Module Detection Based on Significant Shortest Paths for the Characterization of Gene Expression Data

Daniele Pepe^(⊠)

I-BioStat, Hasselt University, Campus Diepenbeek, Hasselt, Belgium daniele.pepe@uhasselt.be

Abstract. The characterization of diseases in terms of perturbed gene modules was recently introduced for the analysis of gene expression data. Some approaches were proposed in literature, but most of them are inductive approaches. This means that they try to infer key gene networks directly from data, ignoring the biological information available. Here a unique method for the detection of perturbed gene modules, based on the combination of data and hypothesis-driven approaches, is described. It relies upon biological metabolic pathways and significant shortest paths evaluated by structural equation modeling (SEM). The procedure was tested on a microarray experiment concerning tuberculosis (TB) disease. The validation of the final disease module was principally done by the Wang similarity semantic index and the Disease Ontology enrichment analysis. Finally, a topological analysis of the module via centrality measures and the identification of the cut vertices allowed to unveil important nodes in the disease module network. The results obtained were promising, as shown by the detection of key genes for the characterization of the studied disease.

Keywords: Disease module \cdot Structural equation modeling \cdot Gene expression $data \cdot$ Significant shortest paths

1 Introduction

The reductionist approach in medicine, based on the principle of "divide and conquer", although useful, present limits when it is necessary to explain the onset and progression of complex diseases. In fact, the approach is rooted in the assumption that if a complex problem is divided into more understandable and smaller units, then by their reconstruction, it is possible to unveil the studied complex problem.

For this reason, there are lists of genes associated with diseases. OMIM, a free database [\[1](#page-9-0)], for example, offers a catalogue of genes with the relative description of their role in the associated phenotypes. Conversely to this point of view, in the 1972, Anderson, in the article "More is complex" [\[2](#page-9-0)] affirms that the behaviour of large and complex aggregate of elementary particles cannot be understood in terms of a simple extrapolation of the properties of a few particle. At each level of complexity entirely new properties appear. For this reason, we are assisting to the passage from the reductionist approach to the systemic approach [\[3](#page-9-0)]. Most of biological networks are subjected to specific laws [\[4](#page-9-0)], as the small world phenomena, which affirms that there are relatively short paths between any pair of nodes, the scale-free principle, with the consequence that there are few highly connected nodes; the local hypothesis i.e. the presence of modules, highly interlinked local regions in the network in which the components are involved in same biological processes.

The last property, modularity, is a general design principle in biological systems and has been observed also in transcriptional regulation networks [\[5](#page-9-0)]. In biology, modularity refers to a group of physically or functionally linked molecules (nodes) that work together to achieve a (relatively) distinct function.

Applying module level analysis should help to study biological systems at different levels and to understand which properties characterize the level of complexity considered. Many approaches exist that use a gene-module view as the basic building blocks of the analysis $[6]$ $[6]$. In general, it is used to divide the module identification in three main approaches: (1) network-based approach; (2) expression-based approach; (3) pathway-based approach [\[7](#page-9-0)]. The first approach is based on the topology of network, and modules are defined as subsets of vertices with high connectivity between them and less with external nodes. The second approach uses gene expression data for inferring modules of genes exhibiting similar expression by, for example, clustering methods. The third approach detects expression changes in biological pathways, group of genes that accomplishes specific biological functions.

The approach proposed in this paper, it is a mix and more general approach that takes advantage of the three approaches previously described. In fact, the pathway-based approach was used to detect perturbed KEGG pathways, then the network-approach was employed to identify the shortest paths between the differentially expressed genes (DEGs) and finally significant shortest paths (SSPs) were found using the expression data and structural equation modeling (SEM) [[8\]](#page-9-0).

The idea to consider shortest paths between DEGs to understand how they are connected is not new $[9-11]$ $[9-11]$ $[9-11]$ $[9-11]$. However, differently from the methods previously proposed, the key elements to test are constituted by shortest paths got from the network generated by the fusion of the relevant pathways. In this way, it is possible to consider the inter-pathway connectivity of DEGs by significant shortest paths tested by multiple group SEM. All the SSPs were joined to have the final perturbed disease module.

