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Abstract. Metagenomics is the study of metagenomes which are mix-
tures of genetic material from several organisms. Metagenomic sequenc-
ing is increasingly used in human and animal health, food safety, and
environmental studies. In these high-dimensional (metagenomic) data,
the phenotype of the host organism, e.g., human, may not be obvious
to detect and then the ability to predict it becomes a powerful analytic
tool. For example, consider predicting the disease status of an individual
from their gut microbiome.

In this study, we compare various normalization methods for metage-
nomic count data and their impact on phenotype prediction. The meth-
ods include RoDEO, Robust Differential Expression Operator, originally
developed for gene expression studies. The best prediction accuracy is
observed for RoDEO-processed count data with linear kernel support
vector machines in most cases, for a variety of real datasets including
human, mouse, and environmental samples.

We also address the problem of identifying the most relevant micro-
bial features that could give insight into the structure and function of
the differential communities observed between phenotypes. Interestingly,
we obtain similar or better phenotype prediction accuracy with a small
subset of features as with the complete set of sequenced features.

Keywords: Metagenomics · Phenotype prediction · Differential
abundance · Feature selection

1 Scientific Background

Technological advances in high-throughput sequencing and annotation now allow
the characterization of genomes, transcriptomes, and most recently metagenomes
as part of everyday research in many fields. While single-gene, usually 16S ribo-
somal RNA (rRNA), sequencing can be used to infer bacterial community mem-
bers, whole-genome shotgun sequencing can reveal details of the activity and
function of the microbial community. Meta-transcriptomic sequencing can be
applied to further investigate the actively transcribed sequences. One of the
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major research challenges of the current decade is gaining insight into the struc-
ture, organization, and function of microbial communities which will be enabled
by both experimental and computational metagenomic analyses [1].

Since the sequencing methods yield relative rather than absolute gene or
species counts, a fundamental methodological question of appropriate normal-
ization and scaling of the counts arises. Approaches such as using the raw
counts, log-transformed counts, length-normalized counts, and other normal-
ization methods have been investigated [2–4]. We propose applying RoDEO pro-
jection as a pre-processing method for metagenomic counts.

RoDEO (Robust Differential Expression Operator, http://researcher.watson.
ibm.com/group/5513) [5] was originally designed for detecting differentially
expressed genes from single species RNA-sequencing data. The underlying non-
parametric model and ranking-based ordering of genes can be applied in the
context of various count data, including species counts from metagenomic sam-
ples. We apply RoDEO on metagenomic count data due to its robust design
that does not rely on any assumptions regarding the underlying count distribu-
tions, and its applicability even in the absence of replicate samples, a common
characteristic of metagenomic data.

In this paper we investigate the task of predicting the phenotype of the host
organism (or environment) starting from OTU (Operational Taxonomical Unit,
e.g., species or genus) counts. This question is relevant, for example, if we aim
to predict the disease state from gut or fecal microbiome samples of humans and
animals [7,8]. A recent related work on the topic includes a study of approaches
to metagenomics-based prediction tasks and potential strength of microbiome-
phenotype associations [9].

We investigate the effect of RoDEO projection on the prediction accu-
racy, and contrast it with existing normalization methods, namely Log-
transformation, DESeq2 [10], and CSS (Cumulative Sum Scaling) [2]. We com-
pare several kernel options for SVM (Support Vector Machine) prediction. SVMs
are well established fundamental machine learning methods that have been
applied in genomic, transcriptomic, and recently also in the microbial phenotype
prediction context [11]. We find that the linear kernel SVM yields the best accu-
racy values across all the datasets and normalization methods. We also consider
Random Forests (RF) [12] as they are state-of-the-art classification approaches
and are appropriate for this type of data [13].

Furthermore, we investigate the problem of identifying a subset of OTUs
that are important for differentiating the phenotypes. The process of selecting
a subset of features consists of reducing the size of an high-dimensional dataset
to retain only relevant, differentiating features [14]. We apply feature selection
by identifying the most differentially abundant OTUs between the phenotype
sample groups, and use them for predicting the host phenotype. The top dif-
ferentiating OTUs are selected using two differential gene expression methods
RoDEO DE and DESeq2.

