2
5

/] and initial
vector w D .1=

p
2; 0; 1=

p
2; 0/. Note that in this case we have M D 5 and a cyclic

group of matrices, G D fI; M; M2; M3; M4g Ñ Z5. In the notation of Proposition 5.3
bi1 D i=5, bi2 D 2i=5, and the code C of 5 words is obtained by multiplying Miw
(w in the column format). Then, for c D .c1; c2/ D (1/

p
2,1/

p
2), the inverse image

of the torus map ˚c of this code is the lattice � 2 R
2 generated by the vectors

v1 D..1=5/.2�c1/; .2=5/.2�c2/, v2 D..�2=5/2�c1; .1=5/2�c2/. Note also that if
we consider the rectangular (square) sublattice �c generated by w1 D.2�c1; 0/

and w1 D.0; 2�c2/, the quotient of lattices ƒ=�c Š Z5 and it is generated by Nv1

(Fig. 5.4). It is interesting to note that this spherical code C is in fact the (optimal)
simplex code in R

4: any two of its five points are at a distance
p

5=2.
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Fig. 5.4 The quotient of
lattices linked to the simplex
code in R

4 with initial vector
.1=

p
2; 0; 1=

p
2; 0/ and

group of matrices generated
by ŒRot. 2�:1

5
/; Rot. 2�:2

5
/]
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Fig. 5.5 Pre-images ˚�1
c of two cyclic group codes C D Gu of order M D 25 in R

4. On the left,
G D hŒRot. 2�

25
/; Rot. 2�7

25
�i, and the initial vector is u D .1=

p
2; 0; 1=

p
2; 0/. On the right side,

G D hŒRot. 2�
25

/; Rot. 2�10
25

�i, and the initial vector is u D .
p

0:54915; 0;
p

0:45085; 0/, which
provides the best commutative group code of this order in R4[96]

Example 5.2 Figure 5.5 shows the inverse image of two commutative group codes.
In both the group is cyclic (Š Z25). Note that the lattice associated with the code on
the left is equivalent to the square lattice with basis f.4; 3/; .�3; 4/g which is less
dense than the lattice associated with the optimum code [106] on the right.

Proposition 5.6 ([96]) Every commutative group code C D Gu of order M in R
2L

free from 2 � 2 reflection blocks with initial vector u D .u1; : : : ; u2L/ and minimum
distance d satisfies

M � �L˘L
iD1.u2

2i�1 C u2
2i/

1=2�Gu

.arcsin d
4
/L

� �L

 
�

.arcsin d
4
/:L1=2

!L

;
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where �Gu is the center density of the lattice � associated to the code and �L is the
maximum center density of a lattice packing in R

L.

Remark 5.1 The inverse image through the torus mapping ˚c of a commutative
group code of order M generated by matrices which may contain 2 � 2 reflection
blocks (2q < n in Proposition 5.4) not always is a quotient of lattices. However,
from the L-periodicity of ˚c in R

L,we can assert that for u D .u1; : : : ; u2L/, it is

a periodic distribution of M points in the hyperbox Pc � R
L, ci D

q
u2

2i�1 C u2
2i

spanned by the lattice associated to this box. Therefore, for general commutative
group in R

2L , the lattice packing density in the last proposition can be replaced by
the best periodical packing density in R

L. Since any packing density in R
L can be

approached by periodical packing densities as remarked in [22], we can also replace
�L in the last proposition for DL, by the best center packing density in R

L [96].
Here it should be pointed out that for a general spherical code (not a group code),
we have much bigger upper bounds and the codes may approach the packing density
of R2L�1. The great advantages of commutative group codes are their homogeneity,
easiness, and low cost of the encoding and decoding processes on flat tori [107].
Bounds for commutative group codes in odd dimensions, n D 2L C 1, can also be
obtained [96] by observing that those codes must lie on two parallel hyperplanes and
are formed by two equivalent copies of commutative group codes in R

2L. Examples
of such codes in R

3 are the antiprisms. An interesting exercise is to describe the
best spherical code of 8 points in R

3, which is an antiprism with same size edges
(Fig. 5.1), as a commutative group code described in Proposition 5.4.

