
Chapter 3
Lattices from Codes

3.1 Construction A

A natural way of constructing lattices is from error-correcting codes, using the so-
called Construction A. It associates a lattice in R

n to a linear code in Z
n
q (the set

Zq of integers modulo q will be introduced next). Such lattices are also called q-ary
lattices (or modulo-q lattices) and have several applications in information theory
and cryptography. Lattice-based cryptographic schemes are usually built on q-ary
lattices and are linked to the computational difficulty of the shortest and closest
vector problems (SVP and CVP, defined respectively in Problems 2.1 and 2.2) in
this class [73]. Regarding applications to information theory, Construction A is
employed, for instance, in the development of good (capacity-achieving) codes for
the Gaussian channel, for some channels with side information [111], as well as for
wiretap coding.

The theory of error-correcting codes has been extensively developed (see, e.g.,
comprehensive books such as [53] and [66]). We will focus here on q-ary codes, that
is, codes which have Zq as their “alphabet,” and provide a self-contained elementary
introduction.

For q � 2 a positive integer, consider the set Zq D f0; 1; : : : ; q � 1g of integers
modulo q, where a .mod q/ means for a given a 2 Z, the set of integers a C bq,
b 2 Z, and by convention a is typically chosen to be between 0 and q � 1. In
this set, addition and multiplication modulo q are well defined. For example, in Z5;

3C4 D 2, 2 �3 D 1, and �3 D 2. There is a significant structural difference between
Zq, where q is a composite number, and Zp, where p is a prime number. When q is a
composite number, say q D m1m2, m1; m2 ¤ 0, then Zq contains non-zero elements
which are not invertible with respect to multiplication. For instance, m1; m2 are such
elements. Indeed, if m1 were invertible, then there would exist an element a 2 Zq

such that m1a D 1, but then m2m1a D m2 D qa D 0; a contradiction.When p
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38 3 Lattices from Codes

is a prime, such a behavior cannot happen and Zp has a field structure, which Zq,
q D m2m1 does not have, and for this reason, we will use also the notation Fp to
denote Zp and emphasize this difference.

In the Cartesian product Zn
q, we consider the component-wise sum and multi-

plication modulo q. If q D p is prime Z
n
p= F

n
p is a vector space over the field

Zp D Fp, which does not hold if q is composite number. A linear code C in Z
n
q

is by definition a subset which is an additive subgroup of Z
n
q. Vectors in C are

called codewords. Note that 0 2 C, since it is the identity element of the group,
that a; b 2 C implies a C b 2 C (this is the closure property for a group) and that
ca 2 C for a 2 C and c any element of Zq: this is also a consequence of the closure
property: a C a C : : : C a

„ ƒ‚ …

c times

D ca 2 C. As an example, C D fa.1; 2/; a 2 Z5g D

f.0; 0/; .1; 2/; .2; 4/; .3; 1/; .4; 3/g is a linear code in Z
2
5. If q D p is prime, a linear

code is a subspace of dimension k of the vector space Zn
p=Fn

p (called an .n; k/ code).
In this last example, the code C is the subspace of Z2

5 of dimension 1 generated by
the vector .1; 2/, and we use the notation C D h.1; 2/i.

Next we establish a connection between linear codes in Z
n
q and lattices. Let

� W Z ! Zq D f0; 1; : : : ; q � 1g; x 7! x .modq/;

be the map of reduction modulo q. Given a .mod q/, its pre-image ��1.a/ is the set
of integers that are mapped to a by � (see Fig. 3.1a), that is ��1.a/ D fa C bq; b 2
Zg.

Fig. 3.1 Preimages ��1.S/ for different sets S. (a) The pre-image ��1.a/ � Z of a .mod 5/. (b)
The pre-image ��1..a1; a2// � Z

2 of .a1 .mod 3/; a2 .mod 3//. (c) The pre-image ��1.S/ � Z
2

of S D f.a1 .mod 3/; a2 .mod 3//; .a1 C 1 .mod 3/; a2 C 1 .mod 3//g
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Now consider the Cartesian product of integers modulo q, namely, Zq � Zq. An
element in this set is a two-dimensional vector .a1; a2/ of integers modulo q. Let

� W Z � Z ! Zq � Zq; .x1; x2/ 7! .x1 .modq/; x2 .modq//;

be the map of reduction modulo m component-wise. The pre-image ��1..a1; a2// is
now the set of 2-dimensional vectors with integer entries that is mapped to a1; a2 by
� (see Fig. 3.1b).

One could alternatively consider a set S � Zq �Zq and ��1.S/, which is again the
set of 2-dimensional vectors which are mapped to elements in S by � (see Fig. 3.1c
for an example). Geometrically this inverse image spreads the set S from the inside
of the Œ0; q/ � Œ0; q/ box into the plane.

The map � can be defined component-wise over an arbitrary number n of copies
of Zq:

� W Zn ! Z
n
q; x 7! �.x/

by taking the reduction modulo q component-wise, over the n components of x.
Now one may take any arbitrary subset S of Zn

q and compute ��1.S/, but it is more
interesting to start with S a subset that has a structure and to understand how this
structure is carried over to ��1.S/. We are next interested in ��1.S/ where S � Z

n
q

is a linear code.
We start with a result which relies on the additive group structure of C � Z

n
q and

thus holds for any q.

Proposition 3.1 Given a subset S � Z
n
q, then ��1.S/ is a lattice in R

n if and only if
S is a linear code in Z

n
q.

Proof Suppose S � Z
n
q is a linear code. We need to check that ��1.C/ is a discrete

additive subgroup of Rn (Theorem 2.1). Since ��1.C/ � Z
n, it is a discrete subset

of Rn. We next show that it is an additive subgroup.
Take x; y two arbitrary vectors in ��1.C/. To ensure closure under addition, their

sum must belong to ��1.C/. But x C y 2 ��1.C/ is equivalent to say that �.x C y/

is a codeword in C. Now (in what follows q could be either prime or composite)

�.x C y/ D .x1 C y1 .mod q/; : : : ; xn C yn .mod q//

D .x1 .mod q/; : : : ; xn .mod q// C .y1 .mod q/; : : : ; yn .mod q//

D �.x/ C �.y/:

Since x and y were chosen in ��1.C/, this means that �.x/ and �.y/ are codewords,
and since a code C is closed under addition, �.x/ C �.y/ 2 C, thus �.x C y/ 2 C as
needed.