We show that the prediction accuracy obtained selecting the top differential
20 OTUs is comparable, if not higher, to using the entire set of OTUs across all

http://researcher.watson.ibm.com/group/5513
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the datasets we consider in our experiments. Although RoDEO DE and DESeq2
yield different sets of top differentiating OTUs, the prediction accuracy values
obtained using the different OTUs subsets are very close. While the prediction
accuracy obtained using RF is often higher or comparable to the one obtained
using SVM with linear kernel, RF is more resource consuming especially for
a large number of features, i.e. when we use the entire set of OTUs for the
prediction.

2 Materials and Methods

In this section we describe the various normalization, differential abundance, and
phenotype prediction methods, as well as the datasets used in this study.

2.1 RoDEO Normalization

RoDEO sequence count data normalization, called projection, is not focused on
the relative counts of reads for each OTU, but on the relative order of the counts
within a sample. The count values of all OTUs in an experiment are utilized
in a re-sampling approach, to determine robust relative ranks of the genes in
several re-sampled instances of the sequencing experiments. A global parameter
P determines the number of possible output values of the projection, ensuring
that samples processed with the same P are comparable.

The projection process of RoDEO takes as input count data, such as the
number of reads mapping to a OTU, and performs repeated re-sampling of the
reads falling on the OTUs. In this way RoDEO projection process obtains a
distribution which represents several randomized draws of sequencing reads from
the input sample, according to the initial OTU abundances. In each re-sampling,
the reads falling onto each OTU are counted, the OTUs are ranked by decreasing
count, and the cumulative curve of the counts is optimally divided into segments
1, ..., P . The number of segments P defines the resolution at which DE genes are
discovered. We choose P for each dataset according to the number of (non-zero)
entries per sample. In the RoDEO publication [5] we use 15–20 segments for
human and plant data with tens of thousands of genes. Thus the dimensionality
of the sequence count data is reduced from thousands of distinct values onto a
small number of P possible values.

The projection and re-sampling makes RoDEO resilient in the presence of
noisy and sparse count data with a large value range, such as observed in metage-
nomic sequencing data, and on a previous application on plant gene expression
data [5].

2.2 DESeq2 Normalization

DESeq2 [10] is a well known method designed for differential analysis of count
data using shrinkage estimation for sequence count dispersions. In a recent work
which evaluates several methods for the identification of differentially abun-
dant genes between metagenomes [4], DESeq2 was found to be among the best
approaches for the task.



30 A.P. Carrieri et al.

2.3 Other Normalization Methods

The baseline for comparing RoDEO to other methods of processing the counts
is using the raw sequence counts per OTU. Log-transformation is a standard
pre-processing step for sequence count data applied in many studies, including
the respective studies for the datasets analysed in our paper [2,7,15]. Therefore
we take the log of the count data (after adding 1 to all the counts we use the
log function in R to compute the natural logarithm).

In addition, we evaluate prediction results on the CSS method as imple-
mented in QIIME. CSS [2] was introduced in conjunction of the mouse micro-
biome dataset that is included in our study. According to the authors, CSS
corrects the bias in the assessment of differential abundance. We include this
method in our evaluation since it appears better than DESeq (previous version
of DESeq2) for the class separation task studied on the mouse dataset.

2.4 RoDEO Differential Abundance

Differential Abundance of an OTU between two groups is computed as a DA
score (analogously to differential expression, DE, in the gene expression context).
This score takes into account the projected distributions for each sample in
the two groups. In this work we use the mean distance between the projected
distributions instead of mode used in the original paper. The final score for an
OTU is the mean distance between the phenotype group projected distributions
for this OTU multiplied by the max. norm distance (measuring overlap) between
the distributions.

In order to evaluate datasets at different scales, with different numbers of
non-zero OTU counts and total counts, we apply scaling [6]. The main idea is,
we use a different value for the number of projected values P , depending on
the count distributions in the samples. Details on this process on the studied
datasets are provided in the Appendix.

2.5 DESeq2 Differential Abundance

DESeq2 provides both a normalization function, and a DE score computation
function; we use the resulting DE values as the DA per OTU, obtained from the
QIIME [16] microbiome analysis pipeline (version 1.9.1).

2.6 Phenotype Prediction

Support Vector Machines (SVMs) are among the most powerful and versatile
binary classifiers used in a myriad of applications. We evaluate SVMs with lin-
ear, polynomial, radial and sigmoid kernels for phenotype prediction on three
different metagenomic datasets described in Sect. 2.7.

