
Towards Understanding the Role of Execution
Context for Observing Malicious Behavior

in Android Malware

Catherine Boileau1, François Gagnon2(B), Jérémie Poisson2, Simon Frenette2,
and Mohammed Mejri1

1 Université Laval, Québec, Canada
catherine.boileau.1@ulaval.ca, mohamed.mejri@ift.ulaval.ca

2 CybersecLab at Cégep de Sainte-Foy, Québec, Canada
cybersecurity@cegep-ste-foy.qc.ca

Abstract. Favorite target of mobile malware, Android operating system
can now rely on numerous tools, instrumentations and sandbox environ-
ments to fight back the malware threat. Sandboxing is a popular dynamic
approach to detect malware, where an application is submitted to a
plethora of tests in order to determine the presence of malicious behavior.
Such existing sandboxes usually performed analysis on a malware sample
once, given the tremendous amount of applications to analyze. In order
to further study what trigger malware behavior, we decided to submit a
malware sample multiple times to our sandbox, each time with slightly
different experiment parameters, such as level of user simulation, the
number of user actions performed, and the network configuration. Our
results show that a proper configuration of these parameters will yield
more information about the sample under study.

1 Introduction

Android was the most popular platform in 2015 for mobile devices and malware
designers alike, as 97% of malware were designed for Android, who holds 85% of
the market share in the mobile world. Besides its popularity, the burgeoning of
many third-party app stores is helping to distribute malware around the world,
as some of them may contain up to 8% of malicious applications [1].

In order to countenance this threat and protect the Android operating sys-
tem, tools and systems are developed to study and detect malicious behavior
in applications. In recent years, sandboxing, defined as the execution of mal-
ware in a closed and virtual environment [2], has been used to analyze Android
applications and monitor malicious behavior.

Most of the systems are focusing on detecting malicious applications, by
submitting an application to a sandbox. Once the experiment is completed, the
results are saved in a report and the application is not analyzed again, as analysis
is time-consuming and new applications hit markets at an ever faster rate.

Since the literature is currently bent on detecting malware by a one-time
submission to a sandbox, we explored a different approach, studying the same
c© Springer International Publishing AG 2017
M.S. Obaidat (Ed): ICETE 2016, CCIS 764, pp. 48–71, 2017.
https://doi.org/10.1007/978-3-319-67876-4_3



Towards Understanding the Role of Execution Context 49

malware repeatedly in slightly different environments. These variations would
allow us to determine the optimal environment to discover malicious behavior
and possibly help to detect more malware on their first submission to a sandbox.
For example, applications depending on specific events or parameters (e.g. time-
bombs or location-specific apps) to expose their malicious behavior could be
detected in repeated experiments where a parameter (e.g. the location, the time)
is changed to different values.

In our preliminary group of experiments, we started with 3 variations in
application usage: only installing the application, installing and starting the
application and finally, installing, starting and simulating the application [3]. In
this paper, we repeat our preliminary paper experiment, and add 3 new groups
of experiments where the variation is the number of actions performed in user
simulation, the rest period after simulation and the network configuration. Other
parameters are still on our to-do list, such as using a different Android version
of the emulator and different types of emulators.

Therefore, we will first present, in Sect. 2, related work about publicly avail-
able sandboxes performing dynamic analysis and then, a brief description will
follow of our sandbox environment and its possible configurations in Sect. 3.
Afterwards, a description of the experiment will be presented in Sect. 4 as well
as the scenarios used. Finally, results will be discussed in Sect. 5, together with
future work in Sect. 6, and concluding remarks in Sect. 7.

2 Related Work

Before the first Android malware was discovered in August 2010 [4], sandboxing
techniques were already useful to fight PC-based digital threats [5–7]. Malware
then started to spread to the mobile world, and static [8–11] and dynamic [12–14]
analysis tools were adapted to face the new challenge. Afterwards, hybrid systems
using both static and dynamic analysis [15,16] sprang to life and matured into
the following public sandboxes analyzing Android malwares.

First among them is ANDRUBIS [17], a system performing both static and
dynamic analysis on a large scale. Using similar tools as our sandbox, and keeping
tracks of numerous metrics, ANDRUBIS analyzes an app once, and if submitted
again, the report from the first run is presented to the user. Mobile-sandbox [18]
is another hybrid analysis system tracking native API calls. As their goal is to
detect malware via a new metric, they process their apps once.

CopperDroid [19] is also part of the dynamic analysis sandbox family and
their approach is closer to our own, as they compare applications behaviour with
and without user simulation. They are thus able to demonstrate the usefulness
of simulation during an experiment, whereas we pushed this logic to multiple
scenarios and are interested in putting results into perspective. Tracedroid [20]
is also a hybrid analysis service, based on method traces as an extension on the
virtual machine. As the other tools, they aim at processing a quantity of apps,
to then label and sort out malware. To our knowledge, Android sandboxing
is mostly used to detect malware from good applications and not to observe



50 C. Boileau et al.

behaviour in different contexts. Moreover, once a malware is processed, it is not
analyzed again.

