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Abstract. The characterization of diseases in terms of perturbed gene modules
was recently introduced for the analysis of gene expression data. Some
approaches were proposed in literature, but most of them are inductive
approaches. This means that they try to infer key gene networks directly from
data, ignoring the biological information available. Here a unique method for the
detection of perturbed gene modules, based on the combination of data and
hypothesis-driven approaches, is described. It relies upon biological metabolic
pathways and significant shortest paths evaluated by structural equation mod-
eling (SEM). The procedure was tested on a microarray experiment concerning
tuberculosis (TB) disease. The validation of the final disease module was
principally done by the Wang similarity semantic index and the Disease
Ontology enrichment analysis. Finally, a topological analysis of the module via
centrality measures and the identification of the cut vertices allowed to unveil
important nodes in the disease module network. The results obtained were
promising, as shown by the detection of key genes for the characterization of the
studied disease.
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1 Introduction

The reductionist approach in medicine, based on the principle of “divide and conquer”,
although useful, present limits when it is necessary to explain the onset and progression
of complex diseases. In fact, the approach is rooted in the assumption that if a complex
problem is divided into more understandable and smaller units, then by their recon-
struction, it is possible to unveil the studied complex problem.

For this reason, there are lists of genes associated with diseases. OMIM, a free
database [1], for example, offers a catalogue of genes with the relative description of
their role in the associated phenotypes. Conversely to this point of view, in the 1972,
Anderson, in the article “More is complex” [2] affirms that the behaviour of large and
complex aggregate of elementary particles cannot be understood in terms of a simple
extrapolation of the properties of a few particle. At each level of complexity entirely
new properties appear. For this reason, we are assisting to the passage from the
reductionist approach to the systemic approach [3]. Most of biological networks are
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subjected to specific laws [4], as the small world phenomena, which affirms that there
are relatively short paths between any pair of nodes, the scale-free principle, with the
consequence that there are few highly connected nodes; the local hypothesis i.e. the
presence of modules, highly interlinked local regions in the network in which the
components are involved in same biological processes.

The last property, modularity, is a general design principle in biological systems
and has been observed also in transcriptional regulation networks [5]. In biology,
modularity refers to a group of physically or functionally linked molecules (nodes) that
work together to achieve a (relatively) distinct function.

Applying module level analysis should help to study biological systems at different
levels and to understand which properties characterize the level of complexity con-
sidered. Many approaches exist that use a gene-module view as the basic building
blocks of the analysis [6]. In general, it is used to divide the module identification in
three main approaches: (1) network-based approach; (2) expression-based approach;
(3) pathway-based approach [7]. The first approach is based on the topology of net-
work, and modules are defined as subsets of vertices with high connectivity between
them and less with external nodes. The second approach uses gene expression data for
inferring modules of genes exhibiting similar expression by, for example, clustering
methods. The third approach detects expression changes in biological pathways, group
of genes that accomplishes specific biological functions.

The approach proposed in this paper, it is a mix and more general approach that
takes advantage of the three approaches previously described. In fact, the
pathway-based approach was used to detect perturbed KEGG pathways, then the
network-approach was employed to identify the shortest paths between the differen-
tially expressed genes (DEGs) and finally significant shortest paths (SSPs) were found
using the expression data and structural equation modeling (SEM) [8].

The idea to consider shortest paths between DEGs to understand how they are
connected is not new [9–11]. However, differently from the methods previously pro-
posed, the key elements to test are constituted by shortest paths got from the network
generated by the fusion of the relevant pathways. In this way, it is possible to consider
the inter-pathway connectivity of DEGs by significant shortest paths tested by multiple
group SEM. All the SSPs were joined to have the final perturbed disease module.