We conduct 10-fold Cross Validation (CV), repeating the process 100 times,
on the four different trained SVM kernels on RoDEO projected counts, log-
transformed counts, as well as the CSS and DESeq2 processed counts. We report
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the accuracy of each prediction as the percentage of correct phenotype calls for
the test set and we include the Matthews Correlation Coefficient (MCC). The
latter coefficient is a measure of the quality of binary classification that can be
used even when the two classes are of very different sizes. MCC can assume
values between +1 and −1, where +1 indicates a perfect prediction, 0 no better
than random and −1 represents total disagreement between predictions and
observations.

After performing 10-fold CV process 100 times, we compute the average of
the 100 accuracy and MCC values for each combination of kernel and dataset.
The average accuracy and MCC values are summarised in Table 1, while the
distribution of accuracy values and their average are visualized in Fig. 1.

Furthermore in Sect. 3.2, we apply, to the whole set of OTUs and to selected
subsets of OTUs, SVM with linear kernel together with another prediction
method, Random Forests, in order to compare their respective prediction accu-
racy, MCC and F1 score values.

The F1 measure is widely applied in information retrieval for measuring
document classification. F1 score has an intuitive meaning: it tells how precise
the classifier is (how many instances it classifies correctly), as well as how robust
it is (it does not miss a significant number of instances). In statistical analysis of
binary classification, the F1 score (which reaches its best value at 1 and worst
at 0) is a measure of test accuracy and can be interpreted as a weighted average
of the precision and recall.

The SVM and RF prediction is computed using the svm() and rf() R functions
(e1071 package). All phenotype prediction results and figures have been produced
using R (version 3.2.3).

2.7 Datasets

We investigate the accuracy of phenotype prediction starting from three differ-
ent available metagenomic datasets: human, mouse, and corpse decomposition
data. The human metagenome sequences originate from genome-wide shotgun
sequencing, while the mouse and corpse data result from targeted rRNA sequenc-
ing. We obtained directly the read counts per OTU in each sample. For more
details on the datasets please see the original publications.

Human dataset [7] consists of fecal metagenome of 70-year-old European
women with either Normal Glucose Tolerance (NGT) or Type 2 Diabetes (T2D).
Though T2D is caused by a complex combination of lifestyle and genetic factors,
an altered gut microbiome has been linked to metabolic diseases including obe-
sity, diabetes and cardiovascular disease. All microbiome samples were sequenced
with Illumina HiSeq2000, and aligned to 2,382 non-redundant reference genomes
(from the National Center for Biotechnology Information (NCBI) and Human
Microbiome Project (HMP databases) in order to determine the composition
of the gut microbiota. In our study we consider 43 NGT and 53 T2D samples
described by a total of 134 OTUs at the family level. The phenotypes for the
human dataset are healthy (NGT, 43 samples) and sick (T2D, 53 samples).
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Mouse microbiome data [2] consist of mice fecal samples. Mice were fed
with either Western (W) or Low-Fat, Plant Polysaccharide-rich (LF-PP) diet.
Fecal samples for each mouse went through Polymerase Chain Reaction PCR
amplification of the bacterial 16S rRNA gene V2 region. OTUs were classified
by RDP11 and annotated. We analyze the dataset composed of 139 samples
and 10,172 OTUs. The phenotypes for this dataset are W diet (54 samples) and
LF-PP diet (85 samples).

Corpse microbiome data [15] consist of time-series samples from donated
human bodies exposed to all natural elements. Two corpses were placed during
the spring for 82 days and two corpses were placed during the winter for 143 days.
Samples from multiple skin and soil locations were taken at different time points,
daily or every other day the first month and less frequently thereafter. 16S rRNA
gene (archaeal and bacterial community), 18S rRNA gene (microbial eukaryotic
community), and ITS region (fungal community) were sequenced with high-
throughput amplicon-based sequencing technology to characterize the full micro-
bial diversity associated with decomposition. Sequence reads were classified into
OTUs on the basis of sequence similarity using QIIME. We examine the read
counts of 213 samples, having sum of counts above 10, taken from the left knee
(skin and soil) at all the time points. There are a total of 17,803 OTUs observed
in these samples. We choose this particular body site as it is sampled for both
spring and winter conditions with sufficient detail, and there are many non-zero
OTUs shared between the two conditions. The phenotypes for the corpse dataset
are spring (79 samples) and winter (134 samples).

3 Results

In this section we summarize the phenotype prediction results on full datasets
and on selected top differentially abundant features.