As our approach implies multiple runs with variations in parameters, envi-
ronments and network configurations, we find that fuzzing is somehow related to
our work. Per definition, fuzzing is an automated technique that provides bound-
ary test cases and massive inputs of data in order to find vulnerabilities [21]. In
the Android world, the framework AndroidFuzzer was developed in the cloud to
that intent. Some tools focused on a particular area of testing, such as permis-
sions [21], activities or intents [22,23]. However, to the best of our knowledge,
fuzzing has not been extended to the analysis or detection of malwares.

3 Methodology

In order to observe variations in application behaviour, we use a client-server
sandbox [24,25] that executes an experiment in a particular context. An exper-
iment is defined as the execution of a scenario (a series of actions to configure,
install, test, and collect data on apps) applied to all samples of our dataset. The
server side of the sandbox is responsible for the management of the experiment
(i.e., managing the clients pool, the distribution to clients, etc.), whereas clients
manage runs (i.e., the execution of the selected scenario for one particular app of
the pool). The client-server architecture was selected for its scalability, for it is as
simple as adding a client to process more applications in the same time. A server-
controlled experiment also ensures that all runs in an experiment will execute
the same scenario with the same parameters (network configuration, android
version, etc.), since the configuration of the experiment is done on the server
and then forwarded to each available client. All machines, server and clients are
connected to the same dedicated subnet, policied by our fake server to provide
the same network context to all clients. Thus, the sandbox architecture lowers
the variability in an experiment to allow a sound comparison between runs of a
same experiments and between experiments on the same malware.

3.1 Client-Server Architecture

First, our sandbox server works as a controller over the whole experiment. To
begin with, all parameters are defined in the configuration file, to prepare the
environment (network configuration and android version) and the parameters
(scenario to use, dataset to analyze, etc.) needed for the experiment. Once con-
figured, the server will start and monitor the pool of clients. Each new client
will register itself to the server pool of clients, thus notifying the server of its
availability to perform a part of the experiment. As soon as the server detects
that a client is ready to execute a run, it will give that client the scenario to
execute and the application to analyze.

At that moment, the client starts its run by loading the scenario and the
application to install. The scenario is parsed by the client, to extract its parame-
ters and actions to perform (see following Sect. 3.2 for more details). Following



Towards Understanding the Role of Execution Context 51

that, the analysis phase starts with the sequence of actions to execute. Once
the client concludes the action phase, data collected (see following Sect. 3.4) by
multiple tools is bundled into a result file and the server is notified that results
are ready to be stored. Finally, the client changes its status back to available,
thus letting the server know it is ready to execute another run.

Thus, the server pushes runs to available clients until all the applications
in the dataset are processed, completing the experiment. Gathered data is then
stored into our results database, where it is available for post-processing and
analysis.

3.2 Experiment Scenario

The scenario, an XML document, contains two parts: the environment configura-
tion and the action sequence to execute. The environment configuration indicates
which Android virtual device (AVD) must be used, thus specifying the version
of Android to use, and what network services should be provided (e.g. DNS
and HTTP proxies). The action sequence is an ordered list of commands that
is launched by the client to successfully perform a credible simulation of the
application. Each scenario starts with the same set of instructions, to prepare
the environment for the experiment. For example, starting the AVD, waiting for
the boot sequence to complete and starting the monitoring of metrics are parts
of the initialization sequence.

Once this preparation phase is over, the second phase, the installation of the
app to test and user simulation, starts. When a scenario includes user simulation
steps, the Application Exerciser Monkey1 tool is used to perform the number of
actions contained in the simulation step. Its capacity to generate pseudo-random
and system-level events to navigate the application under scrutiny makes for a
basic simulation. The final user simulation action is a rest period, where no
simulation is done, but the application continues to run. Finally, once all actions
have been executed, the data collection phase is launched and a report with all
the metrics is sent back to the sandbox server.

Finally, in order to simulate a basic network connectivity, our sandbox, server
and clients, can run a DNS proxy (relaying DNS queries/responses to a real
server) as well as a gateway to redirect all outgoing network traffic generated by
the mobile applications to our own fake server, who can complete TCP hand-
shake, to let apps perform requests (i.e. HTTP GET requests).

3.3 Applications Datasets

We performed our preliminary experiments [3], which are presented in Sect. 4,
on a different dataset than the new experiments presented in this paper. The
first dataset, labelled D1, was composed of 5519 applications, both legitimate
and malicious, as shown in Table 1. Of these applications, 3519 were tagged as

1 http://developer.android.com/tools/help/monkey.html.

http://developer.android.com/tools/help/monkey.html


52 C. Boileau et al.

malware, coming from 2 different sources: the Malware Genome project2 pro-
vided 1260 apps while DroidAnalytics [11] provided the remaining 2259 malware.
The rest of the dataset comprehend 2000 legitimate applications, where the first
thousand were collected on the Google Play Store3 and the remaining were pulled
from the application store AppsAPK4. In all figures, application sources were
labelled as follows: GooglePlay, for the Google Play Store, and MalGenome, for
the Malware Genome Project, while AppsAPK and DroidAnalytics remained
the same.

Table 1. Composition of datasets D1 and D2.