2 Materials and Methods

The classical differential gene expression analysis allows to identify DEGs. The dif-
ferential analyses at gene level were performed by Significance Analysis of Microarray
(SAM) [12], but any other procedure can be used. The next step is to find the network
context where the DEGs act. The classical way is by pathway analysis also if it is not
always able to detect the required information. In this situation, a solution could be take
all the pathways containing at least one DEG. In the tuberculosis case the “Signaling
Impact Pathway Analysis” (SPIA) was applied [13]. The corresponding perturbed
KEGG pathways can be represented as mixed graphs, where the nodes represent genes
and the edges represent multiple functional relationships between genes as activation,
inhibition, binding etc. The core idea for building a disease module is to understand
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how the DEGs, in the perturbed pathways, are connected between them. The first step
for reaching this goal is to merge all the relevant pathways in a unique graph. The
second step is to find the significant shortest paths that put in communication every
couple of DEGs.

Each shortest path could be represented as a list of nodes P = (pi, pi+1,.., pj-1, pj)
and a list of the corresponding edges E = (ei(i+1), …, e(j-1)j) where (pi, pj) are DEGs and
(pi+1,…, pj-1) can be DEGs or other microarray genes. In this analysis, every edge is
directed. A shortest path can be codified as a structural equation (SE) model, in the
following way:

Pj ¼ bjiPi þ Ej ð1Þ

where Pj represents every gene in the path that is influenced directly by the gene Pi; bji
is the strength of relationship between node Pi and Pj; Ej is a term that represent
external causes that have an effect on Pj but not explicated in the model. Considering
that the shortest paths selected are induced paths, every shortest path can be represented
by j − 1 simple linear equations, where j is the number of nodes in the path.

For the estimation of the parameters bij, the Maximum Likelihood estimation
(MLE) is used, assuming that all observed variables have a multinormal distribution.
For finding the SSPs, the following omnibus test was performed:

H0 :
X

1
ðhÞ ¼

X
2
ðhÞ vs:H1 :

X
1
ðhÞ 6¼

X
2
ðhÞ ð2Þ

where
P

1ðhÞ and
P

2ðhÞ are the model-implied covariance matrices of the groups one
and two, and h represents the parameter of the model. The test verifies if the difference
between the model-implied covariance matrices of each group are statistically signif-
icant (H1) or not (H0) The statistical significance is determined by comparison of
likelihood ratio test (LRT) chi-square ðv2diffÞ values at a given degree of freedom (d.f.
ðv2diffÞ). If there is a significant difference (P < 0.05), after the Benjamin-Hochberg
correction in the chi-squared goodness-of-fit index, the shortest path is considered
statistically significant. All the SSPs were merged to obtain the final disease module.
The final module is a weighted graph, where the weights correspond to the parameters
estimated by SEM. The weights were used for the topological analysis, subsequently
described. To validate the procedure two different approaches were employed: (1) en-
richment analysis based on Disease Ontology (DO), to verify if the module genes are
associated to the family of diseases connected with the analysed disease; (2) semantic
similarity index, based on DO terms, between the list of genes associated “a priori” to
the disease and the list of genes present in the module. DO creates a single structure for
the classification of disease and permits to represent them in a relational ontology [14].
For the semantic similarity, the graph-based strategy proposed by Wang et al. [15] was
applied. The similarity goes from 0, when the lists of genes are not associated, to 1,
when the lists of genes contribute to the same DO terms. For finding the a priori genes,
a search on Entrez Gene [16] was done. For each set of genes, an enrichment analysis
on DO was done and the list of enriched terms was compared with those obtained by
the genes in the module. Finally, a basic network analysis was performed based on
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measures of centralities (betweenness and the Bonacich power centrality score) and
connectivity (detection of articulation nodes). The betweenness centrality for the gene
v is defined as:

X
i6¼j; i 6¼v; j 6¼v

givjngij ð3Þ

where givj are the shortest paths between the node i and j in which the node v is present,
while gij is the number of all shortest paths between the nodes i and j. The normalized
betweenness centrality is obtained:

Bn ¼ 2B= n2 � 3nþ 2
� � ð4Þ

where B is the raw betweenness and n the number of nodes. The Bonacich power
measure corresponds to the notion that the power of a vertex is recursively defined by
the sum of the power of its alters. The formula is the following:

C a; bð Þ ¼ a I� bRð Þ�1R1 ð5Þ

where a is a scaling vector, b is an attenuation factor to weight the centrality of the
nodes, R is the adjacency matrix, I is the identity matrix, 1 is a matrix of all ones. The
articulation nodes are the minimum set of nodes which removal increases the number
of connected components. They represent the nodes that allow to have a connected
module.