Since 0 2 C 2 Z
n
q, 0 2 ��1.C/ 2 Z

n.
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Fig. 3.2 Preimages ��1.S/ for different sets S. (a) The pre-image ��1.S/ � Z
2 of S D f.a1

.mod 3/; a2 .mod 3//; .a1 C 1 .mod 3/; a2 C 1 .mod 3//g. (b) The pre-image ��1.C/ � Z
2 of

the linear binary code C D f.0; 0/; .1; 1/g

We are left to check that �x 2 ��1.C/ whenever x 2 ��1.C/ or equivalently
�.�x/ 2 C whenever �.x/ 2 C. But

�.�x/ D .�x1 .mod q/; : : : ; �xn .mod q// D ��.x/;

and it belongs to C since ca 2 C for any scalar c (here c D �1 .mod q/).
The converse is left as an exercise (see Exercise 3.1), namely, to show that for

S � Z
n
q, if ��1.S/ is a lattice in R

n, then S is a linear code.
This proposition is illustrated in Fig. 3.2b. Take C D f.0; 0/; .1; 1/g over F2 D

Z2. It is a linear code, because .0; 0/ C .0; 0/, .0; 0/ C .1; 1/, and .1; 1/ C .1; 1/

all belong to C, using vector addition modulo 2. Also .0; 0/ 2 C and since the only
two scalars are 0; 1, c.0; 0/ and c.1; 1/ are both in C, for c 2 f0; 1g. As a linear
code, it has dimension 1 and basis given by .1; 1/. We can appreciate the nice lattice
structure of ��1.C/ in the illustration. On the other hand, take S D f.0; 0/; .1; 1/g
but this time modulo 3. Then .1; 1/ C .1; 1/ does not belong to S, so S is not a linear
code, and ��1.S/ is not a lattice either, as is clear from Fig. 3.2a.

Definition 3.1 Let C be a linear code in Z
n
q, the integers modulo a positive integer

q � 2, where q is either prime or composite. Let � W Zn ! Z
n
q be the component-

wise reduction modulo q. Then the lattice �C D ��1.C/ is said to have been
obtained via Construction A.
The lattice �C is also known as a q-ary lattice or modulo q lattice. Note that, since
0 2 C, qei 2 �C , for all canonical vectors ei, hence we have that qZn is a sublattice
of �C and the lattice inclusions qZn � �C � Z

n
q. On the other hand, any lattice � in

R
n satisfying qZn � ƒ � Z

n
q is obtained from the code C D �.�/ via Construction

A, and so this is an equivalent definition of q-ary lattice as it is used in lattice-based
cryptography [73]. Other straightforward properties of Construction A lattices are
described next:
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Proposition 3.2

a) If �C is the q-ary lattice associated to the code C � Z
n
q, then:

ˇ

ˇ

ˇ

ˇ

�C

qZn

ˇ

ˇ

ˇ

ˇ
D

qn

V.�C/
D jCj; where jCj is the number of codewords of C.

b) Any full rank integer lattice � � Z
n is q-ary for q D V.�/.

Proof The first property is direct, due to the isomorphism between �C=qZn and C.
The second one comes from the fact that since � � Z

n, it follows that its volume
V.�/ 2 Z. Taking a generator matrix B for � and q D V.�/ D jdet.B/j, the linear
system Bx D qz has an integer solution for any z 2 Z

n, and therefore qZn � � (�
is a q-ary lattice).

If q is prime, a code C is a subspace of dimension k � n of Zn
q D F

n
q and hence

has qk codewords. From the last proposition, we have that V.�C/ D qn�k.
A generator matrix (Definition 2.2) is a convenient explicit way to describe a

lattice, especially for computations and applications. A generator matrix of the
lattice ��1.C/ can be obtained from that of C. Let us thus see how to obtain such a
generator matrix, for both Fp and Zq.

If p is prime, the linear .n; k/ code C over Zp D Fp is a subspace and has a basis,
formed by k vectors. These k vectors can be stacked in a matrix, either as row or
column vectors, depending on the convention, to form a generator matrix. Using the
column convention adopted here, we get an n�k matrix M with elements in Zp such
that any codeword of C can be written as My, where y is a column vector of Zk

p. Note
also that in this case, up to coordinate permutation, any code has a generator matrix
in the reduced systematic form,

�

Ik

A

�

where Ik is the k-dimensional identity matrix, and A is an .n � k/ � n matrix.
For C a linear code in Z

n
q, where q is a composite number, we also have a

generator matrix, which contains vectors that generate C as its columns; however,
these vectors do not always form a basis, and we may not have a generator matrix
in systematic form. We will illustrate and explain why next.

Example 3.1 Consider the linear codes

C1 D f.2a; 2b; a C b/; a; b 2 F3g; C2 D f.2a; 2b; a C b/; a; b 2 Z4g:

The code over F3 has dimension 2, length n D 3, and contains 9 codewords

.0; 0; 0/; .0; 2; 1/; .0; 1; 2/; .2; 0; 1/; .2; 2; 2/; .2; 1; 0/; .1; 0; 2/; .1; 0; 2/; .1; 1; 1/:



42 3 Lattices from Codes

A generator matrix is

M D
2

4

2 0

0 2

1 1

3

5

since a codeword in the column form is this matrix multiplied by
�

a b
�T

. Another
generator matrix of C1 is the reduced echelon form of M, obtained by multiplying
both columns by 2:

R D
2

4

1 0

0 1

2 2

3

5 :

The code C2 over Z4 has length n D 3 and contains 8 codewords:

.0; 0; 0/; .2; 0; 1/; .0; 0; 2/; .2; 0; 3/; .0; 2; 1/; .2; 2; 2/; .0; 2; 3/; .2; 2; 0/:

The above matrix M is again a generator matrix for C2; only this time, it is not
possible to multiply or combine its columns to obtain .1; 0/ and .0; 1/ as first two
rows. The vectors .2; 0; 1/ and .0; 2; 1/ do not form a basis, because a basis needs
to satisfy linear independence. Here

�1.2; 0; 1/ C �2.0; 2; 1/ D 0

does not imply �1 D �2 D 0 since it could also be �1 D �2 D 2.
Now that we know what generator matrices are for linear codes, let us go back to
generator matrices for the lattices obtained via Construction A.