Source Dataset1 (D1) Dataset2 (D2) Type

MalGenome 1260 100 Malware

DroidAnalytics 2259 100 Malware

Contagio 0 100 Malware

Source-2013 0 100 Malware

Source-2014 0 100 Malware

GooglePlay 1000 100 Legitimate

AppsAPK 1000 100 Legitimate

Total 5519 700 Both

Our second dataset (referred to as D2) was composed of 700 applications
(see Table 1), coming from 7 different sources. We randomly selected 100 appli-
cations from each source in D1, dividing applications into 200 malware and 200
legitimate applications. Furthermore, we added 3 other sources of malware, that
provided 100 applications each: Contagio5, and a private source with malware
from 2013 and 2014, which were named Source-2013 and Source-2014. These 3
new sources brought the number of malware to 500, creating a bias toward mal-
ware in Dataset2. In all figures, these 3 sources are labelled with their respective
names.

We created a second dataset following the first experiments, in order to
confirm trends from our first observations but also to increase the number of
experiments performed in the same amount of time. On a smaller number of
applications, more experiments were possible and, therefore, we were able to
study a wider range of parameters in our experiments.

3.4 Data Collection

This client-server sandbox relies on different tools to collect static and dynamic
information during the experiments. A processing of the Android manifest for
2 http://www.malgenomeproject.org/.
3 https://play.google.com/store.
4 http://www.appsapk.com/.
5 http://contagiodump.blogspot.ca/.

http://www.malgenomeproject.org/
https://play.google.com/store
http://www.appsapk.com/
http://contagiodump.blogspot.ca/


Towards Understanding the Role of Execution Context 53

permissions used, broadcast receivers and intents is performed. Of the dynamic
analysis tools used, Taintdroid [13] monitors the sensitive data leakages to pub-
lic channels. Equally, outgoing SMS and phone calls are recorded, through an
instrumented version of the Google Emulator. Finally, the rest of the network
traffic is recorded for post-experiment analysis of protocols and requests used.

4 Experiment

For this paper, we performed 13 experiments that are listed in Table 2. For
each experiment, we specify the context by showing the value of each of the
4 variable parameters, namely the application usage, the number of actions in
user simulation, the rest period after simulation and the network configuration
of the sandbox. We regroup experiments with the same variation in context in
five different groups, presented below.

Table 2. List of experiments.

Experiment
label

Dataset Application
usage

Number of
actions in user
simulation

Rest
period

Network context

E1 D1 Install 0 5 min Full network

E2 D1 Start 0 5 min Full network

E3 D1 Simulation 5000 5 min Full network

E4 D2 Install 0 5 min Full network

E5 D2 Start 0 5 min Full network

E6 D2 Simulation 5000 5 min Full network

E7 D2 Simulation 5 5 min Full network

E8 D2 Simulation 50 5 min Full network

E9 D2 Simulation 500 5 min Full network

E10 D2 Simulation 5000 1 min Full network

E11 D2 Simulation 5000 5 min No network

E12 D2 Simulation 5000 5 min DNS

E13 D2 Simulation 5000 5 min DNS + TCP

Representing a preliminary study [3], group G1 comprises experiments E1, E2
and E3, with application usage as a variation parameter, as shown on Table 3. In
this group, an application was only installed in experiment E1, was installed and
launched with no other interaction in experiment E2 and finally, was installed,
started and simulated with 5000 random actions. These experiments E1, E2 and
E3 are all configured with a 5-min rest period, a full network configuration and
performed with dataset D1.



54 C. Boileau et al.

Table 3. Context of G1.

Experiment
label

Application usage Number
of actions

Rest period Network context Dataset

E1 Install 0 5 min Full network D1

E2 Start 0

E3 Simulation 5000

In the beginning, experiments in G1 were selected to constitute a proof-
of-concept that variations of parameters would lead to a means of comparing
malware behaviour. Since most of the aforementioned dynamic analysis tools
are researching ways to expand their simulation engine, a difference in the level
of simulation appeared as a natural starting point for our first experiments.

In second place, as displayed on Table 4, a second group G2 with experiments
E4, E5 and E6 aims at confirming results from group G1. Therefore, group G2 is
identical to group G1 (where E1 ≡ E4, E2 ≡ E5 and E3 ≡ E6) for all variation
parameters but a different dataset, D2.

Table 4. Context of G2.

Experiment
label

Application usage Number
of actions

Rest period Network context Dataset

E4 Install 0 5 min Full network D2

E5 Start 0

E6 Simulation 5000

As a logical next step, group G3 variable parameter is the number of actions
performed in user simulation. As shown on Table 5, G3 regroups experiments E7,
E8, E9 and E6, where all perform user simulation, but with a number of actions
respectively set to 5, 50, 500 and 5000 actions. Again, for all experiments in G3,
there is a 5-min rest period after user simulation, a full network configuration
and samples are from dataset D2.

Table 5. Context of G3.

Experiment
label

Application usage Number
of actions

Rest period Network context Dataset

E7 Simulation 5 5 min Full network D2

E8 50

E9 500

E6 5000



Towards Understanding the Role of Execution Context 55

Next, as displayed in Table 6, group G4 is composed of E10 and E6, with the
length of the rest period as a variation parameter. Experiment E10 configuration
is a 1-min rest period, while E6 has a 5-min rest period. The rest of the context
is the same for both experiments, namely both perform user simulation with
5000 actions in a full network configuration on dataset D2.