The procedure was tested on the dataset GSE54992, where the group of samples of
active tuberculosis (TB) (9 samples) were compared to healthy control (6 samples).

3 Results

SAM revealed 2152 significant genes using as delta value a value of 1.178 corre-
sponding to a FDR value less than 0.05 and a minimum fold change of 2. On the 2152
DEGs, SPIA revealed important perturbed pathways (see Table 1), most of them
associated to inflammation and infection as the cytokine-cytokine receptor interaction,
the chemokine signaling pathway, the NF-jB signaling pathway, Legionellosis,
Malaria. The first two pathways for example are induced in the lung in the response to
TB infection to accumulate and mediate formation of granulomas, bacterial control and
protection against the infection [17]. The pathways were transformed in graph and
subsequently merged.

The next step was to find the shortest paths between every couple of DEGs on the
total graph. The total number of shortest paths resulted of 1493 with 316 genes and 745
connections involved. For each shortest path a structural model was generated and
tested to detect those significant. 260 out of 1493 were found relevant involving 206
genes and 330 connections. Figure 1 shows the graph obtained by the fusion of the 260
significant paths.
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For the validation of the module two different analyses were performed: (1) one
looks for diseases enrichment analysis; (2) the other measures the semantic similarity
between the genes associated “a priori” with TB and those in the module. The results of
the enrichment analysis on DO were very interesting considering that in the list there of
the enriched diseases there was TB and other diseases that share common biological
mechanisms as cancer, Salmonella infection and pertussis (see Fig. 2).

Table 1. Significant perturbed pathways for tuberculosis data by SPIA analysis.

Name pSize NDE pNDE pPERT pGFdr

Cytokine-cytokine receptor interaction 241 66 0,000 0,000 0,000
Chemokine signaling pathway 177 42 0,000 0,000 0,000
NF-kappa B signaling pathway 75 23 0,000 0,021 0,000
Osteoclast differentiation 120 27 0,000 0,001 0,000
Legionellosis 39 16 0,000 0,287 0,000
Complement and coagulation cascades 65 22 0,000 0,882 0,000
Staphylococcus aureus infection 26 11 0,000 0,035 0,000
Proteoglycans in cancer 198 36 0,000 0,007 0,001
Rheumatoid arthritis 17 7 0,001 0,014 0,003
Pathways in cancer 308 49 0,001 0,011 0,003
Inflammatory mediator regulation of TRP channels 87 18 0,003 0,009 0,004
Toxoplasmosis 91 22 0,000 0,510 0,007
Focal adhesion 206 32 0,011 0,006 0,008
MAPK signaling pathway 248 40 0,003 0,051 0,014
Viral myocarditis 26 9 0,001 0,219 0,016
Mineral absorption 8 5 0,000 0,344 0,016
Pertussis 49 14 0,000 0,630 0,016
Systemic lupus erythematosus 12 4 0,028 0,007 0,016
ECM-receptor interaction 86 14 0,054 0,004 0,017
Intestinal immune network for IgA production 25 9 0,001 0,441 0,017
Leishmaniasis 47 12 0,002 0,115 0,018
Influenza A 105 21 0,002 0,143 0,019
Amoebiasis 45 13 0,000 0,740 0,019
Rap1 signaling pathway 204 35 0,002 0,228 0,021
Toll-like receptor signaling pathway 97 21 0,001 0,900 0,032
Melanogenesis 99 15 0,079 0,008 0,032
Regulation of actin cytoskeleton 182 30 0,006 0,121 0,034
Malaria 11 5 0,003 0,266 0,037
Sphingolipid signaling pathway 98 20 0,002 0,483 0,041