2 Materials and Methods

The classical differential gene expression analysis allows to identify DEGs. The differential analyses at gene level were performed by Significance Analysis of Microarray (SAM) [[12\]](#page-9-0), but any other procedure can be used. The next step is to find the network context where the DEGs act. The classical way is by pathway analysis also if it is not always able to detect the required information. In this situation, a solution could be take all the pathways containing at least one DEG. In the tuberculosis case the "Signaling Impact Pathway Analysis" (SPIA) was applied [\[13](#page-9-0)]. The corresponding perturbed KEGG pathways can be represented as mixed graphs, where the nodes represent genes and the edges represent multiple functional relationships between genes as activation, inhibition, binding etc. The core idea for building a disease module is to understand how the DEGs, in the perturbed pathways, are connected between them. The first step for reaching this goal is to merge all the relevant pathways in a unique graph. The second step is to find the significant shortest paths that put in communication every couple of DEGs.

Each shortest path could be represented as a list of nodes $P = (p_i, p_{i+1}, \ldots, p_{j-1}, p_j)$ and a list of the corresponding edges $E = (e_{i(i+1)}, \ldots, e_{i-1})$ where (p_i, p_j) are DEGs and $(p_{i+1},..., p_{i-1})$ can be DEGs or other microarray genes. In this analysis, every edge is directed. A shortest path can be codified as a structural equation (SE) model, in the following way:

$$
P_j = \beta_{ji} P_i + E_j \tag{1}
$$

where P_i represents every gene in the path that is influenced directly by the gene P_i ; β_{ii} is the strength of relationship between node P_i and P_j ; E_j is a term that represent external causes that have an effect on P_i but not explicated in the model. Considering that the shortest paths selected are induced paths, every shortest path can be represented by $j - 1$ simple linear equations, where j is the number of nodes in the path.

For the estimation of the parameters β_{ii} , the Maximum Likelihood estimation (MLE) is used, assuming that all observed variables have a multinormal distribution. For finding the SSPs, the following omnibus test was performed:

$$
H_0: \sum_{1} (\theta) = \sum_{2} (\theta) \, \text{vs.} \, H_1: \sum_{1} (\theta) \neq \sum_{2} (\theta) \tag{2}
$$

where $\sum_1(\theta)$ and $\sum_2(\theta)$ are the model-implied covariance matrices of the groups one and two, and θ represents the parameter of the model. The test verifies if the difference between the model-implied covariance matrices of each group are statistically significant (H_1) or not (H_0) The statistical significance is determined by comparison of likelihood ratio test (LRT) chi-square $(\chi^2$ diff) values at a given degree of freedom (d.f. $(\gamma^2$ diff)). If there is a significant difference (P < 0.05), after the Benjamin-Hochberg correction in the chi-squared goodness-of-fit index, the shortest path is considered statistically significant. All the SSPs were merged to obtain the final disease module. The final module is a weighted graph, where the weights correspond to the parameters estimated by SEM. The weights were used for the topological analysis, subsequently described. To validate the procedure two different approaches were employed: (1) enrichment analysis based on Disease Ontology (DO), to verify if the module genes are associated to the family of diseases connected with the analysed disease; (2) semantic similarity index, based on DO terms, between the list of genes associated "a priori" to the disease and the list of genes present in the module. DO creates a single structure for the classification of disease and permits to represent them in a relational ontology [[14\]](#page-10-0). For the semantic similarity, the graph-based strategy proposed by Wang et al. [\[15](#page-10-0)] was applied. The similarity goes from 0, when the lists of genes are not associated, to 1, when the lists of genes contribute to the same DO terms. For finding the a priori genes, a search on Entrez Gene [[16\]](#page-10-0) was done. For each set of genes, an enrichment analysis on DO was done and the list of enriched terms was compared with those obtained by the genes in the module. Finally, a basic network analysis was performed based on

measures of centralities (betweenness and the Bonacich power centrality score) and connectivity (detection of articulation nodes). The betweenness centrality for the gene v is defined as:

$$
\sum_{i \neq j, i \neq v, j \neq v} g_{i v j} \backslash g_{i j} \tag{3}
$$

where $g_{i\nu j}$ are the shortest paths between the node i and j in which the node v is present, while g_{ii} is the number of all shortest paths between the nodes i and j. The normalized betweenness centrality is obtained:

