
Chapter 2
Lattices and Applications

A lattice in R
n is a set of points (vectors) composed by all integer linear combina-

tions of independent vectors.

Definition 2.1 Let b1; b2; : : : ; bm be linearly independent vectors in R
n. A lattice

� with basis fb1; b2; : : : ; bmg is defined as

� D fu1b1 C � � � C umbm W u1; : : : ; um 2 Zg : (2.1)

The integer m is called the rank of �. If m D n, we say that � is full rank.
We may also consider the set f.0; : : : ; 0/g � R

n as a (degenerate) lattice of rank 0.

Definition 2.2 A generator matrix B for a lattice � is a matrix whose columns1 are
a basis for it, i.e.,

B D �
b1 b2 : : : bm

�
:

A vector x D .x1; : : : ; xn/ 2 R
n is in � if and only if it can be written as

2
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x1

:::

xn
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5 D �

b1 b2 : : : bm

�
2
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u1

:::

um

3

7
5 ; u1; : : : um 2 Z: (2.2)

In other words, � D fBu W u 2 Z
mg, where Z

m denotes the set of m-uples of
integers. Note that in the above definition, B is a matrix of rank m and it is not
unique, since a lattice, for m � 2, has infinitely many bases (as it will be seen next).

1Some authors use the row convention of considering basis vectors as rows of a generator matrix;
we follow here the column convention.
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Fig. 2.1 Three lattices in R
2. (a) The square lattice Z

2. (b) The hexagonal lattice. (c) A lattice �

with basis f.3; 0/; .1; 2/g

Example 2.1 We start with three examples of rank 2 lattices in R
2. In Fig. 2.1a the

square lattice Z2 is displayed. A natural basis for it is f.1; 0/; .0; 1/g. In Fig. 2.1b the

so-called hexagonal lattice is displayed. One of its bases is
n
.1; 0/; .1=2;

p
3=2/

o
.

A third lattice � is depicted in Fig. 2.1c, which has a natural basis given by
f.3; 0/; .1; 2/g.

Example 2.2 The cubic lattice Z
n � R

n (also called the integer lattice) is the set
of all n-uples of integers. A basis for Zn is the canonical basis of Rn ; fe1; : : : ; eng,
where e1 D .1; 0; : : : ; 0/; e2 D .0; 1; 0 : : : ; 0/; : : : ; en D .0; 0; : : : ; 0; 1/. The first
lattice Z

2 of Example 2.1 is the particular case when n D 2.

Example 2.3 Consider the set A2 of all vectors in .x1; x2; x3/ 2 Z
3 such that x1Cx2C

x3 D 0. This set is parameterized by letting two coordinates be free and forcing the
third one to be the negative sum of the two free coordinates (if we let say x1; x3 free,
then x2 D �x1�x3), showing that we can describe A2 by integer linear combinations
of two independent vectors. This is a rank 2 lattice in R

3, since a generator matrix
for it is

B D
2

4
1 0

�1 1

0 �1

3

5 :

It turns out that the hexagonal lattices in Example 2.1 and A2 are equivalent lattices,
something that will be proven after Definition 2.11 (see Example 2.9). In a similar
way, we can define the rank n lattice An in R

nC1:

An D ˚
.x1; x2; : : : ; xnC1/ 2 Z

nC1 W x1 C x2 C � � � C xnC1 D 0
�

: (2.3)
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Fig. 2.2 The lattices D2, D3= FCC and BCC. (a) The D2 lattice in R
2. (b) The D3 or FCC lattice

(face-centered cubic lattice). (c) The BCC (body-centered cubic) lattice

Example 2.4 The full rank lattice Dn � R
n, also called the checkerboard lattice, is

defined as

Dn D f.x1; x2; : : : ; xn/ 2 Z
n W x1 C x2 C � � � C xn is eveng : (2.4)

The lattices D2 and D3, shown in Fig. 2.2a, b, have bases f.1; 1/; .�1; 1/g and
f.2; 0; 0/; .1; 1; 0/; .1; 0; 1/g, respectively (see Exercise 2.1). The lattice D3 is also
known as the face-centered cubic lattice, FCC, since it can be spanned from the
vertices and the face centers of a cube with sides of length 2 (Fig. 2.2b). Another
lattice in R

3 “constructed” from cubes is the body-centered cubic (BCC) lattice. For
example, f.2; 0; 0/; .0; 2; 0/; .1; 1; 1/g is a basis for the BCC lattice (Fig. 2.2c).

There is an alternative definition of lattice in terms of groups. We consider the
natural group structure of Rn with respect to vector addition. Notice that any lattice
� � R

n is a set of vectors satisfying

• closure: if x; y 2 �, then x C y 2 �,
• for every vector x 2 �, �x 2 �.

These two facts show that a lattice � is an additive subgroup of Rn. Moreover, a
lattice is also a discrete subset of Rn. This means that there exists a radius r such
that the balls in R

n centered at lattice points are disjoint. In fact, these two properties
provide an equivalent definition of a lattice:

Theorem 2.1 ([20, p. 78]) A subset of Rn is a lattice if and only if it is a discrete
additive subgroup.
Through the last proposition, we can see that a set composed by linear integer
combinations of dependent vectors is not always a lattice. For instance, for n D 1,
let A be the set of linear integer combinations of v1 D 1 and v2 D p

2. This set is
not a lattice, since it is not discrete.

As mentioned earlier, a lattice � has (infinitely) many bases for m � 2. Figure 2.3
illustrates different bases for the integer and for the hexagonal lattices in R

2. The
characterization of when distinct bases generate the same lattice is done next by
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Fig. 2.3 Examples of distinct bases for the same lattice. (a) Z2 lattice. (b) Hexagonal lattice

means of a special type of matrices, called unimodular. An m � m matrix U is said
to be unimodular if it has integer entries and its determinant is 1 or �1. This is
equivalent to saying that the integer matrix U has an inverse with integer entries, as
stated in Exercise 2.2.

Theorem 2.2 Two matrices B and B generate the same lattice if and only if there
exists a unimodular matrix U such that B D BU.

Proof Let ˇ1 D fb1; : : : ; bmg and ˇ2 D
n
b1; : : : ; bm

o
be bases for � and �, with

associated generator matrices B and B, respectively. Notice that � � � if and only
if we can write all vectors of ˇ1 as integer linear combinations of ˇ2, i.e.,

bj D
mX

iD1

bi˛ij, for j D 1; : : : m; and ˛ij 2 Z:

In other words, B D BU, where U D .˛ij/ is an integer matrix. Analogously, � � �

if and only if B D BV , for some integer matrix V . Combining both equations yields

B D BVU ) B.I � VU/ D 0

since every column of I � VU defines a linear equation in b1; : : : ; bm, and recalling
that b1; : : : ; bm are linearly independent, the corresponding coefficients must be all
0. Thus

VU D I ) det.V/ det.U/ D 1
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which, together with the fact that U; V are matrices with integer coefficients, implies
that det.U/ D det.V/ D ˙1; therefore U is unimodular.

Conversely, if B D BU, with U unimodular, then � � � and B D BU�1 where
U�1 has integer entries, which implies that � � �, concluding the proof.

Example 2.5 In Fig. 2.3 distinct bases for two lattices in the plane are illustrated.
The generator matrices associated with the two different bases of the lattice Z

2

exhibited in Fig. 2.3a are

B D
�

1 0

0 1

�
and B D

�
1 2

1 3

�
:

For the lattice of Fig. 2.3b, we have

B D
�

1 1=2

0
p

3=2

�
and B D

�
3=2 7=2p
3=2 3

p
3=2

�
D

�
1 1=2

0
p

3=2

� �
1 2

1 3

�
:

In both cases, the unimodular matrix that takes a basis into the other is given by

U D
�

1 2

1 3

�
:

Note that the above theorem provides a way to check if two full rank square
matrices A and B generate the same lattice: this will happen if and only if B�1A is a
unimodular matrix (see Exercise 2.3).