The torus bounds given in the Proposition 5.6 and Remark 5.1 are tight in the
following sense. Consider, for instance, the dual inequality of Proposition 5.2,

d � 2 sin

 
LY

iD1

ciDL=M

!
:

For big M the distance d must be small (from Proposition 5.2), and the inverse image
of the ball of radius d in R

2L centered in a point of Tc will be arbitrarily close to the
ball of same radius in R

L. This means that the best packing in the flat torus will be
approached by the best packing in its pre-image in the box Pc and then the upper
bounds of the above proposition and remark will be approached.

5.3.3 Approaching the Bound: Good and Optimum
Commutative Group Codes

For small distances d or big M, good commutative group codes may be found on
the search for orthogonal sublattices Q� of a lattice � with good packing density. For
each such sublattice, Q� let b1; b2; :::; bn be length of the orthogonal basis vectors,

b D
�PL

iD1 b2
i

� 1
2

the rescaled lattices .1=b/� and .1=b/ Q�. The commutative group
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code C associated to the quotient
.1=b/�

.1=b/ Q� on a flat torus Tc is a possible choice for

a good code, particularly if � has the best packing density in its dimension.
The next proposition describes the spherical code in R

2L attached to a nested pair
of lattices Q� � � � R

L, Q� orthogonal.

Proposition 5.7 Let ˛ D fv1; v2; : : : ; vng and ˇ D fw1; w2; : : : ; wng bases of
lattices �˛ and �ˇ , �ˇ � �˛ , and the associated generator matrices A˛ , Aˇ .
Then Aˇ D A˛H, where H is an integer matrix. Suppose that ˇ is composed by
orthogonal vectors, and consider the frame in R

n given by the normalizations of

these vectors. Let bi D kwik, b=
�Pn

jD1

��wj

��2
�

1
2 , ci D bi

b ; c D .c1; c2; : : : ; cn/

and �c the torus map regarding in this frame. Then the normalized nested pair
.1=b/�ˇ � .1=b/�˛ of lattices is associated with a spherical code in R

2n with
initial vector .c1; 0; c2; 0; : : : ; cn; 0/ and generator group of matrices determined by
the Smith normal decomposition of H.

Proof As pointed out in Chap. 2, 2.2, by considering the Smith decomposition,
H D PDQ, where P and Q are unimodular and D is the diagonal matrix with
diagonal terms di, we have AˇQ�1 D A˛PD, which implies that the columns hi

of the generator matrix Bˇ D AˇQ�1 of �ˇ must be multiples of the columns yi of
the generator matrix of B˛ D A˛P of �˛ , hi D diyi, and i D 1; : : : ; n. Since the
expression yi in terms of the original basis ˛ is given by the matrix P, we have that
for each di ¤ 1, yi represents a generator of the quotient of lattices with order dj in
terms of ˛; which implies that �˛=�ˇ Š Z Odi

˚: : : ˚Z Odk
, Odj ¤ 1. Then for each dj ¤

1, it is associated the generator matrix Oj D ŒRotŒ2�pj1=dj�; : : : ; RotŒ2�pjn=dj��,
where M D jdet.H/j D d1 : : : dn: The commutative group G composed by
M D jdet.H/j D d1 : : : dn orthogonal matrices will be the one generated by Oj,
j D 1; : : : ; k. So in the Smith decomposition of H, the matrix D provides the group
structure and the matrix P the rotation matrices involved.

Example 5.3 In the example of Fig. 5.3, we have, according to the notation used
in the above proposition, ˛ D fv1; v2g , ˇ D fw1; w2g, with v1 D ..0:8/2�=4; 0/,
v2 D ..0:8/2�=2; .0:6/2�=4/,w1 D ..0:8/2�; 0/,w2 D .0; .0:6/2�/. Note this is an
already normalized pair of lattices .b D 1/. Since w1 D 2v1 and w2 D 4v2 � 2v1,
we have:

H D
�

2 �2

0 4

�
D
�

1 �1

0 1

� �
2 0

0 4

� �
1 1

0 1

�
H) �˛=�ˇ D Z2 ˚ Z4:

