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Preface

The 13th annual edition of the international meeting on Computational Intelligence
methods for Bioinformatics and Biostatistics (CIBB 2016) built upon the tradition
of the CIBB conference series and provided a multi-disciplinary forum open to
researchers interested in the application of computational intelligence, in a broad sense,
to open problems in bioinformatics, biostatistics, systems and synthetic biology,
medical informatics, as well as computational approaches to life sciences in general.

In line with the spirit of CIBB, the 2016 meeting brought together researchers from
different communities who address problems from different, but connected and often
overlapping, perspectives. CIBB 2016 tackled the difficult task of bridging different
backgrounds by providing an inclusive venue to discuss advances and future per-
spectives in different areas. It also fostered interaction between theory and practice,
addressing both the theories underpinning the methodologies used to model and ana-
lyze biological systems, the practical applications of such theories, and the supporting
technologies. Accordingly, participants at CIBB 2016 came from mathematical,
computational, and medical backgrounds and institutions, both from academia and the
private sector, offering collaboration opportunities and novel results in the areas of
computational life sciences.

CIBB 2016 also offered a view on emerging and strongly developing trends and
future opportunities at the edge of mathematics, computer and life sciences, such as
synthetic biology, statistical investigation of genomic data, and applications to the
understanding of complex diseases, such as cancer, and therapy opportunities. Along
these lines, six keynote speakers, prominent scholars in their fields, presented the latest
advances of their research within the context of their area of interest, and provided
insights into open problems and future directions of general interest for the field. While
papers in the main conference track addressed a rich set of open problems at the
forefront of current research, the conference hosted six further special sessions on
specific themes: biomedical databases, synthetic cell biology, high-performance com-
puting in genetics, modelling for systems biology and medicine, survival analysis, and
statistical inference in biological models. Researchers from Europe, Asia, USA, and
Africa attended the conference. CIBB 2016 was made possible by the efforts of the
Organizing, Program, and Steering Committees and by the support of sponsors and
participants. CIBB 2016 was held in Stirling, UK, during September 1–3, 2016 (http://
www.cs.stir.ac.uk/events/cibb2016/). With the continued support of the community,
the next edition of CIBB will be held in Cagliari, Italy.

Overall, 61 contributions were submitted for consideration to CIBB 2016, amongst
which 49 were invited for an oral presentation at the conference, after a first round of
reviews (at this stage, each paper received an average of 3.7 reviews from the Program
Committee and about 30 additional referees). Following the conference, selected papers
were invited for further submission, after feedback and discussion from the conference.

http://www.cs.stir.ac.uk/events/cibb2016/
http://www.cs.stir.ac.uk/events/cibb2016/


This volume collects the papers that were accepted after a further round of reviews (2.5
for each paper, on average).

From 2004 to 2007, CIBB had the format of a special session of larger conferences,
namely, WIRN 2004 in Perugia, WILF 2005 in Crema, FLINS 2006 in Genoa, and
WILF 2007 in Camogli. Given the great success of the special session at WILF 2007
that included 26 strongly rated papers, the Steering Committee decided to turn CIBB
into an autonomous conference starting with the 2008 edition in Vietri. The following
editions in Italian venues were held in Genoa (2009), Palermo (2010), and Gargnano
(2011). Until 2012, CIBB meetings were held annually in Italy with an increasing
number of participants. CIBB 2012 was the first edition organized outside Italy, in
Houston, then in Nice, France (2013), Cambridge, UK (2014), and Naples, Italy
(2015). A rigorous peer-review selection process is applied every time to ultimately
select the papers included in the program of the conference, in the conference pro-
ceedings published in the LNBI-LNCS book series by Springer, and in some cases,
selected papers were published in special issues of well-qualified international journals,
such as BMC Bioinformatics.

June 2017 Andrea Bracciali
Giulio Caravagna

David Gilbert
Roberto Tagliaferri
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Accelerating Synthetic Biology via Software
and Hardware Advances

Natalio Krasnogor

School of Computing Science, Newcastle University

In this talk I will discuss recent work done in my lab that contributes towards accel-
erating the

specify ! design ! model ! build ! test & iterate

biological engineering cycle. This will describe advances in biological programming
languages for specifying combinatorial DNA libraries, the utilisation of off-the-shelf
microfluidic devices to build the DNA libraries as well as data analysis techniques to
accelerate computational simulations.

Professor Natalio Krasnogor is Professor of Computing Science and Synthetic
Biology, co-directs Interdisciplinary Computing and Complex Biosystems (ICOS)
research group and is director of Newcastle’s Centre for Synthetic Biology and the
Bioeconomy (CSBB). Krasnogor holds an EPSRC Leadership Fellowship in Synthetic
Biology (SB) (EP/J004111/1 - 1.1M), is the PI on the EPSRC programme grant
“Synthetic Portabolomics” (EP/N031962/1 - 4.3M) and is the overall lead in the
EPSRC Synthetic Biology ROADBLOCK (EP/I031642/1, EP/I031812/1,
EP/I03157X/1 - 1.7M) project involving Newcastle, Nottingham, Sheffield, Warwick
and Bradford Universities. With expertise in Synthetic Biology, complex systems and
machine intelligence, he attracted 4.5M as PI from UKRC and EU. Krasnogor gave
several keynote talks (e.g. IEEE CEC, PPSN, GECCO, etc); has 160+ publications
(H-index 36), with many papers in the top 0.1% and 1% for number of citations in
computing science and also papers in Nature Biotech, Nature Chemistry, PNAs, NAR,
EMBO Journal, etc. He won several best papers prizes as well as Bronze, Silver and
Gold awards of the American Computing Society’s (ACM) HUMIES and ACM’s
Impact award. From 2012 to 2014 he was the Science Director of the European Centre
for Living Technologies (Italy) and was distinguished visiting professor at Ben Gurion
University (Israel) in 2009 and Weizmann Institute of Science (Israel) in 2010, 2012
and 2013. Krasnogor current interests in Synthetic Biology are in the development of
artificial intelligence techniques, including data analytics, the design of programming
languages for biological engineering and research at the interface of nano and bio
technology.



(Cancer) Genomics via (Sub)Optical Mapping

Bud Mishra

Computer Science, Mathematics, Engineering and Biology, Courant Institute,
Tandon School of Engineering, and NYU School of Medicine

The dream of a powerful integrated computational framework, only hinted at in Ibn
Sina’s Canon, can now be fulfilled at a global scale as a result of many recent advances:
foundational advances in statistical inference; hypothesis-driven experiment design and
analysis and the dissemination of peer-reviewed publications among communities of
scientists; distributed large-scale databases of scientific and auxiliary experimental
data; algorithmic approaches to model building and model checking; machine learning
approaches to generate large number of hypotheses, and multiple hypotheses testing to
tame computational complexity and false-discovery rates, etc. We will focus on an
application centered on cancer - “the emperor of all maladies.”

The topics this talk will cover include:

– Probabilistic causation
– Causal analysis of Cancer genome data
– Kernel based methods for survival analysis
– Improved single-cell/single-molecule data via SubOptical Mapping
– CHA and Therapy design
– Immuno-therapy
– Liquid Biopsies

Professor Bud Mishra is an American-Indian technologist, educator and mentor. He is
currently a professor of computer science and mathematics at NYU’s Courant Institute
of Mathematical Sciences, professor of engineering at NYU’s Tandon School of
engineering, professor of human genetics at Mt. Sinai School of Medicine, visiting
scholar at Cold Spring Harbor Laboratory and a professor of cell biology at NYU
School of Medicine. Prof. Mishra has a degree in Science from Utkal University, in
Electronics and Communication Engineering from IIT, Kharagpur, and MS and PhD
degrees in Computer Science from Carnegie-Mellon University. He has advisory
experience in Computer and Data Science (ATTAP, brainiad, Genesis Media, Pype-
stream, and Tartan Laboratories), Finance (Instadat, PRF, LLC, and Tudor Investment),
Robotics and Bio- and Nanotechnologies (Abraxis, Bioarrays, InSilico, MRTech,
OpGen and Seqster). He has advised and mentored more than 35 graduate students and
post-docs in the areas of computer science, robotics and control engineering, applied
mathematics, finance, biology and medicine. He holds 21 issued and 23 pending
patents in areas ranging over robotics, model checking, intrusion detection, cyber
security, emergency response, disaster management, data analysis, biotechnology,
nanotechnology, genome mapping and sequencing, mutation calling, cancer biology,
fintech, adtech, internet architecture and linguistics. His pioneering work includes: first



application of model checking to hardware verification; first robotics technologies for
grasping, reactive grippers and work holding; first single molecule genotype/haplotype
mapping technology (Optical Mapping); first analysis of copy number variants with a
segmentation algorithm, first whole-genome haplotype assembly technology (SUTTA),
first clinical-genomic variant/base calling technology (TotalRecaller), and current work
in progress continuing in the areas of liquid biopsies, cancer data, cyber security,
cryptography, financial engineering and internet of the future. He is a fellow of IEEE,
ACM and AAAS, a Distinguished Alumnus of IIT-Kgp, and a NYSTAR Distinguished
Professor.

(Cancer) Genomics via (Sub)Optical Mapping XVII



Statistical Inference on Large-Scale Gene
Duplication Networks

Antonietta Mira

IDIDS, Università della Svizzera italiana and Università dell’Insubria

Many systems of scientific interest can be investigated as networks, where network
nodes correspond to the elements of the system and network edges to interactions
between the elements. Increasing availability of large-scale biological data and steady
improvements in computational capacity are continuing to fuel the growth of this field.
Network models are now used commonly to investigate biological complexity at the
systemic level. Gene duplication is one of the main drivers of the evolution of gen-
omes, and network models based on gene duplication were one of the first large-scale
models used in systems biology. An attractive feature of some of these so-called
duplication-divergence models is their analytical tractability, but there is typically no
statistically principled way to estimate their model parameters from empirical data.
This is a reflection of a more general divide between the two prominent paradigms to
the modeling of networks, which are the approach of mechanistic networks models and
the approach of statistical network models. Mechanistic network models assume that
the microscopic mechanisms governing network formation and evolution at the level of
individual nodes are known, and questions often focus on understanding macroscopic
features that emerge from repeated application of these known mechanisms. The sta-
tistical approach, in contrast, often starts from observed network structures and
attempts to infer some aspects about the underlying data generating process. Mecha-
nistic network models provide insight into how the network is formed and how it
evolves at the level of individual nodes, but as mechanistic rules typically lead to
complex network structures, it is difficult to assign a probability to any given network
realizations that a mechanistic model may generate. Because of this difficulty, there is
typically no closed form expression for likelihood for these models and, consequently,
likelihood based inference for learning from data is not possible. We have developed a
principled statistical framework, based on Approximate Bayesian Computation, to
bring some of the mechanistic network models into the realm of statistical inference.
This approach is feasible because given a set of parameter values, it is easy to sample
network configurations from most mechanistic models. I will introduce this general
framework and demonstrate its application to large-scale gene duplication networks,
where it can be used to infer model parameters, and their associated uncertainties, for
mechanistic network models from empirical data.

Joint work with Jukka-Pekka Onnela, Department of Biostatistics, Harvard



Antonietta Mira is a professor of statistics, and co-founder and co-director of the
InterDisciplinary Institute of Data Science, IDIDS, at Universit della Svizzera italiana,
where she also served as the Vice-Dean in the Faculty of Economics (2013–2015). She
is a fellow of the International Society for Bayesian Analysis, a member of the Istituto
Lombardo Accademia di Scienze e Lettere, a visiting fellow of the Isaac Newton
Institute for Mathematical Sciences at Cambridge University (2014 and 2016), and
of the Queensland University of Technology (2016–2019). She is the principal
investigator on several projects at the Swiss National Science Foundation and a
member of multiple scientific committees representing her areas of expertise: Bayesian
statistical models and efficient Monte Carlo simulation algorithms and theory. She has
been member of the board of the ISBA Section on Bayesian Computation since 2013
and has been member of the scientific program committee and of the organizing
committee of the joint international meeting of the Institute of Mathematical
Statistics/International Society for Bayesian Analysis, aka MCMSki. Her current
research focuses on data science and methodological and computational statistics, both
of which have a clear interdisciplinary scope across social science, biology, genetics,
economics and finance. She is often invited to talk at international scientific confer-
ences. She served on the editorial board of Bayesian Analysis, Statistica Sinica and the
Journal of Computational and Graphical Statistics as has been Chief Guest Editor for
two special issues of Statistics and Computing. She has been involved in public
engagement (such as EXPO Milano 2015), has delivered public lectures on several
science festivals, and is the scientific lead for the exhibit Numbed by Numbers!
Antonietta holds a PhD in Computational Statistics (1998, University of Minnesota,
US) and a Doctorate in Methodological Statistics (1995, University of Trento, Italy).
She has earned her Bachelor1s in Economics, summa cum laude, from the University
of Pavia, Italy. Her work has been published in over 60 scientific articles and she is
co-author of the book Mathematical-Magic (Aboca, 2012).

Statistical Inference on Large-Scale Gene Duplication Networks XIX
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Abstract. The characterization of diseases in terms of perturbed gene modules
was recently introduced for the analysis of gene expression data. Some
approaches were proposed in literature, but most of them are inductive
approaches. This means that they try to infer key gene networks directly from
data, ignoring the biological information available. Here a unique method for the
detection of perturbed gene modules, based on the combination of data and
hypothesis-driven approaches, is described. It relies upon biological metabolic
pathways and significant shortest paths evaluated by structural equation mod-
eling (SEM). The procedure was tested on a microarray experiment concerning
tuberculosis (TB) disease. The validation of the final disease module was
principally done by the Wang similarity semantic index and the Disease
Ontology enrichment analysis. Finally, a topological analysis of the module via
centrality measures and the identification of the cut vertices allowed to unveil
important nodes in the disease module network. The results obtained were
promising, as shown by the detection of key genes for the characterization of the
studied disease.

Keywords: Disease module � Structural equation modeling � Gene expression
data � Significant shortest paths

1 Introduction

The reductionist approach in medicine, based on the principle of “divide and conquer”,
although useful, present limits when it is necessary to explain the onset and progression
of complex diseases. In fact, the approach is rooted in the assumption that if a complex
problem is divided into more understandable and smaller units, then by their recon-
struction, it is possible to unveil the studied complex problem.

For this reason, there are lists of genes associated with diseases. OMIM, a free
database [1], for example, offers a catalogue of genes with the relative description of
their role in the associated phenotypes. Conversely to this point of view, in the 1972,
Anderson, in the article “More is complex” [2] affirms that the behaviour of large and
complex aggregate of elementary particles cannot be understood in terms of a simple
extrapolation of the properties of a few particle. At each level of complexity entirely
new properties appear. For this reason, we are assisting to the passage from the
reductionist approach to the systemic approach [3]. Most of biological networks are
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subjected to specific laws [4], as the small world phenomena, which affirms that there
are relatively short paths between any pair of nodes, the scale-free principle, with the
consequence that there are few highly connected nodes; the local hypothesis i.e. the
presence of modules, highly interlinked local regions in the network in which the
components are involved in same biological processes.

The last property, modularity, is a general design principle in biological systems
and has been observed also in transcriptional regulation networks [5]. In biology,
modularity refers to a group of physically or functionally linked molecules (nodes) that
work together to achieve a (relatively) distinct function.

Applying module level analysis should help to study biological systems at different
levels and to understand which properties characterize the level of complexity con-
sidered. Many approaches exist that use a gene-module view as the basic building
blocks of the analysis [6]. In general, it is used to divide the module identification in
three main approaches: (1) network-based approach; (2) expression-based approach;
(3) pathway-based approach [7]. The first approach is based on the topology of net-
work, and modules are defined as subsets of vertices with high connectivity between
them and less with external nodes. The second approach uses gene expression data for
inferring modules of genes exhibiting similar expression by, for example, clustering
methods. The third approach detects expression changes in biological pathways, group
of genes that accomplishes specific biological functions.

The approach proposed in this paper, it is a mix and more general approach that
takes advantage of the three approaches previously described. In fact, the
pathway-based approach was used to detect perturbed KEGG pathways, then the
network-approach was employed to identify the shortest paths between the differen-
tially expressed genes (DEGs) and finally significant shortest paths (SSPs) were found
using the expression data and structural equation modeling (SEM) [8].

The idea to consider shortest paths between DEGs to understand how they are
connected is not new [9–11]. However, differently from the methods previously pro-
posed, the key elements to test are constituted by shortest paths got from the network
generated by the fusion of the relevant pathways. In this way, it is possible to consider
the inter-pathway connectivity of DEGs by significant shortest paths tested by multiple
group SEM. All the SSPs were joined to have the final perturbed disease module.

2 Materials and Methods

The classical differential gene expression analysis allows to identify DEGs. The dif-
ferential analyses at gene level were performed by Significance Analysis of Microarray
(SAM) [12], but any other procedure can be used. The next step is to find the network
context where the DEGs act. The classical way is by pathway analysis also if it is not
always able to detect the required information. In this situation, a solution could be take
all the pathways containing at least one DEG. In the tuberculosis case the “Signaling
Impact Pathway Analysis” (SPIA) was applied [13]. The corresponding perturbed
KEGG pathways can be represented as mixed graphs, where the nodes represent genes
and the edges represent multiple functional relationships between genes as activation,
inhibition, binding etc. The core idea for building a disease module is to understand
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how the DEGs, in the perturbed pathways, are connected between them. The first step
for reaching this goal is to merge all the relevant pathways in a unique graph. The
second step is to find the significant shortest paths that put in communication every
couple of DEGs.

Each shortest path could be represented as a list of nodes P = (pi, pi+1,.., pj-1, pj)
and a list of the corresponding edges E = (ei(i+1), …, e(j-1)j) where (pi, pj) are DEGs and
(pi+1,…, pj-1) can be DEGs or other microarray genes. In this analysis, every edge is
directed. A shortest path can be codified as a structural equation (SE) model, in the
following way:

Pj ¼ bjiPi þ Ej ð1Þ

where Pj represents every gene in the path that is influenced directly by the gene Pi; bji
is the strength of relationship between node Pi and Pj; Ej is a term that represent
external causes that have an effect on Pj but not explicated in the model. Considering
that the shortest paths selected are induced paths, every shortest path can be represented
by j − 1 simple linear equations, where j is the number of nodes in the path.

For the estimation of the parameters bij, the Maximum Likelihood estimation
(MLE) is used, assuming that all observed variables have a multinormal distribution.
For finding the SSPs, the following omnibus test was performed:

H0 :
X

1
ðhÞ ¼

X
2
ðhÞ vs:H1 :

X
1
ðhÞ 6¼

X
2
ðhÞ ð2Þ

where
P

1ðhÞ and
P

2ðhÞ are the model-implied covariance matrices of the groups one
and two, and h represents the parameter of the model. The test verifies if the difference
between the model-implied covariance matrices of each group are statistically signif-
icant (H1) or not (H0) The statistical significance is determined by comparison of
likelihood ratio test (LRT) chi-square ðv2diffÞ values at a given degree of freedom (d.f.
ðv2diffÞ). If there is a significant difference (P < 0.05), after the Benjamin-Hochberg
correction in the chi-squared goodness-of-fit index, the shortest path is considered
statistically significant. All the SSPs were merged to obtain the final disease module.
The final module is a weighted graph, where the weights correspond to the parameters
estimated by SEM. The weights were used for the topological analysis, subsequently
described. To validate the procedure two different approaches were employed: (1) en-
richment analysis based on Disease Ontology (DO), to verify if the module genes are
associated to the family of diseases connected with the analysed disease; (2) semantic
similarity index, based on DO terms, between the list of genes associated “a priori” to
the disease and the list of genes present in the module. DO creates a single structure for
the classification of disease and permits to represent them in a relational ontology [14].
For the semantic similarity, the graph-based strategy proposed by Wang et al. [15] was
applied. The similarity goes from 0, when the lists of genes are not associated, to 1,
when the lists of genes contribute to the same DO terms. For finding the a priori genes,
a search on Entrez Gene [16] was done. For each set of genes, an enrichment analysis
on DO was done and the list of enriched terms was compared with those obtained by
the genes in the module. Finally, a basic network analysis was performed based on
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measures of centralities (betweenness and the Bonacich power centrality score) and
connectivity (detection of articulation nodes). The betweenness centrality for the gene
v is defined as:

X
i6¼j; i 6¼v; j 6¼v

givjngij ð3Þ

where givj are the shortest paths between the node i and j in which the node v is present,
while gij is the number of all shortest paths between the nodes i and j. The normalized
betweenness centrality is obtained:

Bn ¼ 2B= n2 � 3nþ 2
� � ð4Þ

where B is the raw betweenness and n the number of nodes. The Bonacich power
measure corresponds to the notion that the power of a vertex is recursively defined by
the sum of the power of its alters. The formula is the following:

C a; bð Þ ¼ a I� bRð Þ�1R1 ð5Þ

where a is a scaling vector, b is an attenuation factor to weight the centrality of the
nodes, R is the adjacency matrix, I is the identity matrix, 1 is a matrix of all ones. The
articulation nodes are the minimum set of nodes which removal increases the number
of connected components. They represent the nodes that allow to have a connected
module.

The procedure was tested on the dataset GSE54992, where the group of samples of
active tuberculosis (TB) (9 samples) were compared to healthy control (6 samples).

3 Results

SAM revealed 2152 significant genes using as delta value a value of 1.178 corre-
sponding to a FDR value less than 0.05 and a minimum fold change of 2. On the 2152
DEGs, SPIA revealed important perturbed pathways (see Table 1), most of them
associated to inflammation and infection as the cytokine-cytokine receptor interaction,
the chemokine signaling pathway, the NF-jB signaling pathway, Legionellosis,
Malaria. The first two pathways for example are induced in the lung in the response to
TB infection to accumulate and mediate formation of granulomas, bacterial control and
protection against the infection [17]. The pathways were transformed in graph and
subsequently merged.

The next step was to find the shortest paths between every couple of DEGs on the
total graph. The total number of shortest paths resulted of 1493 with 316 genes and 745
connections involved. For each shortest path a structural model was generated and
tested to detect those significant. 260 out of 1493 were found relevant involving 206
genes and 330 connections. Figure 1 shows the graph obtained by the fusion of the 260
significant paths.

4 D. Pepe



For the validation of the module two different analyses were performed: (1) one
looks for diseases enrichment analysis; (2) the other measures the semantic similarity
between the genes associated “a priori” with TB and those in the module. The results of
the enrichment analysis on DO were very interesting considering that in the list there of
the enriched diseases there was TB and other diseases that share common biological
mechanisms as cancer, Salmonella infection and pertussis (see Fig. 2).

Table 1. Significant perturbed pathways for tuberculosis data by SPIA analysis.

Name pSize NDE pNDE pPERT pGFdr

Cytokine-cytokine receptor interaction 241 66 0,000 0,000 0,000
Chemokine signaling pathway 177 42 0,000 0,000 0,000
NF-kappa B signaling pathway 75 23 0,000 0,021 0,000
Osteoclast differentiation 120 27 0,000 0,001 0,000
Legionellosis 39 16 0,000 0,287 0,000
Complement and coagulation cascades 65 22 0,000 0,882 0,000
Staphylococcus aureus infection 26 11 0,000 0,035 0,000
Proteoglycans in cancer 198 36 0,000 0,007 0,001
Rheumatoid arthritis 17 7 0,001 0,014 0,003
Pathways in cancer 308 49 0,001 0,011 0,003
Inflammatory mediator regulation of TRP channels 87 18 0,003 0,009 0,004
Toxoplasmosis 91 22 0,000 0,510 0,007
Focal adhesion 206 32 0,011 0,006 0,008
MAPK signaling pathway 248 40 0,003 0,051 0,014
Viral myocarditis 26 9 0,001 0,219 0,016
Mineral absorption 8 5 0,000 0,344 0,016
Pertussis 49 14 0,000 0,630 0,016
Systemic lupus erythematosus 12 4 0,028 0,007 0,016
ECM-receptor interaction 86 14 0,054 0,004 0,017
Intestinal immune network for IgA production 25 9 0,001 0,441 0,017
Leishmaniasis 47 12 0,002 0,115 0,018
Influenza A 105 21 0,002 0,143 0,019
Amoebiasis 45 13 0,000 0,740 0,019
Rap1 signaling pathway 204 35 0,002 0,228 0,021
Toll-like receptor signaling pathway 97 21 0,001 0,900 0,032
Melanogenesis 99 15 0,079 0,008 0,032
Regulation of actin cytoskeleton 182 30 0,006 0,121 0,034
Malaria 11 5 0,003 0,266 0,037
Sphingolipid signaling pathway 98 20 0,002 0,483 0,041

pSize = number of genes in the pathway; NDE = number of DEGs in the pathway;
pNDE = p-value for the enrichment analysis; pPERT = p-value for the accumulated
perturbation; pGFdr = combined p-value from the two previuos two p-value adjusted for the
Fdr.
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For the validation with the semantic similarity approach, the genes associated with
TB in the database “Gene” of NCBI were detected. They were 312. The intersection of
the genes in the module with those associated to TB revealed 24 genes in common. Of
these, 13 were DEGs while the remaining genes were not DEGs. This result shows the
limits of differential analysis when this stops to the detection of DEGs without
understanding how these are connected. The semantic similarities between the two
lists, based on DO terms was of 0.913. This means that the lists are highly related in
terms of associated diseases. The following analyses were performed: (1) detection of
the top 10 genes with the highest betweenness score and with the highest Bonacich’s
power centrality measure (Table 2); (2) detection of the cut vertices (Table 3). The
highest values of normalized betweenness and Bonacich measure, on the weighted
disease module, were associated to the gene SOCS3. This is very encouraging as it is
known its fundamental role in immune responses to pathogens [18]. In fact, SOCS3
was considered as the most important family member for the association to autoim-
munity, oncogenesis, diabetes and pathogenic immune evasion. It regulates both
cytokine- and pathogen-induced cascades. Considering its importance, it was proposed
as a therapeutic target [19]. Regarding the articulation point analysis, many interesting
genes are present as the TNF, whose inhibition increases the risk of infections [20], as
well as MAPK12 and some relevant kinases [21].

Fig. 1. TB disease module where the green nodes are the DEGs, the yellow ones the not DEGs
that allows to the perturbation signal to propagate between the DEGs. Triangular nodes are the
articulation point and the diamond node represents the gene SOCS3. Some key genes are
highlighted with red circles. (Color figure online)
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Fig. 2. Enriched diseases using the gene in the SSP module. Tuberculosis in one of the most
enriched disease.

Table 2. Most relevant tuberculosis genes in the disease module based on betweeness (Betw)
and Bonacich centrality measures.

Entrez Official
name

Description Centrality
Measure

Centrality

9021 socs3 suppressor of cytokine signaling 3 0,06 Betw

4790 NFKB1 nuclear factor kappa light polypeptide gene enhancer in
B-cells 1

0,05 Betw

8517 ikbkg inhibitor of kappa light polypeptide gene enhancer in
B-cells, kinase gamma

0,05 Betw

998 Cdc42 cell division cycle 42 (GTP binding protein, 25 kDa); 0,04 Betw

8660 irs2 insulin receptor substrate 2 0,03 Betw

4301 mllt4 myeloid/lymphoid or mixed-lineage leukemia 0,02 Betw

5294 PIK3CG phosphoinositide-3-kinase, catalytic, gamma polypeptide 0,02 Betw

8826 IQGAP1 IQ motif containing GTPase activating protein 1 0,02 Betw

25945 PVRL3 poliovirus receptor-related 3 0,02 Betw

6714 Src v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene
homolog

0,02 Betw

9021 socs3 suppressor of cytokine signaling 3 20,25 Bonacich

4301 mllt4 myeloid/lymphoid or mixed-lineage leukemia 14,24 Bonacich

5209 pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 12,24 Bonacich

10458 BAIAP2 BAI1-associated protein 2 10,91 Bonacich

(continued)

Module Detection Based on Significant Shortest Paths 7



Table 2. (continued)

Entrez Official
name

Description Centrality
Measure

Centrality

2354 fosB FBJ murine osteosarcoma viral oncogene homolog B 9,88 Bonacich

8659 ALDH4A1 aldehyde dehydrogenase 4 family, member A1 8,92 Bonacich

4790 NFKB1 nuclear factor kappa light polypeptide gene enhancer in
B-cells 1

7,74 Bonacich

208 akt2 v-akt murine thymoma viral oncogene homolog 2 7,43 Bonacich

92579 G6pc3 glucose 6 phosphatase, catalytic, 3 6,31 Bonacich

8936 WASF1 WAS protein family, member 1 6,25 Bonacich

Table 3. Articulation points from the tuberculosis disease module.

Entrez Official
name

Description

6723 SRM spermidine synthase
6774 Stat3 signal transducer and activator of transcription 3

126129 Cpt1c carnitine palmitoyltransferase 1C
6300 MAPK12 mitogen-activated protein kinase 12
2582 gale UDP-galactose-4-epimerase
5578 Prkca protein kinase C, alpha
2354 fosB FBJ murine osteosarcoma viral oncogene homolog B
111 adcy5 adenylate cyclase 5
5332 Plcb4 phospholipase C, beta 4
27165 GLS2 glutaminase 2 (liver, mitochondrial)
7124 TNF tumor necrosis factor (TNF superfamily, member 2)
217 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial)

51005 AMDHD2 amidohydrolase domain containing 2
1573 cyp2j2 cytochrome P450, family 2, subfamily J, polypeptide 2
2744 GLS glutaminase
3984 limk1 LIM domain kinase 1
7186 traF2 TNF receptor-associated factor 2
7358 UGDH UDP-glucose dehydrogenase
1500 CTNND1 catenin (cadherin-associated protein), delta 1
2673 GFPT1 glutamine-fructose-6-phosphate transaminase 1
5563 prkaa2 protein kinase, AMP-activated, alpha 2 catalytic subunit
1994 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1
4942 OAT ornithine aminotransferase (gyrate atrophy)
8503 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
5881 rac3 ras-related C3 botulinum toxin substrate 3
5743 PTGS2 prostaglandin-endoperoxide synthase 2
2043 EPHA4 EPH receptor A4
5742 Ptgs1 prostaglandin-endoperoxide synthase 1
5361 PLXNA1 plexin A1

(continued)
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4 Conclusion

In this paper, it was proposed a module level analysis for gene expression data that
could take over the present methods for the identification of modules. It is used to
divide the detection approaches in network-based, expression-based and pathway
based. The approach here described is a mixed approach that starting from relevant
pathways in which the DEGs are involved, detects the significant shortest paths by
network, gene expression information and statistical analysis. The new concept is
surely connected to the use of SEM for testing the significance of each shortest path
model and the possibility to consider more pathways together, allowing to overcome
the limiting idea of the pathway independence. Briefly, the pipeline consists in the
following points: (1) discovering of DEGs associated to the disease; (2) understanding
on which pathways the DEGs act; (3) joining in a unique graph all the relevant
pathways; (4) performing the significant shortest path analysis for finding the disease
module. The procedure was tested on a gene expression microarray concerning TB, but
it can be applied to any gene expression experiment where the two-groups comparison
is requested. The differential analysis of the shortest paths revealed significant shortest
paths that characterize the experimental group on the control. The module obtained
merging all the SSPs allowed to detect the key molecular network that could explain
the disease. Very important genes were found as the SOCS3, TNF and MAPK2. The
validation of the module by DO enrichment and similarity analysis has highlighted that

Table 3. (continued)

Entrez Official
name

Description

5567 PRKACB protein kinase, cAMP-dependent, catalytic, beta
8660 irs2 insulin receptor substrate 2
55577 nagK N-acetylglucosamine kinase
2773 GNAI3 guanine nucleotide binding protein (G protein)
26 ABP1 amiloride binding protein 1

5365 PLXNB3 plexin B3
1793 DOCK1 dedicator of cytokinesis 1
7132 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A
2805 GOT1 glutamic-oxaloacetic transaminase 1
8659 ALDH4A1 aldehyde dehydrogenase 4 family, member A1
4893 NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
5502 ppp1r1a protein phosphatase 1, regulatory (inhibitor) subunit 1A
3065 Hdac1 histone deacetylase 1
2534 FYN FYN oncogene related to SRC, FGR, YES
11069 Rapgef4 Rap guanine nucleotide exchange factor (GEF) 4
4790 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
5879 rac1 ras-related C3 botulinum toxin substrate 1
998 Cdc42 cell division cycle 42
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the genes in the modules are strictly associated to the a priori genes connected with the
disease. In conclusion, the approach, is surely notable as new approach for downstream
analysis of gene expression data. Future developments could be the application of the
procedure to data from the integration of different NGS experiments.

Funding acknowledgement. This research was funded by the MIMOmics grant of the Euro-
pean Union’s Seventh Framework Programme (FP7-Health-F5-2012) under the grant agreement
number 305280.
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Abstract. High throughput technologies have increased the need for
automated image analysis in a wide variety of microscopy techniques.
Geometric active contour models provide a solution to automated image
segmentation by incorporating statistical information in the detection
of object boundaries. A statistical active contour may be defined by
taking into account the optimisation of an information-theoretic measure
between object and background. We focus on a product-type measure
of divergence known as Cauchy-Schwartz distance which has numerical
advantages over ratio-type measures. By using accurate shape derivation
techniques, we define a new geometric active contour model for image
segmentation combining Cauchy-Schwartz distance and Gabor energy
texture filters. We demonstrate the versatility of this approach on images
from the Brodatz dataset and phase-contrast microscopy images of cells.

Keywords: Geometric active contours · Cauchy-Schwartz distance ·
Gabor energy · Texture feature segmentation

1 Introduction

Due to high throughput technology, a great influx of imaging data has become
available in biomedical research producing large datasets that need to be
processed in a reliable and unbiased way. As a result, there is an increased need
for computer automation throughout the imaging framework [1] and in par-
ticular in the extension from high throughput to assays that include dynamic
behaviour over time [2]. Existing image analysis frameworks are focused either
on pre-processing the image to remove artifacts and enhance signal-to-noise ratio
[3]; or using local intensity and texture information to delineate the cell surface
from the background [4]. The latter category is non technology-specific and cou-
pled with the ability to estimate parameters from data has the potential to unify
detection techniques [5].
c© Springer International Publishing AG 2017
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Image segmentation is the task of partitioning an image into meaningful
regions delineating objects and the background. Region-based segmentation
takes into account the statistical properties of the image for example through
density estimation techniques. Often the object regions are not Gaussian-
distributed in pixel intensity making the detection by standard image analy-
sis techniques (thresholding, edge-detection, region-based and connectivity pre-
serving techniques) extremely challenging. This is the case in phase-contrast
microscopy which is a widely used imaging technology, however images produced
have low signal-to-noise ratio and illumination artifacts (bright halo around
boundaries) caused by changes in object shape [3].

Active contour models are an unsupervised image segmentation technique
consisting in defining a dynamic contour stretching over the object boundaries
which partitions the image into distinct regions [6]. Geometric active contour
models use an embedding of the contour into a higher dimensional surface (level
set function) which is adapted to the information in the image until it con-
verges to the object boundaries [7,8]. Geometric models overcome instability
and topology problems of parametric active contours [6] and in addition enable
probabilistic characterization of regions [9].

In this study, the Cauchy-Schwartz measure [10,11] of divergence is used to
optimise image segmentation. Product-type measures such as Cauchy-Schwartz
distance and Battacharyya distance [12] have numerical advantages over ratio-
type measures including Kullback-Leibler [13] and Renyi’s entropy in the approx-
imation of region-specific distributions. By combining information theory, Gabor
energy texture and a feature selection strategy, an automated segmentation strat-
egy is described that can recover boundaries in textured images and challenging
phase-contrast microscopy examples.

2 Materials and Methods

Let Ω0 be a bounded open subset of R
2 and let I : Ω0 ⊂ R

2 → R represent
an image. The partitioning of image Ω0 into two non-overlapping regions: the
target region Ω and the background region Ω0\Ω is defined by function f : Ω0 ⊂
R

2 → R
n, f(x) = [f1(x), f2(x), ..., fn(x)]T which associates any image location

x = (x, y) ∈ R
2 to a vector of features fi. The dimension of the feature space is

determined by the nature of features, e.g. n = 1 for grayscale intensity, n = 3 for
color images or large n in the case of texture.

Features observed over the target and background regions represent random
variables independently sampled from a target distribution, pt(f(x)) and a back-
ground distribution pb(f(x)) defined as:

pt(f(x)) =
1

||Ω||
∫

Ω

K(f(x) − f(x̂))dx̂ (1)

pb(f(x)) =
1

||Ω0 \ Ω||
∫

Ω0\Ω

K(f(x) − f(x̂))dx̂
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where x̂ denote uniformly distributed sampling locations from where the fea-
ture observations f(x̂) are collected and K(f(x)) is a Parzen (Gaussian) density
estimation kernel [14].

In the following, the use of the Cauchy-Schwartz information-theoretic mea-
sure is discussed as basis for defining a new image segmentation model. Cauchy-
Schwartz distance is a measure of divergence between two distributions. It
is part of a class of cross-entropy measures that includes Kullback-Leibler,
Battacharyya and Renyi’s entropy. The Cauchy-Schwartz distance is derived
from the Cauchy-Schwartz inequality [10]:

||u||2||v||2 ≤ (uTv)2 ⇔ − log
uTv√

||u||2||v||2
≥ 0. (2)

where u and v are any two vectors. Cauchy-Schwartz distance is a product-type
measure which alongside with Battacharyya distance has been shown to provide
numerical advantages over ratio-type measures such as Kullback-Leibler in the
approximation of region-specific distributions [11]. Given a partitioning of the
image, region-specific pt and pb can be optimally estimated by modifying the
partitioning in the direction of maximising Cauchy-Schwartz distance:

DCS (pt(f(x)), pb(f(x))) = − log

∫
Rn pt(f(x))pb(f(x))df√∫

Rn p2b(f(x))df
∫
Rn p2t (f(x))df

≥ 0. (3)

2.1 Geometric Active Contour Model Based on Cauchy-Schwartz

The active contour partitioning of the image is represented using a level set
function:

Φ(x)

⎧⎨
⎩

> 0, if x ∈ Ω
< 0, if x ∈ Ω0 \ Ω
= 0, if x ∈ ∂Ω

. (4)

Maximising (3) is equivalent to minimising the argument of the logarithm.
In the following, this is refered to as the Cauchy-Schwartz (CS) criterion:

CS(pt(f(x)), pb(f(x))) =

∫
Rn pt(f(x))pb(f(x))df√∫

Rn p2t (f(x))df
∫
Rn p2b(f(x))df

. (5)

Let the notations be introduced:

G1(x, Ω) = pt(f(x)); G3(x, Ω) =
∫

Rn

p2t (f(x))df; (6)

G2(x, Ω) = pb(f(x)); G4(x, Ω) =
∫

Rn

p2b(f(x))df;

We define the Cauchy-Schwartz region-based geometric active contour
model as:

J(Φ) =
∫
Rn

G1(x, Ω)G2(x, Ω)√
G3(x, Ω)G4(x, Ω)

df + μ

∫
∂Ω

ds = J1(Φ) + J2(Φ) (7)
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where J1(Φ) is a region-based term enforcing the CS criterion (5) and J2(Φ) is a
boundary-based term enforcing minimum length of the contour. The evolution
of Φ(f(x), t) from an initial given state Φ(f(x), 0) = Φ0(f(x)) in the direction of
minimising (7) is parameterised by t ≥ 0.

Weuse shape derivation theory [15,16] to obtain theEuler derivative of (7).The
term J1(Φ) =

∫
Rn k(x, Ω)df is a region-based term with region-dependent descrip-

tor k(x, Ω) = G1(x, Ω)G2(x, Ω)G3(x, Ω)−1/2
G4(x, Ω)−1/2. Derivation leads to a

summation of region-based terms with region-dependent descriptors detailed in
the Appendix. Therefore, the Euler derivative of J1 in the direction of v is:

dJ1r(Ω,v) =
A(x, Ω)

||Ω0 \ Ω||
∫

∂Ω

(
1 − G2(x, Ω)

G4(x, Ω)

)
G1(x, Ω) ∗ K(f(x)) (v · n) ds + (8)

− A(x, Ω)

||Ω||
∫

∂Ω

(
1 − G1(x, Ω)

G3(x, Ω)

)
G2(x, Ω) ∗ K(f(x)) (v · n) ds

where A(x, Ω) = G
−1/2
3 (x, Ω)G−1/2

4 (x, Ω) and ∗ denotes convolution.
The term J2(Φ) is a boundary-based term with boundary-independent

descriptor, therefore dJ2r(Ω,v) = − ∫
∂Ω

μdiv
(

|∇Φ|
||∇Φ||

)
(v · n)ds. The evolution

equation becomes:

∂Φ

∂t
=

[A(x, Ω)
||Ω||

(
1 − G1(x, Ω)

G3(x, Ω)

)
(G2(x, Ω) ∗ K(f(x))) − (9)

− A(x, Ω)
||Ω0 \ Ω||

(
1 − G2(x, Ω)

G4(x, Ω)

)
(G1(x, Ω) ∗ K(f(x))) + μdiv

( |∇Φ|
||∇Φ||

) ]
n.

2.2 Gabor Energy Texture Features

Texture features include spatial information of pixel intensities. Commonly used
in image processing is Gabor filtering which decomposes the image into sub-
bands with a preferred orientation and spatial frequency by kernel convolu-
tion. The use of Gabor energy features sets the basis for a nonlinear multi-scale
method of describing texture that resembles the way information is interpreted
in the visual cortex [17,18]. A 2D Gabor filter has the expression:

gλ,σ,γ,θ,ϕ(x, y) = e− x′2+γ2y′2
2σ2 cos

(
2π

x′
λ

+ ϕ
)

x′ = (x − x0) cos θ + (y − y0) sin θ (10)
y′ = −(x − x0) sin θ + (y − y0) cos θ

where θ ∈ [0 π) is the rotation angle of the gaussian envelope and λ and ϕ ∈
(−π π] denote the spatial frequency and phase of the sinusoidal carrier. The
Gaussian envelope is characterised by parameters γ, which specifies ellipticity
and σ, a scaling parameter which controls the size of the Gaussian. The ratio
σ/λ controls the number of parallel on and off stripes that the kernel contains.
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This ratio is determined by the bandwidth b. In the following, we consider the
case of b = 1 for which σ = 0.56 λ. The response of a Gabor filter (10) applied
to an image is:

rλ,σ,γ,θ,ϕ =
∫

Ω

I(u, v)gλ,σ,γ,θ,ϕ(x − u, y − v)dudv. (11)

Gabor energy represents the combined magnitude of phase-shifted responses:

eλ,σ,γ,θ(x, y) =
√

r2λ,σ,γ,θ,0(x, y) + r2λ,σ,γ,θ,− π
2
(x, y). (12)

Single Orientation Texture Features. Gabor energy feature function can be
defined by discretising λ = [λmin, λmin+Δλ, . . . ], γ = [γmin, γmin+Δγ, . . . ] and
θ = [θ1, θ2, . . . ], θk = k π

N , k = 0, N − 1. Single orientation features are combined
into a set:

f1 : Ω0 ∈ R
n, f1(x, y) = [f11,0(x, y), f11,1(x, y) . . . f1n,N−1(x, y)]T (13)

where f1n,k = eλn,γn,θk
(x, y).

Combined Orientation Texture Features. For textures without a preferred
spatial orientation, combined Gabor energy features representing the superposi-
tion of Gabor energy terms for multiple orientations are added to a set:

f2 : Ω0 ∈ R
n, f2(x, y) = [f21(x, y), f22(x, y) . . . f2n(x, y)]T (14)

where f2n(x, y) =
N∑

k=1

eλn,γn,θk
(x, y).

Fig. 1. Feature selection strategy produces a CS optimal feature set.

2.3 Feature Selection Strategy

The number of texture features increases computational complexity. This can
be prevented by using a suitable feature selection strategy. In the following, a
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Fig. 2. Grayscale intensity segmentation using (a) Cauchy-Schwartz and (b) Kullback-
Leibler models applied to a phase-contrast microscopy image of a cell: initialisation (top
panel) is identical and evolution of the active contour is shown at intermediate (middle
panel) and final (bottom panel) iterations accompanied by corresponding target and
background distributions. Parameters μ = 0.001; w = 10.

Fig. 3. Grayscale intensity segmentation using Cauchy-Schwartz model: (a) final itera-
tion of active contour segmentation of phase-contrast microscopy images of cells (image
inserts) with narrow band shown as a shaded region; (b) target and background dis-
tributions corresponding to contours in (a). Parameters μ = 0.2; w = 5.
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supervised approach is proposed to maximise the potential of each initialisation
by using the region defined by Φ0 as prior information of the densities of target
pt and the background pb and performing selection based on the CS criterion
(5). Given features fpool = [fpool,1(x, y), fpool,2(x, y), . . . ], procedure is detailed in
Fig. 1.

The first feature, fpool,u,1(x, y), is chosen according to the procedure:
fsel,0(x, y) = fpool,1(x, y) and the value of the criterion CS0(pt, pb) is used to eval-
uate the rest. Sequentially, features are added to a reduced feature set F = [fsel,u]
and the potential of the selected set to discriminate between pt and pb is evalu-
ated by optimising CSu(pt(F), pb(F)). The feature selection strategy terminates
when the criterion becomes worse CSu(pt, pb) > CSu−1(pt, pb) or when it is
sufficiently minimised CSu(pt, pb) < 0.1CS0(pt, pb).

2.4 Numerical Implementation

The level set function Φ is initialised as a signed distance function and the
pixels in the narrow-band region around the contour are updated followed by

Fig. 4. Brodatz texture segmentation examples in images generated as fusion of two
textures: (a, b) active contours evolving from initialisation (top), intermediate (middle)
and final iteration (bottom) with corresponding estimated target and background dis-
tributions for three dominant features; (c) and (d) optimal feature sets corresponding
to (a) and (b) respectively. Parameters μ = 0.2, w = 15.
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reinitialisation of the distance function to prevent numerical errors using the pro-
cedure in [19]. Density estimation was implemented using a (Parzen) Gaussian
kernel with optimal variance obtained using Scott’s rule [14] where n and m
represent number of features and pixels respectively: σ2

X = 1
n

∑n
i=1 σ2

ii;σ
� =

σXm
1

n+4 .
The narrow band technique was used to reduce computational complexity

from O(n2) to O(nk) where n and k represent the size of the image and of the
narrow band region respectively [20]. Convergence was assesed from stationarity
of the contour, i.e. less than 10% of pixels in the narrow band change sign in
subsequent iterations. The geometric active contour parameters stiffness μ ∈
[0, 1] and width of the narrow band w are reported for each example.

3 Results

To demonstrate the ability of the Cauchy-Schwartz model to recover boundaries
of objects, segmentation examples using grayscale are compared with an existing
information theory-based active contour and limitations of using grayscale in
phase-contrast microscopy images is discussed. Following this, Gabor energy
texture segmentation is demonstrated on a number of Brodatz texture samples
and phase-constrast microscopy images.

3.1 Segmentation of Phase-Contrast Images Based on Grayscale
Intensity only Partially Recovers Boundaries

The CS-based geometric active contour was evaluated on images of cells acquired
with a phase-contrast microscope (Fig. 2). Boundaries of the cell could be recov-
ered in challenging examples where distributions of target and background
regions showed significant overlap (Fig. 2a). We compared these results against
a Kullback-Leibler (KL) active contour described in [13]. The KL model lead to
faster convergence (Fig. 2b, 4 iterations) compared to CS (Fig. 2a, 11 iterations).
Notably, cell debris was correctly excluded in the final contour by both models.
However, by avoiding the local minimum in divergence visible in the final step of
KL segmentation (Fig. 2b), the CS model recovered more of the object interior
at the cost of increased number of iterations.

When applied to a wider phase-contrast microscopy image set results
appeared mixed (Fig. 3) and boundaries were only partly recovered by the CS
model (Fig. 3a) and no improvements were noted using KL (data not shown).
Images with halo artifacts and the inclusion of dark and bright objects which
are characteristic of phase-contrast, appeared to increase errors in the detection
of target distributions (Fig. 3b). Overall, these examples indicated that not all
microscopy images could be segmented using grayscale intensity alone. Given
that the CS criterion showed increased detection compared to KL, we further
tested the CS model by including information hidden in the texture character-
istics of target and background regions.
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3.2 Gabor Features Enable Detection of Noisy Object Boundaries
in Textured Images

To investigate the ability to recover boundaries using Gabor texture features, test
images were generated by fusing samples from the Brodatz [21] dataset (Fig. 4).
The fused textures have similar mean intensity and contain noise thus resembling
properties of microscopy images. A single orientation feature space was generated
using b = 1, λ = [1/15, 1/30, 1/60, 1/120, 1/240], γ = [0.2, 0.4, 0.6, 0.8, 1];
this was reduced to an optimal feature set using the CS-based feature selection
strategy and the active contour was able to successfully recover the boundaries by
estimating the target and background distributions. More features are selected in
the example (Fig. 4b) and they appear more similar to each other when compared
to (Fig. 4c). This suggested that a sparse feature set may be preferable to a finely
sampled one.

3.3 Cauchy-Schwartz Model Detects Cells in Phase-Contrast
Images Using Gabor Features

The performance of the geometric active contour and feature selection strategy
were tested on real microscopy images displaying cells with bright and dark cell
interior (Figs. 5 and 6). The texture of cells has no preferred orientation, there-
fore the feature space was combined from features at 8 different orientations
followed by reduction to an optimal feature set. The active contour could detect
each cell separately (Fig. 5) as well as jointly (Fig. 6). As expected, initial CS
level exceeded the optimal threshold (final CSu) obtained by the feature selec-
tions strategy (Fig. 1) but consistently fell under at large iteration numbers in all
examples (Figs. 5c, d and 6b; dashed lines indicate optimal threshold). Bound-
aries of the dark cell (Fig. 5a) were easiest to detect as indicated by a large drop
followed by approximately linear decay in the evolution of CS criterion (Fig. 5c).
The bright cell example (Fig. 5b) posed increased difficulty in detection thus
requiring larger iteration numbers compared to the dark one. In this case, the
trend of the CS criterion showed a region of local minima followed by slow expo-
nential decay (Fig. 5d). The combined bright and dark cell segmentation (Fig. 6a)
proved the most challenging with multiple local minima and requiring the most
iterations to achieve minimisation below the optimal threshold (Fig. 6b). These
examples highlight that the problem of simultaneous segmentation of multiple
objects with different intensity characteristics has an unexpectedly high level of
difficulty when compared to the detection of individual objects. Nevertheless,
the proposed feature selection and CS-based segmentation strategy is flexible
enough to deal with either case and thus provides a solid basis for multiple
object detection in microscopy images.
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Fig. 5. Single cell detection using texture: (a, b) active contours evolving from initiali-
sation (top), intermediate (middle) and final (bottom) interations applied to a cell with
(a) dark and (b) bright cell interior; (c) and (d) show optimal features and criterion
minimisation corresponding to (a) and (b) respectively. Parameters μ = 0.2; w = 15.
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Fig. 6. Multiple cell detection using texture shows natural splitting of the contour
to recover individual target regions: (a) active contours evolving from initialisation
(top), intermediate (middle) and final (bottom) interations applied to a phase-contrast
microscopy image of cells with bright and dark cell interior; (b) optimal feature sets
and minimisation of criterion corresponding to (a); dashed line indicates optimal values
of criterion predicted by the feature selection strategy. Parameters μ = 0.2; w = 15.