Table 6. Context of G4.

Experiment
label

Application usage Number
of actions

Rest period Network context Dataset

E10 Simulation 5000 1 min Full network D2

E6 5 min

Finally, the last group, G5, tests applications in a different network context.
As shown on Table 7, G5 includes experiments E11, E12, E13 and E6, where
E11 has no network access, E12 evolves in a network where there is only a DNS
active6, E13 has not only a DNS server active, but also completes TCP hand-
shake connections7 and finally, where E13 has a full network configuration. The
rest of the variation parameters are equals for all experiments: user simulation
with 5000 actions is performed, a 5-min rest period occurs after simulation and
all applications are from dataset D2.

Table 7. Context of G5.

Experiment
label

Application usage Number
of actions

Rest period Network context Dataset

E11 Simulation 5000 5 min No network D2

E12 DNS Only

E13 DNS + TCP

E6 Full network

5 Results

Results from each experiment are compared using metrics presented in this
section. Failure rate of experiment in Sect. 5.1, SMS activity in Sect. 5.2, data

6 All IP traffic other than DNS queries is sinkholed to an IP not on the network.
7 All IP traffic other than DNS queries is sinkholed to an IP for which no ports are

open but fake TCP SynAck packets are sent back in response to any TPC Syn (thus
properly completing the 3-way handshake).



56 C. Boileau et al.

leaks in Sect. 5.3 and network traffic (DNS and HTTP requests) in Sect. 5.4, help
to give a picture of different application behaviour in different contexts.

All results that have a graphic figure associated display the metric calculated
on each source of the dataset used, except for the last column, labelled ‘Total’.
This column represents the metric on all samples as a whole, often qualified as
the overall metric.

5.1 Failure Rate

The first metric we use is the failure rate of an experiments, which is defined by
the number of runs that do not successfully complete a scenario. To qualify as
a success, all scenario steps of a run must be completed, otherwise, the run is
considered a failure (a step may not be completed, may stop or fail to execute
in the allotted time).

Fig. 1. Failure rate for group G1 (application usage on D1) [3].

Fig. 2. Failure rate for group G2 (application usage on D2).



Towards Understanding the Role of Execution Context 57

For group G1, overall failure rate is at 7.7% for experiment E1, while E2 is
at 11.8% and experiment E3 fails in 12.9% of the cases, as it is shown on Fig. 1.
The interesting point is that simulation do not raise the failure rate significantly,
as only a small percentage (1.1%) of applications are launched successfully, but
are not able to pass through the user simulation phase.

Within group G2, with which we sought to confirm our results, overall failure
rate for experiment E4 is at 20%, and is slightly higher, at 26% for both exper-
iments E5 and E6, as is shown on Fig. 2. Failure rates recorded for experiments
in group G2 confirm observations from experiments in G1, for all sources. User
simulation do not modify the failure rate when compared to starting the appli-
cation, as experiments E5 and E6 show a similar failure rate, while the number
recorded for experiment E4 is significantly lower.

As experiments in group G3, G4 and G5 all have the same usage applica-
tion (simulation), failure rates are almost identical to numbers presented for
experiment E6.

Therefore, in all experiments, simulation of user actions does not significantly
increase failure rate when compared to starting an app, but launching an appli-
cation does when compared to only installing it. Moreover, varying the other
parameters (number of action, rest period and network configuration) does not
affect failure rate.

5.2 Sending SMS

First, for experiments in group G1, we observe that only malicious applications
send unauthorized SMS, and that text activity increases with application usage,
as displayed on Fig. 3. Indeed, not even one application sent an SMS in exper-
iment E1. However, in experiment E2, the overall percentage of applications
sending SMS is at 0.74% and is up to 1.2% for some sources. Then, in experi-
ment E3, the overall percentage is 4.60% and for some sources, the percentage
is as high as 8.8% [3].

Fig. 3. Percentage of apps sending SMS for Group G1 (application usage on D1) [3].



58 C. Boileau et al.

Fig. 4. Percentage of apps sending SMS for Group G2 (application usage on D2).

With group G2, we again seek confirmation of what is observed in experi-
ments from group G1. As displayed on Fig. 4, only malicious applications send
unauthorized SMS. Also, when application usage is installation only, in exper-
iment E4, text activity is null. Only in experiment E5 can we see a beginning
of text activity, as 1.3% of all applications send SMS. With experiment E6, the
percentage climbs to 4.6% of all applications and reaches up to 11% of applica-
tions for some sources. Therefore, our preliminary observations for experiments
in group G1 are confirmed. Only malware send unauthorized SMS and text
activity is most often triggered by user simulation.

Following is group G3, to verify how the number of actions in user simula-
tion would influence the percentage of applications sending SMS. As is shown
on Fig. 5, the percentage of applications sending SMS with 5 actions (that is,
experiment E7) is no higher than 1.4%, but climbs at 2.9% in experiment E8
(with 50 actions) and 3.9% with 500 actions, in experiment E9. Although exper-
iment E6, with 5000 actions, has a percentage of 4.6%, if we look at percentages
per source, for all sources but Source-2014, the percentage are identical. Malware
from Source-2014 show a higher percentage of 9% in experiment E6 compared to
7% in experiment E9. Therefore, a high number of actions reveals text activity
better, and it seems that, in general, 500 actions is sufficient to detect most of
activity.