Definition 2.3 Given a generator matrix B for a lattice �, we define its associated
Gram matrix by G D BTB.
Each element Gij is the inner product between the basis vectors bi and bj, Gij D˝
bi; bj

˛
. It follows from Theorem 2.2 that, for m � 2, a lattice has infinitely many

Gram matrices; in fact, any G0 D UTGU, where U is unimodular, is also a Gram
matrix for �. However the determinant of a Gram matrix is the same for all bases of
�, since j det Uj D 1. We can then define the determinant of � as the determinant
of any of its Gram matrices. Since this is always a positive number, we can define:

Definition 2.4 The volume of a lattice �, denoted by V.�/, is the (positive) square
root of the determinant of a Gram matrix for �.
To give a geometric interpretation to the quantity V.�/, we define the fundamental
parallelotope P.B/ as

P.B/ D f˛1b1 C � � � C ˛mbm; 0 � ˛i < 1; i D 1; : : : mg : (2.5)

P.B/ is contained in the m-dimensional subspace of R
n generated by the set of

vectors b1; : : : ; bm. The Euclidean volume of P.B/ is

V.�/ D
p

det BTB D j det Bj: (2.6)
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(a) (b)

Fig. 2.4 Distinct fundamental parallelotopes for the hexagonal lattice. (a) Parallelotope asso-

ciated with the basis
n
.1; 0/; .1=2;

p
3=2/

o
. (b) Parallelotope associated with the basis

n
.3=2;

p
3=2/; .7=2; 3

p
3=2/

o

Example 2.6 Continuing Example 2.5, the two distinct bases for the hexagonal lat-
tice (Fig. 2.3b) produce different fundamental parallelotopes, illustrated in Fig. 2.4.
The area of both parallelotopes is equal to

p
3=2, the volume of the hexagonal

lattice.
Given a full rank lattice �, it is possible to check that the disjoint union of

translates of P.B/ by vectors of � is equal to the whole space R
n. In other words,

the fundamental parallelotope P.B/ tiles R
n through translations by points of �,

that is:

(i)

If x; y 2 �; x ¤ y, then .x C P.B//
\

.y C P.B// D ¿ and

(ii)

[

x2�

.x C P.B// D R
n: (2.7)

From now on in this and in the next chapters, in order to simplify the statements, we
assume all lattices to be full rank, unless stated otherwise.

Besides the fundamental parallelotope, other regions A � R
n may as well tile

R
n through translations by elements of �. In fact, item (i) of the tiling condition

above can be “relaxed” to (i’) requiring that for x; y 2 �, .x C A/ and .y C A/

intersect at most on their boundaries. Any region A � R
n satisfying conditions
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(i’) and (ii) is called a fundamental region for �. Any fundamental region for �

has volume V.�/ (see, e.g., [86, p.28, Thm. 1.6]). Another important fundamental
region is the Voronoi region. Let k:k denote the standard Euclidean norm of a vector
x 2 R

n,

kxk D
q

x2
1 C x2

2 C : : : C x2
n:

Definition 2.5 The Voronoi region, also called Dirichlet region, V�.x/ at a point
x 2 � is the set of all points in R

n which are at least as close to x than to any other
lattice point, i.e.:

V�.x/ D fy 2 R
n W kx � yk � kz � yk ; for all z 2 �g : (2.8)

The Voronoi region at the origin,

V�.0/ D V .�/; (2.9)

is called the Voronoi region of the lattice, and we have that V�.x/ D V .�/ C x.
It should be remarked that although the fundamental parallelotope depends on the
choice of basis, the Voronoi region of a lattice is unique and intrinsic to the standard
metric structure of R

n. If a point is in the boundary of a Voronoi region, it is
equidistant from at least two lattice points. Figures 2.5, 2.6, and 2.7 illustrate the
tilings of three lattices by different fundamental regions including their Voronoi
regions on part (b) (see also Exercise 2.4). The Voronoi regions of the lattices
Z

3 and FCC are a cube with sides of length one and a rhombic dodecahedron
centered at the origin, respectively. The Voronoi region of a lattice is a convex set
of Rn enclosed by hyperplanes which are equidistant from the origin and a relevant
lattice point. It is usually very hard to determine, particularly in high dimensions.
For special classes of lattices such as the so-called root lattices (which include An

and Dn; see (2.4)), they have been determined [25, 26]. Algorithms for numerically
determining the Voronoi region have been developed in several references. Those
results are important in applications of lattices to communications such as the ones
regarding quantizers and channel coding (see this chapter, Sect. 2.5.1, Chap. 6, and
also [26, Chaps. 2 and 3].

2.1 Sphere Packing and Covering

One of the main subjects of research on lattices is their association with the
hard problem of finding dense packings in the Euclidean space, which has many
applications.
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Fig. 2.5 Different fundamental regions and tilings of the plane by Z
2. (a) The fundamental

parallelotope of the lattice Z2 with basis f.1; 0/; .0; 1/g and associated plane tiling. (b) The Voronoi
region of the lattice Z

2 and its associated plane tiling. (c) A tiling of the plane though translations
of another fundamental region of Z2

-1 1 2 3

-1.0

-0.5

0.5

1.0

1.5

2.0

(a) (b) (c) 

-2 -1 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 2.6 Different fundamental regions and tilings of the plane by the hexagonal lattice A2. (a)

The fundamental parallelotope the hexagonal lattice for basis
n
.1; 0/; .1=2;

p
3=2/

o
and associated

plane tiling. (b) The Voronoi region of the hexagonal lattice and its associated plane tiling. (c) A
tiling of the plane though translations of another fundamental region of the hexagonal lattice
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Fig. 2.7 The lattice � with basis f.3; 0/; .1; 2/g: fundamental parallelotope, Voronoi region,
and packing and covering balls. (a) The fundamental parallelotope of the lattice � with basis
f.3; 0/; .1; 2/g and associated plane tiling. (b) The Voronoi region of the lattice � and its associated
plane tiling. (c) The Voronoi region and the packing and the covering circles of �
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The minimum norm (or minimum distance) of a lattice corresponds to the
minimum among all norms of non-zero vectors in �, i.e.,2:

� D min
0¤x2�

kxk : (2.10)

From the fact that a lattice is a discrete additive subgroup of Rn (Theorem 2.1), it
can be shown that any lattice has a non-vanishing vector of minimum norm � > 0.

Let Bn.r/ denote a Euclidean ball of radius r around the origin, i.e.:

Bn.r/ D fx 2 R
n W kxk � rg : (2.11)

It is easy to see that r D �=2 is the largest value for which the translates of the balls
Bn.�/ centered at x 2 � have disjoint interiors. We call

� D �=2 (2.12)

the packing radius of �. Notice also that the ball Bn.�/ is inside and touches the
boundaries of the Voronoi region of �. We define a lattice packing as the union of
translates of the ball Bn.�/ by points of �.

The ratio vol Bn.�/=V.�/ describes how much of the Voronoi region is occupied
by Bn.�/. Due to the lattice homogeneity, the percentage of the space R

n covered
by translates of Bn.�/ by lattice points is given by the same ratio.

Definition 2.6 The packing density of � is defined as

�.�/ D vol Bn.�/

V.�/
: (2.13)

Example 2.7 In Fig. 2.8 we illustrate the lattices of Example 2.1, their packing balls
and respective packing densities. The square and the hexagonal lattices both have
packing radius equal to 1=2 and packing densities � D 0:785 and � D 0:906,
respectively. The lattice with basis {(3,0), (1,2)} has packing radius equal to

p
5=2

and packing density � D 0:654.
Notice that vol Bn.�/ D �nvol Bn.1/. The volume of the Euclidean ball Bn.1/, of
radius 1, is known [26]:

vol Bn.1/ D
8
<

:

�n=2

.n=2/Š
if n is even, and

2n�.n�1/=2..n�1/=2/Š

nŠ
if n is even

(2.14)

When n D 2; 3 we recover the area of the unit circle (�) and the volume of the unit
sphere (4�=3), respectively.

2In several textbooks and papers, the minimum norm is defined as the square of this number.
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Fig. 2.8 Lattice packings. (a) The square lattice: �=1/2 and �.Z2/ D 0:7854. (b) The hexagonal
lattice: �=1/2 and �.A2/ D 0:9069. (c) The lattice � with basis f.3; 0/; .1; 2/g: � D p

5=2 and
�.�/ D 0:6545

Fig. 2.9 The packing density of the BCC and the FCC lattices. (a) A view of the BCC packing
density (� D p

3=2, � D 0.6802). (b) A view of the FCC packing density (� D p
2=2, � D

0:7405)

The packing densities of Z3 and of the lattices FCC and BCC are �=6 D 0:5236,
�=18 D 0:7405, and �

p
3=8 D 0:6802, respectively (see Figs. 2.9 and 2.10).