4 Conclusions

The challenges of segmentation in phase-contrast microscopy images were
addressed through a strategy combining information theory and Gabor energy
features. A new image segmentation model was defined to optimise Cauchy-
Schwartz (CS) distance between a desired (target) region and the background
using a geometric active contour model. The CS model incorporates the use
of a product-type measure of divergence and shape derivation techniques con-
tributing to improved numerical accuracy. Similar to CS, segmentation based on
Battacharyya distance was shown to improve detection compared to ratio-type
measures [12]. Indeed in grayscale only segmentation, the CS model produced
better separation between target and background regions in phase-contrast
image of cells when compared to a Kullback-Leibler (KL) model [13] but at
the cost of lower convergence speed. However, these results were confined to a
subset of images exhibiting relatively smooth dark cell interior and boundaries
of cells with mixed bright and dark appearance and halo artifacts failed to be
detected by either CS or KL.
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Texture information based on Gabor energy critically improved the recovery
of boundaries of objects (either artificially generated or microscopic cells) with
various intensity distributions. By incorporating Gabor energy features into the
CS model, textured objects with geometric orientation could be recovered with
single orientation features while microscopy images of cells which have non spe-
cific orientation required combined orientation texture features. The introduction
of texture information posed the problem of increased computational complex-
ity which was solved through a CS-specific feature selection strategy to ensure
optimal segmentation.

Overall, this study introduces a unified approach to achieve active contour
segmentation based on the Cauchy-Schwartz information theoretic measure. By
the inclusion of unsupervised feature learning from training target and back-
ground datasets, this work could enable general detection of target objects with-
out prior information of intensity distribution characteristics of the image. By
extension to tracking it could address the lack of a generic platform for detec-
tion of multiple regions in biological images which is a major setback in the
automation of high throughput analysis including dynamic behaviour over time.

Acknowledgments. VB was funded by a doctoral scholarship from The University
of Sheffield. Authors kindly thank members of the Peter W Andrews Laboratory at
the Centre for Stem Cell Biology for providing the microscopy images of cells.

Appendix

The derivative of J1 in the direction of v is computed as:

dJ1r(Ω,v) =
∫

Rn

ks(x, Ω,v)df −
∫

∂Ω

k(x, Ω)(v · n)ds (15)

The shape derivative of k in the direction of v is given by:

ks(Ω,v) =
∂k

∂G1
dG1r(Ω,v) +

∂k

∂G2
dG2r(Ω,v) +

∂k

∂G3
dG3r(Ω,v) +

∂k

∂G4
dG4r(Ω,v).

(16)

The term G1 is a region-based term with region-dependent descriptor.

G1(x, Ω) =
∫

Ω

H1(x, Ω)dx̂; H1(x, Ω) =
K(f(x) − f(x̂))

K11(x, Ω)
; (17)

K11(x, Ω) =
∫

Ω

L11(x, Ω)dx̂; L11(x, Ω) = 1.

The Eulerian derivative of G1 is:

dG1r(x, Ω,v) =
1

||Ω||
∫

∂Ω

(pt(f(x)) − K(f(x) − f(s))) (v · n) ds. (18)
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Similarly, the derivative of G2 is:

dG2r(x, Ω0 \ Ω,v) = − 1
||Ω0 \ Ω||

∫
∂Ω

(pb(f(x)) − K(f(x) − f(s))) (v · n) ds.

(19)
Note that the expression (19) has a change of sign due to the normal vector n
that changes direction w.r.t. the target and background region.

The term G3 is a function of region-based terms:

G3(x, Ω,v) =
∫

Rn H3(x, Ω)df; H3(x, Ω) = K31(x,Ω)2

K32(x,Ω)2
. (20)

The shape derivative of H3 in the direction v of (20) is:

H3s(Ω,v) =
∂H3

∂K31
dK31r +

∂H3

∂K32
dK32r (21)

where the terms K31, K32 are region-dependent terms with region-dependent
descriptors and factorise as:

K31(x, Ω) =
∫

Ω

L31(x, Ω)dx̂; L31(x, Ω) = K(f(x) − f(x̂)); (22)

K32(x, Ω) =
∫

Ω

L32(x, Ω)dx̂; L32(x, Ω) = 1.

The corresponding derivatives are:

dK31r = −
∫

∂Ω

K(f(x) − f(x̂)) (v · n) ds (23)

dK32r = −
∫

∂Ω

(v · n) ds.

Substituting (23) into (21), the expression for the derivative of G3 becomes:

dG3r(x, Ω,v) =
2

||Ω||
∫

∂Ω

(G3(x, Ω) − K(f(x) − f(x̂))) (v · n) ds. (24)

Similarly, the derivation of the term G4 with a sign change corresponding to the
orientation of n w.r.t. the background region has the expression:

dG4r(x, Ω0 \ Ω,v) = − 2
||Ω0 \ Ω||

∫
∂Ω

(G4(x, Ω) − K(f(x) − f(x̂))) (v · n) ds.

(25)
Substituting results (18), (19), (24), (25) into (16), the shape derivative of

the descriptor k is obtained:

ks(Ω,v) = 1
||Ω||

∫
∂Ω

G2G
−1/2
3 G

−1/2
4 (G1 − K) (v · n) ds (26)

− 1
||Ω0\Ω||

∫
∂Ω

G1G
−1/2
3 G

−1/2
4 (G2 − K) (v · n) ds

− 1
||Ω||

∫
∂Ω

G1G2G
−3/2
3 G

−1/2
4 (G3 − K) (v · n) ds

+ 1
||Ω0\Ω||

∫
∂Ω

G1G2G
−1/2
3 G

−3/2
4 (G4 − K) (v · n) ds.
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Following cancellation of duplicate terms and reordering, the final expression for
the Eulerian derivative of criterion term J1 is obtained:

dJ1r(Ω,v) = − A(x, Ω)
||Ω||

∫
∂Ω

(
1 − G1(x, Ω)

G3(x, Ω)

)
∫
Rn

G2(x, Ω)K(f(x) − f(x̂))df (v · n) ds (27)

+
A(x, Ω)

||Ω0 \ Ω||
∫

∂Ω

(
1 − G2(x, Ω)

G4(x, Ω)

)
∫
Rn

G1(x, Ω)K(f(x) − f(x̂))df (v · n) ds

where A(x, Ω) = G
−1/2
3 (x, Ω)G−1/2

4 (x, Ω).
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Abstract. Metagenomics is the study of metagenomes which are mix-
tures of genetic material from several organisms. Metagenomic sequenc-
ing is increasingly used in human and animal health, food safety, and
environmental studies. In these high-dimensional (metagenomic) data,
the phenotype of the host organism, e.g., human, may not be obvious
to detect and then the ability to predict it becomes a powerful analytic
tool. For example, consider predicting the disease status of an individual
from their gut microbiome.

In this study, we compare various normalization methods for metage-
nomic count data and their impact on phenotype prediction. The meth-
ods include RoDEO, Robust Differential Expression Operator, originally
developed for gene expression studies. The best prediction accuracy is
observed for RoDEO-processed count data with linear kernel support
vector machines in most cases, for a variety of real datasets including
human, mouse, and environmental samples.

We also address the problem of identifying the most relevant micro-
bial features that could give insight into the structure and function of
the differential communities observed between phenotypes. Interestingly,
we obtain similar or better phenotype prediction accuracy with a small
subset of features as with the complete set of sequenced features.

Keywords: Metagenomics · Phenotype prediction · Differential
abundance · Feature selection

1 Scientific Background

Technological advances in high-throughput sequencing and annotation now allow
the characterization of genomes, transcriptomes, and most recently metagenomes
as part of everyday research in many fields. While single-gene, usually 16S ribo-
somal RNA (rRNA), sequencing can be used to infer bacterial community mem-
bers, whole-genome shotgun sequencing can reveal details of the activity and
function of the microbial community. Meta-transcriptomic sequencing can be
applied to further investigate the actively transcribed sequences. One of the
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major research challenges of the current decade is gaining insight into the struc-
ture, organization, and function of microbial communities which will be enabled
by both experimental and computational metagenomic analyses [1].

Since the sequencing methods yield relative rather than absolute gene or
species counts, a fundamental methodological question of appropriate normal-
ization and scaling of the counts arises. Approaches such as using the raw
counts, log-transformed counts, length-normalized counts, and other normal-
ization methods have been investigated [2–4]. We propose applying RoDEO pro-
jection as a pre-processing method for metagenomic counts.

RoDEO (Robust Differential Expression Operator, http://researcher.watson.
ibm.com/group/5513) [5] was originally designed for detecting differentially
expressed genes from single species RNA-sequencing data. The underlying non-
parametric model and ranking-based ordering of genes can be applied in the
context of various count data, including species counts from metagenomic sam-
ples. We apply RoDEO on metagenomic count data due to its robust design
that does not rely on any assumptions regarding the underlying count distribu-
tions, and its applicability even in the absence of replicate samples, a common
characteristic of metagenomic data.

In this paper we investigate the task of predicting the phenotype of the host
organism (or environment) starting from OTU (Operational Taxonomical Unit,
e.g., species or genus) counts. This question is relevant, for example, if we aim
to predict the disease state from gut or fecal microbiome samples of humans and
animals [7,8]. A recent related work on the topic includes a study of approaches
to metagenomics-based prediction tasks and potential strength of microbiome-
phenotype associations [9].

We investigate the effect of RoDEO projection on the prediction accu-
racy, and contrast it with existing normalization methods, namely Log-
transformation, DESeq2 [10], and CSS (Cumulative Sum Scaling) [2]. We com-
pare several kernel options for SVM (Support Vector Machine) prediction. SVMs
are well established fundamental machine learning methods that have been
applied in genomic, transcriptomic, and recently also in the microbial phenotype
prediction context [11]. We find that the linear kernel SVM yields the best accu-
racy values across all the datasets and normalization methods. We also consider
Random Forests (RF) [12] as they are state-of-the-art classification approaches
and are appropriate for this type of data [13].

Furthermore, we investigate the problem of identifying a subset of OTUs
that are important for differentiating the phenotypes. The process of selecting
a subset of features consists of reducing the size of an high-dimensional dataset
to retain only relevant, differentiating features [14]. We apply feature selection
by identifying the most differentially abundant OTUs between the phenotype
sample groups, and use them for predicting the host phenotype. The top dif-
ferentiating OTUs are selected using two differential gene expression methods
RoDEO DE and DESeq2.

We show that the prediction accuracy obtained selecting the top differential
20 OTUs is comparable, if not higher, to using the entire set of OTUs across all

http://researcher.watson.ibm.com/group/5513
http://researcher.watson.ibm.com/group/5513
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the datasets we consider in our experiments. Although RoDEO DE and DESeq2
yield different sets of top differentiating OTUs, the prediction accuracy values
obtained using the different OTUs subsets are very close. While the prediction
accuracy obtained using RF is often higher or comparable to the one obtained
using SVM with linear kernel, RF is more resource consuming especially for
a large number of features, i.e. when we use the entire set of OTUs for the
prediction.

2 Materials and Methods

In this section we describe the various normalization, differential abundance, and
phenotype prediction methods, as well as the datasets used in this study.

2.1 RoDEO Normalization

RoDEO sequence count data normalization, called projection, is not focused on
the relative counts of reads for each OTU, but on the relative order of the counts
within a sample. The count values of all OTUs in an experiment are utilized
in a re-sampling approach, to determine robust relative ranks of the genes in
several re-sampled instances of the sequencing experiments. A global parameter
P determines the number of possible output values of the projection, ensuring
that samples processed with the same P are comparable.

The projection process of RoDEO takes as input count data, such as the
number of reads mapping to a OTU, and performs repeated re-sampling of the
reads falling on the OTUs. In this way RoDEO projection process obtains a
distribution which represents several randomized draws of sequencing reads from
the input sample, according to the initial OTU abundances. In each re-sampling,
the reads falling onto each OTU are counted, the OTUs are ranked by decreasing
count, and the cumulative curve of the counts is optimally divided into segments
1, ..., P . The number of segments P defines the resolution at which DE genes are
discovered. We choose P for each dataset according to the number of (non-zero)
entries per sample. In the RoDEO publication [5] we use 15–20 segments for
human and plant data with tens of thousands of genes. Thus the dimensionality
of the sequence count data is reduced from thousands of distinct values onto a
small number of P possible values.

The projection and re-sampling makes RoDEO resilient in the presence of
noisy and sparse count data with a large value range, such as observed in metage-
nomic sequencing data, and on a previous application on plant gene expression
data [5].

2.2 DESeq2 Normalization

DESeq2 [10] is a well known method designed for differential analysis of count
data using shrinkage estimation for sequence count dispersions. In a recent work
which evaluates several methods for the identification of differentially abun-
dant genes between metagenomes [4], DESeq2 was found to be among the best
approaches for the task.
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2.3 Other Normalization Methods

The baseline for comparing RoDEO to other methods of processing the counts
is using the raw sequence counts per OTU. Log-transformation is a standard
pre-processing step for sequence count data applied in many studies, including
the respective studies for the datasets analysed in our paper [2,7,15]. Therefore
we take the log of the count data (after adding 1 to all the counts we use the
log function in R to compute the natural logarithm).

In addition, we evaluate prediction results on the CSS method as imple-
mented in QIIME. CSS [2] was introduced in conjunction of the mouse micro-
biome dataset that is included in our study. According to the authors, CSS
corrects the bias in the assessment of differential abundance. We include this
method in our evaluation since it appears better than DESeq (previous version
of DESeq2) for the class separation task studied on the mouse dataset.

2.4 RoDEO Differential Abundance

Differential Abundance of an OTU between two groups is computed as a DA
score (analogously to differential expression, DE, in the gene expression context).
This score takes into account the projected distributions for each sample in
the two groups. In this work we use the mean distance between the projected
distributions instead of mode used in the original paper. The final score for an
OTU is the mean distance between the phenotype group projected distributions
for this OTU multiplied by the max. norm distance (measuring overlap) between
the distributions.

In order to evaluate datasets at different scales, with different numbers of
non-zero OTU counts and total counts, we apply scaling [6]. The main idea is,
we use a different value for the number of projected values P , depending on
the count distributions in the samples. Details on this process on the studied
datasets are provided in the Appendix.

2.5 DESeq2 Differential Abundance

DESeq2 provides both a normalization function, and a DE score computation
function; we use the resulting DE values as the DA per OTU, obtained from the
QIIME [16] microbiome analysis pipeline (version 1.9.1).

2.6 Phenotype Prediction

Support Vector Machines (SVMs) are among the most powerful and versatile
binary classifiers used in a myriad of applications. We evaluate SVMs with lin-
ear, polynomial, radial and sigmoid kernels for phenotype prediction on three
different metagenomic datasets described in Sect. 2.7.

We conduct 10-fold Cross Validation (CV), repeating the process 100 times,
on the four different trained SVM kernels on RoDEO projected counts, log-
transformed counts, as well as the CSS and DESeq2 processed counts. We report
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the accuracy of each prediction as the percentage of correct phenotype calls for
the test set and we include the Matthews Correlation Coefficient (MCC). The
latter coefficient is a measure of the quality of binary classification that can be
used even when the two classes are of very different sizes. MCC can assume
values between +1 and −1, where +1 indicates a perfect prediction, 0 no better
than random and −1 represents total disagreement between predictions and
observations.

After performing 10-fold CV process 100 times, we compute the average of
the 100 accuracy and MCC values for each combination of kernel and dataset.
The average accuracy and MCC values are summarised in Table 1, while the
distribution of accuracy values and their average are visualized in Fig. 1.

Furthermore in Sect. 3.2, we apply, to the whole set of OTUs and to selected
subsets of OTUs, SVM with linear kernel together with another prediction
method, Random Forests, in order to compare their respective prediction accu-
racy, MCC and F1 score values.

The F1 measure is widely applied in information retrieval for measuring
document classification. F1 score has an intuitive meaning: it tells how precise
the classifier is (how many instances it classifies correctly), as well as how robust
it is (it does not miss a significant number of instances). In statistical analysis of
binary classification, the F1 score (which reaches its best value at 1 and worst
at 0) is a measure of test accuracy and can be interpreted as a weighted average
of the precision and recall.

The SVM and RF prediction is computed using the svm() and rf() R functions
(e1071 package). All phenotype prediction results and figures have been produced
using R (version 3.2.3).

2.7 Datasets

We investigate the accuracy of phenotype prediction starting from three differ-
ent available metagenomic datasets: human, mouse, and corpse decomposition
data. The human metagenome sequences originate from genome-wide shotgun
sequencing, while the mouse and corpse data result from targeted rRNA sequenc-
ing. We obtained directly the read counts per OTU in each sample. For more
details on the datasets please see the original publications.

Human dataset [7] consists of fecal metagenome of 70-year-old European
women with either Normal Glucose Tolerance (NGT) or Type 2 Diabetes (T2D).
Though T2D is caused by a complex combination of lifestyle and genetic factors,
an altered gut microbiome has been linked to metabolic diseases including obe-
sity, diabetes and cardiovascular disease. All microbiome samples were sequenced
with Illumina HiSeq2000, and aligned to 2,382 non-redundant reference genomes
(from the National Center for Biotechnology Information (NCBI) and Human
Microbiome Project (HMP databases) in order to determine the composition
of the gut microbiota. In our study we consider 43 NGT and 53 T2D samples
described by a total of 134 OTUs at the family level. The phenotypes for the
human dataset are healthy (NGT, 43 samples) and sick (T2D, 53 samples).
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Mouse microbiome data [2] consist of mice fecal samples. Mice were fed
with either Western (W) or Low-Fat, Plant Polysaccharide-rich (LF-PP) diet.
Fecal samples for each mouse went through Polymerase Chain Reaction PCR
amplification of the bacterial 16S rRNA gene V2 region. OTUs were classified
by RDP11 and annotated. We analyze the dataset composed of 139 samples
and 10,172 OTUs. The phenotypes for this dataset are W diet (54 samples) and
LF-PP diet (85 samples).

Corpse microbiome data [15] consist of time-series samples from donated
human bodies exposed to all natural elements. Two corpses were placed during
the spring for 82 days and two corpses were placed during the winter for 143 days.
Samples from multiple skin and soil locations were taken at different time points,
daily or every other day the first month and less frequently thereafter. 16S rRNA
gene (archaeal and bacterial community), 18S rRNA gene (microbial eukaryotic
community), and ITS region (fungal community) were sequenced with high-
throughput amplicon-based sequencing technology to characterize the full micro-
bial diversity associated with decomposition. Sequence reads were classified into
OTUs on the basis of sequence similarity using QIIME. We examine the read
counts of 213 samples, having sum of counts above 10, taken from the left knee
(skin and soil) at all the time points. There are a total of 17,803 OTUs observed
in these samples. We choose this particular body site as it is sampled for both
spring and winter conditions with sufficient detail, and there are many non-zero
OTUs shared between the two conditions. The phenotypes for the corpse dataset
are spring (79 samples) and winter (134 samples).

3 Results

In this section we summarize the phenotype prediction results on full datasets
and on selected top differentially abundant features.

3.1 Phenotype Prediction on Full Datasets

Figure 1 summarizes visually the average prediction accuracy for each dataset
and kernel, while Table 1 shows in more detail the differences in average pre-
diction accuracy and MCC across the methods and highlights the best results
per dataset. The results show that average accuracy and MCC consistently indi-
cate the same combination of normalization and kernel as best for a particular
dataset.

Human dataset has the lowest prediction accuracy and the lowest Matthews
correlation coefficient. On this data RoDEO is best for nearly every kernel, and
especially clearly improves the linear kernel prediction, yielding the best overall
accuracy of 67.38% and the best MCC of 0.34.

The mouse data prediction is nearly perfect for most kernels and normal-
ization methods. Only the Log data with sigmoid and radial kernels, as well as
DESeq2 and CSS with polynomial kernel have lower accuracy.
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On the corpse data, different kernels have quite different behavior. The worst
seems to be sigmoid kernel and again the best is the linear kernel, where CSS
slightly improves over RoDEO and yields 96.3% accuracy and 0.92 MCC, com-
pared to 96.0% accuracy and 0.91 MCC of RoDEO.

Human prediction accuracy is not as high as for the other datasets studied
here; in the original study they improve it by assembling novel entities from
the unmapped reads and using them as additional features for prediction. This
demonstrates there is still significant relevant content in the microbiomes that
have not been encountered and annotated before. Still, in the mouse and corpse
datasets using sequences mapped against existing databases yield highly accurate
separation of phenotypes.

Most importantly, the best prediction accuracy is observed for RoDEO
processed data in most cases and for the linear kernel. CSS is the second best
method, followed by DESeq2 and Log. Also note that RoDEO clearly improves
prediction accuracy on the clinically relevant human dataset, improving the
chances of correctly diagnosing Type 2 Diabetes based on the gut microbiome.

Table 1. Accuracy as the average percentage of correct phenotype predictions in the
cross validation results using linear, polynomial, radial, and sigmoid kernels. The val-
ues in the accuracy table correspond to the rightmost plots in Fig. 1. On the right,
Matthews correlation coefficient (MCC) values are reported for each dataset and
method. The best accuracy and MCC values are reported in black bold text.

Accuracy (%) MCC

Lin Pol Rad Sig Lin Pol Rad Sig

Human RoDEO 67.38 67.00 62.40 55.72 0.34 0.33 0.26 0.00

Log 56.38 55.25 63.08 56.70 0.12 0.10 0.24 0.03

DESeq2 56.00 57.60 63.00 55.71 0.12 0.15 0.24 0.0

CSS 58.40 60.31 55.70 55.71 0.17 0.20 0.06 0.0

Mouse RoDEO 100.0 99.97 100.0 98.55 0.999 0.998 0.999 0.968

Log 99.99 99.90 76.64 61.86 0.998 0.997 0.514 0.087

DESeq2 100.0 61.15 100.0 99.99 0.999 0.0 0.999 0.998

CSS 100.0 94.11 100.0 99.98 0.999 0.883 0.999 0.998

Corpse RoDEO 96.0 93.90 94.47 49.33 0.91 0.86 0.88 –0.01

Log 82.7 75.75 62.9 56.87 0.63 0.51 0.0 0.01

DESeq2 94.8 83.4 93.7 65.56 0.88 0.65 0.87 0.27

CSS 96.3 81.27 93.6 93.7 0.92 0.60 0.86 0.86

3.2 Phenotype Prediction on Selected Features

In order to establish a baseline on the de-duplicated datasets we use for feature
selection, as discussed in the Appendix, we first evaluate prediction accuracy
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Human

Mouse

Corpse

Fig. 1. Phenotype prediction accuracy in the 100 iterations of 10-fold Cross Validation
for each SVM kernel (linear, polynomial, radial, sigmoid), RoDEO processed data and
other normalization methods for human, mouse, and corpse data. For each dataset,
the distribution plot of average accuracy across 100 iterations is followed by the corre-
sponding overall average accuracy plot.



Host Phenotype Prediction Using RoDEO 35

using all the OTUs. We compute 10-Fold Cross Validation using SVM with lin-
ear kernel (as we show in Sect. 3.1 that the best prediction accuracy overall is
obtained with linear kernel) and Random Forest prediction methods. The aver-
age accuracy, MCC and F1 score values obtained for each dataset and each
normalization and prediction method are shown in Table 2 in the “All OTU”
columns. For the mouse dataset, similarly to the results shown in Table 1, accu-
racy is near perfect for all prediction methods, thus omitted from this evaluation.

Next we apply RoDEO and DeSeq2 differential expression methods to
RoDEO projected data and DeSeq2 normalized data, respectively, and rank
the OTUs according to their differential abundance (DA) scores for all three
datasets. We select the top X where X = 2, . . . , 50 most differential abundant
OTUs and perform 10-fold CV on these subsets of different sizes using SVM
linear and RF, to evaluate the prediction accuracy using the selected features
only. The results are shown in Fig. 2. The horizontal lines denote the accuracy
values reported in Table 2 for all OTUs. Using the most differentially abundant
OTUs allows us to achieve similar or even better accuracy, MCC and F1 score
compared to using the whole set of OTUs.

Based on the results in Fig. 2, we choose the value X = 20 as a representative
small number of OTUs that yields phenotype prediction accuracy comparable
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Fig. 2. RoDEO processed SVM and RF 10-fold CV results on varying numbers of top
OTUs. Horizontal lines (SVM dashed, RF solid) denote the accuracy values when using
all OTUs.

Table 2. Accuracy, MCC and F1 average values of 10 cross-fold validation results using
linear kernel SVM and Random Forest prediction methods and considering either the
top 20 DA OTUs or the complete set of OTUs. The best accuracy, MCC and F1 values
for each dataset is shown in bold text.

Accuracy (%) MCC F1

Subset 20 All OTU Subset 20 All OTU Subset 20 All OTU

RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM

Human RoDEO 70.11 66.22 67.88 57.55 0.42 0.32 0.33 0.05 0.71 0.69 0.71 0.60

DESeq2 65.66 58.88 61.00 59.66 0.32 0.19 0.22 0.15 0.68 0.58 0.65 0.61

Corpse RoDEO 93.93 94.39 88.2 92.44 0.86 0.88 0.75 0.84 0.89 0.92 0.83 0.89

DESeq2 93.42 89.67 86.47 93.85 0.86 0.79 0.71 0.86 0.90 0.85 0.79 0.89
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Fig. 3. Visualization of all OTUs (blue) and top 20 differentially abundant OTUs (red),
for RoDEO (left) and DESeq2 (right) processed data. Each dot represents the average
value of RoDEO projected or DESeq2 normalized samples having one phenotype (x)
versus the other phenotype (y). The scale in each plot corresponds to either RoDEO
projected values or DESeq2 normalized values. (Color figure online)

to all OTUs for all three datasets. In the following, we study in detail using the
top 20 differentially abundant OTUs for phenotype prediction.

Table 2 shows that linear kernel SVM and RF methods using the whole set
of OTUs or the top 20 OTUs give overall similar accuracy/MCC and F1 score
results over all the three datasets. Furthermore, the results show that accuracy,
MCC and F1 score are consistent as they indicate the same best combination of
normalization, DA and kernel methods for a particular dataset. For the human
dataset the best prediction result is given by RF method using RoDEO projected
data and its subset of 20 top DA OTUs. For the corpse dataset the best prediction
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Fig. 4. The histogram shows the distribution of average phenotype prediction accuracy
in 10-fold CV of 100 random subsets of 20 OTUs. Solid lines represent the average
accuracy of the random OTUs subsets, while dashed lines show the average accuracy
of 10-fold CV obtained using only the 20 top DA OTUs.

is obtained with linear kernel SVM on RoDEO projected data using the subset
of 20 top DA OTUs.

The two methods, RoDEO DE and DeSeq2, yield different sets of top OTUs
for all three datasets, but the prediction accuracy, MCC, and F1 scores on them
are still quite close. Although the exact OTU names are different, representatives
from the same family are selected by both methods, such as Lachnospiraceae for
mouse.

Figure 3 shows details about the 20 OTUs in each dataset and for both
RoDEO and DESeq2 methods. Overall the normalized datasets look quite sim-
ilar between methods, but there are some differences, also regarding the values
for the selected top OTUs. For example, DESeq2 appears to select many OTUs
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that have high counts in “western diet” compared to “low fat diet”, while a more
balanced selection is given by RoDEO.

Finally, we validate our method using SVM with linear kernel and RF for
RoDEO processed data and considering 100 random subsets of 20 OTUs for
each dataset. For each of these 100 random subsets we performed 100 times 10
CF validation and we show in Fig. 4 that using 20 random OTUs yield clearly
worse prediction than the one obtained using the top differentiating 20 OTUs
computed by RoDEO DE.

4 Conclusion

In this work we evaluate the applicability of the RoDEO projection method for
metagenomic sequencing data, applying it on the task of phenotype prediction.
We show that RoDEO processing increases the prediction accuracy over current
methods when using SVM with a linear kernel, which we find to be the most
accurate prediction method overall.

We include metagenomic data across human, mouse, and environmental
(corpse decomposition) samples in our evaluation. The human data includes only
a handful of OTUs with counts generated by whole-genome shotgun sequencing,
while mouse and corpse data include thousands of OTUs sampled by targeted
region sequencing. The results suggest that for various types and quantities of
metagenomic data, using RoDEO projection of the sequencing counts onto lower
dimensional values, together with linear kernel SVM yields the most accurate
phenotype prediction results in most cases.

Perhaps surprisingly, in all three real datasets, prediction accuracy using the
top few most differentially abundant OTUs is comparable to using all OTUs.
This may be explained by random noise in the underlying metagenomic sequenc-
ing results, due to the sparse nature of the data and individual variation between
the biological samples.

The actual top OTUs selected vary between the RoDEO and DESeq2 meth-
ods, but both provide accurate phenotype predictions using the respective OTUs.
This indicates potential for accurate disease diagnostics and other phenotype pre-
diction tasks by measuring a handful of most differential features only. RoDEO
projection and feature selection, combined with either RF or SVM prediction
yields consistently accurate phenotype prediction results.

Appendix: Experimental Details

RoDEO Projection Details on Full Datasets

For each of the 96 human samples with 134 OTUs, we run RoDEO for 100 inde-
pendent re-sampling simulations, with P = 7 number of segments, 106 number
of reads for the re-sampling and gap parameter equal to 1. For each of the sam-
ples we compute the average of projected values for each OTU (average of the
100 iterations), and combine all the obtained values in a single matrix.
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Similarly, we apply RoDEO to the 139 mouse samples and 10,172 OTUs for
100 independent re-sampling simulations, with P = 10 number of segments, 107

number of reads for the re-sampling and gap equal to 1, and we compute the
average of projected OTU values.

Finally, we run RoDEO for each of the 213 corpse samples with 17,803 OTUs
for 100 independent re-sampling simulations, with P = 10 number of segments,
107 number of reads for the re-sampling and gap between the samples equal to
2. In the same way as described before, we compute the average of projected
OTU values for each sample.

Feature Selection Details

We start the feature selection process deleting duplicated OTUs from each of
the three initial raw count datasets described in Sect. 2.7. Removing identical
OTUs allow us to deal with smaller datasets and apply Random Forests as
an alternative prediction method to SVM. More precisely, for the corpse data
we remove about 3000 OTUs passing from an original dataset of 213 samples
and 17804 OTUs to a new dataset with 213 samples and 14789 OTUs. For the
mouse data we pass from 139 samples described by 10172 OTUs to 139 samples
described by only 4411 features. Finally, in the human data we find only 4 OTUs
identical in the count and we obtain a new human dataset with 97 samples and
130 OTUs.

We proceed to run DESeq2 on this duplicate-removed data, including the
DESeq2 normalization and subsequent DE computation, in order to obtain a
ranked list of differentially abundant OTUs. For RoDEO, projection and scaling
is required before the DE computation, in order to make the samples directly
comparable across phenotypes. Below is a detailed description of the RoDEO
scaling process described in Sect. 2.1.

For the greatest human sample, i.e. the one with smallest number of zeros, we
run RoDEO for 100 independent re-sampling simulations, with Pg = 7 number
of segments, 106 number of reads for the re-sampling and gap parameter 1. The
number of segments we use to run RoDEO for all the other 96 human samples
varies and depends on the result obtained from the scaling process for a given
sample. All the other required parameters are instead equal to the ones used for
the greatest sample. We then compute the average of projected values for each
OTU (average of the 100 iterations), combine all the obtained values in a single
matrix and we add to each row i, representing sample i, the difference between
the number of segments Pg used to run RoDEO on the greatest sample g and
the number of segment Pi used to run RoDEO on sample i.

Similarly, we apply RoDEO projection and the scaling algorithm to the mouse
dataset running 100 independent re-sampling simulations, with P = 10 number
of segments, 107 number of reads for the re-sampling and gap 1, for the greatest
mouse sample.
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Finally, we run RoDEO on the greatest corpse sample for 100 independent
re-sampling simulations, with P = 10 number of segments, 107 number of reads
for the re-sampling and gap between the samples equal to 2. In the same way
as described before, we compute the averages of projected OTU values for each
sample and we add the difference values from the scaling.
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B., Nielsen, J., Bäckhed, F.: Gut metagenome in European women with normal,
impaired and diabetic glucose control. Nature 498, 99–103 (2013)

8. Ross, E.M., Moate, P.J., Marett, L.C., Cocks, B.G., Hayes, B.: Metagenomic pre-
dictions: from microbiome to complex health and environmental phenotypes in
humans and cattle. PLoS ONE 8, e73056 (2013)

9. Pasolli, E., Tin, D., Truong, F.K., Waldron, L., Segata, N.: Machine learning meta-
analysis of large metagenomic datasets: tools and biological insights. PLoS Com-
put. Biol. 12(7), e1004977 (2016)

10. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

11. Weimann, A., Mooren, K., Frank, J., Pope, P.B., Bremges, A., McHardy, A.C.,
Segata, N.: From genomes to phenotypes: traitar, the microbial trait analyzer.
mSystems 1(6), 1–19 (2016)

12. Ho, T.K.: Random decision forests. In: Proceedings of the Third International
Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

13. Statnikov, A., Henaff, M., Narendra, V., Konganti, K., Li, Z., Yang, L., Pei, Z.,
Blaser, M.J., Aliferis, C.F., Alekseyenko, A.V.: A comprehensive evaluation of mul-
ticategory classification methods for microbiomic data. Microbiome 1, 11 (2013)

14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR
3(11), 57–82 (2013)

https://www.nature.com/nature/journal/v463/n7277/full/463026a.html
https://www.nature.com/nature/journal/v463/n7277/full/463026a.html
http://dx.doi.org/10.1007/978-3-319-14977-6_8


Host Phenotype Prediction Using RoDEO 41

15. Metcalf, J.L., Xu, Z.Z., Weiss, S., Lax, S., Van Treuren, W., Hyde, E.R., Song,
S.J., Amir, A., Larsen, P., Sangwan, N., Haarmann, D., Humphrey, G.C., Ack-
ermann, G., Thompson, L.R., Lauber, C., Bibat, A., Nicholas, C., Gebert, M.J.,
Petrosino, J.F., Reed, S.C., Gilbert, J.A., Lynne, A.M., Bucheli, S.R., Carter,
D.O., Knight, R.: Microbial community assembly and metabolic function during
mammalian corpse decomposition. Science 351(6269), 158–162 (2016)

16. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D.,
Costello, E.K., Fierer, N., Gonzalez Peña, A.G., Goodrich, J.K., Gordon, J.I.,
Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A.,
McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh,
P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.:
QIIME allows analysis of high-throughput community sequencing data. Nat. Meth-
ods 7(5), 335–336 (2010)



DeepScope: Nonintrusive Whole Slide Saliency
Annotation and Prediction from Pathologists

at the Microscope

Andrew J. Schaumberg1,2 , S. Joseph Sirintrapun3 ,
Hikmat A. Al-Ahmadie3 , Peter J. Schüffler4 ,
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Abstract. Modern digital pathology departments have grown to pro-
duce whole-slide image data at petabyte scale, an unprecedented trea-
sure chest for medical machine learning tasks. Unfortunately, most digital
slides are not annotated at the image level, hindering large-scale appli-
cation of supervised learning. Manual labeling is prohibitive, requiring
pathologists with decades of training and outstanding clinical service
responsibilities. This problem is further aggravated by the United States
Food and Drug Administration’s ruling that primary diagnosis must
come from a glass slide rather than a digital image. We present the first
end-to-end framework to overcome this problem, gathering annotations
in a nonintrusive manner during a pathologist’s routine clinical work:
(i) microscope-specific 3D-printed commodity camera mounts are used
to video record the glass-slide-based clinical diagnosis process; (ii) after
routine scanning of the whole slide, the video frames are registered to the
digital slide; (iii) motion and observation time are estimated to generate
a spatial and temporal saliency map of the whole slide. Demonstrating
the utility of these annotations, we train a convolutional neural network
that detects diagnosis-relevant salient regions, then report accuracy of
85.15% in bladder and 91.40% in prostate, with 75.00% accuracy when
training on prostate but predicting in bladder, despite different pathol-
ogists examining the different tissues. When training on one patient but
testing on another, AUROC in bladder is 0.79± 0.11 and in prostate is
0.96± 0.04. Our tool is available at https://bitbucket.org/aschaumberg/
deepscope.
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1 Scientific Background

Computational pathology [12] relies on training data annotated by human
experts on digital images. However, the bulk of a pathologist’s daily clinical work
remains manual on analog light microscopes. A noninterfering system which
translates this abundance of expert knowledge at the microscope into labeled
digital image data is desired.

Tracking a pathologist’s viewing path along the analyzed tissue slide to detect
local image saliency has been previously proposed. These approaches include
whole slide images displayed on one or more monitors with an eye-tracker [5],
mouse-tracker [21] or viewport-tracker [19,23] – but may suffer confounds includ-
ing peripheral vision [18], head turning [1], distracting extraneous detail [2],
monitor resolution [22], multimonitor curvature [25], and monitor bezel field
of view fragmentation [27]. Because computer customizations may potentially
effect viewing times, for studies of pathologists recorded at a computer, we sug-
gest noting the sensitivity and choice of pointing device, e.g. trackball, touch
pad, touch screen, pointing stick, mouse, and if a scroll wheel or keyboard was
available to zoom in or out. Only our approach does not change the patholo-
gist’s medical practice from the microscope. The microscope is a class I device
appropriate for primary diagnosis according to the United States Food and Drug
Administration, while whole slide imaging devices are class III [20].

In light of the confounds of alternatives, its centuries of use in pathology, and
its favorable regulatory position for primary diagnosis, we believe the microscope
is the gold standard for measuring image region saliency. Indeed, there is prior
work annotating regions of interest at the microscope for cytology technicians
to automatically position the slide for a pathologist [4].

Fig. 1. Proposed microscope-based saliency predictor pipeline workflow. The pathology
session is recorded, the slide is scanned, the video frames are registered to scan patches.
Lens change detection guides registration and viewing time is recorded for periods
without motion. A convolutional neural net learns to classify patches as salient (long
looks) or not.
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We therefore propose a new, noninterfering workflow for automated video-
based detection of region saliency using pathologist viewing time at the micro-
scope (Fig. 1). Viewing time is known in the psychology literature to measure
attention [8,15], and we define saliency as pathologist attention when making
a diagnosis. Using a commodity digital camera, rather than a custom embed-
ded eye-tracking device [7,16], we video record the pathologist’s entire field of
view at a tandem microscope to obtain slide region viewing times and register
these regions to whole slide image scan regions. Second, we train a convolutional
neural network [CNN] on these observation times to predict whether or not a
whole slide image region is viewed by a pathologist at the microscope for more
than 0.1 seconds [s]. As more videos become available, our CNN predicting image
saliency may be further trained and improved, through online learning.

2 Materials and Methods

Pathologists. Pathologists were assistant attending rank with several years
experience each. Trainees have different, less efficient, slide viewing strate-
gies [5,18]. Region viewing times and path were automatically recorded during
a pathologist’s routine slide analysis, without interference.

Patient slides. Two bladder cancer patients were studied by author SJS. Two
prostate cancer patients were studied by author HAA. One slide per patient was
used, for four slides total (Fig. 2).

Fig. 2. Bladder cancer left, prostate cancer right. Training, validation, testing done
on top slides, with additional same-tissue testing on bottom slides. For cross-tissue
testing, top slide tested against other top slide. Viewing time heatmap for top left
bladder shown in Fig. 7. Note how the top bladder has more edges than the more solid
bottom bladder, while the prostates have similar tissue texture. We believe this impacts
interpatient accuracy, shown in Fig. 9.
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Fig. 3. Optical flow, showing pixel movement grid. The frame has few moving pixels
before (left) and after (right) pathologist moves the slide. A pathologist looks at a slide
region for the duration of consecutive stationary frames.

Scan preprocessing. Microscope slides, inspected by a pathologist, were
scanned at 0.5 ± 0.003 microns per pixel [px], using an Aperio AT2 scanner.
The resulting SVS data file consists of multiple levels, where level 0 is not down-
sampled, level 1 is downsampled by a factor of 4, level 2 by a factor of 16, and
level 3 by a factor of 32. From each level, 800 × 800 px patches were extracted
via the OpenSlide software library [13]. In bladder, adjacent patches in a level
overlap at least 50%, to avoid windowing artifacts in registration. In prostate,
adjacent patches overlap at least 75%, to best center the pathologist’s field of
view on the little tissue in a needle biopsy. Patches evenly cover the entire level
without gaps. Scans were either taken before a technician applied marker to the
slides, to indicate regions of interest to the pathologist, or after markings were
scrubbed from the slide. However, these marks were evident in the pathologist
videos discussed in the next section.

Video acquisition. A Panasonic Lumix DMC-FH10 camera with a 16.1
megapixel charge-coupled device [CCD], capable of 720p motion JPEG video
at 30 frames per second [fps], was mounted on a second head of an Olympus
BX53F multihead teaching microscope to record the pathologist’s slide inspec-
tion. Microscope objective lens magnifications were 4x, 10x, 20x, 40x, and 100x.
Eyepiece lens magnifications was 10x. The pathologist was told to ignore the
device and person recording video at the microscope during inspection. The
mount (Fig. 1) for this camera was designed in OpenSCAD and 3D-printed on
a MakerBot 2 using polylactic acid [PLA] filament.

Camera choice. Many expensive microscope-mounted cameras exist, such as
the Lumenera INFINITY-HD and Olympus DP27, which have very good pic-
ture quality and frame rate. The Lumenera INFINITY-HD is a CMOS camera,
not CCD, so slide movement will skew the image rather than blur it, and we
did not want to confound image registration or motion detection with rolling
shutter skew. Both cameras trim the field of view to a center-most rectangle for
viewing on a computer monitor, which is a loss of information, and we instead
assign viewing time to the entire pathologist-viewed 800 × 800 px PNG patch
from the SVS file representing the whole slide scan image. Both cameras do not
have USB or Ethernet ports carrying a video feed accessible as a webcam, for
registration to the whole slide scan. The Olympus DP27 may be accessible as a
Windows TWAIN device, but we could not make this work in Linux. Finally, the
HDMI port on both carries high-quality but encrypted video information that we
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cannot record, and we did not wish to buy a Hauppauge HDMI recording device,
because we had a cheaper commodity camera on hand already. We also consid-
ered automated screenshots of the video feed in Aperio ImageScope as displayed
on a computer monitor, but we observed a lower frame rate and detecting lens
change is complicated because the entire field of view is not available. Recording
low-quality video on a commodity camera to a SecureDigital [SD] memory card
is inexpensive, captures the entire field of view, and is generally applicable in
any hospital. For this pilot study, we used only one camera for video recording,
rather than two different microscope cameras, potentially eliminating a confound
for how many pixels are moving during rapid short movements of the slide. For
3D printing requisite camera mounts, open source tools are available.

Video preprocessing and registration. A Debian Linux computer converted
individual slide inspection video frames to PNG files using the ffmpeg pro-
gram. OpenCV software detected slide movement via a dense optical flow proce-
dure [9,10], comparing the current and preceding video frames, shown in Fig. 3.
Through this dense optical flow procedure. We calculated a movement vector for
each pixel of each camera video frame, where a movement vector magnitude of
one means the pixel has been displaced by one pixel in the video frame of interest,

Fig. 4. The best image registration for a given video frame (same frame top left and
top right) from the commodity camera at the microscope eyepiece compared to two
different high-quality patches (bottom left and bottom right) from the whole slide scan
image minimizes the length of the green line, which is the distance from the center of
the patch to the center of the frame mapped into the patch’s coordinate space. The
green line’s length is distance d in Algorithm 1. (Color figure online)
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input : Iframe: image from commodity camera, a video frame
I0, 1, ..., N−1: N overlapping patch images, together spanning whole slide
Iprior ∈ I0, 1, ..., N−1, the best matching patch from previous video frame

output: Ibest ∈ I0, 1, ..., N−1, the best matching patch to Iframe

Sframe ←− set of all SURF interest points in Iframe;
n ←− 0, a counter through I0, 1, ..., N−1 images;
nbest ←− −1, the value of n where In is Ibest;
dbest ←− MAXINT , to store the distance between Ibest and Iframe centers;
while n < N do

if In is three or fewer patches spatially removed from Iprior then
St ←− set of all SURF interest points in In ∈ I0, 1, ..., N−1;
Sfs ←− subset of Sframe points that match SURF feature vector of an St

point;
Sts ←− subset of St points that match SURF feature vector of an Sframe

point;
T ←− rigid body transformation of Iframe pixel coordinate space into In pixel
coordinate space, calculated by point set registration of RANSAC(Sfs, Sts);
d ←− distance in pixels between Iframe center and T (Iframe) center, which
measures how far off-center In is from Iframe;
if d < dbest then

nbest ←− n;
dbest ←− d;

end

end
n ←− n + 1;

end
return In←−nbest , which is Ibest;

Algorithm 1. Automated image registration procedure (Fig. 4) to find
the least off-center patch from a given commodity camera video frame. The
whole slide image is split into N overlapping 800×800 px patches. “Three or
fewer patches spatially removed” means any In must be (i) Iprior, (ii) adja-
cent to Iprior, (iii) adjacent to a patch adjacent to Iprior, or (iv) adjacent to
a patch adjacent to an Iprior-adjacent patch. In this way, In is restricted to a
spatial neighborhood localized around the prior match, typically improving
image registration performance because most slide movements are small.
On lens change, (i) the patch at lower magnification and (ii) the patches at
higher magnification covering the same area as the current magnification’s
neighborhood are considered for registration only.

with respect to the previous video frame. Though the details of this procedure
are beyond the scope of this work, a computationally efficient polynomial expan-
sion method explains a pixel’s movement vector as the previous frame’s pixel
neighborhood polynomial transformed under translation to the current frame’s
pixel neighborhood polynomial, where a 39× 39 px Gaussian weighting function
averages pixel movement vectors for smoothing [9,10]. We defined slide move-
ment to start if 10% or more of pixels in the entire field of view of the camera
have a movement vector magnitude of at least one, and defined slide movement
to stop if 2% or fewer of the pixels in the entire field of view of the camera have
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a movement magnitude vector of at least one. The entire field of view of the
camera is 640 × 480 px, and a small subset of these capture the circular field of
view at the microscope eyepiece, with the remaining pixels being black (Fig. 3).
The representative frame among consecutive unmoving frames moved the least.
The ImageJ [24] SURF [3]1 and OpenCV software libraries registered each rep-
resentative to an 800×800 px image patch taken from the high-resolution Aperio
slide scanner. Each patch aggregated total pathologist time.

The partially automated registration process starts with initial manual regis-
tration of a frame, followed by automated registration within the preceding regis-
tration’s spatial neighborhood (Fig. 4 and Algorithm 1). First, (i) a set Sframe of
SURF interest points were found in the video frame, (ii) a set St of SURF inter-
est points were found in a slide image patch, (iii) SURF interest point feature
vectors were compared in Sframe and St to determine which points were shared
in Sframe and St, and (iv) subsets of Sframe and St points that were shared were
then stored in Sfs and Sts, respectively. Points shared between a camera video
frame and an image patch (Fig. 4 at left, top and bottom) change depending on
the image patch (Fig. 4 at right, top and bottom). Second, we used the OpenCV
implementation of random sample consensus [RANSAC] [11] for point set regis-
tration, to calculate a rigid body transformation from Sfs point pixel positions
in the video frame to Sts point pixel positions in the image patch, to find the
distance in pixels that the video frame is off-center from the patch. Following
this procedure for every image patch in the spatial neighborhood of the previ-
ous image registration, we selected the least off-center image patch as the best
registration, because the pathologist’s fovea is in approximately the same place
in this video frame and image patch. Finally, a manual curation of registrations
ensures correctness. Because slide movements are usually slight, this automated
process reduces manual curation effort because automatic registrations are rarely
far from the correct registration, so after the registration is corrected within a
small localized neighborhood, automatic registrations may proceed from there.
Fully automated image registration is not part of this study.

Fig. 5. Lens change detection: the normal non-black pixel bounding box is initially
415×415 px. A change to 415×282 px indicates the pathologist changing the lens, thus
changing slide magnification. Note some pixels that may appear black are called non-
black due to difficult to perceive noise in the image, which effects calculated bounding
box size. All images shown at same scale trimmed to bounding box.

1 ImageJ SURF is released under the GNU GPL and is available for download from
http://labun.com/imagej-surf/.

http://labun.com/imagej-surf/
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Slide magnification may change during inspection as the pathologist changes
objective lenses. Lens change is detected automatically when the field of view
bounding box of nonblack pixels changes size (Fig. 5). SURF is scale-invariant
so registrations may otherwise proceed at an unchanged magnification.

Deep learning. We used Caffe [14] for deep learning of convolutional features
in a binary classification model given the 800 × 800 px image patches labeled
with pathologist viewing times in seconds. To adapt for our purpose CaffeNet
(Fig. 6), which is similar to AlexNet [17], we re-initialized its top layer’s weights
after ImageNet [6] pre-training. Two output neurons were connected to the re-
initialized layer, then training followed on augmented 800 × 800 px patches for
10,000 iterations in Caffe. In bladder, our model simply predicted whether or
not a pathologist viewed an 800× 800 px patch more than 0.1 s (30 fps camera).
In prostate, due to the higher overlap between adjacent patches and less tissue
available, to be salient a patch met at least one of these criteria: (1) viewed more
than 0.1 s, (2) immediately above, below, left, or right of at least two patches
viewed more than 0.1 s, or (3) above, below, left, right, or diagonal from at
least three patches viewed more than 0.1 s such that all three are not on the
same side. In this way, image patches highly overlapping in the neighborhood
(Algorithm 1) of salient patches were not themselves considered nonsalient if a
pathologist happened to jump over them during observation.

Fig. 6. Caffenet neuron counts, convolutional layers, pooling layers, dropout [26] layers,
and fully-connected layers.

3 Experiments

Urothelial carcinoma (bladder) in Fig. 7 was analyzed first, with author HAA
inspecting at the microscope. Viewed regions at the microscope corresponded to
the whole-slide scan SVS file at magnification levels 2 and 1. We restricted our
analysis to level 2, having insufficient level 1 data. We split level 2 into three
portions: left, center, and right. Due to over 50% overlap among the slide’s total
54 800 × 800 px level 2 patches, we excluded the center portion from analysis,
but retained left and right sides, which did not overlap (Fig. 8).
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Fig. 7. Pathologist viewing times in seconds at the microscope for low (left, 10x, level 2)
and high magnification (right, 20x, level 1), registered to the same urothelial carcinoma
slide scan.

In bladder, we considered a negative example to be a patch viewed for 0.1 s
(3 frames or fewer, 30 fps) or less, and a positive example viewed for more than
0.1 s (4 frames or more). This produced 9 positive and 9 negative examples on
the left side, and the same number on the right. We performed three-fold cross-
validation on the left (6+ and 6− examples training set, 3+ and 3− examples
validation set), then used the model with the highest validation accuracy on
the right to calculate test accuracy, an estimate of generalization error (Fig. 9).
This cross-validation was duplicated ten times on the left, each time estimat-
ing test accuracy, to calculate a confidence interval. We then duplicated this
training/validating on the left and testing on the right.

Training and validation data were augmented. For a 800 × 800 px patch, all
flips and one-degree rotations through 360◦ were saved, then cropped to the
centermost 512 × 512 px, then scaled to 256 × 256 px. This rotation-based data
augmentation biases the neural network to learn rotationally-invariant features
rather than overfit to the training data’s particular orientation, e.g. the angle
of prostate needle biopsy tissue strips. Thus intrapatient and interpatient test
sets are not augmented, but training and validation sets are augmented. The
cancer diagnosis or viewing time in pathology is not expected to change when
rotating or flipping a slide. We direct readers to Krizhevsky et al. 2012 [17] for
more information on data augmentation. Like Krizhevsky’s data augmentation
of 224 × 224 px random crops for small translations, we further augment our
dataset through random crops of 227×227 px, which is the default for CaffeNet.
Unlike Krizhevsky, we do not augment our dataset through minor perturbations
in the principal components of the RGB color space.