$$
B_n = 2B/(n^2 - 3n + 2)
$$
 (4)

where B is the raw betweenness and n the number of nodes. The Bonacich power measure corresponds to the notion that the power of a vertex is recursively defined by the sum of the power of its alters. The formula is the following:

$$
C(\alpha, \beta) = \alpha \left(\mathbf{I} - \beta R \right)^{-1} R \mathbf{I} \tag{5}
$$

where α is a scaling vector, β is an attenuation factor to weight the centrality of the nodes, R is the adjacency matrix, I is the identity matrix, 1 is a matrix of all ones. The articulation nodes are the minimum set of nodes which removal increases the number of connected components. They represent the nodes that allow to have a connected module.

The procedure was tested on the dataset GSE54992, where the group of samples of active tuberculosis (TB) (9 samples) were compared to healthy control (6 samples).

3 Results

SAM revealed 2152 significant genes using as delta value a value of 1.178 corresponding to a FDR value less than 0.05 and a minimum fold change of 2. On the 2152 DEGs, SPIA revealed important perturbed pathways (see Table [1](#page-4-0)), most of them associated to inflammation and infection as the cytokine-cytokine receptor interaction, the chemokine signaling pathway, the $NF-_kB$ signaling pathway, Legionellosis, Malaria. The first two pathways for example are induced in the lung in the response to TB infection to accumulate and mediate formation of granulomas, bacterial control and protection against the infection [\[17](#page-10-0)]. The pathways were transformed in graph and subsequently merged.

The next step was to find the shortest paths between every couple of DEGs on the total graph. The total number of shortest paths resulted of 1493 with 316 genes and 745 connections involved. For each shortest path a structural model was generated and tested to detect those significant. 260 out of 1493 were found relevant involving 206 genes and 330 connections. Figure [1](#page-5-0) shows the graph obtained by the fusion of the 260 significant paths.

Name	pSize	NDE	pNDE	pPERT	pGFdr
Cytokine-cytokine receptor interaction	241	66	0,000	0,000	0,000
Chemokine signaling pathway	177	42	0,000	0,000	0,000
NF-kappa B signaling pathway	75	23	0,000	0,021	0,000
Osteoclast differentiation	120	27	0,000	0,001	0,000
Legionellosis	39	16	0,000	0,287	0,000
Complement and coagulation cascades	65	22	0,000	0,882	0,000
Staphylococcus aureus infection	26	11	0,000	0,035	0,000
Proteoglycans in cancer		36	0,000	0,007	0,001
Rheumatoid arthritis	17	$\overline{7}$	0,001	0,014	0.003
Pathways in cancer	308	49	0,001	0,011	0,003
Inflammatory mediator regulation of TRP channels	87	18	0,003	0,009	0,004
Toxoplasmosis	91	22	0,000	0,510	0,007
Focal adhesion	206	32	0,011	0,006	0,008
MAPK signaling pathway	248	40	0,003	0,051	0,014
Viral myocarditis	26	9	0,001	0,219	0,016
Mineral absorption	8	5	0,000	0,344	0,016
Pertussis	49	14	0,000	0,630	0,016
Systemic lupus erythematosus		$\overline{4}$	0,028	0,007	0,016
ECM-receptor interaction	86	14	0,054	0,004	0,017
Intestinal immune network for IgA production	25	9	0,001	0,441	0,017
Leishmaniasis	47	12	0,002	0,115	0,018
Influenza A	105	21	0,002	0,143	0,019
Amoebiasis	45	13	0,000	0,740	0,019
Rap1 signaling pathway	204	35	0,002	0,228	0,021
Toll-like receptor signaling pathway	97	21	0,001	0,900	0,032
Melanogenesis	99	15	0,079	0,008	0,032
Regulation of actin cytoskeleton	182	30	0,006	0,121	0,034
Malaria	11	5	0,003	0,266	0,037
Sphingolipid signaling pathway	98	20	0,002	0,483	0,041

Table 1. Significant perturbed pathways for tuberculosis data by SPIA analysis.

 $pSize = number of genes in the pathway; $NDE = number of DEGs in the pathway;$$ $pNDE = p-value$ for the enrichment analysis; $pPERT = p-value$ for the accumulated perturbation; $pGFdr =$ combined p-value from the two previuos two p-value adjusted for the Fdr.

