
Chapter 4
Ideal Lattices

In Chap. 2, interesting lattices together with their parameters and applications were
presented. In Chap. 3, one method to build such lattices was discussed, which
consists of obtaining lattices from linear codes. This chapter presents two other
methods to construct lattices, both called ideal lattices, because they both rely on the
structure of ideals in rings. We recall that given a commutative ring R, an ideal of R
is an additive subgroup of R which is also closed under multiplication by elements of
R. The same terminology is used for two different viewpoints on lattices because of
the communities that studied them. We will explain the first method using quadratic
fields and refer to [79] for general number field constructions. We note that such a
lattice construction from number fields can in turn be combined with Construction
A to obtain further lattices, e.g., [59] and references therein. In the second method,
“ideal lattices” refer to a family of lattices recently used in cryptography.

4.1 Ideal Lattices from Quadratic Fields

For d > 1 a squarefree integer, consider the field

Q.
p

d/ D fa C b
p

d; a; b 2 Qg

which is called quadratic because it has dimension 2 as a vector space over Q

(elements in Q.
p

d/ can be written as vectors .a; b/, fixing, for example, f1;
p

dg as
a basis).

Since d > 1, Q.
p

d/ � R. It is clear that we have this field inclusion, but what
is maybe less clear is that there are actually two meaningful ways of embedding
Q.

p
d/ into R:
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�1 W a C b
p

d 7! a C b
p

d

�2 W a C b
p

d 7! a � b
p

d

The first one, the identity map, is probably the one that everyone thinks of. However,
the second one is just as “meaningful," in the sense that �2, just as �1, includes
Q.

p
d/ into R while preserving (1) its ring structure (�2.xCy/ D �2.x/C�2.y/ and

�2.xy/ D �2.x/�2.y/ for all x; y 2 Q.
p

d/) (2) its vector space structure (�2.a/ D a
for any a 2 Q). In fact, �1; �2 are the only two maps that satisfy the above (2)
conditions. Suppose � satisfies both of them, then:

�
�
.
p

d/2
�

D
�

�.d/ D d
�.

p
d/2

and thus �.
p

d/ must satisfy

�.
p

d/2 � d D 0

showing that �.
p

d/ D ˙p
d. As a consequence � D .�1; �2/ gives an embedding

of Q.
p

d/ into R2.

4.1.1 Lattice Constructions

Now our purpose is to obtain lattices, which are discrete structures. The above
embedding suggests it may be possible to obtain 2-dimensional lattices, if we start
from a discrete structure within Q.

p
d/. A natural candidate for this is

ZŒ
p

d� D
n
a C b

p
d; a; b; 2 Z

o
:

Now ZŒ
p

d� is not a vector space, but it has a basis, given, for example, by f1;
p

dg.
Embedding this basis using � gives,

B D
�
1 �1.

p
d/

1 �2.
p

d/

�
D

�
1

p
d

1 �p
d

�

and integer linear combinations of rows of B do define a lattice (since the two rows
are linearly independent). Note that

Bu D
�
1

p
d

1 �p
d

� �
u1

u2

�
D

�
u1 C u2

p
d

u1 � u2

p
d

�
D

�
�1.x/

�2.x/

�
; x D u1 C u2

p
d (4.1)
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which gives a nice geometric interpretation of how an element x 2 ZŒ
p

d� is
embedded in the lattice �.ZŒ

p
d�/.

The lattice construction proposed above only relies on having a “discrete
structure”1 in Q.

p
d/ with a Z-basis. If d � 1.mod4/, it is possible for example

to take ZŒ 1Cp
d

2
�. Let us give some examples, before discussing the meaning of the

condition d � 1.mod4/.