In bladder, the augmented training set size was 8,640 patches. This 8,640
count includes rotations and flips, but does not include random crops, which
were performed automatically by Caffe at training time. Caffe randomly cropped
256× 256 px patches to 227× 227 px for each iteration of CaffeNet learning. No
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images in the validation set were derived from the training set, and vice versa.
A training set consists of two concatenated folds, with the remaining fold as
validation. In addition to the bladder cancer slide, we analogously processed two
prostate cancer needle biopsy slides, with author SJS inspecting these slides. In
prostate, the augmented training set size was 8,160 patches.

Training and validation sets are drawn from the same side of the slide, i.e.
both sets on the left or both sets on the right (Fig. 8). Patches in a training
set may have at least 50% overlap with patches in a validation set. Overlap-
ping regions of these images have identical sets of pixels, guaranteeing training
and validation sets are exchangeable for valid cross-validation. If training error
steadily decreases while validation error steadily increases, where training and
validation sets are exchangeable, then the classifier is overfit. In contrast, the
other side of the slide is used as a test set and may appear obviously different

Fig. 8. Scaled image patches of left and right sides of bladder patient 1 slide (Fig. 2).
Middle excluded here and not used in analysis, to isolate left and right sides from each
other. Note far left and far right have less tissue, but tissue is present for training. The
overlap among patches is evenly distributed and greater than 50%.
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Fig. 9. Ten three-fold cross-validation trials for bladder [BLCA] and prostate [PRAD],
evaluated for intrapatient training/validating on left while testing on the right and
vice versa. Each model is evaluated against a different patient (interpatient), slides
in Fig. 2). The needle for prostate cancer biopsy may standardize the distribution of
prostate tissue in the whole slide, maintaining a higher accuracy of the prostate classifier
on an interpatient basis than the bladder cancer classifier. The bladder patients are
transurethral resections taken by cuts rather than a standard gauge needle.

than the training and validation sets, e.g. the left side of Fig. 8 appears differ-
ent than the right side. We test the other side to estimate generalization error,
which measures how the classifier may perform on data unseen at training time.
Testing on the other side of the slide guarantees there is no overlap with the
training set, so the test data is unseen by the classifier at training time.

Different cross-validation schemes are conceivable, such as (i) a top versus
bottom split rather than a left versus right split or (ii) a leave-one-out [LOO]
cross-validation approach. Unfortunately, Fig. 8 shows a slight overlap in the row
second from the top and the row second from the bottom, effectively reducing
by 25–50% the amount of data for training, validation, and testing compared to
our left versus right approach. Separately, in a LOO setting, one may draw a
test patch, then draw training and validation sets randomly that do not overlap
with the test patch, keeping training and validation set sizes constant for every
possible test patch in the slide. Unfavorably, if the test patch is drawn from
the middle column of the slide, then only the leftmost and rightmost columns
of patches do not overlap with the test patch, reducing the amount of data for
training and validation sets by 33% compared to our left versus right approach.
This 33% reduction for middle test patches is in contrast to the 111% increase
in training and validation data quantity for test patches drawn from the corners
of the leftmost or rightmost columns, where this excess is randomly discarded to
maintain constant training and validation set sizes for all possible test patches.
Moreover, if the test patch is in the bottom row on the right side, the top
row on the right side may be sampled for training, which may inflate the LOO
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generalization accuracy estimate compared to our cross-validation approach that
trains only on the left when testing on the right, due to patches on the right
appearing similar to one another. We show in Sect. 4 that training on the left and
testing on the right gives significantly different accuracy compared to training on
the right and testing on the left, suggesting the left and right sides have indeed
different distributions of information. Thus compared to these alternatives, our
left versus right three-fold cross-validation approach (i) maximizes the sizes of
the training, validation, and test sets, (ii) conservatively estimates generalization
error by not training the classifier on data that appear similar to the test set,
and (iii) samples each patch on the left or right sides exactly once for an overall
validation error measure for that side.

Fig. 10. Interpatient area under the receiver operating characteristic [AUROC] for
bladder and prostate, with dashed black curve for average AUROC over draws of the
data and blue line for all data used from the patient. (Color figure online)

4 Results

In bladder, when training/validating on the left side and testing on the right,
mean test accuracy is 0.781± 0.0423 (stdev) with 95% confidence interval [CI]
from 0.750 to 0.811 (df = 9, Student’s T, Table 1). When training/validating
on the right and testing on the left, mean test accuracy is 0.922± 0.0468 with
0.889 − 0.956 95% CI (Table 1). Overall mean test accuracy is 85.15%. The left
and right test accuracies differ (p =0.000135, Wilcoxon rank-sum, n =20), while
validation accuracies do not (p = 0.9118, n = 20). This suggests nonhomogenous
information content throughout the slide. Indeed, the pathologist started and
ended slide inspection on the right, and spent double the time on the right
versus the left (Fig. 7, 8.32 s right, 4.07 s left). The second bladder had different
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Table 1. Accuracies of ten trials of three-fold cross-validation in bladder. Validation
and test accuracies for a single slide video of urothelial carcinoma (patient 1, slide at
upper left in Fig. 2, performance plotted at left in Fig. 9), left side of the slide versus
right side.

Direction Trial
Fold0
Valid

Fold1
Valid

Fold2
Valid

Valid
Acc

Fold0
Test

Fold1
Test

Fold2
Test

Test
Acc

leftright 0 0.9466 0.5850 0.9680 0.8332 0.8333 0.7222 0.7778 0.7778
leftright 1 0.8852 0.9070 0.9070 0.8997 0.7778 0.7222 0.7778 0.7500
leftright 2 0.9218 0.8602 0.8832 0.8884 0.8333 0.7222 0.7778 0.8333
leftright 3 0.7640 0.7812 0.7120 0.7524 0.7778 0.7778 0.7778 0.7778
leftright 4 0.7590 0.6576 0.5134 0.6433 0.8333 0.7778 0.7778 0.8333
leftright 5 0.9268 0.7416 0.5088 0.7257 0.8333 0.7778 0.7778 0.8333
leftright 6 0.8028 0.7988 0.7048 0.7688 0.7222 0.7778 0.7778 0.7222
leftright 7 0.7318 0.8402 0.9088 0.8269 0.7778 0.7778 0.7778 0.7778
leftright 8 0.9572 0.7608 0.8418 0.8533 0.7778 0.8333 0.8333 0.7778
leftright 9 0.7492 0.8774 0.9860 0.8709 0.7778 0.7778 0.7222 0.7222
rightleft 0 0.8802 0.8528 0.8554 0.8628 1.0000 0.8889 0.9444 1.0000
rightleft 1 0.7662 0.5982 0.9364 0.7669 0.8889 0.9444 1.0000 1.0000
rightleft 2 0.9492 0.8560 0.7308 0.8453 0.9444 0.8889 0.9444 0.9444
rightleft 3 0.5404 0.8206 0.8368 0.7326 0.9444 0.9444 0.8889 0.8889
rightleft 4 0.6560 0.7114 0.6748 0.6807 0.8889 0.8889 0.8333 0.8889
rightleft 5 0.8932 0.7062 0.7310 0.7768 0.9444 0.8889 0.8333 0.9444
rightleft 6 0.8560 0.8540 0.9966 0.9022 0.8889 0.9444 0.8889 0.8889
rightleft 7 0.8362 0.8560 0.7978 0.8300 0.8333 0.8889 1.0000 0.8889
rightleft 8 0.7200 0.8546 0.9740 0.8495 1.0000 0.9444 0.8889 0.8889
rightleft 9 0.8634 0.8634 0.6904 0.8057 0.8333 0.9444 1.0000 0.8889

Column “Fold0 Valid” reports validation accuracy when folds 1 and 2 were used for training.

Similarly, “Fold1 Valid” is for folds 0 and 2 training. “Valid Acc” is the validation accuracy

overall – the average of “Fold0 Valid”, “Fold1 Valid”, and “Fold2 Valid”. Because we will

use a single classifier for saliency prediction, we selected the classifier with highest validation

accuracy and highlighted it yellow, e.g. we selected the Fold0 classifier with 0.9218 validation

error as shown in the third row, namely Trial 2 leftright.

Column “Fold0 Test” reports the test accuracy of the classifier trained on folds 1 and 2.

Because we will use a single classifier not an ensemble, we highlight the test accuracy of the

classifier selected by highest validation accuracy and report this in “Test Acc” as generalization

accuracy, e.g. we selected the Trial 2 leftright Fold0 classifier having “Fold0 Test” of 0.8333 and

copied this to “Test Acc”. We report test accuracies for all three classifiers, showing Fold1 and

Fold2 classifiers tie for highest validation accuracy in Trial 1 leftright, so their test accuracies

of 0.7222 and 0.7778 were averaged for a “Test Acc” of 0.7500. As another sanity check in our

small data setting, we report that the variance in the selected-versus-non-selected test accuracy

differences is not greater than the selected-versus-non-selected validation accuracy differences

(F-Test p =0.5662 and Bartlett’s Test p = 0.5661. Validation differences normally distributed

by Anderson-Darling p =0.08837, and test differences by p = 0.1734). If it were greater, there

may be experimental setup problems because training would not be stably producing classifiers

that learn the saliency concept. Finally, one may train a classifier on all folds then evaluate test

accuracy with this classifier, but a performance boost from additional training data may inflate

generalization accuracy. In Sect. 4 we show without such inflation there remains a significant

difference in generalization accuracy and interpatient accuracy in bladder.

Testing the best classifier (highlighted in cyan, highest test accuracy on this and other folds,

secondarily highest mean validation accuracy) on draws of the data on the second bladder

patient, accuracies are 0.643, 0.786, 0.714, 0.786, 0.714, 0.714, 0.643, 0.571, 0.643, and 0.571.



DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction 55

Table 2. Accuracies of ten trials of three-fold cross-validation in prostate. Validation
and test accuracies for a single slide video of prostate adenocarcinoma (patient 1, slide
at upper right in Fig. 2, performance plotted at right in Fig. 9), left side of the slide
versus right side.

Direction Trial
Fold0
Valid

Fold1
Valid

Fold2
Valid

Valid
Acc

Fold0
Test

Fold1
Test

Fold2
Test

Test
Acc

leftright 0 0.9992 0.9946 1.0000 0.9979 0.7778 0.7778 0.7778 0.7778
leftright 1 0.9512 0.7282 0.9994 0.8929 0.8889 0.8889 0.8889 0.8889
leftright 2 0.9550 1.0000 0.6530 0.8693 0.8889 0.7778 0.7222 0.7778
leftright 3 0.8636 0.9992 1.0000 0.9543 0.8889 0.7778 0.9444 0.9444
leftright 4 0.8276 0.7760 0.9940 0.8659 0.8889 0.7778 0.8889 0.8889
leftright 5 0.8654 0.9986 1.0000 0.9547 0.9444 0.9444 0.9444 0.9444
leftright 6 0.8560 0.9862 0.9992 0.9471 0.8889 0.8889 0.8889 0.8889
leftright 7 0.8674 1.0000 0.9984 0.9553 0.8889 0.8333 0.8889 0.8333
leftright 8 0.9560 0.8560 0.8760 0.8960 0.8889 0.8333 0.9444 0.8889
leftright 9 0.6846 0.9992 0.9560 0.8799 0.8333 0.8333 1.0000 0.8333
rightleft 0 0.9786 0.7760 0.9146 0.8897 0.8889 0.9444 1.0000 0.8889
rightleft 1 1.0000 0.7292 0.8460 0.8584 1.0000 0.9444 1.0000 1.0000
rightleft 2 0.7130 0.9512 0.8676 0.8439 0.8889 1.0000 0.8333 1.0000
rightleft 3 0.9998 1.0000 0.9664 0.9887 0.9444 0.9444 1.0000 0.9444
rightleft 4 0.7760 1.0000 0.8842 0.8867 0.8889 0.9444 1.0000 0.9444
rightleft 5 0.9758 0.9984 0.5926 0.8556 0.9444 0.8889 0.9444 0.8889
rightleft 6 0.6344 0.9770 1.0000 0.8705 0.8889 1.0000 1.0000 1.0000
rightleft 7 0.7760 0.9028 1.0000 0.8929 0.8889 1.0000 1.0000 1.0000
rightleft 8 0.8560 0.8560 0.9992 0.9037 0.9444 0.9444 0.9444 0.9444
rightleft 9 0.8560 0.9412 0.8538 0.8837 1.0000 1.0000 1.0000 1.0000

Testing the best classifier on draws of the data on the second prostate patient, accura-
cies are 0.944, 1, 0.944, 0.944, 1, 0.944, 0.944, 0.944, 1, and 1.

morphology and model accuracy reduced to 0.678± 0.0772, 0.623−0.73495% CI.
Moreover, the second bladder had only 7 positive examples available, whereas
both prostates and the first bladder had at least 9 positive examples.

For the first prostate slide, training on the left side and testing on the right,
we find accuracy 0.867± 0.0597, 0.824−0.909 95% CI (Table 2). Training on the
right and testing on left, we find 0.961± 0.0457, 0.928− 0.994 95% CI (Table 2).
Overall mean test accuracy is 91.40%. Taking the best model learned from this
first prostate (right side, test accuracy 100%, 18/18), we tested on the second
prostate’s right side (because the left did not have 9 positive training examples)
and find 0.967± 0.0287, 0.946 − 0.987 95% CI. We also tested this model on
the bladder cancer slide, and find 0.780 accuracy on the left and 0.720 on the
right (9+ and 9− training examples each), mean accuracy 75.00%. The best
bladder cancer model predicts every patch is not salient in both prostates, pre-
sumably because the little tissue in prostate is insufficient for a positive saliency
prediction.

Interpatient AUROC for bladder and prostate is shown in Fig. 10. In prostate,
nine salient and nine nonsalient examples are drawn from the second patient.
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Average AUROC was calculated from ten such draws, achieving a mean± stdev
of 0.9568 ± 0.0374 and 95% CI of 0.9301 − 0.9835. Over all 17 salient and 13
nonsalient patches used from the second prostate patient, the AUROC is 0.9615.
In bladder, due to fewer patches available in the small slide, only seven salient and
seven nonsalient examples are drawn from the second patient. Average AUROC
was calculated for ten such draws, achieving 0.7929 ± 0.1109 and 95% CI of
0.7176 − 0.8763. Over all 7 salient and 17 nonsalient patches used from the
second bladder patient, the AUROC is 0.7437. These nonoverlapping confidence
intervals are evidence the bladder cancer classifier distinguishes salient from
nonsalient patches less well than the prostate cancer classifier, and a Wilcoxon
rank-sum test indeed finds the difference in classifier performance by these ten
draws each from bladder and prostate is significant (p =0.0001325) (Fig. 9).

The deep convolutional network CaffeNet emits a score from 0 to 1 when
predicting if an image patch is salient or not. When taking a score of greater than
0.5 to be salient, the p-value from Fisher’s Exact Test is 1.167e–7 in prostate
(16 true positives, 1 false negative, 0 false positives, 13 true negatives) and
0.009916 in bladder (7 true positives, 0 false negatives, 7 false positives, 10 true
negatives), indicating our trained CaffeNet classifier in both tissues accurately
distinguishes salient from nonsalient regions when trained on one patient and
predicting in another.

5 Conclusion

Collecting image-based expert annotations for the deluge of medical data at
modern hospitals is one of the tightest bottlenecks for the application of large-
scale supervised machine learning. We address this with a novel framework that
combines a commodity camera, 3D-printed mount, and software stack to build
a predictive model for saliency on whole slides, i.e. where a pathologist looks to
make a diagnosis. The registered regions from the digital slide scan are markedly
higher quality than the camera frames, since they do not suffer from debris,
vignetting, and other artifacts. The proposed CNN is able to predict salient
slide regions with a test accuracy of 85–91%. We plan to scale up this pilot
study to more patients, tissues, and pathologists.
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Abstract. Gene expression analysis can unveil the genes associated with the
molecular action of a drug. However, it is not always clear how the differentially
expressed genes restore the phenotype and whether, globally, the drug has an
effect on the disease. We propose a method that exploits gene-expression data
and network biology information to build a mediation analysis model for the
evaluation of the effect of treatment on the disease at molecular level. First,
differentially expressed genes (DEGs) associated to the drug and the disease are
discovered. Then, based on a pathway analysis, shortest paths between drug
DEGs and disease DEGs are obtained. This allows discovering the mediator
genes that connect drug genes to disease genes. The expression values of the
three sets of genes are used to conduct a mediation analysis that evaluates the
effect of the drug on the disease. The effect could be direct, indirect by medi-
ators, or both. The latent variables and mediation model are constructed by using
the PLS-SEM. The procedure is applied to a real example concerning the effect
of abacavir on HIV samples. The proposed pipeline can offer an additional tool
for the understanding of the etiology of a disease and unveiling the mechanisms
of action of a drug at gene level.

Keywords: PLS-SEM � Mediation model � Gene expression � Network
analysis

1 Introduction

The use of gene expression data can be extremely valuable in the understanding of the
molecular mechanisms related to a disease and its treatment. The gene-expression
profiling could provide clues about regulatory mechanisms, biochemical pathways, and
cellular function. In addition, the determination of genes expressed in untreated disease
samples, as compared to samples treated with a particular drug, could provide a way to
understand the mechanism of the action of a drug [1]. Often, the analysis based on
expression profiling consists of comparing the separate gene profiles of the disease and
of the drug, with a subsequent biological interpretation aimed at connecting the two
lists. The analysis could be conducted at the gene level or at the pathway level.
However, this approach suffers from two important limitations: (1) it ignores the way in
which the lists of genes are connected from a network point of view [2]; (2) it does not
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offer a method to confirm whether the treatment has got a statistically significant effect
on the disease.

Mediation analysis found numerous applications in basic and applied research. The
goal of the analysis is to discover how an independent variable X acts on a dependent
variable Y. There are four possible scenarios: (1) X has not effect on Y; (2) it is easily
understandable that mediation analysis is perfectly suitable for the evaluation of
pharmacological and psychotherapeutic treatments. To perform a mediation analysis, a
causal inference analysis is necessary. The classical approach, proposed by Baron and
Kenny [3], is based on a series of regression analyses to evaluate the significance of the
direct and the indirect effects. However, the approach does not consider the intrinsic
causal nature of the model. In fact, in the multiple regression analysis context, a causal
model is constructed by a series of regression equations with each regressor estimated
and evaluated separately. Structural equation modeling (SEM) overcomes this problem
by fitting the causal model entirely in one step and evaluating it by appropriate
goodness-of-fit indices [4]. This not only permits to estimate the direct and the indirect
effects, but also to verify if the mediation model fits the observed data. Furthermore,
mediation analysis in the SEM framework can include latent variables and the eval-
uation of more complicated mediation models with, for example, more than one
mediator [5].

In this paper, we consider an approach that uses differentially expressed genes
(DEGs) associated with the disease and with the effect of the treatment on the disease
to: (1) investigate how, from a molecular point of view, the genes are connected;
(2) infer whether the treatment has a statistically significant effect on the disease from a
gene expression point of view. The first goal is addressed by searching for the directed
shortest paths between the drug DEGs and the disease DEGs based on the KEGG
pathways [6, 7]. This allows building a network where the source nodes are the drug
DEGs, the destination nodes are the disease DEGs, and the genes that connect both sets
of nodes are the mediator genes. The second goal is reached by using mediation
analysis with PLS-SEM [8], a statistical approach particularly suitable for the creation
of latent variables and the analysis of their relationships. PLS-SEM is different from the
covariance-based SEM (CB-SEM) in that the primary objective of the former is to
maximize the explained variance of the dependent constructs while the goal of the latter
is to estimate a set of model parameters in a way to minimize the difference between the
observed and the estimated variance-covariance matrices. The CB-SEM approach
requires strict assumptions as the multivariate normality of data and a minimum sample
size. When these assumptions are violated or when the goal of the analysis is the
prediction, PLS-SEM could be the preferred method [9].

In the proposed approach, three latent variables are created according to the net-
work obtained by addressing the first goal: the treatment variable, the mediator vari-
able, and the disease variable (see Fig. 1).
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2 Materials and Methods

The analyses were performed using the dataset GSE62117 [10] downloaded from the
Gene Expression Omnibus (GEO) database. In particular, the dataset includes the
samples obtained for patients affected by HIV and treated with abacavir (ABC) (10
samples), for untreated patients (31), and controls (15). Two comparisons were con-
sidered to obtain sets of DEGs: (1) ABC treatment vs. HIV samples; (2) HIV samples
vs. controls. The comparisons were performed by using Significance Analysis of
Microarray (SAM) [11]. SAM is a statistical technique that computes t-tests based on
permutation. In the next step, Signaling Pathways Impact Analysis (SPIA) [12] was
used to discover the KEGG pathways significantly associated each set of DEGs. SPIA
combines enrichment analysis and perturbation analysis to determine the statistical
significance of a pathway. Two p-values are computed: the pNDE and the pPERT. The
pNDE value represents the probability of getting a number of DEGs on the given
pathway at least large as the observed one. The pPERT is the probability of observing a
total perturbation of the pathway larger than the one got by chance. The perturbation
for a gene is defined in terms of the log-fold change of that gene and of those genes that
are directly upstream. The so-obtained significant pathways were considered as a graph
and joined together to get a unique graph determining how the treatment DEGs act on
the disease DEGs at the network level.

To get the unique graph, the function mergeKEGGgraphs() from the R package
KEGGgraph was used [13]. The function permits not only to merge graphs, but also to
obtain the information of nodes and edges fromKEGG. The geodesic distance dgeo(yi, yj)
and shortest paths between each pair of treatment-DEG yi and disease-DEG yj were
computed. The use of shortest paths ismotivated by two important properties: small world
phenomena and local hypothesis. Thefirst property affirms that in a biological network it is
possible to connect any pair of nodes by shortest paths. The second property implies that

Fig. 1. Mediation model proposed from the connection of treatment genes to disease genes
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genes involved in the samedisease have the tendency tobe connected to each other [2].We
believe that both properties are valid in this research context. The fusion of significant
pathways generates a biological network. The local hypothesis is appropriate and logical
as the drug genes have to be connected to the disease genes; otherwise, the drugwould not
work. The decision to search for the shortest paths between the drug DEGs and disease
DEGs is rooted in the assumption that the DEGs are the evident source of perturbation in
the biological network. The idea is to understand how the sources of perturbation due to
the drug treatment are connected to the sources of perturbation due to the disease effects.

The so-obtained directed shortest paths between treatment and disease genes
allowed defining three sets of nodes: (1) treatment DEGs (TDEG set); (2) disease
DEGs (DDEG set); (3) other (mediator) genes (MED).

Each shortest path (in a topological sense) in the aforementioned graph could be
represented as a list of nodes Yk = (yi, yi+1,..,., yj−1, yj) and a list of the corresponding
edges Ek = (ei(i+1), . . ., e(j−1)j), where yi 2 TDEG, yj 2 DDEG, and (yi+1, …, yj−1) 2
(TDEG [ DDEG [ MED). All the shortest paths were joined in a unique graph Y.
A similar procedure was described by [7] and applied to the analysis of gene expression
data [14, 15].

It was necessary to define these three new subsets as they do not correspond to the
SAM lists. In fact, here only the genes connected involved in shortest paths are con-
sidered; the others are excluded. Furthermore, the mediation genes could be genes not
differentially expressed but important they allow connecting the treatment DEGs to the
disease DEG.

Finally, PLS-SEM was used to create the mediation model allowing the evaluation
of the treatment effect on the disease (see Fig. 2). The PLS-SEM approach is a general
method for estimating causal relationships in path models that involves latent con-
structs which are indirectly measured by various indicators. PLS path models are
formally defined by two sets of equations: the inner (or structural) model and the outer
(or measurement) model. The inner model specifies the relationships between the
unobserved (or latent) variables, whereas the outer model specifies the relationship
between a latent variable and its observed (or manifest) variables. In PLS, the outer
relationships include two types of models: a formative one and a reflective one. The
formative measurement model specifies cause–effect relationships between the mani-
fest variables and the latent index (independent causes). The reflective measurement
model involves paths from the latent construct to the manifest variables or dependent
effects. The inner model can be represented by a linear equation:

Y ¼ YB þ Z ð1Þ

where Y is the matrix of the latent variables, B is the matrix of coefficients, and Z is the
matrix of error terms (assumed to be centered). The outer model, on the other hand, can
be represented in the following way:

Xg ¼ ygw
T
G þ Fg ð2Þ
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where Xg is the block matrix of observed variables associated with the latent variable
yg; wT

G is the matrix of correlation coefficients between Xg and yg, computed by least
squares; and Fg is the error term.

In our analyses, all latent variables were defined to have mean zero and variance
one. For the evaluation of the statistical significance of the path coefficients, a bootstrap
approach was used [16]. The goodness of fit of the outer model was evaluated by using
the Dillon-Goldstein rho, which focuses on the variance of the sum of observed
variables associated with a latent variable. As a rule of thumb, a block was considered
as unidimensional when the Dillon-Goldstein rho was larger than 0.7. For the evalu-
ation of the inner model or the structural model, R2 was computed. Values of R2 were
classified as follows:

1. Low: R2 < 0.30;
2. Moderate: 0.30 < R2 < 0.60;
3. High: R2 > 0.60

3 Results

The differential analysis yielded 7706 DEGs for the ABC treatment (based on com-
paring the treated-patient samples to the untreated-patient samples) and 177 DEGs for
the HIV samples (based on comparing the untreated-patient samples to the control
samples). Both lists were constructed by assuming FDR equal to 0.05 and a minimum
fold change of 2. SPIA revealed three pathways for the treatment DEGs and two
pathways for the disease DEGs (Table 1).

Gene Differential
Analyses

Drug DEGs Disease DEGs

Pathway analysis

Mediation analysis

Shortest paths
(mediator genes detection)

Fig. 2. The pipeline starts from the detection of DEGs for drug treatment and disease. Then by
pathway analysis and shortest paths between drug DEGS and disease DEGs, the mediator genes
are detected. The expression values of the three sets of genes are used to create the latent
treatment, disease, and mediator variables for the final mediation analysis.
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The pathways indicated in Table 1 are relevant for AIDS. It is well known that HIV
infection interferes with the regulation of cytokine expression. In fact, a general
decrease in the expression of type 1 T-helper cytokines and an increase in the
expression of proinflammatory cytokines, antiviral interferons, and TGF-beta was
observed [17]. Considering the important role of cytokines in HIV infection, many
immune-based therapies focus on cytokines and their inhibitors [18]. This explains the
observed inhibition in expression of the cytokine-cytokine receptor interaction pathway
by the ABC treatment, as showed in the Table 1. As far as the calcium signalling
pathway is considered, it was reported that the HIV-1 pathogenicity factor Nef mod-
ulates the calcium signalling in host cells [19]. Nef is a lentiviral protein involved in
pathogenesis of AIDS. It triggers the calcium pathway for the induction of nuclear
factor of activated T cells (NFAT) that could promote the activation of HIV-infected
T cells [20]. The presence of the olfactory transduction pathway in Table 1 is also not
surprising. HIV has not only a devastating effect on the immune system, but it can also
cause several neurological disorders, collectively called as HIV-associated neurocog-
nitive disorders (HAND) [21]. Among the neurological disorders, deficits in olfaction
are common and the severity and the onset of the disease can be established by
olfactory test [22, 23]. Finally, influenza A and herpes simplex infection pathways are
involved in the activation of immune system, as well as HIV. The infection with the
herpes simplex infection can increase the risk of HIV acquisition among men and
women [24].

The pathways from Table 1 were merged and transformed in a unique graph
constituted by 675 nodes and 1855 connections. There were 13 shortest paths between
the ABC treatment DEGs and the AIDS DEGs, for a total of 15 nodes and 15 con-
nections (see Table 2 and Fig. 3).

There are nine ABC DEGs, four AIDS DEGs, and two mediator genes. This means
that only for a few ABC DEGs it was possible to find a path that connected them to the
disease genes. The fusion of all shortest pasts constitutes the treatment module. Most of
the genes included in Table 2, such as the arrestins, inhibins, activins, or the

Table 1. Significant KEGG pathways for ABC treatment and AIDS datasets

Name pSize NDE pNDE pPERT pGFdr Status DEGs
Set

Cytokine-cytokine
receptor interaction

243 122 0,000 0,001 0,000 Inhibited ABC

Olfactory
transduction

145 77 0,000 0,001 0,000 Inhibited ABC

Calcium signaling
pathway

176 95 0,000 0,996 0,022 Inhibited ABC

Influenza A 105 5 0,003 0,001 0,002 Activated AIDS
Herpes simplex
infection

98 4 0,012 0,006 0,019 Activated AIDS

pSize: number of genes in pathway; NDE: number of DEGs in pathways; pNDE: p-value
enrichment analysis; pPERT: p-value on total perturbation; pGFdr: adjusted FDR for global
p-value; Status: direction of perturbation; DEGs Set: the DEGs set associated with the pathway.
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beta-adrenergic kinase gene, are known to be important for AIDS. Arrestins are fun-
damental adaptors connecting receptors to cell trafficking machinery. b-arrestin 2 could
play a fundamental role in apoptosis and cell proliferation [25]. Activin A is released
during acute systemic inflammation as a part of the circulatory cytokine cascade. It can
play a role in pro- and anti-inflammatory actions on key genes for the inflammatory
response as TNF-a, IL-1b and IL-6 [26]. Inhibins are negative regulators of activin

Table 2. List of genes in the detected shortest paths.

Entrez Name Description

254973 or1l4 olfactory receptor, family 1, subfamily L, member 4
92 acvr2a activin A receptor, type IIA
90 acvr1 activin A receptor, type I
8200 gdf5 growth differentiation factor 5
650 bmp2 bone morphogenetic protein 2
157 adrbk2 adrenergic beta receptor kinase 2
655 bmp7 bone morphogenetic protein 7
26539 or10h1 olfactory receptor, family 10, subfamily H, member 1
3626 inhbc inhibin, beta C
3624 inhba inhibin, beta A
409 arrb2 arrestin, beta 2
442194 or10c1 olfactory receptor, family 10, subfamily C, member 1
83729 inhbe inhibin, beta E
269 amhr2 anti-Mullerian hormone receptor, type II
268 amh anti-Mullerian hormone

Fig. 3. The graph constructed from the shortest paths between the ABC treatment DEGs and the
AIDS DEGs. Yellow nodes are the mediator genes, the red nodes are the AIDS DEGs, and the
green nodes the ABC DEGs.
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activity [27]. Regarding the beta-adrenergic kinase gene, it was discovered that HIV
coats protein gp120 interfers with the beta-adrenergic regulation of astrocytes and
microglia. Hence, it may alter astroglial reactivity and upset the delicate cytokine
network responsible for the defense against viral and opportunistic infections [28]. The
anti-Mullerian hormone receptors play an important role associated to the TGF-b
signalling pathway. The hormone is a ligand of the TGF-b [29].

A KEGG enrichment analysis of the genes in the two modules (treatment and
disease) revealed that 10 of the 15 genes are a part of the two most significant path-
ways, TGF beta signalling pathway and the cytokine-cytokine receptor interaction (see
Table 3). The HIV protein Tat has immunosuppressive effects as transforming growth
factor-beta (TGF beta) and inhibiting the proliferation of lymphocyte. It is evident that
HIV perturbs the TGF-beta signalling pathway [30].

In the next step, the PLS-SEM model was created. The Dillon-Goldstein rho values
for the outer model were equal to 0.82, 0.79, and 0.83 for the treatment, the mediator,
and the disease variables, respectively. The values are above 0.7 and can be considered
acceptable.

The mean coefficient of determination R2 for the structural model was equal to 0.5.
Also, this value could be considered acceptable. The outer model connected the
treatment variable to the disease variable directly or indirectly by the mediator variable.
The bootstrap approach based on the fitted PLS-SEM allowed evaluating the statistical
significance of the connection of the inner model. In Fig. 4, the estimated values of the
coefficients of the mediation model are illustrated. All the coefficients were statistically
significant at the 5% significance level, as the 95% confidence intervals did not include
zero. The direct effect was estimated to be equal to 0.78 (coefficient between Treatment
and Disease variables), the indirect effect to 0.08 (multiplication of the coefficients for
Treatment vs. Mediator, −0.48 and for Mediator vs. Disease, −0.17), and the total
effect to 0.86 (sum of the direct and indirect effects).

Table 3. KEGG enrichment analysis of the genes present in the graph obtained by merging the
shortest paths between drug DEGs and disease DEGs.

Description p.adjust geneID Count

TGF-beta signaling pathway 1.30E−15 acvr2a/acvr1/gdf5/bmp2/bmp7/inhbc/inhba/
inhbe/amhr2/amh

10

Cytokine-cytokine receptor
interaction

8.28E−11 acvr2a/acvr1/gdf5/bmp2/bmp7/inhbc/inhba/
inhbe/amhr2/amh

10

Signaling pathways regulating
pluripotency of stem cells

1.26E−06 acvr2a/acvr1/bmp2/inhbc/inhba/inhbe 6

Hippo signaling pathway 9.32E−04 gdf5/bmp2/bmp7/amh 4
Olfactory transduction 3.94E−03 or1l4/adrbk2/or10h1/arrb2/or10c1 5
Hedgehog signaling pathway 1.12E−02 adrbk2/arrb2 2

Morphine addiction 3.44E−02 adrbk2/arrb2 2
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4 Conclusion

In this paper, we have proposed and illustrated a new procedure, based on
gene-expression data, to evaluate whether the effect of a treatment on a disease is
statistically significant or not. We propose a mediation analysis based on three fun-
damental entities, gene-expression data, network information, and PLS-SEM. The first
element allows determining the DEGs associated with the treatment and the disease.
The network information is important to understand how the treatment DEGs are
biologically connected to the disease DEGs. Direct shortest paths, between each pair of
treatment DEG and disease DEG are searched for. The shortest paths were chosen
according to the local hypothesis and small world phenomena principles. If no path is
found between treatment DEGs and disease DEGs, the local hypothesis can be rejected.
The reasons could be different: low quality data, bad choice of DEGs, or lack of effect
of the treatment on the disease. The proposed approach is a downstream analysis;
therefore, it assumes that no issues were detected in the previous analyses. The path can
also include (mediator) genes not present in the set of treatment or disease DEGs.

The mediation model is created by PLS-SEM. To our knowledge, it is the first time
that a mediation analysis is generated from gene expression data and gene network
information. The method was applied to the GSE62117 dataset to evaluate the effect of
the ABC treatment on AIDS. After the detection of DEGs and significant pathways for
each set, the method indicated statistically significant direct and indirect effects of the
treatment on the disease. The direct effect was more pronounced, as captured by the
value of the corresponding coefficient equal to 0.78, compared to 0.08 for the indirect
effect.

The procedure could offer a useful supporting tool when investigating the question
whether, from a gene expression point of view, a treatment has got a significant effect
on a disease and, if so, which molecular mechanisms are involved in the effect.

It is important to keep on mind that the proposed procedure is a multi-step one. To
reduce uncertainty in the analysis, we recommend to verify the biological validity of
the results for each of the involved steps. For example, the shortest paths and the
generation of the three latent variables strongly depend on the differential and pathway
analyses. The mediation analysis assumes the causal sufficiency of the mediation
model. This means that there are no hidden confounders. It is, admittedly, a strong
assumption. However, the goal is to obtain information about the relationship between
treatment and disease based only on gene expression data. To make the assumption
more likely to be fulfilled, one could consider integrating other “omics” data, as
epigenomics, in the proposed approach. This is a topic for further research.

Fig. 4. The evaluation of the mediation analysis by PLS-SEM
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Abstract. CpG islands provide a major role in the genome and are used
for prediction of promoter regions. They are abnormally methylated in
cancer cells and can be used as tumor markers. However, current tech-
niques for identifying CpG islands suffer from various drawbacks. In this
paper, we propose a novel algorithm to detect CpG islands by combining
clustering techniques with complementary chaotic particle swarm opti-
mization. Clustering techniques are used to find the locations of potential
CpG island candidates in the genome while Complementary Chaotic PSO
is used to find the best location of a CpG island in a cluster candidate
without being trapped in local optimum solution. This combination can
successfully overcome the drawbacks of each method while maintaining
their advantages. The proposed method called 3C-PSO provides a high
sensitivity detection of CpG islands in the human genome. To evaluate
its performance, we used six sequences from NCBI, and five measures of
performance: sensitivity (SN), specificity (SP), accuracy (ACC), perfor-
mance coefficient (PC), and correlation coefficient (CC). We compared
our approach to the existing methods of CpG islands detection in the
human genome. The obtained results have shown that 3C-PSO competes
with and even outperforms these methods.

Keywords: CpG island · Genome · Clustering · Chaotic map · Particle
swarm optimization

1 Introduction

Most researchers equate epigenetics with the study of chromatin-marking sys-
tems (DNA methylation, histone modification, and chromatin remodeling) [1].
DNA methylation in the mammalian genome refers to the methylation of cytosine
within a CpG island [2][3]. CpG islands are highly enriched with CG nucleotides
regions. These CpG sites are short line segments where a cytosine nucleotide is
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followed by a Guanine nucleotide in the direction 5’ to 3’ [3]. A CpG is an abbre-
viation for 5’-C-phosphate G-3’ which is a cytosine and guanine separated by a sin-
gle phosphate [4]. The cytosine in CpG dinucleotides may be methylated to form
a methylcytosine base mC or unmethylated to return back to a cytosine base “C”.
CpG islands play an important role in DNA methylation [5]. Most CpG islands
are sites of transcription initiation. The methylation of a gene promoter seems to
be closely associated with the inactivation or inhibition of the transcription of this
gene [6], but nonmethylation of these promoter sites (unmethylated CpG islands)
of a non-transcribed gene can induce its transcription [7].

Hypermethylation of CpG islands located in the promoter regions of tumor
suppressor genes is now firmly established as an important mechanism for gene
inactivation [1,8]. CpG island hypermethylation has been described in almost
every tumor type [1]. The development of CpG island hypermethylation profiles
for every form of human tumors has yielded valuable pilot clinical data in moni-
toring and treating cancer patients based on our knowledge of DNA methylation
[9].

The most used procedure to locate the potential CpG islands in the genome
is by looking at regions of the DNA with at least 200 nucleotides in length,
where the GC percentage is at least 50% and an observed-to-expected CpG
ratio is above 60% [10]. In this paper, a novel method for CpG island detection
is proposed. It consists mainly of two stages: A clustering stage which allows
filtering the genome in order to extract the potential CpG island candidates,
and a second stage which refines the island candidates by locating the best CpG
islands. The rest of the paper is organized as follows. In Sect. 2, we present recent
works related to CpG island detection and prediction. Section 3 is dedicated to
the description of the proposed approach for CpG island detection. In Sect. 4,
we present the experimental results. Finally, conclusions and future work are
drawn.

2 Related Work

There are several computer programs written in a variety of languages which
locate CpG islands in DNA sequences. CpGcluster [11] is used to predict sta-
tistically significant clusters of CpG dinucleotides by calculating the distance
between CpG sites and determining a threshold to create CpG island clusters.

The CPSORL method [12] combines complementary particle swarm opti-
mization (CPSO) with the reinforcement learning (RL) to predict CpG islands
in the human genome. This method uses GGF criteria [10] as guidelines to iden-
tify CpG islands. CPSORL is composed of two major steps. First, the sequence
is divided into segments, and then the PSO algorithm is used to locate CpG
Island by updating iteratively the search of optimal results and identifying the
best particles in the swarm population using the GGF criteria as fitness function.
In the standard PSO, the particles could be trapped into a local optimum due
to the premature convergence of particles. The complementary strategy aims to
assist the particle search ability which helps the particle deviating in a local opti-
mum by moving their position to a new region in the search space. The Chaotic
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PSO method [13] is based on PSO with adaptive inertia weight factor (AIWF)
and chaotic local search. The chaos dynamic is used for exploration by updat-
ing particle swarm using a Gaussian discrete chaotic map [14]. The ClusterPSO
method [15] combines CpGCluster research method and a PSO algorithm. The
CpGCluster method is used to construct CpG island candidate clusters. These
clusters are used as region candidates for PSO algorithm to find the best CpG
islands.

In the proposed approach, we have presented a novel method for CpG islands
detection within the human genome using three strategies namely Clustering,
Complementary PSO, and chaotic theory (3C-PSO). We implemented a different
combination of PSO with an assessment of the relative importance of genes by
examining the fitness function of the genes in the cluster limit. The 3C-PSO
provides a higher prediction performance and combination ability than other
algorithms as the statistics analysis show.

3 The Proposed Approach for CpG Island Detection

The proposed method for CpG island detection combines a clustering technique
with an optimization technique. The clustering is used to find potential CpG
islands by using distances between CpG sites and thresholds while the opti-
mization technique is used to refine the search and yields the best CpG islands
included inside the CpG island cluster candidates. The optimization technique
uses the complementary chaotic PSO for each CpG island cluster candidate.
This algorithm can be described as follows.

– Search of CGI candidate using the Clustering. Two important prop-
erties are necessary to generate clusters:

• The positions of GC sites.
• The distance between GC sites.

In this phase, the Clustering proceeds as follows:
1. Record the position ‘C ’ of GC sites by scanning the DNA sequence in

the direction 3’ to 5’ to collect the positions C=(c1,c2,...cn) where ‘n’
represents the number of GC sites.

2. Calculate the distance between adjacent GC sites which is estimated using
the following distance measure:

Di = ci+1 − ci − 1 (1)

the minimum distance between adjacent sites ‘CGCG’ equals 1.
3. Sort the distance list without eliminating any repeated distance in order

to find out the threshold ‘df ’ in the position 65th of the list;
4. Collect the positions using the threshold to generate clusters. When a

distance between neighboring GC sites is smaller than the threshold df ,
the two neighboring sites belong to the same cluster otherwise create a
new cluster. Repeat this step to generate all possible clusters.
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5. After the determination of all clusters, the p-value of each cluster is
calculated for estimating the probability to discover a CpG cluster in a
random sequence. The negative binomial distribution is calculated by the
cumulative density function at point nf of the CpG cluster, and is taken
as the p-value.

PCum
(N,p)(x <= nf ) =

nf∑

x=0

((x−(N+1)−1)
((N−1)−1) ) ∗ pN−1 ∗ (1 − p)x (2)

nf = L − 2 ∗ N (3)

p = Ns/Nis (4)

N is the number of CpGs in the cluster, nf is the number of independent
non-CpGs in the cluster, L is the length of the cluster, and p is the
probability of success discovering a CpG. Ns is the number of CpGs and
Nis is the number of independent dinucleotides in the DNA sequence.
This phase examines statistically significant CpG clusters and assumes
that all CpG islands are included in these clusters. If the p-value of a
cluster is smaller than the threshold value, then the cluster is accepted,
otherwise the cluster is rejected.

– The optimization of CGIs candidates with the Complementary
Chaotic PSO. this phase optimizes the CGI candidates by following these
steps:
1. Extend the cluster candidates with 200 dinucleotides (100 dinucleotides

in both sides of the cluster).
2. Initialization of the swarm randomly:

• Set the position and velocity for each particle randomly, the position
encoding is given by:

Pi = (Fsi, Fli) (5)

Where Fsi is the predicted start position of the particle Pi and Fli
is its predicted length in the cluster. The Fsi and Fli are initialized
by using Eqs. 6 and 7 and the limits of each cluster

F initial
si = rand ∗ (endsequence − 200 − startsequence) + startsequence

(6)

F initial
li = rand ∗ (endsequence − 200 − F intial

si ) + 200 (7)

• Set the initial value of the chaos as follows:

chaos0 = rand ∗ 2 − 1 (8)

3. The fitness evaluation must respect the GGF criteria:

GCcontent ≥ 0.50, Obs/Expratio ≥ 0.6, CGI length ≥ 200bp
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The fitness functions of the length, the GC content and the O/E ratio are
defined in Eqs. 9–11, respectively. In addition, Eq. 12 is used to calculate
the fitness value of each particle [12,15]. Note that the fitness values must
be between 0 and 1 to adjust the function result:

CpGlength(Pi) =
Fli

L
(9)

GC(Pi) =
#C + #G

Fli
(10)

Obs/Exp(Pi) =
#CpG ∗ Fli

#C ∗ #G
(11)

Fitness(Pi) = CpGlength(Pi) + GC(Pi) + Obs/Exp(Pi) (12)

Where #C, #G, and #CpG are respectively the numbers of nucleotide
cytosine (C), guanine (G) and the number of CpG sites in the predicted
CpG island region at Pi. L is the number of nucleotide in the considered
cluster (extended CpG island candidate).

4. Update the pbesti (best solution for particle i so far) and gbest (global
best solution so far) for all particles.

5. Update the Chaotic Gauss map value to enrich the searching behavior.
The logical equation is defined as follows:

chaosn+1 = exp (−alpha ∗ chaos2n) + beta (13)

where alpha and beta are set to 4.90 and –0.58 respectively. The parameter
settings are based on bifurcation diagram as shown on Fig. 1 so that to
get chaotic behavior [16]. With alpha set to 4.90, beta should be set to
values in the range [–0.58, –0.4]. Fig. 2 shows some plots of the Gauss
map with this parameter setting.

6. Update the velocity and position of Pi according to Eqs. 14 and 15, based
on pbesti and global best (gbest)

V new
(i,j) = w ∗ V old

(i,j) + chaos ∗ c1 ∗ (pbesti − xold
(i,j))

+ chaos ∗ c2 ∗ (gbesti − xold
(i,j))

(14)

xnew
(i,j) = xold

(i,j) + V new
(i,j) (15)

The parameters c1 and c2 are called acceleration coefficients (usually c1
= c2 ). Chaos is a function based on the results of the chaotic map with
values between –1.0 and 1.0. V new

(i,j) and V old
(i,j) denote respectively, the

velocities of new and old particle. xold
(i,j) is the current particle position,

and xnew
(i,j) is the updated particle position. w is called inertia weight and

decreases linearly from 0.9 to 0.4 throughout the search process.
The weight equation can be written as:

wi = (wmax − wmin) ∗ Iterationmax − Iterationi

Iterationmax
+ wmin (16)



A Novel Algorithm for CpG Island Detection 75

Where wmax is equal to 0.9 and wmin is equal to 0.4. Iterationmax is the
maximum number of allowed iterations and Iterationi corresponds to ith

iteration.
7. If the fitness of gbest does not change during five consecutive iterations,

a particle is considered trapped in a local optimum. To avoid that, the
treatment process is moved to a new region of the search space. We select
randomly 50% of the population which will undergo a change. The posi-
tions of the selected particles are used to generate complementary parti-
cles. The position of a trapped particle is changed based on the following
complementary rules:

xComplement
id = (xmin + xmax) − xselected

id (17)

Where xselected
id is the position of a randomly selected particle, and

xComplement
id is the position of its complementary particle. xmax and

xmin denote the maximum and minimum limits of the solution space
respectively.

More formally, the whole algorithm is described on Fig. 3.

Fig. 1. Bifurcation diagram of the gauss map with alpha = 4.90 and beta in the range
–1.0 to +1.0.
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Fig. 2. Some plots of the gauss map with alpha = 4.90 and beta = –0.58.
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Fig. 3. The general framework of the proposed approach 3C-PSO.
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4 Experimental Results

3C-PSO shows a high sensitivity detection of CpG islands in the human genome
thanks to the used techniques. In the clustering technique, a distance threshold
parameter was set to 65th position and the p − value to 0.01. In the comple-
mentary chaotic PSO, the population size was set to 300 particles. The number
of iterations is set to 100 and c1 = c2 = 2. The GGF parameters used to define
CpG islands were: the length set to minlength = 200 bp, GC content set to
0.5, O/E ratio set to 0.6, and the gap between adjacent islands set to 100 bp.
We used five common criteria to determine the prediction accuracy, namely the
sensitivity (SN), specificity (SP), accuracy (ACC), performance coefficient (PC)
and correlation coefficient (CC).

In this study, we calculated the five prediction performances which are defined
as follows

SN =
TP

TP + FN
(18)

SP =
TN

TN + FP
(19)

ACC =
TP + TN

TP + TN + FP + FN
(20)

CC =
TP ∗ TN − FP ∗ FN√

(TP + FN) ∗ (TP + FP ) ∗ (TN + FP ) ∗ (TN ∗ FN)
(21)

PC =
TP

TP + FN + FP
(22)

where TP, TN, FN and FP refer respectively to true positive, true negative, false
negative and false positive.

We compared our approach with more than five other methods reported in
the literature like CpGplot, CpGCluster, PSORL.

Tables 1 and 2 show that the SP of the proposed method was highest on
the NT 113952.1 (99.51%), NT 113955.2 (100.0%), NT 113958.2 (100.0%), NT
113953.1(99.98%), NT 113954.1 (99.399%) and NT 028395.3 (100%) and the
ACC measure is high in all the six sequences than other methods. The PC is
also high in NT 113958.2 and NT 113953.1.

Tables 3 and 4 show the number of CpG islands identified by CPSORL and
3C-PSO. It is shown that the proposed approach provides better results than
other methods.
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Table 1. Prediction performance of detecting CpG islands with other methods (1)

Contig. Performance Methods

CpGPlot CpGcluster ClusterPSO 3C-PSO

NT 113952.1 SN 56.43 50.46 95.98 92.46

SP 100 99.95 99.47 100

ACC 98.09 97.78 99.32 99.51

PC 56.42 49.92 86.16 74.94

CC 74.38 69.41 92.28 85.67

NT 113955.2 SN 47.19 67.15 94.67 84.78

SP 100 99.72 99.51 100

ACC 98.08 98.54 99.33 99.98

PC 47.14 62.47 83.81 84.78

CC 67.94 77.03 90.92 93.94

NT 113958.2 SN 51.29 27.16 88.56 88.84

SP 99.99 99.94 99.1 100

ACC 96.9 95.32 98.43 99.9

PC 51.24 26.92 78.2 88.41

CC 70.38 49.96 86.93 93.98

NT 113953.1 SN 22.8 57.32 82.74 96.72

SP 100 99.74 99.47 99.98

ACC 97.76 98.51 98.99 99.97

PC 22.8 52.74 70.39 93.09

CC 47.21 69.89 82.09 96.37

NT 113954.1 SN 31.24 29.86 78.02 84.65

SP 100 99.46 98.23 100

ACC 97.47 96.9 97.48 99.32

PC 31.24 26.19 53.34 50.81

CC 55.17 43.81 68.72 71.18

NT 028395.3 Length = 647850 SN 27.11 44.89 81.53 72.19

SN 27.11 44.89 81.53 72.19

SP 100 99.47 99.24 100

ACC 97.98 97.53 98.6 99.94

PC 27.1 39.26 67.53 72.2
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Table 2. Prediction performance of detecting CpG islands with other methods (2)

Contig. Performance Methods

PSORL CPSO CPSORL ChaoticPSORL 3C-PSO

NT 113952.1 SN 75.58 77.43 84.88 86.99 92.46

SP 99.02 99.58 99.05 99.43 100

ACC 97.99 98.61 98.43 98.88 99.51

PC 62.27 70.91 70.34 77.31 74.94

CC 75.71 82.49 81.8 86.62 85.67

NT 113955.2 SN 59.63 77.8 87.38 90.12 84.78

SP 99.88 99.5 99.61 99.77 100

ACC 98.42 98.71 99.16 99.43 99.98

PC 57.74 68.67 79.08 85.08 84.78

CC 74.51 80.85 87.89 91.66 93.94

NT 113958.2 SN 81.65 81.08 84.11 87.44 88.84

SP 97.9 98.17 98.34 98.27 100

ACC 96.87 97.08 97.43 97.58 99.9

PC 62.33 63.8 67.51 69.66 88.41

CC 75.28 76.41 79.31 80.99 93.98

NT 113953.1 SN 64.8 70.53 75.65 76.33 96.72

SP 99.23 99.22 99.13 99.25 99.98

ACC 98.23 98.38 98.45 98.59 99.97

PC 51.59 55.91 58.57 61.14 93.09

CC 67.25 70.9 73.1 75.15 96.37

NT 113954.1 SN 63.58 70.54 77.68 78.21 84.65

SP 98.13 98.34 98.23 98.51 100

ACC 96.86 97.32 97.48 97.76 99.32

PC 42.74 49.22 53.15 56.36 50.81

CC 58.36 64.72 68.53 71.17 71.18

NT 028395.3 Length = 647850 SN 72.79 72.52 77.02 71.43 72.19

SN 72.79 72.52 77.02 71.43 72.19

SP 98.99 99.18 98.9 99.06 100

ACC 98.06 98.24 98.12 98.08 99.94

PC 57.17 59.36 59.25 56.92 72.2

Table 3. Number of CpG islands located in gene regions identified with
CPSORL/3CPSO.

