
Process Algebra with Layers: Multi-scale
Integration Modelling Applied to Cancer

Therapy

Erin Scott1 , James Nicol2, Jonathan Coulter2 , Andrew Hoyle1 ,
and Carron Shankland1(B)

1 Computing Science and Mathematics,
University of Stirling, Stirling FK9 4LA, UK

ces@cs.stir.ac.uk
2 School of Pharmacy,

Queen’s University Belfast, Belfast BT7 1NN, UK

Abstract. We present a novel Process Algebra designed for multi-scale
integration modelling: Process Algebra with Layers (PAL). The unique
feature of PAL is the modularisation of scale into integrated layers:
Object and Population. An Object can represent a molecule, organelle,
cell, tissue, organ or any organism. Populations hold specific types of
Object, for example, life stages, cell phases and infectious states. The
syntax and semantics of this novel language are presented. A PAL model
of the multi-scale system of cell growth and damage from cancer treat-
ment is given. This model allows the analysis of different scales of the
system. The Object and Population levels give insight into the length
of a cell cycle and cell population growth respectively. The PAL model
results are compared to wet laboratory survival fractions of cells given
different doses of radiation treatment [1]. This comparison shows how
PAL can be used to aid in investigations of cancer treatment in systems
biology.
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1 Scientific Background

Multi-scale modelling in systems biology is now commonplace and indeed essen-
tial to many investigations [2,3]. Analysis of emergent properties arising from
the interactions between scales of multi-scale systems is important as an aid
in solutions to topical issues such as disease and climate change. Indeed the
issue of cancer cell growth and damage from treatments is a multi-scale sys-
tem as the damage affects the levels of intracellular proteins within a cell and
therefore affects the cell population levels [1,4]. There are a number of success-
ful multi-scale models such as Powathil et al. [4] cellular automaton model to
study the dynamics of chemotherapy drugs to cancer cell-cycle heterogeneity.
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Another example is the Met Office climate prediction model [5] which couples
the atmospheric and oceanic scales together in one model.

There is no universally adopted theoretical/computational framework or lan-
guage for the construction of multi-scale models. Most multi-scale models are
specific to the problem they are addressing and are defined by integrated scales
that are modelled in different mathematical and computational languages [2,3].
These hybrid models use a combination of modelling approaches such as Ordi-
nary Differential Equations (ODE) and Cellular automata (CA) to define specific
scales of the model. For example, the Powathil et al. [4] model is hybrid because
the intracellular proteins are defined in ODE and the cell populations are mod-
elled in cellular automaton. The Met Office climate prediction model [5] is hybrid
as it utilises different mathematical approaches to describe the different scales
and is specific to the problem of climate change forecasting. These hybrid mod-
els make the structure and the analysis of the model difficult as the scales are
defined in separate models. The modeller must create, or be knowledgeable in,
integration techniques to link the models together.

Process algebra offers an ideal opportunity in systems biology [6]. It gives
a high-level description of interactions, communications, and synchronizations
between a collection of independent agents or processes. Its application provides
many analysis techniques for systems’ behaviour and properties. For example,
time series simulations (to produce model predictions to compare with observed
data), Markovian analysis (deriving a Continuous Time Markov Chain (CTMC)
of all the possible states and evolutions of the model to be used for functional
verification), model checking (to validate the model against a high level prop-
erty specified in e.g. temporal logic), and model generation (creating models
from time series data). The multiscale P-system framework of Romero-Campero
et al. [7] is also attractive for its ability to describe extremely abstract hierar-
chical systems within one formalism; however, the range of possible analyses is
smaller.

There are only a few process algebra languages that are specifically designed
for multi-scale systems. These include Parametric Stochastic Process Algebra
with Hooks (psPAH) [8] and Performance Evaluation Process Algebra nets (PEPA
nets) [9]. These multi-scale languages focus on the integration of spatial scales,
assuming the same time scale. One important multi-scale modelling feature is
allowing the easy definition of the addition and deletion of objects within the lan-
guage to capture, for example, cell division and cell death. Neither psPAH nor
PEPA nets include this specific modelling feature. As a result, the modeller needs
to add many lines of code to add and delete objects, making the model difficult to
construct and read. In this paper we propose a novel language, Process Algebra
with Layers (PAL), which gives a convenient representation of multi-scale systems
by putting these features directly into the syntax and semantics.