Definition 2.7 The center density of a lattice is defined as ı.�/ D �.�/=vol Bn.1/ D
�n=V.�/.
The center density provides a way of comparing lattices in the same dimension that
avoids the complicated formula (2.14).

Attached to a sphere packing is the concept of kissing number.

Definition 2.8 The kissing number of a lattice is the number of packing balls that
touch a fixed one, which corresponds to the number of lattice points having the
minimum non-vanishing norm.
For our three lattices in Figs. 2.5, 2.6, and 2.7, this number is 4, 6, and 2,
respectively.
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Fig. 2.10 The FCC lattice
(the best packing in R

3)
represented as the centers of
an orange pile
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Fig. 2.11 Covering densities of three different lattices. (a) The square lattice: covering radius
� D p

2=2 and covering density �.Z2/ D 1:5708. (b) The hexagonal lattice: covering radius
	 D p

3/3, covering density 
.A2/ D 1:2092. (c) The lattice with basis f.3; 0/; .1; 2/g: covering
radius 	 D p

10=2, covering density 
.�/ D 1:3088

A “dual” concept to sphere packing is the one of sphere covering which also
has several applications. In the covering problem, we ask for the thinnest possible
arrangement of spheres that cover all points of Rn. More formally:

Definition 2.9 The covering radius of a lattice is defined as the minimum 	 such
that the translates of the balls Bn.	/ by points of � cover Rn, i.e.:

[

x2�

.Bn.	/ C x/ D R
n:

If we consider the vertices of the Voronoi region of � (called holes), the covering
radius is the biggest distance from one of the holes to the origin. (A hole which
attains this distance is called a deep hole.) The n-dimensional covering ball Bn.	/

circumscribes the Voronoi region of a lattice, whereas the packing ball is inscribed
in it (see Figs. 2.11, 2.7 c).

Definition 2.10 The covering density is then defined as

�.�/ D vol Bn.	/

V.�/
: (2.15)
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For n � 2, the covering density is always greater than 1, while the packing density
is always smaller than 1. Figure 2.11 illustrates the covering density of our three
different lattices in R

2.

2.1.1 Equivalent Lattices

All lattice parameters discussed in this section remain unchanged under some
transformations. For example, if we scale all lattice vectors by the same constant
c, the lattice volume will be scaled by cn and the (packing and covering) radii by
c. Therefore, the packing and covering densities (as well as the kissing number)
do not change. The same happens if we rotate all lattice points. Therefore, it makes
sense to treat these lattices as equivalent. Equivalent lattices are obtained by rotating,
reflecting, or scaling the original one. A formal definition is stated next. We recall
that an n � n matrix Q is orthogonal if QTQ D QQT D In, where In is the n � n
identity matrix. Orthogonal matrices are associated with linear maps which preserve
angles and lengths, defining rotations or reflections in R

n.

Definition 2.11 Two lattices �1 and �2 contained in R
n are equivalent if there

exist an orthogonal matrix Q, a real number c, and generator matrices B1 and B2 for
�1 and �2, respectively, such that B1 D cQB2. In particular, �1 and �2 are called
congruent if jcj D 1.
We write �1 	 �2 for two equivalent lattices.

Remark 2.1 If we consider the Gram matrices G1 and G2 associated with the
specific generator matrices B1 and B2 in the last definition, we have G1 D c2G2.
Furthermore, it can be shown that two lattices which have Gram matrices related to
specific bases satisfying G1 D c2G2 must be congruent, and therefore this can be
taken as an alternative definition of equivalent lattices. Then congruent lattices must
have identical Gram matrices related to some specific generator matrices.

Remark 2.2 Given �1 and �2 with arbitrary generator matrices B1 and B2, �1 	
�2 if and only if there are matrices Q orthogonal and U unimodular such that B1 D
cQB2U. Accordingly, two arbitrary Gram matrices G1 and G2 for equivalent lattices
must satisfy G1 D c2UtG2U, with U unimodular.

Example 2.8 The lattice generated by

2

4
1 1

2

�p
3 C 1

�

�1 1
2

�p
3 � 1

�

3

5
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is equivalent to the hexagonal lattice, since

2

4
1 1

2

�p
3 C 1

�

�1 1
2

�p
3 � 1

�

3

5 D p
2

"
1p
2

1p
2

� 1p
2

1p
2

#

:

"
1 1

2

0
p

3
2

#

:

It is a clockwise rotation of 45ı and an expansion of factor
p

2 of the hexagonal
lattice.

Remark 2.3 The definition above can be extended to compare lattices which are
originally contained in different dimensions by identifying a lattice in R

n with its
natural inclusion in R

t, t > n, which adds .t � n/ zeros in the coordinates of its
vectors.

Example 2.9 View the hexagonal lattice of Example 2.1 as included in R
3, gen-

erated by
n
.1; 0; 0/; .1=2;

p
3=2; 0/

o
. We can show that it is equivalent to the

lattice A2 given in Example 2.3. In fact, for the generator matrix B1 associated
with this basis and another generator matrix B2 for the lattice A2 associated with
the basis f.1; �1; 0/; .0; �1; 1/g, we can see that the Gram matrices of the two
lattices related to these bases are multiples: BT

2 B2 D 2BT
1 B1, which implies their

equivalence (Remark 2.1). We can also write explicitly the equivalence of these
lattices as described in Remark 2.2 by starting from the generator matrix for

A2 as given in Example 2.3:

2

4
1 0

�1 1

0 �1

3

5 D p
2Q

2

6
4

1 1
2

0
p

3
2

0 0

3

7
5 U, where Q is the

3 � 3 orthogonal matrix having for its columns the vectors .1=
p

2; �1=
p

2; 0/,
.�1=

p
6; �1=

p
6;2=

p
6/, and .1=

p
3; 1=

p
3; 1=

p
3/, while U is the 2 � 2 uni-

modular matrix having for its columns the vectors .1; 0/ and .0; �1/. You may
use similar arguments in Exercise 2.7 to check another example of equivalent
lattices.

2.2 Sublattices

Given lattices �0 and � such that �0 � �, �0 is said to be a sublattice of �. A
subset of a lattice is a sublattice if and only if it is an additive subgroup (i.e., for any
x and y in �

0

, x C y and �y also are in �0).
Let � � R

n be a full rank lattice with generator matrix B, and let M be an n � n
integer matrix. If det .M/ ¤ 0, then BM is a generator matrix of a full rank sublattice
�

0

of �. Reciprocally any generator matrix A of a full rank sublattice �
0

of � can
be written as BM for some integer matrix M: � and �0 are said to form a nested
lattice pair, where � is the fine lattice and �0 is the coarse lattice.
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(a)
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Fig. 2.12 Sublattices of the hexagonal lattice. (a) The hexagonal lattice and its sublattice �1 with
generator matrix BM1. (b) The hexagonal lattice and its sublattice �2 with generator matrix BM2

Example 2.10 For the hexagonal lattice � with generator matrix

B D
"

1 1
2

0
p

3
2

#

;

we may consider

M1 D
�

2 0

0 2

�
and M2 D

�
4 �2

0 4

�

and the sublattices �1 and �2 generated by BM1 and BM2 (coarse lattice) illustrated
in Fig. 2.12.

Example 2.11 The lattices Dn described in Sect. 2.4 are sublattices of the integer
lattice Z

n.
Nested lattices have been used in several applications. In this book, they appear in
the construction of wiretap codes in Chap. 3, spherical codes in Chap. 5, and index
codes in Chap. 6.