Besides, the two generators of the quotient of lattices are the classes Nv1 of order 2

and Nv1� Nv2 of order 4 (note that in this case we could also choose Nv2 as a generator of
order 4 – see Fig. 5.3). The associated spherical code in R

4 will have .0:8; 0; 0:6; 0/

for initial vector, as expected, and the group composed by eight matrices. G D
fAr:Bs; 0 � r � 1; 0 � s � 3, where A D ŒRotŒ2�.1/2)], Identity] and B D
ŒRotŒ2�.�1=4/�; RotŒ2�.1=4/��:
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Table 5.1 Examples of commutative group codes in R
n, n D 4; 6; 8; 16, constructed through the

quotient of A2; D3; D4; E8 by “rectangular” sublattices

n M dmin Upper bound Group

4 141,180 0.012706 0.0127061 Z141180

4 423,540 0.00733585 0.00733588 Z423540

6 32 1.1547 1.26069 Z2 ˚ Z
2
4

6 2048 0.318581 0.320294 Z8 ˚ Z
2
16

8 648 0.707107 0.736258 Z3 ˚ Z
3
6

8 10,368 0.366025 0.369712 Z6 ˚ Z
3
12

16 65,536 0.707107 0.780361 Z2 ˚ Z
6
4 ˚ Z8

16 16777,216 0.382683 0.392069 Z4 ˚ Z
6
8 ˚ Z16

Their minimum distances approach the upper bound Proposition 5.6

In [4] it is studied the existence of orthogonal sublattices of A2, D3,D4; E8; which
(Chap. 2, 2.3) are the densest lattices in dimensions 2, 3, 4, and 8, and it is obtained
the spherical codes in the double of these dimensions which approaches the bound
of Proposition 5.3 particularly when M increases (Table 5.1).

In what follows, C .M; n; d/ denotes a commutative group code C in R
n with M

points and minimum distance equal to d. A C .M; n; d/ is said to be optimum if d is
the largest minimum distance for a fixed M and n.

As it is well-known, the minimum distance of a group code C , generated by
a finite group G, may vary significantly depending on the choice of the initial
vector u. This problem still does not have a general solution, but have been studied in
some important special cases, including reflection group codes [84] and permutation
group codes [37]. Biglieri and Elia have shown in [11] that, for a fixed cyclic group
code, the problem can be formulated as a linear programming problem. They also
discussed the efficiency of some of these codes and remarked on the hardness of
obtaining the best cyclic group code for a given cardinality M and dimension n.

In the search for the best commutative group code C .M; n; d/, for fixed values of
M and n, we must first find the set Gn.M/ of all commutative groups in On of order
M and then the best initial vector for each one of those groups. An optimum code
will be one which has the largest minimum distance in this set. The total number of

Gn.M/ is related with the Euler number of divisors of M and is of order

 
M=2

n=2

!
.

It is worth to remark that even isomorphic groups must be considered, since the
resulting minimum distance may vary depending on which representation in On is
taken for each group, i.e., two isomorphic groups may generate two non-isometric
spherical codes, as illustrated in Fig. 5.5.

An approach to this problem is based on the association between commutative
group codes and lattices described here. An important step of the algorithm derived
in [106] is to reduce the number of cases to be analyzed by discarding isometric
codes. This is done via the following proposition which consider generator matrices
in the Hermite normal form (Chap. 3, 3.2).
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Table 5.2 Some best commutative group codes of order M in R
6 with 50 � M � 1000, initial

vector c D .c1; 0; c2; 0; c3/, generators (Gen) given by rotation blocks where bi1; bi2; bi3 as in
Proposition 5.3 and bound from Proposition 5.6

M dmin c1 c2 c3 Group Gen Bound

50 0.9763 0.604 0.506 0.615 Z50 (7,6, 34) 1.091

250 0.6180 0.525 0.625 0.668 Z
2
5 ˚ Z10 (50, 0, 0), (50, 50, 0), (25,25,25) 0.436

500 0.5046 0.577 0.577 0.577 Z5 ˚ Z
2
10 (100, 0, 0), (50, 50, 0), (50, 0, 50) 0.5116

750 0.4367 0.587 0.549 0.594 Z750 (187,229,560) 0.5116

1000 0.3979 0.560 0.632 0.535 Z1000 (319,694,45) 0.4065

Proposition 5.8 ([106]) Every commutative group code C .M; 2L; d/, generated by
a group G 2 O2L free of 2 � 2 reflection blocks, is isometric to a code obtained
as image by ˚c of a lattice �G.c/ which generator matrix T satisfies the following
conditions:

1. T is in the Hermite Normal Form.
2. det.T/ D ML�1.
3. There is a matrix W, with integer elements satisfying W T D M IL, where IL is

the L � L identity matrix.