Chr Contig Number CpG islands detected Number of true islands

CPSORL 3C-PSO CPSORL 3C-PSO

21 NT 113952.1 12 15 1(3) 12

21 NT 113955.2 15 15 2(3) 11

21 NT 113958.2 19 31 2(3) 23

21 NT 113953.1 8 10 1(1) 8

21 NT 113954.1 10 15 1(1) 10

22 NT 028395.3 38 46 10(15) 29
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Table 4. Length and GC% average of CpG islands located in gene regions with
CPSORL/3CPSO

Chr Contig GC% (Average) CpG island length

CPSORL 3C-PSO CPSORL 3C-PSO

21 NT 113952.1 0.51886 0.664308 8537 6615

21 NT 113955.2 0.5 0.6203543 10023 11075

21 NT 113958.2 0.5 0.662772 14470 10604

21 NT 113953.1 0.5 0. 595321 3998 2974

21 NT 113954.1 0.5037 0.620093 6174 3451

22 NT 028395.3 0.5 0.6281725 24649 14472

5 Conclusion and Future Work

In this paper, we have presented a hybrid method called 3C-PSO (Clustering and
Complementary Chaotic PSO) to detect and predict CpG islands in the human
genome. The proposed method combines two main techniques: a clustering tech-
nique and an optimization technique. This combination allows achieving CpG
island detection in the human genome with high accuracy. Indeed, the clustering
technique is used to filter the human genome in order to obtain good quality
potential CpG island cluster candidates. These candidates are then refined by
using an optimization technique namely Complementary Chaotic PSO in order
to find out the right CpG islands present in the human genome. Experimental
results have shown that the proposed method competes and even outperforms
existing methods for CpG island detection. As future work, we expect using par-
allel and distributed computing (Hadoop MapReduce, Apache Spark) in order
to improve the performance of the proposed method.
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work.
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2. Viré, E., et al.: The polycomb group protein ezh2 directly controls dna methylation.
Nature 439(7078), 871–874 (2005)

3. Bird, A.: Dna methylation patterns and epigenetic memory. Genes Dev. 16(1),
6–21 (2002)

4. Jones, P.A., Takai, D.: The role of dna methylation in mammalian epigenetics.
Science 293(5532), 1068–1070 (2001)

http://www.crbt.dz


A Novel Algorithm for CpG Island Detection 81

5. Gonzalez-Zulueta, M., Bender, C.M., Yang, A.S., Nguyen, T.D., Beart, R.W., Van
Tornout, J.M., Jones, P.A.: Methylation of the 5’ cpg island of the p16/cdkn2
tumor suppressor gene in normal and transformed human tissues correlates with
gene silencing. Cancer Res. 55(20), 4531–4535 (1995)

6. Keshet, I., Lieman-Hurwitz, J., Cedar, H.: Dna methylation affects the formation
of active chromatin. Cell 44(4), 535–543 (1986)

7. Cotton, A.M., Lam, L., Affleck, J.G., Wilson, I.M., Peñaherrera, M.S., McFad-
den, D.E., Kobor, M.S., Lam, W.L., Robinson, W.P., Brown, C.J.: Chromosome-
wide dna methylation analysis predicts human tissue-specific x inactivation. Hum.
Genet. 130(2), 187–201 (2011)

8. Saito, Y., Kanai, Y., Sakamoto, M., Saito, H., Ishii, H., Hirohashi, S.: Expression of
mrna for dna methyltransferases and methyl-cpg-binding proteins and dna methy-
lation status on cpg islands and pericentromeric satellite regions during human
hepatocarcinogenesis. Hepatology 33(3), 561–568 (2001)

9. Esteller, M.: Cpg island hypermethylation and tumor suppressor genes: a booming
present, a brighter future. Oncogene 21(35), 5427–5440 (2002)

10. Gardiner-Garden, M., Frommer, M.: Cpg islands in vertebrate genomes. J. Mol.
Biol. 196(2), 261–282 (1987)

11. Hackenberg, M., Previti, C., Luque-Escamilla, P.L., Carpena, P., Mart́ınez-Aroza,
J., Oliver, J.L.: Cpgcluster: a distance-based algorithm for cpg-island detection.
BMC Bioinformatics 7, 446 (2006)

12. Chuang, L.Y., Huang, H.C., Lin, M.C., Yang, C.H.: Particle swarm optimization
with reinforcement learning for the prediction of cpg islands in the human genome.
PLoS ONE 6(6), e21036 (2011)

13. Chuang, L.Y., Chang, H.W., Lin, M.C., Yang, C.H.: Chaotic particle swarm opti-
mization for detecting snp-snp interactions for cxcl12-related genes in breast cancer
prevention. Euro. J. Cancer Prev.: Official J. Euro. Cancer Prev. Organ. (ECP)
21(4), 336–342 (2012)
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Abstract. Computational models are essential in order to integrate and
extract knowledge from the large amount of -omics data that are increas-
ingly being collected thanks to high-throughput technologies. Unfortu-
nately, the definition of an appropriate mathematical model is typically
inaccessible to scientists with a poor computational background, whereas
expert users often lack the proficiency required for biologically ground-
ed models. Although many efforts have been put in software packages
intended to bridge the gap between the two communities, once a model
is defined, the problem of simulating and analyzing it within a reasonable
time still persists. We here present COSYS, a web-based infrastructure
for Systems Biology that guides the user through the definition, simu-
lation and analysis of reaction-based models, including the determinis-
tic and stochastic description of the temporal dynamics, and the Flux
Balance Analysis. In the case of computationally demanding analyses,
COSYS can exploit GPU-accelerated algorithms to speed up the compu-
tation, thereby making critical tasks, as for instance an exhaustive scan
of parameter values, attainable to a large audience.
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1 Scientific Background

Recent improvements in experimental -omics techniques applied to the study of
biomolecular systems, generated an unprecedented amount of data. Disappoint-
ing näıve expectations, data alone are not able to account for the complexity of
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biological systems, pointing out that only quantitative methods are able to shed
light on design principles and regulatory mechanisms behind these systems. In
this context, Systems Biology took advantage of different competencies in order
to develop quantitative and predictive methods based on computer-aided math-
ematical modeling.

In particular, the definition of an appropriate modeling framework is of para-
mount relevance to determine the usefulness of a model. Different mathematical
formalisms have been proposed, which mainly differ in the level of detail and
in the biological data required to build and parameterize the model, ranging
from the coarse-grained (interaction-based, constraint-based) to the fine-grained
(mechanism-based) approach, where mathematical models vary with respect to
the size of the biological systems under investigation, the computational costs
required to perform the analyses, and the nature of the computational results
(i.e., qualitative or quantitative) [3].

The mechanism-based modeling approach has the greatest predictive capa-
bility concerning the functioning of the system at molecular level, as it can be
exploited to perform time-course simulations, but has limited applicability in the
context of genome-wide networks. On the other hand, when dealing with large
metabolic networks, constraint-based models can facilitate the identification of
pivotal components or modules of the system under investigation, although they
neglect most of the quantitative and kinetic properties of its components and
interactions. Indeed, constraint-based modeling mainly requires knowledge of the
stoichiometry of the metabolic network to investigate functional steady states
that a system is able to reach when subject to a set of constraints.

It is clear that to promote the widest use of these modeling approaches, they
must be conveyed in the form of software packages, possibly using a standard
notation. Although almost 300 different software compatible with the Systems
Biology Markup Language (SBML) [6] have been currently released, only few
exploit the advantages of a web interface: providing a non exhaustive list, it is
possible to cite Biomodels, Cell Cycle DB, FAME, JWS Online, PathCase-SB
(exploiting the RoadRunner simulation engine), SYCAMORE and The Virtual
Cell (due to space constraints, we refer the reader to the list and links pro-
vided in http://sbml.org/SBML Software Guide/SBML Software Summary for
details and comparison purposes).

Strikingly, none of them allows the execution of both mechanism-based and
constraint-based simulations and most importantly (with the exception of Con-
dor COPASI [7]) none of them are able to exploit high performance comput-
ing capabilities. For these reasons we developed COSYS, a web-based infrastruc-
ture for Systems Biology able to perform both constraint-based (FBA) and
mechanism-based simulations (deterministic and stochastic), and to exploit the
extensive computational power of Graphics Processing Units (GPU) to run the
massive number of simulations required by computational tasks like the parame-
ter scan. Moreover, acknowledging the pivotal importance of community efforts to
model and simulate complex biological systems, COSYS extends the collaborative
approach – proposed by Cell Collective [5] for models based on a qualitative

http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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mathematical formalism – to reaction-based quantitative models and pushes it
forward by enabling the sharing of research projects either in a restricted work-
group or amid all COSYS users.

2 Materials and Methods

A non-spatial mechanism-based model (MBM) of a biochemical system can be
formalized by specifying the set S = {S1, . . . , SN} of molecular species occurring
in the system, and the set R = {R1, . . . , RM} of chemical reactions taking place
among these species [4]. Reactions can be defined as

Rj :
N∑

i=1

αjiSi
kj−→

N∑

i=1

βjiSi,

where αji, βji ∈ N are stoichiometric coefficients associated, respectively, with
the i-th reactant and the i-th product of the j-th reaction, with i = 1, . . . , N ,
j = 1, . . . , M . According to the mass action kinetic assumption, the rate of
a chemical reaction is proportional to the product of the concentrations of the
reacting chemical species and kj ∈ R

+, the rate constant associated with reaction
Rj . If we let [Si] be the concentration of reactant Si, then reaction Rj occurs at
a rate (or flux) vj = kj

∏N
i=1 S

αji

i .

2.1 Biochemical Modeling and Simulation

Under the assumption that the biochemical system has constant temperature
and volume, and all reactions follow the mass-action kinetics [4], any MBM
can be converted into a set of coupled Ordinary Differential Equations (ODEs),
which can then be simulated by means of an ODE numerical solver [1]. Among
the existing integration algorithms (e.g., Euler’s method, the family of Runge-
Kutta methods), LSODA [14] is one of the most popular, thanks to its capability
of dealing with stiffness by automatically switching between explicit and implicit
integration methodologies.

When some chemical species are present in a few molecules, however, ODEs
can fail to capture the emerging effects of biochemical stochastic processes [17]
(e.g., multi-stability, state switching). In such a case, methods like the Gillespie’s
Stochastic Simulation Algorithms (SSA) [4] can be employed to accurately sim-
ulate the dynamics of the MBM.

SSA performs the simulation by calculating, at each step, the reaction to
be fired and the time interval before the reaction actually occurs. Thus, SSA
is a markovian process that can be computationally cumbersome for systems in
which the biological noise is relevant and some of the reactions are characterized
by a high firing rate. In this condition, however, the number of firings in a
fixed time interval can be approximated by means of Poisson processes: this is
rationale of methods like tau-leaping [2], which can be faster than standard SSA,
under some circumstances.



COSYS: A Computational Infrastructure for Systems Biology 85

The COSYS platform provides both deterministic and stochastic simulation,
based on LSODA [14], SSA [4] and tau-leaping [2] algorithms. Moreover, COSYS
offers the possibility of accelerating typical analysis methods—e.g., Parameter
Sweep Analysis (PSA)—by leveraging coarse-grained GPU-accelerated simula-
tors, which strongly reduce the overall running time of the analyses. Specifically,
COSYS integrates the GPU-based deterministic simulator cupSODA [11] and
the stochastic simulator cuTauLeaping [12].

2.2 Flux Balance Analysis

If a steady state is assumed for the amount # of each species in a MBM, i.e.,
d#Si/dt = 0 ∀i, then Flux Balance Analysis (FBA) can be applied to determine
the flux distribution v = (v1, . . . , vM ) that maximizes or minimizes the objective
Z =

∑M
j=1 wjvj , where wj is a coefficients that represents the contribution of

flux j in vector v to the objective function Z.
Given a N ×M matrix A, referred to as stoichiometric matrix, whose element

aji takes value −αji if the species Si is a reactant of reaction Rj , +βji if the
species Si is a product of reaction Rj and 0 otherwise; the problem is postulated
as a general Linear Programming formulation:

maximize or minimize Z

subject to Sv = 0, vmin ≤ v ≤ vmax

(1)

where vmin and vmax are two vectors specifying, respectively, the lower and
upper boundaries of the admitted interval of each flux vj . A negative lower
bound indicates that flux is allowed in the backward reaction. The exchange
of matter with the environment is represented as a set of unbalanced reactions
(exchange reactions), enabling a predefined set of species to be inserted in or
removed from the system. Boundaries on fluxes allow to reduce the degrees
of freedom of the optimization problem, when the value of some variables is
derived from experimental data, and/or incorporate other biological constraints,
such as thermodynamics constraints on reaction reversibility, constraints on cell
medium composition or intake and secretion rates, as well as enzymatic capacity
constraints. For a more comprehensive description of FBA, the reader is referred
to [13].

COSYS is able to execute the FBA of a MBM—as defined in Eq. 1—by
exploiting the GLPK (GNU Linear Programming Kit) package.

3 Results

COSYS is a web-based platform for data intensive research concerning the field
of Systems Biology. Its interface was conceived and developed following the cur-
rent flat design principles to make the user interface as usable and intuitive as
possible. Figure 1 shows the screenshots related to the main features offered by
the COSYS user interface: definition of a model (top panel), simulation of the
dynamics (middle panel), visualization of the results (bottom panel).
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Fig. 1. The main features offered by the COSYS user interface: definition of a model
(top panel), simulation of the dynamics (middle panel), visualization of the results
(bottom panel). The COSYS user interface is characterized by a grid-based layout,
and a clear minimalistic design to provide a good user experience and allow the users
to focus on the features provided by the system.
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Furthermore, as shown in Fig. 2, the COSYS infrastructure consists of three
main technological components: (i) the storage unit; (ii) the relational database
management system to keep track of users information, models and all performed
simulations and analyses; (iii) the computational power unit based both on a
CPU and a GPU, to perform single simulations or FBA analyses, and parallel
tasks (such as parameter scans), respectively.

Fig. 2. COSYS infrastructure including the three main technological components: (i)
the storage unit, (ii) the relational database management system to keep track of
users information, models and the results of all performed simulations and analyses,
and (iii) the computational power unit relying on a CPU and a GPU. Being a web-
based platform, COSYS allows multiple accesses from a wide range of devices, from
desktop and laptop computers to mobile devices.

COSYS relies on three major classes allowing the management, simulation
and analysis of MBMs of biological systems. In particular, by following the typ-
ical Systems Biology approach, COSYS can be used to (i) create and modify
MBMs, (ii) simulate the temporal dynamics by means of stochastic and deter-
ministic algorithms, (iii) perform flux balance analyses, (iv) execute parameter
sweep analyses, (v) visualize the simulation outcomes as well as other useful
information (see Fig. 3).

MBMs can be defined and edited by means of an integrated user-friendly
interface, which allows to specify the list of reactions involved in the biological
process under investigation. For each reaction, the forward kinetic constant is
required for the simulation of the dynamics of the model, while the backward
kinetics constants can be optionally inserted in the case of reversible reactions.
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Fig. 3. COSYS working cycle that is typically followed by a generic user. COSYS is a
“model-centric” infrastructure (i.e. every integrated tool works with a MBM); the user
starts by uploading or creating a MBM with the COSYS (user-friendly) interface. The
model can then be simulated or analyzed, and the obtained results can be visualized
with an integrated fully interactive visualization tool. Both MBM and results can be
then shared with other specific COSYS users or made available for the entire COSYS
community, thus providing the possibility to reproduce all computational experiments.

Similarly, for each reaction, the lower and upper bounds, and the objective coef-
ficient are required for the execution of FBA. Once a reaction is inserted into the
model, COSYS automatically recognizes the molecular species and adds them
into a specific table. It is clear that, for each molecular species, the initial con-
centration/amount is required to perform a simulation, either deterministic or
stochastic. In addition, it is under development a functionality that will allow
to import and export models written in SBML language, which will be auto-
matically converted into the COSYS inner format. Note that, for what concern
tasks that rely on the simulation of the dynamics, only SBML files of models
that make use of the mass-action kinetics will be allowed.

Concerning the simulations and FBA tools integrated in COSYS, some func-
tioning settings are required, i.e., the simulation time and the sampling interval
in the case of the simulation of the dynamics; the choice whether to minimize or
maximize the objective function in the case of FBA. Currently, COSYS allows the
deterministic simulations by means of CPU-based implementations of LSODA
algorithm [14] and stochastic simulations exploiting the Gillespie’s stochastic
simulation algorithm [4]; moreover, COSYS relies on GPU-based implementa-
tions of deterministic and stochastic algorithms: cupSODA [11] and cuTauLeap-
ing [12], respectively, which are used to run intensive computational analyses
requested by the users.
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COSYS allows the execution of PSAs, both in the case of simulation and
FBA tasks. In this context, besides the aforementioned functioning settings,
the user must select the parameters to be perturbed: namely, kinetic constants
and/or initial molecular concentrations/amounts in the case of simulation of
the dynamics, and flux boundaries in the case of FBA. To be more precise, a
PSA consists in the execution of a number of different simulations or FBA—
based on the number of parameters that have to be perturbed and on the range
variation—each one with a different value of the perturbed parameters. There-
fore, a PSA can result computationally expensive, in particular in the case of
complex MBMs characterized by high numbers of reactions and chemical species.
Therefore, COSYS offers the possibility of strongly reducing the running time
by means of GPU-powered versions of the simulation algorithms, specifically
designed for demanding computational tasks like PSA.

To the aim of assessing the computational performances of COSYS, we
performed a comparison with COPASI (often considered a “standard” for
mechanism-based simulations in Systems Biology, because of the high number of
research projects exploiting it), by considering the simulation time required to
perform a PSA of the simplified model of glycolysis illustrated in [8], consisting
of 8 reactions among 7 molecular species. In particular, we executed a PSA by
varying the kinetic constant of the first reaction for a total of 1000 simulations.
COPASI was executed on a MacBook Pro equipped with a 2.7 GHz Intel Core
i5 CPU and 8 GB 1867MHz DDR3 RAM, while COSYS was executed exploit-
ing an NVIDIA GeForce GTX 480 with 480 cores, 700 MHz of graphic clock,
1.4 GHz of processor clock, 1.5 GB GDDR5 of standard memory, and 1.8 GHz
of memory clock. The running time of this PSA performed with COPASI was
0.447019 s, while the running time in COSYS was 0.004171 s thanks to cupSODA,
the GPU-based implementation of the LSODA, thus achieving a significant 107×
speed-up.

Concerning the graphical visualization of the simulation and FBA results,
COSYS provides a set of tools: (i) the line plot that is used to graphically show
the dynamics of all molecular species over time, with the possibility of choosing
which species to include in the plot; (ii) the surface plot and phase space diagram
for the visualization of the PSA results, in the case of the simulation of the
dynamics of a specific MBM. For each visualization style, the plot is completely
interactive. It is indeed possible to zoom-in or zoom-out, and scroll the resulting
chart through the time axes. Additional and more advanced plotting capabilities
will be introduced in the next releases.

A further relevant feature of COSYS is cooperation. As a matter of fact,
the platform allows to create projects that are conceptually similar to folders
whose permission can be set to private, shared, or public, and can contain mod-
els, simulations and analysis results. On the one hand, in the case of private
projects, only the owner can access and modify the contents, having the possi-
bility of organizing all contents related to one or more MBMs. On the other hand,
shared projects are visible to a restricted number of COSYS users, chosen by the
author of the project. All COSYS users can browse and visualize public projects,



90 F. Cumbo et al.

Table 1. Comparison of the main features of COSYS and COPASI. ● feature currently
available; ★ feature currently under development; ❍ feature planned for a future
release.

Feature COPASI COSYS

General software Web-based ●

features Freeware ● ●

Open source ●

GUI ● ●

Interoperability SBML Import/Export ● ★

SED-ML Import/Export ●

Save/Share in public repositories ●

Save/Share in private repositories ●

Usability Model definition from empty project ● ●

Model editing ● ●

Import/export in software format ●

Graphical visualization of model structure ❍

Documentation accessible from the tool ●

Wizard ●

Life-scientist oriented GUI ● ●

Simulation and LSODA algorithm ● ●

analysis tools SSA ● ●

Tau-leaping ● ●

Hybrid simulation algorithms ● ❍

GPU-powered simulation ●

FBA ●

Elementary Flux Modes ●

Sensitivity Analysis ● ❍

PSA ● ●

Parameter estimation ● ❍

Reverse engineering ❍

Data outputting 2D plotting ● ●

and visualization 3D plotting ● ●

Phase space plotting ● ●

Data saving in tabular format ● ●

accessing their contents and importing all MBMs, simulation and analysis results
into their personal workspace, having the chance of reproducing all computa-
tional experiments.

Finally, in Table 1 we provide a comparison between the main features of
COSYS and COPASI (the leading computational tool for Systems Biology),
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focusing on some keys aspects such as: general software features, interoperability,
usability, simulation and analysis tools, data outputting and visualization.

4 Conclusion

In this paper we presented COSYS, an infrastructure for computational Systems
Biology. COSYS allows to define mathematical models of biological systems by
means of a user-friendly web interface. The infrastructure will also allows to
import, export and share models, relying on the SBML standard: a full support
for this useful exchange format is one of our main goals. Some advanced SBML
features—like assignment rules and events—will be taken into account in future
releases. Moreover, no spatial information can be specified in a model defined
by COSYS, since appropriate a CPU and GPU-powered spatial simulators are
currently under development.

For what concerns the computational investigations that can be realized with
COSYS, it is currently possible to perform both deterministic and stochastic
simulations of the system dynamics and to graphically visualize in the browser
the obtained results. In particular, COSYS offers GPU-powered tools to the
aim of accelerating the execution of computationally demanding tasks such as
Parameter Sweep Analysis. In addition, a tool to perform the Flux Balance
Analysis of the models is present, though no graphical visualization of the results
is currently available.

As a future extension of COSYS, we will develop efficient hybrid algorithms
for the simulation of the dynamics of models characterized by multiple temporal
and numerical scales [15]; moreover, LASSIE, a GPU-based fine-grain solution
for the simulation of large-scale MBMs will be included in COSYS [16]. COSYS
will be further improved to guide the user among the different simulation algo-
rithms available through the GUI; COSYS will automatically suggest the most
fitting strategy, according to the characteristics of the MBM under investigation
and the computational analysis required. In addition, we plan to include a tool
to visualize the structure of the model, as well as to show the fluxes obtained by
means of FBA. We will add tools for the Parameter Estimation of the kinetic
constants [9] or the initial molecular amounts of the models; the reverse engineer-
ing of MBMs, according to experimental time-series [10]; the Sensitivity Analysis
to help the researchers to find insights about the functioning of the biological
system under investigation. COSYS will also exploit high performance comput-
ing to explore the space of feasible solutions of the FBA problem, taking into
account alternative optimal solutions, as well as sub-optimal ones.

COSYS is developed using a continuous delivery philosophy: new advanced
features will be incrementally added, tested and deployed in production, dynam-
ically adapting the infrastructure to any request and feedback provided by the
users.

Finally, the COSYS infrastructure for Systems Biology is available at the
following address: http://www.sysbio.it/cosys; a free registration is required to
access the platform.

http://www.sysbio.it/cosys
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Abstract. Timelapse microscopy enables long term monitoring of bio-
logical processes, however a major bottleneck in assesing experimental
outcome is the need for an automated analysis framework to extract
statistics and evaluate results. In this study, we use Gabor energy tex-
ture descriptors to generate a high dimensional feature space which
is analysed with principal component analysis to provide unsupervised
characterisation of texture differences between pairs of images. We apply
this technique to differentiation of human embryonic carcinoma cells in
the presence of all-trans retinoic acid (RA) and show that differentiation
outcome can be predicted directly from texture information. A microflu-
idic environment is used to deliver pulses of RA stimulation over five days
in culture. Results provide insight into the dynamics of cell response to
differentiation signals over time.

Keywords: Principal component analysis · Texture features · Gabor
energy · Fate mapping · Cell differentiation

1 Introduction

Embryonic stem cells have the ability to generate all cells in the adult body
through differentiation, a process by which cells acquire highly specialised func-
tion and morphology. In the developing embryo, cell differentiation undergoes
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a complex spatial patterning with very precise timings difficult to replicate in
vitro. As a result, differentiation of cells in culture is inefficient and not fully
understood. Recent studies indicate that cell response to external factors can be
amplified by pulsing of signals as opposed to constant exposure [1,2]. Two main
technologies can be used to enable control of input signal properties, fast solu-
tion switching in microfluidic environment [1] and photo-activatable systems [2].
Microfluidics have the advantage of delivering multiple inputs and controlling
other culture parameters such as shear stress and gradients [3].

In this study, we investigated the differentiation of NTERA2 [5,6] human
embryonic carcinoma cells under controlled microfluidic flow. When exposed to
all-trans retinoic acid, NTERA2 are known to differentiate towards a non-neural
fate identified by surface marker ME311 and neural cells detected after 3–4 weeks
[7], however expression at early stages in differentiation is not well characterised.
We monitored cell differentiation using a timelapse microscope which enables
acquiring a timeseries of images at set time intervals thus capturing not only the
final outcome but the entire process of cells starting from a proliferative state
and leading into early differentiation in the presence of a morphogen over several
days. Timelapse produces extensive video data which needs to be processed
in an automated way in order to extract useful statistics and characterise the
differentiation process over time.

The problem of automating statistical analysis of cell differentiation is
extremely challenging primarily due to lack of statistical descriptors to describe
changes occuring in culture over time. Recent studies have shown that texture
descriptors can enable classification of human stem cells using phase contrast
microscopy [4] however statistics over time are not discussed. From an experimen-
tal point of view some key questions regarding differentiation are: (i) when does
onset happend; and (ii) did certain differentiation conditions favour a particular
cell type being produced. In this study, we aim to address these questions in the
context of early differentiation of human carcinoma cells by automated detection
of changes in cell culture morphology over time based on texture information.
Firstly, we describe a generic approach to qualitatively assess differences in tex-
tural characteristics of images from the Brodatz dataset for a fixed timepoint.
We then extend this approach to quantitatively monitor changes in a timeseries
of images through an unsupervised dimensionality reduction technique.

2 Principal Component Analysis-Based Texture
Discrimination Technique

2.1 Gabor Energy Texture Features

Gabor filters [8] produce a decomposition of intensity values in an image I(x, y)
into sub-bands with preffered orientation and sparial frequency, revealing hidden
spatial information by kernel convolution:

gλ,σ,γ,θ,ϕ(x, y) = e− x′2+γ2y′2
2σ2 cos

(
2π

x′
λ

+ ϕ
)

; rλ,σ,γ,θ,ϕ = I ∗ g (1)
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where x′ = (x − x0) cos θ + (y − y0) sin θ; y′ = −(x − x0) sin θ + (y − y0) cos θ and
(x0, y0) represent the kernel centerl; θ ∈ [0 π), λ and ϕ ∈ (−π π] represent angle,
frequency and phase respectively. The envelope is characterised by ellipticity γ

and size σ linked through bandwidth b: σ
λ = 1

π

√
ln 2
2

2b+1
2b−1

. A series of Gabor
filters computed for different parameter combinations are shown in Fig. 1.

Texture information in the image can be characterised by Gabor energy fea-
tures computed as:

eλ,σ,γ,θ(x, y) =
√

r2λ,σ,γ,θ,0(x, y) + r2λ,σ,γ,θ,− π
2
(x, y) . (2)

In the following, we refer to texture features as a set of Gabor energy texture
features generated for each image using parameters:

λ = [1/15; 1/30; 1/60; 1/120; 1/240]
θ = [0;π/4;π/2; 3π/4;π; 5π/4; 6π/4; 7π/4] (3)
σ ∈ [0.002, 0.03]
γ ∈ [0.001; 0.01]
b = 1

and organised into a texture feature dataset:

f(x, y) = [f1(x, y), f2(x, y) . . . fN (x, y)]; f1:n = eλk,σk,γl,θm
(x, y)∀k, l,m. (4)

a b c

d e f

Fig. 1. Gabor filters generated for different orientation, size and bandwidth. Phase
offset is set to ϕ = 0 throughout examples. (a) σ = 5; θ = 0; γ = 0.5; b = 1; (b) σ =
10; θ = π/6; γ = 0.5; b = 1; (c) σ = 15; θ = π/4; γ = 0.5; b = 1; (d) σ = 15; θ = π/2; γ =
0.24; b = 0.5; (e) σ = 15; θ = π/2; γ = 0.24; b = 1 ; (f) σ = 15; θ = π/2; γ = 0.24; b = 2.
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2.2 PCA-Based Analysis Using Random Window Sampling

Extracting texture by Gabor energy features is a task of high computational
complexity. To prevent this from becoming intractable for large images, tex-
ture was analysed in a number of 50 windows collected at random locations
in the image. For each sampling window i and a given parameter combina-
tion j the Gabor energy output is integrated to produce texture observations:
Z(i, j) =

∫ ∫
fj(x, y)dxdy. Thus for each image, a texture dataset of 50 obser-

vations by 280 features was extracted. Where multiple images and timepoints
were considered, texture data was concatenated in a single large dataset and
analysed with Principal Component Analysis (PCA) [9]. The Matlab implemen-
tation princomp.m was used to obtain the projection W = AT Z and data was
visualised in the reduced principal component space.

2.3 Unsupervised Texture Discrimination of Brodatz Images

Images Can Be Distinguished by Texture in PCA-Reduced Space.
Images from the Brodatz database [10] were analysed with the PCA-based tech-
nique using texture (Fig. 2). A combined texture feature set was produced by

Texture
Set 1

a b

c d

Texture
Set 2

W
in

do
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tio
ns

Texture filters Principal component analysis

Fig. 2. PCA-based image analysis technique. (a) Sampling from Texture 1 at loca-
tions in red; (b) sampling from Texture 2 at locations in blue; (c) Combined feature
dataset organised by window number vs filter number; (d) PCA analysis of all observa-
tions colour coded according to Texture Set 1 (red) compared to Texture Set 2 (blue).
(Color figure online)
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concatenating observations from the two texture for all filter parameters. The
PCA analysis and 2D projections in the principal component space show that
observations from the two images clearly segregate into separate groups (Fig. 2d).
Thus without any prior information of the images PCA-based analysis of texture
could be used to discriminate between two images.

One commonly used feature to describe an image is the intensity histogram
which does not contain spatial information. However, distinct images can show
similarity in grayscale intensity distributions. To highlight differences between
a texture-based approach and grayscale intensity, we applied the Gabor energy
and PCA-based analysis with random sampling to images with similar distribu-
tions represented as histograms (Fig. 3). Indeed even in this case, on the basis of
texture information, PCA can discriminate between images with distinct texture
characteristics without prior knowledge of the data (Fig. 3a). Only few observa-
tions are overlapping and a separation boundary can be found.

A1 A2

A1
A2

a

B1 B2

B1
B2

b
A1 A2 B1 B2

Fig. 3. PCA-based discrimination of textured images from Brodatz dataset. (a) Set of
two different textured images A1 and A2 (top panel), grayscale intensity histograms
(middle panel) and PCA visualisation show minimal overlap between samples from A1
and A2 (bottom panel); (b) Set of highly similar textured images B1 and B2 (top),
grayscale intensity histograms (middle) and PCA analysis showing complete overlap
between observations from B1 and B2 (bottom).
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Texture Similarity Between Images. In assessing similarity it is critical
to be able to determine when images are identical in texture. When tested on
images acquired from the same textured source material, the PCA-based app-
roach indicated complete overlap between texture observations (Fig. 3b).

Taken together, these results indicate that a PCA-based approach for
analysing texture can describe both similarity and differences between images. In
the following, we apply this technique to describe the timeline of differentiation
in human embryonic carcinoma cells in the presence of a morphogen.

3 Differentiation of NTERA2 Embryonic Carcinoma
Cells Induced by Retinoic Acid

Embryonic carcinoma cells from the NTERA2 cl.D1 [5,6] cell line were exposed
to all-trans retinoic acid (RA) over 5 days in culture and differentiation was
monitored through a phase contrast timelapse microscope and by surface marker
expression at the end of the incubation period. Cell culture conditions were
maintained over time through the use of the Cellasic ONIX microfluidic platform
[13]. This system uses pressure to accurately control the delivery of media into
four independent culture chambers and solution switching from multiple wells.
In addition to controlling the amount of media and frequency of delivery over
time, the system is optimised to produce minimal shear stress which could affect
cell behaviour. Microfluidic culture conditions are aimed at creating a more
physiologically relevant environment by frequently replenishing nutrients in the
media and (when desired) generating stable gradient patterns resembling in vivo
conditions.

3.1 Experimental Methods

Cell Culture. Cells were maintained in DMEM-F12 (Sigma-Aldrich, Poole)
supplemented with 20% FBS and cultured in T25 Corning Costar flasks at 37 ◦C
in 5% CO2. Confluent cultures were passaged routinely at 1:3 split ratio by gentle
mechanical detachment using sterilised glass beads, followed by centrifugation
and plating in fresh media. The amount of FBS added to cultures was optimised
for microfluidic conditions such that cell growth and pluripotency marker expres-
sion (data not shown) under flow resembled the behaviour of cells in normal incu-
bator conditions. Since differentiation experiments were conducted under flow,
this ensured that changes observed in differentiation did not occur in response to
stress caused by the microfluidic conditions. Differentiation media consisted of
proliferative media supplemented with all-trans retinoic acid (10−2M) in DMSO
(Sigma-Aldrich) at a concentration of 10−7M (RA-7).

Cell Differentiation. Cells were cultured in M04S (Merck Millipore) mam-
malian culture plates precoated with Matrigel (BD Biosciences). Coating
involved shallow filling of culture chambers with cooled Matrigel solution by
gravity flow or automated loading on ice. Coated plates were maintained at room
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temperature for minimum 1h prior to incubation. Single cells were dissociated
using trypsin, resuspended at 2–3 million cells per ml and loaded automatically
under high flow. Following a 2h attachment period, cultures were fed every 1h at
0.25psi flow rate. The delivery of media to the cells was controlled automatically
to create 20 min pulses of RA-7 every 1h or 3h repeated over a 5 day incubation
period. Continuous conditions indicate that RA-7 is always present in the media.
Detailed protocols are included in Appendix.

Timelapse Microscopy. Cultures were monitored by phase-contrast
microscopy using an IX70 (Olympus) inverted microscope fitted with a motorised
XY stage and focus controller(Prior Scientific) controlled by a Proscan III
automation controller (Prior Scientific). Cells were imaged using a 10x, 0.45 NA
phase contrast object (Olympus) and detected using a Photometrics Evolve 512
EMCCD camera (Photometrics) every 10 min, controlled via Micromanager [11].

Immunocytochemistry. At the end of the five day incubation period, cells
were fixed in 4%PFA, blocked with 5% FBS in PBS, incubated with primary
monoclonal antibody for ME311 (9-O-acetyl-GD) and Hoechst33342 (Life Tech-
nologies) then incubated with Alexa Fluor 647 (Thermo-Fisher) conjugated sec-
ondary antibody. Protocol was performed in M04S microfluidic plates following
the automated immunostaining surface marker protocol [12]. Plates were imaged
using the InCell Analyzer2000 (GE Healthcare) and the number of ME311 pos-
itive cells was counted by image processing using Developer Toolbox.

3.2 Microfluidic Frequency Control of Retinoic Acid (RA-7) Ellicits
Differential Response in Cell Fate

Cells maintained in media containing RA-7 exhibited varying levels of differentia-
tion over five days in culture (Fig. 4). Although cells in all conditions proliferated
and became confluent, the frequency of RA-7 greatly affected the proportion of
cells expressing the surface marker ME311 (Table 1). Adding RA-7 at a 1:3 dilu-
tion every 1h (Fig. 4: 1h/3p) as a pulse caused only 9% of cells to express ME311
(Table 1: 1h/3 pulse). However, when the same overall concentration of RA-7 was
added as a single pulse every 3h (Fig. 4: 3hp), the proportion of ME311+ cells
increased to 27 ± 14% (Table 1: 3h pulse). This indicated that cell response to
morphogen signal RA is not integrated over time and differentiation is enhanced
at high concentrations.

We hypothesised that more frequent addition while keeping the concentration
fixed would lead to increased differentiation potential. Indeed, when increasing
the frequency of adding RA from every 3h to every 1h, we noted an 18% increase
in ME311+ cells up to 48 ± 4% (Table 1: 3h pulse vs 1h pulse). These results
showed nonlinear response, i.e. when frequency is increased 3x, the number of
ME311+ cells increased 1.8x. Remarkably, in continuous RA-7, the proportion
of cells expressing ME311 dropped by 18% compared to pulsing (Table 1: 1h cont
vs 1h pulse).
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Table 1. Proportion of cells expressing surface marker ME311 in different flow
conditions

Condition Nuclei counts ME311+ %ME311+

1h/3 pulse 10122 910 9%

3h pulse
6269 1058

27 ± 14%
8695 3217

1h pulse
6913 3122

48 ± 4%
9850 8046

1h cont 8201 2460 30%

The continuous condition best resembles classical differentiation experiments
where the morphogen is always present in the media. Results indicated that
pulsing at particular frequencies increases differentiation potential. The mecha-
nism by which this occurs is undetermined but could involve receptor saturation
when the morphogen is always present while the receptor continues to respond in
pulsing conditions. Overall, levels of ME311 showed that cell response appeared
nonlinear with respect to frequency and concentration of morphogen. However,
the timeline of differentiation remained unknown. In the following, the PCA-
based analysis strategy is used to describe differentiation potential from video
data acquired throughout the differentiation process.

4 PCA-Based Analysis of Cell Differentiation
from Timeseries of Images

The most significant fate shift in surface marker expression was detected between
the 1h pulsed and 3h pulsed conditions (Fig. 4 and Table 1). We used timelapse
microscopy to further investigate differentiation onset of these cultures over the
entire 5 day period. A total of 721 images were acquired from culture chambers
exposed to RA-7 every 1h and every 3h. We acquired 5 positions from each
chamber representing technical replicates. All images (from each position and
timepoints) were sampled for texture at 50 random locations per image yielding
an overall dataset of 500 texture observations by 280 features. Texture data was
extracted using Gabor energy and analysed with PCA as described in Sect. 2.2.
In addition, a linear discriminant analysis was applied.

4.1 Computational Methods

Cross-Validation of Linear Discriminant Classifier. A linear discriminant
classification technique applied to the PCA-projected data was used to separate
texture information acquired from different images and implemented in Matlab
using classify.m. The classifier was optimised using n-fold cross validation: (i)
data was divided into four sets; (ii) the linear discriminant was trained on one set
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Day 0      Day 3      Day 4       Day 5         Day 5 

1h/3p 

3hp 

1hp 

1hc 

Fig. 4. Cell differentiation under microfluidic flow. Representative images from time-
lapse experiments carried out at set frequencies of RA-7, every 1h pulse of RA-7/3
(1h/3p); every 3h pulse (3hp); every 1h pulse (1hp); every 1h continuous (1hc); Left
panels show antibody staining for surface marker ME311 (red) and nuclear marker
Hoechst33342 (blue). (Color figure online)

and tested on the remaining three at all possible combinations; (iii) the classifier
with overall best rate was chosen.

Optimisation of Window Size. Window size affected the classification results
and needed to be optimised. To account for this, the global classifier that pro-
duced >95% classification rates at the smallest % coverage (image area covered
by windows/total image area x100) of an image were chosen. This guarantees
that images are not over-sampled. Overall, high classification rates (>95%) could
be obtained from 10% coverage of images highlighting inherent redundancy in
texture information across the image.

4.2 Texture Characteristics Reveal the Onset of Differentiation

Texture information was analysed with PCA yielding a representation of cell
culture differentiation at Days 1 to 5 as observations projected in the princi-
pal component space (Fig. 5a). The dominant principal components accounted
for most variability in the data with approximately 91% and 93% for two and
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 1h RA 
 3h RA 

a 

b

Fig. 5. Texture analysis of differentiation experiments. (a) Texture characteristics
extracted from two culture conditions 1hRA (red) pulse and 3h RA pulse (blue) are
visualised in the principal component space defined by the dominant three components;
(b) Classification rates for linear discriminant trained on the last timepoint describe
the divergence between the two clusters at 6h intervals. (Color figure online)

three components respectively; the remaining 7% of variability was split between
remaining principal components. Thus we considered that the dominant three
principal components are sufficient to describe the differences between the two
conditions.

As expected, the cultures appeared unchanged in the first days post-plating.
The first detectable differences in texture characteristics appeared in Day 3 and
continued to amplify in Days 4 to 5. Specifically, compared to the location of
clusters representing 1h RA and 3h RA at Day 1, at later incubation times
the two conditions appeared to move in opposite directions in terms of texture
characteristics leading to best separation at Day 5. The gradual shift observed
in Days 3 to 5 indicate that after the onset of differentiation at approx 72h
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post-plating, the cells in the two flow conditions continue to diverge over time.
It remains unclear whether the time period of 72h is related to cell cycle time
(approximately 18h) in which case cells would require 3 to 4 divisions before
committing to differentiation.

4.3 Timeline of Differentiation Is Mapped by Statistical Analysis

We performed a statistical analysis of texture characteristics over time through
linear discriminant and cross-validation analysis. Because differentiation was val-
idated through an independent antibody staining technique at the end of the
incubation period (Day 5), we used pairs of images from the 1h and 3h condi-
tions at the last timepoint to train and test a linear discriminant classifier with
the cross-validation techniques described in Sect. 4.1.

The unsupervised classification of texture information is computed at each
timepoint between the 1h and 3h RA conditions thus generating a quantitative
measure of differentiation over time (Fig. 5b). As expected, at the initial time-
points, classification rates were approximately 50% indicative of high similarity
in texture characteristics between the two conditions. This results is consistent
with no differentiation.

At Day 3 classification rates started to exceed 75% but remained variable
indicating that in some images, it is possible to discriminate between the two
conditions while in others changes due to differentiation are unclear. We con-
cluded that Day 3 marks the onset of differentiation. Furthermore, starting from
72h post-plating, the classification rate was persistently above 75% indicating
that in Days 4 and 5, the two conditions produce clear differences in texture
and this is consistent with surface marker expression levels at the end. Thus in
Days 4 and 5 changes in texture induced by differentiation are permanent and
continue to develop amplifying differences between the two cultures.

5 Discussion

In this study, we described a random sampling technique for extracting texture
information from imaging data using Gabor energy and analysing differences
using conventional PCA. In separate examples, we showed that this framework
can successfully discriminate between distinct Brodatz textures but also detect
similarity. By combining PCA analysis of texture with a linear discriminant, an
unsupervised technique for measuring textural differences in a set of images is
constructed. We apply this technique to a large imaging dataset showing differ-
entiation of human embryonic carcinoma cells.

Using a microfluidic perfusion environment, we designed controlled varia-
tions in media conditions over five days. Differentiation potential was monitored
only at the end of the experiment using the non-neural surface marker ME311.
Experimental results showed that frequency patterns led to a significant change
in the amount of differentiated cells expressing ME311 most evident between 1h
and 3h pulsed conditions. Cell response was highly nonlinear with concentration
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and frequency. Remarkably, the behaviour of cells exposed continuously to RA
diverged greatly from cells exposed to pulses suggesting that saturation may
occur when the trigger molecule is always present in the media.

Principal components provided a representation of cell differentiation as lin-
ear combinations of texture filters applied to images. Gabor texture filters cap-
ture spatial information of changes in morphology that the cultures experience
however these cannot be directly related to a biological mechanism. Neverthe-
less, pattern recognition techniques could be used to closer investigate a poten-
tial mapping between texture and morphology. Based on timelapse observations,
morphology changes occured primarily from local changes in cell density. In the
presence of retinoic acid, some of the cells in the same cultures became unpro-
liferative forming valleys of darker regions while others continued to proliferate
in brighter ridges surrounding unproliferative cells. These effects gave rise to
irregular morphology when compared to undifferentiated cultures. Therefore,
links between the texture characteristics and cell morphology could be investi-
gated through the use of a live nuclear stain and markers associated with cell
proliferation.

To investigate the timeline of differentiation, we analysed texture differences
in images collected over the entire 5 day differentiation experiment. The results
showed that a shift in differentiation outcome could be predicted directly from
texture information. The trajectory of clusters containing observations from the
two conditions was indicative of a fate shift away from the appearance at 48h
post-plating (undifferentiated) and also diverging from each other. Since ME311
was favoured in the 1h RA condition, a potential mechanism by which cells in the
3hRA undergo a fate shift is by expressing higher levels of the neuronal markers.
The trends in classification rates over time, provide a quantitative description
of the timeline of differentiation which is unsupervised and label free. However,
more advanced kernel-based PCA techniques and wavelet methods may provide
additional insight. The statistical and experimental techniques described in our
study provides the basis for automated analysis and monitoring of cell cultures
in a variety of conditions that affect culture morphology and cell fate.

Acknowledgments. This work was funded by a Human Frontier Science Pro-
gram grant. OC was funded by Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico, Brazil.

Appendix

Microfluidic experiments on the M04S mammalian plate were prepared according
to the diagram in Fig. 6 and in addition the waste wells 7 were filled with 300µl
media per well to prevent gravity flow. The protocol for the microfluidic system
is summarised in Algorithm 1.
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Every 3h  
pulses of RA-7 
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Fig. 6. Preparation of differentiation experiments in microfluidic M04S plate. Legends
denote: (M) DMEM-F12+20% FBS media; (RA) all-trans retinoic acid at 10−7 in
media M; (RA/3) RA diluted at 1:3 in media M.

Algorithm 1. Cell differentiation protocol for Cellasic ONIX
settemp 37.5
setflow X 1
setflow Y 1
% attachment stage
wait 240
% run for Vx as V2, V3, V4, V5 sequentially
open Vx
wait 5
close Vx
wait 15
open V1
wait 0.2
close V1
wait 39.8
% repeat sequences V2V1V3V1V4V1V5V1 for 120h in total
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Abstract. Constraint-based approaches have been proven useful to
determine steady state fluxes in metabolic models, however they are not
able to determine metabolite concentrations and they imply the assump-
tion that a biological process is optimized towards a given function. In
this work we define a computational strategy exploiting mechanism based
simulations as a framework to determine, through a filtering procedure,
ensembles of kinetic constants and steady state metabolic concentrations
that are in agreement with one or more metabolic phenotypes, avoid-
ing at the same time the need of assuming an optimization mechanism.
To test our procedure we exploited a model of yeast metabolism and
we filtered trajectories accordingly to a loose definition of the Crabtree
phenotype.

Keywords: Systems biology · Mechanistic simulations · Steady state ·
ODEs · Fluxes · Ensembles · Kinetic parameters · Metabolism

1 Scientific Background

It is nowadays evident that biological processes must be described in terms
of complex networks of non linear interactions involving several entities (genes,
transcripts, proteins, metabolites) giving rise to emergent behaviors. This aware-
ness, coupled with the fact that biological complex systems can be effectively
analyzed only by means of mathematical modeling and simulations, gave rise
during the last two decades to Systems Biology, a new discipline integrating com-
putational modeling and “wet” experimental approaches [3]. In particular the
study of metabolism has widely took advantage of Systems Biology approaches
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usually describing metabolic networks as hypergraphs in which nodes represent
metabolites and edges indicate reactions [22].

Simultaneously to the development of computational techniques, progresses
in high throughput technologies opened the “omics data” era characterized by a
thrive of genome-scale metabolic reconstructions tailored on different cell types
(unicellular organisms [2], healthy and diseased tissues [9]). However, techno-
logical limitations do not allow yet to investigate these genome-scale models
by means of mechanism-based approaches (i.e., by simulating their temporal
dynamics) [5]. For this reason, these models are currently studied through
constraint-based approaches [11] exploiting information on metabolic network
structure and assuming a pseudo-steady state for internal metabolites, thereby
disregarding temporal evolution of the system: focusing on the metabolic steady
state has been proven to be a valid assumption due to experimental evidences
showing that in vivo metabolism reaches the steady state in few seconds [21].

The stoichiometric information retrievable from the structure of the
metabolic network is the core of constraint-based modeling, indeed the sto-
ichiometric matrix associated to a metabolic network mathematically defines
changes in metabolites quantities when reactions are applied. The imposition of
mass balance and of additional constraints (e.g., irreversibilities or boundaries
on fluxes) allows to determine a feasible solution space containing flux distrib-
utions (i.e., flux values for each reaction in the model) reachable by the system
and representing different functional states. Lastly, under the assumption that
the metabolic system is optimized towards a given goal, optimization methods
as flux balance analysis (FBA) [17], can be used to determine an optimal flux
distribution that maximizes or minimizes a given metabolic task determined by
an objective function (OF).

Fig. 1. Schematic workflow illustrating the four main phases of the computational
procedure.
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Recent studies [10] showed how the selection of the appropriate OF is essential
when performing FBA investigations. This is due to the fact that often it is not
possible to determine the formulation of the OF, but also to the fact that it is
not possible to determine if the system is found in a sub-optimal state.

In a previous work, using an extension of FBA that we named Ensemble
Evolutionary FBA (eeFBA) [6], we analyzed the capability of a cell to pursue
alternative metabolic behaviors by altering its fluxes, or in other words, we
determined which flux distributions are able to give rise to a specific metabolic
behavior. To perform the analyses we generated a set of random OFs to be
optimized by means of linear programming. We then filtered them accordingly
to the definition of different metabolic phenotypes in order to obtain distinct
ensembles of solutions that comply with defined phenotypes.

However, both with FBA and eeFBA it is not possible to determine the
extent of metabolic concentrations when the system is at steady state due to
the lack of information on kinetic constants. In the present paper we propose
a novel strategy, where the ensembles of alternative phenotypes are still popu-
lated according to fluxes properties but extracting steady states from mechanism
based simulations parametrized using initial concentrations retrieved from the
literature and randomly sampled kinetic constants.

By doing this, we are able to infer ensembles of metabolite concentrations at
steady state that are in accordance with a given metabolic phenotype indepen-
dently from the definition of an appropriate OF and from the assumption that
the cell is optimizing towards a specific objective.