Example 4.1 The ring ZŒ 1Cp
5

2
� D fa C b 1Cp

5
2

; a; b 2 Zg is a subset of the field
Q.

p
5/ D fa C b

p
5; a; b 2 Qg. The two ways of embedding Q.

p
5/ into R are:

�1 W p
5 7! p

5; �2 W p
5 7! �p

5:

We then embed ZŒ 1Cp
5

2
� into R2 using � D .�1; �2/, to get a generator matrix

B D
"

1 �1. 1Cp
5

2
/

1 �2. 1Cp
5

2
/

#
:

This lattice is shown in Fig. 4.2. Its corresponding Gram matrix is

G D BTB D
"

1 1

�1. 1Cp
5

2
/ �2. 1Cp

5
2

/

# "
1 �1. 1Cp

5
2

/

1 �2. 1Cp
5

2
/

#
D

�
2 1

1 3

�
:

To compare, a Gram matrix for the lattice �.ZŒ
p

5�/, shown in Fig. 4.1, is

�
1 1

�1.
p

5/ �2.
p

5/

� �
1 �1.

p
5/

1 �2.
p

5/

�
D

�
2 0

0 10

�
:

Let us now consider d 6� 1.mod4/.

Example 4.2 The two ways of embedding Q.
p

2/ into R are:

�1 W p
2 7! p

2; �2 W p
2 7! �p

2:

We then embed ZŒ 1Cp
2

2
� into R2 using � D .�1; �2/, to get as Gram matrix

"
1 1

�1. 1Cp
2

2
/ �2. 1Cp

2
2

/

# "
1 �1. 1Cp

2
2

/

1 �2. 1Cp
2

2
/

#
D

�
2 1

1 3=2

�
;

1Such suitable structures are orders (rings with a Z-basis) and their ideals, which explains the
terminology ideal lattice.
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Fig. 4.1 Lattices from the quadratic fields ZŒ
p

5� and ZŒ
p

2�, respectively. (a) The lattice obtained
from f1;

p
5g. (b) The lattice obtained from f1;

p
2g

while a Gram matrix for the lattice �.ZŒ
p

2�/ is
�

1 1

�1.
p

2/ �2.
p

2/

� �
1 �1.

p
2/

1 �2.
p

2/

�
D

�
2 0

0 4

�
:

This lattice is shown in Fig. 4.1.
The difference between the first example and the second is that in the first

example, both Gram matrices have integer coefficients (the lattice is integral; see
Definition 2.13), while in the second example, this is not the case.

The reason behind this is that the ring ZŒ
p

d� turns out to contain elements from
Q.

p
d/ which all have the property of being the root of some monic polynomial

whose coefficients live in Z (we recall that a polynomial p.X/ is monic if the
coefficient of its leading term is equal to one). Now when d 6� 1.mod4/, it turns
out (see Exercise 4.1) that ZŒ

p
d� is exactly the set of elements from Q.

p
d/ which

are roots of monic polynomials with coefficients in Z, while when d � 1.mod4/,

this set is ZŒ 1Cp
d

2
� and ZŒ

p
d� � ZŒ 1Cp

d
2

�.

Now for a Z-basis f�1; �2g (of, respectively, ZŒ
p

d� or ZŒ 1Cp
d

2
� depending on

the congruence of d.mod4/ or of (an ideal of) an order of these two rings), a Gram
matrix is of the form

�
�1.�1/ �2.�1/

�1.�2/ �2.�2/

� �
�1.�1/ �1.�2/

�2.�1/ �2.�2/

�

D
�

�1.�1/2 C �2.�1/2 �1.�1/�1.�2/ C �2.�1/�2.�2/

�1.�1/�1.�2/ C �2.�1/�2.�2/ �1.�2/2 C �2.�2/2

�

D
�

�1.�2
1 / C �2.�2

1 / �1.�1�2/ C �2.�1�2/

�1.�1�2/ C �2.�1�2/ �1.�2
2 / C �2.�2

2 /

�
:
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If we observe the coefficients of this matrix, they all are of the form