The unique features of PAL are the integrated layers: Object and Popula-
tion. These novel layers allow PAL to include the easy definition of the addition
and deletion of Objects through Population actions. These layers modularise
the definitions of specific Object populations from the Object’s internal system
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definition giving a more elegant model. The layers are generally applicable to
a variety of multi-scale systems: see Sect. 2.1. We show how easily the layers of
PAL can be applied to a novel mammalian cell cycle and DNA damage case
study. The case study has two distinct layers. At one level, there is a population
of growing and dividing cells. How cells move between these states is controlled
by changes in cell mass and levels of selected proteins. The intracellular species
and interactions between them form the second layer. The novel PAL model
links together the established models of Zhang et al. [10] and Tyson et al. [11] to
investigate the effect of DNA damage from radiation on the progression of the
cell cycle. This has not been previously considered in the literature.

2 Materials and Methods

2.1 Process Algebra with Layers

PAL has two layers which are named Object and Population. Figure 1 shows a
conceptual schematic of these layers.

Fig. 1. Schematic of Object and Population Layers. The Object layer describes each
specific Object. Objects have an internal system description of internal species compo-
nents. The Population layer defines populations of Objects.

An Object is an individual system model at the lowest scale of interest.
Objects comprise a number of internal species components. A PAL model may
have multiple Object types, and multiple replications of these Objects. The
Objects’ internal species evolve dynamically over time via actions. Some actions
are internal to the Object, and some impact on the next scale up, the Population.
A Population is a collection of Objects. A PAL model must have at least one
Population. There may be interaction between Populations and between layers.
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Objects and Populations can stand for any scale the modeller chooses. In
Sect. 2.5, for example, PAL is illustrated by a mammalian cell case study. The
cells and their intracellular proteins (internal species) are the Objects. These
drive the cell cycle. Populations define cells in specific phases such as growing
and dividing. Mirrored actions connect Objects (e.g. when a protein reaches a
specific level) with Populations (e.g. resulting in a state change from growing
to dividing). Another example, from Chap. 5 of Scott [12], takes marine organ-
isms as Objects, with their physiology in energy budgets as internal species. The
organisms are held in Populations describing their life stage such as larvae, juve-
nile and adult. The organisms change life stage through mirrored actions (e.g.
when mass reaches a certain threshold, larvae evolve to juveniles) and also can be
removed from the system (e.g. fishing of the Population). Also at the organism
level, we could consider a model of disease hosts (Objects) and their immune
system and micro-parasite interaction (internal species). Populations of hosts
are defined as susceptible, infected and recovered. Hosts change infectious states
dependent on the number of parasites in their system (mirrored actions) and
more hosts can be added due to immigration (independent Population action).

2.2 The Syntax of PAL

The syntax of PAL is shown in Fig. 2. PAL uses the same syntax as Biochemical-
Performance Evaluation Process Algebra (Bio-PEPA) [13] to define the internal
species components.

The component O, called an Object component, describes an internal
system and the interactions among internal species components S. Species are
named using C = S to allow modular construction. The element x is a positive
integer-valued parameter. Constants allow names to be assigned to patterns
of behaviour associated with components. (α, κ) is the internal species prefix,
where α ∈ SpeciesActions is the action type, k is the stoichiometry coefficient
of the species in that reaction, and SpeciesActions is a modeller-defined set of
action names. The prefix combinators op are: << indicating a reactant, >> a
product, (+) an activator, (−) an inhibitor and (.) a generic modifier. O ��

L
O

denotes the cooperation between internal species over the cooperation set L. Set
L determines those activities on which the cooperands are forced to synchronise.