Since C is a linear code, we saw above that each codeword a 2 C can be written
using a set of generators, say a D Pl

iD1 aivi, vi D .vi1; : : : ; vin/ for i D 1; : : : ; l
(and l D k for the case of a linear .n; k/ code over Fp). Now

a D
l
X

iD1

aivi 2 C ” ��1.a/ D
l
X

iD1

aivi C
n
X

iD1

qhiei 2 R
n

where 0 � ai; vij � m � 1 for all i; j, ei, i D 1; : : : ; n form the canonical basis
of Rn and h1; : : : ; hn 2 Z. In words, ��1.a/ is an integral linear combination of
v1; : : : ; vl; qe1; : : : ; qen. An expanded generator matrix B can thus be obtained as
follows: stack all the column vectors in an n � .n C l/ matrix. Now we would like to
obtain a row echelon form for this matrix, except that because we are working with a
lattice, onlyZ-linear combinations are allowed, and we can only perform elementary
operations on the columns which consist of additions and subtractions (divisions are
not allowed, unlike for the echelon form). The notion of reduced echelon form is,
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over Z, formally replaced by that of Hermite normal norm (HNF) . We say that an
integer matrix of full row rank is in (column) Hermite normal form if it is of the
form ŒH 0� with H D .hij/ a square matrix and

1. hij D 0 for i < j, which means the matrix H will be lower triangular.
2. 0 � hij < hii for i > j, that is entries are nonnegative, and each row has a

maximum entry on the diagonal.

Note that any matrix B with integer entries can be reduced to a column Hermite
normal form, B D ŒH 0�U, where U is a square unimodular matrix. If B is full
row rank as it is the case of the expanded generator matrix of �C above, then
H is also full rank. For algorithms that compute the HNF, see, e.g., [21, p. 67,
68; algorithm included]. Mathematical software packages such as Mathematica,
Maple, MATLAB, Scilab, and Sage also have implemented algorithms. Usually
those algorithms appear in the Hermite row form, so for the column form used here,
it should be adapted via transposed matrices.

Proposition 3.3 Let v1; : : : ; vl be generators for the linear code C over Zq and
e1; : : : ; en be the canonical basis of Rn. Then a generator matrix for the lattice
��1.C/ is given by the n � n full rank matrix H obtained by computing the Hermite
normal form ŒH 0� of Œv1; : : : ; vl; qe1; : : : ; qen�. If the generator matrix of C can be
put in systematic form

�

Il

A

�

;

(which, up to coordinate permutation, is always the case for Zp D Fp (and l D k)
and may or may not be possible otherwise), then a generator matrix of �C is

�

Il 0l�.n�l/

A qIn�l

�

:

Proof We already know from above that v1; : : : ; vl; qe1; : : : ; qen generate the lattice,
we just need to extract a basis by computing the Hermite normal form out of the
n � .n C l/ matrix

�

v1; : : : ; vl; qe1; : : : ; qen

�

;

which looks like ŒH 0�, and H clearly contains a basis. In the case C has a generator
matrix in systematic form, then we need to compute a Hermite normal form out of

�

Il qIl 0l�.n�l/

A 0.n�l/�l qIn�l

�

:
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Multiplying the first l columns by �q and adding them to the next l columns give

�

Il 0l 0l�.n�l/

A �qA qIn�l

�

:

Then multiplying the column containing the ith 1 of In�l in turn by aij, for j D
1; : : : ; n � l and adding it to the corresponding column in �qA will give the desired
result.

Note that a generator matrix for �C is obtained from B D Œv1; : : : ; vl; qe1; : : : ; qen�

when it is reduced to the form ŒH 0� even if H does not satisfy all the requirements
of the Hermite normal form, but the latter has a kind of canonical format similar to
the reduced echelon form.

Example 3.2 For the codes C1 and C2 in Example 3.1, generator matrices for the
lattices �C1 and �C2 can be obtained by considering the Hermite normal form of
the matrices

B1 D
2

4

2 0 3 0 0

0 2 0 3 0

1 1 0 0 3

3

5 and B2 D
2

4

2 0 4 0 0

0 2 0 4 0

1 1 0 0 4

3

5 ;

respectively, which are

H1 D
2

4

1 0 0

0 1 0

2 2 3

3

5 and H2 D
2

4

2 0 0

0 2 0

1 1 2

3

5 :

Note also that H1 is built from the generator matrix of the code C1 in systematic
form as described in the last proposition. As another example, consider the code
C3 in Z

3
6 generated by the codeword .1; 2; 3/. Since it has a generator matrix in

systematic form,

2

4

1

2

3

3

5, a generator matrix of the lattice �C3 in R
3 is

2

4

1 0 0

2 6 0

3 0 6

3

5.

Example 3.3 Proposition 3.3 always provides a basis and a generator matrix for the
lattice �C associated with a code C. In some cases, other generator matrices can
be derived from the Hermite matrices to better describe the lattice. For example,
consider the code C over Z5 generated by .1; 2/, namely,

C D h.1; 2/i D f.0; 0/; .1; 2/; .2; 4/; .3; 1/; .4; 3/g � Z
2
5:
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Fig. 3.3 The lattice
constructed from the code
h.1; 2/i � Z

2
5

-5 5 10

-5

5

10

According to the above proposition, a basis for �C is

�

1 0

2 5

�

. One can verify using

Theorem 2.2 that

�

1 �2

2 1

�

is also a generator matrix for this lattice, whose basis is

Minkowski reduced (see Definition 2.15), geometrically revealing a square shape
(see Fig. 3.3).