Based on the previous observations for text activity, when looking at experi-
ments in group G4, we see that a different rest period after simulation does not
have a significant incidence on the percentage of applications that send SMS.
Whether the rest period is set to 1 or 5 min, the percentage of applications send-
ing SMS is the same for each source, as demonstrated on Fig. 6. It is expected,
given that user simulation is such a factor to detect text activity, that a rest
period of any length of time do not raise the percentage of applications sending
SMS. As part of our future work, we intend to confirm this conclusion with new
experiments with longer rest periods.



Towards Understanding the Role of Execution Context 59

Fig. 5. Percentage of apps sending SMS for Group G3 (number of actions).

Fig. 6. Percentage of apps sending SMS for Group G4 (rest period).

Fig. 7. Percentage of apps sending SMS for Group G5 (network configuration).



60 C. Boileau et al.

Moreover, in experiments of group G5, the network configuration has no inci-
dence on text activity. Indeed, as shown on Fig. 7, the percentage of applications
sending SMS are identical in experiments E11, E12, E13 and E6, for all sources
except MalGenome and Source-2014, no matter what network configuration is
selected and varies only slightly for Malgenome and Source-2014. As for both
sources with variations, since the percentages for MalGenome are respectively
2%, 3%, 2% and 3% for experiments E11, E12, E13 and E6 and are respectively
10%, 10%, 9% and 11% for Source-2104, we conclude that the randomness of
actions, and not the network configuration, changed the percentages slightly.
The problem of randomness is discussed in Sect. 5.5.

Also, other information related to SMS has been recorded in experiments
of group G1, to extend the knowledge base on malware using SMS. When text
activity is detected, we estimate that 2.5 SMS are sent per application on average.
Convergence about SMS numbers and text content could also be observed, as
only 23 different numbers and 50 different texts were found in 254 text messages.
As shown in Table 8, SMS numbers and content show a recurring pattern. No
comparison has been done on these metrics so far, as few apps in our sample
turn out to be sending SMS. However, on a larger sample, this information may
further help to compare and sort SMS-sending applications. It may also prove
valuable when comparing metrics for families of malware.

Table 8. SMS numbers and texts sent by some malware [3].

Malware ID SMS Number SMS Text

1 10621900 YXX1, YXX4, YXX2

1 10626213 C * X1, C * X2

1 1066185829 921X1, 921X2, 921X4

2 3353 70 + 224761

2 3354 70 + 224761

3 6005 jafun 806 1656764

3 6006 jafun 806 1575475

3 6008 jafan 806 2237145

5.3 Data Leakages

When data leaks are measured in experiments of group G1, we find that start-
ing an application is necessary but sufficient to discover most applications, as is
shown on Fig. 8. Even if the percentage of applications leaking data is slightly
higher in experiment E3, it is not significantly so. Moreover, data leakages are
registered in malware as well as legitimate applications, in very different propor-
tions. Of all applications leaking data, 91% were malware while only 9% were
legitimate applications.



Towards Understanding the Role of Execution Context 61

Fig. 8. Percentage of apps leaking sensitive data for Group G1 (application usage on
D1) [3].

Fig. 9. Percentage of apps leaking sensitive data for Group G2 (application usage
on D2).

First looking at experiments in group G2 for confirmation, we are able to
confirm partially our observations. Indeed, as shown on Fig. 9, malware are far
more prone to leak data (89% of all leakages are registered on malicious applica-
tions). Experiments in group G2 also confirm that it is necessary to launch the
application to register leakages, but contrary to experiments in G1, comparison
between experiment E5 and E6 shows that user simulation helps to find more
data leaks. For all sources but two, percentages are higher by at least 4% in
experiment E6. For source GooglePlay, the percentage is also higher in E6, but
only by 2%. Contrary to what was observed for group G1, we conclude that,
although a large part of the data leakages are caught when starting the applica-
tion, user simulation is in order for a better result. We discuss the odd result in
E2 for Source-2013 (more leaks are observed without user simulation, E5 vs E6)
in Sect. 5.5.

With this new observation, it is interesting to look at experiments in group
G3, where the number of actions in user simulation is the variation parameter.
Number of actions starts at 5 actions in experiment E7 and increases to 50, 500
and 5000 actions in experiments E8, E9 and E6. As displayed on Fig. 10, the
higher percentages are reached in experiment E6, for all sources.



62 C. Boileau et al.

Also interesting are the numbers of experiments in group G4, where the
length of the rest period is changed. A longer rest period does not influence
the failure rate (Sect. 5.1) or text activity (Sect. 5.2), the first two metrics in
this article. However, for data leaks, this parameter does change the percentage
of applications leaking data. As shown on Fig. 11, percentages for all sources
are equals to or higher with a rest period of 5 min (experiment E6) instead of
1 min (experiment E10). The percentage of data leaks for legitimate application
is either equals to (for GooglePlay samples) or higher by 1% (for AppsApk
samples), but the difference is between 1% and 6% for malicious applications.
Therefore, a longer rest period after user simulation is susceptible to help discover
more leaky applications.