3.1 Phenotype Prediction on Full Datasets

Figure 1 summarizes visually the average prediction accuracy for each dataset
and kernel, while Table 1 shows in more detail the differences in average pre-
diction accuracy and MCC across the methods and highlights the best results
per dataset. The results show that average accuracy and MCC consistently indi-
cate the same combination of normalization and kernel as best for a particular
dataset.

Human dataset has the lowest prediction accuracy and the lowest Matthews
correlation coefficient. On this data RoDEO is best for nearly every kernel, and
especially clearly improves the linear kernel prediction, yielding the best overall
accuracy of 67.38% and the best MCC of 0.34.

The mouse data prediction is nearly perfect for most kernels and normal-
ization methods. Only the Log data with sigmoid and radial kernels, as well as
DESeq2 and CSS with polynomial kernel have lower accuracy.
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On the corpse data, different kernels have quite different behavior. The worst
seems to be sigmoid kernel and again the best is the linear kernel, where CSS
slightly improves over RoDEO and yields 96.3% accuracy and 0.92 MCC, com-
pared to 96.0% accuracy and 0.91 MCC of RoDEO.

Human prediction accuracy is not as high as for the other datasets studied
here; in the original study they improve it by assembling novel entities from
the unmapped reads and using them as additional features for prediction. This
demonstrates there is still significant relevant content in the microbiomes that
have not been encountered and annotated before. Still, in the mouse and corpse
datasets using sequences mapped against existing databases yield highly accurate
separation of phenotypes.

Most importantly, the best prediction accuracy is observed for RoDEO
processed data in most cases and for the linear kernel. CSS is the second best
method, followed by DESeq2 and Log. Also note that RoDEO clearly improves
prediction accuracy on the clinically relevant human dataset, improving the
chances of correctly diagnosing Type 2 Diabetes based on the gut microbiome.

Table 1. Accuracy as the average percentage of correct phenotype predictions in the
cross validation results using linear, polynomial, radial, and sigmoid kernels. The val-
ues in the accuracy table correspond to the rightmost plots in Fig. 1. On the right,
Matthews correlation coefficient (MCC) values are reported for each dataset and
method. The best accuracy and MCC values are reported in black bold text.

Accuracy (%) MCC

Lin Pol Rad Sig Lin Pol Rad Sig

Human RoDEO 67.38 67.00 62.40 55.72 0.34 0.33 0.26 0.00

Log 56.38 55.25 63.08 56.70 0.12 0.10 0.24 0.03

DESeq2 56.00 57.60 63.00 55.71 0.12 0.15 0.24 0.0

CSS 58.40 60.31 55.70 55.71 0.17 0.20 0.06 0.0

Mouse RoDEO 100.0 99.97 100.0 98.55 0.999 0.998 0.999 0.968

Log 99.99 99.90 76.64 61.86 0.998 0.997 0.514 0.087

DESeq2 100.0 61.15 100.0 99.99 0.999 0.0 0.999 0.998

CSS 100.0 94.11 100.0 99.98 0.999 0.883 0.999 0.998

Corpse RoDEO 96.0 93.90 94.47 49.33 0.91 0.86 0.88 –0.01

Log 82.7 75.75 62.9 56.87 0.63 0.51 0.0 0.01

DESeq2 94.8 83.4 93.7 65.56 0.88 0.65 0.87 0.27

CSS 96.3 81.27 93.6 93.7 0.92 0.60 0.86 0.86

3.2 Phenotype Prediction on Selected Features

In order to establish a baseline on the de-duplicated datasets we use for feature
selection, as discussed in the Appendix, we first evaluate prediction accuracy
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Human

Mouse

Corpse

Fig. 1. Phenotype prediction accuracy in the 100 iterations of 10-fold Cross Validation
for each SVM kernel (linear, polynomial, radial, sigmoid), RoDEO processed data and
other normalization methods for human, mouse, and corpse data. For each dataset,
the distribution plot of average accuracy across 100 iterations is followed by the corre-
sponding overall average accuracy plot.
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using all the OTUs. We compute 10-Fold Cross Validation using SVM with lin-
ear kernel (as we show in Sect. 3.1 that the best prediction accuracy overall is
obtained with linear kernel) and Random Forest prediction methods. The aver-
age accuracy, MCC and F1 score values obtained for each dataset and each
normalization and prediction method are shown in Table 2 in the “All OTU”
columns. For the mouse dataset, similarly to the results shown in Table 1, accu-
racy is near perfect for all prediction methods, thus omitted from this evaluation.