Example 3.4 Consider the linear code C D f.a1; : : : ; an�1;
Pn�1

iD1 ai/; a1; : : : ; an�1 2
F2g over F2. It has length n and dimension n � 1. A systematic generator is

�

In�1

1 : : : 1

�

:

A generator matrix for �C is thus

�

In�1 0.n�1/�1

1 : : : 1 2

�

:

This means that every vector x 2 ��1.C/ is of the form x D .x1; : : : ; xn�1;
Pn�1

iD1 xiC
2xn/, xi 2 Z for all i. This describes every vector which satisfies that the sum of its
entries is even. Indeed, a constraint on the sum means that there are n � 1 degrees of
freedom in the first n � 1 entries (they can be chosen to be anything), and to force
the sum to be even no matter what is the choice of x1; : : : ; xn�1, the last component
must contain

Pn�1
iD1 xi. But then our constraint is just that the sum is even, so the
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entry should be able to be anything as long as it is even; thus it is of the form
Pn�1

iD1 xi C 2xn where xn can take any value and 2xn means any even value. This
shows that we have just constructed the lattices

Dn D f.x1; : : : ; xn/;

n
X

iD1

xi is eveng

presented in Example 2.4.

3.2 Relevant Distances in Codes and Lattices

Since we are studying lattices with interesting parameters, one may wonder how
distances defined over codes translate into parameters for lattices via Construction
A. Distances are used in linear codes to characterize their error correction capability.
We will consider here the widely used Hamming distance and the `p distances ,
1 � p � 1, also called p-Lee distances. For p D 1, p D 2, and p D 1, these are the
well-known Lee, Euclidean, and the maximum or Chebyshev distances which are
used in applications such as constrained and relay channels [38, 88, 101] (p D 1),
physical layer networks [39] (p D 2), rank modulation, and flash memory [94]
.p D 1/. General dp distances 1 � p � 1 are considered in [19, 32, 45, 57, 85]
and appear while studying the complexity of computational lattice problems [2, 82].

We recall the mathematical definition of a distance.

Definition 3.2 A distance or metric in a set A is a map d W A � A ! R which
satisfies the following three conditions :

i) d.x; y/ � 0 and d.x; y/ D 0 if and only if x D y:

ii) d.x; y/ D d.y; x/, and
iii) d.x; z/ � d.x; y/ C d.y; z/, for every x; y; z in A:

In what follows, we treat the Hamming, Lee and p-distances for codes and lattices,
and related concepts such as the minimum distance of a set and closed balls

Bd.x; R/ D fy 2 AI d.y; x/ � Rg (3.1)

in these distances.

The Hamming Distance For A D Z
n
q, particularly for q D 2, corresponding to

binary codes, the commonly used distance is the Hamming distance dH which counts
the number of coordinates in which two codewords differ. For x D .x1; x2,. . . ,xn)
and y D .y1; y2,. . . ,yn/,

dH.x; y/ D jfiI xi ¤ yig j:
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For example, in Z
4
2,

dH..1; 0; 1; 1/; .0; 1; 0; 1// D 3

and in Z
3
5,

dH..1; 0; 3/; .1; 2; 0// D 2:

The Minimum Hamming Distance For a linear code C in Z
n
q, it is defined as

the minimum of all distances between two different vectors in the code. Since
dH.x; y/ D dH.xCk; yCk/, for every x; y; k 2 Z

n
q, the minimum Hamming distance

is the minimum of dH.x; 0/, .x 2 C; x ¤ 0/, that is the minimum weight of a non-
zero codeword.

For binary linear codes C � Z
n
2, the minimum Hamming distance dH.C/ is linked

to the error correction capability. A code with minimum distance dH.C/ can correct

R D
j

dH.C/�1

2

k

errors. Geometrically this means that the Hamming balls of radius

R centered at codewords do not intersect. Hence, any received vector in Z
n
2 with no

more than r different coordinates (errors) from that of a codeword will be located in
just one of these balls and will be decoded as its center.

Definition 3.3 A binary linear code is R-perfect in the Hamming metric if the union
of those balls centered in its codewords with the radius R is Zn

2.
The Hamming codes introduced by R.W. Hamming in 1950 and used in several
applications are 1-perfect. In Z

7
2, a 1-perfect code can be described as C D

f.a1; a2; a3; a4; a2 C a3 C a4; a1 C a3 C a4; a1 C a2 C a4/; ai 2 Z2g.
The relation between the minimum Hamming distance of a code C � Z

n
2 and the

minimum norm (Euclidean distance) of its associated Construction A lattice �C is
described in the next proposition [60].

Proposition 3.4 Let C be a linear binary code with minimum distance dH.C/ and
� be the minimum norm (see (2.10)) of its associated lattice �C. Then:

i) If dH.C/ < 4, � D p
d and the set of minimum norm vectors of �C is composed

by the codewords of C with weight d and the vectors obtained from these
codewords by replacing one or more coordinates set to 1 by �1.

ii) If dH.C/ D 4, � D 2 and the set of minimum norm vectors of �C is composed
by the codewords of C with weight equal to 4, the vectors obtained from these
codewords by replacing one or more coordinates set to 1 by �1 and the vector
which have ˙2 for their unique non-zero coordinate.

iii) If dH.C/ > 4, � D 2 and the minimum norm vectors of �C are the ones which
have ˙2 for their unique non-zero coordinate.

This result is useful to detect the set of minimum norm vectors of special lattices
which may be difficult to find in general. For example, consider the lattice E8 (see
Chap. 2). A lattice congruent to E8 can be obtained via Construction A from the
extended Hamming code in Z

8
2 given by

C D f.a1; a2; a3; a4; a2 Ca3 Ca4; a1 Ca3 Ca4; a1 Ca2 Ca4; a1 Ca2 Ca3/; ai 2 Z2g
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(see [98, Chap. 5, 2.1]). The code C has minimum Hamming distance 4 and 14
of its codewords have this minimum distance (see Exercise 3.2). By the above
proposition, considering all 24 possibilities of sign changes in each codeword of
minimum distance plus the lattice vectors on the edges, we get that E8 must have
14 � 24 C 16 D 240 vectors of minimum norm. This number (the kissing number of
E8) appears also in the theta series of this lattice (see the following section).