pSize = number of genes in the pathway; NDE = number of DEGs in the pathway;
pNDE = p-value for the enrichment analysis; pPERT = p-value for the accumulated
perturbation; pGFdr = combined p-value from the two previuos two p-value adjusted for the
Fdr.
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For the validation with the semantic similarity approach, the genes associated with
TB in the database “Gene” of NCBI were detected. They were 312. The intersection of
the genes in the module with those associated to TB revealed 24 genes in common. Of
these, 13 were DEGs while the remaining genes were not DEGs. This result shows the
limits of differential analysis when this stops to the detection of DEGs without
understanding how these are connected. The semantic similarities between the two
lists, based on DO terms was of 0.913. This means that the lists are highly related in
terms of associated diseases. The following analyses were performed: (1) detection of
the top 10 genes with the highest betweenness score and with the highest Bonacich’s
power centrality measure (Table 2); (2) detection of the cut vertices (Table 3). The
highest values of normalized betweenness and Bonacich measure, on the weighted
disease module, were associated to the gene SOCS3. This is very encouraging as it is
known its fundamental role in immune responses to pathogens [18]. In fact, SOCS3
was considered as the most important family member for the association to autoim-
munity, oncogenesis, diabetes and pathogenic immune evasion. It regulates both
cytokine- and pathogen-induced cascades. Considering its importance, it was proposed
as a therapeutic target [19]. Regarding the articulation point analysis, many interesting
genes are present as the TNF, whose inhibition increases the risk of infections [20], as
well as MAPK12 and some relevant kinases [21].

Fig. 1. TB disease module where the green nodes are the DEGs, the yellow ones the not DEGs
that allows to the perturbation signal to propagate between the DEGs. Triangular nodes are the
articulation point and the diamond node represents the gene SOCS3. Some key genes are
highlighted with red circles. (Color figure online)
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Fig. 2. Enriched diseases using the gene in the SSP module. Tuberculosis in one of the most
enriched disease.

Table 2. Most relevant tuberculosis genes in the disease module based on betweeness (Betw)
and Bonacich centrality measures.

Entrez Official
name

Description Centrality
Measure

Centrality

9021 socs3 suppressor of cytokine signaling 3 0,06 Betw

4790 NFKB1 nuclear factor kappa light polypeptide gene enhancer in
B-cells 1

0,05 Betw

8517 ikbkg inhibitor of kappa light polypeptide gene enhancer in
B-cells, kinase gamma

0,05 Betw

998 Cdc42 cell division cycle 42 (GTP binding protein, 25 kDa); 0,04 Betw

8660 irs2 insulin receptor substrate 2 0,03 Betw

4301 mllt4 myeloid/lymphoid or mixed-lineage leukemia 0,02 Betw

5294 PIK3CG phosphoinositide-3-kinase, catalytic, gamma polypeptide 0,02 Betw

8826 IQGAP1 IQ motif containing GTPase activating protein 1 0,02 Betw

25945 PVRL3 poliovirus receptor-related 3 0,02 Betw

6714 Src v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene
homolog

0,02 Betw

9021 socs3 suppressor of cytokine signaling 3 20,25 Bonacich

4301 mllt4 myeloid/lymphoid or mixed-lineage leukemia 14,24 Bonacich

5209 pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 12,24 Bonacich

10458 BAIAP2 BAI1-associated protein 2 10,91 Bonacich

(continued)
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Table 2. (continued)

Entrez Official
name

Description Centrality
Measure

Centrality

2354 fosB FBJ murine osteosarcoma viral oncogene homolog B 9,88 Bonacich

8659 ALDH4A1 aldehyde dehydrogenase 4 family, member A1 8,92 Bonacich

4790 NFKB1 nuclear factor kappa light polypeptide gene enhancer in
B-cells 1

7,74 Bonacich

208 akt2 v-akt murine thymoma viral oncogene homolog 2 7,43 Bonacich

92579 G6pc3 glucose 6 phosphatase, catalytic, 3 6,31 Bonacich

8936 WASF1 WAS protein family, member 1 6,25 Bonacich

Table 3. Articulation points from the tuberculosis disease module.