4. The elements of the diagonal of T satisfy T.i; i/ D M

ai
where ai is a divisor of M

and .ai/
i � .aiC1 � � � aL/ 6 M, 8i D 1; : : : ; L.

As an example of application of the proposition above, let us consider M D 128.
There are, up to isomorphism, only 4 abstract commutative groups or order 128:
fZ128; Z2 � Z64; Z4 � Z32; Z8 � Z16g. However, for n D 2L D f4; 6; 8g, there
are f2016; 41664; 635376g distinct representations of them in On. After discarding
isometric codes by using Proposition 5.8, we must consider just f71; 2539; 55789g
representations, respectively [106]. Then the initial vector problem can be solved
only for those cases.

In Table 5.2, it is shown some best commutative group codes in R
6 [106].

5.3.4 Commutative Group Codes and Codes on Graphs

Commutative group codes can also be viewed as a graph or a coset code [40]
on a flat torus with the graph distance (minimum number of edges from one
vertex to another). They are also geometrically uniform in this context. This is the
approach presented in [30]. As an example, consider the codes presented in Fig. 5.5
where each edge of the flat torus box is subdivided into M D 25 segments with
the underlined grid associated to this subdivision. Considering also the boundary
identification, those grids define a graph on each flat torus with vertices associated
to the group Z2

25. On the left we have the code C1 generated by the element .b1; b2/ D
.1; 7/, which is a cyclic code in Z25 � Z25 of order M D 25 and minimum graph or
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Fig. 5.6 The cyclic group
code of Fig. 5.5 – left
considered as generated by
.b1; b2/ D .4; 3/ and viewed
as the circulant graph
C25.1; 7/
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Lee distance equal to 7 and therefore a 3 – error correcting code (see Chap. 3, 3.2).
Note that this code can also be generated by the element .4; 3/ and is a perfect code
in Z

2
25 (Chap. 3, Example 3.8). On the right of Fig. 5.5, we have the cyclic code

C2 generated by .b1; b2/ D .1; 10/, which has a minimum graph distance 5. Thus,
viewed as graph codes, the code on the left on Fig. 5.5 is better than the code on
the right in opposition to the performance of their images as spherical codes in R

4.
To the code C1 generated by .4; 3/, C1 D fc1k D k.4; 3/ Mod 25; k D 0; � � � ; 24g
(numbered in this order), it is associated the circulant graph C25.1; 7/ (see Fig. 5.6).
This circulant graph is equivalent to the graph given by the rotated squared grid
defined by the elements of C1. (Note that each point c1k in this new graph is
connected to c1j, where j D ˙1 Mod 25 or j D ˙7 Mod 25.) This geometrical
view through quotient of lattices may provide tools to analyze circulant and Cayley
graphs which are used in parallel computing schemes [30].

5.4 Spherical Codes on Layers of Tori

5.4.1 Codes for the Gaussian Channel

Although commutative group codes discussed in the last section have applications
based on their rich structure, those codes are not good in general for small distance
concerning their trade-off between distance and number of points, since they are
placed in just one torus of the sphere.

Flat tori layers can be used to construct spherical codes which combine the good
structure of commutative group codes in each layer with a better packing density.
A torus layer spherical code (TLSC) [105] can be generated by a finite set of
orthogonal matrices and thus inherited group structure and homogeneity allowing
efficient storage and decoding process, which is attached to lattices in the half of the
code dimension.
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Fig. 5.7 An illustration of the construction of a four-dimensional torus layer spherical code

To design these codes, given a distance d 2 .0;
p

2�, we first define a collection
of tori in S2L�1 such that the minimum distance between any two of these tori is
at least d. This can be done (Proposition 5.1) by designing a spherical code in R

L

with minimum distance d and positive coordinates. Then, for each one of these
tori, a finite set of points is chosen in R

L such that the distance between any two
points, when embedded in R

2L by the standard parametrization (5.1), is greater than
d, according to Proposition 5.2. This set of points may belong to a L-dimensional
lattice, restricted to a hyperbox Pc (5.2), chosen to approach a good packing density
in R

L as described in Sect. 5.3. The TLSC.2L; d/ is the union of the commutative
group codes associated to each one of the chosen tori. Figure 5.7 illustrates the
construction of a TLSC.4; d/.