P{{O}}A :: = (α, 1) PALop P{{O}}A | P{{O}}A + P{{O}}A | D

Where PALop = ↓ | ↑ | ((+))

O :: = O ��
L

O | S(x)

S :: = (α, κ) op S | S + S | C

Where op = << | >> | (+) | (−) | ( . )

M :: = M ♦
Ls

M | P{{O}}A

Fig. 2. Syntax of PAL.
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The component P{{O}}A is called a Population component and repre-
sents a multi-set of Object components P{{O}}A = P{�O1, ..., On�}A. A multi-
set is an unordered collection of Objects with repetitions. Populations are named
using D = P{{O}}A to allow modular construction. (α,1) is the prefix, where α
∈ Actions is the action type and 1 is the stoichiometric coefficient of the Object in
that action. The design choice of a stoichiometry of 1 was chosen to simplify the
resulting states the action produces. There are three prefix combinators called
PALop which represent the role of the Objects in the action. These are: ↓ indi-
cates a deletion of an Object, ↑ an addition of an Object (an initialO element
will be added to a specific Population with a specific initial set up relevant to its
Population) and ((+)) an Object which is an activator (the Object is involved
in the action but does not change).

The choice operator P{{O}}A + P{{O}}A and S + S represents non-
deterministic choice between actions whether these be Population actions or
internal species actions. Once one branch is chosen the others are discarded,
thus choice represents competition between actions depending on their rate.

The top-level component M , called a model component, describes the system
and the interactions among Population components. The cooperation between
Populations over the multi-scale action cooperation set Ls is expressed by
M ♦

Ls

M . Set Ls determines those actions on which the cooperands must syn-

chronise. Each Population component must have a hidden action set A identi-
fying internal species actions which are hidden from the Population component.
Hidden actions should not be in the set Ls in a well defined PAL system.

2.3 The Semantics of PAL

A PAL system P is a septuple 〈Pcomp, Ocomp, Scomp, FR, K, N , M〉, where:

– Pcomp is the set of definitions of Population components;
– Ocomp is the set of definitions of Object components;
– Scomp is the set of definitions of internal species components;
– FR is the set of functional rate definitions;
– K is the set of parameter definitions;
– N is the set of quantities describing each internal species;
– M is the model component describing the system.

The definition of the Object components in Ocomp must be defined in terms
of the internal species components defined in Scomp and for each cooperation set
Li in O, Li ⊆ SpeciesActions (O). In a well-defined PAL system each element
has to satisfy the following conditions. Set N has to contain all the internal
species components. The functional rates are well defined if each variable in their
definition refers to the name of a species component in the set N or a constant
parameter in the set K. The definition of the internal species components in
Scomp must have sub-terms of the form (α, k)op S and the action types in each
single component must be distinct. The definition of the Population components
Pcomp must be defined in sub-terms of the form (α,1) PALop P{{O}}A and the
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prefixReac ((α, k) << S)(l)
(α, [S :<< (l, κ)])−−−−−−−−−−−→ S(l − k) k ≤ l ≤ N

prefixProd ((α, k) >> S)(l)
(α, [S :>> (l, κ)])−−−−−−−−−−−→ S(l + k) 0 ≤ l ≤ (N − k)

prefixMod ((α, k)op S)(l)
(α, [S : op(l, κ)])−−−−−−−−−−→ S(l) with op = (.), (+), (-) and

0 < l ≤ N if op = (+), 0 ≤ l ≤ N otherwise

where S is the name of the species component, op is the action type, l the level

κ the stoichiometry coefficient, and N the maximum level of S.

choice1
S1(l)

(α,w)−−−→ S′
1(l

′)

(S1 + S2)(l)
(α,w)−−−→ S′

1(l
′)

choice2
S2(l)

(α,w)−−−→ S′
2(l

′)

(S1 + S2)(l)
(α,w)−−−→ S′

2(l
′)

constant
S(l)

(α,S: [op(l, k)])−−−−−−−−−−→ S′(l′)