�1.a C b
p

d/ C �2.a C b
p

d/ D 2a

for some a; b 2 Q, which explains why the Gram matrix coefficients are in Q.
Now �1.a C b

p
d/; �2.a C b

p
d/ and thus �1.a C b

p
d/ C �2.a C b

p
d/ belong

to the intersection of ZŒ
p

d� (or ZŒ 1Cp
d

2
� depending on d.mod4/) and Q. We claim

that this intersection is Z, and therefore the Gram matrix has integer coefficients.
To prove that the intersection is Z, recall that we are looking at elements in Q,

thus of the form u=v, v ¤ 0, u; v 2 Z, and we can assume gcd.u; v/ D 1, which are
roots of some monic polynomial p.X/ with coefficients in Z. This means

p.u=v/ D p0 C p1.u=v/ C p2.u=v/2 C � � � C pn�1.u=v/n�1 C .u=v/n D 0

which implies

vnp0 C p1uvn�1 C p2u2vn�2 C � � � C pn�1un�1v C un D 0:

Now it must be that

vnp0 C p1uvn�1 C p2u2vn�2 C � � � C pn�1un�1v D �un

but the left-hand side is divisible by v, while the right-hand side is not, a
contradiction, apart for v D 1.

Canonical Z-bases are f1;
p

dg and f1; 1Cp
d

2
g depending on d. A variety of

interesting lattices can be obtained by introducing a “twisting" element ˛ such that

�1.˛/ > 0 and �2.˛/ > 0 as follows. Let � denote
p

d or 1Cp
d

2
depending on

d.mod4/. A generator matrix of a lattice using a twisting element ˛ is given by

B D
�p

�1.˛/
p

�1.˛/�1.�/p
�2.˛/

p
�2.˛/�2.�/

�
D

�p
�1.˛/ 0

0
p

�2.˛/

� �
�1.1/ �1.�/

�2.1/ �2.�/

�

and a Gram matrix by

BTB D
�

�1.˛/ C �2.˛/ �1.˛�/ C �2.˛�/

�1.˛�/ C �2.˛�/ �1.˛�2/ C �2.˛�2/

�
:

Note that the conditions �1.˛/ > 0 and �2.˛/ > 0 ensure that the lattice remains real
(and no complex value is introduced when taking the square root). Furthermore, by
taking ˛ in ZŒ� �, the lattice will remain an integral lattice, even though

p
˛ typically

has no reason to be in ZŒ� �. By Definition 2.4, the volume of the lattice2 �.
p

˛ZŒ� �/

is given by the square root of

2Writing �.
p

˛ZŒ� �/ is a slight abuse of notation, since � cannot really be applied to
p

˛ when it
does not belong to ZŒ� �.
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�
det

�
�1.1/ �2.1/

�1.�/ �2.�/

��2 �
det

�p
�1.˛/ 0

0
p

�2.˛/

��2

D �1.˛/�2.˛/.�2.�/ � �1.�//2;

thus

V.�.
p

˛ZŒ� �// D
p

j�1.˛/�2.˛/jj�2.�/ � �1.�/j:

We continue Example 4.1.

Example 4.3 Take

˛ D 3 � 1Cp
5

2
; ˛� D �1 C 2 1Cp

5
2

; ˛�2 D 2 C 1Cp
5

2
:

Then a generator matrix of �.
p

˛ZŒ 1Cp
5

2
�/, illustrated in Fig. 4.2 is

B D
" p

˛
p

˛ 1Cp
5

2p
�2.˛/

p
�2.˛/ 1�p

5
2

#

-4 -2 0 2 4

-4

-2

0

2

4

(a)
-4 -2 0 2 4

-4

-2

0

2

4

(b)

Fig. 4.2 Lattices from the quadratic field ZŒ
1C

p
5

2
� with and without twisting. (a) The lattice

obtained from f1;
1C

p
5

2
g. (b) The lattice obtained from f1;

1C
p

5

2
g using a twisting element

˛ D 3 � 1C
p

5

2
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with corresponding Gram matrix

G D
"

�1.3� 1Cp
5

2
/C�2.3� 1Cp

5
2

/ �1.�1C2 1Cp
5

2
/C�2.�1 C 2 1Cp

5
2

/

�1.�1 C 2 1Cp
5

2
/ C �2.�1 C 2 1Cp

5
2

/ �1.2 C 1Cp
5

2
/ C �2.2 C 1Cp

5
2

/

#

D
�
5 0

0 5

�

and volume

V.�.
p

˛ZŒ 1Cp
5

2
�// D

p
j�1.˛/�2.˛/jj�2.�/ � �1.�/j

D p
5jp5j D 5:

This lattice is equivalent to (a scaled version of) Z2 (see Exercise 4.3).