2 Materials and Methods

With the procedure here devised and illustrated in Fig. 1, we setup several
“experiments” that we define as follows: for each random parametrization we
execute a number (N ) of simulations using, for each of them, a different but
constant concentration of nutrient (e.g., glucose).

To perform the procedure, we firstly run deterministic simulations of a
metabolic model based on ODEs and exploiting the LSODA solver until the
system has reached a steady state. We then calculate fluxes values vi for each
reaction i at this steady state exploiting an elementary mass action relation:

vi = ki

M∏

w=1

[χw]αwi (1)

where ki is the rate constant of reaction i, [χw] is the concentration of species w
and αwi the stoichiometric coefficient with which species w participate to reac-
tion i. At this stage, we filter the experiments on the basis of relevant metabolic
fluxes to obtain ensembles of metabolic phenotypes that abide by the filter. In
particular, in this work, to filter the experiments we used the same phenotype
definition already published in [6]. The last step of the procedure is to analyze
the experiments to ideally identify the properties shared by elements of each
ensemble such as the presence of putative subphenotypes.
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To test the procedure herein developed we defined the metabolic phenotype
expressed by the Crabtree effect [8], a well known biological phenomenon tak-
ing place in some yeasts like Saccharomyces cerevisiae, implying a production of
ethanol by fermentation when high concentrations of glucose are available in the
extracellular environment preferring fermentation—regardless the availability of
oxygen—with respect to the more energetically efficient oxidative phosphorila-
tion (OXPHOS). In our test case we call “Crabtree-positive” the phenotype
exhibiting the enhanced fermentation. On the same line, we call “Crabtree-
negative” the phenotype of those yeasts (like Kluyveromyces) not showing the
peculiar experimental characteristics.

To evaluate the effectiveness of the procedure in discriminating the two phe-
notypes and in selecting corresponding ensembles of kinetic constants and steady
state metabolic concentrations, we used a simplified model of yeast metabolism
(illustrated in Fig. 2) developed in [6] and designed to take into account only
those pathways (metabolites and reactions) involved in the emergence of the
Crabtree effect (CE).

To determine the initial concentrations of metabolites involved in the yeast
model, we mined the literature and we set them accordingly to the average
values illustrated in Smallbone et al. [20], and Canelas et al. [4]. From the in
vivo experimental point of view this effect can be observed as the concomitant
presence of alcoholic aerobic fermentation and reduction of OXPHOS rate when
the glucose uptake from the medium progressively increases (e.g. by means of
incremental glucose pulses added to yeast medium culture). The given biological
definition of the CE however must be mathematically translated in order to
formally and unequivocally determine metabolic response constraints defining
the Crabtree-positive (C⊕ ) and Crabtree-negative (C� ) phenotypes.

To this end we evaluated fluxes that in the model are proxies for OXPHOS—
the sum of fluxes (vo) for the two reactions summing up respiration, illus-
trated with A and B in Fig. 2— and alcoholic fermentation—ethanol secre-
tion flux (ve) represented with C in Fig. 2—traditionally defining CE. Fur-
thermore, due to experimental observations [18] of marked differences between
the two yeast phenotypes with regard to glucose uptake kinetics, we consider
vo and ve as a function of glucose uptake vg represented by series of glu-
cose uptake concentrations maintained “in feed” and defined by the expression
{vi

g | ∀ i < j vi
g < vj

g}i,j=1,...,L representing the set of constant glucose concen-
trations at which each simulation is run.

To formally define C⊕ we start from the observation that under this pheno-
type, the ratio of alcoholic fermentation over respiration increases proportionally
to the glucose uptake, implying that at the maximum “in feed” glucose concen-
tration evaluated, the ethanol secretion flux must have higher flux values with
respect to the respiratory flux. In addition for the C⊕ case, we imposed that
respiration and ethanol secretion should have at least one value different from
zero. Formally these constraints relative to the C⊕ phenotype are summarized
by logical expressions shown in Eq. 2.
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Fig. 2. Diagram of the yeast metabolism core model. The model consists in 48 reac-
tions and 34 metabolites representing the main metabolic pathways. Only glucose is
considered as carbon source. The directionality of reactions has been imposed according
to literature. A and B indicate reactions modeling respiration, while C labeled reac-
tion indicates the proxy for fermentation. Black solid arrows indicate reactions that
significantly differ between C⊕ and C� accordingly to the Kolmogorov-Smirnov test
described in Sect. 3, red dashed arrows are not significant reactions accordingly to the
same test. (Color figure online)
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( L∑

l=1

ve(vl
g) > 0

)
∧

( L∑

l=1

vo(vl
g) > 0

)
∧

(
ve(vL

g ) − vo(vL
g ) > 0

)
(2)

Once we filtered the experiments to populate the C⊕ ensemble, on the same
line we filtered the remaining experiments by means of a logical expression for-
mulated for C� in which we do not impose specific fermentation levels, but
instead we verify that respiration flux does not overtake ethanol secretion as a
function of glucose concentrations, implying also that respiration must increase
as a function of “in feed” glucose concentrations. In Eq. 3 we define the expres-
sion for the C� phenotype as follows:

(
vo(v1

g) − vo(vL
g ) < 0

)
(3)

In this paper, we focus on the relationship between fermentation and respiration
at the extremes of the considered interval of glucose uptake (rather than at
intermediate levels) to examine a wider extent of emergent behaviors that are
able to satisfy Eqs. 2 and 3.

In order to simulate the dynamics of the model until it reaches the steady
state, we use a set of ordinary differential equations (ODEs) defined assuming a
mass action kinetic. To numerically solve the ODEs system, we use the efficient
software library LSODA (Livermore solver for ODEs with automatic method)
[19]; in particular in this paper we used the LSODA version implemented in SciPy
[12] (a collection of scientific packages for Python). To gain more flexibility we
uncoupled data production (simulations) and their analysis. In order to manage
a wide amount of data, to store them and to perform queries we setup a database
exploiting PyTables [1], a package for managing hierarchical datasets designed
to efficiently and easily cope with extremely large amounts of data.

PyTables is built on top of the HDF5 library, using the Python language and
the NumPy package.

To obtain the ensembles of metabolic phenotypes that sustain C⊕ and C�,
we firstly performed several “experiments” randomly defining, for each of them,
the set of kinetic constants and performing a simulation for every level of nutri-
ent (glucose). Once we obtained the experimental data set we populated the
ensembles implementing the Boolean filter defined in Expression Eq. 2 for the
C⊕ ensemble and Expression Eq. 3 for the C� ensemble.

3 Results

To test the procedure on the simplified yeast model, we tossed multiple different
random sets of kinetic constants, for each of them we performed 10 different
simulations evenly sampling the glucose interval [0, 25] mMol, keeping the con-
centration constant throughout the simulation (i.e. glucose is “in feed”) time of
50 s (defined accordingly to [21]).

After the simulation we checked that the system reached the steady state:
we calculated the standard deviation (σ) for every species in the system during
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(a) Fermentation flux

(b) Respiration flux

Fig. 3. Lines represent average flux values for C⊕ (red) and C� ensembles at the
variation of the glucose level, associated error bars indicate the ±σ values. (Color
figure online)
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the last 10% of the simulation time, subsequently we summed the σs and we
divided the value for the number of species not “in feed”. If the value was less
than 1% we considered the system at steady state and we retained the random
parametrization, otherwise we discharged it. We iterated the procedure to obtain
104 random sets of kinetic constants, discarding a total of 23199 parametriza-
tions. The total computational time to produce the data set has been 5.5 h to
run ODEs simulations on a MacBookPro (CPU 2.6 GHz Intel Core i7, RAM
16 GB) and producing 268 Mb of data. After filtering the data set we obtained
an ensemble of 7901 C� solutions and ensemble of 29 C⊕ solutions.

Fig. 4. Hierarchical clustering performed on both reactions (rows) and solutions
(columns). The associated heatmap illustrates flux values for every reaction and for
every solution at steady state. Reactions are indicated as substrate product, with sub-
strate and product being one among the reaction substrates and products respectively.
Reverse reactions are considered separately and are indicated with the suffix “reverse”.
(Color figure online)
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Results indicate that less than 0.3% of the total random parametrizations
led to a C⊕ phenotype, while the 79% of the cases were assigned to the C�
ensemble.

Moreover, the 21% of the random parametrizations were not assignable to one
of the two ensembles. Comparing these results with those previously published
with the eeFBA approach [6] it is possible to notice that in spite of having
different proportions (2% against 0.3% for C⊕ and 11% against 79% for C� )
there still a higher probability to observe the metabolic response typical of the
Crabtree-negative yeasts than of observing the Crabtree effect. The most marked
difference with the eeFBA approach can be identified when comparing solutions
that were not assigned to any ensemble (87% against 21%).

To improve the soundness of the biological readout, we analyzed the resulting
ensembles by means of a hierarchical clustering performed on the global data set
computing euclidean distances on the flux values matrix (i.e. the flux distribu-
tion in the different solutions). In particular we clustered both reactions (rows
in Fig. 4) and solutions (columns in Fig. 4), overall we stress the fact that C⊕
and C� solutions form two main separate clusters (C⊕ : small green cluster on
columns, C� : red and light blue clusters on columns) and, for what concerns
reactions, on rows three main clusters are clearly evident (red, green and blue);
however there is no strict correspondence between reaction clustering and bio-
chemical pathways (e.g., reactions of both TCA cycle and glycolysis are split
among two different clusters).

To further characterize the ensembles identifying those fluxes significantly dif-
ferent between the two ensembles we exploited a Kolmogorov-Smirnov test [13],
a non-parametric hypothesis test procedure able to discriminate if two samples
derive from the same distribution without investigating the actual shape of the
distributions. The statistical test has been performed using the flux values of
each reaction at steady state for all the 10 non-null levels of glucose.

As a result we obtained 33 reaction fluxes (over a total of 48) that are sig-
nificantly different for at least 9 out of 10 levels of glucose (indicated with black
solid arrows in Fig. 2), setting a p-value threshold of 0.05. Obviously among these
are the reactions used to discriminate between the C� and C⊕ phenotypes.

4 Conclusion

Constraint-based models have been effectively used to study metabolic fluxes at
steady state, however they are not able to provide information on the temporal
evolution of the system during the transient phase previous to the steady state.
Moreover with constraint-based methods it is not possible to infer the metabolic
concentrations at steady state due to the fact that there is no information about
kinetic constants (a metabolic flux is determined using the Eq. 1).

The technique developed in the present work together with the current cal-
culating capacity, enables to overcome this limitations by means of mechanism-
based simulations (parametrized used random kinetic constants and initial mole-
cular concentrations retrieved in literature), calculation of metabolic fluxes at
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steady state and selection of those solutions (sets of kinetic constants and mole-
cular concentrations at steady state) that are in agreement with phenotype def-
initions. Results shown in Fig. 3, illustrates that by a simple filtering of pivotal
fluxes for respiration and fermentation at the boundary levels of nutrient uptake,
the devised method is able to discriminate between C⊕ and C� metabolic pheno-
types. Indeed, as it happens in vivo, fermentation flux is higher in simulated C⊕
solutions with respect to C� for every level of glucose, while respiration shows
an opposite behavior (the average respiration flux in C� ensemble is higher than
in C⊕ ). Moreover, the hierarchical clustering illustrating a separation between
C⊕ and C� solutions as well as the Kolmogorov-Smirnov test identifying as sta-
tistically different pivotal reactions for the identification of the two phenotypes,
provide a further support for the obtained results.

In conclusion, in this work we provided a proof of concept for a computa-
tional framework able to discriminate between different metabolic phenotypes
in order to retrieve ensembles of putative steady state metabolic concentrations
and kinetic constants without the need of assuming that the cell is optimized
towards a specific behavior.

Currently we are exploiting the computational framework here described
to investigate the linking between alterations in metabolic fluxes and shifts
in metabolite levels. Briefly, preliminary results suggest that metabolite lev-
els exhibit a poor correlation with variations in flux values of reactions directly
involving them. At the same time, results show a stronger linkage with variations
in fluxes that are distantly located in the network [7].

In the next future, we plan to expand the set of sampled random kinetic
constants and to implement a more efficient strategy to determine the metabolic
steady state (e.g. exploiting the NLEQ2 algorithm [16]). Lastly, we will con-
sider the feasibility of using parallel and high performance computing techniques
[14,15] in order to speed-up simulations.

Acknowledgments. This work has been supported by SYSBIO Centre of Systems
Biology, through the MIUR grant SysBioNet—Italian Roadmap for ESFRI Research
Infrastructures.

References

1. Alted, F., Vilata, I., et al.: PyTables: hierarchical datasets in python (2002). http://
www.pytables.org

2. Aung, H.W., Henry, S.A., Walker, L.P.: Revising the representation of fatty acid,
glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast
metabolism. Ind. Biotechnol. 9(4), 215–228 (2013)

3. Alberghina, L., Westerhoff, H.V. (eds.): Systems Biology: Definitions and Perspec-
tives. Topics in current genetics, 13th edn. Springer, Heidelberg (2005)

4. Canelas, A.B., van Gulik, V.M., Heijnen, J.J.: Determination of the cytosolic
free NAD/NADH ratio in saccharomyces cerevisiae under steady-state and highly
dynamic conditions. Biotechnol. Bioeng. 100(4), 734–743 (2008)

http://www.pytables.org
http://www.pytables.org


Constraining Mechanism Based Simulations to Identify Ensembles 117

5. Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D.,
Pescini, D., Molinari, S., Mauri, G., Alberghina, L., et al.: Computational strate-
gies for a system-level understanding of metabolism. Metabolites 4(4), 1034–1087
(2014)

6. Damiani, C., Pescini, D., Colombo, R., Molinari, S., Alberghina, L., Vanoni, M.,
Mauri, G.: An ensemble evolutionary constraint-based approach to understand the
emergence of metabolic phenotypes. Nat. Comput. 13(3), 321–331 (2014)

7. Damiani, C., Colombo, R., Di Filippo, M., Pescini, D., Mauri, G.: Linking alter-
ations in metabolic fluxes with shifts in metabolite levels by means of kinetic
modeling. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol.
708, pp. 138–148. Springer, Cham (2017). doi:10.1007/978-3-319-57711-1 12

8. De Deken, R.H.: The crabtree effect: a regulatory system in yeast. J. Gen. Micro-
biol. 44(2), 149–156 (1966)

9. Di Filippo, M.: Zooming-in on cancer metabolic rewiring with tissue specic
constraint-based models. Comput. Biol. Chem. 62, 60–69 (2016)

10. Feist, A., Palsson, B.: The biomass objective function. Curr. Opin. Microbiol.
13(3), 344–349 (2010)

11. Gianchandani, E.P., Chavali, A.K., Papin, J.A.: The application of flux balance
analysis in systems biology. Wiley Interdisc. Rev. Syst. Biol. Med. 2(3), 372–382
(2010)

12. Jones, E., Oliphant, E., Peterson, P., et al.: SciPy: open source scientific tools for
python (2001). http://www.scipy.org/

13. MacFarland, T.W.W., Yates, J.M.M.: Introduction to Nonparametric Statistics for
the Biological Sciences Using R. Springer, Cham (2016)

14. Nobile, M.S., Besozzi, D., Cazzaniga, P., et al.: GPU-accelerated simulations of
mass-action kinetics models with cupSODA. J Supercomput 69(1), 17–24 (2014)

15. Nobile, M.S., Cazzaniga, P., Besozzi, D., et al.: CuTtauLeaping: a GPU-powered
tau-leaping stochastic simulator for massive parallel analyses of biological systems.
PLoS ONE 9(3), e91963 (2014)

16. Olivier, B.G., Rohwer, J.M., Hofmeyr, J.H.S.: Modelling cellular systems with
PySCeS. Bioinformatics 21(4), 560–561 (2005)

17. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nat. Biotech-
nol. 28(3), 245–248 (2010)

18. Papini, M., Nookaew, I., Uhlén, M., Nielsen, J.: Scheffersomyces stipitis: a com-
parative systems biology study with the crabtree positive yeast saccharomyces
cerevisiae. Microb. Cell Fact. 11, 136 (2012)

19. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM J. Sci. Stat. Comp. 1(4), 136–148 (1983)

20. Smallbone, K., et al.: A model of yeast glycolysis based on a consistent kinetic
characterisation of all its enzymes. FEBS Lett. 587(17), 2832–2841 (2013)

21. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., Reuss, M.: In vivo analysis
of metabolic dynamics in saccharomyces cerevisiae: I experimental observations.
Biotechnol. Bioeng. 55(2), 305–316 (1997)

22. Zhao, J., Yu, H., Luo, J., Cao, Z., Li, Y.: Complex networks theory for analyzing
metabolic networks. Chin. Sci. Bull. 51(13), 1529–1537 (2006)

http://dx.doi.org/10.1007/978-3-319-57711-1_12
http://www.scipy.org/


Process Algebra with Layers: Multi-scale
Integration Modelling Applied to Cancer

Therapy

Erin Scott1 , James Nicol2, Jonathan Coulter2 , Andrew Hoyle1 ,
and Carron Shankland1(B)

1 Computing Science and Mathematics,
University of Stirling, Stirling FK9 4LA, UK

ces@cs.stir.ac.uk
2 School of Pharmacy,

Queen’s University Belfast, Belfast BT7 1NN, UK

Abstract. We present a novel Process Algebra designed for multi-scale
integration modelling: Process Algebra with Layers (PAL). The unique
feature of PAL is the modularisation of scale into integrated layers:
Object and Population. An Object can represent a molecule, organelle,
cell, tissue, organ or any organism. Populations hold specific types of
Object, for example, life stages, cell phases and infectious states. The
syntax and semantics of this novel language are presented. A PAL model
of the multi-scale system of cell growth and damage from cancer treat-
ment is given. This model allows the analysis of different scales of the
system. The Object and Population levels give insight into the length
of a cell cycle and cell population growth respectively. The PAL model
results are compared to wet laboratory survival fractions of cells given
different doses of radiation treatment [1]. This comparison shows how
PAL can be used to aid in investigations of cancer treatment in systems
biology.

Keywords: Systems biology · Formal methods · Mathematical
modelling · Cell cycle · DNA damage

1 Scientific Background

Multi-scale modelling in systems biology is now commonplace and indeed essen-
tial to many investigations [2,3]. Analysis of emergent properties arising from
the interactions between scales of multi-scale systems is important as an aid
in solutions to topical issues such as disease and climate change. Indeed the
issue of cancer cell growth and damage from treatments is a multi-scale sys-
tem as the damage affects the levels of intracellular proteins within a cell and
therefore affects the cell population levels [1,4]. There are a number of success-
ful multi-scale models such as Powathil et al. [4] cellular automaton model to
study the dynamics of chemotherapy drugs to cancer cell-cycle heterogeneity.
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Another example is the Met Office climate prediction model [5] which couples
the atmospheric and oceanic scales together in one model.

There is no universally adopted theoretical/computational framework or lan-
guage for the construction of multi-scale models. Most multi-scale models are
specific to the problem they are addressing and are defined by integrated scales
that are modelled in different mathematical and computational languages [2,3].
These hybrid models use a combination of modelling approaches such as Ordi-
nary Differential Equations (ODE) and Cellular automata (CA) to define specific
scales of the model. For example, the Powathil et al. [4] model is hybrid because
the intracellular proteins are defined in ODE and the cell populations are mod-
elled in cellular automaton. The Met Office climate prediction model [5] is hybrid
as it utilises different mathematical approaches to describe the different scales
and is specific to the problem of climate change forecasting. These hybrid mod-
els make the structure and the analysis of the model difficult as the scales are
defined in separate models. The modeller must create, or be knowledgeable in,
integration techniques to link the models together.

Process algebra offers an ideal opportunity in systems biology [6]. It gives
a high-level description of interactions, communications, and synchronizations
between a collection of independent agents or processes. Its application provides
many analysis techniques for systems’ behaviour and properties. For example,
time series simulations (to produce model predictions to compare with observed
data), Markovian analysis (deriving a Continuous Time Markov Chain (CTMC)
of all the possible states and evolutions of the model to be used for functional
verification), model checking (to validate the model against a high level prop-
erty specified in e.g. temporal logic), and model generation (creating models
from time series data). The multiscale P-system framework of Romero-Campero
et al. [7] is also attractive for its ability to describe extremely abstract hierar-
chical systems within one formalism; however, the range of possible analyses is
smaller.

There are only a few process algebra languages that are specifically designed
for multi-scale systems. These include Parametric Stochastic Process Algebra
with Hooks (psPAH) [8] and Performance Evaluation Process Algebra nets (PEPA
nets) [9]. These multi-scale languages focus on the integration of spatial scales,
assuming the same time scale. One important multi-scale modelling feature is
allowing the easy definition of the addition and deletion of objects within the lan-
guage to capture, for example, cell division and cell death. Neither psPAH nor
PEPA nets include this specific modelling feature. As a result, the modeller needs
to add many lines of code to add and delete objects, making the model difficult to
construct and read. In this paper we propose a novel language, Process Algebra
with Layers (PAL), which gives a convenient representation of multi-scale systems
by putting these features directly into the syntax and semantics.

The unique features of PAL are the integrated layers: Object and Popula-
tion. These novel layers allow PAL to include the easy definition of the addition
and deletion of Objects through Population actions. These layers modularise
the definitions of specific Object populations from the Object’s internal system
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definition giving a more elegant model. The layers are generally applicable to
a variety of multi-scale systems: see Sect. 2.1. We show how easily the layers of
PAL can be applied to a novel mammalian cell cycle and DNA damage case
study. The case study has two distinct layers. At one level, there is a population
of growing and dividing cells. How cells move between these states is controlled
by changes in cell mass and levels of selected proteins. The intracellular species
and interactions between them form the second layer. The novel PAL model
links together the established models of Zhang et al. [10] and Tyson et al. [11] to
investigate the effect of DNA damage from radiation on the progression of the
cell cycle. This has not been previously considered in the literature.

2 Materials and Methods

2.1 Process Algebra with Layers

PAL has two layers which are named Object and Population. Figure 1 shows a
conceptual schematic of these layers.

Fig. 1. Schematic of Object and Population Layers. The Object layer describes each
specific Object. Objects have an internal system description of internal species compo-
nents. The Population layer defines populations of Objects.

An Object is an individual system model at the lowest scale of interest.
Objects comprise a number of internal species components. A PAL model may
have multiple Object types, and multiple replications of these Objects. The
Objects’ internal species evolve dynamically over time via actions. Some actions
are internal to the Object, and some impact on the next scale up, the Population.
A Population is a collection of Objects. A PAL model must have at least one
Population. There may be interaction between Populations and between layers.
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Objects and Populations can stand for any scale the modeller chooses. In
Sect. 2.5, for example, PAL is illustrated by a mammalian cell case study. The
cells and their intracellular proteins (internal species) are the Objects. These
drive the cell cycle. Populations define cells in specific phases such as growing
and dividing. Mirrored actions connect Objects (e.g. when a protein reaches a
specific level) with Populations (e.g. resulting in a state change from growing
to dividing). Another example, from Chap. 5 of Scott [12], takes marine organ-
isms as Objects, with their physiology in energy budgets as internal species. The
organisms are held in Populations describing their life stage such as larvae, juve-
nile and adult. The organisms change life stage through mirrored actions (e.g.
when mass reaches a certain threshold, larvae evolve to juveniles) and also can be
removed from the system (e.g. fishing of the Population). Also at the organism
level, we could consider a model of disease hosts (Objects) and their immune
system and micro-parasite interaction (internal species). Populations of hosts
are defined as susceptible, infected and recovered. Hosts change infectious states
dependent on the number of parasites in their system (mirrored actions) and
more hosts can be added due to immigration (independent Population action).

2.2 The Syntax of PAL

The syntax of PAL is shown in Fig. 2. PAL uses the same syntax as Biochemical-
Performance Evaluation Process Algebra (Bio-PEPA) [13] to define the internal
species components.

The component O, called an Object component, describes an internal
system and the interactions among internal species components S. Species are
named using C = S to allow modular construction. The element x is a positive
integer-valued parameter. Constants allow names to be assigned to patterns
of behaviour associated with components. (α, κ) is the internal species prefix,
where α ∈ SpeciesActions is the action type, k is the stoichiometry coefficient
of the species in that reaction, and SpeciesActions is a modeller-defined set of
action names. The prefix combinators op are: << indicating a reactant, >> a
product, (+) an activator, (−) an inhibitor and (.) a generic modifier. O ��

L
O

denotes the cooperation between internal species over the cooperation set L. Set
L determines those activities on which the cooperands are forced to synchronise.

P{{O}}A :: = (α, 1) PALop P{{O}}A | P{{O}}A + P{{O}}A | D

Where PALop = ↓ | ↑ | ((+))

O :: = O ��
L

O | S(x)

S :: = (α, κ) op S | S + S | C

Where op = << | >> | (+) | (−) | ( . )

M :: = M ♦
Ls

M | P{{O}}A

Fig. 2. Syntax of PAL.
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The component P{{O}}A is called a Population component and repre-
sents a multi-set of Object components P{{O}}A = P{�O1, ..., On�}A. A multi-
set is an unordered collection of Objects with repetitions. Populations are named
using D = P{{O}}A to allow modular construction. (α,1) is the prefix, where α
∈ Actions is the action type and 1 is the stoichiometric coefficient of the Object in
that action. The design choice of a stoichiometry of 1 was chosen to simplify the
resulting states the action produces. There are three prefix combinators called
PALop which represent the role of the Objects in the action. These are: ↓ indi-
cates a deletion of an Object, ↑ an addition of an Object (an initialO element
will be added to a specific Population with a specific initial set up relevant to its
Population) and ((+)) an Object which is an activator (the Object is involved
in the action but does not change).

The choice operator P{{O}}A + P{{O}}A and S + S represents non-
deterministic choice between actions whether these be Population actions or
internal species actions. Once one branch is chosen the others are discarded,
thus choice represents competition between actions depending on their rate.

The top-level component M , called a model component, describes the system
and the interactions among Population components. The cooperation between
Populations over the multi-scale action cooperation set Ls is expressed by
M ♦

Ls

M . Set Ls determines those actions on which the cooperands must syn-

chronise. Each Population component must have a hidden action set A identi-
fying internal species actions which are hidden from the Population component.
Hidden actions should not be in the set Ls in a well defined PAL system.

2.3 The Semantics of PAL

A PAL system P is a septuple 〈Pcomp, Ocomp, Scomp, FR, K, N , M〉, where:

– Pcomp is the set of definitions of Population components;
– Ocomp is the set of definitions of Object components;
– Scomp is the set of definitions of internal species components;
– FR is the set of functional rate definitions;
– K is the set of parameter definitions;
– N is the set of quantities describing each internal species;
– M is the model component describing the system.

The definition of the Object components in Ocomp must be defined in terms
of the internal species components defined in Scomp and for each cooperation set
Li in O, Li ⊆ SpeciesActions (O). In a well-defined PAL system each element
has to satisfy the following conditions. Set N has to contain all the internal
species components. The functional rates are well defined if each variable in their
definition refers to the name of a species component in the set N or a constant
parameter in the set K. The definition of the internal species components in
Scomp must have sub-terms of the form (α, k)op S and the action types in each
single component must be distinct. The definition of the Population components
Pcomp must be defined in sub-terms of the form (α,1) PALop P{{O}}A and the
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prefixReac ((α, k) << S)(l)
(α, [S :<< (l, κ)])−−−−−−−−−−−→ S(l − k) k ≤ l ≤ N

prefixProd ((α, k) >> S)(l)
(α, [S :>> (l, κ)])−−−−−−−−−−−→ S(l + k) 0 ≤ l ≤ (N − k)

prefixMod ((α, k)op S)(l)
(α, [S : op(l, κ)])−−−−−−−−−−→ S(l) with op = (.), (+), (-) and

0 < l ≤ N if op = (+), 0 ≤ l ≤ N otherwise

where S is the name of the species component, op is the action type, l the level

κ the stoichiometry coefficient, and N the maximum level of S.

choice1
S1(l)

(α,w)−−−→ S′
1(l

′)

(S1 + S2)(l)
(α,w)−−−→ S′

1(l
′)

choice2
S2(l)

(α,w)−−−→ S′
2(l

′)

(S1 + S2)(l)
(α,w)−−−→ S′

2(l
′)

constant
S(l)

(α,S: [op(l, k)])−−−−−−−−−−→ S′(l′)

C(L)
(α,C: [op(l, k)])−−−−−−−−−−→ S′(l′)

with C = S

coop1
O1

(α,w)−−−→ O′
1

O1 ��
L

O2
(α,w)−−−→ O′

1
��
L

O2

with α /∈ L

coop2
O2

(α,w)−−−→ O′
2

O1 ��
L

O2
(α,w)−−−→ O1 ��

L
O′

2

with α /∈ L

coop3
O1

(α,w)−−−→ O′
1 O2

(α,w)−−−→ O′
2

O1 ��
L

O2
(α,w)−−−→ O′

1
��
L

O′
2

with α ∈ L

where w is a list recording the species that participate in the reaction and

L is the cooperation action set

Fig. 3. Rules for Bio-PEPA included in the semantics of PAL. These rules are presented
in Ciocchetta et al. [13] and are repeated here for convenience and completeness.

action types in each single component must be distinct. The model component
M must be defined in terms of the Population components defined in Pcomp
and for each cooperation set Lsi in M, Lsi ⊆ Actions (M).

The rules of PAL specify Population behaviour and its relation to Object
behaviour. The semantics of an Object are as in Bio-PEPA, and repeated here
in Fig. 3 for convenience. Figures 4 and 5 describe how Objects and Populations
influence each other and how Populations evolve, respectively. These rules col-
lectively allow a CTMC to be defined from a PAL model.

Some Object actions are hidden from the Population level as defined in the
Action Hidden Rule in Fig. 4. The modeller defines a set of hidden actions A
when describing a model in PAL. These could include actions such as synthesis
and degradation of intracellular proteins within a cell. Actions such as these do
not change the Population layer composition of the system, therefore do not
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Action Mirror/Hidden Rules

Internal Actions that are mirrored by Populations

Oi
(α,w)−−−→ O′

i

P{{O}}A
(α,w)−−−−−−−→ P{{O′}}A

where ∃ Oi ∈ O ∧ α /∈ A

where O′ = O ⊕ O′
i ∧ P{{O}} (α,w)−−−−−−−→ P{{O′}}

Internal Actions that are hidden from Populations

Oi
(α,w)−−−→ O′

i

P{{O}}A
τ−−−−−→ P{{O′}}A

where ∃ Oi ∈ O ∧ α ∈ A

where O′ = O ⊕ O′
i

where ⊕ overwrites Oi in O with new O′
i state, leaving the rest of O unchanged.

Fig. 4. Semantics of PAL: Action Mirror/Hidden Rules.

need to be mirrored by the Population. For example, transitions of cell proteins
indirectly affect mass but are hidden from the Population layer.

Object actions that are mirrored by the Population are defined by the Action
Mirror Rule in Fig. 4. For example, in the cell model, the changing mass of the cell
(an internal species) will trigger the transition of the cell from the growing state
to the dividing state. The changing internal action in this case has an impact
on the Population view of the system. These internal actions are mirrored by
Population actions which are defined by the Prefix Population Transition Rules
shown at the top of Fig. 5.

There are essentially three Prefix Population Transition Rules: adding, delet-
ing and activator. The deletion rule has two variants depending on whether the
deletion is initiated from the Object or the Population level. These rules are
asymmetric because when deleting an Object from a Population the rule needs
to identify the specific Object that is to be deleted. For example, the deletion
rule can be used for cell phase transitions and deaths of specific cells, therefore
the cell must be known to the rule so that the correct cell is deleted. In the case
of addition and the activator rule a specific Object does not need to be known.
For example, in the addition rule a new initialisation of an Object is added to a
Population. The Object in the activator rule does not need to be known by the
rule as the rule does not change the Object. In the case study here this would
be a dividing cell becoming two growing cells.

Lastly, potential interactions at the Population level are dealt with by the
Population Transition Rules (see lower section of Fig. 5). Populations can per-
form actions autonomously and this allows actions such as death from a Pop-
ulation action to be defined in a model. This feature is not used in the case
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Prefix Population Transition Rules

Adding an Object to a Population

((α, 1) ↑ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A

O′ = O ∪ initialO

Deleting a specific Object from a Population

((α, 1) ↓ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A ∧ α ∈ SpeciesActions(O)

∃i. Oi ∈ O ∧ Oi
(α, w)−−−−−−−−→ O′

i ∧ O = [[O1, ..., On]] ∧ |O| ≥ 1 ∧ O′ = O\ Oi

Activator does not increase or decrease a Population

((α, 1)((+))P{{O}}A)
(α, w)−−−−−−−−→ P{{O}}A where α /∈ A

O = O1, ..., On ∧ |O| ≥ 1

Deleting a random Object from a Population

((α, 1) ↓ P{{O}}A)
(α, w)−−−−−−−−→ P{{O′}}A where α /∈ A ∧ α /∈ SpeciesActions(O)

∃i. Oi ∈ O ∧ O = [[O1, ..., On]] ∧ |O| ≥ 1 ∧ O′ = O\ Oi

where (α, w) comes from synchronising with another Population

or from the Object layer.

Population Transition Rules

Constant

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

D
(α, w)−−−−−−−−→ P{{O′}}A

where D = P{{O}}A

Asynchronous Left

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

P{{O}}A ♦
Ls

M
(α, w)−−−−−−−→ P{{O′}}A ♦

Ls

M
where α /∈ Ls

Asynchronous Right

P{{O}}A
(α, w)−−−−−−−−→ P{{O′}}A

M ♦
Ls

P{{O}}A
(α, w)−−−−−−−−→ M ♦

Ls

P{{O′}}A

where α /∈ Ls

Population Synchronisation

P1{{O1}}A
(α, w)−−−−−−−−→ P1{{O′

1}}A P2{{O2}}A
(α, w)−−−−−−−−→ P2{{O′

2}}A

P1{{O1}}A ♦
Ls

P2{{O2}}A
(α, w)−−−−−−−−→ P1{{O′

1}}A ♦
Ls

P2{{O′
2}}A

where α ∈ Ls

where Ls is the multi-scale synchronisation action set

Fig. 5. Semantics of PAL: Prefix Population Transition Rules and Population
Transition Rules.
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study, but could be added if, for example, chemical messengers from a dying
cell influenced death in another cell. Populations synchronise/communicate on
specific external actions as defined in the Population Transition Rules shown at
the base of Fig. 5. This allows the definition of cell phase transitions and cell
division as these actions involve two Populations changing in number. For more
detail on PAL see Chap. 4, pp.74–80 of Scott [12].

2.4 Case Study

PAL is applied to a mammalian cell cycle and DNA damage case study to illus-
trate its capabilities in systems biology. A cell cycle is the series of events that
take place in a cell leading to its division. The motivation of this case study is to
analyse the effects of damage from radiation treatments to the length of a cancer
cell cycle and cell survival. A PAL model has been created by linking together
an established cell cycle model from Tyson et al. [11] with a repair model with
an external force applying damage by Zhang et al. [10]. Other models such as
Powathil et al. [4,14] and Guerrero et al. [15] use the Tyson et al. [11] model
as a basis for cell cycle transitions and regulation. Zhang et al. [10] presents a
number of potential models for the transcription factor p53 activity observed
experimentally in response to DNA damage. p53 is at the centre of a number of
DNA damage responses which interact downstream with the regulation of the cell
cycle. The linking of the Zhang et al. [10] model with the Tyson et al. [11] model
allows the creation of a novel model investigating the effects of DNA damage
from radiation treatments on the species affecting progression of the cell cycle
and consequent effect on cell colonies. This has not been previously considered
in the literature. The novel PAL model allows multi-scale analysis, including
Object layer experimentation (average length of a single cell cycle, Sect. 3.1)
and Population layer experimentation (cell population growth, Sect. 3.2).

2.5 PAL Model

Although PAL makes describing the model simpler than other multi-scale tech-
niques, the model is too long to be shown here. See Chap. 6, pp.109–112 of
Scott [12]. The description and results of experimentation are given here. The
case study has two distinct layers: cell population and intracellular. The cell Pop-
ulation layer is described in the PAL model by defining two PAL Populations
based on the two steady states of a cell: Growing and Dividing. These Popu-
lations contain G cell and D cell Object components, illustrated in Fig. 6 by a
Growing cell becoming a Dividing cell, and that in turn becoming two Growing
cells.

In the intracellular layer, G and D cells contain internal species which are the
cell mass and proteins translated from Tyson et al. [11] and Zhang et al. [10].
These proteins include the Cdk-cyclin B complex (CycB), the APC-Cdh1 com-
plex (Cdh1), the active form of Cdc20 (Cdc20A), the total Cdc20 (Cdc20T) and
the intermediary enzyme (IEP). These are shown as the internal species in Fig. 6.



Process Algebra with Layers: Multi-scale Integration Modelling 127

The graphic shows how the proteins rise and fall in response to each other, creat-
ing the conditions of the cell cycle. Note the black label in the graphic indicating
Growing phase or Dividing phase.

Transitions between the two Populations are controlled by changes in cell
mass and threshold values of the CycB, indicated on the arrows in Fig. 6. To
make the cell cycle relevant to mammalian cells the parameter values of this
model are taken from Powathil et al. [4], therefore, time in the model is in
hours.

m

CycB
Cdh1

Cdc20A
Cdc20T
IEP

G D G

m

CycB
Cdh1

Cdc20A
Cdc20T
IEP

G

CycB > 0.1 CycB < 0.1

Fig. 6. Example of a single G cell evolving, through its internal species, to a D cell,
and then to two G cells.

To model how the cell cycle proteins are affected by DNA damage a ODE
model originally developed by Zhang et al. [10] is translated into internal species
and parameters of the PAL model. The model consists of DNA damage caused
by radiation treatment, the p53 and Mdm2 (nucleus and cytoplasmic) that pro-
mote the degradation of p53. p53 inhibits the activity of CycB preventing the
progression of the cell cycle. In the PAL model the Tyson et al. [11] and Zhang
et al. [10] models are innovatively linked together by changing the CycB degra-
dation rate to be influenced by changes in the p53 levels. Levels of p53 are at
equilibrium when there is no damage in the system. When there is damage it
causes p53 levels to pulse according to Zhang et al. [10]. Damage is a parameter
of the model and Zhang et al. [10] states the simple assumption is made that
damage is repaired at a constant rate.

Damage is not uniform: although the whole plate of cells has the same treat-
ment, radiation at lower levels will hit some cells but not others. To model this,
different damage levels are assigned to each cell in the colony depending on the
highest level of damage at the start of the simulation. For example, if the highest
damage in a simulation is five the cells are assigned damages in the range of zero
to five on a random distribution. Damage occurs immediately in all simulation
experiments and ranges from 0–12 (integer values). We assume damage greater
than four causes cell death through the Population actions. Cell cycle length is
impacted with damage of four or less by the increase of the CycB degradation
rate.
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The investigation of the effects of damage in the PAL model from the average
length of a cell cycle (Object layer) to population growth (Population layer) was
carried out. The damage in the model is abstract, therefore matching the real
notion of damage from radiation was achieved by the creation of a relationship
function between the abstract damage and Gy, damage/2 = Gy dose, chosen
here to fit with experimental results, see Sect. 3.3. This is why damage ranges
from 0–12, to fit with 0 to 6 Gy.

3 Results

A PAL model parser has been implemented and translates a PAL model into a
Bio-PEPA model to allow analysis of the model in the Bio-PEPA Eclipse plug-
in [13,16]. This is a complete development environment for Bio-PEPA mod-
els, with editing, simulation, experimentation, model checking, and export to
SBML [17]. The parser source code can be found in the following repository1.
A range of experiments were carried out, allowing analysis at the Object level
(cell components, Sect. 3.1) and Population level (groups of cells driven by their
internal mechanisms, Sect. 3.2).

3.1 Object Layer Experiments: Analysis of Average Length
of a Cell Cycle

Simulation distribution analysis was undertaken to analyse the average length of
the cell cycle and the impact of increasing the amount of damage. This analysis
takes place at the individual cell scale (Object layer). Simulation distributions
obtain the percentage of a user-defined number of stochastic simulations for
which some property is true at or before a given time t. The Bio-PEPA plug-in
plots the Cumulative Distribution Function (CDF) and Probability Distribution
Function (PDF) of any agents in the model, with respect to the target value.

Table 1. Average length of cell cycle and 95% confidence interval in hours of each
simulation distribution experiment.

Experiment Average cycle Confidence interval (95%)

Control 23.96 (23.51, 24.41)

Damage 1 24.18 (23.70, 24.66)

Damage 2 24.73 (24.16, 25.30)

Damage 3 24.74 (24.09, 25.39)

Damage 4 25.88 (25.19, 26.57)

Five experiments were carried out (damage 0–4, i.e. no cell death), see Table 1
for results. As this analysis is observing one cell cycle, the PAL model starts
1 PAL Parser source code: https://github.com/MissErinScott/PAL-Parser.

https://github.com/MissErinScott/PAL-Parser
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with one G cell with the specified level of damage. The chosen component in
this analysis is an agent which tracks a cell’s completion of one cell cycle. The
number of stochastic simulation replications is 200 and the stop time is 48 h.
The computation time for each experiment was approximately 3 h (MacOS X
Yosemite version 10.10.5, 2.2 GHz Intel core i7, 16 GB 1600 MHz DDR3).

All simulations completed a cell cycle before the stop time of 48 h. The results
show that damage from one to three does not significantly affect the cell cycle
average length. The intracellular proteins can cope with these damage levels.
The average cell cycle length increases when damage of four is applied.

3.2 Population Layer Experiments: Analysis of Cell Population
Growth

Discrete stochastic simulation time-series analysis was carried out to analyse
cell growth over a longer period and the effects of damage on a colony of cells.
This analysis takes place at the colony scale (Population layer). The initial
population was eight G cells (due to population limitations of Bio-PEPA plug-
in [13]). Different damage levels are assigned to each cell randomly depending
on the highest level of damage at the start of the simulation. Cells are simulated
from 0–64 h. Throughout the time period of the simulation, new cells will be
assigned different damage levels based on a constant repair rate. Experiments
were carried out with damage ranging from 0 (control) to 12. Results from
one replication are presented in Fig. 7 which shows the total population growth
of G and D cells at different damage levels. Each experiment is one stochastic
simulation which had a computation time of 3 to 20 min dependent on damage
and a further 15 min for manual processing. Four replications of these stochastic
simulations were carried out for damage values 0 to 6, 9 and 12.

Fig. 7. Single replication of total cell population growth at different damage levels.

The results show that population growth is not affected by damage from one
to four, as expected. These results reinforce the simulation distribution results
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which show the cell cycle is not affected by this lower damage range. The damage
in each experiment is repaired at a constant rate, therefore the population of
cells starts to recover, dependent on the damage assigned. Death occurred in the
experiments where damage is above four. This feature had the effect of reducing
the population substantially. The populations assigned the damage levels of nine
and twelve had a greater reduction as they had the greater proportion of cells
assigned a damage above four.

3.3 Comparison with Wet Laboratory Survival Fraction Results

The population results of the PAL model are compared to wet laboratory sur-
vival fraction results of cells given different Gy doses of radiation treatment [1].
This data is shown in Fig. 8 (red squares) and was generated using Clonogenic
survival assays following treatment with 0–6 Gray (Gy) 160 kVp x-rays as previ-
ously described by Butterworth et al. [18]. The survival fractions were calculated
as the plating efficiency of the treated group divided by the plating efficiency of the
untreated control cells, with error bars representing the standard deviation (SD)
(n = 7). The wet laboratory experiments had duration of twelve days and initial
populations of 200 to 600 cells. Previously, Butterworth et al. [18] showed that all
damage to cells would take place within 48 h (2 days); however, twelve days are
required for observable colonies to form. The advantage of computational mod-
elling is that the results can be observed at 48 h and assumptions made that if
cells have survived to 48 h then they will form colonies by 12 days. We add a mar-
gin of 16 h to be sure all damage is accounted for. The complexity of the model
(each cell has 21 internal species and 31 actions) mean that the evolution of an
initial population of 8 G cells can be computed in reasonable time (3–20 min for
each simulation, as in Sect. 3.2). In 64 h, these will grow to at most 35 G and
35 D cells; a potential total of 1470 species.

Fig. 8. Comparison results between PAL model (blue circles) and radiation treatment
(red squares) survival fractions. Error bars give ± SD and fitted line to model (dotted
line). (Color figure online)
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For each of the four replications, the end population value data point is taken
from each population experiment at different damage levels as in Fig. 7 and a sur-
vival fraction is calculated based on the control experiment. The mean survival
fraction of the four replications is shown in Fig. 8 with error bars representing
the standard deviation (n = 4).

The survival fraction results are compared with the damage levels based
on the simple relationship damage/2 = Gy dose, based on the approximate
alignment of 3 Gy with damage 6. Damage levels 0, 3, 6, 9 and 12 are compared
with radiation doses of 0, 1.5, 3, 4.5 and 6 respectively.

Based on these simple assumptions, the results show that the model gives a
closer fit to lower Gy doses (high cell survival) but an overestimation of death
at higher dose levels (low cell survival). Clearly, more needs to be done to refine
the model, but the point here is to illustrate the utility of PAL.

4 Conclusion

In this paper we have discussed the definition of Process Algebra with Lay-
ers (PAL), a multi-scale process algebra designed to model multi-scale systems.
PAL’s strength is that it allows the convenient representation of a multi-scale
system in one model, in contrast to the current hybrid frameworks. PAL removes
the need for the modeller to focus on the integration of the separate modelling
languages that define the separate scales in a hybrid model. The novel features
of PAL are the layers of the language: Object and Population. These layers allow
the user to elegantly describe the the components of each scale and the interac-
tions between scales in one PAL model. This can allow mechanistic models to
be developed showing how one layer affects another.

The addition and deletion of objects is a feature of many multi-scale systems.
For example, in this study cell division requires addition and cell death requires
deletion. The syntax and semantics of PAL allows this feature to be easily defined
by a single action integrating the scales. In comparison, existing multi-scale
Process Algebra languages psPAH [8] and PEPA nets [9] would need multiple
lines of code to define this feature, making their models difficult to construct
and read.

The Objects in PAL currently do not have the ability to interact explicitly
with one another, which may be a limitation. This would involve explicitly mod-
elling space. Objects would, for example, need location attributes to react to
their surrounding Objects. It would be necessary to ensure this addition would
not compromise the integrative nature of PAL. This spatial definition may over-
complicate the definition of a PAL model which may lead to the loss of some
multi-scale features PAL already encapsulates.

PAL has been applied successfully to a cell cycle and DNA damage multi-
scale system here. The PAL model links together the established models of Zhang
et al. [10] and Tyson et al. [11]. This allowed the creation of a novel model
investigating the effects of DNA damage from radiation on a cell colony by
linking mechanistically to the progression of the cell cycle as determined by
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cell proteins and mass. PAL easily captures the internal species and the colony
activity, thus supporting investigation across scales in one model. The Object
and Population results of the model showed that low radiation doses do not
significantly affect the cell cycle average length, nor do they significantly affect
colony growth of cancer cells.

The comparison of results to wet laboratory data shows how PAL can be
used to aid in investigations of cancer treatment in systems biology. For exam-
ple, the profile of Fig. 8 suggests the model can be further analysed by varying the
threshold for cell death, and by modifying the simple assumption of damage/2 =
Gy. The model could also be refined by including more varied notions of repair,
which would need targetted wet lab experiments to measure repair rates. Explo-
ration of hypotheses in the PAL model develop understanding of the system
and direct attention to the most sensitive areas for parameters or compounds.
This, in turn, allows researchers to develop a more focussed programme of future
biological experiments in DNA damage, cell cycle and population growth rates,
reducing the number of expensive and time-consuming biological wet laboratory
work. The strength of modelling approaches can be directly correlated with how
they can affect broader science questions in a multi-disciplinary approach.

Future work on this PAL model could include testing a variety of differ-
ent degradation rates for CycB affected by p53. The damage repair could be
more specific to the levels of p53 and Mdm2. Further work could be undertaken
to compare the PAL model results to other cancer treatments such as Temo-
zolomide (TMZ) and combination of these treatments (radiation + TMZ). This
comparison could be achieved easily as the damage is abstract in the model
therefore the focus can be made on the damage relationship function to the spe-
cific treatment. Future work on PAL itself will include a direct implementation
of a PAL tool (thereby avoiding the limitations of translation into Bio-PEPA),
exploration of other analysis techniques such as model checking, and translation
to/from common languages such as SBML (already available for Bio-PEPA).
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Abstract. The development of high throughput technology in biological
and medical domains has seen a growing intervention of informatics sup-
port. Indeed, the big amount of data produced is difficult to analyse and
interpret in terms of time consuming and number of different resources
used. In this context, the challenge would be to have an integrated and
multi component database with a user friendly interface able to solve bio-
logical problems without a priori high-level of bioinformatics knowledge.
This need arises from the evidence that biologists have multi-task and
multi-levels problems to solve. To this aim, we propose a bottom-up,
graph-based approach for integrating bioinformatics resources, usually
databases, starting from typical biological scenarios, in order to solve
novel bioinformatics problems. The integrated resources can be queried
by means of a graph traversal language such as Gremlin.

1 Introduction

In the era of “big data” and “next generation” technologies, the role played by
bioinformatics resources is becoming central in solving biological tasks. Indeed,
the “problem solving” activity of biologists is always more complex and it needs
to manually integrate many heterogeneous publicly available resources. The
exploration and analysis of these data, also requires some knowledge on the
use of specialized tools and web servers, and the capability to move through
different services and different web interfaces; this is time-consuming in terms of
transferring data from a resource to another one, sometimes with issues related
to different aliases and accession IDs. In this context, the challenge is to pro-
vide a shared user-friendly platform hosting many bioinformatics resources, that
allows the users to solve problems without a priori high-level programming and
scripting languages knowledge [17]. Some efforts have been made to integrate,
manage, mine and do comparative analysis of high throughput data in this last
decade, as the development of bioinformatics enrichment tools for the functional
analysis of large list of genes [14], target analysis tools [9], tools for the study
of protein motifs linked to cellular pathways [24]. However, an integrated and
multi component database for bioinformatics research is still a goal to reach.
c© Springer International Publishing AG 2017
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A typical example of the tedious work for a biologist in bioinformatics analysis
is the enrichment analysis of microRNA (miRNA) target: starting from a list of
miRNA there are different resources used as miRNA-target interaction tools that
identify the targets of the selected miRNAs; these targets represent the input
of other services for enrichment analysis and pathway analysis, and this implies
the use of web resources completely different from each other, in addition to the
time-consuming analysis of data.

In this paper, we propose a bottom-up, graph-based approach for integrating
bioinformatics resources, typically databases, in order to solve novel bioinfor-
matics problems. The integration and connection of different databases and web
resources would allow the user: (1) to access different independent analysis tools,
(2) to move rapidly through the resources using a common and easy interface
and query language, (3) to move dynamically in the network of services and
(4) to create a knowledge base (KB) to explore and solve other problems not
evidenced before.

2 Background

In this section, we present some publicly available resources in the field of bioin-
formatics. They are widely used in order to face specific tasks, such as protein
function and gene enrichment analysis.

Gene-related resources. The NCBI Entrez Gene database [23] is one of the most
complete repository for genes of several species. It collects information about
ortholog and homolog genes, genomic context, interactions among genes, and
so on. The UCSC Genome Bioinformatics is another platform based on genome
sequence data integrated with a large collection of aligned annotations [22]. The
Hugo Gene Nomenclature Committee (HGNC) is a resource dedicated to human
gene nomenclatures. This db contains also information about synonyms for each
gene and corresponding IDs of other gene databases [13].