Fig. 10. Percentage of apps leaking sensitive data for Group G3 (number of actions).

Finally, data leakages is measured in experiments of group G5, to show the
effects of network configuration on this metric. In Fig. 12, leaks of sensitive infor-
mation are higher when a full network configuration is active (experiment E6),
for all sources of applications except one. For that source, Source-2013, the per-
centage is higher in experiment E13 (17% instead of 11% in E6), which will be
discussed in Sect. 5.5. For some other sources (GooglePlay, AppsAPK, Droid-
Analytics and Contagio), the percentage of leaky applications are only slightly
different (2% or less) between the experiment E13 and E6. However, for appli-
cations from MalGenome and Source-2014, there is respectively a 9% and 12%
difference between E13 and E6, that allows us to conclude that a full network
configuration is best to find data leaks.

5.4 Network Traffic

During an experiment, network traffic is closely monitored, to gather information
about malware servers, addresses they may contact, etc. For all experiments, we
analyze DNS and HTTP requests that are presented in the following sections.



Towards Understanding the Role of Execution Context 63

Fig. 11. Percentage of apps leaking sensitive data for Group G4 (rest period).

Fig. 12. Percentage of apps leaking sensitive data for Group G5 (network
configuration).

DNS Requests. The metric considered for DNS requests is the average number
of requests made by an app. We first look for confirmation of results observed in
experiments of group G1, in which an overall average of 0.002 request is made in
experiment E1, of 2.62 requests in E2 and of 4.86 requests in E3, as displayed on
Fig. 13. These results show that the average number of DNS requests is higher
in experiment E3, that is when user simulation is used. As is shown on Fig. 14,
results from experiments in group G2 show that the same conclusions can be
reached. In experiment E4, the average number of DNS requests is 0.01 request,
number that climbs to an average of 0.4 request in experiment E5 and reaches
a high mark of 1.3 request per application in experiment E6.

Also, we observe in experiments of group G1 that malware from all sources
have a higher average of DNS requests than legitimate applications. However, in
experiments of group G2, legitimate applications from both sources have a higher
average than applications from malware sources, except for Source-2014. Average
number of DNS requests for applications of Source-2014 are at 2.33 requests per
application, while applications from GooglePlay are at 2.06 requests per applica-
tion and apps from AppsAPK are at 1.38 request per application. Malware from
all other sources are showing an average below 1.2 DNS request per application,



64 C. Boileau et al.

Fig. 13. Average number of DNS requests per application, for Group G1 (application
usage on D1) [3].

Fig. 14. Average number of DNS requests per application, for Group G2 (application
usage on D2).

making their averages lower than the average of legitimate applications. Hence,
our previous observation is not confirmed by the new experiment.

Moreover, when looking at results from experiments in group G3, displayed
on Fig. 15, where the number of actions in user simulation is the variation para-
meter, the highest average is always obtained in experiment E9 or E6, respec-
tively configured with 500 and 5000 actions. Therefore, we can say that a high
number of actions is required to get a significant average for DNS requests, but
the number of actions, when sufficiently high, reaches a critical point where more
actions will not significantly increase the average number of DNS requests made
by an application.

Now, for experiments of group G4, where the rest period after user simulation
was changed, the longer rest period of 5 min in experiment E6 yielded the highest
average in general. As shown on Fig. 16, the overall average of DNS requests for
experiment E10 is 1.1 request while experiment E6 has an overall average of 1.3
request.



Towards Understanding the Role of Execution Context 65

Fig. 15. Average number of DNS requests per application, for Group G3 (number of
actions).

Fig. 16. Average number of DNS requests per application, for Group G4 (rest period).

Finally, in experiments of group G5, the variation parameter is the network
configuration. Unsurprisingly, experiment E11 has the lowest average number of
DNS requests, as shown on Fig. 17. Experiment E12 is comparable to experiment
E11, with slightly, but not significantly, higher averages for all sources. With
experiment E6, however, the highest average of DNS requests was reached for
all sources, by a large margin for some sources. Therefore, we can conclude that
a full network configuration is best to gather the maximum number of DNS
requests. Lower results from experiment E13 will be discussed in Sect. 5.5.

HTTP Requests. In this section, the metric is similar than for DNS requests,
namely the average number of HTTP requests per application. In experiments
of group G1, shown on Fig. 18, experience E3, with user simulation, shows an
average of 12.2 requests per application, while experiment E2 (starting the appli-
cation) displays an average of 6.11 requests. No HTTP requests are recorded in
experiment E1, where an application is installed only. As a confirmation of our
results, experiments in group G2 do not show any HTTP requests in experi-
ment E4 and the average number of HTTP requests for experiment E5 is 0.63



66 C. Boileau et al.

Fig. 17. Average number of DNS requests per application, for Group G5 (network
configuration).

request. The overall average climbs to 4.18 requests in experiment E6, confirm-
ing that a proper user simulation helps to record more HTTP requests. Results
are presented in Fig. 19.