4.1.2 Some Sublattices

Consider two lattices �.ˇZŒ
p

d�/ and �.˛ZŒ
p

d�/, or �.ˇZŒ 1Cp
d

2
�/ and

�.˛ZŒ 1Cp
d

2
�/, with ˇ D ˛�.˛/, ˛ ¤ �.˛/. Then �.ˇZŒ

p
d�/ is a sublattice

of �.˛ZŒ
p

d�/, or in the other case, �.ˇZŒ 1Cp
d

2
�/ is a sublattice �.˛ZŒ 1Cp

d
2

�/.
Indeed, consider, for the former case, the sets I1 D f˛a C ˛b

p
d; a; b 2 Zg,

I2 D f�.˛/a C �.˛/b
p

d; a; b 2 Zg, and I D fˇa C ˇb
p

d; a; b 2 Zg. Define the
sets I; I1; I2 accordingly for the latter case, and the following argument also hold by

replacing
p

d by 1Cp
d

2
. Then I1 C I2 D 1, from which it follows that I1I2 D I1 \ I2

(see Exercise 4.4), and I1I2 D I, where I1I2 is the set formed by finite sums of terms
of the form i1i2, i1 2 I1, i2 2 I2. Take the lattice point

�
�1.ˇx/

�2.ˇx/

�

in �.ˇZŒ
p

d�/. It is obtained by embedding ˇx 2 I, with I D I1I2 D I1 \ I2. Thus
ˇx also belongs to I1, so its embedding will appear in the embedding of I1, which
yields �.˛ZŒ

p
d�/. This is illustrated in Fig. 4.3.

4.1.3 Coding Applications

Recall from (4.1) that points in lattices obtained from quadratic fields are of the
form

�
�1.x/

�2.x/

�
; or

�p
�1.˛/�1.x/p
�2.˛/�2.x/

�
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Fig. 4.3 The lattice �.5ZŒ
1C

p
5

2
�/ and a sublattice. (a) The lattice obtained from f5; 5

1C
p

5

2
g. (b)

The sublattice obtained from f˛; ˛
1C

p
5

2
g, ˛ D 3 � 1C

p
5

2

for x D u1 C u2

p
d 2 Q.

p
d/, depending on the presence or not of a twisting

element ˛. Such pairs of points satisfy the property that

�1.x/ ¤ 0; �2.x/ ¤ 0

for all x ¤ 0, since �1.x/ D u1 C u2

p
d D 0 if and only if x D 0, and similarly

�2.x/ D u1 � u2

p
d D 0 if and only if x D 0. Now take any two arbitrary distinct

lattice points

�
�1.x/

�2.x/

�
;

�
�1.y/

�2.y/

�
; or

�p
�1.˛/�1.x/p
�2.˛/�2.x/

�
;

�p
�1.˛/�1.y/p
�2.˛/�2.y/

�
;

then their difference belongs to the lattice and

p
�1.˛/�1.x/ �

p
�1.˛/�1.y/ D

p
�1.˛/�1.x � y/ ¤ 0;

p
�2.˛/�2.x/ �

p
�2.˛/�2.y/ D

p
�2.˛/�2.x � y/ ¤ 0:

Geometrically, this means that given any two distinct lattice points, they will always
differ on both their components, as can be observed on the different earlier figures
of this chapter.