Protein-related resources. The UniProt Knowledgebase (UniProtKB) is the rich-
est public repository of sequence informations and annotations about proteins.
Its entries are both computationally analysed and manually annotated [27].
Other web tools allow to visualize known and predicted protein-protein inter-
actions as the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) [25]. It includes both direct (physical) and indirect (functional) asso-
ciations. Among integrated tools for protein analysis there is the Protein Analysis
Through Evolutionary Relationships (PANTHER). It is a resource for compre-
hensive protein evolutionary and functional classification, including tools for
large-scale biological data analysis [19].

Annotation-related resources. The Gene Ontology (GO) Consortium is a web
resource for genes and proteins annotation [26]. It is divided in three main cat-
egories: biological processes, cellular components and molecular functions [5].
The Database for Annotation, Visualization and Integrated Discovery (DAVID)
gives functional interpretation of large lists of genes [8]. It has five integrated
functional annotation tool suites.
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MiRNA/ncRNA-related resources. The microRNA database (miRBase) is a
miRNA database containing miRNA sequences of precursor and mature forms, It
gives informations about ID, genomic location and annotations [16]. MirWalk is
a web archive, supplying a very large collection of predicted and experimentally
verified miRNA-target interactions [9]. Moreover non-coding RNA (ncRNA)-
miRNA and miRNA-miRNA interaction can be visualized. The miR-Ontology
database (miRò) [18] integrates data about miRNAs, miRNA-target interactions,
functional annotations provided by GO and gene-disease relations. PolymirTS
is a db that supplies information about snp (single nucleotide polymorphism)
in miRNA seeds and in gene targets [4] allowing to study the effect of these
mutations on the binding site of miRNA targets.

Pathway-related resources. KEGG Pathway [15] is a part of the integrated DB
embracing also genes, genomes, orthology, functional annotations, compounds,
reactions, diseases and drugs. Reactome is an integrated db that provides val-
idated metabolic pathways, including annotations about genes and proteins
involved. It is also enriched with functional annotation functions [7].

Disease-related resources. The OMIM system is probably the most comprehen-
sive catalogue of human genes, genetic disorders and traits, focusing mainly in
gene-phenotype relationship [1]. Other resources linked to disease have more spe-
cific focuses as miRCancer, a db collecting miRNA expression profiles in different
human cancer types, which are automatically extracted from literature [28].

3 Method

We propose a bottom-up approach: starting from a set of N problems, we incre-
mentally populate our knowledge base, in the form of a graphDB, with all the
resources that are necessary to solve these problems, in order to obtain a frame-
work that allows to solve a set of M problems, with M ≥ N . The population of
the graphDB is done through the implementation of a set of customized Extract-
Transformer-Loader (ETL) modules. An ETL is a computer program that parses
the data files related to each resource and import them into a graphDB. These
data are arranged in a set of nodes (or vertices) and edges. Each biological entity
and its properties are modelled with a node and its attributes. Relationships
between two biological entities are modelled by means of an edge between the
two corresponding nodes. If a relation has some properties, they can be imported
as edge’s attributes. For example, the interaction between a microRNA (miRNA)
and its target gene can be represented by means of an edge that links the node
representing that miRNA and the node representing that gene. The properties
of the interaction relation, such as the locus of the target site or the free energy
value, are inserted as edge’s attributes.

The whole population procedure can be summarized by the following four
main steps.

The first step is to analyse the first problem P1 and to identify which pub-
licly available resources (opportunely combined) are able to face this problem.
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Fig. 1. An example of the proposed method.

When a minimal set of resources R1 that solves this problem is given, the sec-
ond step is to import all the R1 resources into a graphDB, exploiting the afore-
mentioned ETLs. In this way, we connect all R1 resources, using their existing
relations among each other. The graph representing the problem P1 can be tra-
versed in order to define a specific path. This path can be obtained by means
of a query to the graphDB that solves the first problem. The third step is to
analyse the second problem P2 and to verify if a proper query is able to solve
this problem, or in other words, if a pathway in the graphDB that satisfies this
query exists. If all the R1 resources that have been integrated in previous steps
are not enough, we need to identify a set of resources R2 useful for solving P2.
The fourth step is to import all the R2 resources into the graphDB, just like the
second step. However, since R2 can contain some shared resources with R1, we
perform the ETL process only for R2\R1 resources. At this point, we find all
available relationships existing among all the R1 ∩ R2 resources, and integrate
them into the KB. We iterate the last two steps for N problems (P1, P2, . . . , PN )
in order to populate our graphDB with R1 ∩ R2 ∩ . . . RN−1 ∩ RN resources.

At the end of this training phase, we obtain a graph and, for each problem we
have at least a specific pathway that solves it. In addition, we can solve further
problems that have not been used to build the knowledge base, traversing the
graph in different ways and also exploiting relations (edges) never used before.
In other words, we can solve all those problems for which at least a pathway in
the graphDB exists.
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An example of this method is reported in Fig. 1. Here the training set of
problems is composed of 2 problems: P1 and P2. We suppose P1 and P2 can be
solved with respectively R1 = r1, r2, r3 and R2 = r4, r5, r6. Since R1 ∩ R2 = 0,
we perform the ETL process for 6 resources in order to integrate them into
the graphDB. The centre of the figure contains the graph related to the import
process of R1 and R2, where each node is a resource and each edge represents a
relationship between two resources. Circles inside resources are biological enti-
ties. Explicit relationships, representing the pathways that have been used for
solving P1 or P2, are figured with solid lines, whereas implicit relationships, i.e.
they exist among the resources but they were never used so far, are represented
as dashed lines. The obtained KB allows us to face the problem PM , if at least a
pathway exists in the graphDB that solves it, considering both solid and dashed
lines. In the bottom of the figure, we solve this problem with a set of resources
RM = r1, r4, r5, exploiting a previously unused relationship between r1 and r4.

4 Case Study

In this Section, we demonstrate how the proposed problem-driven paradigm can
be useful for solving bioinformatics issues. In Subsects. 4.1 and 4.2 we introduce
two interesting biological case studies that can be solved with different pub-
licly available bioinformatics resources. Then, in Subsect. 4.3 we show how the
resources used in previous scenarios are integrated in a graphDB, according to
available relationships. Finally, in Subsect. 4.4 we present a problem that can
be solved with the existing resources, exploiting a never used connection among
two resources.

4.1 Scenario n.1: Target Analysis of Differentially Expressed (DE)
MiRNAs in Cancer

miRNAs are small non coding RNAs that are negative regulators of gene expres-
sion at post-transcriptional level. They act through selective and partial base-
paring mainly of 3’untranslated region (3’UTR) of RNA messenger (mRNA)
target [6]. There is a growing evidence of their role as biomarkers in different
diseases as cancer [12,21]. For this reason, all the actors of the deregulated event
that trigger and guide the development of cancer need to be deeply investigated.
We suppose to have a list of DE miRNAs (up/down regulated) linked to a spe-
cific disease, e.g. breast cancer. Through specific web resources as miRCancer
it is possible to select and extract this miRNA list from the disease of interest.
By means of miRbase, it is possible to collect information about those miRNAs,
such as their sequences. The next step is the identification of predicted miRNA
targets through miRNA-target interaction tools. There are different databases
available to this aim as miRanda [3]. This target prediction tool is also linked to
NCBI gene, which contains information about genes ID, sequence, gene locus etc.

In Fig. 2 we show how all the analysis steps are linked each other. The type
of relationship involved between two biological entities is underlined. From the
figure it can be noticed that miRBase has information about both (precursor)
miRNA and mature miRNA.
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Fig. 2. Used resources and their links of the first scenario.

4.2 Scenario n.2: Analysis of Protein Functions and Pathways

The analysis of protein function is a very important task in biology, especially
in the context of disease. Indeed many pathological conditions are consequence
of alterations of protein functions. Starting from a specific protein or a group of
proteins, from Uniprot services are obtained information strictly connected with
the protein like amino acid sequence, structure etc. Resources like Reactome can
evidence the cellular context which the protein belongs to. It provides a list of
pathways as well as their related molecules and compounds. Finally, by means of
the GO functional annotations, it is possible to analyse the molecular functions,
cellular components and biological processes of the considered proteins.

In Fig. 3 we show the links about the three resources used in this scenario.

Fig. 3. Used resources and their links of the second scenario.

4.3 Resources Integration

The previous scenarios are related to two different bioinformatics problems. Each
one exploits a proper set of available resources and both of them do not use any
common resource. At this point, as explained in Sect. 3, we perform an ETL
process in order to import all the resources into the proposed graphDB. Result
of this process is showed in Fig. 4. The graphical representation includes both
the elements and relationships derived from resources used in previous scenarios.
According to Figs. 2 and 3, all the used connection are represented with solid
lines, whereas those relationships that can be extracted from available resources,
but that have not been used yet, are represented with dashed lines. As previously
said, a path in this graph represents a possible solution for a specific problem
and each line can be traversed in both way.
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Fig. 4. Graph representing all the resources and their relationships for the proposed
first two scenarios. The solid lines are relationship needed for solving the first two
scenarios. The dashed lines mean that relationship exists between two resources, but
they have not been exploited earlier.

4.4 Scenario n.3: Analysis of Tumour Suppressor/Oncogenic
MiRNAs

The integration of all the resources used in scenario n.1 and 2, allows to
solve a third biological problem: the analysis of tumour suppressor/oncogenic
miRNAs. As previously said, miRNAs can be important biomarkers due to their
relevance in gene regulation and their involvement in cancer disease. A group
of proteins involved in a specific cellular pathway can be detected using Reac-
tome. This set of proteins is then analysed through miRNA-target interaction
tools to identify miRNAs that are predicted targets of those protein products.
Together with the use of these resources, Uniprot, HGNC and NCBI gene are
also used, giving related information on genes protein products. The list of tar-
get can be finally related with a specific disease and investigated by studying
the differential expression through resources as miRbase and mirCancer. Indeed,
this last web service evidences the relationship between up or down regulated
miRNAs in different types of cancer. All the resources and their relationships
used in this scenario are shown in Fig. 5. With the dashed arrows we indicate
those relationships that have been made available because of the integration of
the resources used in the previous scenarios. In this case, there is a possible fork
in the implementation of this scenario. If predicted gene targets are considered,
then the lower part of the diagram is crossed. On the other hand, the Reactome
database provides a list of validated target genes involved in the pathways.
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Fig. 5. Used resources and their links of the third scenario. In this case the dashed
arrows indicate relationships between resources that have not been considered for solv-
ing the two previous scenarios.

5 Graph Query Language

The resources collected and organized in a graphDB, as described in the previous
sections, can be queried in order to implement and to get response about the
proposed scenarios [11]. One of the most popular query language for graphDB
is the Gremlin graph traversal language [2,20]. Gremlin is functional language
able to get and edit data organized in a graph structure. Gremlin queries are
called graph traversals, because they, in a very compact way, allow to build a
path in the graph in order to extract the desired information. In our proposed
approach, in which each scenario represents a path over the graph composed of
the set of collected resources, Gremlin is a very useful instrument to implement
the proposed scenario. For example, according to the scenario n.3 (Sect. 4.4)
the related gremlin query is shown in Fig. 6, where we customized the scenario

Fig. 6. Gremlin code and results for the analysis proposed in scenario n.3
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stating the pathway id (“R-HSA-1640170”), the free-energy threshold about the
miRNA-target interaction (“−32”) and the deregulated miRNA profile (“up”).
For further details about Gremlin language for querying a biological graphDB,
please refer to our work, presented in [10].

6 Conclusion

In this paper we propose a new method of data analysis and data interpretation
that uses the integration, by means of a graphDB, among different web resources
and databases. This bottom-up approach would allow an easy access to different
independent analysis tools, a rapid exploration through different resources using
a common interface and query language, the creation of a knowledge base to
explore and solve other problems not evidenced before. Thanks to flexibility of
the method, we provide the user not only a methodology able to easily and
quickly move thorough very different resources, but also to solve novel biological
tasks taking advantage of existing relationships among the integrated resources.
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Abstract. Parameter inference in mechanistic models of biopathways
based on systems of coupled differential equations is a topical yet com-
putationally challenging problem due to the fact that each parameter
adaptation involves a numerical integration of the differential equations.
Techniques based on gradient matching, which aim to minimize the dis-
crepancy between the slope of a data interpolant and the derivatives pre-
dicted from the differential equations, offer a computationally appealing
shortcut to the inference problem. Gradient matching critically hinges on
the smoothing scheme for function interpolation, with spurious oscilla-
tions in the interpolant having a dramatic effect on the subsequent infer-
ence. The present article demonstrates that a time warping approach
that aims to homogenize intrinsic functional length scales can lead to a
significant improvement in parameter estimation accuracy. We demon-
strate the effectiveness of this scheme on noisy data from a dynamical
system with periodic limit cycle, and a biopathway model.

Keywords: Biopathways · Differential equations · Gradient matching ·
Reproducing kernel hilbert space · Time warping · Optimisation

1 Scientific Background

The elucidation of the structure and dynamics of biopathways is a central objec-
tive of systems biology. A standard approach is to view the biopathway as a
network of biochemical reactions, modelled as a system of ordinary differential
equations (ODEs). This system can typically be expressed as:

ẋ =
dx

dt
= f (x(t),θ) , (1)

where x = (x1, . . . , xr) is a time-dependent vector of r state variables, and the
parameters θ determine system kinetics. For complex biopathways, only a small
c© Springer International Publishing AG 2017
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fraction of the parameters θ can typically be measured and the major propor-
tion of kinetic parameters has to be inferred from observed (typically noisy and
sparse) time course concentration profiles. In principle, this can be accomplished
with standard techniques from machine learning and statistical inference. These
techniques are based on quantifying the difference between predicted and mea-
sured time course profiles by some appropriate metric, to obtain the likelihood
of the data. The parameters are then optimised to maximize the likelihood (or
a regularised version thereof). However, the nature of the ODE-based model
(1) renders the inference problem computationally challenging in two respects.
Firstly, for nonlinear functions f(.), the ODE system (1) usually does not per-
mit a closed-form solution. One therefore has to resort to numerical integration
every time the kinetic parameters θ are adapted, which is computationally oner-
ous. Secondly, the likelihood function in the space of parameters θ is typically
not unimodal, but suffers from multiple local optima. Hence, even if a closed-
form solution of the ODEs existed, inference by maximum likelihood would be
NP-hard, calling for a computationally expensive iterative optimisation.

To circumvent the excessive computational complexity of explicitly solving
the ODE system, as described above, various authors have adopted an approach
based on gradient matching (Ramsay et al. 2007, Xun et al. 2013, Calderhead
et al. 2009, Dondelinger et al. 2013, Macdonald et al. 2015, González et al. 2013,
2014). Gradient matching is based on the following two-step procedure. In a
first smoothing step, obtain an estimator of the solution directly from the data.
In a second inference step, estimate the kinetic parameters θ by optimising
a functional criteria constructed from the difference between the slope from
the estimated solution and the θ-dependent time derivative from the ODEs.
With gradient matching, the ODEs never have to be solved explicitly, and the
initial conditions do not have to be inferred. However, a problem intrinsic to this
approach is the critical dependence of the inference scheme on the form of the
initial interpolant. Small ‘wiggles’, which are hardly discernible at the level of the
interpolant itself, can have dramatic effects at the level of the derivatives, which
determine the parameter estimation. For noisy data, an adequate smoothing
scheme is essential. Any smoothing scheme is based on intrinsic functional length
scales, though, and these length scales may vary in time.

Here we present a new method that aims to improve the initial interpolants
through homogenizing the intrinsic length scales. The key idea is that a regular
sinusoid is easy to learn, whereas a quasi-periodic signal with varying frequen-
cies is not. The objective, hence, is to find a warping of the time axis that
counteracts the inhomogeneity in the period. This can easily be effected in prin-
ciple. The characteristic feature of a regular sinusoid is the proportionality of
the original function to its second derivative. Hence, we need to find a bijec-
tive transformation of time such that some metric quantifying the difference
between the original function and a rescaled version of its second derivative is
minimized in warped time. The procedure thus reduces to a double minimiza-
tion problem, with respect to both the parameters of the map and the scaling
parameter. Although time warping has been used in speech recognition for con-
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structing robust speech recognisers undeterred by the variability in pitch (Sakoe
and Chiba, 1978) and in systems biology to automatically recognize and align
important genomic features (Lukauskas et al. 2016), to the best of our knowledge
this is the first time it has been proposed to improve inference in ODE systems.

2 Materials and Methods

Consider a dynamical system consisting of r interacting states xs, 1 ≤ s ≤ r.
For example, in our application, the state variables represent concentrations
of protein isoforms (in the Biopathway model) and membrane potentials (in
the FitzHugh-Nagumo model). We assume that we have time series of n noisy
observations ys = (ys1, . . . , ysn)′ of the states xs = (xs1, . . . , xsn)′, subject to
iid additive Gaussian noise εs ∼ N(0, σ2I):

ys = xs + εs. (2)

The objective of inference is to learn θ from these noisy measurements. We
adopt an approach based on reproducing kernel Hilbert spaces (RKHS), where
functions are expressed as a linear combination of kernel functions evaluated at
the data points

x(t) =
n∑

i=1

bik(t, ti), (3)

where bi ∈ R and ti is the ith time point. The sth component of the dynamical
system at time t can be modelled as

gs(t; bs) =
n∑

i=1

bsik(t, ti), (4)

with derivatives

ġs(t; bs) =
n∑

i=1

bsi
∂k(t, ti)

∂t
=

n∑

i=1

bsik̇(t, ti) (5)

g̈s(t; bs) =
n∑

i=1

bsi
∂2k(t, ti)

∂t2
=

n∑

i=1

bsik̈(t, ti). (6)

ġ(ti) is the vector form of gradient estimates for all ODEs states at time ti. The
ODE parameter θ can then be estimated by minimizing the difference between
ġ(ti) and the gradient predicted from the ODEs, f(g(ti),θ), using the following
loss function:

L(θ) =
r∑

s=1

n∑

i=1

[
ġs(ti) − fs(g(ti),θ)

]2
(7)

In order to overcome the difficulties caused by variations in the intrinsic
functional length scales on the interpolation, we introduce a two-layer approach.
The objective of the first layer is to transform, for each of the variables s of
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the dynamical system, time t via a bijection t̃ = ws(t)1 such that in warped
time t̃, the unknown solutions xs of the dynamical system show less variation
in their intrinsic length scales. More specifically, we aim to transform the target
function into a regular sinusoid by exploiting the fact that a sinusoid is closed
under second-order differentiation (subject to a rescaling). We define the trans-
formation of time as

t̃ = ws(t, bw, lw) =
n∑

j=1

exp (bwj )S(t−tj , l
w); S(z, lw) =

1
1 + exp(−lwz)

, (8)

where the strict monotonicity of S(.) and the non-negativity of exp(.) guarantee
bijectivity. The superscript w indicate the kernel parameter of the basis function
and coefficients for the warping function. The number of basis functions n can,
in principle, be treated as a model selection problem. In practice, we found
that setting n to the actual number of observations gave satisfactory results
(as reported in Sect. 3). In the original time domain, the sth variable of the
dynamical system, xs(t), is approximated by the smooth interpolant gs(t). This
function is now transformed, by virtue of the bijection (8), into qs(t̃), where

gs(t) = qs ◦ ws(t) = qs(t̃) (9)

and ws(t) is shorthand notation for the bijection defined in (8).
This results in a four step scheme for ODE parameter estimation:

Step 1: Initialization. We initialize the system with standard kernel ridge regres-
sion. This gives us smooth interpolants of the observed states gs(t) in the original
time domain t. We then initialize t̃ = t and gs(t) = qs(t̃), for each of the variables
s of the dynamical system in turn.

Step 2: Time warping. The bijection between the original time domain t ∈
[T0, T1] and the warped domain t̃ ∈ [T̃0, T̃1] is obtained by minimising the objec-
tive function

Lw =
∫ (

q̈s(t̃) + [λw]2qs(t̃)
)2

dt̃ + λt

((
T̃1 − T1

)2

+
(
T̃0 − T0

)2
)

. (10)

The first term is minimized if qs(t̃) is a regular oscillation (i.e. phase-shifted
cosine or sinusoid) with angular frequency λw. In practice, we will often have
prior knowledge about typical periods of oscillation which can easily be incor-
porated by restricting the domain of λw, e.g. by modelling it as the output of a
rescaled sigmoidal function. The second term is a regularisation term, weighted
by a penalty parameter λt > 0, to discourage degenerate solutions. The practical
choice of λt is not critical as long as it is sufficiently large (we increase λt until
the results are invariant wrt a further increase).

1 Recall that t̃ depends on s, so a more accurate (but cumbersome) notation would
be t̃ → t̃s.
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The integral in (10) is analytically intractable and needs to be solved
numerically:

Lw =
n∑

i=2

(
q̈s(t̃i) + [λw]2qs(t̃i)

)2

Δti + λt

((
T̃1 − T1

)2

+
(
T̃0 − T0

)2
)

(11)

where Δti = ti−ti−1 and the parameters λw, lw and bw are optimised iteratively
until some convergence criterion is met.

Step 3: Interpolation. The second layer deals with function interpolation. The
original data points ys(ti) are mapped to the warped time points, y(t̃i). We
then apply standard kernel ridge regression with an RBF kernel in the warped
domain, which gives us the smooth interpolant qs(t̃), for each of the variables s
in the dynamical system in turn:

qs(t̃; bq
s ) =

n∑

j=1

bqsjk(t̃, t̃j). (12)

Note that this interpolation problem is less susceptible to overfitting or over-
smoothing, due to the fact that the intrinsic functional length scales (i.e. periods
for an oscillating signal) have been homogenized by virtue of the time warping.
Unwarping qs(t̃) back into the original time domain t is straightforward since
ws(t) is bijective. We have gs(t) = qs(t̃), and

dgs(t)
dt

=
dqs(t̃)

dt
=

n∑

j=1

bqsj
∂k(t̃, t̃j)

∂t̃

dt̃

dt
=

n∑

j=1

bqsj
∂k(t̃, t̃j)

∂t̃
w′

s(t). (13)

Step 4: Gradient matching. Finally, we estimate the ODE parameters with gra-
dient matching, i.e. by minimizing the following objective function with respect
to θ:

L(θ) =
r∑

s=1

n∑

i=1

[
ġs(ti) − fs(g(ti),θ)

]2
=

r∑

s=1

n∑

i=1

[
dqs(t̃i)

dt̃i

dt̃i
dti

− fs(q(t̃i),θ)
]2

(14)

3 Results

The objective of our study is to evaluate the performance improvement of
the novel two-level time-warping method proposed in Sect. 2 over the standard
RKHS gradient matching method summarized in Sect. 1. This method is akin to
the one proposed in (González et al. 2013, 2014) and hence representative of the
current state of the art. For notational convenience, we refer to these methods as
RKGW (W for warping) and RKG, respectively and compare them on data gen-
erated from two different ODE systems. The ODEs were numerically integrated



150 M. Niu et al.

using a low-order Runge-Kutta method with automatic step-size adjustment,
using the R function ODE23s. The timepoints produced by ODE23s were then
uniformly downsampled by 50%, keeping every 2nd output from ODE23s (lead-
ing to n = 37 observations per state for the FitzHugh-Nagumo model and n = 17
for the biopathway model). The true state values from each model were repeat-
edly and independently subjected to additive iid Gaussian noise from 50 inde-
pendent noise instantiations over a range of signal-to-noise ratios (SNR). Each
of these 50 data realisation is used for parameter inference, and the results are
collated.

FitzHugh-Nagumo. The FitzHugh-Nagumo system is a two-dimensional dynam-
ical system used for modelling spike generation in axons (FitzHugh, 1955). It has
two state variables, x1 and x2, and three parameters: a, b and c. We numerically
solved the ODEs for a = 0.2, b = 0.2, c = 3, t ∈ (0, 10), and initial condi-
tions x1(0) = 0.5 and x2(0) = 1. As already mentioned, numerical solving and
down-sampling resulted in states being observed at n = 37 distinct time points.

ẋ1 = c · (
x1 − x3

1/3 + x2

)
, ẋ2 = −c−1 (x1 − a + b · x2) (15)

Biopathways. The biopathway model describes the interaction of five protein
isoforms, S, dS,R,RS,Rpp, in a signal transduction pathway and was previously
studied by Vyshemirsky and Girolami [2008]. Changes in protein abundance
over time is described by a combination of mass action and Michaelis-Menten
kinetics:

[Ṡ] = −k1 · [S] − k2 · [S] · [R] + k3 · [RS]
[ ˙dS] = k1 · [S]

˙[R] = −k2 · [S] · [R] + k3 · [RS] +
k5 · [Rpp]
k6 + [Rpp]

˙[RS] = k2 · [S] · [R] − k3 · [RS] − k4 · [RS]

˙[Rpp] = k4 · [RS] − k5 · [Rpp]
k6 + [Rpp]

(16)

The square brackets, [·], denote concentrations of the protein isoforms (the
states), and k1:6 represent the 6 kinetic parameters to be inferred. It turns out
that k5 and k6 are only weakly identifiable, and we have thus assessed the accu-
racy of inference based on the ratio k5

k6
. We numerically solved the ODEs for

k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, k5 = 0.017, k6 = 0.3, t ∈ (0, 100), with
initial conditions S(0) = 1, dS(0) = 0, R(0) = 1, RS(0) = 0 and Rpp(0) = 0.
This generated n = 17 data points.

The true solutions of these two systems are shown in Fig. 1.
Figure 2 shows a graphical demonstration of the warping process using the

state S of the Biopathway system as an example. RBF regression (Fig. 2(b)) is
unable to cope with both the rapid drop and the saturated section. In Fig. 2(c)
we show the interpolation in the warped time domain and in (d) the warped
interpolant in the original space. The improvement over the interpolant shown
in Fig. 2(b) is clear.
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Fig. 1. True solutions of the ODE systems. Note the temporal inhomogeneity of
the intrinsic length scales.
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Fig. 2. Warping example. (a) The true signal and 10db SNR noisy data. (b) The
initial interpolation using RBF kernel RKHS regression. Due to the non-stationary
length scale of the signal, the RBF is unable to produce a sensible interpolation. (c) The
interpolation in the warped time domain using an RBF kernel. (d) The interpolation
result from (b) unwarped and in the original space. Note the clear improvement over
the interpolant in (b).
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Table 1. Comparison of computational costs. The table shows the computational
costs for RKG and RKGW, using the data generated from Eqs. (15 and 16). The
experiment was carried out on a 2.7 GHz Intel Core i5 processor.

Method ODE model CPU time

Standard Gradient Matching (RKG) FitzHugh-Nagumo 16.9s

Gradient Matching with Warping (RKGW) 261.2s

Standard Gradient Matching (RKG) Biopathways 8.8s

Gradient Matching with Warping (RKGW) 194.2s

The inference results are shown in Figs. 3 and 4 and demonstrate that the pro-
posed time warping method achieves a significant improvement. Figure 3 shows,
for each parameter and each benchmark system, the difference of the absolute
differences between the inferred and the true parameters. The difference between
the methods is defined such that positive values indicate that the proposed warp-
ing method (RKGW) outperforms the reference method (RKG) (as explained
above, the function space performance was obtained by reinserting the inferred
parameters back into the ODEs and solving). The boxplots show distributions
obtained from 50 independent data instantiations. Asterisks above the boxes
indicate that the improvement achieved with the proposed method is statisti-
cally significant, in terms of a paired t-test. Typical computational costs for the
two methods are shown in Table 1.
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Fig. 3. Method comparison in parameter space. The box plots represent, for
each true parameter value (denoted L), the distribution (from 50 independent noise
instantiations) of differences between the absolute error of the parameter estimates with
the baseline method (RKG, Sect. 1, no warping), and the absolute error of estimates
with the proposed method (RKGW, Sect. 2, with time warping). Positive values (above
the dashed horizontal line) indicate that time warping improves performance. The
horizontal axis shows different signal-to-noise ratios for each parameter. Asterisks above
a box indicate where the performance improvement is significant (based on a paired
t-test).
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Fig. 4. Method comparison in function space. Similar boxplot representation as
in Fig. 3, but showing the distribution of the differences between the absolute errors
of the function estimates; these function estimates are obtained by inserting the esti-
mated parameters into the ODEs and numerically solving. Positive values indicate
that the proposed method outperforms the standard method, asterisks indicate that
the improvement is significant (paired t-test).

4 R Package

To maximise utility to the community, we have implemented our warping and
gradient matching schemes as a flexible object oriented R package. This allows for
easy re-use and reproducibility and the package is described below. The package
is implemented using the object oriented paradigm using R6 classes (Chang,
2016). A UML class diagram of the package is shown in Fig. 5.

Kernel Class: The Kernel class represents kernel functions. We provide three
kernel options although the modular nature of the code makes it easy to add
more. The standard RBF kernel and MLP kernel are implemented in the child
classes RBF and MLP. Although the sigmoid function does not yield a reproduc-
ing kernel and is not used for kernel ridge regression, it includes many of the
properties of standard kernel functions and hence its inclusion as a subclass of
Kernel. The sigmoid function is used as the basis function in the Warp class.

RKHS Class: The standard kernel ridge regression in step 1 of Sect. 2 is imple-
mented as the RKHS class. The RKHS class requires an instance of the Kernel class.
The kernel and weighting parameters of the l2 norm of RKHS can be estimated
using cross-validation, implemented in the skcross() operation. Interpolants
and gradient of interpolants can be estimated using Eq. 5 which is implemented
as the predict() operation.

Ode Class: Our code can work with any system of user-specified ODEs, which
are stored in the Ode class. The user needs to provide the ODEs, the initial con-
dition if they want to numerically solve the ODEs and initial values of the ODE
parameters. The gradient estimates from the ODEs themselves are provided by
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RBF

k_par: len

kern(t1,t2)
dkd_kpar (t1,t2)

dkdt(t1,t2)

MLP

k_par: a,b

kern(t1, t2)
dkd_kpar (t1,t2)

dkdt(t1,t2)

RKHS

t,y,ker,b,lambda

lossRK( )
grlossRK( )

sKcross( bounds )
numgrad( )
predict( )

Kernel

k_par

kern()
dkd_kpar()

dkdt()

Ode

sample, t, y_ode,ode_par

ode_fun( )
solve_ode(par_ode,xinit,tinterval)

gradient(interpolant,ode_par)
lossNODE(par,interpolant,grad_int)
optim_par(par,interpolant,grad_int)
grlNODE(par,interpolant,grad_int)

Sigmoid

k_par: len

kern(t1,t2)
dkd_kpar (t1,t2)

dkdt(t1,t2)

Warp

t,tw,y,lambda_t,period,p_er,len,
p_lam,b

warpLoss(par,t,y,lambda,period,..)

Fig. 5. R6 UML Class diagram. Each block represents a class object. The top com-
partment is the class name. The middle compartment lists the class’s attributes. The
bottom compartment lists the class’s operations. Inheritance is indicated by a solid line
with a closed, unfilled arrowhead pointing at the super class. The solid line with filled
diamond arrowhead indicates a composition relationship between two classes. The solid
line without arrowhead indicates an association relationship between two classes.

the operation gradient(), which takes interpolants and ODE parameters as
inputs. By matching gradient estimates of the interpolants and the true ODE,
the ODE parameters are estimated using the operation optim par(). We also
provide the operation solve ode() to numerically solve ODEs in the Ode class.
Inference of ODE parameters using standard gradient matching (RKG) requires
the Ode class and the Kernel class only.

Warp Class: The warping scheme in step 2 of Sect. 2 is implemented in the Warp
class. It takes an instance of the RKHS class as an attribute. Interpolants from
kernel ridge regression using the RKHS class are warped into a sinusoidal signal
by minimising the loss function in Eq. 11, which is programmed as the operation
warpLoss(). The warped time index vector is optimised using the operation
warpSin(). The improved interpolant can be re-learned with the warped time
index using standard kernel ridge regression. The gradient matching can also be
calculated with the warped interpolants using the Ode class.

4.1 Example

In this section, we provide an example of the code use with the FitzHugh Nagumo
system. The FitzHugh Nagumo ODEs are defined as a function FN fun. x[1]
and x[2] are the two states and a,b,c the three ODEs parameters in Eq. 15:
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FN_fun = function(t,x,par_ode){

a=par_ode[1]

b=par_ode[2]

c=par_ode[3]

as.matrix( c( c*(x[1]-x[1]^3/3 + x[2]),-1/c*(x[1]-a+b*x[2]) ) )

}

The FN fun function is used to generate the testing data by numerically
solving the ODEs. A Ode class object is created as FN. The initial condition and
the time interval are defined as variables xinit and tinterv. The testing data
y no is generated by adding Gaussian noise to the true ODE solutions y ode.
n o is the length of the data vector. If the user wants to use a real dataset, this
step can be skipped.

FN = Ode$new(2,fun=FN_fun)
xinit = as.matrix(c(0.5,1))
tinterv = c(0,6)
FN$solve_ode(c(1,1,4,1),xinit,tinterv)
n_o = length(FN$t)
y_no = t(FN$y_ode) + rmvnorm(n_o,c(0,0),0.1*diag(2))

At first we use the standard gradient matching (RKG) method to estimate
the ODE parameters according to step 1 in Sect. 2. The result of the RKG
scheme can be used as the initial value for the warping scheme. An RBF class
instance is created as ker1. The argument of RBF$new(1) defines the initial
length scale parameter, which in this example is set to 1. The kernel hyper-
parameters are optimised using cross validation with the RKHS class operation
skcross(.). Arguments of rkhs$new(.) define initial values of the functions
and the initial value of the l2 norm weighting parameter. The initial interpo-
lation and gradient of interpolants are calculated using kernel ridge regression
with the RKHS class operation predict().

ker1 = RBF$new(1)
rk1 = rkhs$new(t(y_no)[1,],FN$t,rep(1,n_o),1,ker1)
rk1$skcross()
pre1 = rk1$predict()

An identical procedure is applied for the second state:

ker2 = RBF$new(1)
rk2 = rkhs$new(t(y_no)[2,],FN$t,rep(1,n_o),1,ker2)
rk2$skcross()
pre2 = rk2$predict()

The interpolation and the gradient estimates of both states are used to estimate
the ODE parameters using gradient matching, which is implemented as the Ode
class operation optim par(.). The initial values of the ODE parameters, inter-
polants and gradient estimates for both states are provided as the arguments of
optim par(.).
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intp= rbind(pre1$pred,pre2$pred)
grad= rbind(pre1$grad,pre2$grad)
ode_par = FN$optim_par( c(0.1,0.1,0.1,0.1), intp, grad )

The warping method introduced in step 2 of Sect. 2 is implemented as follows. p1
is the predefined period of the first state of the ODEs. lambda t is defined as in
Eq. 11. wker1 is defined as an instance of the Sigmoid class. The warping function
is modelled as a linear combination of sigmoid basis functions by defining wp1
as an instance of the Warp class. The kernel hyper-parameters and coefficients
of each basis function are optimised using the Warp class operation warpSin(.).
The argument of warpSin(.) defines the initial value of the lengthscale kernel
parameter, which is ini len1 in this example. The time indices of the warped
signal are stored in tw1.

p1=6; eps= 1; lambda_t= 50
wker1 = Sigmoid$new(1)
wp1 = Warp$new( pre1$pred, FN$t, rep(1,n_o), lambda_t, wker1)
ini_len1 = 3
tw1 = wp1$warpSin(ini_len1, p1, eps)

An identical procedure is applied to the second state:

p2=5.5;
wker2 = Sigmoid$new(1)
wp2 = Warp$new( pre2$pred, FN$t, rep(1,n_o), lambda_t, wker2)
ini_len2 = 3
tw2 = wp1$warpSin(ini_len2, p2, eps)

The warping function is monotonically increasing and can be learned with a lin-
ear combination of sigmoid functions. However, the estimation of the gradient of
the warping function using sigmoid functions may be poor as the interpolation
from the sigmoid basis function is not smooth. To overcome this, we re-learn
the gradient of the warping function using standard kernel ridge regression with
an MLP kernel. A MLP class instance is created as mker1. The kernel hyper-
parameters are optimised using cross-validation with the RKHS class operation
skcross(.). Arguments of skcross(.) define the upper and lower bound of
kernel hyperparameters:

mker1 = MLP$new(c(1,1))
rkm1 = rkhs$new(t(tw1$tw),FN$t,rep(1,n_o),1,mker1)
rkm1$skcross(c(0.001,1000))
tw1 = rkm2$predict()

mker2 = MLP$new(c(1,1))
rkm2 = rkhs$new(t(tw2$tw),FN$t,rep(1,n_o),1,mker2)
rkm2$skcross(c(0.001,1000))
tw2 = rkm2$predict()
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In step 3 of Sect. 2, the improved interpolants are learned in the warped time
domain. The code for this step is similar to step 1, however the time indexes are
now changed to the warped time indices tw1$pred.

ker1 = RBF$new(1)
rk1 = rkhs$new(t(y_no)[1,],tw1$pred ,rep(1,n_o),1,ker1)
rk1$skcross()
pre1 = rk1$predict()

ker2 = RBF$new(1)
rk2 = rkhs$new(t(y_no)[2,],tw2$pred,rep(1,n_o),1,ker2)
rk2$skcross()
pre2 = rk2$predict()

Finally, both the improved interpolants and the gradient estimates are used for
gradient matching. By applying the chain rule in Eq. 14, the gradient of the
interpolant in the original time domain becomes the product of the gradient in
the warped time domain and the gradient of the warping function pre1$grad*
tw1$grad. The ODE parameters can be learned by using the Ode class operation
optim par(.)

intp= rbind(pre1$pred,pre2$pred)
grad= rbind(pre1$grad*tw1$grad,pre2$grad*tw2$grad)
FN$optim_par( c(0.1,0.1,0.1,0.1), intp, grad)

The parameter estimates generated from this example can be used to produce
the boxplot in Fig. 3(a).

5 Conclusion

Carrying out parameter inference in models described by ODEs is a challeng-
ing problem, due to the need to repeatedly perform computationally expensive
numerical integration to solve the ODEs. While gradient matching approaches
mitigate this issue, their success critically hinges on the quality of the initial
interpolation scheme. In cases where the solutions to the ODE systems exhibit
nonstationarity and substantial variations of intrinsic length scales, standard
RKHS or Gaussian process approaches typically fail to accurately represent
the unknown true functions, leading to poor ODE parameter estimates. In this
paper, we have proposed a remedy for this problem by combining gradient match-
ing techniques and time warping. The latter, in particular, is inspired by the work
in Calandra et al. (2016), where Gaussian processes are made nonstationary by
a reparameterisation of the input space. In our work, we use an RKHS interpola-
tion approach instead, and learn the reparameterisation by optimising a separate
objective function that aims to homogenize the intrinsic functional length scales.
We have demonstrated that the proposed time warping is effective in improving
the quality of gradient matching approaches in two applications representative
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of biological dynamical systems, one with a limit cycle, the other with a stable
equilibrium point.

Our work proposes a first proof of concept that time warping can be useful
to improve parameter inference in ODE models. We are currently investigating
extensions of our work in the direction of including some form of regularisation
in the estimation of the parameters based on the structure of the ODEs. This,
for example, could come in the form of alternating between revising the inter-
polant in light of the estimated ODE parameters and the estimation of the ODE
parameters, or in the form of a prior, following, e.g., the work on hierarchical
Bayesian models in Xun et al. (2013).

Our current work has focused on fully observed data. If state variables are
unobserved, then they have to be treated as latent variables, for which standard
inference procedures are available. See, for instance, Sect. 5.3 in (Calderhead et
al. 2009), and Sect. 4 in (Macdonald et al. 2015).

To facilitate code re-use and reproducability, we have provided a flexible
implementation of the system to allow others to use our algorithm, reproduce
our results, or use our algorithm to benchmark newer approaches. The code
has been built in a modular, object oriented manner allowing flexibility and
optimising the opportunities for code re-use. The R package described in this
paper is available at http://dx.doi.org/10.5525/gla.researchdata.383.
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Abstract. Data integration is one of the most challenging research topic
in many knowledge domains, and biology is surely one of them. How-
ever theory and state of the art methods make this task complex for
most of the small research centers. Fortunately, several organizations
are focusing on collecting heterogeneous data making an easier task to
design analysis tools and test biological and medical hypothesis on inte-
grated data. One of the most evident case of such efforts is The Cancer
Genome Atlas (TCGA), a data base that contains a large variety of
information related to different types of cancer. This data base offers
a great opportunity to those interested in performing analysis of inte-
grated data; however, its exploitation is not so easy since non trivial
efforts are required to extract and combine data before it could be ana-
lyzed in an integrated perspective. In this paper we present IRIS-TCGA,
an online web service developed to perform multiple queries for data inte-
gration on TCGA. Differently from other tools that have been proposed
to interact with TCGA, IRIS-TCGA allows a direct access to the data
and enables to extract detailed combinations of subsets of the reposi-
tory, according to filters and high-order queries. The structure of the
system is simple, as it is built on two main operators, union and inter-
section, that are then used to construct queries of higher complexity.
The first version of the system supports the extraction and integration
of gene expression (RNA-sequencing, microarrays), DNA-methylation,
and DNA-sequencing (mutations) data from experiments on tissues of
patients, together with their related meta data, in a gene oriented orga-
nization. The extracted data matrices are particularly suited for data
mining applications (e.g., classification). Finally, we show two applica-
tion examples, where IRIS-TCGA is used for integrating genomic data
from RNA-sequencing and DNA-methylation experiments, and where
state-of-the-art bioinformatics analysis tools are applied to the integrated
data in order to extract new knowledge from them. IRIS-TCGA is freely
available at http://bioinf.iasi.cnr.it/iristcga/.
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1 Introduction

Data integration [1] is a challenging issue in analyzing data in the field of mole-
cular biology because of two main reasons: (i) there is no one-to-one corre-
spondence between biological entities (molecules, biological processes, etc.) and
their names, and (ii) data extracted from different experiments cannot be com-
pared due to the different physical, chemical and environmental conditions of the
experiments themselves. The large amount and diversity of data produced by
the new high-throughput technologies [2,3] requires an outstanding competence
and domain expertise to integrate and compare all the information contained
therein. Many research centers on this topic invest resources for collecting data
from experiments and for the design and the development of tools for the analy-
sis of integrated data, aiming at new insights related to diseases and drug effects
in biological processes. However, most of the job to integrate data is performed
by a large number of domain experts. As a consequence, it seems that data
integration turns out to be an almost forbidden task for small research centers.

A positive example in this field is The Cancer Genome Atlas (TCGA) [4]
(http://cancergenome.nih.gov/), a data base that contains a large variety of
information related with different types of cancer. It is a large repository of
genomic data extracted through controlled experiments on different tissues (sam-
ples) of patients, that overcomes the problem of experimental data compari-
son. This allows a large community of researchers to deal with data integration
challenges. Extraction of data from TCGA and its management often requires
advanced skills, as TCGA provides only a simple interface that allows the extrac-
tion of single samples and single data types at a time. To overcome these limita-
tions, a discrete number of tools have been proposed; below we describe a subset
of them:

– Anduril [5] is a software that provides the possibility to select a subset of data
from TCGA, integrates, analyses, and visualizes multidimensional and het-
erogeneous genomic experiments and other data provided by different repos-
itories. However, it requires strong technical skills since it is a script-based
software and the user should be able to write and implement scripts to per-
form extraction and data analysis.

– ICGC [6], the International Cancer Genome Consortium, is a repository of
research projects that include data about 50 different tumor types with clin-
ical information about patients. Most of these data come from TCGA. For
each tumor data, ICGC reports some statistics such as the percentage of male
and female patients, their vital status, and tumor stage.

– GeneSpot (http://genespot.cancerregulome.org/) is a repository of knowledge
extracted from TCGA genomic data. It requires advanced technical skills to
retrieve data from its repository. The GeneSpot web interface includes a basic
visualization tool to browse some useful statistics information for each disease.

http://cancergenome.nih.gov/
http://genespot.cancerregulome.org/
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– cBioPortal [7] is a big repository of 125 cancer studies, most of them con-
ducted using TCGA data. It contains two data visualization tools about
oncoprints generations and mutations mapping.

– TCGA-Assembler [8] is a software tool that allows the acquisition of TCGA
data and the subsequent storage by transforming them in a single data table.

– TCGAbiolinks [9] is an R/Bioconductor package for the retrieval of TCGA
data providing also multiple analysis methods and data visualization tech-
niques.

– Web-TCGA [10] is an online tool that permits to integrate, analyze and visu-
alize cancer genomic data of TCGA by defining molecular profiles in different
cancer entities. Its focus is on data analysis rather than on integration.

It is worth to note that these tools focus on retrieval, assembly, analysis, and
visualization of TCGA data. Conversely, IRIS-TCGA implements a set of proce-
dures that allow to query for and extract a gene-oriented organization of exper-
iments information, through the two simple operators of union and intersection,
providing an integrated view of the data. The final results are data matrices that
can be easily analyzed with data mining methods, e.g., classification.

2 Materials and Methods

In this section, we briefly present TCGA and summarize how IRIS-TCGA works
as an online web tool to perform and integrate multiple queries on TCGA.

TCGA is a repository of data related to 33 cancer types. It contains results of
experiments from tissues (samples) of more than 10.000 patients, and provides,
for each sample, trascriptomic and genomic data, in particular RNA-transcripts
expression profiles, DNA somatic mutations, and DNA methylation. Moreover,
to each sample a large set of meta data is associated: clinical data of the patient
(e.g., age, gender), biospecimen of the tissues (tumor stage) and information on
the experiment.

IRIS-TCGA is a web tool able to search, retrieve and integrate genomic
data and meta data (clinical [11], and biospecimen information) of the following
experiments: RNA-sequencing [12,13], microarrays [14], DNA-methylation [15,
16], and DNA-sequencing (mutations) [17]. This first version of IRIS-TCGA
deals with TCGA level 2 for DNA-sequencing and level 3 for the other types of
experiments, which are high-level and pre-processed data.

IRIS-TCGA is released as an all-in-one web service that combines data
retrieval and extraction with data integration, and guides the researcher through
the process in a simple and intuitive way. The web interface is written in PHP
(http://www.php.net) and jQuery (https://jquery.com), while the service core
component is written in Java (https://www.java.com) and constantly runs in
background on the server, managing all the users requests and generating the
results. At present, no registration is required to use the service. The interface is
simple and allows the user to extract matrices of data for a certain disease, cho-
sen among those available in TCGA. Each matrix contains - for a set of samples
possibly filtered by one or more meta data - values of one or more data types,

http://www.php.net
https://jquery.com
https://www.java.com
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e.g., genomic, clinical, tissue and experiment related. We chose to operate at
gene level, therefore the extracted matrices are indexed on the samples and on
the genes. In case a genomic experiment is performed on single sites or genomic
regions, we adopt normalization and aggregation procedures to map them on the
genes. Currently, DNA-methylation and DNA-sequencing (mutations) are aggre-
gated at gene level, i.e., by considering the sum of the values of the methylated
sites and the counts of the mutations in the considered gene, respectively [18].
We choose these values for the two gene-wide measures in order to see how they
perform in classification and correlation tasks. See Sect. 3.2 for further details.

The extraction is performed, using three basic operations:

– filter data according to available meta information (e.g., age, gender, tumor
grade, etc.);

– intersect two or more filtered data sets on samples and/or genes/transcripts;
– unify two or more filtered data sets on samples and/or genes/transcripts.

Filtering through one or more meta data is the simplest operation that allows
to extract genomic and clinical data for a subset of samples. For an advanced
usage of IRIS-TCGA, the integration operations (union, and intersection) can
be applied to extract common or uncommon information from multiple data
sets, e.g. RNA-transcripts expression profiles deriving from microarray and NGS
technologies. If these operations are applied to the genes domain, the intersection
consists of an integrated data set composed by only the genes shared by all data
sets; differently, the union operation extracts all the genes that are present in
the data sets, setting the values of non-common genes to zero. In case of the
samples domain, the output of the intersection operation is a data set limited to
samples on which the experiments corresponding to the selected genomic data
sets have been performed. Indeed, the output of the union operation applied on
the samples domain is limited to the samples that are present in the data sets.

Other meta data, with respect to those eventually used for filtering, can be
simply added to the output matrix by selecting them from the list of available
meta data.

The output produced by IRIS-TCGA can be easily given as input to data
mining (i.e., clustering and classification) tools, like rule-based [11,14,19] and
functions-based classifiers [20,21], see Sect. 3 for further details.

IRIS-TCGA significantly accelerates the process of searching and retrieving
different types of genomic data since it operates on a local repository that is a
partial mirror of TGCA data. In this first release of the web service a version of
this repository has been created containing four data types - RNA-sequencing,
microarrays (expression genes), DNA-methylation, and DNA-sequencing - for 15
cancer types, comprising a total of more than 5 GB of data (see Table 1 for
further details). Moreover, IRIS-TCGA stores for each cancer type all meta data
about the samples and patients whose tissues have been studied for that specific
disease. Since IRIS-TCGA is a mirror of TCGA for a subset of genomic data,
the updating of this subset is immediately produced when available.
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Table 1. Volumes of genomic data available on IRIS-TCGA (in MB)

Tumor tag Expression
genes

RNA-sequencing DNA-methylation DNA-sequencing

BLCA NA 49.89 174.54 3.58

BRCA 105.93 655.96 349.00 35.10

COAD 31.27 136.92 137.94 7.52

ESCA NA 101.29 79.81 5.39

HNSC NA 218.95 224.68 8.00

KIRC 13.02 403.86 186.38 5.08

KIRP 3.04 13.10 126.32 2.64

LAML 30.02 68.31 72.97 0.74

LIHC NA 19.27 169.21 11.21

LUAD 5.87 121.08 196.97 7.01

LUSC 27.66 181.68 162.43 5.37

OV 107.69 165.08 4.29 0.87

READ 13.03 51.44 42.59 1.79

STAD NA 36.92 155.23 10.05

UCEC 9.90 242.89 190.80 5.97

Total 347.43 2,466.64 2,273.16 110.32

3 Results and Discussion

In this section we describe the pipeline of IRIS-TCGA and show how to filter,
extract, integrate, and download genomic and meta data.

Then, we report two application examples, where we analyze integrated data
of Breast Cancer. The first one is an application of supervised learning algorithms
on RNA-sequencing and DNA-methylation experiments. The second one is a
linear regression analysis that aims to find correlation between three kind of
experiments, i.e., RNA-sequencing, DNA-methylation, and DNA-sequencing.

3.1 Data Extraction and Integration

The working principles of IRIS-TCGA are simple (see Fig. 1). Once the user has
sent a request, a process that elaborates the query and produces the expected
results is launched. In order to perform a request, the user provides:

– the disease of interest;
– (optional) one or more meta information used as filters on the patient set

(e.g., select all female patients only, etc.);
– at least one data type, selecting the platform, the TCGA data level and,

the tissue (normal or tumoral);
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– (optional) an advanced integration query applied on the set considering
all their genome or vice versa, specifying union and intersection operations
between the previously selected data types;

– (optional) a list of genes to which the data processing has to be restricted.

Once the user has clicked on the Compute button, the request is sent. For each
sample the list of genes and their experimental values resulting from the execu-
tion of the advanced integration query are extracted and stored in a local flat
file for each data type, containing the genes/transcripts expression values on the
rows and the samples identifiers on the columns.