In our preliminary paper, we mention that a high average may be symp-
tomatic of a malware, as a significantly higher average was recorded for a mal-
ware dataset. In experiment of group G2, the highest average recorded for a
dataset is 11.72 requests per application, while the second- and third-highest are
respectively standing at 8.23 and 5.48 requests per application. Since the highest
average number of HTTP requests per application is registered on the Google-
Play dataset, we can no longer conclude that a high average hints at malicious
applications.

Fig. 18. Average number of HTTP requests per application, for Group G1 (application
usage on D1) [3].

Furthermore, when looking at the number of actions in user simulation (group
G3) in Fig. 20, the average number of requests for experiment E7, E8 and E9
is respectively 2.3, 2.2 and 2.6 requests per application. Therefore, whether we



Towards Understanding the Role of Execution Context 67

Fig. 19. Average number of HTTP requests per application, for Group G2 (application
usage on D2).

perform 5, 50 or 500 actions, the variation does not have a significant effect on
the results. However, the average number of requests in experiment E6 reaches
4.18 requests per application, a significantly higher average than the other 3
experiments in group G3. So, not only is user simulation essential, but also a high
number of actions helps to trigger more HTTP requests. Also, in experiments
of group G4, displayed in Fig. 21, an overall average of 2.39 HTTP requests are
sent, per application, when using a rest period of 1 min. That average climbs
to 4.18 requests per application when using a rest period of 5 min, allowing us
to conclude that a longer rest period increases the average number of HTTP
requests per application.

Fig. 20. Average number of HTTP requests per application, for Group G3 (number of
actions).

Finally, when network configuration is changed in experiments of group G5
(shown on Fig. 22), no HTTP request is recorded with scenario in experiments
E11 and E12, as expected. When enabling TCP handshake completion, in exper-
iment E13, an average of 1.41 HTTP request per application is recorded, while



68 C. Boileau et al.

Fig. 21. Average number of HTTP requests per application, for Group G4 (rest
period).

Fig. 22. Average number of HTTP requests per application, for Group G5 (network
configuration).

the average is 4.18 requests in experiment E6. Unsurprisingly, the better network
configuration is, the higher the average number of HTTP requests is.

5.5 Odd Results

Through the result analysis, we observed some odd results. This section tries
to partially explain those oddities. Most odd results are probably explained by
the fact that we use a random sequence of action to stimulate the application
and there is a new sequence for every run. Thus, an action sequence may fail to
trigger the malicious behavior in a rich execution context while another action
sequence will have succeeded in more limited context (e.g., Fig. 6 indicates in
E13 vs E12 for MalGenome dataset that some apps sent SMS with only a DNS
on the network but they did not with a DNS+ a fake TCP server). Section 6 will
provide insight regarding how we plan to address these shortcomings.

Another explanation may apply to a subset of those odd results and is worth
considering. Figure 10 (E13 vs E6) indicates that for the source-2013 dataset,
some apps leaked information with a network config consisting of a DNS server



Towards Understanding the Role of Execution Context 69

and a Fake TCP handshake server (E13) but not with a full Internet access (E6).
This could be explained by the different random action sequences as above, but
the discrepancy is important (6% difference) so we consider a second explanation.
Let’s assume that the server the malware tries to contact on the Internet is
unavailable (e.g., C&C has been taken down), the malware would not leak the
information (connection cannot be established with destination). On the other
hand, with a fake internal server the communication can be established (fake
TCP handshake) and the malware could leak the information as the first packet
sent to the fake server (before noticing that the server is not responding past
the TCP handshake) and we would see it in our simulated network. Further
investigation is required, but, although running malware in a live network is
usually considered better for dynamic analysis, it might be a good idea for a
sandbox to integrate a fake server that take over whenever the online server
does not respond.

6 Future Work

Following the discussion in Sect. 5.5, we will work towards a repeatable sequences
of user actions and perform our current set of experiments with this change. We
will also look into testing a longer rest period, to confirm observations on text
activity in Sect. 5.2.

Moreover, as stated in our preliminary paper [3], we would like to introduce
new variation parameters, like the Android OS version and types of emulators.
It would also be interesting to look at other parameters, like location. Equally,
it is our intention to refine our current metrics and add others, to get a clearer
picture of analyzed applications.

Finally, increasing our application dataset with more samples is still in our
to-do list, as is the classification of malware per families.

7 Conclusion

In this paper, we compare experiments with different contexts, in order to study
the influence of such contexts on the behavior of applications from multiples
sources. To achieve this goal, we designed 13 experiments, separated in 5 differ-
ent groups, where each group was assigned a variation parameter and a dataset.
These parameters currently are application usage, number of actions in simula-
tion, rest period after simulation and network configuration.

Then, experiments were executed in a virtual sandbox with dynamic analysis
revolving around different metrics like failure rate, SMS activity, data leakages,
DNS and HTTP activity. With these metrics, we compare each experiment and
its variation parameters, to help increase our knowledge of application behavior.

In general, variation in application usage will influence all metrics, as shown
in Table 9. A different number of actions will influence SMS, DNS and HTTP
activity, but will have no incidence on failure rate and the percentage of applica-
tions leaking sensitive data. Finally, both network configuration and rest period



70 C. Boileau et al.

Table 9. Influence of variations on metrics.