This is meaningful when lattice points are used for transmission over fast-
fading channels. We have already seen in Chap. 2 how lattice points are used for
transmission over Gaussian channels. Over a fast-fading channel, communication is
modeled by
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y D Hx C n; H D
�

h1 0

0 h2

�

where n is a random vector whose components are independent Gaussian random
variables with mean 0 and variance �2, and h1; h2 are independently Rayleigh
distributed. We notice that the model is very similar to (2.20), except for the matrix
H which takes into account fading in a wireless environment. Assuming the receiver
knows H (this is called a coherent channel), he is facing a channel similar to a
Gaussian channel, only the lattice constellation transmitted is now twisted by the
fading H. If x is a lattice point of the form Bu, then it is as if the lattice used for
transmission had in fact generator matrix HB, and

Hx D
�

h1 0

0 h2

� �
�1.x/

�2.x/

�
D

�
h1�1.x/

h2�2.x/

�
:

A lattice constellation for a Gaussian channel will make sure that lattice points are
separated enough to resist the channel noise. However, even if �j.x/ and �j.y/ are
designed to be apart, hj�j.x/ and hj�j.y/ could be arbitrarily close, depending on hj,
j D 1; 2.

The relevant distance in this case is the so-called product distance, which is
the minimum of the absolute value of the product of the coordinates of non-zero
vectors in the lattice. We may check (see Exercise 4.5) that the product distance,
despite its name, is actually not a distance, as per Definition 3.2. It was shown that
constellations in lattices with greater minimum product distance are associated to
smaller error probability when used in signal transmission over Rayleigh fading
channels [15]. The intuition is that the product distance captures the number of
components in which lattice points (and therefore differences of lattice points)
differ, guaranteeing that if the fading affects some components, the lattice points
will still be distinguishable on their other non-zero components. Therefore lattices
� in Rn with full diversity n are preferred, that is, lattices such that any of their
vectors x D .x1; x2; : : : ; xn/; have xi ¤ 0; for any i. For a general lattice, it is
computationally hard to determine its minimum product distance, which makes the
interest of algebraic constructions of the type presented above; see, e.g., [9, 58].
Furthermore, since for a lattice in dimension n, its diversity is at most n, it can be
increased by augmenting n, the dimension in which the lattice lives. One technique
to do so is by considering tensor products, as explained next.

4.1.4 High-Dimensional Lattices

Consider two generator matrices

B1 D
�
�1.�1/ �1.�2/

�2.�1/ �2.�2/

�
; B2 D

�
�1.�1/ �1.�2/

�2.�1/ �2.�2/

�
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and their Kronecker (tensor) product

B1 ˝ B2 D
�
�1.�1/B2 �1.�2/B2

�2.�1/B2 �2.�2/B2:

�

Surely this defines the generator matrix of a 4-dimensional lattice, since the columns
of this matrix are linearly independent: the determinant of the generator matrix is
the product of the determinants of B1 and B2. Now in terms of diversity, it is harder
to say something in general, though there is one case where we can easily show that
the property of diversity is inherited from B1 and B2. Suppose that �i.�j/ D �j and
�i.�j/ D �j, and we place ourselves in a large enough field3 which contains �j; �j,
and for which �i; �i are embeddings. Then

B1 ˝ B2 D

2
664

�1�1.�1�1/ �1�1.�1�2/ �1�1.�2�1/ �1�1.�2�2/

�1�2.�1�1/ �1�2.�1�2/ �1�2.�2�1/ �1�2.�2�2/

�2�1.�1�1/ �2�1.�1�2/ �2�1.�2�1/ �2�1.�2�2/

�2�2.�1�1/ �2�2.�1�2/ �2�2.�2�1/ �2�2.�2�2/

3
775

which is now the generator matrix of a lattice of dimension 4 and diversity 4. This
process can be iterated to obtain lattices in dimensions which are powers of 2 (see
Exercise 4.6).

Example 4.4 Take

B1 D
"

1 �1. 1Cp
5

2
/

1 �2. 1Cp
5

2
/

#
; B2 D

�
1 �1.

p
2/

1 �2.
p

2/

�
:

We place ourselves in Q.
p

2;
p

5/ D fa0Ca1

p
5Ca2

p
2Ca3

p
5
p

2; a0; a1; a2; a3 2
Qg, so that �.

p
2/ D p

2 and �.
p

5/ D p
5. Then B1 ˝B2 is a 4-dimensional lattice

with diversity 4.