The Lee and the `p Distances Another distance used for q�ary codes is the Lee
distance in Z

n
q, introduced in [61] for non-binary codes. We consider here the set of

integers modulo q in its typical representation, Zq D f0; 1; : : : ; q � 1g. For a and b
in Zq, it is the “circular" graph distance (see Fig. 3.4), defined by

dLee.a; b/ D minfja � bj ; q � ja � bjg:

In the Cartesian product Zn
q, the Lee distance between a D .a1; a2; : : : ; an/ and

b D .b1; b2; : : : ; bn/ is defined as

dLee.a; b/ D
n
X

iD1

dLee.ai; bi/:

We remark (see Exercise 3.3) that for q D 2 and q D 3, the Lee and the Hamming
distances in Z

n
q are the same for all pairs of vectors and these are the only values of

0

1

23

4

(a)
1 2 3 4 5

1

2

3

4

5

(b)

Fig. 3.4 (a) Lee distance in Z5: the smallest number of edges in the circular graph on the left (e.g.,
dLee.0; 3/ D 2). (b) Lee distance in Z

2
5: in the integer grid with the parallel board sides identified

(flat torus), it is again the graph distance, that is the smallest number of edges connecting two pairs
(e.g., dLee..1; 1/; .3; 2// D 3 (red path), dLee..1; 1/; .4; 4// D 4 (black path)
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q for which both metrics coincide. For instance, in Z
3
5 dLee..1; 0; 3/; .1; 2; 0// D 5

and dH..1; 0; 3/; .1; 2; 0// D 2, as we have seen.
The Lee distance in Z

n
q can be seen as induced by the l1 or Manhattan distance in

Z
n, d1.a; b/ D Pn

iD1 jai � bij, into the quotient Zn/qZn ' Z
n
q. We can also consider

distances either in Z
n or in Z

n
q as the ones induced by the well-known lp metrics in

R
n, which are defined for a D .a1; a2; : : : ; an) and b D .b1; b2; : : : ; bn/ in Z

n and
p 2 N; p > 1;as

dp.a; b/ D
 

n
X

iD1

jai � bijp

! 1
p

and d1.a; b/ WD maxfjai � bijI i D 1; : : : ; ng: Note that for p D 1 and p D 2,
we have the Lee distance and the standard Euclidean distance, respectively, whereas
for p D 1, this distance is also known as the maximum or Chebyshev metric. The
correspondent induced `p� distance for a and b in Z

n/qZn ' Z
n
q (also called p-Lee

distance) is given by [19]

dp.a; b/ D
 

n
X

iD1

.dLee.ai; bi//
p

! 1
p

for p 2 N; p > 1;

and

d1.a; b/ WD maxfdLee.ai; bi/; i D 1; : : : ; ng :

Example 3.5 For a D .1; 1/ and b D .4; 4/ in Z
2, we have

d1.a; b/ D 6; d2.a; b/ D 6
p

2; d1.a; b/ D 3;

whereas for a D .1; 1/, b D .4; 4/ now considered in Z
2
5,

d1.a; b/ D dLee.a; b/ D 4; d2.a; b/ D 4
p

2; d1.a; b/ D 2:

Like the Hamming distance, all the p-Lee distances in Z
n or Zn

q are invariant by
translations (Exercise 3.4):

d.a; b/ D d.a C c; b C c/:

As functions we have (see Exercise 3.5) that d1 � d2 � : : : � d1, which implies
the inclusion reversal order for the closed balls of a fixed radius. For p D 1 (Lee)
and p D 1, the p-distances in Z

n or in Z
n
q are always integers, and there are closed

form expressions for the number of points �p.n; R/ in the closed balls of radius R in
Z

n, given by

�1.n; R/ D
minfn;Rg
X

iD0

2i

 

n

i

! 

R

i

!

(3.2)
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�1.n; R/ D .2R C 1/n: (3.3)

Note also that, for 2R C 1 � q, the number of points in a closed ball of radius R
in Z

n
q either in the Lee or in the infinity metric in Z

n
q is the same as in the ball in Z

n

with the same radius.

Example 3.6 For n D 2, we have from the expressions above that �1.n; R/ D R2 C
.R C 1/2 and �1.n; R/ D .2R C 1/2. Thus a closed ball of radius 2 in the d1 (Lee)
distance either in Z

2 or in Z
2
7 has 13 points, whereas in the distance d1 a ball with

the same radius has 25 points, since 2RC1 � q. For the distance d1, the closed balls
with R D 4 in Z

2 and in Z
2
7 have 41 and 37 points, respectively. The balls of radius

4 for the distance d1 in Z
2 and in Z

2
7 have 81 and 49 points (since d1.a; b/ � 3;

for all a; b 2 Z
2
7), respectively.

The Minimum Distance dp.C/ For a linear code C in Z
n
q or a lattice � in Z

n,
it is defined as the minimum of the `p distances between two different vectors in
the code or in the lattice which, due to invariance under translation, is the same
as the minimum `p�distance from a non-zero vector to the null vector (minimum
`p-norm).

It should be remarked that for a large enough alphabet size, a code and its
associated lattice via Construction A have the same minimum `p-distance [56, 89],
since

dp.�C/ D min
˚

dp.C/; q
�

: (3.4)

Like in the Hamming metric, we may use the closest neighbor criterion under
the p-distance for decoding by considering disjoint p-balls centered at codewords.
We define the dp-packing radius R of a code C � Z

n
q (� � Z

n) as the greatest R
such that the closed balls of radius R in the dp metric centered at the distinct points
of C are disjoint and there is at least one point of Zn

q (Zn) at the boundary of these
closed balls. Hence any received vector which is inside these balls will be univocally
decoded as the codeword center of its ball.