Next we apply RoDEO and DeSeq2 differential expression methods to
RoDEO projected data and DeSeq2 normalized data, respectively, and rank
the OTUs according to their differential abundance (DA) scores for all three
datasets. We select the top X where X = 2, . . . , 50 most differential abundant
OTUs and perform 10-fold CV on these subsets of different sizes using SVM
linear and RF, to evaluate the prediction accuracy using the selected features
only. The results are shown in Fig. 2. The horizontal lines denote the accuracy
values reported in Table 2 for all OTUs. Using the most differentially abundant
OTUs allows us to achieve similar or even better accuracy, MCC and F1 score
compared to using the whole set of OTUs.

Based on the results in Fig. 2, we choose the value X = 20 as a representative
small number of OTUs that yields phenotype prediction accuracy comparable
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Fig. 2. RoDEO processed SVM and RF 10-fold CV results on varying numbers of top
OTUs. Horizontal lines (SVM dashed, RF solid) denote the accuracy values when using
all OTUs.

Table 2. Accuracy, MCC and F1 average values of 10 cross-fold validation results using
linear kernel SVM and Random Forest prediction methods and considering either the
top 20 DA OTUs or the complete set of OTUs. The best accuracy, MCC and F1 values
for each dataset is shown in bold text.

Accuracy (%) MCC F1

Subset 20 All OTU Subset 20 All OTU Subset 20 All OTU

RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM

Human RoDEO 70.11 66.22 67.88 57.55 0.42 0.32 0.33 0.05 0.71 0.69 0.71 0.60

DESeq2 65.66 58.88 61.00 59.66 0.32 0.19 0.22 0.15 0.68 0.58 0.65 0.61

Corpse RoDEO 93.93 94.39 88.2 92.44 0.86 0.88 0.75 0.84 0.89 0.92 0.83 0.89

DESeq2 93.42 89.67 86.47 93.85 0.86 0.79 0.71 0.86 0.90 0.85 0.79 0.89
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Fig. 3. Visualization of all OTUs (blue) and top 20 differentially abundant OTUs (red),
for RoDEO (left) and DESeq2 (right) processed data. Each dot represents the average
value of RoDEO projected or DESeq2 normalized samples having one phenotype (x)
versus the other phenotype (y). The scale in each plot corresponds to either RoDEO
projected values or DESeq2 normalized values. (Color figure online)

to all OTUs for all three datasets. In the following, we study in detail using the
top 20 differentially abundant OTUs for phenotype prediction.

Table 2 shows that linear kernel SVM and RF methods using the whole set
of OTUs or the top 20 OTUs give overall similar accuracy/MCC and F1 score
results over all the three datasets. Furthermore, the results show that accuracy,
MCC and F1 score are consistent as they indicate the same best combination of
normalization, DA and kernel methods for a particular dataset. For the human
dataset the best prediction result is given by RF method using RoDEO projected
data and its subset of 20 top DA OTUs. For the corpse dataset the best prediction
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Fig. 4. The histogram shows the distribution of average phenotype prediction accuracy
in 10-fold CV of 100 random subsets of 20 OTUs. Solid lines represent the average
accuracy of the random OTUs subsets, while dashed lines show the average accuracy
of 10-fold CV obtained using only the 20 top DA OTUs.

is obtained with linear kernel SVM on RoDEO projected data using the subset
of 20 top DA OTUs.

The two methods, RoDEO DE and DeSeq2, yield different sets of top OTUs
for all three datasets, but the prediction accuracy, MCC, and F1 scores on them
are still quite close. Although the exact OTU names are different, representatives
from the same family are selected by both methods, such as Lachnospiraceae for
mouse.

Figure 3 shows details about the 20 OTUs in each dataset and for both
RoDEO and DESeq2 methods. Overall the normalized datasets look quite sim-
ilar between methods, but there are some differences, also regarding the values
for the selected top OTUs. For example, DESeq2 appears to select many OTUs
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that have high counts in “western diet” compared to “low fat diet”, while a more
balanced selection is given by RoDEO.

Finally, we validate our method using SVM with linear kernel and RF for
RoDEO processed data and considering 100 random subsets of 20 OTUs for
each dataset. For each of these 100 random subsets we performed 100 times 10
CF validation and we show in Fig. 4 that using 20 random OTUs yield clearly
worse prediction than the one obtained using the top differentiating 20 OTUs
computed by RoDEO DE.

4 Conclusion

In this work we evaluate the applicability of the RoDEO projection method for
metagenomic sequencing data, applying it on the task of phenotype prediction.
We show that RoDEO processing increases the prediction accuracy over current
methods when using SVM with a linear kernel, which we find to be the most
accurate prediction method overall.