For the validation of the module two different analyses were performed: (1) one looks for diseases enrichment analysis; (2) the other measures the semantic similarity between the genes associated "a priori" with TB and those in the module. The results of the enrichment analysis on DO were very interesting considering that in the list there of the enriched diseases there was TB and other diseases that share common biological mechanisms as cancer, Salmonella infection and pertussis (see Fig. [2\)](#page-6-0).

Fig. 1. TB disease module where the green nodes are the DEGs, the yellow ones the not DEGs that allows to the perturbation signal to propagate between the DEGs. Triangular nodes are the articulation point and the diamond node represents the gene SOCS3. Some key genes are highlighted with red circles. (Color figure online)

For the validation with the semantic similarity approach, the genes associated with TB in the database "Gene" of NCBI were detected. They were 312. The intersection of the genes in the module with those associated to TB revealed 24 genes in common. Of these, 13 were DEGs while the remaining genes were not DEGs. This result shows the limits of differential analysis when this stops to the detection of DEGs without understanding how these are connected. The semantic similarities between the two lists, based on DO terms was of 0.913. This means that the lists are highly related in terms of associated diseases. The following analyses were performed: (1) detection of the top 10 genes with the highest betweenness score and with the highest Bonacich's power centrality measure (Table [2\)](#page-6-0); (2) detection of the cut vertices (Table [3](#page-7-0)). The highest values of normalized betweenness and Bonacich measure, on the weighted disease module, were associated to the gene SOCS3. This is very encouraging as it is known its fundamental role in immune responses to pathogens [[18\]](#page-10-0). In fact, SOCS3 was considered as the most important family member for the association to autoimmunity, oncogenesis, diabetes and pathogenic immune evasion. It regulates both cytokine- and pathogen-induced cascades. Considering its importance, it was proposed as a therapeutic target [\[19](#page-10-0)]. Regarding the articulation point analysis, many interesting genes are present as the TNF, whose inhibition increases the risk of infections [[20\]](#page-10-0), as well as MAPK12 and some relevant kinases [\[21](#page-10-0)].

Fig. 2. Enriched diseases using the gene in the SSP module. Tuberculosis in one of the most enriched disease.

(continued)

Entrez	Official	Description	Centrality	Centrality
	name		Measure	
2354	f os B	FBJ murine osteosarcoma viral oncogene homolog B	9,88	Bonacich
8659	ALDH4A1	aldehyde dehydrogenase 4 family, member A1	8.92	Bonacich
4790	NFKB1	nuclear factor kappa light polypeptide gene enhancer in	7.74	Bonacich
		B-cells 1		
208	akt2	v-akt murine thymoma viral oncogene homolog 2	7.43	Bonacich
92579	G6pc3	glucose 6 phosphatase, catalytic, 3	6.31	Bonacich
8936	WASF1	WAS protein family, member 1	6.25	Bonacich

Table 2. (continued)

Table 3. Articulation points from the tuberculosis disease module.

Entrez	Official	Description
	name	
6723	SRM	spermidine synthase
6774	Stat ₃	signal transducer and activator of transcription 3
126129	Cptlc	carnitine palmitoyltransferase 1C
6300	MAPK12	mitogen-activated protein kinase 12
2582	gale	UDP-galactose-4-epimerase
5578	Prkca	protein kinase C, alpha
2354	f os B	FBJ murine osteosarcoma viral oncogene homolog B
111	adcy5	adenylate cyclase 5
5332	Plcb4	phospholipase C, beta 4
27165	GLS2	glutaminase 2 (liver, mitochondrial)
7124	TNF	tumor necrosis factor (TNF superfamily, member 2)
217	ALDH ₂	aldehyde dehydrogenase 2 family (mitochondrial)
51005	AMDHD ₂	amidohydrolase domain containing 2
1573	cyp2i2	cytochrome P450, family 2, subfamily J, polypeptide 2
2744	GLS	glutaminase
3984	limk1	LIM domain kinase 1
7186	traF2	TNF receptor-associated factor 2
7358	UGDH	UDP-glucose dehydrogenase
1500	CTNND1	catenin (cadherin-associated protein), delta 1
2673	GFPT1	glutamine-fructose-6-phosphate transaminase 1
5563	prkaa2	protein kinase, AMP-activated, alpha 2 catalytic subunit
1994	ELAVL1	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1
4942	OAT	ornithine aminotransferase (gyrate atrophy)
8503	PIK3R3	phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
5881	rac3	ras-related C3 botulinum toxin substrate 3
5743	PTGS2	prostaglandin-endoperoxide synthase 2
2043	EPHA4	EPH receptor A4
5742	Ptgs1	prostaglandin-endoperoxide synthase 1
5361	PLXNA1	plexin A1