For p D 1 and p D 1, the packing radius of a linear code C � Z
n
q (� � Z

n)

is an integer given by the expression R D
j

dp.C/�1

2

k

. For 1 < p < 1, a similar

expression is not valid [19].
Similarly to the binary case with Hamming distance (recall Definition 3.3), we

can consider closed balls (3.1) in Z
n
q or Zn with respect to the `p metric and define:

Definition 3.4 If the union of disjoint closed balls of packing radius R in a p-metric
covers Zn

q (or Zn), we say that C (or �) is R-perfect in this metric.
For R < q

2
, a necessary condition for a code to be R-perfect in the `p metric is

that jCj �p.n; R/ D qn. We may use the closed form expression for the number of
closed ball points �p.n; R/ in the cases p D 1 (3.2) and p D 1 (3.3).
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2 4 6 8 10 12

2

4

6

8

10

12

Fig. 3.5 Codes in Z
2
13 with the Lee distance. On the left the code C1 D h.1; 6/i with its packing

balls, on the right the perfect code C2 D h.2; 3/i represented inside its associated lattice �C2

Example 3.7 Consider the linear codes C1 D h.1; 6/i and C2 D h.2; 3/i in
Z

2
13 generated by the vectors .2; 3/ and .1; 6/, respectively. Both codes have 13

codewords, minimum distances in the Lee metric which are d1.C1/ D 3 and
d1.C2/ D 5, and hence their packing radii are 1 and 2, respectively. The code C2

is 2-perfect in the Lee distance since balls of radius 2 centered at its codewords are
disjoint and cover Z2

13, whereas C1 is not. Note also that, taking into account the
above Example 3.6, the lattice �C2 is also 2-perfect with respect to the l1 distance
(see Fig. 3.5). This relation between perfect codes and associated perfect lattices can
be extended to all dp distances.

Proposition 3.5 ([19]) If C � Z
n
q is a perfect linear code in the `p-metric with

packing radius R <
q
2
, then the lattice �C is also perfect in this metric with the

same radius.

Example 3.8 Consider the perfect code given by Ck D h.k; k C 1/i � Z
2
h, where

h D k2 C .k C 1/2, in the Lee metric with radius R D k (see Exercise 3.6). Since
k < h

2
, the associated lattice �C is also perfect in Z

2. This provides, for n D 2;

examples of perfect Lee lattices of any radius.
The result of the last example cannot be extended to dimension 3. This is a

consequence of the so-called Golomb-Welch conjecture. Introduced in [46], it states
that for n � 3, the unique Lee perfect lattices are the ones with radius R D 1.
This long-standing conjecture is, up to now, only proved in particular cases and
for n � 11 (see [50] and references therein). It is important to note that the
condition R <

q
2

in the last proposition cannot be removed. A counterexample
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Fig. 3.6 The code
C D h.1; 7/i � Z

2
49, which is

perfect in the `
1

distance
with its packing balls

can be given by the perfect binary code C with radius 7 in the Lee metric,
C D f.0; 0; 0; 0; 0; 0; 0/; .1; 1; 1; 1; 1; 1; 1/g � Z

7
2 since �C is not perfect in Z

7 (see
Exercise 3.7).

Note that the trivial codes C D f0g and C D Z
n
q may be considered perfect for

any dp distance. For p D 1, the existence of perfect codes is fully characterized
next.

Proposition 3.6 ([32]) There are nontrivial perfect codes C � Z
n
q in the `1 metric

if and only if q D bm with b > 1 an odd integer and m > 1 an integer.

Example 3.9 Simple examples of perfect codes of packing radius R in the `1
metric are, for b D 2R C 1, the Cartesian codes, C D Pn

iD1 ˛jbei; � Z
n
bm,

(˛j D 0; 1; : : : ; m/. An example of a non-Cartesian perfect code in the d1 metric is
C D h.1; 7/i � Z

2
49 (see Fig. 3.6). Its packing radius is 3.

The next proposition shows that for each perfect code in the `1 metric, there
exists p� � 1 such that this code is also perfect in the p-Lee metric for all p � p�.

Proposition 3.7 ([32]) Let C � Z
n
q be a perfect code in the `1 metric with packing

radius R. If p >
ln.n/

ln.1C 1
R /

, then C is perfect in the `p metric, with radius Rp D Rn1=p.

Note that according to the above proposition the `1-perfect code with packing
radius 3, C D h.1; 7/i � Z

2
49, from Example 3.7 (Fig. 3.6) is also `p-perfect with

packing radius 3:2
1
p for any p � 3.

It may be worth noting that the lattice distances discussed in this chapter were
all related to the underlying code distances. Other distances may of course be of
interest, e.g., the product distance, discussed in the next chapter.
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3.2.1 q-ary Lattice Decoding

We have discussed so far many connections between distances on codes and
distances on their associated lattice via Construction A. We next give applications
of these connections, in particular to the problem of lattice decoding. We recall
(see also Chap. 2) that given a vector in R

n (obtained through transmission via for
example a Gaussian channel), lattice decoding consists of finding a lattice vector
which is closest to it. Without the setting of transmission via a communication
channel, this becomes the closest vector problem (see Problem 2.2). The case
of communication via a Gaussian channel corresponds to the Euclidean distance
(p D 2). There is a huge amount of literature on this problem (e.g., [49, 109]). On the
other hand, lattice-based cryptographic schemes are usually built upon q-ary lattices
and are linked to the computational difficulty of the shortest (see Problem 2.1) and
closest vector problems (Problem 2.2). While both problems are difficult in general,
for q-ary lattices obtained from codes via Construction A, it is possible to solve
them more efficiently by decoding the code.

In the next proposition and example, we denote by x a codeword of a linear
code C � Z

n
q and by x an associated vector in �C . Since there is an isomorphism

�C=qZn ' C, we do not distinguish elements of �C=qZn � R
n=qZn from the

codewords of C.

Proposition 3.8 ([32, 57]) Let �C be a q-ary lattice and r D .r1; : : : ; rn/ 2 R
n.