Fig. 1. Example of a IRIS-TCGA Pipeline: The figure shows an example of the
IRIS-TCGA work flow. Once the user has submitted her request, considering the
KIRC disease, all experiments for each data type (e.g., Expression Genes, and RNA-
sequencing - gene quantification) are retrieved. Then, information for all male patients
samples only are filtered out. The integration query is then applied, generating a table
for each data set: in this specific example, all tables contain different genomic informa-
tion for the same sample.

3.2 Classification Analysis

In order to show the usage of IRIS-TCGA, we perform an integration query
on genomic data of Breast Cancer. Specifically, we use IRIS-TCGA to extract
RNA-sequencing and DNA-methylation experimental data for performing an
integration query (intersection) on the samples. It is worth noting that, the
engine of IRIS-TCGA executes an indexing on the genes. Therefore, we obtain
data matrices, whose columns represents measures on a given gene. In case of
RNA-sequencing, we already have the gene expression value represented with the
wide-spread RPKM (Reads Per Kilobase per Million mapped reads) value [12].
Conversely, when dealing with DNA-methylation data IRIS-TCGA has to cal-
culate a gene wide measure, because the methylation values in TCGA refer to
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single sites of the genome. TCGA uses the beta value [22] to measure the quan-
tity of methylated molecules in a site. As gene wide measure we adopt the sum
of the beta values of the methylated sites that are present in the gene. The
same approach is used in [18], where the authors show the capability of this
gene wide measure to distinguish tumoral from non-tumoral samples by apply-
ing supervised classification methods. Finally, we obtain a data matrix, whose
columns represent the samples and whose rows are associated to all genes of the
RNA-sequencing experiment and all genes of the DNA-methylation experiment
(genes present in both experiments are duplicated). These are the features of
the classification problem. For each gene of the RNA seq experiments the entry
is the expression value, while for each gene of the DNA-methylation the entry is
the sum of the beta values of its methylated sites. The second row of the matrix
represents the class of the sample (i.e., tumoral, normal). An example of a data
matrix extracted by IRIS-TCGA is provided in Table 2

Table 2. Example of the breast cancer integrated data matrix.

Sample Id S1 S2 · · · Sn

Class Tumoral Normal · · · Tumoral

G1rna 1.24 6.21 · · · 2.57

G2rna 5.30 3.74 · · · 4.01

· · · · · · · · · · · · · · ·
Gkrna 3.20 2.15 · · · 1.37

G1dmet 12.04 13.10 · · · 8.72

G2dmet 5.23 1.97 · · · 3.16

· · · · · · · · · · · · · · ·
Gmdmet 1.53 6.53 · · · 2.15

The extracted breast cancer data is composed of 489 tumoral samples, 74
normal samples, and 41.124 genes.

The obtained data matrix can be easily analyzed with supervised learning
algorithms [23], i.e. classification. We focus on classification algorithms that com-
pute a meaningful model, in order to identify the genes that are related with the
disease under study. Specifically, we decide to adopt rule-based classifiers [24],
whose classification model is composed of “if-then rules”, e.g., “if the expression
of ABA< 1.9 then the sample can be classified as tumoral”. Recently, a new rule-
based classification algorithm - CAMUR - [25], which is able to extract multiple
and equivalent classification models (and therefore more knowledge), is released.
We adopt CAMUR to perform the classification analysis on the integrated data
set of Breast Cancer extracted by IRIS-TCGA. We run the program by consid-
ering 50 iterations that lead to more than 100 classification models composed of
200 genes. Specifically, we obtained 102 equivalent rule-based classification mod-
els with an average f-measure (accuracy) of 0.97 (0.99) when applying a holdout
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validation (random percentage split of 80% for training and 20% for testing).
The rules are compact (i.e., the number of literals are less than six) and include
combinations of genes derived from the DNA-methylation and RNA-sequencing
experiments. Examples of classification rules are provided in Table 3. It is worth
noting that, both combinations of genes derived from the RNA-sequencing and
DNA-methylation experiments are present in the rules.

Table 3. A sample of classification rules extracted by CAMUR.

(TMEM220rseq ≥ 2.5) AND (LIMS2rseq ≥ 10.7) OR (BGNrseq ≤ 30.4) AND
(HTR4dmeth ≥ 7.4)

(SDPRrseq ≥ 12.330) AND (ANXA1rseq ≥ 161.3) OR (B3GALT1rseq ≥ 0.6) AND
(HTR4dmeth ≥ 8.2)

(TMEM220rseq ≥ 2.5) AND (LIMS2rseq ≥ 10.7) OR (OR6C65rseq ≥ 0) AND
(HTR4dmeth ≥ 7.4)

(TMEM220rseq ≥ 2.6) AND (GNG11rseq ≥ 32.9) OR (MYH11rnaseq ≥ 75.5)
AND (CRHBPdmeth ≥ 8.1)

(CD300LGrseq ≥ 10.3) AND (FAM54Brseq ≥ 20.4) OR (GRAMD3rseq ≥ 31)
AND (HTR7dmeth ≥ 3)

(FMO2rseq ≥ 15.2) AND (TPOrseq ≥ 0.3) AND (SHMT1rseq ≥ 11) OR
(GCDHdmeth ≤ 1.6)

(PPAP2Brseq ≥ 38.1) AND (CDKN1Crseq ≥ 8.7) OR (KCNE1rseq ≥ 1.9) AND
(TNFRSF4dmeth ≥ 7.6)

(CHL1rseq ≥ 3.8) AND (SLC35A2rseq ≤ 13) OR (TCEAL7rseq ≥ 5.5) AND
(FAM19A2dmeth ≥ 9.6)

(NKAPLrseq ≥ 0.5) AND (HIST1H3Jrseq ≤ 0.1) OR (MYH11rseq ≥ 58.5) AND
(LOC643719dmeth ≤ 5.4)

(FXY D1rseq ≥ 19.2) OR (OXTRrseq ≥ 30.2) AND (ORAI1dmeth ≥ 4.4)

The genes that are present in the models can be further investigated by
domain experts by performing wide-spread bioinformatics analyses, e.g., func-
tional enrichment analysis [26] and pathway analysis [27].

3.3 Linear Regression Analysis

Another application example of IRIS-TCGA is described in this subsection. The
problem of defining if there is correlation between DNA-methylation and gene
expression is widely investigated in literature. Specifically, several studies try to
find out if there is correlation between the methylated sites of a gene and its
expression value [28–31]. Our experiment instead wishes to prove if there is cor-
relation among the defined gene wide measure of DNA-methylation (sum of the
beta value of the methylated sites for each gene) and the RPKM values, focus-
ing on those genes that present mutations. In particular, we extract genomic
data of Breast Cancer by considering RNA-sequencing, DNA-methylation, and
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DNA-sequencing experiments indexed on the genes. We consider only the genes
for which at least a mutation occurs. An integration (intersection) of the sam-
ples is performed obtaining a data matrix whose columns represent the samples
and whose rows the genes replicated for RNA-sequencing and DNA-methylation
experiments. The entries contain the experimental values, i.e., RPKM for RNA-
sequencing, and the sum of the beta values for DNA-methylation. It is worth to
note that the final output comprises only the samples and the genes that are in
common between the different genomic experiments. Therefore the data set is
composed of 468 samples and 1592 genes.

Aim of our analysis is to investigate if the RNA-sequencing RPKM value
of each gene is related to the DNA-methylation experiments. We apply a lin-
ear regression model [32] in order to show the correlation among the different
genomic experiments. The regression is performed for each gene, where we con-
sider the R2 value, i.e., a measure how the RPKM gene expression is correlated
with the DNA-methylation, and the mutations. For further details the reader
may refer to Fig. 2, where we draw the R2 value for each considered gene. Our
results show that a correlation exists only for a few set of genes, which can
be further analyzed by domain experts. This fact is also confirmed by previous
studies on different cancer types (e.g., [28–31]).

Fig. 2. Linear regression values among RNA-sequencing and DNA-methylation calcu-
lated for each gene that presents mutations.

4 Conclusions

In this work we described IRIS-TCGA an online tool to query, retrieve, filter
and produce an integrated view of genomic data of cancer from TCGA. IRIS-
TCGA integration capabilities are based on two simple operators (i.e., union and
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intersection), which work both on the samples and on the genes present in the
genomic experiments. Currently, it supports gene expression (RNA-sequencing
and microarrays), DNA-methylation, and DNA-sequencing (mutation) data and
their related meta data. Two application examples have been described to show
how IRIS-TCGA is able to integrate and extract data from TCGA and to create
in a very simple way the input to data mining tools and statistical routines, like
linear regression.

Future work will include the following aspects. First, DNA-methylation and
DNA-sequencing characteristics will be investigated to derive other proper query
and integration routines to obtain the correct formats for different analysis tasks.
Then, thanks to its modular structure, it is easy to extend the functions of IRIS-
TCGA in order to integrate other types of data such as Copy Number Variations
[33] and microRNA sequencing (miRNA-seq) [34]. Additionally, we plan to define
new integration functions that permit the extraction of non aggregated data.
Moreover, the integration of different genomic open access data bases, and the
use of IRIS-TCGA to perform comparative analyses on integrated data of cancer
is planned.

Finally, it is worth to note that IRIS-TCGA is already integrated in the
Galaxy framework [35] as a data source tool.
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Abstract. Catechin molecules are known to reduce the oxidative stress-
induced by radiation acting as scavenger of the reactive oxygen species,
preventing in this way the damage in biomolecules. In this work, the
effect of radiation on liposomes of 1,2-dipalmitoyl-sn-glycero-3-[phospho-
rac-(1-glycerol)(sodium salt) (DPPG) and of 1,2-dimyristoyl-sn-glycero-
3-phosphocholine (DMPC) is analyzed in the absence and presence of
epigallocatechin-3-gallate (EGCG) molecules, having in view the evalu-
ation of the photosensitizing properties and the efficacy of these mole-
cules to modulate cell membrane damage mechanisms. The obtained
results demonstrate that the damage by UV radiation on DPPG and
DMPC liposomes is strongly dependent of the presence of EGCG mole-
cules. While DPPG liposomes are protected from radiation in presence
of EGCG, the EGCG molecules are damaged by the radiation support-
ing the idea that EGCG are strongly adsorbed on the inner and outer
liposome surfaces due hydrogen bonding. This suggests that EGCG mole-
cules in the inner surface can be protected from radiation. In the case
of DMPC liposomes, the EGCG molecules are affected by radiation as
well as the DMPC molecules. This is explained if the EGCG chroman
group is positioned between DMPC lipids while the gallic acid groups
float over the liposomes.

Keywords: Cell membrane · Natural antioxidant · Physical interac-
tions · Cellular detoxification · Delivery system

1 Introduction

The addition of natural antioxidants to diet is belived to attenuated and even
promote the repair of some DNA lesions, through the regulation of DNA methy-
lation involved-genes as well as the modulation of intracellular redox environ-
ment [1]. Currently, epidemiological studies had recommend the intake of cate-
chins, namely epigallocatechin-3-gallate (EGCG), since these dietary molecules
are strong enough to modulate the intracellular signaling pathways involved in
the regulation of apoptosis, angiogenesis and metastasis, preventing in this way
c© Springer International Publishing AG 2017
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cancer progression [2,3]. Catechins, a flavonoid subclasse, are found in tea, one
of the most consumed beverage in the world after water [4]. Catechins uptake
by cellular machinery occurs by passive transport, being their biological activ-
ity governed by their affinity for lipid bilayer [5]. However, the effectiveness of
catechin in pharmaceutical applications is frequently constrained by their vul-
nerability to environmental factors as temperature, pH and humidity, leading to
their epimerization, oxidation or degradation. To avoid this, catechins should be
encapsulated in some drug delivery systems, as for example liposomes.

Liposomes are in fact delivery systems that can protect catechins from the
extreme environmental conditions mentioned above, allowing a more efficient
delivery and release of these antioxidants to cells. The study of action mode, at
molecular level, of these dietary-derived antioxidant molecules, such as catechins,
can lead to new approaches towards DNA repair and cancer prevention.

Nowadays, computational tools have been addressed to identify new molecu-
lar targets of EGCG and to reveal the interactions mechanisms (van der Waals,
hydrogen bonding) ruling chemical reactions [6,7]. These tools provide insights
about molecular targets of EGCG, but do not exclude experimental studies of the
interactions that molecules such as catechins can make with biological molecules
or membrane structures that can be easily mimicked by liposomes.

Flavonoids also have attracted considerable interest due to their ability to
attenuate the oxidative stress induced by radiation. In fact, ultraviolet radia-
tion is a powerful environmental agent which strongly interacts with biological
molecules, namely the deoxyribonucleic acid (DNA), inducing single and dou-
ble strand breaks (SSBs and DSBs) [8]. For example, data obtained from DNA
thin films UV exposed for different irradiation times revealed the decrease of
the number of thymines involved in Hoogsteen base pairing with adenine and of
the number of phosphate groups, as a result of the opening of sugar chains [9].
In addition, AC electrical conductivity measurements carried out on DNA thin
films, irradiated with UV light revealed that electrical conduction is arising from
DNA chain electron hopping, between base-pairs and phosphate groups [10],
being the hopping distance calculated from correlated barrier hopping model,
equal to the distance between DNA base-pairs. These results also allowed to
conclude that the loss in conductivity with irradiation time was arising from
the decrease of the phosphates groups in DNA molecules. Further analysis of
the damage at the molecular level caused by UV light in the range from 3.5
to 8 eV on DNA films allowed to conclude that the damage on bases periph-
eral nitrogen atoms follows that of the phosphates. This suggests that very low
energy photoelectrons are ejected from the DNA bases, as a result of UV light
induced breaking of the phosphate ester groups, given rise to a transient anion
and resonance formation with removal of the nitrogen DNA peripheral groups
[11]. The above results described lead us to admit that it would be difficult
for cells to repair from the breaks generated by UV, fact that will contribute
to mutations and, consequently, to diseases. Different research areas have been
debating and producing new tools, having in view the understanding of the mole-
cular mechanisms underlying the harmful agents activity in cellular machinery.
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Cell membrane is a complex barrier formed by charged-lipids in the inner leaflet
and by glycolipids in the outer leaflet. Their complexity and dynamic nature
makes extremely difficult analyze the biophysical interactions between drugs
and cell membrane namely with respect to selective transport or uptake of the
drug by intracellular targets. Physicochemical properties of drugs as polarity,
charge, molecular weight, solubility and pH greatly influence the efficiency of
their transport across the membrane. Catechins uptake by the cellular machin-
ery occurs by passive transport, being their biological activity governed by their
lipid bilayer affinity. A higher hydrophobicity as it can be inferred from see the
EGCG chemical structure in the inset of Fig. 1, ensure more interaction of cat-
echins with lipid bilayers, meaning that the cellular uptake of gallate catechins
(EGCG) will be higher than in non-gallate catechins. As the catechins intake
can attenuate or even repair the biomolecules damage via antioxidant mecha-
nisms or by modulating the intracellular redox environment, the main objec-
tive of this work was to analyze the effect of UV radiation on catechin mole-
cules as epigallocatechin-3-gallate (EGCG) incorporated on liposomes of 1,2-
dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) and of
1,2-dimyristoyl-sn-glycero-3-phosphocholine DMPC, in order to understand how
catechins interact with cellular membranes and their ability to attenuate the
damage induced by radiation. In this work, in addition to study the protective
role of EGCG, we also want to study the possibility of use DPPG and DMPC
liposomes as stable vehicles to encapsulate EGCG, aspiring the use of these
liposomes in cancer therapy. Saturated lipids as DPPG were considered in this
study, since DPPG is one of the main components of the mammalian pulmonary
surfactant and the development of new liposomal formulations carrying EGCG,
offers a possibility to increase the bioavailability and favor intracellular delivery
of EGCG in lung tissue to suppress the growth of lung cancer cells. In relation
to DMPC, we decided to study this saturated lipid, since some tumors contain
high levels of saturated phosphatidylcholines and, few studies focused on the
link between the misbalance of saturated/unsaturated fatty acids metabolism
and cancer metabolism.

2 Materials and Methods

Epigallocatechin-3-gallate (EGCG) was acquired Sigma-Aldrich while the syn-
thetic phospholipids 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(so-
dium salt) (DPPG)or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
were supplied by Avanti Polar Lipids (Alabaster, AL). Liposomes containing 5
mM of phospholipids were prepared by dry film method [12–14], where the phos-
pholipids were dissolved in a minimum amount of (8:2) chloroform:methanol. The
organic solvent was evaporated using a soft nitrogen flow to form a lipid thin
film in the walls of a falcon tube. The film was then hydrated with ultrapure
water, obtained from Milli-Q water system, and with an aqueous solution con-
taining 400µM of EGCG. An ultrasonic processor UP50H (Dr. Hielscher GmbH,
Germany) was used to sonicate the obtained liposome suspension in an ice bath,
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for 30 s at 50 W. This procedure was repeated 15 times with 1 min rest time in
each cycle. The DPPG suspension with and without EGCG were exposed to a
254 nm UVC germicide lamp with a radiance of 1.9 W/m2. All the UV irradi-
ated emulsions present a lipidic concentration of 0.05 mM and the concentration
of EGCG in the DPPG+EGCG and DMPC+EGCG emulsions was of 4µM.
The concentration of EGCG solution was of 4µM. Solutions/emulsions were
characterized by a spectrophotometer Shimadzu, model UV-2101.

3 Results

3.1 Effect of Ultraviolet Radiation on Catechin Molecules
in Aqueous Solutions

To analyze the behavior of catechin molecules when subjected to UV radiation,
aqueous solutions of EGCG were irradiated and the UV-visible spectra of these
solutions were measured for different irradiation times. The obtained UV-Vis
spectra are shown in Fig. 1. Spectra present absorbance bands at 206 nm and
276 nm, corresponding to electronic π − π∗ and n − π∗ transitions in which
chroman group and phenol (gallic acid group) oxygen electrons are involved
[15,16]. The intensity of these bands is seen to decrease quasi exponentially with
the irradiation time, as shown in Fig. 1(b). The obtained characteristics time
values were of 48 ± 8 and 90 ± 30 min, respectively, indicating that damage
induced in EGCG molecules is likely due to independent processes.

3.2 Effect of Ultraviolet Radiation on DPPG Liposomes

The influence of UV exposure on DPPG emulsion in the absence and in the pres-
ence of EGCG was analyzed by measuring UV-Vis absorbance spectra for dif-
ferent exposure times. These results are shown in Fig. 2(a) and (b), respectively.
Previous characterization of vacuum ultraviolet (VUV) spectra of DPPG cast
films [13] revealed a presence of a band at 194.4 ± 0.7 nm (6.38 ± 0.04) eV which
has been assigned either to the n0 → π∗ [17,18] transition from the lone-pair on
the carbonyl oxygen to the antibonding CO valence orbital and to the valence
shell electronic excitations of hydroxyl groups [19–21]. In the spectra of Fig. 2(a),
one can observe a shoulder of a peak at a wavelength below 194 nm. A plausible
explanation for that is a hypochromic shift of the band since phospholipids are
suspended in water and not immobilized in a solid substrate. Another expla-
nation is the resolution of our apparatus compromised the observation of the
bands near of 200 nm. The UV exposure leads to the appearance of a new band
at 215 nm, whose absorbance intensity increases exponentially with irradiation
time, as plotted in Fig. 3. This behavior can be due to the UV light inducing
the formation of reactive oxygen species and damage the phosphate heads of
phospholipid, resulting in a great number of oxygens which have a high affinity
to carbon in the tails of phospholipids forming new ether bonds, which strongly
absorb at 215 nm. Furthermore, the UV light can also promote the breakage of
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Fig. 1. (a) Absorbance spectra of EGCG aqueous solutions subjected to UV radiation
during different periods of time. In the inset is shown the molecular structure of EGCG.
(b) Evolution of absorbance at 206 and at 276 nm of EGCG aqueous solutions as a
function of the irradiation time. Solid lines are guidelines.

carbons tails, leading to the formation of acyclic conjugated dienes, as in the case
of unsaturated lipids, which also strongly absorb in the region of 215–233 nm.
The presence of this new band is consistent with lipid oxidation phenomenon
taking place. In presence of catechin molecules, the absorbance at 215 nm of the
DPPG+EGCG emulsion decrease with the irradiation time following the expo-
nential plot curve as also shown in plot of Fig. 3. In this figure it was also included
the plot of the absorbance at 215 nm for the irradiated EGCG aqueous solutions,
see Fig. 1, to better see the effect of radiation. It should be also referred that the
absorbance at 215 nm in the DPPG+EGCG emulsion spectra is due to EGCG
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Fig. 2. Absorbance spectra of (a) DPPG and (b) DPPG+EGCG emulsions subjected
to UV radiation during different periods of time. In the inset of (a) is shown the
molecular structure of DPPG phospholipid.
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Fig. 3. Evolution of absorbance at 215 nm of EGCG aqueous solutions and of DPPG
and DPPG+EGCG emulsions as a function of the irradiation time. Solid lines are
guidelines.

molecules and to the oxidation of lipids. For longer periods of irradiation, Fig. 3,
the absorbance values of DPPG+EGCG emulsions are smaller than the ones for
DPPG emulsion, indicating the protective role of EGCG molecules.

Although, the presence of EGCG molecules increase the absorbance in non-
irradiated emulsions, the absorbance of EGCG solution decreases with irradi-
ation time while the absorbance associated to lipids is seen to increase, see
Fig. 2. Thus it will be expected that, if the lipids with catechins are being dam-
aged in the same extent as in neat EGCG solution, the absorbances at 215 nm
should be higher than 0.3. However, the measured value is of 0.17, indicating
that part of the lipids were not been completely oxidized. As catechin molecules
have affinity to DPPG lipids, both can form hydrogen bonds, EGCG molecules
can be adsorbed on the outside and inside liposomes surfaces, suggesting that
some EGCG molecules might be in fact encapsulated into liposomes. Catechin
molecules adsorbed on the outer surface have a protective role in the liposomes.

3.3 Effect of Ultraviolet Radiation of EGCG on DMPC Liposomes

Taking into account the molecular structure of DMPC molecules, the number
of hydrogen bonds that DMPC molecules can do with EGCG molecules, should
be reduced when compared with the case of DPPG molecules. In order to bet-
ter understand what is happening when EGCG molecules are close to DMPC
liposomes in presence of UV radiation, DMPC and DMPC+EGCG emulsions



Effect of UV Radiation on DPPG and DMPC Liposomes 179

Fig. 4. Absorbance spectra of (a) DMPC and (b) DMPC+EGCG emulsions subjected
to UV radiation during different periods of time. In the inset of (a) is shown the
molecular structure of DMPC phospholipid.



180 F. Pires et al.

Fig. 5. Evolution of absorbance at 210 nm of EGCG aqueous solutions and of DMPC
and DMPC+EGCG emulsions as a function of the irradiation time. Solid lines are
guidelines.

Fig. 6. Evolution of absorbance at 276 nm of EGCG aqueous solutions and of
DMPC+EGCG and DPPG+EGCG emulsions as a function of the irradiation time.
Solid lines are guidelines.

were irradiated for different periods of times. The UV-visible absorbance spec-
tra of irradiated DMPC and DMPC+EGCG emulsions, respectively, are shown
in Figs. 4(a) and (b). As had been observed for DPPG, also the DMPC mole-
cules are being damaged when irradiated. In fact, the UV-visible spectra show
an increase of the absorbance intensity of the band at 210 nm and of the broad
band at 238 nm. Nonetheless, in presence of EGCG molecules the 238 nm broad
band does not appear at all, while the band at 210 nm is seen to increase in
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intensity as can be seen in Fig. 5, where absorbance at 210 nm is plotted as
a function of irradiation time. This indicates that DMPC molecules are being
oxidized. Also, the EGCG molecules are being damaged since the intensity of
EGCG peak at 276 nm decreases with the irradiation time. To better understand
the behavior of EGCG molecules close to lipids, the normalized absorbance at
276 nm associated with the EGCG band was plotted as a function of irradi-
ation time in Fig. 6. Results show that in the presence of DPPG, the 276 nm
absorbance band disappears at a lower rate than in the case of EGCG+DMPC,
suggesting that EGCG molecules are encapsulated by DPPG liposomes. On the
other hand, since the 276 nm band flatens rapidly and the DMPC 238 nm broad
band is not coming with the irradiation time, some chemical groups of EGCG
are likely to bound to DMPC liposomes. This result can be explained if some
chemical groups of EGCG are being bound to DMPC liposomes contributing for
the liposome membrane rigidification. This phenomenon was already reported
[22]. More recently, Phan et al. demonstrated that flavonoids as EGCG caused
lipid membrane aggregation and rigidification. Due to the presence of gallate,
galloyl and hydroxyl groups, flavonoids were able to form hydrogen bonds with
head group of membrane phospholipids. It was demonstrated that they mainly
affect the hydrophilic region of lipid bilayers, mediated phospholipid aggregation,
thus causing a decrease in membrane area and rendering a membrane more rigid
[23]. These authors proposed that the chroman group is able to stay between
lipid headgroups while the gallic acid groups are left out of liposome. In fact,
such arrangement can explain the present experimental results. If the chroman
groups are displaced between the lipid headgroups they can be protected from
radiation, while the gallic acid are exposed to radiation and can be damaged.

4 Conclusion

The influence of UV radiation on DPPG and DMPC liposomes is strongly depen-
dent on the presence of EGCG molecules. It was demonstrated that DPPG lipo-
somes are being protected from radiation in presence of EGCG, while EGCG
molecules are being damaged, supporting the idea that EGCG are strongly
adsorbed at the inner and outer liposome surfaces through hydrogen bonding.
The EGCG molecules bound at the inner liposomes surface can be protected
from radiation. In the case of DMPC liposomes, although hydrogen bonds or
hydrophobic interactions are taking place between DMPC and EGCG mole-
cules, both EGCG as well DMPC molecules are affected by radiation. This is
possible if the EGCG chroman group is positioned between DMPC lipids, while
the gallic acid groups float over the liposomes. Therefore, liposomes can be suit-
able delivery systems to overcome the instability of EGCG, if one chooses the
adequate lipid.
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Abstract. The present article addresses the problem of inference in a
multiscale computational model of pulmonary arterial and venous blood
circulation. The model is a computationally expensive simulator which,
given specific parameter values, solves a system of nonlinear partial dif-
ferential equations and returns predicted pressure and flow values at
different locations in the arterial and venous blood vessels. The stan-
dard approach in parameter calibration for computer code is to emulate
the simulator using a Gaussian Process prior. In the present work, we
take a different approach and emulate the objective function itself, i.e.
the residual sum of squares between the simulations and the observed
data. The Efficient Global Optimization (EGO) algorithm [2] is used to
minimize the residual sum of squares. A generalization of the EGO algo-
rithm that can handle hidden constraints is described. We demonstrate
that this modified emulator achieves a reduction in the computational
costs of inference by two orders of magnitude.

Keywords: Statistical inference · Gaussian processes · Emulation ·
Simulator · Global optimization · Efficient global optimization · Hidden
constraints · Nonlinear differential equations · Pulmonary blood
circulation · Pulmonary hypertension

1 Introduction

Patients suffering from chronic pulmonary arterial hypertension (high blood
pressure), which is a disease of the small pulmonary arteries, suffer from reduced
pulmonary function and right ventricle hypertrophy leading to right heart failure
(Rosenkranz and Preston [10]). For diagnosis and ongoing treatment and assess-
ment, clinicians measure blood flow and pressure within the pulmonary arteries.
The pressure measurements require right heart catheterization which is invasive,
c© Springer International Publishing AG 2017
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and thus unpleasant for patients and carries risk. Therefore, data about healthy
patients are not available due to ethical reasons. The present work uses a partial
differential equations (PDEs) model of the pressure and flow wave propagation
in the pulmonary circulation under normal physiological and pathological condi-
tions. This model is an extension of previous studies, which considered only the
arterial system or part of the venous system [6,8]. The PDEs depend on various
physiological parameters, related e.g. to blood vessel geometry, vessel stiffness
and fluid dynamics. These parameters can typically not be measured in vivo and
hence need to be inferred indirectly from the observed blood flow and pressure
distributions. In principle, this is straightforward. Under the assumption of a
suitable noise model, the solutions of the PDEs define the likelihood of the data,
and the parameters can then be inferred in a maximum likelihood sense. How-
ever, a closed-form solution of the maximum likelihood equations is not available,
which calls for an iterative optimization procedure. Since a closed-form solution
of the PDEs is not available either, each optimization step requires a numerical
solution of the PDEs. This is computationally expensive, especially given that
the likelihood function is typically multi-modal, and the optimization problem
is NP-hard. In the present work, our goal is to reduce the computational costs
of inference with the concept of emulation. This is to be distinguished from the
explicit numerical solution of the PDEs, which we henceforth refer to as sim-
ulation (or simulator when referring to a specific solution). The parameters of
the PDEs to be estimated will give clinicians insights into the patient specific
vessel structure that would not be obtainable in vivo such as vessel stiffnesses,
a primary indication of hypertension.

2 Model

In our model of the pulmonary circulation, seven large arteries and four large
veins are modelled explicitly, while the smaller vessels are represented by struc-
tured trees (Fig. 1). A magnetic resonance imaging (MRI) based measurement
of the right ventricular output provides the inlet flow for the system.

The large arteries and veins are modelled as tapered elastic tubes, and the
geometries are based on measurements of proximal and distal radii and ves-
sel lengths [8]. The cross-sectional area averaged blood flow and pressure are
predicted from a non-linear model based on the incompressible Navier–Stokes
equations for a Newtonian fluid [6].

The small arteries and veins are modelled as structured trees at each end
of the terminal large arteries and veins to mimic the dynamics in the vascular
beds [8]. With a given parent vessel radius rp, the daughter vessels are scaled
linearly with radii rd1 = αrp and rd2 = βrp, where α and β are the scaling
factors. The vessels bifurcate until the radius of each terminal vessel is smaller
than a given minimum rmin. The radius relation at bifurcations is

rξ
p = rξ

d1
+ rξ

d2
, 2.33 ≤ ξ ≤ 3.0, (1)

where the exponent ξ = 2.33 corresponds to laminar flow, ξ = 3.0 corresponds
to turbulent flow [6], p represents the parent vessel, and d1 and d2 represent the
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Fig. 1. Schematic of the pulmonary circulation consisting of large arteries, arterioles,
venules and large veins from [8]. Seven large arteries are considered in this model, i.e.
the main pulmonary artery (MPA), the left (LPA) and right (RPA) pulmonary arteries,
the left interlobular artery (LIA), the left trunk artery (LTA), the right interlobular
artery (RIA), and the right trunk artery (RTA). The four terminal arteries LIA, LTA,
RIA, and RTA are connected to four large veins, i.e. the left inferior vein (LIV), left
superior vein (LSV), right inferior vein (RIV), and right superior vein (RSV), via
structured trees of resistance vessels.

daughter vessels. Given the area ratio η = (r2d1
+ r2d2

)/r2p and the asymmetry
ratio γ = (rd2/rd1)

2, the scaling factors α and β satisfy α = (1 + γξ/2)−1/ξ and
β = α

√
γ. The parameters, ξ, γ, rmin and a given root radius r0, determine

the size and density of the structured tree. The cross-sectional area averaged
blood flow and pressure in these small arteries and veins are computed from the
linearized incompressible axisymmetric Navier–Stokes equations [8].

The system of nonlinear partial differential equations is given by Qureshi
et al. [8], and its numerical solution, which depends on various physiological
parameters, will henceforth be referred to as the simulator.

Particular interest lies in the estimation of the parameter ξ, because low
values are indicative of the clinically relevant problem of vascular rarefaction1,
as in pulmonary hypertension. Its estimation is performed in the range 2.33 ≤
ξ ≤ 3, keeping the other parameters of the model fixed to biologically relevant
values from the literature [8], and by using pressure and flow measurements from
the large vessels’ midpoint location to resemble clinical data, corrupted by noise
with a signal-to-noise ratio (SNR) of 10 db. Other relevant parameters of interest
for clinical diagnosis are the stiffness parameters in the large and small vessels,
fL and fS respectively. These correspond to Eh/r0 in Eq. (4) of Qureshi et al. [8],
where E denotes Young’s modulus, h the vessel wall thickness and r0 the vessel
radius for a given pressure.

1 Vascular rarefaction is an old finding in patients with hypertension, and represents
the condition of having fewer blood vessels per tissue volume.
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Computational inference of the biophysical parameters entails repeated for-
ward simulations for different parameter configurations. In this model a forward
simulation takes around 23 s of CPU time. Each simulation’s output is a 22-
dimensional vector containing 7 large arteries +4 large veins pressure and flow
measurements in the midpoint location of each large vessel. Given the multi-
modality of the objective function, a standard global optimization algorithm
requires a large number of forward simulations, which comes at substantial com-
putational costs even for the inference of just a single parameter. In the following
section, we discuss a faster method based on the concepts of statistical emulation
and Bayesian optimization, which aim to optimize an expensive function with
the smallest number of function evaluations possible.

3 Method

To perform efficient optimization of a computationally expensive objective func-
tion y(·), we let a statistical emulator guide the optimization process. The emu-
lator f(·) of y(·) is based on a Gaussian Process (GP) prior with Matérn 5/2
kernel function2 kψ, as in Snoek et al. [12], depending on hyperparameters ψ
inferred in a maximum likelihood sense. In ψ we allow for a different length-
scale in each dimension. The Matérn class leads to twicely differentiable sam-
pled paths, which is the same assumption required for example by Quasi-Newton
methods like BFGS or LBFGS. Using what has nowadays become the standard
covariance function choice in applied statistics, namely the Squared Exponential
kernel, would lead to infinitely-differentiable functions, which turns out to be a
very unrealistic assumption in many scenarios like time series analysis or more
generic engineering and financial applications.

Unlike standard emulation, that models the simulator’s output, we aim to
directly emulate the objective function y(·) : X → R, where X ⊂ R

d is the
biophysical parameter space. We use the following hierarchical Bayesian non-
parametric regression model:

y | f , σ2 ∼ N(f , σ2I) (2)
f(x) | m, k ∼ GP(m(x), k(x,x′)) (3)

where x,x′ ∈ X, y = [y(x1), . . . , y(xn)]T , f = [f(x1), . . . , f(xn)]T and we assume
throughout the analysis that m(x) = c, ∀x ∈ X, with c constant to be estimated
from the data. This corresponds to the standard literature approach of applying
a zero-mean GP to zero-centred data. Given that we are working with black-box
functions, which often cannot be visualized because of the high dimensionality
or the significant computational complexity, this is a reasonable assumption. If
additional knowledge about the functional behaviour for arguments x far outside
the training domain, |x| 	 0, is available, this can be incorporated into the mean,
m(x). However, given that we are operating on a compact rather than open
argument set, this is not an issue in this work. The model’s hyperparameters are
2 See Eq. (4.14) in Rasmussen and Williams [9] Sect. 4.2.
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estimated, as customary in literature, by maximizing the marginal log likelihood
of the model. The presence of extreme outliers can be dealt with by using a long-
tailed distribution for the observational noise in (2), like a t-distribution. The
Student-t likelihood model is included in standard GP software implementations
such as GPstuff [15].

The starting point of the optimization should be a good initial picture of the
objective function, which is obtained by conditioning the GP on the objective
evaluated at a set of design points in the input (i.e. parameter) space. In the
present work, we follow Jones et al. [2] and use a space filling Latin Hypercube
(LH) design, with the number of initial input points set to n = 10 × d.

To minimize the evaluation-costly objective function we use a sequen-
tial strategy proposed in [2], called Efficient Global Optimization (EGO),
which selects iteratively the point with the highest expected improvement over
the incumbent minimum. Let the random variable improvement be I(x) =
max{ymin − f(x), 0}, where

• f(x) ∼ N(m(x), s2(x)) is the marginal GP at the point of interest x;
• ymin = y(xmin) is the best function value known so far;
• I(x) > 0 if x has a lower function value than the incumbent solution;
• I(x) = 0 otherwise.

The expected improvement (EI) acquisition function (Jones et al. [2]) is the
expected value of the random variable I(x) and has the closed-form expression:

EI(x) = (ymin−m(x))Φ
(

ymin − m(x)
s(x)

; 0, 1
)

+s(x)φ
(

ymin − m(x)
s(x)

; 0, 1
)

, (4)

where Φ(x;μ, σ2) and φ(x;μ, σ2) denote the cumulative distribution function
(cdf) and probability density function (pdf) of a N(μ, σ2) random variable eval-
uated at x, respectively. The EI balances exploitation (using the predicted objec-
tive by the emulator) and exploration (improving the emulator where it pre-
dicts high uncertainty). This is easily seen by the fact that the contribution of
(ymin − m(x)) to (4) is higher when the prediction is smaller than the observed
minimum. At the same time s(x) will increase the acquisition value when the GP
uncertainty is high at x. The problem of directly optimizing the objective func-
tion y(·) derived from the computationally expensive simulator, is now shifted
to the maximization of the computationally cheaper EI acquisition function or,
equivalently, the minimization of − log EI(x). Even if this function can be highly
multi-modal, it can be efficiently optimized using multiple restarts or standard
state-of-the-art global optimization solvers, like the Dividing Rectangles algo-
rithm [7], as the computational costs for obtaining EI are negligible to those
required for computing y(x). Once the minimum x� of − log EI(x) has been
found, we compute the expensive objective function at the next best candidate
x� and obtain the output y� = y(x�). The new point (x�, y�) is then added
to the training dataset D = {X, y} ∪ {x�, y�} and a new iteration starts by
re-fitting the GP on the augmented data D. The process continues iteratively
until convergence or until the maximum budget of function evaluations has been
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exceeded. The point (xi, yi) ∈ D having minimum observed objective yi = y(xi)
is the returned EGO minimizer of y(·).

4 Illustration

We now illustrate the EGO algorithm on the ‘Sasena’ function [11], shown in
Fig. 2(a), where at each iteration we sample the objective at the input that
minimizes − log EI:

y(x) = 2 + 0.01(x2 − x2
1)

2 + (1 − x1)2 + 2(2 − x2)2 + 7 sin(0.5x1) sin(0.7x1x2)
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5. (5)

Fig. 2. EGO algorithm with Matérn ν = 5/2 kernel. (a) Sasena function (5), scaled to
[0, 1]2, to be minimized. (b) EGO 1st iteration and training inputs (white dots). (c) 5th

iteration. (d) 25th and last iteration. The red and white diamond represents the next
evaluation point, i.e. the minimizer of − log EI. (Color figure online)
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During the first iteration the function is evaluated at the n = 10× 2 LH
design points, white dots in Fig. 2(b,c,d), and training data D = {xi, yi}n

i=1 are
thus obtained. The GP is trained on the data. We can see that at the begin-
ning, with this particular initial design and chosen number of design points, we
already have a fairly good picture of the objective function. Then iteratively
the acquisition function is optimized (the diamond represents the optimum), the
new sampled point is added to the dataset and the GP is trained again. From
the plotted optimizer of the acquisition function, we see that the EI function can
be increased when the predicted mean is smaller than the incumbent minimum,
Fig. 2(b) and (d), or when the variance is increased, Fig. 2(c).

5 EGO with Hidden Constraints

The starting point of the EGO algorithm is a LH design, covering a required
domain for the inputs that we are trying to optimize over. In practice, when
dealing with computational modelling, complex combinations of the inputs can
cause numerical instabilities and failure in obtaining a requested function value.
The PDEs simulator of the pulmonary circulation includes hidden constraints,
i.e. unknown regions of the domain (parameter space) where a requested sim-
ulation is not available because the assumptions of the physiological model do
not hold. The EGO algorithm in [2] is not able to handle the hidden constraints
scenario, hence an extension of it was required for the presented application.

5.1 Assigning a High RSS Score

In this study, the objective to be minimized will be a residual sum of squares
(RSS) function. In principle, one could assign an arbitrary high RSS score to
any failed simulation, to indicate an area of low likelihood value. We can how-
ever show that handling hidden constraints using this naive method inherently
misspecifies the GP surrogate3 of the RSS objective. Unrealistic and biased esti-
mates of the parameters would be produced, as well as completely divergent
traces of the minimum observed objective, min{y1, . . . , yn}, and the minimum
predicted objective among the training inputs,

min{m(x1), . . . ,m(xn)}, with m(x) = Ef(x). (6)

Both pathologies are direct consequence of a non-representative metamodel and
are illustrated in Fig. 3. The flattened area of the GP in panel (a) and the
divergent minimum traces in panel (d) are due to the high-frequency oscillations
induced by the high RSS values, leading to the kernel length-scale being driven
towards very small values. This produces a surrogate model, used to inform the
optimization sequence, which is not a good representation of the true RSS. It
also leads to estimates from the true RSS and the surrogate that are completely
contradictory. Compare panel (d) to the traces in Fig. 5(f), obtained from a good
model of the objective.
3 In this context, surrogate or metamodel are synonyms for GP posterior mean, and

were generated by the engineering community.
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(c) (d)

(a) (b)

ξ fL ξ fL

Emulated RSS vs. fL and ξ Expected Improvement vs. fL and ξ

Fig. 3. Handling hidden constraints by assigning a high RSS value and using the EGO
algorithm. (a) Surrogate of the RSS objective and training points (dots). (b) EI acqui-
sition function and its maximum (black dot). (c) Total elapsed time trace (diamonds)
decomposed as objective evaluation time (squares) plus objective modelling and acqui-
sition maximization time (dots). (d) Traces of the minimum observed RSS (diamonds)
and estimated RSS minimum among the visited points (dots), see Eq. (6).

5.2 Constraint Weighted Acquisition Functions

Hidden constraints are common in mathematical modelling, engineering and
life sciences applications that include equipment, time, money constraints or
partial knowledge of a system. In the latter scenario, failure to obtain a requested
output due to a model breakdown is a symptom of incomplete knowledge of
the real-world system that we are trying to model. In order to generalize the
EGO algorithm to account for hidden constraints, we keep track of where the
requested outputs are not available. We define an auxiliary variable h(x) equal
to +1 in case of a failed simulation at x and −1 otherwise. The next step is
to build a model of failure in obtaining a requested function value. The natural
approach would be to use a GP classifier with a probit or logit link function.
However, we recall that the strength of the EGO algorithm lies in shifting the
optimization of an expensive-to-evaluate objective to the optimization of a cheap
acquisition function like the EI. In these settings, where the aim is to minimize a
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computationally expensive function with a small budget of function evaluations,
the runtime is crucial. It is important to not exceed the function’s evaluation
time by the modelling time. Applying the EGO algorithm to a scenario where
the objective is faster, or has a runtime equal to the modelling time, would be
a fundamental error as we would be spending more time in modelling it rather
than evaluating it. For the GP classification with logit or probit link function, the
class posterior probability is analytically intractable. Hence, iterative methods
like Expectation Propagation (EP) or Laplace approximation (LA) have been
proposed. To avoid significantly increasing the modelling and point selection
time over the objective evaluation time, we use a simple GP regression on the
h(x) ∈ {+1,−1} simulation error labels. This approach is called label regression
(LR) [5] and purposely ignores the discrete nature of the binary variable in
favour of an exact inference and a quicker runtime. The findings by Kuss [3]
also show that LR works surprisingly well in practice, with a lower error rate
compared to EP and Laplace approximation, especially in higher-dimensional
settings. Nickisch and Rasmussen [5] recommend using LR when runtime is the
major bottleneck.

Gelbart et al. [1] propose a constraint weighted EI acquisition function in
order to perform EGO in the case of real-valued unknown constraints. They
also briefly suggest iterative approximations or sampling methods when the con-
straints observations can not be modelled with a Gaussian likelihood.

The variable h(x) is binary and not real-valued. Given the above discussion,
it was modelled using label regression. We can then use the GP trained on
failure labels Dh = {xi, hi} to obtain a hidden-constraints-weighted acquisition
function.

Given the simulation failure GP regression model with marginals fh(x) ∼
N(mh(x), s2h(x)), we can calculate the probability of a successful simulation in
any region of the domain as follows:

P (h(x) = −1) = P (y(x) successful) = Φ(0;mh(x), s2h(x)), (7)

where mh(x), s2h(x) are the predictive mean and variance of the failure GP model
fh at the test location x ∈ X. As errors are labelled as +1 and successful evalua-
tions as −1, by taking the probability of the GP being less than 0 we obtain an
indication of the probability of a successful simulation. The use of the Normal
cdf follows from the property of Gaussian processes that every finite dimensional
distribution is a multivariate Gaussian. Similarly to Gelbart [1], given the proba-
bility of a successful simulation, it is possible to obtain a corrected version of any
acquisition function a(x) that avoids infeasible regions by weighting a(x) with
the probability that the input will lead to a successful simulation. The hidden-
constraints-weighted (HCW) acquisition function is then given by the following
formula:

aHCW(x) = a(x) × P (h(x) = −1) = a(x) × Φ(0;mh(x), s2h(x)). (8)

It is then optimized as described in Sect. 3 and the optimum x� is chosen as the
next evaluation point. The algorithm continues by evaluating y(x�) at the best
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*

Observations
GP mean
GP conf. interval
Incumbent minimum
Next evaluation point

ξ ξ ξ

ξ

Emulated RSS vs. ξ Expected Improvement vs. ξ

Fig. 4. Inference of the exponent ξ using the HCW-EGO algorithm. (a) Surrogate
RSS function. (b) EIHCW acquisition function and its maximizer (dot). (c) GP model
of objective evaluation failure. (d) Probability of a successful run of the simulator.
(e) Cumulative elapsed time (diamonds) decomposed as simulation time (squares) plus
objective modelling time and acquisition maximization time (dots). (f) Traces of the
minimum observed RSS (diamonds) and estimated RSS minimum among the visited
points (dots), i.e. the minimum emulated objective, among those points at which the
objective function was evaluated, see Eq. (6).

candidate x� and by keeping track of the success or failure in the simulation in
h(x�). The modified EGO algorithm iteratively maintains both a GP surrogate
f(·) of the objective y and a GP regression model fh(·) of the error labels h. We
will call this algorithm the HCW-EGO algorithm and it consists in maintaining
two GPs at each iteration: one for the objective emulation, and one for the
error labels regression. These two models are iteratively required to evaluate the
hidden-constraints-weighted acquisition function. In particular, the acquisition
function chosen in this study is the hidden-constraints-weighted EI:

EIHCW(x) = EI(x) × P (h(x) = −1) = EI(x) × Φ(0;mh(x), s2h(x)). (9)

6 Simulations

In order to assess the proposed inference scheme for the pulmonary circulation
model, we simulated pressure and flow data y0 ∈ R

d=22 from the PDE model
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(c)
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(b)

(e) (f)

Emulated RSS vs. fL and ξ
(a)

Expected Improvement vs. fL and ξ

ξ fL
ξ fL ξ fL

fLξ

Fig. 5. Inference of the large vessels stiffness fL and exponent ξ using the HCW-EGO
algorithm. (a) Surrogate RSS function. (b) EIHCW acquisition function and its maxi-
mizer (dot). (c) GP model of objective evaluation failure. (d) Probability of a successful
run of the simulator. (e) Cumulative elapsed time (diamonds) decomposed as simula-
tion time (squares) plus objective modelling time and acquisition maximization time
(dots). (f) Traces of the minimum observed RSS (diamonds) and minimum predicted
objective among the training inputs (dots), see Eq. (6).

for a given parameter vector x0 assumed to be the underlying truth, and then
added noise with a SNR of 10 db. The observations vector includes pressure
and flow measurements from the 11 large vessels’ midpoint locations, in order
to resemble the data which clinicians would provide. Now, pretending that the
true parameter x0 is unknown, interest lies in its estimation from the noisy
observations y0.

We created a space filling LH design of n = 10 × d points for x ∈ [xL,xU ] ⊂
R

d, and ran a forward simulation for each of the design points, obtaining a
set of simulations {xi,yi}n

i=1 and the corresponding success/failure labels h =
[h1, . . . , hn]T .

The chosen objective function is the residual sum of squares (RSS) between
the simulations and observations:

rssi = ‖yi − y0‖2, (10)

and we fitted simultaneously two GPs. The first is the RSS surrogate and is
conditioned on the training data D = {X, rss}, where rss = [rss1, . . . , rssn]T ,
while the second one is the error GP model, trained on the inputs and error
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labels recorded during simulation time Dh = {X,h}. We then applied the mod-
ified EGO algorithm using the hidden-constraints-weighted EI acquisition func-
tion (9), with input xi containing the PDE parameters and output yi = rssi.

The first experiment is a one-dimensional inference problem. We tried to esti-
mate ξ ∈ [2.33, 3], with underlying truth being 2.76, using a budget of 30 function
evaluations only. Results for one run of the algorithm, i.e. for a particular design
instantiation, are shown in Fig. 4. Next, we focused on a two-dimensional prob-
lem, trying to estimate x = (fL, ξ) simultaneously, with fL ∈ [1.33 × 105, 5.33 ×
105]. In this scenario the underlying truth was x0 = (2.6 × 105, 2.76), and we
allowed for a budget of 60 function evaluations. Two-dimensional results for a
given LH design are shown in Fig. 5. We then inferred all three parameters of clin-
ical interest simultaneously, x = (fL, fS, ξ), with fS ∈ [2.66× 104, 1.066× 105].
The underlying truth was x0 = (2.6 × 105, 5 × 104, 2.76), and we allowed for a
budget of 60 function evaluations. The three-dimensional inference results for
one particular run of the algorithm are shown in Fig. 6.

(a) (b)

Fig. 6. Inference of the large vessels stiffness fL, small vessels stiffness fS and exponent
ξ using the HCW-EGO algorithm. (a) Cumulative elapsed time (diamonds) decom-
posed as simulation time (squares) plus objective modelling time and acquisition max-
imization time (dots). (b) Trace of the minimum observed RSS (diamonds) and mini-
mum predicted RSS among training inputs (dots), Eq. (6).

7 Results

Figure 7 reports a summary of the results4 of the inference study, calculated over
five independent design instantiations having different random number generator
seeds. The first column shows the problem dimensionality, while the second
column shows the parameters that have been inferred simultaneously. The 3rd

4 The presented results were obtained on a CentOS 7 machine using MATLABR©. Our
code used to perform inference depends on the GPML toolbox by Rasmussen [9] and
the standard MATLABR© Statistics Toolbox.
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column contains the underlying truth for the parameters. In the fourth column
we find the average of the parameters estimated by iterative minimization of the
RSS using the EGO algorithm, and their standard deviations over the five runs.
Assuming that the final surrogate of the objective is a good model of it, we can
in principle improve in the EGO estimated minimum by taking the point that
minimizes the surrogate model’s posterior mean. These estimates are shown in
the fifth column, where the mean and the standard deviation are taken over the
five runs for different LH designs. We claim that checking consistency of the
4th and 5th column in each experiment run is a good convergence diagnostics as
well as an important measure of the agreement between the surrogate objective
model and the true objective. The final column reports the total number of RSS
evaluations allowed, i.e. the a priori budget of function evaluations and time
allocated to the numerical experiment.

Dim

d

Parameters

x

Truth

x0

EGO results Iterations 
budget

Minimum of RSS surrogate 

Mean St. Dev. Mean St. Dev.

1 ξ 2.76 2.7601 0.0001 2.7601 0.0004 30

2
fL
ξ

2.6 × 105

2.76

2.5989 × 105

2.76

0.0022 × 105

< 0.0001

2.5981 × 105

2.7604

0.0035 × 105

< 0.0001
60

3

fL
fS
ξ

2.6 × 105

5 × 104

2.76

2.6178 × 105

49737

2.7597

0.0212 × 105

175

0.0036

2.6101 × 105

50018

2.7599

0.0091 × 105

67

0.0013

60

Fig. 7. Inference results for the pulmonary circulation model. Averages and standard
deviations over five design instantiations with different random number generator seeds.