Entrez Official
name

Description

6723 SRM spermidine synthase
6774 Stat3 signal transducer and activator of transcription 3

126129 Cpt1c carnitine palmitoyltransferase 1C
6300 MAPK12 mitogen-activated protein kinase 12
2582 gale UDP-galactose-4-epimerase
5578 Prkca protein kinase C, alpha
2354 fosB FBJ murine osteosarcoma viral oncogene homolog B
111 adcy5 adenylate cyclase 5
5332 Plcb4 phospholipase C, beta 4
27165 GLS2 glutaminase 2 (liver, mitochondrial)
7124 TNF tumor necrosis factor (TNF superfamily, member 2)
217 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial)

51005 AMDHD2 amidohydrolase domain containing 2
1573 cyp2j2 cytochrome P450, family 2, subfamily J, polypeptide 2
2744 GLS glutaminase
3984 limk1 LIM domain kinase 1
7186 traF2 TNF receptor-associated factor 2
7358 UGDH UDP-glucose dehydrogenase
1500 CTNND1 catenin (cadherin-associated protein), delta 1
2673 GFPT1 glutamine-fructose-6-phosphate transaminase 1
5563 prkaa2 protein kinase, AMP-activated, alpha 2 catalytic subunit
1994 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1
4942 OAT ornithine aminotransferase (gyrate atrophy)
8503 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
5881 rac3 ras-related C3 botulinum toxin substrate 3
5743 PTGS2 prostaglandin-endoperoxide synthase 2
2043 EPHA4 EPH receptor A4
5742 Ptgs1 prostaglandin-endoperoxide synthase 1
5361 PLXNA1 plexin A1

(continued)
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4 Conclusion

In this paper, it was proposed a module level analysis for gene expression data that
could take over the present methods for the identification of modules. It is used to
divide the detection approaches in network-based, expression-based and pathway
based. The approach here described is a mixed approach that starting from relevant
pathways in which the DEGs are involved, detects the significant shortest paths by
network, gene expression information and statistical analysis. The new concept is
surely connected to the use of SEM for testing the significance of each shortest path
model and the possibility to consider more pathways together, allowing to overcome
the limiting idea of the pathway independence. Briefly, the pipeline consists in the
following points: (1) discovering of DEGs associated to the disease; (2) understanding
on which pathways the DEGs act; (3) joining in a unique graph all the relevant
pathways; (4) performing the significant shortest path analysis for finding the disease
module. The procedure was tested on a gene expression microarray concerning TB, but
it can be applied to any gene expression experiment where the two-groups comparison
is requested. The differential analysis of the shortest paths revealed significant shortest
paths that characterize the experimental group on the control. The module obtained
merging all the SSPs allowed to detect the key molecular network that could explain
the disease. Very important genes were found as the SOCS3, TNF and MAPK2. The
validation of the module by DO enrichment and similarity analysis has highlighted that

Table 3. (continued)

Entrez Official
name

Description

5567 PRKACB protein kinase, cAMP-dependent, catalytic, beta
8660 irs2 insulin receptor substrate 2
55577 nagK N-acetylglucosamine kinase
2773 GNAI3 guanine nucleotide binding protein (G protein)
26 ABP1 amiloride binding protein 1

5365 PLXNB3 plexin B3
1793 DOCK1 dedicator of cytokinesis 1
7132 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A
2805 GOT1 glutamic-oxaloacetic transaminase 1
8659 ALDH4A1 aldehyde dehydrogenase 4 family, member A1
4893 NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
5502 ppp1r1a protein phosphatase 1, regulatory (inhibitor) subunit 1A
3065 Hdac1 histone deacetylase 1
2534 FYN FYN oncogene related to SRC, FGR, YES
11069 Rapgef4 Rap guanine nucleotide exchange factor (GEF) 4
4790 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
5879 rac1 ras-related C3 botulinum toxin substrate 1
998 Cdc42 cell division cycle 42
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the genes in the modules are strictly associated to the a priori genes connected with the
disease. In conclusion, the approach, is surely notable as new approach for downstream
analysis of gene expression data. Future developments could be the application of the
procedure to data from the integration of different NGS experiments.
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