We include metagenomic data across human, mouse, and environmental
(corpse decomposition) samples in our evaluation. The human data includes only
a handful of OTUs with counts generated by whole-genome shotgun sequencing,
while mouse and corpse data include thousands of OTUs sampled by targeted
region sequencing. The results suggest that for various types and quantities of
metagenomic data, using RoDEO projection of the sequencing counts onto lower
dimensional values, together with linear kernel SVM yields the most accurate
phenotype prediction results in most cases.

Perhaps surprisingly, in all three real datasets, prediction accuracy using the
top few most differentially abundant OTUs is comparable to using all OTUs.
This may be explained by random noise in the underlying metagenomic sequenc-
ing results, due to the sparse nature of the data and individual variation between
the biological samples.

The actual top OTUs selected vary between the RoDEO and DESeq2 meth-
ods, but both provide accurate phenotype predictions using the respective OTUs.
This indicates potential for accurate disease diagnostics and other phenotype pre-
diction tasks by measuring a handful of most differential features only. RoDEO
projection and feature selection, combined with either RF or SVM prediction
yields consistently accurate phenotype prediction results.

Appendix: Experimental Details

RoDEO Projection Details on Full Datasets

For each of the 96 human samples with 134 OTUs, we run RoDEO for 100 inde-
pendent re-sampling simulations, with P = 7 number of segments, 106 number
of reads for the re-sampling and gap parameter equal to 1. For each of the sam-
ples we compute the average of projected values for each OTU (average of the
100 iterations), and combine all the obtained values in a single matrix.
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Similarly, we apply RoDEO to the 139 mouse samples and 10,172 OTUs for
100 independent re-sampling simulations, with P = 10 number of segments, 107

number of reads for the re-sampling and gap equal to 1, and we compute the
average of projected OTU values.

Finally, we run RoDEO for each of the 213 corpse samples with 17,803 OTUs
for 100 independent re-sampling simulations, with P = 10 number of segments,
107 number of reads for the re-sampling and gap between the samples equal to
2. In the same way as described before, we compute the average of projected
OTU values for each sample.

Feature Selection Details

We start the feature selection process deleting duplicated OTUs from each of
the three initial raw count datasets described in Sect. 2.7. Removing identical
OTUs allow us to deal with smaller datasets and apply Random Forests as
an alternative prediction method to SVM. More precisely, for the corpse data
we remove about 3000 OTUs passing from an original dataset of 213 samples
and 17804 OTUs to a new dataset with 213 samples and 14789 OTUs. For the
mouse data we pass from 139 samples described by 10172 OTUs to 139 samples
described by only 4411 features. Finally, in the human data we find only 4 OTUs
identical in the count and we obtain a new human dataset with 97 samples and
130 OTUs.

We proceed to run DESeq2 on this duplicate-removed data, including the
DESeq2 normalization and subsequent DE computation, in order to obtain a
ranked list of differentially abundant OTUs. For RoDEO, projection and scaling
is required before the DE computation, in order to make the samples directly
comparable across phenotypes. Below is a detailed description of the RoDEO
scaling process described in Sect. 2.1.

For the greatest human sample, i.e. the one with smallest number of zeros, we
run RoDEO for 100 independent re-sampling simulations, with Pg = 7 number
of segments, 106 number of reads for the re-sampling and gap parameter 1. The
number of segments we use to run RoDEO for all the other 96 human samples
varies and depends on the result obtained from the scaling process for a given
sample. All the other required parameters are instead equal to the ones used for
the greatest sample. We then compute the average of projected values for each
OTU (average of the 100 iterations), combine all the obtained values in a single
matrix and we add to each row i, representing sample i, the difference between
the number of segments Pg used to run RoDEO on the greatest sample g and
the number of segment Pi used to run RoDEO on sample i.

Similarly, we apply RoDEO projection and the scaling algorithm to the mouse
dataset running 100 independent re-sampling simulations, with P = 10 number
of segments, 107 number of reads for the re-sampling and gap 1, for the greatest
mouse sample.
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Finally, we run RoDEO on the greatest corpse sample for 100 independent
re-sampling simulations, with P = 10 number of segments, 107 number of reads
for the re-sampling and gap between the samples equal to 2. In the same way
as described before, we compute the averages of projected OTU values for each
sample and we add the difference values from the scaling.
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