Since a sublattice �0 � � is a subgroup, � can be partitioned into a set of
cosets of �0 which form a finite quotient group �

�0

(or �=�0). Each of these cosets
can be identified using a coset leader (or coset representative) in the fundamental
parallelotope of the lattice �. Each leader also can be chosen in the Voronoi region
of �, as it will be seen in Chap. 6. Let B be a generator matrix for � and B0 D BM
be one for �0. The number of elements of �

�0

is given by:

ˇ̌
ˇ
ˇ

�

�0

ˇ̌
ˇ
ˇ D V.�0/

V.�/
D jdet .M/j :
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Fig. 2.13 Quotients of the hexagonal lattices. (a) The quotient �
�1

represented by coset leaders

inside the Voronoi set of �1. (b) The quotient �
�2

represented by coset leaders inside a fundamental
polytope of �2

In Example 2.10 above, we have
ˇ̌

�
�0

ˇ̌ D 4 and
ˇ̌

�
�0

ˇ̌ D 16 (see Fig. 2.13).
Any integer squared n-dimensional matrix M can be decomposed into the so-

called Smith normal form: M D UDW where U and W are unimodular matrices and
D D fdi;jg is a diagonal matrix where dj;j 2 N, di;ijdiC1;iC1 [21, Sect. 2.4].

The Smith normal form can be used to extract special bases of a pair of nested
full rank lattices.

Theorem 2.3 Given a nested pair of full rank lattices �0 � �, there exist special
bases fw1; : : : ; wng of �0 and fv1; : : : ; vng of � such that wi = kivi, for i D 1; : : : ; n,
ki 2 N.

Proof Let B be a generator matrix of � and BM be a generator matrix of �0.
Consider the Smith decomposition, M D UDW where W; U are unimodular lattices.
According to Theorem 2.2, BMW�1 D .BU/D is also a generator matrix of �0, and
BU is a generator matrix of �, since U and W�1 are unimodular matrices. If we
take fw1; : : : ; wng and fv1; : : : ; vng as the columns of the matrices BMW�1 and BU,
respectively, we get wi D di;ivi. Take ki D di;i.

Example 2.12 In the nested lattice pair �2 � � of Example 2.10, we have the
following Smith decomposition for M:

M D UDW D
� �1 �1

2 1

� �
2 0

0 8

� �
2 1

�1 0

�
:

After calculating A D BMW�1 D .BU/D and BU, we get the basis fv1; v2g of the

hexagonal lattice, v1 D .0;
p

3/, v2 D .� 1
2
;

p
3

2
/ and the basis fw1; w2g, w1 D 2v1,

w2 D 8v1 for the lattice �2.
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For a nested pair �0 � � with generator matrices B and BM, the diagonal matrix
of the Smith normal form of M also classifies the abelian quotient group �

�0

, and this
will be used in Chap. 5 to describe spherical codes.

2.3 The Dual of a Lattice

The dual of a lattice plays an important role in understanding its structure.

Definition 2.12 The dual lattice of a lattice � is by definition

�� D fy 2 R
n j hx; yi 2 Z for all x 2 �g : (2.16)

Dual lattices are sometimes called polar or reciprocal and arise in areas as distinct as
crystallography, cryptography, and harmonic analysis. To understand geometrically
the notion of dual, let us start with a full rank lattice � � R

2 generated by the
vectors .b11; b21/; .b12; b22/. From the definition, the scalar product between any
vector of the dual and the original lattice must be an integer. In fact, it is enough to
ensure this for the basis vectors, since lattice points are obtained by integral linear
combinations. Given i 2 Z, the set of vectors

H.i/
1 D ˚

.x1; x2/ 2 R
2 j h.x1; x2/; .b11; b21/i D x1b11 C x2b21 D i

�
:

is a straight line in R
2. By changing i 2 Z, we obtain a set of parallel straight lines.

Now imposing the same condition for the second basis vector, we have the set of
parallel straight lines

H.j/
2 D ˚

.x1; x2/ 2 R
2 j h.x1; x2/; .b12; b22/i D x1b12 C x2b22 D j

�
;

j 2 Z. Each straight line H.i/
1 intersects H.j/

2 in precisely one point. The union of
all these points is �� (see Fig. 2.14). The same interpretation holds in R

n. For each
basis vector bk, we have a set of parallel hyperplanes H.j/

k , j 2 Z. The distance
between each pair of consecutive hyperplanes Hj

k and HjC1
k is 1= kbkk. Indeed, if

x belongs to Hj
k, then x C bk= kbkk2 belongs to HjC1

k . The distance between these
points is precisely the distance between the hyperplanes, namely, 1= kbkk.

Example 2.13 The lattice Z
n is equal to its dual.

Example 2.14 Consider the hexagonal lattice, generated by .1; 0/; .1=2;
p

3=2/. A
point in its dual has to satisfy

h.x1; x2/; .1; 0/i D x1 D l1 2 Z and

D
.x1; x2/;

�
1
2
;

p
3

2

�E
D x1

2
C

p
3x2

2
D l2 2 Z:
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(2,0)

(1,0)

(0,0)

}

1/2

Fig. 2.14 A lattice with basis fb1; b2g D f.2; 0/; .0; 1/g and its dual, which has basis
˚
b�

1 ; b�

2

� D
f.1=2; 0/; .0; 1/g

Solving the equations for .x1; x2/, we conclude that a point in the dual has the
form .x1; x2/ D .l1; .2l2 � l1/=

p
3/, l1; l2 2 Z. In other words, the dual is a two-

dimensional lattice generated by the vectors .1; �1=
p

3/; .0; 2=
p

3/. Notice that
this lattice is equivalent to the hexagonal itself. See Exercise 2.10.

In general, calculating the dual lattice from the definition, as in Example 2.14,
may not be worthwhile. In what follows, we summarize relations to get the
parameters of �� in a simple way (see [26, p.11] for (1)–(3) and Exercise 2.6 for
(4)).

1 If B is a generator matrix for �, then .BT/�1 is a generator matrix for ��.
2 In the same way, if G is a Gram matrix for �, G�1 is a Gram matrix for ��.
3 V.��/ D V.�/�1.
4 If �1 	 �2, then ��

1 	 ��
2 .

Definition 2.13 We say that � is integral if it has a Gram matrix with integer
entries. Note that this condition is equivalent to saying that the inner product
between any two lattice vectors is an integer or that � � ��.
In fact, for integer lattices we have � � �� � . 1

V.�/2 /�.

Definition 2.14 If � D ��, we say that � is unimodular, and this means that any
of its Gram matrices is unimodular.

2.4 Important Lattices and Their Duals

Important lattices are lattices which have exceptional structures and typically
are often encountered in the literature. This subsection provides a summarized
description with parameters of well-known lattices, some of which will appear
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Table 2.1 Relevant parameters for a lattice � in R
n with generator matrix B

Notation Name Reference

P.B/ Fundamental parallelotope (2.5)

V.�/ D p
det.BBT / Volume (2.6)

V .�/ Voronoi region (2.9)

Bn.1/ Ball of radius 1 around the origin (2.11)

� D minx2�;x¤0 jjxjj Minimum norm (distance) (2.10)

� D �=2 Packing radius (2.12)

�.�/ Packing density (2.13)

ı.�/ D �n=V.�/ Center density Def. 2.7

	 Covering radius Def. 2.9

�.�/ Covering density (2.15)

in Table 2.4, which contains “record” lattices. Many more details regarding these
lattices as well as other special types of lattices are found in [26, Chap. 4]. We
recall the lattice parameters and related concepts that we have introduced so far in
Table 2.1.

The Cubic Lattice Z
n

This lattice is unimodular, .Zn/� D Z
n It has minimum distance minx2Zn;x¤0

jjxjj D 1, packing radius � D 1=2, covering radius
p

n=2 (a typical deep hole is
.1=2; : : : ; 1=2/) and kissing number 2n. Its Voronoi region is a cube, its packing

density is vol Bn.1/

2n , and its covering density n
n
2

vol Bn.1/

2n .

The Lattice Dn

The checkerboard lattice Dn is defined in Example 2.4 as the full rank sublattice
of Zn where the sum of coordinates is even. As such, it has for basis fv1; : : : ; vng
with v1 D .�1; �1; 0; : : : ; 0/, v2 D .1; �1; 0; : : : ; 0/, v3 D .0; 1; �1; 0; : : : ; 0/, and
. . . ; vn D .0; 0; : : : ; 0; 1; �1/. Its minimum distance is

p
2, its volume is V.Dn/ D 2

(det .Dn/ D 4), its center density is ı.Dn/ D 2� n
2 �2, its kissing number is 2n.n � 1/,

its covering radius is 	 D 1, for n D 3, and 	 D p n
4
, for n � 4. As it can be seen

in Table 2.4, Dn has the greatest lattice packing density in R
n for n D 3 (FCC), 4

and 5. The dual D�
n has minimum distance

p
3

2
, for n D 3, and 1, for n � 4.