General spherical codes without any group structure, particularly for small
distances and higher dimension, may present a much higher number of codewords
for the same minimum distance since the packing density have greater bounds
(attached to the packing density in the previous dimension). One advantage of the
TLSC is regarding the simple coding/decoding processes. In [105], starting from
a rectangular sublattice of the Leech lattice it is presented a TLSC in dimension
48 with more than 2113 points placed in 24 layers of flat tori with minimum
distance 0:1. This code is generated by using just 12 matrices. For not very
small distances (or non-asymptotic context), a torus layer spherical code may have
comparable performance to other well-known spherical codes such as apple-peeling
[35], wrapped [47], and laminated [48] codes, as illustrated in Table 5.3, and have
the advantage of being constructive and homogeneous in each layer. For very small
distance and higher dimension, the expected performance will decrease.
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Table 5.3 Four-dimensional code sizes at various minimum distances

d TLSC(4,d) Apple-peeling Wrapped Laminated

0.5 172 136 * *

0.4 308 268 * *

0.3 798 676 * *

0.2 2,718 2,348 * *

0.1 22,406 19,364 17,198 16,976

0.01 2.27 �107 1.97 �107 2.31 �107 2.31 �107

*Unknown values

5.4.2 Application: Coding for Continuous Alphabet Sources

Curves on a sphere with good length, “distance,” and structure are suitable to the
following communication problem. A real value x (say, belonging to the interval
Œ0; 1�) is to be transmitted over a power-constrained Gaussian channel of dimension
n to a receiver. This can be achieved by first quantizing x, as in Sect. 2.5.1, and
then encoding the quantized bits into a classical code. However, this “separated”
approach necessarily incurs quantization errors and, ultimately, communication
delay. Another possibility is to map the source, via a continuous (or piecewise
continuous) function s W Œ0; 1/ ! R

L, and then transmit it over the channel. Such a
function is, indeed, a curve in R

n. On the receiver side, a signal

y D s.x/ C n

is observed. The objective is to recover an estimate x of the sent value, attempting
to minimize the mean square error (mse) EŒ.x � Ox/2� between the estimate and the
true value.

The problem of building curves for such a transmission was first discussed by C.
Shannon, pioneer of information theory in 1949 [91]. It is a remarkable result that if
x has normal distribution and n D 1, the optimal distortion is achieved by the scaled
identity mapping, i.e., s.x/ D ˛x (e.g., [44]). For higher dimensions, however, the
solution is not so simple. Perhaps surprisingly, the construction of continuous curves
can be addressed by using lattices, a discrete structure. This relation is the subject
of the next pages.

As a first example, consider the piecewise-linear mapping depicted in Fig. 5.8. If
a receiver observes y D s.x/ C n, there are two possible types of errors:

1. Small errors: if the error is concentrated in a sufficiently small region, the
closest curve value will be very close to the sent one.

2. Large errors (or “jumps”): in this case the noise is high enough so that the
estimate “jumps” between two laps (or pieces) of the curve.
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Fig. 5.8 Illustration of small
and large errors

Large errors can be prevented by separating the laps apart, while for small errors it
is desirable that the curve is as long as possible. These two objectives are, of course,
contrary.

In the example of Fig. 5.8, the mapping s W Œ0; 1� ! R
2 can be defined as

s.x/ D .3x � b3xe; 2x � b2xe/; (5.6)

or if we denote the mod-1 operation by x mod 1 D x�bxe, we can write, in a concise
way, s.x/ D .3x; 2x/ mod 1. Now the distance 	c between two pieces of this curve
is the smallest distance between two integer translations of the straight line .3x; 2x/

or by homogeneity

	c D min
u2Z2

min
x2R k.3; 2/x � uk :

The first minimum is clearly obtained by projecting u onto the vector .�2; 3/

(orthogonal to .3; 2/). Therefore, we see that the smallest distance between two laps
of the curve is equal to the shortest vector of the projection of Z2 along .�2; 3/.