C(L)
(α,C: [op(l, k)])−−−−−−−−−−→ S′(l′)

with C = S

coop1
O1

(α,w)−−−→ O′
1

O1 ��
L

O2
(α,w)−−−→ O′

1
��
L

O2

with α /∈ L

coop2
O2

(α,w)−−−→ O′
2

O1 ��
L

O2
(α,w)−−−→ O1 ��

L
O′

2

with α /∈ L

coop3
O1

(α,w)−−−→ O′
1 O2

(α,w)−−−→ O′
2

O1 ��
L

O2
(α,w)−−−→ O′

1
��
L

O′
2

with α ∈ L

where w is a list recording the species that participate in the reaction and

L is the cooperation action set

Fig. 3. Rules for Bio-PEPA included in the semantics of PAL. These rules are presented
in Ciocchetta et al. [13] and are repeated here for convenience and completeness.

action types in each single component must be distinct. The model component
M must be defined in terms of the Population components defined in Pcomp
and for each cooperation set Lsi in M, Lsi ⊆ Actions (M).

The rules of PAL specify Population behaviour and its relation to Object
behaviour. The semantics of an Object are as in Bio-PEPA, and repeated here
in Fig. 3 for convenience. Figures 4 and 5 describe how Objects and Populations
influence each other and how Populations evolve, respectively. These rules col-
lectively allow a CTMC to be defined from a PAL model.

Some Object actions are hidden from the Population level as defined in the
Action Hidden Rule in Fig. 4. The modeller defines a set of hidden actions A
when describing a model in PAL. These could include actions such as synthesis
and degradation of intracellular proteins within a cell. Actions such as these do
not change the Population layer composition of the system, therefore do not
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Action Mirror/Hidden Rules

Internal Actions that are mirrored by Populations

Oi
(α,w)−−−→ O′

i

P{{O}}A
(α,w)−−−−−−−→ P{{O′}}A

where ∃ Oi ∈ O ∧ α /∈ A

where O′ = O ⊕ O′
i ∧ P{{O}} (α,w)−−−−−−−→ P{{O′}}

Internal Actions that are hidden from Populations

Oi
(α,w)−−−→ O′

i

P{{O}}A
τ−−−−−→ P{{O′}}A

where ∃ Oi ∈ O ∧ α ∈ A

where O′ = O ⊕ O′
i

where ⊕ overwrites Oi in O with new O′
i state, leaving the rest of O unchanged.

Fig. 4. Semantics of PAL: Action Mirror/Hidden Rules.

need to be mirrored by the Population. For example, transitions of cell proteins
indirectly affect mass but are hidden from the Population layer.

Object actions that are mirrored by the Population are defined by the Action
Mirror Rule in Fig. 4. For example, in the cell model, the changing mass of the cell
(an internal species) will trigger the transition of the cell from the growing state
to the dividing state. The changing internal action in this case has an impact
on the Population view of the system. These internal actions are mirrored by
Population actions which are defined by the Prefix Population Transition Rules
shown at the top of Fig. 5.

There are essentially three Prefix Population Transition Rules: adding, delet-
ing and activator. The deletion rule has two variants depending on whether the
deletion is initiated from the Object or the Population level. These rules are
asymmetric because when deleting an Object from a Population the rule needs
to identify the specific Object that is to be deleted. For example, the deletion
rule can be used for cell phase transitions and deaths of specific cells, therefore
the cell must be known to the rule so that the correct cell is deleted. In the case
of addition and the activator rule a specific Object does not need to be known.
For example, in the addition rule a new initialisation of an Object is added to a
Population. The Object in the activator rule does not need to be known by the
rule as the rule does not change the Object. In the case study here this would
be a dividing cell becoming two growing cells.

Lastly, potential interactions at the Population level are dealt with by the
Population Transition Rules (see lower section of Fig. 5). Populations can per-
form actions autonomously and this allows actions such as death from a Pop-
ulation action to be defined in a model. This feature is not used in the case
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Prefix Population Transition Rules

Adding an Object to a Population

((α, 1) ↑ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A

O′ = O ∪ initialO

Deleting a specific Object from a Population

((α, 1) ↓ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A ∧ α ∈ SpeciesActions(O)

∃i. Oi ∈ O ∧ Oi
(α, w)−−−−−−−−→ O′

i ∧ O = [[O1, ..., On]] ∧ |O| ≥ 1 ∧ O′ = O\ Oi

Activator does not increase or decrease a Population

((α, 1)((+))P{{O}}A)
(α, w)−−−−−−−−→ P{{O}}A where α /∈ A

O = O1, ..., On ∧ |O| ≥ 1

Deleting a random Object from a Population

((α, 1) ↓ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A ∧ α /∈ SpeciesActions(O)

∃i. Oi ∈ O ∧ O = [[O1, ..., On]] ∧ |O| ≥ 1 ∧ O′ = O\ Oi

where (α, w) comes from synchronising with another Population

or from the Object layer.