4.2 Ideal Lattices for Cryptography

Consider a lattice � of dimension n living in Zn instead of Rn, meaning that all
lattice points have integer coordinates. Now we ask for the following further cyclic
property that for every x D .x1; : : : ; xn/ 2 �, it must be that .xn; x1; : : : ; xn�1/ also
belongs to �. Note that since the cyclic property is asked for every lattice point, it
means that .xn�1; xn; x1; : : : ; xn�2/ 2 � and, iteratively, all shifts of x D .x1; : : : ; xn/

must be in �.

3We voluntarily skip the definition of compositum of two fields with coprime discriminants here,
which would be the proper way to describe the suitable field extension.
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Example 4.5 The lattice Z2 is cyclic. Indeed, if .x1; x2/ 2 Z2, this means that x1; x2

are integers, and .x2; x1/ also belongs to Z2.
One way to obtain cyclic lattices is to use the following lemma.4

Lemma 4.1 A lattice � in Zn is a cyclic lattice if � is an ideal of ZŒX�=.Xn � 1/.

Proof Given a lattice point a D .a1; � � � ; an/ 2 �, associate the polynomial in ZŒX�

given by a1 C a2X C a3X2 C : : : anXn�1. We notice that this polynomial belongs to
ZŒX�=.Xn � 1/ since its degree is less than n. By definition of ideal, � is an ideal
of ZŒX�=.Xn � 1/ means that it is closed under multiplication, that is, if we multiply
a1 C a2X C a3X2 C : : : anXn�1 by X (and iteratively by powers of X), the result
remains in �. But if we compute

.a1 C a2X C a3X2 C : : : anXn�1/X D a1X C a2X2 C a3X3 C � � � anXn;

we obtain a1X C a2X2 C a3X3 C : : : an since Xn � 1 in ZŒX�=.Xn � 1/. This shows
that .an; a1; : : : ; an1 / 2 � as desired.

Example 4.6 Consider ZŒX�=.X2 � 1/, which is the set of polynomials a1 C a2X,
a1; a2 2 Z. Take the polynomial g.X/ D 2CX 2 ZŒX�=.X2 �1/ and the ideal .g.X//

which is the set of all polynomials in ZŒX�=.X2 � 1/ which are multiples of g.X/. It
is indeed an ideal since it is closed under addition:

g.X/.a1 C a2X/ C g.X/.a0
1 C a0

2X/

is a multiple of g.X/. It is also clearly closed under multiplication: a multiple of
g.X/ multiplied by any polynomial will remain a multiple of g.X/. Furthermore:

.2 C X/.a1 C a2X/ D 2a1 C 2a2X C a1X C a2 D .a2 C 2a1/ C .2a2 C a1/X:

This gives a set of vectors of the form .a2 C 2a1; 2a2 C a1/ corresponding to a
generator matrix:

�
2 1

1 2

�
:

One may check explicitly (see Exercise 4.7) that this lattice is indeed cyclic.

Remark 4.1 The quotient ZŒX�=.Xn � 1/ does not have a field structure, therefore
the underlying multiplicative structure of this construction is different from that of
the previous “ideal lattices.”

One interest in this construction of lattices is its succinct representation, since an
n-dimensional lattice can be encoded with one vector. Furthermore, fast arithmetic

4A reader familiar with the theory of cyclic codes will notice the analogy between cyclic codes and
cyclic lattices and their characterization.
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is enabled using the fast Fourier transform (FFT). Yet unlike the q-ary lattices of
Sect. 3.2.1, ideal lattices come with some guarantee in terms of complexity, e.g., the
worst-case hardness of the SVP (see Problem 2.1) in cyclic lattices was analyzed
in [71], to build one-way functions. Thus cyclic ideal lattices have been considered
to build efficient cryptographic primitives and homomorphic encryption schemes.
However, such lattice exhibit some weaknesses; see, e.g., [73, p.11], due to the fact
that Xn � 1 is reducible over the rationals.