The Lattice An

This lattice, defined in Example 2.3, is a rank-n sublattice of ZnC1 lying in the
hyperplane H where the sum of the coordinates is zero (An � DnC1 � Z

nC1). It
has for basis fv1; : : : ; vng given by v1 D .�1; 1; 0; : : : ; 0/, v2 D .0; �1; 1; 0; : : : ; 0/,
v3 D .0; 0; �1; 1; 0; : : : ; 0/,. . . ; vn D .0; 0; : : : ; 0; �1; 1/. If we consider the .n C
1/ � n generator matrix B whose columns are these basis vectors, we can see that its
volume is V.An/ D .det.BTB//

1
2 D n C 1. It has minimum distance

p
2 (minimum

distance vectors are in fact given by permuting all the components of v1), center
packing density ı D 2

�n
2 .n C 1/

�1
2 , kissing number n.n C 1/, and covering radius

	 D
p

2
2

.
2a.nC1�a/

nC1
/

1
2 , where a D Œ.n C 1/=2� is the integer part of .n C 1/=2.
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As mentioned in Example 2.9, A2 is equivalent to the hexagonal lattice. Also A3

is equivalent the lattice D3 or the FCC lattice (see Exercise 2.7). Both A2 and A3

are the densest lattices in their dimensions. The dual lattice A�
n , considered in the

hyperplane H, has a very special Voronoi region given by the permutohedra with
vertices being all the permutations of 1

.nC1/
.�n; �n C 2; �n C 4; : : : ; n � 2; n/.

As seen in Table 2.4, the lattices A�
n have the smallest covering density known in

several dimensions including dimensions n D 3 (A�
n D D�

n DBCC), n D 4; 5, and
9 � n � 23. For n D 6;7, and 8, the covering densities of A�

n are 2.551, 3.060,
and 3.666, respectively, and these densities were known to be the smallest in their
dimensions until the results of [90] displayed in Table 2.4.

The Lattices E6; E7, and E8

Also called the Gosset lattice after T. Gosset who was one of the first to study its
geometry, the lattice E8 is defined as

E8 D
	

x D .x1; : : : ; x8/ 2 Z
8 W x 2 D8 or x C



1

2
; : : : ;

1

2

�
2 D8

�
: (2.17)

A generator matrix for E8 is given by

2

66
666666
66666
66
4

2 �1 0 0 0 0 0 1
2

0 1 �1 0 0 0 0 1
2

0 0 1 �1 0 0 0 1
2

0 0 0 1 �1 0 0 1
2

0 0 0 0 1 �1 0 1
2

0 0 0 0 0 1 �1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2

3

77
777777
77777
77
5

:

The lattice E8 has minimum distance
p

2 and packing center density 1
16

and is, up to
congruence, the unique lattice in R

8 with these minimum distance and density. It is
a unimodular lattice, E�

8 D E8. It is also known to be the unique (up to congruence)
unimodular lattice in dimension 8 with even squared minimum distance. (In fact,
up to dimension 8, the unique unimodular lattices, up to congruence, are Z

n and E8

[26, Chap. 4].) The lattice E8 has the greatest packing density in dimension 8 not
only among lattices but for any packing [26, 98]. It has also the smallest known
covering density in this dimension. Its name derives from its association with the E8

root system (see [26, Chap. 4]).
The lattices E7 and E6 are lattices of ranks 7 and 6 naturally defined in R

8 as

E7 D fx D .x1; : : : ; x8/ 2 E8 W x1 D x2g ; (2.18)

E6 D fx D .x1; : : : ; x8/ 2 E8 W x1 D x2 D x3g : (2.19)



24 2 Lattices and Applications

Table 2.2 A generator
matrix for the Barnes-Wall
lattice

�
1

p

2

�

2

6
66
6
66
66
66
66
6
66
66
66
66
66
6
66
66
66
6
4

4 2 2 2 2 2 2 2 2 2 2 1 0 0 0 1

0 2 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 2 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 2 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 2 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 2 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3

7
77
7
77
77
77
77
7
77
77
77
77
77
7
77
77
77
7
5

They can be considered as lattices in R
7 and R

8 and they are known to have the
best lattice packing density in their dimensions.

The Barnes-Wall Lattice �16

The so-called Barnes-Wall lattices BWn defined in dimensions n D 2k, k an
integer greater than two, were introduced in [8] and have been constructed since
then through several different methods, e.g., via the so-called Construction B from
Reed-Muller codes [26]. They have some special properties (see [77]). �16 D BW16

has the best known packing density in dimension 16. One of its generator matrices
is given in Table 2.2.

The Leech Lattice �24

The Leech lattice �24, introduced by J. Leech in 1964, is a very special full rank
lattice in R

24. It is unimodular, �24 D ��
24, has the greatest packing density in

dimension 24, even considering non-lattice packings, and has the smallest known
covering density in this dimension. Its kissing number is 196;560. There are many
different constructions for this lattice (see [26, Chap. 24]). A generator matrix of the
scaled version of the Leech lattice, 2

p
2�24, is given in Table 2.3.

2.4.1 Table of Record Lattices

In Table 2.4 below, the best known lattices (records) are found with respect
to packing density, kissing number, and covering density, but also quantization
(or more precisely, the normalized second moment (2.25)), to be approached in
Sect. 2.5.1 [26, 90].

The marked boxes (�) display the lattices which were proved to be the best
regarding the respective parameter among all the lattices in that dimension. The
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Table 2.3 A generator for the Leech lattice �24 scaled by 2
p

2
2

66
6
66
66
66
66
66
6
66
66
66
66
6
66
66
66
66
66
6
66
66
66
66
66
6
66
66
6
4

8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 0 0 0 �3

0 4 0 0 0 0 0 2 0 0 0 2 0 2 0 0 0 0 0 2 2 0 0 1

0 0 4 0 0 0 0 2 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 1

0 0 0 4 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 2 0 0 1

0 0 0 0 4 0 0 2 0 0 0 0 0 2 2 2 0 2 2 2 2 0 0 1

0 0 0 0 0 4 0 2 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 4 2 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 1

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 1

0 0 0 0 0 0 0 0 4 0 0 2 0 2 2 2 0 2 2 2 2 2 2 1

0 0 0 0 0 0 0 0 0 4 0 2 0 2 0 0 0 2 0 0 0 2 0 1

0 0 0 0 0 0 0 0 0 0 4 2 0 0 2 0 0 0 2 0 0 0 2 1

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 4 2 2 2 0 0 0 0 2 2 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 2 2 2 2 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3

77
7
77
77
77
77
77
7
77
77
77
77
7
77
77
77
77
77
7
77
77
77
77
77
7
77
77
7
5

lattices A2, A3 	 D3 	 FCC, E8, and �24 were proved to have the best packing
density in their dimensions among all packings (not only lattice packings).

It was long believed that A�
6 was the best 6-dimensional covering. Recently,

Schurmann and Vallentin [90] have found over 40 lattices with smaller covering
density than A�

6 along with the record covering in dimensions 7; 8. We denote the
best known lattice coverings presented in [90] in dimensions n D 6; 7; 8 by Q1

n.
Asymptotically, a theorem by Minkowski and Hlawka (cf [20]) guarantees that

there exist packings with density lower bounded by � � .n/=2n�1, where .n/ D
1 C 1=2n C 1=3n C : : : is the Riemman zeta function. Improving this lower bound is
still an active subject of research.