Application
usage

Number of
actions

Network
configuration

Rest period

Failure rate ✔

SMS activity ✔ ✔

Data leaks ✔ ✔ ✔

DNS activity ✔ ✔ ✔ ✔

HTTP activity ✔ ✔ ✔ ✔

will modify DNS and HTTP activity, as well as the percentage of application
leaking data, but will not influence the failure rate or SMS activity.

Results also demonstrate that simulation with a high number of actions, a
full network configuration and a longer rest period will yield best results on
metrics they have incidence on, with leaks of sensitive data being an exception.
We intend to continue on this path, refining our current work to precise our
global comprehension of Android application behavior.

References

1. PulseSecure: 2015 Mobile Threat Report. Technical report, Pulse Secure Mobile
Threat Center (2015)

2. Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: Proceedings of
the 5th International Conference of Malicious and Unwanted Software, pp. 56–62
(2010)

3. Boileau, C., Gagnon, F., Poisson, J., Frenette, S., Mejri, M.: A comparative study
of android malware behavior in different contexts. In: Proceedings of the 13th
International Joint Conference on e-Business and Telecommunications, vol. 1, pp.
47–54. DCNET (2016)

4. Dunham, K., Hartman, S., Morales, J.A., Quintans, M., Strazzere, T.: Android
Malware and Analysis. Auerbach Publications, Boston (2014)

5. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. In: LEET (2009)

6. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: a tool for analyzing malware (2006)
7. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox. IEEE Secur. Priv. 5, 32–39 (2007)
8. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective

and explainable detection of android malware in your pocket. In: Proceedings of
the 2013 Network and Distributed System Security (NDSS) Symposium (2014)

9. Arzt, S., Rasthofer, S., Christian Fritz, E.B., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive
and lifecyle-aware taint analysis for android apps. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
259–269 (2014)



Towards Understanding the Role of Execution Context 71

10. Gonzalez, H., Stakhanova, N., Ghorbani, A.A.: DroidKin: lightweight detection of
android apps similarity. In: Tian, J., Jing, J., Srivatsa, M. (eds.) SecureComm
2014. LNICST, vol. 152, pp. 436–453. Springer, Cham (2015). doi:10.1007/
978-3-319-23829-6 30

11. Zheng, M., Sun, M.: DroidAnalytics: a signature based analytic system to collect,
extract, analyze and associate android malware. In: Proceedings of 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 163–171 (2013)

12. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: CrowDroid: behavior-based mal-
ware detection system for android. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, pp. 15–26 (2011)

13. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Trans. Comput. Syst. (TOCS) 32 (2014)

14. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis
of smartphone applications. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pp. 209–220 (2013)

15. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS (2012)

16. Eder, T., Rodler, M., Vymazal, D., Zeilinger, M.: Ananas-a framework for analyz-
ing android applications. In: 2013 Eighth International Conference on Availability,
Reliability and Security (ARES), pp. 711–719. IEEE (2013)

17. Neugschwandtner, M., Lindorder, M., Fratantonio, Y., van der Veen, V., Platzer,
C.: ANDRUBIS - 1,000,000 apps later: a view on current android malware behav-
iors. In: Proceedings of the 3rd International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security, pp. 161–190 (2014)

18. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into android applications. In: Proceedings of the
28th Symposium on Applied Computing, pp. 1808–1815 (2013)

19. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors. In: Proceedings
of 6th European Workshop on Systems Security (2013)

20. van der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of android malware.
Internet & Web Technology Master thesis, VU University Amsterdam (2013)

21. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 217–228. ACM (2012)

22. Sasnauskas, R., Regehr, J.: Intent fuzzer: crafting intents of death. In: Proceedings
of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and
Software and System Performance Testing, Debugging, and Analytics (PERTEA),
pp. 1–5. ACM (2014)

23. Ye, H., Cheng, S., Zhang, L., Jiang, F.: Droidfuzzer: fuzzing the android apps with
intent-filter tag. In: Proceedings of International Conference on Advances in Mobile
Computing & Multimedia, p. 68. ACM (2013)

24. Gagnon, F., Lafrance, F., Frenette, S., Hall, S.: AVP-an android virtual playground.
In: DCNET, pp. 13–20 (2014)

25. Gagnon, F., Poisson, J., Frenette, S., Lafrance, F., Hallé, S., Michaud, F.: Blue-
prints of an automated android test-bed. In: Obaidat, M.S., Holzinger, A., Filipe,
J. (eds.) ICETE 2014. CCIS, vol. 554, pp. 3–25. Springer, Cham (2015). doi:10.
1007/978-3-319-25915-4 1

http://dx.doi.org/10.1007/978-3-319-23829-6_30
http://dx.doi.org/10.1007/978-3-319-23829-6_30
http://dx.doi.org/10.1007/978-3-319-25915-4_1
http://dx.doi.org/10.1007/978-3-319-25915-4_1

	Towards Understanding the Role of Execution Context for Observing Malicious Behavior in Android Malware
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Client-Server Architecture
	3.2 Experiment Scenario
	3.3 Applications Datasets
	3.4 Data Collection

	4 Experiment
	5 Results
	5.1 Failure Rate
	5.2 Sending SMS
	5.3 Data Leakages
	5.4 Network Traffic
	5.5 Odd Results

	6 Future Work
	7 Conclusion
	References