(continued)

Entrez	Official	Description
	name	
5567	PRKACB	protein kinase, cAMP-dependent, catalytic, beta
8660	irs2	insulin receptor substrate 2
55577	nagK	N-acetylglucosamine kinase
2773	GNAI3	guanine nucleotide binding protein (G protein)
26	ABP1	amiloride binding protein 1
5365	PLXNB3	plexin B3
1793	DOCK1	dedicator of cytokinesis 1
7132	TNFRSF1A	tumor necrosis factor receptor superfamily, member 1A
2805	GOT ₁	glutamic-oxaloacetic transaminase 1
8659	ALDH4A1	aldehyde dehydrogenase 4 family, member A1
4893	NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog
5502	ppplrla	protein phosphatase 1, regulatory (inhibitor) subunit 1A
3065	Hdac1	histone deacetylase 1
2534	FYN	FYN oncogene related to SRC, FGR, YES
11069	Rapgef4	Rap guanine nucleotide exchange factor (GEF) 4
4790	NFKB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
5879	rac1	ras-related C3 botulinum toxin substrate 1
998	Cdc42	cell division cycle 42

Table 3. (continued)

4 Conclusion

In this paper, it was proposed a module level analysis for gene expression data that could take over the present methods for the identification of modules. It is used to divide the detection approaches in network-based, expression-based and pathway based. The approach here described is a mixed approach that starting from relevant pathways in which the DEGs are involved, detects the significant shortest paths by network, gene expression information and statistical analysis. The new concept is surely connected to the use of SEM for testing the significance of each shortest path model and the possibility to consider more pathways together, allowing to overcome the limiting idea of the pathway independence. Briefly, the pipeline consists in the following points: (1) discovering of DEGs associated to the disease; (2) understanding on which pathways the DEGs act; (3) joining in a unique graph all the relevant pathways; (4) performing the significant shortest path analysis for finding the disease module. The procedure was tested on a gene expression microarray concerning TB, but it can be applied to any gene expression experiment where the two-groups comparison is requested. The differential analysis of the shortest paths revealed significant shortest paths that characterize the experimental group on the control. The module obtained merging all the SSPs allowed to detect the key molecular network that could explain the disease. Very important genes were found as the SOCS3, TNF and MAPK2. The validation of the module by DO enrichment and similarity analysis has highlighted that

the genes in the modules are strictly associated to the a priori genes connected with the disease. In conclusion, the approach, is surely notable as new approach for downstream analysis of gene expression data. Future developments could be the application of the procedure to data from the integration of different NGS experiments.

Funding acknowledgement. This research was funded by the MIMOmics grant of the European Union's Seventh Framework Programme (FP7-Health-F5-2012) under the grant agreement number 305280.