Remark 2.4 The classical notations for the lattices An; Dn, and En used here come
from the fact that those lattices are associated with root systems in the context of the
theory of Lie algebras which are known by the same symbols [1, 14]. These lattices
are then called root lattices. The symbol �n is used for a laminated lattice [26,
Chap. 6] in dimension n. This concept was introduced in [24] to describe a lattice
in dimension n constructed from layers of a suitable lattice in dimension n � 1 in
order to get the best possible density, starting from the one-dimensional lattice of
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Table 2.4 Best known (record) lattices with respect to packing density, kissing number, covering
density, and quantization

Dim Packing density Kissing number Covering density Quantization
1 Z Z Z Z

1.�/ 2.�/ 1.�/ 0:0833.�/

2 A2 A2 A2 A2

0:9069.�/ 6.�/ 1:2092.�/ 0:0802.�/

3 A3 � D3 A3 A�

3 � D�

3 A�

3 � D�

3

0:7450.�/ 12.�/ 1:4635.�/ 0:0785

4 D4 D4 A�

4 D4

0:6169.�/ 24.�/ 1:7655.�/ 0:0766

5 D5 D5 A�

5 D�

5

0:4653.�/ 40.�/ 2:1243.�/ 0:0756

6 E6 E6 Q1
6 E�

6

0:3730.�/ 72.�/ 2:4648� 0:0742

7 E7 E7 Q1
7 E�

7

0:2953.�/ 126.�/ 2:9000 0:0731

8 E8 E8 Q1
8 E8

0:2537.�/ 240.�/ 3:2013 0:0717

16 �16 �16 A�

16 �16

0:0147 4320 15:3109 0:0683

24 �24 �24 �24 �24

0:0019.�/ 196560.�/ 7:9035.�/ 0:0657

even integer points and keeping the same minimum norm. We have that �1 	 Z,
�2 	 A2; �k 	 Dk for 3 � k � 5 and �k 	 Ek for 6 � k � 8. We also have
that the Barnes-Wall lattice and the Leech lattice are the unique laminated lattices
in dimensions 16 and 24, respectively [26, Chap. 6].

2.5 Applications

2.5.1 Coding

Consider the transmission of a vector x belonging to a discrete set of points S � R
n

over an additive white Gaussian noise (AWGN) channel, meaning that the received
signal y is of the form

y D x C n (2.20)

where n is a random vector whose components are independent Gaussian random
variables with mean 0 and variance �2. The Gaussian channel coding problem
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consists of figuring out (decoding) x from y despite the presence of the noise n.
Now if the transmitter had an infinite power at its disposal, given �2, it would
be easy enough to solve this coding problem: just take the set S, and scale all its
vectors enough so that they are well apart, meaning that the distance between any
two vectors in S is much larger than 2�2. Then choose for the decoded point the
lattice point x which is closest to the received point y. However we do want the
transmitter not to waste too much power in transmitting x, which is modeled by a
power constraint that all the points of S lie within a sphere of radius

p
nP around

the origin (P thus defines a power constraint). Suppose now that S is a subset carved
from a lattice �. The receiver will make a correct decision to choose the closest
lattice point x from y as the decoded point exactly if the noise vector n falls in the
Voronoi region V�.x/ of x (see Fig. 2.15), an event of probability

1

.�
p

2�/n

Z

V .�/

e�jjxjj2=2�2

dx:

Fig. 2.15 Gaussian noise acting on a hexagonal lattice for � 2 f0:1; 0:15; 0:2; 0:25g. The blue
(red) points correspond to received signals lying inside (outside) the Voronoi cell of the sent point
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Thus if all points x are equally likely to be sent, the error probability Pe for S of
decoding a lattice point Ox ¤ x when x is sent is 1 minus the above probability. We
thus want to find, given � , the n-dimensional lattice of volume normalized to 1 for
which the error probability Pe is minimized. Unfortunately, the above expression is
hard to compute in a closed-form expression. It is thus usual to bound it using the
so-called union bound.

For the sake of reasoning, suppose that the lattice � contains the vector
.1; 0; 0 : : : ; 0/ and we want to decide whether n is closer to .1; 0; : : : ; 0/ than to
the origin; this is equivalent to checking whether the first component of n is greater
than 1=2, an event that has probability

1

�
p

2�

Z 1

1=2

e�x2=2�2

dx � 1

2
e�1=8�2

:

This reasoning generalizes to any lattice/lattice point. The probability that n is closer
to some lattice point of norm m is bounded by (see Exercise 2.9) .1=2/e�m2=8�2

.
Therefore, the probability of an error event is given by

P.n is closer to some x 2 � than the origin/ � 1

2

X

x2�nf0g
e�kxk2=8�2

: (2.21)

The dominant terms in the sum in the right-hand side of (2.21) are the ones
corresponding to vectors with small norms. Therefore, dropping all terms except
the ones of minimum norm, the upper bound can be approximated by

�e��2=2

2
; (2.22)

where we recall that � is the packing radius and � denotes the kissing number of
�. This expression is minimized if � is maximized (a “secondary” objective is that
� is minimized). Intuitively, we expect the number of points in S to be close to
the ratio between the volume of a sphere of radius

p
nP and the volume of �, i.e.,

vol Bn.1/.nP/n=V.�/. Recalling the formula for the density and the approximation
jSj 
 vol Bn.

p
nP/=V.�/, we can write expression (2.22) for the probability of

error as

�e��2=njSj�2=n

2
(2.23)

where � is the packing density. Therefore, for a fixed number of points, the objective
of minimizing the probability of error (or maximizing the probability of correct
decision) can be achieved by maximizing the packing density of the underlying
lattice.
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2.5.2 Quantization

Another important application where lattices play an important role is quantization.
Suppose we want to represent the set of real numbers R by using finite precision
arithmetics and a regular spaced grid. We can assume, up to scaling, that our
approximation is going to be performed using the set of integers Z. For each point
y 2 R, the closest integer is denoted by QZ.y/ D Œy�, and the squared error obtained
in this approximation is .QZ.y/ � y/2. Notice that for any point y 2 Œ�1=2; 1=2/

(or .�1=2; 1=2�, depending on the rounding rule), QZ.y/ D 0 and the quantization
error is y2. Since the integers are regularly spaced, we define the average squared
quantization error in the process by picking a point y 2 .�1=2; 1=2� uniformly at
random and taking the average

Z 1=2

�1=2

y2dx D 1

12
:

This process can be extended by using extra dimensions to reduce the quanti-
zation error. Given a point x 2 R

n and a lattice � � R
n, we define Q�.x/ as the

closest lattice point3 to y. Equivalently Q�.y/ D x if and only if y 2 V�.x/.
Observe that y � Q�.y/ is closer to the origin than any non-zero lattice point,

therefore y � Q�.y/ 2 V�.0/ for any y 2 R
n. Hence, subtracting the closest lattice

point from y wraps the real vector y into the Voronoi region V�.0/ at the origin.
This operation, called the modulo-� function, is denoted as

ymod� D y � Q�.y/:

The modulo-� operation satisfies the property

.y1 C y2/ mod� D .y1mod� C y2/ mod� for any y1; y2 2 R
n:

The modulo-� operation will be discussed more carefully and applied in Chap. 6.
Analogous to the one-dimensional case, we define, for a point x drawn uniformly at
random in the Voronoi cell of �, the average quantization error

E.�/ D 1

V.�/

Z

V .�/

kxk2 dx; (2.24)

3Strictly speaking, there might be more than one closest vector to y, which might cause ambiguities.
In order for Q�.y/ to be well defined, one has to break the ties, i.e., to decide which “faces” of the
Voronoi cell to use. In order to simplify notation, we will avoid such a technicality and consider
that ties are broken according to some well-defined systematic rule. Considering this rule we will
also, by abuse of notation, sometimes say “the” closest lattice point to y. Notice that the faces of
the Voronoi cell (i.e., the ambiguous points) have measure zero in R

n.
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where we use the subscript E� to indicate that the expectation is with respect to
a point uniformly distributed over the Voronoi region of �. Equation (2.24) gives
the average mean squared quantization error, but is not the best choice to compare
different lattices, since it does depend on the volume of �. For instance, for any
scaling factor ˛�, the quantization error is

E.˛�/ D ˛2E.�/:

To allow a fair comparison between lattices with distinct volumes, we define the
normalized second moment per dimension as

G .�/ D 1

nV.�/2=nC1

Z

V .�/

kxk2 dx: (2.25)

This quantity is independent of the volume and of the dimension (Exercise 2.13) but
is fairly hard to calculate in general, as it involves an integration over the Voronoi
cell of a lattice. Equation (2.25) was used to calculate the last column of Table 2.1.