A natural generalization is to consider a polynomial5 p.X/ 2 ZŒX� other than
Xn � 1, such as Xn C 1, for example, (in particular, the factor X � 1 of Xn � 1 is not
present, and thus Xn C 1 tends to be preferred to Xn � 1). If p.X/ is instead a monic
irreducible polynomial (Xn � 1 is not), then the quotient ZŒX�=.p.X// becomes a
field. A family of polynomials that has been considered in the literature is that of
cyclotomic polynomials. The m-th cyclotomic polynomial �m.X/ is by definition

�m.X/ D
Y

k;gcd.k;m/D1

.X � e
2ik	

m /:

If m is prime, then �m.X/ D Xm�1
X�1

. If m is a power of 2, then �m.X/ D Xm=2 C 1

(see Exercise 4.8). We use the notation 
m D e
2ik	

m . In that case, we have

ZŒX�=.�m.X// ' ZŒ
m� � Q.
m/ ' Q.X/=.�m.X//

and Q.
m/ D fa1 C a2
m C � � � C ad�1
d�1
m ; a1; : : : ; ad�1 2 Qg and d D '.n/ is the

Euler totient of n. The reason for considering cyclotomic polynomials is that they
have been well studied.

Remark 4.2 Unlike for the quotient ZŒX�=.Xn � 1/, in this case of cyclotomic
polynomials, both notions of “ideal lattices” coincide.

Thus to a vector, .a1; : : : ; ad�1/ corresponds a polynomial a1 C a2X C � � � C
ad�1Xd�1 in ZŒX�=�m.X/, which in turn corresponds to an element a1 C a2
m C
� � � C ad�1Xd�1 2 Q.
m/. The corresponding lattice is now obtained by embedding
Q.
m/ into Cn. We illustrate this for the case m D 4, corresponding to the
cyclotomic polynomial �4.X/ D X2 C 1. Then Q.X/=.X2 C 1/ ' Q.i/.There are
two embeddings (see the previous ideal construction):

�1 W i 7! i; �2 W i 7! �i:

A generator matrix is given by

�
1 i
1 �i

�
:

5For linear codes, we would call these pseudo-cyclic codes.
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There is a similar problem to that of the shortest vector problem (see Problem 2.1)
for ideal (see [102], [84], Sec. 4.3.4. and the references therein). Consider � D
.�1; : : : ; �d/ the vector of embeddings of a degree-d number field K.

Problem 4.1 Given an ideal I of OK , where K is a number field, find a non-zero
element b 2 I which minimizes k�.b/k.

The complexity of ideal lattice problems are summarized in [102], together with
applications.

Exercises

Exercise 4.1 Show that the set of elements from Q.
p

d/ which are roots of monic

polynomials with coefficients in Z is ZŒ 1Cp
d

2
� when d � 1.mod4/ and ZŒ

p
d�

when d 6� 1.mod4/.

Exercise 4.2 Construct a 2-dimensional lattice from ZŒ
p

3�.

Exercise 4.3 Show that the lattice �.
p

˛ZŒ.1 C p
5/=2�/ in Example 4.3 is

equivalent to Z2. Exhibit the explicit orthogonal transformation matrix and scaling
factor.

Exercise 4.4 Show that the sets I1 D f˛a C ˛b
p

d; a; b 2 Zg, I2 D f�.˛/a C
�.˛/b

p
d; a; b 2 Zg and I D fˇa C ˇb

p
d; a; b 2 Zg with ˇ D ˛�.˛/, ˛ ¤ �.˛/

satisfy I1I2 D I1 \ I2. Discuss what happens if ˛ D �.˛/.

Exercise 4.5 Show that the product distance is not a mathematical distance.

Exercise 4.6 Construct an 8-dimensional lattice by tensor product.

Exercise 4.7 Show that the lattice with generator matrix

�
2 1

1 2

�

is cyclic.

Exercise 4.8 Prove that for m a power of 2, the cyclotomic polynomial is �m.X/ D
Xm=2 C 1.
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