Population Transition Rules

Constant

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

D
(α, w)−−−−−−−−→ P{{O′}}A

where D = P{{O}}A

Asynchronous Left

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

P{{O}}A ♦
Ls

M
(α, w)−−−−−−−→ P{{O′}}A ♦

Ls

M
where α /∈ Ls

Asynchronous Right

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

M ♦
Ls

P{{O}}A
(α, w)−−−−−−−−→ M ♦

Ls

P{{O′}}A

where α /∈ Ls

Population Synchronisation

P1{{O1}}A
(α, w)−−−−−−−−→ P1{{O′

1}}A P2{{O2}}A
(α, w)−−−−−−−−→ P2{{O′

2}}A

P1{{O1}}A ♦
Ls

P2{{O2}}A
(α, w)−−−−−−−−→ P1{{O′

1}}A ♦
Ls

P2{{O′
2}}A

where α ∈ Ls

where Ls is the multi-scale synchronisation action set

Fig. 5. Semantics of PAL: Prefix Population Transition Rules and Population
Transition Rules.
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study, but could be added if, for example, chemical messengers from a dying
cell influenced death in another cell. Populations synchronise/communicate on
specific external actions as defined in the Population Transition Rules shown at
the base of Fig. 5. This allows the definition of cell phase transitions and cell
division as these actions involve two Populations changing in number. For more
detail on PAL see Chap. 4, pp.74–80 of Scott [12].

2.4 Case Study

PAL is applied to a mammalian cell cycle and DNA damage case study to illus-
trate its capabilities in systems biology. A cell cycle is the series of events that
take place in a cell leading to its division. The motivation of this case study is to
analyse the effects of damage from radiation treatments to the length of a cancer
cell cycle and cell survival. A PAL model has been created by linking together
an established cell cycle model from Tyson et al. [11] with a repair model with
an external force applying damage by Zhang et al. [10]. Other models such as
Powathil et al. [4,14] and Guerrero et al. [15] use the Tyson et al. [11] model
as a basis for cell cycle transitions and regulation. Zhang et al. [10] presents a
number of potential models for the transcription factor p53 activity observed
experimentally in response to DNA damage. p53 is at the centre of a number of
DNA damage responses which interact downstream with the regulation of the cell
cycle. The linking of the Zhang et al. [10] model with the Tyson et al. [11] model
allows the creation of a novel model investigating the effects of DNA damage
from radiation treatments on the species affecting progression of the cell cycle
and consequent effect on cell colonies. This has not been previously considered
in the literature. The novel PAL model allows multi-scale analysis, including
Object layer experimentation (average length of a single cell cycle, Sect. 3.1)
and Population layer experimentation (cell population growth, Sect. 3.2).

2.5 PAL Model

Although PAL makes describing the model simpler than other multi-scale tech-
niques, the model is too long to be shown here. See Chap. 6, pp.109–112 of
Scott [12]. The description and results of experimentation are given here. The
case study has two distinct layers: cell population and intracellular. The cell Pop-
ulation layer is described in the PAL model by defining two PAL Populations
based on the two steady states of a cell: Growing and Dividing. These Popu-
lations contain G cell and D cell Object components, illustrated in Fig. 6 by a
Growing cell becoming a Dividing cell, and that in turn becoming two Growing
cells.

In the intracellular layer, G and D cells contain internal species which are the
cell mass and proteins translated from Tyson et al. [11] and Zhang et al. [10].
These proteins include the Cdk-cyclin B complex (CycB), the APC-Cdh1 com-
plex (Cdh1), the active form of Cdc20 (Cdc20A), the total Cdc20 (Cdc20T) and
the intermediary enzyme (IEP). These are shown as the internal species in Fig. 6.
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The graphic shows how the proteins rise and fall in response to each other, creat-
ing the conditions of the cell cycle. Note the black label in the graphic indicating
Growing phase or Dividing phase.