This argument can be extended to any mapping of the form

s.x/ D ˛.ax. mod 1//;

where a 2 Z
L, and ˛ is a scaling factor chosen conveniently in order to satisfy the

power constraint. Given a vector a 2 Z
L, we may make a step further and consider

the curves

s.x/ D �c

�
2�p

L
ax.mod 1/

�
; (5.7)
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where c D Oe D .1=
p

L/.1; : : : ; 1/ (or we may consider different vectors) and �

is the torus mapping (5.1). These closed curves are contained on a flat torus Tc in
the sphere of R

2L and are highly homogeneous (all their curvatures are constant
[27]). From Proposition 5.1, the distance between the “laps” of the new curve is
approximately the distance between two lines in the . mod 1/ map. The length of
the curve is given by 2� kak =

p
L.

To summarize, good codes for continuous alphabet sources are related to curves
that can be designed by choosing a vector a 2 Z

L such that:

1. The norm of a is large.
2. The projection of ZL along the orthogonal hyperplane to a has large shortest

vector.

As we will see next, these two objectives can be attained by finding projections of
the cubic lattice Z

L with good packing density. In the next subsection, we consider
the study of projections of lattices in a greater generality.

The problem of finding good projections of the cubic lattice (and thus curves
for this communication problem) can be independently formulated as the “fat strut”
[100] problem as follows. We want to find a point a 2 Z

L such that the cylinder
anchored at the origin and a does not contain any other lattice point and has maximal
volume.

Projections of Lattices The previous discussion motivates the study of projections
of lattices along a vector space of RL. In fact, many notable lattices seen in Chap. 2
are naturally characterized through projections and intersections with hyperplanes.
Furthermore, projections are strongly connected to the study of more advanced
lattice structures, such as laminated and perfect lattices. The interested reader is
invited to consult the references [26, Chap. 6] and [68] for a thorough account on
these topics.

We need some preliminary definitions on the linear algebra of projections along
subspaces of R

L. Let V be a vector subspace of R
L, for example, a plane in R

3

or a hyperplane in R
L. Denote by V? its orthogonal complement (in the case of a

plane, it is a straight line, generated by one single vector). Any vector x 2 R
L can

be decomposed in a unique way as x D v C v?, where v 2 V and v? 2 V?. Given
x 2 R

L, we define the orthogonal projection of x in V (or along V?) as PV.x/ D v
and PV?

.x/ D v?. One can show (e.g., [70, p. 430]) that PV?
.x/ D Px, where

P D .I � V.VtV/�1Vt/:

We call P the orthogonal projector (or projection matrix) onto V?.
Let � � R

L be a lattice. The projection of � in V? is denoted by PV?
.�/. If B

is a generator matrix and P is the projection matrix above, we have

PV?
.�/ D fPx W x 2 �g D ˚

PBu W u 2 Z
L
	

: (5.8)



90 5 Lattices and Spherical Codes

The projection of lattice along a vector space is certainly closed under addition
and subtraction. Perhaps more surprising is the fact that it need not be discrete, as
seen in the next example.

Example 5.4 Let � D Z
2 and v D .1;

p
2/. A projection matrix onto v? is given by

P D
 

2
3

�
p

2
3

�
p

2
3

1
3

!
:

Applying the orthogonal transformation defined by matrix

Q D
0
@
q

2
3

� 1p
3

1p
3

q
2
3

1
A

to the projection set (5.8), we have

Pv?
.Z2/Q D ˚

QPx W x 2 Z
2
	 D 1p

3

n
.
p

2x1 C x2; 0/ W x1; x2 2 Z

o
:

It is an interesting exercise of combinatorics to use the pigeonhole principle to show
that the above set is not discrete.
From the characterization of lattices as discrete sets (Theorem 2.1), it follows that
the projection need not be a lattice. But as may be easily seen, there are examples in
which the projection is indeed a lattice.