Best Quantizers How small can the normalized second moment be? For a given
volume V.�/ D V , the integral in Eq. (2.25) is lower bounded by the integral over
an n-dimensional ball of volume V . This gives the bound G .�/ > 1=.2�e/ 	
0:059 (e.g., [23]). The best lattices in terms of quantization are therefore, roughly
speaking, the ones whose Voronoi cell resembles a ball.

Comparing with Table 2.1, it can be seen that, as the dimension increases, the
best normalized second moment decreases. In fact, the ratio between the second
moment of the one-dimensional lattice Z and the best possible quantizer is only4

1:42 and can be approached in very high dimensions. This ratio may be interpreted
as the gain of using a good high-dimensional lattice over the simple quantizer that
only rounds the coordinate of a vector in each dimension. Explicit constructions of
lattices exhibiting the full gain are very challenging and not yet known.

2.5.3 Computational Problems and Cryptography

The parameters introduced so far, such as the minimum norm, the packing radius,
or the center density, have a clean mathematical formulation, and lattices with
record parameters according to them have been listed in Table 2.4 for dimensions
up to 8, 16, and 24. Computing these parameters in higher dimensions becomes a
computational problem. How easy is it algorithmically to compute, say the density
of a given lattice? The answer is that it is usually hard. The main difficulty lies
in the fact that calculating the density depends on knowing the packing radius (or

4Or approximately 1:53, in decibels. This number is sometimes referred to as the ultimate shaping
gain of a lattice.
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equivalently, the minimum norm (2.10)) of a lattice which, in turn, depends on the
description of the given lattice �.

For a concrete example, let us consider the hexagonal lattice (Example 2.1).
Consider the basis

B D
�

1 1=2

0
p

3=2

�
:

Each vector in the lattice has the form Bu, u 2 Z
2, and has norm u2

1Cu1u2Cu2
2. Since

u1; u2 are integers, it follows that the minimum norm is 1, attained, for instance, by
choosing u1 D 1; u2 D 0. However, if we are given instead the generator matrix

B D
�

2401 96
p

32

57649=2 2305
p

3=2

�
;

it is far from easy to compute that the minimum non-zero squared norm for
5792449u2

1 C 139079089u2u1 C 834836569u2
2 is 1, attained by u1 D 2305 and

u2 D �192. In fact, if we knew the unimodular transformation that takes B into B,
we could easily recover the minimum from the first basis. This tells us that, in some
sense, it is easy to “hide” the minimum norm of a vector by transforming a “good"
basis into a “bad one." This high-level idea is the starting point for the constructions
of cryptographic primitives based on lattices (the case of public-key cryptography
will be explained in more details below). The following problem is known as SVP
(Shortest Vector Problem):

Problem 2.1 (SVP) Given a matrix B, find the minimum norm of the lattice �

generated by B.
A related problem is the following, known as CVP (Closest Vector Problem).

Problem 2.2 (CVP) Given a generator matrix B for a lattice � � R
n and a vector

y 2 R
n, find the closest lattice point to y.

This problem is relevant to coding theory, as it can be regarded as a “decoding
problem,” where y is a received signal for a message x 2 � transmitted over a
Gaussian channel, as in the previous section. CVP also depends critically on the
given basis B. Suppose we start with the lattice Z

2 and the matrix B associated with
the canonical basis. Given a point y D .y1; y2/, the closest point x D Bu to y is the
one that minimizes

ky � xk D .y1 � u1/2 C .y2 � u2/2;

obtained by rounding the coordinates of y1, i.e., u1 D Œy1� and u2 D Œy2�. One can
think of a generalization of this algorithm for any generator matrix B as follows.
First solve the system of equations y D Bu, and then round the solution, outputting
the point x D BŒu� (this is sometimes known as the Babai point, after the Hungarian
mathematician Laszlo Babai). Unfortunately, even for the lattice Z

2, depending on
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the basis, this procedure may fall short of any reasonable estimate, as discussed in
Exercise 2.12. In general finding the closest vector point to a given lattice basis is,
in computational complexity language, an NP-hard problem [72]. This problem is
closely related to the quantization problem in Sect. 2.5.1. In fact, in both cases we
want to find the closest vector to a given lattice point. However the main difference
lies in the fact that, from a complexity perspective, algorithms that solve CVP for
any generator matrix (or for a large enough class) are sought, whereas from a coding
theory perspective, we want to design a lattice with an easy CVP solver.

The two problems CVP and SVP, and their many variants, have been employed
for cryptographic purposes since 1996 [3]. We provide next a general idea of how
public-key cryptography can be performed using lattices. Suppose a user (usually
called Alice in the cryptography literature) has access to a “good” generator matrix
B for a high-dimensional lattice � � R

n. From B, Alice generates a “bad” basis H
and makes H publicly available while keeping B secret. Now anyone (say, Bob) with
access to H can send an encrypted message u 2 Z

n as follows. Bob generates a noise
vector n and sends the vector y D Hu C n to Alice. Noticing that x D Bu is a lattice
point, if n is “small” enough, Alice can recover x by finding the closest lattice point
to y. Roughly speaking, a “good” basis is one such that the (very efficient) rounding
procedure explained in the previous paragraph will work, whereas for “bad” basis it
is hard to guess the correct vector x (for instance, the rounding procedure will output
a vector far from x, as in Exercise 2.12). Therefore, an intruder that intercepts y and
has access to H is not expected to efficiently guess the sent message x.

Of course the above high-level description depends critically on how to choose
the noise vector, the “good” and the “bad” basis or, in other words, the private-key
B and the public-key H. For further information on this and on other applications of
lattices to cryptography, the reader is referred to [73]. We close this section with a
word on two relevant notions: special bases and bounds on the shortest vector.

Special Bases The rounding procedure described in this section is not sufficient to
solve the closest vector problem and, depending on the chosen basis, may produce
very crude estimates. To overcome this problem, we might want to preprocess the
basis given to us before trying to find the closest lattice point x to a given point
y 2 R

n. For example, the best possible basis for the integer lattice Z
n in terms

of complexity of finding the closest vector is the canonical basis. However not all
lattices possess such a neat basis. Intuitively, a good basis for a lattice � is as close
as possible from being “orthogonal,” with small norm vectors. This notion has been
quantified and formalized in several different ways. We present below the notion
of Minkowski-reduced basis, arguably the most intuitive way of defining a “good”
basis.

We say that a set of vectors fb1; : : : ; big � � is primitive if it can be extended to
a basis of �, i.e., if there exist fbiC1; : : : ; bng such that fb1; : : : ; bi; biC1; : : : ; bng is
a basis for �.

Definition 2.15 (Minkowski-Reduced Basis) A basis fb1; : : : ; bng for a lattice �

is said to be Minkowski-reduced if :
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(i) b1 is a shortest vector in � and

(ii) for any i D 1; : : : ; n � 1, biC1 is a shortest vector in � such that
fb1; : : : ; bi; biC1g is primitive.

Given a basis ˛ D fb1; : : : ; bng, the above conditions (i) and (ii) will imply
inequalities to be satisfied by its associated Gram matrix G D fbijg D ˝

bi; bj
˛

for
this basis to be Minkowski-reduced. Some of these inequalities are [26, Chap. 15,
10.1]:

(A) 0 < b11 � b22 � : : : � bnn

If v D bt � P
s2S �sbs (for some set S of subscripts s < t and �s D ˙1), the

inequality kbtk � kvk becomes

(B) 2

ˇ̌
ˇ̌
ˇ

X

s2S

�sbst �
X

r;s2S

�r�sbrs

ˇ̌
ˇ̌
ˇ

�
X

s2S

bss.