Transitions between the two Populations are controlled by changes in cell
mass and threshold values of the CycB, indicated on the arrows in Fig. 6. To
make the cell cycle relevant to mammalian cells the parameter values of this
model are taken from Powathil et al. [4], therefore, time in the model is in
hours.

m

CycB
Cdh1

Cdc20A
Cdc20T
IEP

G D G

m

CycB
Cdh1

Cdc20A
Cdc20T
IEP

G

CycB > 0.1 CycB < 0.1

Fig. 6. Example of a single G cell evolving, through its internal species, to a D cell,
and then to two G cells.

To model how the cell cycle proteins are affected by DNA damage a ODE
model originally developed by Zhang et al. [10] is translated into internal species
and parameters of the PAL model. The model consists of DNA damage caused
by radiation treatment, the p53 and Mdm2 (nucleus and cytoplasmic) that pro-
mote the degradation of p53. p53 inhibits the activity of CycB preventing the
progression of the cell cycle. In the PAL model the Tyson et al. [11] and Zhang
et al. [10] models are innovatively linked together by changing the CycB degra-
dation rate to be influenced by changes in the p53 levels. Levels of p53 are at
equilibrium when there is no damage in the system. When there is damage it
causes p53 levels to pulse according to Zhang et al. [10]. Damage is a parameter
of the model and Zhang et al. [10] states the simple assumption is made that
damage is repaired at a constant rate.

Damage is not uniform: although the whole plate of cells has the same treat-
ment, radiation at lower levels will hit some cells but not others. To model this,
different damage levels are assigned to each cell in the colony depending on the
highest level of damage at the start of the simulation. For example, if the highest
damage in a simulation is five the cells are assigned damages in the range of zero
to five on a random distribution. Damage occurs immediately in all simulation
experiments and ranges from 0–12 (integer values). We assume damage greater
than four causes cell death through the Population actions. Cell cycle length is
impacted with damage of four or less by the increase of the CycB degradation
rate.
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The investigation of the effects of damage in the PAL model from the average
length of a cell cycle (Object layer) to population growth (Population layer) was
carried out. The damage in the model is abstract, therefore matching the real
notion of damage from radiation was achieved by the creation of a relationship
function between the abstract damage and Gy, damage/2 = Gy dose, chosen
here to fit with experimental results, see Sect. 3.3. This is why damage ranges
from 0–12, to fit with 0 to 6 Gy.

3 Results

A PAL model parser has been implemented and translates a PAL model into a
Bio-PEPA model to allow analysis of the model in the Bio-PEPA Eclipse plug-
in [13,16]. This is a complete development environment for Bio-PEPA mod-
els, with editing, simulation, experimentation, model checking, and export to
SBML [17]. The parser source code can be found in the following repository1.
A range of experiments were carried out, allowing analysis at the Object level
(cell components, Sect. 3.1) and Population level (groups of cells driven by their
internal mechanisms, Sect. 3.2).

3.1 Object Layer Experiments: Analysis of Average Length
of a Cell Cycle

Simulation distribution analysis was undertaken to analyse the average length of
the cell cycle and the impact of increasing the amount of damage. This analysis
takes place at the individual cell scale (Object layer). Simulation distributions
obtain the percentage of a user-defined number of stochastic simulations for
which some property is true at or before a given time t. The Bio-PEPA plug-in
plots the Cumulative Distribution Function (CDF) and Probability Distribution
Function (PDF) of any agents in the model, with respect to the target value.

Table 1. Average length of cell cycle and 95% confidence interval in hours of each
simulation distribution experiment.