Example 5.5 The simplest example is the Z
L lattice. Its projection along the

hyperplane orthogonal to any of the canonical vectors is equivalent to R
L�1.

For a vector v 2 R
L, we denote the hyperplane orthogonal to v by v?, i.e,

v? D fx 2 R
n W x1v1 C : : : C xLvL D 0g :

The following proposition characterizes when the projection of a lattice is a discrete
set and what does the new lattice “look like.” Recall from Chap. 2 that a vector x in
a lattice � is said to be primitive if it can be extended to a basis of �. The following
proposition is rather well-known (an explicit proof can be found in [17]):

Proposition 5.9 Let v be a primitive vector of a full-rank lattice � � R
L. The

following properties hold:

(i) The set Pv?
.�/ is a lattice.

(ii) The volume of Pv?
.�/ is given by

V.Pv?
.�// D V.�/

kvk (5.9)

(iii) Pv?
.�/� D �� \ v?:
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Item (ii) gives a very simple way of computing the discriminant of the projection,
while item (iii) provides a simple characterization for its dual.

Example 5.6 Recall that AL is defined in Sect. 2.4 as

AL D ˚
x 2 Z

LC1 W x1 C � � � C xL D 0
	

:

In other words, if v D .1; : : : ; 1/ 2 Z
LC1, then AL D Z

LC1 \ v?. From the previous
theorem, we have

A�
L D Pvt .ZLC1/;

i.e., the dual of AL is the projection of ZLC1 along v?.
Recalling the curve-packing problem in the previous subsection, we were to choose
a vector a 2 Z

n such that:

1. The norm of a is large.
2. Pa?

.ZL/ has a large shortest vector.

Or, having fixed the norm of a, we would like maximize the minimum norm of
Pa?

.ZL/, say, 
1.a/. Recalling the formula for the center density, and in light of
Proposition 5.9, item (ii), this is equivalent to finding projections of ZL with good
packing density.

The Lifting Construction [100] gives a general solution for this problem. It is
shown in [99] how to construct sequences of lattices which are, up to equivalence
relations, similar to projections of ZL and arbitrarily close to any target .L � 1/-
dimensional lattice.

Further Extensions
By using layers of tori, it is possible to generalize the construction in [108] as

follows [18]. Let T D fT1; : : : ; TMg be a collection of M tori in the unit sphere of
R

2L. For each one of these tori, consider closed curves of the form

sTc.x/ D ˚c.x2� Ou/; (5.10)

where C D diag.c1; : : : ; cL/, Ou D uC D .c1u1; : : : ; cLuL/, ˚c is given by (5.1) and
x 2 Œ0; 1�:

Now let Len D PM
jD1 Lenj, where Lenj is the length of sTj . We split the unit

interval Œ0; 1� into M pieces according to the length of each curve:

Œ0; 1/ D I1 [ I2; : : : [ IM , where

Ik D
"Pk�1

jD1 Lenj

Lenj
;

Pk
jD1 Len

Len

!
; for k D 1; : : : ; M:
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Fig. 5.9 Encoding process

and consider the bijective mapping

fk W Ik ! Œ0; 1/

fk.x/ D x �Pk�1
jD1 Lj=L

lk=L
:

Then the full encoding map s can be defined by

s.x/ WD sTk .fk.x//; if x 2 Ik: (5.11)

and is represented in Fig. 5.9. Finding a good collection of tori (i.e., such that each
of them is separated at least a certain distance from each other) is related to finding a
good spherical code of a given minimum distance, which can be approached through
standard techniques (and even using layers of torus, as the construction presented
in the previous section). On the other hand, finding good curves in each torus is
equivalent to finding good projections of the rectangular lattice c1Z ˚ � � � ˚ cLZ. In
this case, it is possible to generalize the Lifting Construction and exhibit sequences
of projections of c1Z ˚ � � � ˚ cLZ converging to any .L � 1/-dimensional lattice, as
in the later case. Through this, it is possible to meaningfully increase the length of
the curves produced.

Discrete sets of points selected on a continuous closed curve on a flat torus as
described in this section have also been used in [110] to approach good commutative
group codes which are cyclic.
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