For the cases S D fig, S D fi; jg, and S D fi; j; kg, the above condition B can
be written as:

(B1) 2
ˇ̌
bij

ˇ̌ � bii, .i < j/;
(B2) 2

ˇ̌
bij ˙ bik ˙ bjk

ˇ̌ � bii C bjj, .i < j < k/; and
(B3) 2

ˇ̌
�1bir C �2bjr C �3bkr � �1�2bij � �1�3bik � �2�3bjk

ˇ̌ � bii C bjj C bkk, .i <

j < k < r/

For n D 2, n D 3, and n D 4, the simultaneous conditions A and B1; A,
B1, and B2; and A, B1, B2, and B3, respectively, are also sufficient to assure
that the basis is Minkowski-reduced [26]. These characterizations can be used
in Exercises 2.3 and 2.8. Note that condition B is related to the “more orthog-
onal” characteristic required for such bases. As it can be shown in Exercise 2.3,
f.1; 1; 0/; .1; 0; 1/; .0; 1; 1/g is a basis for the FCC lattice composed by vectors of
minimum norm, but it is not Minkowski-reduced since condition B2 is not verified.

Any lattice has a Minkowski-reduced basis, but unfortunately, for high dimen-
sions, there is no simple characterization, and producing such a basis is computa-
tionally hard. It entails, for instance, calculating the shortest vector and, therefore,
should be at least as hard as solving SVP [2]. One widely used relaxation in the
literature is the definition of LLL-reduced basis [73], which provides relatively small
vectors and can be computed with fast algorithms. For a thorough formal complexity
discussion on reduced bases and other computational aspects, the reader is referred
to [73].

Minkowski Theorem If we were to search the shortest lattice vector to solve
Problem 2.1 by looking at all points inside a ball, how large should the radius of this
ball be? The following fundamental bound due to Minkowski gives a first approach
to this question.

Theorem 2.4 The minimum norm � of a full rank lattice � � R
n satisfies

� � p
nV.�/1=n: (2.26)
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Before proving the theorem, we perform a quick sanity check. If � is scaled
by ˛ > 0, then its minimum norm is also scaled by ˛ > 0, while its volume is
scaled by ˛n. The term V.˛�/1=n D ˛V.�/1=n then guarantees that the bound scales
appropriately.

Proof From the expression for the density of � (2.13), we have

�.�/ D vol Bn.�/

V.�/
D



�

2

�n vol Bn.1/

V.�/
� 1 )

� � 2V.�/1=n=vol Bn.1/1=n:

To finish the proof, we have to bound the volume of a unit ball. Notice that a
maximal inscribed cube in the ball Bn.1/ has diagonal length 2 and side length
2=

p
n (Exercise 2.11). In particular, we have the inclusion Œ�1=

p
n; 1=

p
n�n �

Bn.1/, which implies the inequality

vol Bn.1/ � .2=
p

n/n:

ut
A slightly tighter upper bound can be obtained by noticing that

.vol Bn.1//1=n 	
r

2�e

n
(2.27)

in high dimensions (this follows from (2.14) and from Stirling’s approximation for
the factorial, e.g., [26]). The upper bound (2.26) can be far from tight, even for the
simplest example � D Z

n. However, the Minkowski-Hlawka lower bound briefly
mentioned in Sect. 2.4.1, combined with (2.27), implies that there exist lattices with
minimum norm at least 	 V.�/1=n

p
n=2�e.

Remark 2.5 The ratio �2=V.�/2=n is called the Hermite parameter of � (and is of
course, closely related to the packing density). The previous discussions show that
the Hermite parameter of the densest n-dimensional lattice should grow linearly
with n.

For the closest vector Problem 2.2, bounds of the same nature as that of
Theorem 2.26 for the SVP are far more complicated. From the definition of the
covering radius 	, the distance from any point to a closest lattice point should not
exceed 	. However, there is no simple way of bounding 	. A very useful (nontrivial)
bound is 	�� � n=2; here �� is the minimum norm of ��. A proof for this result is
out of the scope of the book and can be found in [6].
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Exercises

Exercise 2.1 Verify that the sets f.1; 1/; .�1; 1/g and ff.2; 0; 0/; .1; 1; 0/; .1; 0; 1/g
in Example 2.4 are bases for D2 and D3, according to the definition of Dn.

Exercise 2.2 Show that an m � m matrix is unimodular (has integer entries and
determinant 1 or �1) if and only if it has integer entries and is invertible and its
inverse matrix has also integer entries. (Hint: Recall determinant properties and the
expression for the inverse of a matrix in terms of its cofactors.)

Exercise 2.3 Show as a direct consequence of Theorem 1.2 that two full
rank square matrices A and B generate the same lattice if and only if
B�1A is a unimodular matrix and use this result to check if the sets ˛ D
f.�1; �1; 0/; .1; �1; 0/; .0; 1; �1/g and ˇ D f.1; 1; 0/; .1; 0; 1/; .0; 1; 1/g are bases
for the FCC lattice and if the set � D f.1; �1; 1/; .1; 1; �1/; .1; 1; 1/g is a basis for
the BCC lattice (see Example 2.4). Show also (checking the conditions A, B1, and
B2 just after Definition 2.15) that ˛ and � are Minkowski-reduced bases for these
lattices but ˇ is not.

Exercise 2.4

(a) Determine the Voronoi regions of the lattices in Examples 2.1, 2.2, and 2.5, and
check with Fig. 2.5.

(b) Design the Voronoi region of the BCC and FCC lattices (Examples 2.3 and 2.4).

Exercise 2.5 Consider a full rank lattice �. Prove that a fundamental parallelotope
P.B/ of � tiles Rn by verifying (i) and (ii) (Eq. (2.7)).

Exercise 2.6 Prove that if �1 	 �2, then ��
1 	 ��

2 .

Exercise 2.7 Show that the lattice A3 introduced in Example 2.3 is equivalent to
the lattice D3 from Example 2.4 (which is also the lattice FCC). You may use the
technique of Example 2.9.

Exercise 2.8 This exercise explores several lattice concepts in dimension 2. Con-
sider the lattice � in R

2 generated by f.1; 11/; .2; 18/g.

(a) Look for a “good” basis and find the minimum distance of the lattice. Is your
basis a Minkowski-reduced one?

(b) Describe a fundamental parallelotope of your choice, the Voronoi region and
another fundamental region.

(c) Find the packing and the covering radii, the kissing number, and the packing
and covering densities of �.

(d) Find a rectangular sublattice �
0

of � and the coset classes of �

�
0

.
(e) Determine the dual lattice, ��, and its relevant parameters.
(f) Illustrate the relation � � �� � . 1

V.�/2 /� (since � is an integer lattice). What

lattice do you think is “better,” in some sense, � or �
0

?
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Exercise 2.9 Prove that the probability that n is closer to a point of norm m than to
the origin is upper bounded by .1=2/e�m2=8�2

.
(Hint: First show that the inner product hn; xi has normal distribution with variance
kxk2 �2.)

Exercise 2.10 Show that the dual of the hexagonal lattice is equivalent to itself.
Identify the associated rotation and scaling factor.

Exercise 2.11 A rectangle R � R
n is a set of the form

R D fx 2 R
n W xi 2 Œai; bi�; i D 1; : : : ; ng D Œa1; b1� � : : : � Œan; bn�;

for integers ai < bi. The volume of a rectangle is .b1 � a1/ � .b2 � a2/ � .bn � an/.
Show that the rectangle with the smallest volume contained in Bn.1/ is a cube with
ai D �1=

p
n and bi D 1=

p
n (or any of its rotations).

Exercise 2.12 Let B be the matrix

�
4390 133

439033 13301

�

and y D .1:3; �1:9/.

(a) Using the matrix B and the rounding procedure described in Sect. 2.5.1, find an
estimate for the closest point to the lattice generated by �.

(b) Check that the lattice generated by B is equal to Z
2. Compare the solution to a)

with the actual closest lattice point.

Exercise 2.13 The cartesian product between two full rank lattices �1 � R
n1 and

�2 � R
n2 is defined as

�1��2 D f.x1; : : : ; xn1 ; y1; : : : ; yn2 / 2 R
n W .x1; : : : ; xn1 / 2 �1 and .y1; : : : ; yn2 / 2 �2g ;

where n D n1 Cn2. For instance, Z�Z D Z
2. Show that, for any lattice � � R

n:

a) The normalized second moment (2.25) of � � � equals G .�/

b) For any lattice �, G .˛�/ D G .�/.

Exercise 2.14 (*) Calculate G .A2/.
(Hint: Use the Voronoi cell computation of Exercise 2.4.)
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