Experiment Average cycle Confidence interval (95%)

Control 23.96 (23.51, 24.41)

Damage 1 24.18 (23.70, 24.66)

Damage 2 24.73 (24.16, 25.30)

Damage 3 24.74 (24.09, 25.39)

Damage 4 25.88 (25.19, 26.57)

Five experiments were carried out (damage 0–4, i.e. no cell death), see Table 1
for results. As this analysis is observing one cell cycle, the PAL model starts
1 PAL Parser source code: https://github.com/MissErinScott/PAL-Parser.

https://github.com/MissErinScott/PAL-Parser
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with one G cell with the specified level of damage. The chosen component in
this analysis is an agent which tracks a cell’s completion of one cell cycle. The
number of stochastic simulation replications is 200 and the stop time is 48 h.
The computation time for each experiment was approximately 3 h (MacOS X
Yosemite version 10.10.5, 2.2 GHz Intel core i7, 16 GB 1600 MHz DDR3).

All simulations completed a cell cycle before the stop time of 48 h. The results
show that damage from one to three does not significantly affect the cell cycle
average length. The intracellular proteins can cope with these damage levels.
The average cell cycle length increases when damage of four is applied.

3.2 Population Layer Experiments: Analysis of Cell Population
Growth

Discrete stochastic simulation time-series analysis was carried out to analyse
cell growth over a longer period and the effects of damage on a colony of cells.
This analysis takes place at the colony scale (Population layer). The initial
population was eight G cells (due to population limitations of Bio-PEPA plug-
in [13]). Different damage levels are assigned to each cell randomly depending
on the highest level of damage at the start of the simulation. Cells are simulated
from 0–64 h. Throughout the time period of the simulation, new cells will be
assigned different damage levels based on a constant repair rate. Experiments
were carried out with damage ranging from 0 (control) to 12. Results from
one replication are presented in Fig. 7 which shows the total population growth
of G and D cells at different damage levels. Each experiment is one stochastic
simulation which had a computation time of 3 to 20 min dependent on damage
and a further 15 min for manual processing. Four replications of these stochastic
simulations were carried out for damage values 0 to 6, 9 and 12.

Fig. 7. Single replication of total cell population growth at different damage levels.

The results show that population growth is not affected by damage from one
to four, as expected. These results reinforce the simulation distribution results
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which show the cell cycle is not affected by this lower damage range. The damage
in each experiment is repaired at a constant rate, therefore the population of
cells starts to recover, dependent on the damage assigned. Death occurred in the
experiments where damage is above four. This feature had the effect of reducing
the population substantially. The populations assigned the damage levels of nine
and twelve had a greater reduction as they had the greater proportion of cells
assigned a damage above four.

3.3 Comparison with Wet Laboratory Survival Fraction Results

The population results of the PAL model are compared to wet laboratory sur-
vival fraction results of cells given different Gy doses of radiation treatment [1].
This data is shown in Fig. 8 (red squares) and was generated using Clonogenic
survival assays following treatment with 0–6 Gray (Gy) 160 kVp x-rays as previ-
ously described by Butterworth et al. [18]. The survival fractions were calculated
as the plating efficiency of the treated group divided by the plating efficiency of the
untreated control cells, with error bars representing the standard deviation (SD)
(n = 7). The wet laboratory experiments had duration of twelve days and initial
populations of 200 to 600 cells. Previously, Butterworth et al. [18] showed that all
damage to cells would take place within 48 h (2 days); however, twelve days are
required for observable colonies to form. The advantage of computational mod-
elling is that the results can be observed at 48 h and assumptions made that if
cells have survived to 48 h then they will form colonies by 12 days. We add a mar-
gin of 16 h to be sure all damage is accounted for. The complexity of the model
(each cell has 21 internal species and 31 actions) mean that the evolution of an
initial population of 8 G cells can be computed in reasonable time (3–20 min for
each simulation, as in Sect. 3.2). In 64 h, these will grow to at most 35 G and
35 D cells; a potential total of 1470 species.

Fig. 8. Comparison results between PAL model (blue circles) and radiation treatment
(red squares) survival fractions. Error bars give ± SD and fitted line to model (dotted
line). (Color figure online)
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For each of the four replications, the end population value data point is taken
from each population experiment at different damage levels as in Fig. 7 and a sur-
vival fraction is calculated based on the control experiment. The mean survival
fraction of the four replications is shown in Fig. 8 with error bars representing
the standard deviation (n = 4).