Let r 2 R
n=qZn and c 2 C; c D .c1; : : : ; cn/; 0 � ci < q, a closest codeword

to r considering the dp distance in R
n=qZn. An element z 2 �C which is closest

to r considering the `p metric in R
n is z D .z1; � � � ; zn/; where zi D ci C qwi and

wi D
�

ri � xi

q

�

; for each i D 1; : : : ; n:

Example 3.10 Consider the code C D ˝

.N2; N3/
˛ � Z

2
13 and its associated lattice �C.

For the received vector r D.0; �6/ 2 R
2, the closest codeword from r D 	N0; N7
 is

x D 	

12; 8



. The closest lattice point to r in the distance d1 is z D .�1; �5/:

3.3 Wiretap Coding and Theta Series

Let us look again at the lattice �C D ��1.C/ obtained from a linear code C �
Z

n
q via Construction A geometrically. It is obtained by considering the lattice qZn

and its translations by the codewords of C. As a first example, in Fig. 3.2b, ��1.C/

is the union of 2Z2 and 2Z2 C .1; 1/. Also, for C D h.1; 2/i � Z
2
5 (Fig. 3.3),

the lattice �C is the union of � D 5Z2 with the four translations of � by the
nonvanishing codewords of C, .1; 2/; .2; 4/; .3; 1/ and .4; 3/ (called gluing vectors).
In other words, ��1.C/ is the union of cosets of qZn, and codewords of C form
coset representatives. This makes Construction A particularly suitable for a coding
strategy called coset coding, which we will explain next in the context of wiretap
coding.
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Fig. 3.7 Gaussian wiretap channel: channel and intuition. (a) A wiretap channel, where Alice and
Bob want to exchange a confidential message in the presence of an eavesdropper Eve. (b) Bob’s
noise is such that it can decode the point transmitted via coset coding normally. Eve’s noise is such
that two points from the first coset and two points from the second coset are equally possible, and
thus she has to decode one of the two at random

Let us consider Gaussian wiretap coding, and recall from (2.20) that transmission
of a vector x over a Gaussian channel is of the form yB D x C nB where nB is
a random vector whose components are independent Gaussian random variables
with mean 0 and variance �2

B . Suppose now that an eavesdropper (wiretapper) is
listening to this transmission (see Fig. 3.7a). Then the eavesdropper will receive
yE D x C nE , where the noise nE has variance �2

E . The subscripts B and E refer
to Bob and Eve, the standard names of players when security is involved in a
protocol. Now the Gaussian wiretap coding problem asks for reliability between
the legitimate transmitter (Alice) and receiver (Bob), which is the Gaussian channel
coding problem discussed in Chap. 2, but also confidentiality despite the presence
of the eavesdropper Eve [62]. This is done via the introduction of randomness at the
transmitter, and coset coding gives a practical way to handle this randomness. The
secret information is encoded into cosets, while x is then chosen randomly within
this coset. If we consider again the code f.0; 0/; .1; 1/g � Z

2
2 of Fig. 3.2b, one bit of

secret can be transmitted using coset coding: to send 0, choose the coset 2Z2, and to
send 1, choose the coset 2Z2 C .1; 1/.

The idea behind wiretap coding is probably best understood in the scenario,
called wiretap II [81], where Alice and Bob have a noiseless channel, and Eve
receives � symbols out of the n sent by Alice. Alice knows �, but she does not
know which � positions are known to Eve. In the simplest case, say Alice sends
n D 2 bits, and � D 1. Then Alice can achieve perfect confidentiality by sending
.b C r; r/ where b is her secret bit, and r is a random bit, chosen uniformly at
random. In the Gaussian case, the introduction of random bits is mimicked, but
the intuition is different. Since Eve is supposed to have a stronger noise than Bob
(as was already assumed in the wiretap II case since Bob has a noiseless channel),
the geometric intuition is that when Bob receives a noisy codeword, his channel
is such that in the radius around his received point, only the codeword that was
sent is present, while Eve will find in her radius points from different cosets, such
that each coset is equally likely to have been sent. This is illustrated in Fig. 3.7b. A
practical example of the effect of coset coding is shown in Fig. 3.8, where an image
has been transmitted, over a USRP testbed [65], using coset coding: on the right,
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Fig. 3.8 The cameraman image transmitted by Alice and received by an eavesdropper: on the left,
with no coset coding, in the middle with one bit of randomness, and on the right with two bits of
randomness

one secret bit is mapped to a coset in Z2 (Z is partitioned into two cosets), and the
coset representative is chosen with 2 bits of randomness. The technical settings of
the experiments are found in [65].

Coset encoding uses two nested lattices �E � �B, where �B is the lattice
from which a signal constellation is carved for transmission to Bob, while �E is
the sublattice used to partition �B. In the right picture of Fig. 3.8, �B D 2Z and
�E D Z. For a general Construction A, as explained above, �B is partitioned using
�E D qZn. This suggests two questions:

• Can we apply Construction A with other pairs of nested lattices? The answer is
yes, and there are plenty of works and constructions following the same principle:
instead of n copies of Z, take n copies of some commutative ring R, and instead
of qZ, take an ideal I of this ring (see the introduction of the next chapter for
a definition). Then use a linear code C which is a subset of .R=I/n. See, e.g.,
[33, 59] and references therein.

• Would another choice of nested pairs of lattices �E � �B bring more
confidentiality, and what would be a design criterion for such a lattice? We will
be discussing this criterion next.