References

- 1. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(suppl 1), D514–D517 (2005). doi:[10.1093/nar/gki033](http://dx.doi.org/10.1093/nar/gki033)
- 2. Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972). doi:[10.1126/](http://dx.doi.org/10.1126/science.177.4047.393) [science.177.4047.393](http://dx.doi.org/10.1126/science.177.4047.393)
- 3. Ahn, A.C., Tewari, M., Poon, C.S., Phillips, R.S.: The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6), e208 (2006). doi:[10.1371/](http://dx.doi.org/10.1371/journal.pmed0030208) [journal.pmed0030208](http://dx.doi.org/10.1371/journal.pmed0030208)
- 4. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi[:10.1038/nrg2918](http://dx.doi.org/10.1038/nrg2918)
- 5. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). doi:[10.1073/pnas.122653799](http://dx.doi.org/10.1073/pnas.122653799)
- 6. Segal, E., Friedman, N., Kaminski, N., Regev, A., Koller, D.: From signatures to models: understanding cancer using microarrays. Nat. Genet. 37, S38–S45 (2005). doi:[10.1038/](http://dx.doi.org/10.1038/ng1561) [ng1561](http://dx.doi.org/10.1038/ng1561)
- 7. Wang, X., Dalkic, E., Wu, M., Chan, C.: Gene module level analysis: identification to networks and dynamics. Curr. Opin. Biotechnol. 19(5), 482–491 (2008). doi[:10.1016/j.](http://dx.doi.org/10.1016/j.copbio.2008.07.011) [copbio.2008.07.011](http://dx.doi.org/10.1016/j.copbio.2008.07.011)
- 8. Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Press (2011). doi[:10.1111/insr.12011_25](http://dx.doi.org/10.1111/insr.12011_25)
- 9. Pepe, D., Grassi, M.: Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinform. $15(1)$, $1-15$ (2014). doi[:10.1186/1471-](http://dx.doi.org/10.1186/1471-2105-15-132) [2105-15-132](http://dx.doi.org/10.1186/1471-2105-15-132)
- 10. Pepe, D., Hwan, D.J.: Estimation of dysregulated pathway regions in MPP+ treated human neuroblastoma SH-EP cells with structural equation model. BioChip J. 9(2), 131–138 (2015). doi[:10.1007/s13206-015-9206-3](http://dx.doi.org/10.1007/s13206-015-9206-3)
- 11. Pepe, D., Hwan, D.J.: Comparison of perturbed pathways in two different cell models for Parkinson's Disease with structural equation model. J. Comput. Biol. 23(2), 90–101 (2016). doi[:10.1089/cmb.2015.0156](http://dx.doi.org/10.1089/cmb.2015.0156)
- 12. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. 98(9), 5116–5121 (2001). doi:[10.1073/](http://dx.doi.org/10.1073/pnas.091062498) [pnas.091062498](http://dx.doi.org/10.1073/pnas.091062498)
- 13. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.S., Kim, C.J., Kusanovic, J.P., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics 25(1), 75–82 (2009). doi[:10.1093/bioinformatics/btn577](http://dx.doi.org/10.1093/bioinformatics/btn577)
- 14. Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.W.W., Mazaitis, M., Felix, V., Feng, G., Kibbe, W.A.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012). doi[:10.1093/nar/gkr972](http://dx.doi.org/10.1093/nar/gkr972)
- 15. Wang, J.Z., Du, Z., Payattakool, R., Philip, S.Y., Chen, C.F.: A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281 (2007). doi[:10.1093/](http://dx.doi.org/10.1093/bioinformatics/btm087) [bioinformatics/btm087](http://dx.doi.org/10.1093/bioinformatics/btm087)
- 16. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 39(suppl 1), D52–D57 (2011). doi:[10.1093/nar/gkq1237](http://dx.doi.org/10.1093/nar/gkq1237)
- 17. Slight, S.R., Khader, S.A.: Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev. 24(2), 105–113 (2013). doi[:10.1016/j.cytogfr.2012.10.002](http://dx.doi.org/10.1016/j.cytogfr.2012.10.002)
- 18. Carow, B., Reuschl, A.K., Gavier-Widén, D., Jenkins, B.J., Ernst, M., Yoshimura, A., Chambers, B.J., Rottenberg, M.E.: Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog. 9(7), e1003442 (2013). doi:[10.1371/journal.ppat.1003442](http://dx.doi.org/10.1371/journal.ppat.1003442)
- 19. Mahony, R.A., Diskin, C., Stevenson, N.J.: SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell. Molecular Life Sci. 1(1), 1–14 (2016). doi[:10.1007/](http://dx.doi.org/10.1007/s00018-016-2234-x) [s00018-016-2234-x](http://dx.doi.org/10.1007/s00018-016-2234-x)
- 20. Sichletidis, L., Settas, L., Spyratos, D., Chloros, D., Patakas, D.: Tuberculosis in patients receiving anti-TNF agents despite chemoprophylaxis. Int. J. Tuberc. Lung Dis. 10(10), 1127–1132 (2006)
- 21. Song, C.H., Lee, J.S., Lee, S.H., Lim, K., Kim, H.J., Park, J.K., Paik, T.H., Jo, E.K.: Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-a, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23(3), 194–201 (2003)