The survival fraction results are compared with the damage levels based
on the simple relationship damage/2 = Gy dose, based on the approximate
alignment of 3 Gy with damage 6. Damage levels 0, 3, 6, 9 and 12 are compared
with radiation doses of 0, 1.5, 3, 4.5 and 6 respectively.

Based on these simple assumptions, the results show that the model gives a
closer fit to lower Gy doses (high cell survival) but an overestimation of death
at higher dose levels (low cell survival). Clearly, more needs to be done to refine
the model, but the point here is to illustrate the utility of PAL.

4 Conclusion

In this paper we have discussed the definition of Process Algebra with Lay-
ers (PAL), a multi-scale process algebra designed to model multi-scale systems.
PAL’s strength is that it allows the convenient representation of a multi-scale
system in one model, in contrast to the current hybrid frameworks. PAL removes
the need for the modeller to focus on the integration of the separate modelling
languages that define the separate scales in a hybrid model. The novel features
of PAL are the layers of the language: Object and Population. These layers allow
the user to elegantly describe the the components of each scale and the interac-
tions between scales in one PAL model. This can allow mechanistic models to
be developed showing how one layer affects another.

The addition and deletion of objects is a feature of many multi-scale systems.
For example, in this study cell division requires addition and cell death requires
deletion. The syntax and semantics of PAL allows this feature to be easily defined
by a single action integrating the scales. In comparison, existing multi-scale
Process Algebra languages psPAH [8] and PEPA nets [9] would need multiple
lines of code to define this feature, making their models difficult to construct
and read.

The Objects in PAL currently do not have the ability to interact explicitly
with one another, which may be a limitation. This would involve explicitly mod-
elling space. Objects would, for example, need location attributes to react to
their surrounding Objects. It would be necessary to ensure this addition would
not compromise the integrative nature of PAL. This spatial definition may over-
complicate the definition of a PAL model which may lead to the loss of some
multi-scale features PAL already encapsulates.

PAL has been applied successfully to a cell cycle and DNA damage multi-
scale system here. The PAL model links together the established models of Zhang
et al. [10] and Tyson et al. [11]. This allowed the creation of a novel model
investigating the effects of DNA damage from radiation on a cell colony by
linking mechanistically to the progression of the cell cycle as determined by
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cell proteins and mass. PAL easily captures the internal species and the colony
activity, thus supporting investigation across scales in one model. The Object
and Population results of the model showed that low radiation doses do not
significantly affect the cell cycle average length, nor do they significantly affect
colony growth of cancer cells.

The comparison of results to wet laboratory data shows how PAL can be
used to aid in investigations of cancer treatment in systems biology. For exam-
ple, the profile of Fig. 8 suggests the model can be further analysed by varying the
threshold for cell death, and by modifying the simple assumption of damage/2 =
Gy. The model could also be refined by including more varied notions of repair,
which would need targetted wet lab experiments to measure repair rates. Explo-
ration of hypotheses in the PAL model develop understanding of the system
and direct attention to the most sensitive areas for parameters or compounds.
This, in turn, allows researchers to develop a more focussed programme of future
biological experiments in DNA damage, cell cycle and population growth rates,
reducing the number of expensive and time-consuming biological wet laboratory
work. The strength of modelling approaches can be directly correlated with how
they can affect broader science questions in a multi-disciplinary approach.

Future work on this PAL model could include testing a variety of differ-
ent degradation rates for CycB affected by p53. The damage repair could be
more specific to the levels of p53 and Mdm2. Further work could be undertaken
to compare the PAL model results to other cancer treatments such as Temo-
zolomide (TMZ) and combination of these treatments (radiation + TMZ). This
comparison could be achieved easily as the damage is abstract in the model
therefore the focus can be made on the damage relationship function to the spe-
cific treatment. Future work on PAL itself will include a direct implementation
of a PAL tool (thereby avoiding the limitations of translation into Bio-PEPA),
exploration of other analysis techniques such as model checking, and translation
to/from common languages such as SBML (already available for Bio-PEPA).
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