As explained above, in wiretap coset coding, one message corresponds to one
coset, here of a lattice, instead of one lattice point. Thus, mimicking the probability
analysis of Chap. 2, the probability Pc;E that Eve correctly decodes her received
message is

Pc;E � 1

.
p

2��E/n

X

t2�E

Z

V�B .0/

e�kuCtk2=2�2
E du:

It was shown in [80] that Pc;E is bounded by

Pc;E � V.�B/

.
p

2��E/n

X

t2�E

e�jjtjj2=2�2
E D V.�B/

.
p

2��E/n
	�E

�

1

2��2
E

�
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where we recall that V.�B/ is the volume of � and 	� is the theta series of � [26]
defined by

	�.z/ D
X

x2�

qkxk2

; q D ei�z; Im.z/ > 0: (3.5)

In the above upper bound, we set y D �iz and thus consider 	�.y/, for y > 0. In
what follows, we will write 	�.q/ whenever it does not matter whether we consider
z or y. The theta series of an integral lattice keeps track of the different norms of
lattice points. The coefficient N.m/ of qm in this series tells how many points in
the lattice are at squared distance m from the origin. This series always starts with
1, corresponding to the zero vector. The second term corresponds to the squared
minimum norm �2 (see (2.10)), and thus the coefficient N.�2/ of q�2

is the kissing
number of the lattice. The theta series of a general lattice is hard to compute, but in
special cases, it can be expressed in terms of Jacobi theta functions [26, Chap. 4.1].
For example, it can be easily checked geometrically for Z2 that the first terms of its
series are 	Z2 .q/ D 1 C 4q C 4q2 C 4q4 C 8q5 C : : : . But it is not straightforward
to see the coefficient attached to qm, for big m in this series. A computation (that
actually uses a Jacobi theta function) is shown in Example 3.11.

In Table 3.1 (extracted from [26]), the first non-zero coefficients of the theta
series of the lattices Z

2, A�
2 , Z3, FCC, BCC, and E8 are given. Here A�

2 is the
scaled version of the lattice A2 (see Example 2.3), with minimum norm one, which
is identified to the hexagonal lattice (Example 2.1).

Example 3.11 Let us compute the theta series of the lattice Z
n :

	Zn.q/ D
X

x2Zn

qjjxjj2 D
X

x12Z
qx2

1 � � �
X

xn2Z
qx2

n D
 

X

m2Z
qm2

!n

Table 3.1 First non-zero coefficients N.m/ of the 	-series of some lattices studied in Chap. 2 [26,
chap. 4]

Z
2 m 0 1 2 4 5 8 9 10 13 16 17 18 20 25 26 29 32

N.m/ 1 4 4 4 8 4 4 8 8 4 8 4 8 12 8 8 4

A�

2

m 0 1 3 4 7 9 12 13 16 19 21 25 27 28 31 36 37

N.m/ 1 6 6 6 12 6 6 12 6 12 12 6 6 12 12 6 12

Z
3 m 0 1 2 3 4 5 6 8 9 10 11 12 13 14 16 17 18

N.m/ 1 6 12 8 6 24 24 12 30 24 24 8 24 48 6 48 36

FCC
m 0 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 34

N.m/ 1 12 6 24 12 24 8 28 6 36 24 24 24 72 48 12 48

BCC
m 0 3 4 8 11 12 16 18 19 24 27 31 35 36 40 43 44

N.m/ 1 8 6 12 24 8 6 24 24 24 32 12 48 30 24 24 24

E8
m 0 2 4 6 8 10 12 14 16

N.m/ 1 240 2160 6720 17520 30240 60480 82560 140400
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D .1 C 2q C 2q4 C 2q9 C : : : /n D 	Z.q/n:

To evaluate the benefit of using a specific lattice �E with respect to using �E D 
Zn

(
 is a scaling factor so that Zn scaled to the same volume), we compare the behavior
of the theta series of 
Zn with that of �E and consequently define the notion of
secrecy gain. This idea of defining a gain (here in terms of secrecy) by comparing
the lattice Z

n and another lattice is fairly standard. In fact, we already mentioned
it in the context of quantization (see the discussion on best quantizers at the end of
Sect. 2.5.1).

Definition 3.5 The (strong) secrecy gain ��;strong of an n-dimensional lattice � is
defined by

��;strong D sup
y>0

	
Zn.y/

	�.y/

defined for y > 0.
The role of the theta series 	�E at the point y D 1

2��2
E

has been independently

confirmed in [63], where it was shown for the mod-� Gaussian channel that the
mutual information I.SI Z/, an information theoretic measure of the amount of
information that Eve gets about the secret message S by receiving Z, is bounded

by a function that depends of the channel parameters and of 	�E




1

2��2
E

�

.

The adjective “strong” in the definition of secrecy gain is motivated by the fact
that the above quantity is hard to compute, while for unimodular lattices, the secrecy
gain seems to correspond to a multiplicative symmetry point of the function 	
Zn .y/

	�.y/
,

as illustrated in Fig. 3.9 (in log scale) for the E8 lattice. The shape of the function is
typical of that of a unimodular lattice. The “weak” secrecy gain thus corresponds to
this symmetric point, conjectured to be the maximum of the function and thus the
secrecy gain. As of now, this conjecture is still under investigation.

Fig. 3.9 The secrecy gain of
the 8-dimensional unimodular
lattice E8 where the x-axis is
in decibels (10 log10.y/)
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Exercises

Exercise 3.1 Show that for S � Z
n
q, if ��1.S/ is a lattice in R

n, then S is a linear
code.

Exercise 3.2 Show that the extended Hamming code in Z
8
2 has minimum Hamming

distance 4 and that 14 of its codewords have this minimum distance.

Exercise 3.3 Show that for q D 2; 3, the Lee distance is the same distance as the
Hamming distance.

Exercise 3.4 Prove that the Hamming distance and the p-Lee distances are invariant
by translation.

Exercise 3.5 Prove that for the Lee distances dp, d1 � d2 � : : : � d1.

Exercise 3.6 As you can see in Figs. 3.3 and 3.5, the codes h.1; 2/i �Z
2
5 and

h.2; 3/i �Z
2
13 are perfect in the Lee Metric. Prove that this result can be extended:

Any code Ck D h.k; k C 1/i � Z
2
h , where h D k2 C .k C 1/2, is a perfect code in

the Lee metric with packing radius R D k.

Exercise 3.7 Show that the condition R <
q
2

in Proposition 3.5 cannot be removed
by proving that C D f.0; 0; 0; 0; 0; 0; 0/; .1; 1; 1; 1; 1; 1; 1/g � Z

7
2 is perfect with

radius 3 in the Lee metric but �C is not perfect in Z
7.
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