For the 1D inference problem we find a consistently good estimate by both
the observed RSS and the minimum surrogate point, with a very high confidence
in the inferred value. Figure 4(a) shows how, by handling the errors correctly, the
RSS function has a quadratic-like shape. Panel (b) shows the EIHCW acquisition
function. Panel (c) shows the simulation failure GP model that we use to derive
the probability of a successful simulation in (d) according to Eq. (7) introduced
above. Panel (e) shows the decomposition of the cumulative elapsed time as
objective evaluation time plus objective modelling and point selection time. We
see that the algorithm is spending more time in evaluating the objective than
emulating it and selecting the next best input, so we are gaining computational
time by minimizing the number of function evaluations. Panel (f) shows the
observed incumbent minimum trace vs the minimum predicted objective among
the training inputs, Eq. (6). We see a fast convergence in less than 20 function
evaluations, where the value is not changing for the next iterations, but just
improving the last decimals. Similar considerations can be done for Figs. 5 and 6.
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8 Conclusion

Our aim was to perform inference in a computationally expensive and novel
model of the combined arterial and venous pulmonary blood circulation. The
parameters of interest are fL, fS and ξ. The exponent ξ governs the vessel parent-
to-daughter radius relation (1), with low values indicating vascular problems of
clinical interest. As ξ increases, the number of vessels in the structured tree will
also increase; similarly, as it decreases, the number of vessels will also decrease,
simulating the vascular rarefaction clinical condition. The stiffness parameters in
large, fL, and small vessels, fS, are also of particular interest because stiffening
of these vessels is a primary cause of pulmonary arterial hypertension which
leads to right heart failure.

In previous studies with state-of-the-art non-emulation-based global opti-
mization algorithms, like Genetic Algorithms or Scatter Search methods [14],
we found that the number of required function evaluations was in the order of
2 × 103 for 1D problems, and reached even 104 function evaluations for simple
2D or 3D scenarios. Given that the computational costs of a single forward sim-
ulation are about 23 s of CPU time, the total computational costs would be in
the order of 13 h for 1D inference tasks and could reach two and a half days
for 3D inferential problems. The results in Figs. 4, 5(f) and 6(b), show that the
proposed emulation-based approach achieves a substantial reduction in the num-
ber of forward simulations, effectively converging to a very good estimate of the
parameters in less than the allowed function evaluations budget (last column in
Fig. 7), while spending the remaining iterations refining the last decimals. In the
1D scenario we reached convergence in less than 11 min, while for the 2D and
3D scenario in about 23 min or less. This corresponds to a total reduction of the
computational complexity by two orders of magnitude.

In future work, we will extend the inference to all model parameters, using
informative priors to incorporate knowledge from the biophysical literature.
However, the purpose of the present proof-of-concept study is to keep the dimen-
sion of the parameter space low, so as to allow a visualization of the results
(see Figs. 4 and 5). We will also apply the proposed emulation scheme to the
Holzapfel–Ogden soft tissue mechanics model of the heart [16], where the com-
putational costs of a single forward simulation are in the order of an hour, and
the overall computational savings promise to be even more substantial.
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Abstract. Fundamental endeavour to understand microbiome and its
functions starts with detecting which microbes are present in the sam-
ples and continues with comparing different samples and finding similar
based on their community compositions. Pervasive method to accomplish
these steps is clustering. However clustering brings number of possibili-
ties regarding algorithms, parameters, distance/similarity metrics, etc.,
that produce different outcomes making it hard to interpret results. The
study presented here examines the stability of clusters in the context
of various beta diversity metrics applied on human microbiome samples.
We explored the effects of 24 different diversity metrics on clustering out-
comes and their impact on the accuracy of the clustering of microbiome
samples. To overcome obscure results coming from individual clusterings
that rely on distinct beta diversity metrics we employed two ensemble
approaches to integrate results of individual clusterings. Obtained results
on human microbiome data imply that ensemble clustering approaches
produce stable results in reconstructing clusters that correspond to the
different host and body habitat.

Keywords: Ensemble clustering · Metabarcoding · Microbial
communities · Diversity

1 Introduction

High-throughput experiments revolutionize microbial ecology by increasing the
speed of research and discoveries related to the diversity of microorganisms
and their roles in ecological processes [1]. Current studies investigate micro-
bial communities extracted directly from the environment and sequenced with
NGS technology. They aim at understanding microorganisms that exists in dif-
ferent environments: human (gut, skin, oral...), water, soil. The question: “Who
is there?” comes first in studying microbiome sample. Identifying which microbes
are present and quantifying their abundances provides insights into the diversity
of the examined sample. Currently prevailing technique in studying microbial
diversity is sequencing of marker genes 16S (prokaryotic) or 18S (eukaryotic)
rRNA, that are highly conserved between different species and thus suitable for
c© Springer International Publishing AG 2017
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phylogenetic taxonomy. Such approaches are denoted as DNA metabarcoding
[2] and characterized as economic way of taxonomic identification that enables
monitoring diversity and comparisons of taxonomic compositions among various
environmental samples.

Taxonomy relies on clustering analysis i.e. grouping similar species into clus-
ters. Groups of microbial species that show a certain level of similarity repre-
sent operational taxonomic units (OTUs). After identifying OTUs in a multiple
samples under the analysis, the next step includes between-sample comparisons
based on some distance measure, termed as beta diversity analysis and then
again applying clustering to identify communities among samples. But cluster-
ing brings numerous users’ dilemmas such as selecting algorithm, parameters,
similarity/distance metrics, thresholds, etc.

Although an importance of studying complex microbial communities in a nat-
ural environments is recognized, studies that address reliability of derived conclu-
sions are just recently increasingly appreciated. Inconsistent results may be impli-
cation of unstable OTUs obtained by de novo clustering [3], different diversity
measures [4] or as examined in the detection of enterotypes, results may be affected
by OTU taxonomic level, OTU-picking method, 16S rRNA variable region and
most substantially by distance metric and the clustering score method [5].

Ensemble clustering approaches hold potential for improving the robustness,
stability and accuracy of discovered clusters. In this light, microbial diversity
analysis may also benefit from an integration across multiple partitions. Ben-
efits of the integration across different clusterings algorithms and parameters
have been recently evidenced [6]. Here, in our study, integration scenario cov-
ers different beta diversity measures [7]. We used 24 beta diversity measures
to quantify pairwise differences among samples and then ran spectral cluster-
ing [8] on the similarity matrices obtained by transforming pairwise distances.
Finally, for the assessment of communities in microbiome samples we integrated
the results of individual clusterings and applied two ensemble approaches–one
recently proposed that utilizes non-negative matrix factorization - NMF [9] and
another well known consensus clustering - CONS [10].

2 Materials and Methods

2.1 Data

We used data from “Moving pictures of the human microbiome” study [11].
Data set encompasses approximately 69 million sequences obtained form NGS
(next-generation sequencing) experiment that included 1967 microbiome samples
extracted from oral, skin and gut sites on the human body of two individuals,
female and male, sampled over 396 time points. Differences in microbial com-
positions between body sites and individuals were relatively stable over time
what makes data set suitable for evaluating clustering algorithms. Data were
accessed through MG-RAST API [12] after quality filtering step. Overall size of
the set is ≈ 12 GB. Sample labels that indicate microbiome host and body site
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Table 1. Experimental data.

Gender Place Number of samples

Female Oral 135

Female Skin 268

Female Gut 131

Male Oral 373

Male Skin 724

Male Gut 336

were extracted from corresponding metadata. Number of samples across labels
defined by gender/body sites are presented in Table 1.

2.2 Methods

To perform microbial community analysis we used QIIME package [13] extended
with individual and ensemble clustering algorithms. QIIME package includes a
large number of tools for processing and analysing microbial sequence data.
Various pipelines can be performed starting from the raw sequence data to the
final diversity analysis and visualizations. The steps that were conducted in our
experiments include:

1. OTU picking
2. Making OTU biom table
3. Measuring beta diversity among samples
4. Spectral clustering
5. Ensemble clustering

Diversity studies can be reference-based, i.e. rely on sequence similarity
against reference database or reference-free where sequences are clustered based
on the similarities to one another. In the first approach clustering can be per-
formed largely in parallel, but only sequences that match a sequence in a ref-
erence database with high similarity are clustered while those below defined
threshold are discarded. In the reference-free clustering, refereed as de-novo, all
reads are clustered, but the process is not easily parallelized. Recently proposed
subsampled open-reference OTU picking method [14] provides trade-of between
these two. Here, we used reference-based approach to produce stable OTUs.
Sequences were clustered into OTUs by default taxonomy assigner - UCLUST
[15] with a sequence similarity threshold of 97% or 99% against Greengenes ref-
erence database [16]. Threshold of 97% is a commonly used rule of thumb to
define species, but also tighter threshold of 99% have been proposed. Therefore,
we explored both. Clustering algorithm, UCLUST is a greedy algorithm. Given
the query sequence, it searches database of reference sequences. If UCLUST finds
a sequence in the reference collection with similarity greater than or equal to
defined threshold, it creates OTU defined by the reference sequence and assigns



202 S. Brdar and V. Crnojević

query sequence to it, otherwise query sequence is discarded. The result of clus-
tering sequences is OTU table that summarizes taxonomy of samples in a form
of observations counts per-sample.

To quantify beta diversity, that is a diversity between samples, we explored
24 non-phylogenetic beta diversity measures: (1) abundance weighted Jaccard
distance, (2) binary Chi-square, (3) binary Chord, (4) binary Euclidean dis-
tance, (5) binary Hamming (6) binary Jaccard (7) binary Lennon (8) binary
Ochiai (9) binary Pearson, (10) binary Srensen-Dice (11) Bray-Curtis (12) Can-
berra, (13) Chi-square, (14) Chord, (15) Euclidean, (16) Gower, (17) Hellinger,
(18) Kulczynski, (19) Manhattan distance, (20) Morisita-Horn, (21) Pearson,
(22) Soergel, (23) Spearman rank and (24) Species profile distance.

Previously described steps form QIIME workflow were extended with two
additional: one that runs spectral clustering and the other that integrates clus-
tering results and creates final clusters. Spectral clustering was selected due to its
property that can work directly with pair-wise distances/similarities. Pairwise
differences among samples were transformed into similarities by using element-
wise transformation: S = e−D/(2µ2), where D is a pair-wise beta diversity matrix,
µ is mean value of that matrix, and S is the final similarity matrix. Spectral clus-
tering then uses S as input.

The results of individual clustering on different pairwise distance matrices are
combined to perform ensemble clustering. In NMF approach ensemble is repre-
sented as matrix of cluster memberships R = {0, 1}m×n, where one dimension
represents clusters (m is the total number of clusters produced by individual
clusterings) and the other samples (n is the total number of examined samples).
NMF finds an approximation R ≈ WH, where W and H are two non-negative
factors such that W ∈ R

m×k and H ∈ R
k×n. Parameter k is a factorization rank

and equals to the target number of clusters. In the resulting factorization the
matrix W contains encoding coefficients while rows of H are the basis vectors
that can be interpreted as continuous memberships to target clusters discovered
by factorization. Other approach, consensus clustering, integrates cluster mem-
berships into a consensus matrix R

n×n, where indices correspond to samples. In
a pairwise manner, matrix sums number of times each two samples were clus-
tered together and divides it by number of times they were both present in the
clustering. Final values range between 0 and 1. Consensus matrix can be viewed
as a similarity matrix and post-processed through additional clustering methods
to obtain final clusters. Here we used agglomerative hierarchical clustering on
consensus matrix to produce final clusters.

3 Results

3.1 Individual and Ensemble Clustering Evaluation

To evaluate effectiveness of the clusterings on microbiome samples we employed
V-measure, that is a harmonic mean between homogeneity and completeness [17],
and adjusted rand index [18], two commonly used measures for evaluating clusters
against true labels [19]. Here we measured how clustering results align with 6 labels
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corresponding to different gender/body sites (see Table 1). Examined microbiome
samples belong to a time series study. Although temporal variation exists, stable
patterns among body habitats and individuals emerge, thus making the data suit-
able for benchmarking of clustering algorithms. We evaluate all individual cluster-
ings obtained with spectral clustering algorithm on different beta diversity matri-
ces and two ensemble approaches. The results for performed experiments, where
similarity cut-off was set to 97%, are summarized in Figs. 1 and 2.

Fig. 1. V-measure between cluster labels and true labels. Baseline results - spectral
clustering applied on different pairwise diversity matrices - are represented with blue
bars, while red bars correspond to integrative approaches. Prior to clustering samples,
cut-off threshold in OTU-picking was set to 97%. Vertical blue dashed line denotes
average V-measure of the ensemble’s ingredients and red indicates better ensemble
approach. (Color figure online)

Results of spectral clusterings on different beta diversity measures and inte-
grative clusterings by NMF and CONS are presented with horizontal bars. Ver-
tical blue dashed line denotes average performance of assembling partitions, and
red dashed line highlights the score of better ensemble approach. Figures unveil
that ensemble clusterings outperform an average performance of individual clus-
terings, NMF reached better result than CONS, and it was slightly below the
best individual clustering score in the ensemble. We can observe variability of
the obtained results elicited by chosen distance measure. If we compare results
by the used evaluation measures, adjusted rand index or V-measure, the results
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Fig. 2. Adjusted rand index between cluster labels and true labels. Baseline results
- spectral clustering applied on different pairwise diversity matrices - are represented
with blue bars, while red bars correspond to integrative approaches. Prior to clustering
samples, cut-off threshold in OTU-picking was set to 97%. Vertical blue dashed line
denotes average adjusted rand index of the ensemble’s ingredients and red indicates
better ensemble approach. (Color figure online)

differ to some extent only in the rankings of individual clustering results, but
general conclusions are the same. NMF, as well as CONS, ensemble approaches
provided result that overcomes dependencies on underlying diversity measures.
This results is confirmed by both evaluation measures.

Similar results were obtained on different sequence similarity cut-off of 99%
(Figs. 3 and 4). NMF and CONS, outperformed average score of individual clus-
tering that entered ensemble. Scores among individual clusterings changed, as
well as their rankings. The best score came from other diversity measure, while
ensemble clusterings remained stable.

Although results of spectral clustering with some beta diversity measures
slightly surpass ensemble approaches, difficulty arise from the selection of appro-
priate measure for particular data set and other analysis settings. The best
V-measure score among individual clusterings in experiments with cut-off of
97%, was produced on beta diversity matrix measured by binary Chi-square
(Fig. 1) and on 99% cut-off (Fig. 3) the best score comes from Kulczynski mea-
sure. For adjusted rand index score, the best result among individual clusterings
for 97% cut-of was obtained with binary Chi-square and for 99% cut-off with
Chi-square. Related to Chi-square measure, we can observe how small change
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Fig. 3. V-measure between cluster labels and true labels. Baseline results - spectral
clustering applied on different pairwise diversity matrices - are represented with blue
bars, while red bars correspond to integrative approaches. Prior to clustering samples,
cut-off threshold in OTU-picking was set to 99%. Vertical blue dashed line denotes
average V-measure of the ensemble’s ingredients and red indicates better ensemble
approach. (Color figure online)

in cut-off threshold highly impacts outcome from the best to below average of
the ensemble. Interestingly, Gower and Canberra distances, recommended as the
well performing for detecting clusters [4], here produced divergent results. While
Canberra distance was among better metrics, but still below NMF ensemble,
Gower distance failed to detect clusters that align with labels of human micro-
biome data set.

3.2 Stability Analysis

To further examine stability of results, we performed random selection of 1000
out of 1967 samples. This subsampling and overall process of OTU-picking,
forming OTU tables, calculating beta diversities, clustering and assembling was
repeated 50 times. The results are summarized by box plots (Fig. 5), one for
each of the approaches - spectral clustering combined with different diversity
measures, NMF and CONS ensemble clustering. We can observe high variability
of individual clusterings and improved stability of the ensemble clusterings. Run-
ning experiments on subsamples allowed us to measure statistical significance.
ANOVA tests indicate that significant difference exists among different methods
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Fig. 4. Adjusted rand index between cluster labels and true labels. Baseline
results - spectral clustering applied on different pairwise diversity matrices - are rep-
resented with blue bars, while red bars correspond to integrative approaches. Prior
to clustering samples, cut-off threshold in OTU-picking was set to 99%. Vertical blue
dashed line denotes average adjusted rand index of the ensemble’s ingredients and red
indicates better ensemble approach. (Color figure online)

Fig. 5. Adjusted rand index and V-measure scores on 50 random subsampling
experiments.
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(p < 10−13 and p < 10−12 for V-measure and adjusted rand index, respectively).
Post-hoc Tukey test with 99% confidence reveals that both, NMF and CONS,
significantly outperform results of individual clusterings, while difference in mean
performances of the ensemble approaches are not significant.

4 Conclusion

The study presented here underscores the sensitivity of clustering results on
chosen beta diversity measure that further leads to the uncertainties in the
results interpretation. To avoid risk of choosing the less appropriate metrics
and obtaining misleading or vague conclusions, we propose ensemble approaches
in clustering. Ensemble clusterings produced stable results that highly surpassed
average of the ensemble and were on the level of the best in the ensemble. These
results were further confirmed by running experiments on random subsamples.
NMF approach performed slightly better in terms of the lower variance compared
to the CONS. Improved stability of the ensemble approaches comes at the price
of larger computations. Ensemble clustering requires multiple runs of clustering
algorithms under different input settings and that poses additional challenges for
a large scale studies. Our future work will be extended to the environmental and
soil metagenomics where data exceed TB size and good reference databases are
missing. We need distributed computing solutions and highly parallel workflows
for running such experiments.
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Computer Laboratory, University of Cambridge,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

{kevin.heffernan,pietro.lio,simone.teufel}@cl.cam.ac.uk

Abstract. In this work, we introduce two novel contributions to the
study of comorbidity. The first is a new method for finding disease corre-
lations, using a multitude of information sources. In the era of big data,
methods such as evidence synthesis enable researchers to exploit many
freely available information sources to enrich their analyses. This forms
the basis for our method where in lieu of examining one form of evidence,
we introduce a novel combination of sources, providing an indirect asso-
ciation between patient genetic data and the scientific literature. Our
second contribution is a new method for stratifying the scientific litera-
ture when searching for newly discovered disease correlations. Given that
the volume of published biomedical literature has increased dramatically,
a clinician does not have the ability to read every relevant article. We
therefore propose a new way for refining the literature search space to
discover recently introduced disease correlations. Results show that our
system can produce reasonable hypotheses for disease correlations, and
that document stratification is an important aspect to take into account
when using scientific literature.

Keywords: Multi-omics · Information retrieval · Text mining

1 Scientific Background

Comorbidity represents the presence of one or more diseases co-occurring with an
index disease within the same patient [1]. Inherently tied with age and affected by
factors such as clinical therapy, comorbidity is an important topic when address-
ing a patient’s diagnosis, and can often have confounding effects on phenotypes
such as the effect of treatments for breast cancer. Conventionally, disease cor-
relation is analysed by employing information extraction techniques on a single
type of data source, such as Electronic Health Records or claims reports [2,3].
However, in the era of big data the research community now has the opportu-
nity to include many freely available information-rich sources into their analyses.
Evidence synthesis is one such approach, where combining statistical evidence
from multiple data sources can result in a stronger consensus, helping healthcare
professionals make the most informed decision [4]. This forms the basis for our
first proposed method, where in lieu of examining one source of evidence, we
c© Springer International Publishing AG 2017
A. Bracciali et al. (Eds.): CIBB 2016, LNBI 10477, pp. 209–219, 2017.
DOI: 10.1007/978-3-319-67834-4 17
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cultivate statistically significant data from multiple healthcare sources ranging
from genetic information to scientific literature in order to more rigorously detect
pairs of diseases which are highly correlated.

Integrating knowledge from scientific literature in addition to traditional
bioinformatics resources such as a gene ontology is critical given that over the
past decades, the volume of published biomedical literature has increased dra-
matically. PubMed (the US National Library of Medicine’s literature service)
provides access to more than 25 million citations, adding thousands of records
daily. It has now become impossible for scientists to read all the literature rel-
evant to their field. As a result, critical hypothesis-generating evidence is often
discovered long after it was first published, leading to wasted research time and
resources. For example, a number of papers which mention a strong disease cor-
relation may have been published, but if they have a low citation count, the
correlation might not yet be widely recognised by the community. This hinders
the progress on solving fundamental problems such as understanding the mecha-
nisms underlying diseases and developing the means for their effective treatment
and prevention. To address this problem, an entire domain of research called
Literature Based Discovery has emerged as a prominent field of study, where
links between biomedical articles are established for potentially undiscovered
solutions to well known diseases.

When searching the scientific literature for new disease correlations, only
citation counts have primarily been used in previous comorbidity studies. The
intuition for concentrating on citations is that given the large volume of scientific
literature constantly being released, a low citation count is a good indicator for
poor information diffusion. Poorly cited papers can contribute important new
hypotheses which haven’t been discovered by the wider community. Often a
low citation count can also be contributed to a lower quality publication, but
recency of publication also plays a large role (i.e. new papers will need time
to garner a high citation count). However, papers from well known journals
gather high publication counts very quickly, and may also contain important
new hypotheses. Our method therefore allows to use all hypotheses from high
and low cited papers.

We also advocate to directly use the context of where hypotheses were found.
For example, a review paper is not likely to introduce many new concepts into the
community, but an experimental paper may show novel, previously undiscovered
links between entities. We consider two factors, namely the journal category and
publication type of an article. We make a distinction on how much importance is
to be placed upon each journal category or publication type from the information
sources being collated. This forms our second proposed method, which we call
document stratification.
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2 Materials and Methods

2.1 Multilayer Data

The main information source for our first method is multilayer data. This section
describes each layer and how the inter-layer correlations were calculated.

Fig. 1. Schematic diagram of our multilayer data. The creation of the multilayer data
begins with a base layer of genetic data, and results in the top layer containing our
disease correlation hypotheses. Each layer’s nodes are connected to nodes in adjacent
layers by weighted ties.

The construction of our multilayer data begins with a base layer of gene
expression data from patients with an index disease of interest, providing over
and under expressed genes with which to pursue enrichment. We chose type 2
diabetes as our index disease, given that this is a well studied condition in the
comorbidity literature. To extract the gene data, we chose to use GEO accession
GSE386421. This data set contains human pancreatic islets from 54 non-diabetic
and 9 diabetic donors. Human pancreatic islets are especially appealing for an
analysis concerning type 2 diabetes as these islets contain beta cells which secrete
insulin, giving them a significant role in this condition. Care was taken not to
confound our results due to patient differences such as age or gender, and so we
chose a subset of the dataset population. This subset contained females who are
under 50, therefore allowing us to study a stratified population who also have
a reduced chance of comorbidity due to aging. To ensure these patients were
comparable, we calculated the value distribution. This distribution was approxi-
mately median-centered across samples, and therefore valid for comparison. For
1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38642.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38642
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gene expression analysis, the R package Limma [5] was chosen, and from the
expression output we selected all over- and under-expressed genes which had a
p-value < 0.01.

These up- and down-regulated genes were then used as input to construct
the second layer of data, where following gene collection, we performed a gene
set enrichment analysis. Following the gene set enrichment, we extracted under
and over-represented GO terms which had a p-value < 0.01.

Having determined the most significant biological processes, a literature
search was then conducted to assemble a collection of articles from scientific
papers, forming the third layer. These articles are linked to biological processes
by means of gene ontology annotations in GoPubMed [6]. A gene ontology maps
genes to their biological, molecular, and cellular components, and GoPubMed
can facilitate a mapping between these components and the scientific literature.
We achieved this by searching articles annotated with GO terms from our ear-
lier enrichment analysis. GoPubMed also examines the surrounding hierarchy
in the ontology and returns articles which are related, therefore allowing us to
widen our search to find literature which involves functionally similar biolog-
ical processes. We limited our search space to that of Pubmed articles which
mentioned type 2 diabetes, and which were also annotated with at least one of
our selected GO terms. Additionally, given that a disease name has many pos-
sible variances in the literature, we included all MeSH [7] entry terms for type 2
diabetes in our searches, to ensure we captured all possible mentions of this con-
dition in GoPubMed. For example, “Diabetes Mellitus, Noninsulin-Dependent”
is synonymous with “Diabetes Mellitus, Type II”.

The final data layer contains our disease hypotheses, gathered using informa-
tion extraction on the articles collected in the literature layer. Diseases which were
present in the collected literature were extracted using MetaMap [8]. MetaMap is
a tool which is able to map text in the biomedical domain to concepts stored in the
UMLS Metathesaurus [9]. For each Pubmed article, we stored which diseases were
present, and also how many times each disease was mentioned.

This data collection resulted in four layers containing nodes of size {217, 17,
899, 683} respective to gene, GO term, Pubmed and disease data collection.
A schematic overview of this data collection process can be seen in Fig. 1.

2.2 Document Stratification

To tackle the problem of a large search space in information retrieval arising
from ever growing publications, we propose a two-tier weighted stratification of
the scientific literature. The first level of stratification concerns the category of
journal which the article was sourced from. When searching for comorbidity,
there are many journals which are likely to mention disease co-occurrences, but
which should not be emphasised due to the nature of their material. For example,
consider the International Journal of Legal Medicine. This journal falls under
the category of Medicine (Legal), and is not a journal which a medical practi-
tioner would make use of when researching comorbidity. Therefore, journals such
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Fig. 2. Example of 2-tier document stratification showing journal category (left),
publication type (centre), and resulting correlation strength (right).

as these clearly adds noise given that many journals contain topics completely
unrelated to practical medicine.

The second tier of stratification makes use of the varying publication types
which an article may be categorised as. In addition to the journal category,
different types of publications are likely to contain more novel discoveries than
others. For example, a Clinical Trial may show new links between diseases, while
an Editorial or Biography are articles not likely to contain pertinent information
regarding knowledge discovery.

An example of this two-tier system can be seen in Fig. 2. The correlation
strengths are determined by the paths which were taken via journal category,
and publication type respectively. Consider the following example: an article is
found, and the publication type is Clinical Trial. This type of publication is
weighted strongly for new disease correlations. However, this article came from
a journal in Veterinary Sciences. Therefore, even though the material is likely
to show new links between entities, the subject matter is not applicable, and so
the resulting correlation strength determined from this article is weak. However,
an article from a journal in the Medicine (Research & Experimental) category
with a publication type of Clinical Trial results in a strong correlation strength,
since both of these paths are weighted favourably for new disease correlations.

The weights for journal category and publication type can be freely chosen
by the clinician. This will result in a series of independent weights for each
stratification tier with their product defined as:
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n∑

α=1

JCα

m∑

β=1

PTβ = 1 (1)

where JCα and PTβ represent chosen weights for journal category α and publi-
cation type β respectively.

The contextual risk strength of an article given its associated journal category
and publication type is formalised using the formula:

Ωαβ =
JCαPT β

n∑
i=1

JCi

m∑
j=1

PT j

(2)

where Ωαβ is the contextual strength between journal category α and publication
type β. This method can also be incorporated into existing risk metrics as an
additional weight parameter. An example would be to incorporate our contextual
weight parameter with the popular risk metric, Relative Risk, resulting in what
we introduce as Contextual Relative Risk (CRR):

CRRij,αβ =
Cij/N

PiPj/N2
. Ωαβ (3)

where Cij are the number of articles which contain diseases i and j, N is the
total number of articles, and Pi and Pj are the probabilities of finding diseases
i and j respectively.

To see how disease correlations were being affected by document stratifica-
tion, we collected two samples of articles from Pubmed grouped by publication
type and journal category respectively. We chose to examine two publication
types (Clinical Trial, Review), and four journal categories from the field of medi-
cine (Research & Experimental, Legal, Informatics, Ethics). A disease vector
was created for each article which contained all disease mentions identified by
MetaMap. For each disease vector, we computed all possible unique disease pair
combinations.

3 Results

3.1 Multilayer Data

In order to see if our novel method for predicting comorbid diseases was pro-
ducing hypotheses which were reasonable, we compared our results against the
largest publicly available dataset of disease correlations, HuDiNe [10], which
contains hospital claims data for over 13 million patients.

For evaluation of our hypothesis generation system against HuDiNe, we chose
to compare the top ranked conditions from both systems. Two of the metrics
used by HuDiNe to rank disease correlations are the phi correlation and t-value.
To calculate both metrics, we searched the entirety of Pubmed articles for disease
correlation. Pubmed contains citations from over 25 million articles, therefore
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Fig. 3. Results from expert annotator evaluation of complex network data. Our system
significantly beats HuDiNe across all measures.

making it an excellent corpus with which to rank our hypotheses. The phi cor-
relation between diseases i and j is defined as:

ϕij =
CijN − PiPj√

PiPj(N − Pi)(N − Pj)

where Cij is the number of articles which contain both disease i and j, N is
the total number of articles available in Pubmed, and Pi and Pj contain the
number of articles which mention diseases i and j respectively. To determine the
significance of each comorbid hypothesis, we then estimated a t-value for each
phi correlation, which is defined as:

tij =
ϕij

√
n − 2√

1 − ϕ2
ij

where n is max(Pi, Pj).
To evaluate our hypothesis generation system against HuDiNe, we compared

the top ranked conditions from both systems, using an expert evaluator from
the European Bioinformatics Institute. In order to prevent bias in the evalu-
ator’s decision, care was taken so that the presentation of the diseases given
for annotation would not identify which system they were from. This was done
by first randomising the ranking of each list separately, and then creating an
amalgamated list of both system’s outputs by selecting a disease from each list
in an interleaving fashion. For each hypothesis for a comorbid disease, the eval-
uator was asked to determine whether each output hypothesis was reasonable.
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In cases where the evaluator was unsure whether a particular disease was comor-
bid, a literature search was conducted by the evaluator to find sources which
supported the hypothesis. The evaluator returned each item marked as Yes or
No. Since both systems produced a ranked list of diseases based on significance,
we also calculated the Mean Average Precision (MAP). We calculated the MAP
of each system against the gold standard. The results from this evaluation are
presented in Fig. 3. Our method significantly outperforms HuDiNe (p < 0.05).
We particularly care about the performance in the high ranks because clinicians
looking for possible comorbidities may not have the time to inspect long lists.
Please note that MAP has the property of weighting higher ranks more heavily.
Our significantly higher MAP therefore also indicates that the results from our
system produced significantly better comorbidity hypotheses than HuDiNe in
the top ranks.

Stratification type 1 (Publication
Type)
Disease pairs from clinical trial and re-
view articles.

Stratification type 2 (Journal Cat-
egory)
Disease pairs from articles in four journal
categories from medicine: Research &
Experimental, Legal, Informatics and
Ethics.

Fig. 4. Disease pair occurrence and overlap for subset of Pubmed articles stratified by
examples of publication type (left) and journal category (right).

3.2 Document Stratification

As can be seen in Fig. 4, there is some overlap of disease pairs for publication
type, and journal category e.g., Reviews ∩ Clinical Trials = 2453. There are
also a considerable number of disease pairs which are mentioned in one category
only (non-overlap). There are many disease pairs which are only referenced in
Clinical Trial articles, not in Reviews, therefore showing possibly novel disease
pairings. Regarding publication type, the existence of non-overlap makes an even
stronger case for upweighting the combination coming from Clinical Trial papers.
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Fig. 5. k-means clustering of disease pairs from clinical trial and review articles using
cosine distance of disease pair names. Black and green nodes denote clinical trial and
review publication type membership respectively. Various values for k were chosen,
with k = 2 giving the best silhouette coefficient. (Color figure online)

The journal category emphasises the need for placing weaker weights on cate-
gories such as Medical Ethics papers. The majority of disease pairs mentioned
here are not referenced in a medical research journal, and so taking these into
account will only add uncertainty, i.e. “noise” to comorbidity analysis.

In the case of publication type, we took a look at how closely related the
disease pairs were. If it were the case that different publication types differed in
the disease pairs they contained, we would expect some overlaps and some non-
overlaps to emerge from clustering, as in the left-hand side of Fig. 4. To calculate
disease pair similarity, we created a string distance matrix for all disease pairs.
This matrix was calculated using cosine distance, which we then clustered using
k-means (k = 2, purity = 0.78). The number of clusters was chosen by clustering
using various values for k, and choosing the k with the highest average silhouette
coefficient (0.51). This clustering is shown in Fig. 5. The left cluster shows a
clear separation between disease pairs in Clinical Trials, and those described in
Reviews. This indicates that the non-overlapping disease pairs in Clinical Trial
articles are substantially different to those referenced in Reviews, and confirms



218 K. Heffernan et al.

our hypothesis that different disciplines reference substantially different disease
pair combinations.

4 Conclusion

The performance of our system in Fig. 3 shows that our method can generate
hypotheses for comorbidities which are reasonable. These results also show that
our method may be a better approach for studying disease correlation than
large databases of claims data. One reason why large databases of claims data
are troublesome when looking for disease correlations is that they are often
collected from an aged population and therefore introduce many confounding
factors. This reinforces the need to combine information from multiple sources
of data in order to reduce confounding factors and produce higher quality disease
correlations.

Results from document stratification show that there is a clear separation of
disease pairs mentioned in each publication type and journal category, reinforcing
the need to stratify the literature when establishing new potential comorbidites.
Additionally, stratification not only simplifies the search space of literature to
help bring to light recently discovered comorbidities, but also may be used as a
new technique for general knowledge discovery based on the scientific literature.
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Abstract. Dendrites, the most conspicuous elements of neurons, exten-
sively determine a cell’s capacity to recognise synaptic inputs. Inves-
tigating its structure and morphological properties unravels the func-
tioning mechanism of neurons that cooperates the process of learning
and memory. This research systematically generates a varying topology
of dendrites in a multi-compartmental model of a neuron with passive
properties and it further explores a cell’s integration ability of complex
synaptic potentials. The neurons receive an equal number of binary input
patterns of synaptic activity and the performance of a cell is gauged
by calculating the signal to noise ratio between amplitudes of somatic
voltage. The objective is to analyse the types of input pattern in com-
bination with morphological properties that may strengthen or weaken
the somatic response. Finally, an evolutionary algorithm produces a fine
variety of branching structures calculating the weighted sum of synaptic
inputs, further identifying the impact of membrane and morphological
properties on neuronal performance.

Keywords: Dendritic morphology · Synaptic integration · Synaptic
plasticity · Hebbian learning · Pattern recognition · Evolutionary
algorithm

1 Introduction

A neuron is a nerve cell excited electrically to process and transmit information
through electrochemical signals. Many different types of neurons exist in the
human brain - approximately 1011 to 1012 in number - with a great variety of
morphologies. Each neuron connects on average to 1014 other neurons, constitut-
ing a total of 1015 to 1016 connections known as synapses [14], thereby establish-
ing the broader realm of human perception, emotions, thoughts and memories.
There are four typical components of a single neuron; dendrites, soma, axon
and axon terminals. Dendrites are tree like branching structures, often extended
away from soma (cell body) for hundreds of micrometers (µm), play an impor-
tant role in propagating and integrating synaptic potentials [2,13]. Soma is the
c© Springer International Publishing AG 2017
A. Bracciali et al. (Eds.): CIBB 2016, LNBI 10477, pp. 220–234, 2017.
DOI: 10.1007/978-3-319-67834-4 18
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neuronal cell body attached to dendrites, containing nucleus and other cellular
components, and is responsible for sending and receiving electrochemical signals.

The development of dendrites is regulated by intrinsic genetic factors and
cellular organisation of actin and microtubule cytoskeleton for the formation of
pertinent dendrite morphology [10]. Dendrites considerably vary in their anatom-
ical structure and are thought to have associated with variety of computational
tasks. Dendritic spine is a microscopic membranous protrusion on neuron’s den-
drite, containing postsynaptic compartment of excitatory synapse to serve as
a storage site for synaptic strength [10]. Transmission of electrical stimulations
from other neurons is carried out via microscopic junctions called synapses which
are located at the various points (spines) across the dendritic arbor. The pri-
mary interest of studying the human brain lies in exploring the information
processing mechanism among different types of neuronal morphologies. Neurons
show a lot of variability in their shape and structure, exhibit a wide variety of
patterns and strength of connections through which memories are stored and
habits are learned. There have been many investigations done on neurons with
different types and morphologies, yet the reason behind these varieties and func-
tional implications of different morphologies remains unclear. Few studies have
hypothesised that the variability in morphological structures is unlikely to be
accidental and that these variabilities could exist due to optimised propagation
of neuronal signals from synapses to soma [2,13]. Synaptic integration is a com-
plex process that comprises a great deal of computations within dendrites, and
requires concurrent inputs from excitatory synapses to determine neuronal firing
behaviour. It is one of the possible roles of neuronal dendritic arborization to
recognise structured synaptic inputs through integrating various arriving signals
at the soma.

The present study focuses on the development of dendritic arbors using parti-
tion notations to mimic its tree-like structure and it further evaluates the impact
of different structures on a cell’s pattern recognition capacity. The developmen-
tal approach used here for dendritic growth is based on two different methods.
Firstly, a branching stochastic approach is used with partition notations [12]
to generate a possible number of dendritic branches and then, an evolutionary
algorithm (EA) is utilised to produce an optimum dendritic structure suitable
for recognising synaptic inputs. A neuron receives input signals from many other
neurons attached to it and the strength of those signals is defined by its synaptic
plasticity. To characterise a neuron based on its passive properties, a compart-
mental model [7] is utilised to simulate the postsynaptic integration of excitatory
inputs. The compartmental model of a neuron divides each complicated dendrite
into number of compartments and imitates the behaviour of a biologically real-
istic neuron. On the contrary, an artificial neural network model (ANN) of an
associative memory, implementing the Hebbian learning rule is also employed to
calculate the weighted sum of its synaptic inputs, thereby comparing its pattern
recognition performance with that of the compartmental model neuron. To opti-
mise a neuron’s information processing capability, some binary patterns called
stored patterns, representing synaptic inputs are presented during a learning
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phase. Once the learning phase is completed, some novel binary patterns are
presented to discriminate them from the stored patterns. A neuron’s discrim-
inatory ability is dependent upon its dendritic structure, spatially distributed
excitatory inputs and strength of connections as measured by the signal to noise
ratio (S/N) between the somatic EPSP amplitudes/weighted sum responses of
the stored and novel patterns. The higher the S/N ratio, the better able the
cell to discriminate the two sets of input patterns. More importantly, it is also
hypothesised that the spatial distributions of synaptic inputs could affect the
postsynaptic response, as a result, it may strengthen or weaken the neuronal
performance by sending signals to the soma from shorter or longer dendritic dis-
tance. To identify whether this is correct, current study also focuses on presenting
some biased synaptic input patterns called fixed stored patterns in which input
locations on dendrite are manually determined. Additional parameters such as
axial resistivity, compartment and mean path length, temporal asynchrony of
signal arrival are also investigated to ascertain whether these parameters have
any association with the cell’s pattern recognition performance.

2 The Model

The primary aim of this study is to understand the functioning mechanism of a
neuron that cooperates the process of learning and memory by storing and recog-
nising synaptic inputs. To begin with, neuron models are presented with mem-
brane and morphological properties (Sects. 2.1 and 2.2), after which an EvOL-
DnDR1 algorithm generates a population of 100 neuron models with diversified
dendritic topologies, which are further provided with the sets of synaptic inputs
and their performances are measured by calculating the S/N ratio.

2.1 Passive Membrane Properties

A passive neuron model is used to understand its electrical properties without
any active conductances in the soma and dendrites, therefore it does not gener-
ate action potentials. From the study carried out by De Sousa [3], the following
passive parameters are considered for membrane capacitance, membrane resis-
tance and axial resistivity, respectively: Cm = 0.75 µF/cm2, Rm = 30 kΩcm2

and Ra = 150 Ωcm.

2.2 The Compartmental Model of a Neuron

In the compartmental model, a neuron is treated as a cell body with divided
isopotential dendritic compartments, receiving input signals in the middle of
every compartment as shown in Fig. 1(C). The charge across each compartment
is same and can be represented by an electrical circuit. The length and diame-
ter of soma is based on the study carried out by De Sousa [3] where the soma

1 http://research.kagdi.org/cns/evolving-dendritic-morphologies.

http://research.kagdi.org/cns/evolving-dendritic-morphologies
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is a cylinder of 20 µm length and diameter, followed by 500 µm length and
25 µm diameter for each dendritic compartment. The conductance amplitude of
a naive synapse is set to 1.5 ηS (before learning) and is subject to change once
multiplied with the weight value after synaptic learning. The resting membrane
potential of a model neuron was set to −65 mV before the transmission of any
excitatory inputs. On arrival of these input signals, an excitatory postsynaptic
potential (EPSP) amplitude, representing the depolarisation of membrane volt-
age is generated. An EPSP is the somatic excitation needed for any neuron to
fire an action potential (AP), caused by the incoming active signals.

2.3 Generation of Dendritic Structures

To define the growth of a multi-compartmental dendrite, partition notations are
used involving axioms and rules to constitute the branching structure [12]. In a
binary tree, a partition at the bifurcation point is defined by a pair of numbers
denoting the degree of each subtree, where the terminal nodes in each subtree are
further divided into left and right branches as tree grows. Therefore, a sequential
specification containing partition notations executes in a linear order to bifurcate
and generate branches of a tree. For instance, a tree with 4 terminal nodes and
7 compartments can be specified using the partition notations 4(2(1,1)2(1,1))
and 4(1 3(1 2(1,1)) as available in Fig. 1(A) & (B).

Fig. 1. Partition notations used to define dendritic trees with 3 terminal nodes and
7 compartments in (A) & (B), and Branching of a neuron using the compartmental
model in (C).

In the present study, a population of 100 neurons is generated with T = 128
terminal nodes and 255 (= 2T − 1) compartments, introducing different types
of dendritic topologies by stochastically determining number of terminal points
at every branch in a tree.

2.4 Synaptic Plasticity and Long-Term Potentiation

A learning process in neurons demonstrates the cells’ activity-dependent adap-
tive behaviour characterised by the Hebbian learning rule of growing synap-
tic strength between the firing neuron and the neuron receiving input signals
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called synaptic plasticity [6]. A change in synaptic strength occurs due to persis-
tent stimulations by pairs of pre and post synaptic neurons, where a persistent
increase in synaptic strength represents Long-term potentiation (LTP) [11]. LTP
is an input-specific process shaped by pre-synaptic activations which as a result
determines the behaviour of a postsynaptic neuron. To achieve the synaptic
strength in simulated neurons, a weight value is used that increases by 1, every
time there is an active synapse established between the pre and post synaptic
neurons, which consequently stores a history of active connections representing
neuronal activities, as shown in Fig. 2(A).

2.5 The Pattern Recognition Task

The ability of a neuron to discriminate between patterns of synaptic inputs
is largely dependent upon its ability to recognise number of active synapses [4].
Comparison is made between the performance of a computing unit in an artificial
neural network (ANN) model of an associative memory and the compartmental
model of a biologically realistic neuron. At the outset, two sets of 10 binary
synaptic input patterns, called the stored and the novel patterns are provided
to the computing unit in ANN. Each pattern contains 255 bit series of ran-
domly generated binary values representing active and inactive synapses (where
1 denotes an active synapse) presented to each unit’s 255 input layers. There are
25 active synapses in each pattern. Under the training phase, the unit learns 10
stored patterns, and it discriminates the 10 stored patterns from the 10 novel
patterns when tested in the recall phase.

Fig. 2. LTP learning with 3 synaptic input patterns in (A), and a Recall phase with
synaptic weights to recognise patterns in (B).

On each active synapse from the stored patterns, a typical weight value is
increased by 1, describing the concept of synaptic strength, as shown in Fig. 2(A).
A response to a specific pattern is a sum of all inputs multiplied by the associated
synaptic weights (Dot product of an input and weight value) representing the
dendritic summation, as calculated for both the pattern sets using Eq. 1 and
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is shown in Fig. 2(B). The dendritic sum of an output unit is considered as an
ultimate response to each pattern presented, and it is used to calculate the S/N
ratio using Eq. 2 [3].

In the secondary aspect of the pattern recognition task, both sets of input
patterns along with the associated synaptic weights are transferred to the NEU-
RON compartmental model [7]. In a population of 100 compartmental model
neurons with varying dendritic morphologies, the 255 binary inputs are spatially
distributed to each neuron’s 255 dendritic compartments (synapses), each active
input arrives synchronously at its associated synaptic location. The resultant
EPSP amplitudes of each compartmental model neuron for both the pattern sets
were recorded. The EPSP amplitudes represent a change in each cell’s somatic
voltage, showing the higher and lower membrane potentials, are considered as
a response to the sets of input patterns provided. There is a strong association
between the somatic EPSP amplitudes and a cell’s possible AP [4], indicating
that the EPSP(s) play a crucial role in determining the cell’s pattern recognition
performance.

Fig. 3. The EPSP amplitudes of passive neuron to 10 stored and 10 novel patterns in
(A), and the frequency of the peak EPSP responses to both stored and novel patterns
(bin width = 1 mV) in (B). (Color figure online)

The generated EPSP amplitudes were used to calculate the S/N ratio between
the responses of stored and novel patterns, which later compared with the per-
formance of a computing unit in an ANN model. Various forms of noise that
degrade spatio-temporal integration of synaptic inputs are absent in an ANN
model, which are investigated in the compartmental model neurons. A high per-
forming neuron was thus identified as the one with maximum S/N ratio in a
population of 100 compartmental model neurons, discriminating between the
sets of synaptic inputs, as shown in Fig. 3(A). The following equations are used
to calculate the Dendritic Sum and the S/N ratio.

Dendritic Sum =
n∑

i=1

Xi.Wi . (1)
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In Eq. 1, n refers to the number of synaptic compartments/weights which is 255
for each binary pattern, Xi is the ith input signal, Wi is the ith weight value in
the associated synaptic pattern, as shown in Fig. 2(A) and (B).

S/N =
(µs − µn)2

0.5(σ2
s + σ2

n)
. (2)

In Eq. 2, µs and µn are the mean values and σ2
s and σ2

n are the variances of the
ultimate/peak responses of stored and novel patterns. Graham proposed a simi-
lar type of LTP learning model, calculating the S/N ratio and discriminating the
synaptic inputs in the presence and absence of noise in a multi-compartmental
model of a CA1 hippocampal pyramidal neuron. A study which concluded that
the amplitudes of voltage responses at the soma is dependent upon the spatial
distribution of synapses and that the variations in amplitudes occur due to dif-
ferent synaptic locations (which as a result cause the temporal asynchrony of
signal arrival at the soma) even with the same number of active synapses [4].

2.6 Mean Path Length

The mean path length is the measure of dendritic distance from soma to ter-
minal points, considered to analyse the performance of a neuron. Equations 3
and 4 denote the dendritic and synaptic mean path (DMP and SMP) length,
calculating the average sum of path lengths (mean number of compartments)
from soma to terminal points, and the average sum of path lengths from soma
to number of active synapses respectively.

Dendritic Mean Path =
1
n

n∑

k=1

Pk . (3)

Synaptic Mean Path =
1
n

n∑

k=1

Qk . (4)

Here, Pk is the length of dendritic path to the kth terminal point, and Qk is
the length of dendritic path to the kth synaptic compartment from the soma.
Figure 4 shows the calculated DMP and SMP length for each tree available,
where a red line represents an active synapse to that particular compartment.

Fig. 4. Dendritic and synaptic mean path (DMP and SMP) lengths are calculated.
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2.7 Evolutionary Algorithm and Exploration of Dendritic
Structures

An evolutionary algorithm (EA) is a heuristic optimisation technique inspired
by the Darwinian theory of survival of the fittest and natural genetics, applied to
a population of individuals for breeding high quality solutions [9]. In the present
study, an EA is implemented with a population of 100 candidate solutions (com-
partmental neurons) to produce a fine variety of branching structures and to
maximise the S/N ratio. It is the secondary approach of producing some func-
tionally desirable dendrites in each generation by only selecting high performing
neurons (with maximum S/N ratio) for reproduction. Once pairs of individuals
are selected, the genetic features of dendrites are exchanged using dual point
crossover and offspring are mutated with 4% to 20% of a mutation rate. Addi-
tionally, the concept of elitism is also utilised, keeping about 10% to 15% of
best individuals intact in the next generation without any genetic modifications.
Elitism makes sure that the EA does not lose high performing neurons once their
genetic details are exchanged or mutated to produce future offspring. The above
steps are repeated until some most fit neurons are reproduced.

3 Results

3.1 Distortion of Input Signals in Dendritic Trees

Membrane potential plays a crucial role in determining neuronal performance,
and therefore it is essential to identify the causal relationship between the trav-
elling inputs and the attenuation of an EPSP response. On a dendritic tree,
individual synapses may differ in their distance from soma. As a result, the
amplitude of voltage response at the soma can be affected by the spatial distrib-
ution of these input signals as they travel along the lengthy dendritic tree to the
final integration site. Figure 5 shows examples of voltage responses generated at
the soma due to different distribution of synaptic inputs (blue traces) on the
dendritic tree, whereas variations in voltage amplitude occur, such as an EPSP
amplitude decreases and its time span lengthens, with the distance of an origi-
nating synapse from the soma. An EPSP response of 22 sparsely attached active
inputs to the 22 distal dendritic compartments in Fig. 5(A) & (B) shows only
about 0.5 mV of postsynaptic depolarisation as opposed to 8.5 mV when inputs
are clustered proximally to the soma, see Fig. 5(C) & (D). Interestingly enough,
despite that the distributed excitatory inputs arrive synchronously at individual
synapses, the spatio-temporal integration of transient signals is still disrupted
due to asynchronous arrival of excitatory potentials at the soma, significantly
affected by the varying synaptic distances from the cell body. Figure 5(B) & (D)
shows calculated temporal asynchrony of signal integration and the synaptic
mean path length (SMP) depicting larger value for distorted and delayed mem-
brane voltage. Similarly, the higher Ra of individual compartment increases the
intracellular resistance for ions to move and disrupts the flow of synaptic poten-
tials. Hence, the amount of signal attenuation witnessed here is proportional to
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Fig. 5. 22 active synaptic inputs are attached to compartments at distal/proximal
to the soma in (A) & (C) and their voltage responses in (B) & (D) with calculated
Synaptic Mean Path (SMP) and Temporal Asynchrony of Signal Integration. (Color
figure online)

the value of axial resistivity used (Ra = 120 Ωcm), showing inverse association
with degrading membrane potential.

3.2 Discrimination of Synaptic Inputs and the Signal
to Noise Ratio

Before measuring the somatic EPSP responses of a compartmental model neu-
ron, two sets of randomly generated synaptic input patterns were provided to the
computing unit in an ANN model and their dendtric sums were calculated using
Eq. 1, see frequency distribution in Fig. 6(A). The s/n ratio was 40.1993 gener-
ated from the dendritic sums of both the pattern sets. Although, the distinction is
quite clear, it is important to measure the somatic response in the compartmental
model neuron. Once measured, the resultant S/N ratio was 10.130346 with some
rather overlapping EPSP amplitudes (results not shown). The DMP and SMP
lengths were 9.531 and 8.448, calculated using Eqs. 3 and 4 respectively. Due
to the wider distribution of input synapses, the S/N ratio was relatively lower,
showing poor discrimination of stored and novel patterns. To produce some
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Fig. 6. Evolution of dendrites for recognising random and clustered (fixed) synaptic
inputs, showing frequency distribution of an ANN model’s weighted sums in (A) &
(B), frequency distribution of an evolved neuron’s peak responses in (C) & (D), and
their associated EPSP amplitudes in (E) & (F) respectively.

high performing neurons, an EA was utilised, evolving 100 individuals for 100
number of generations, which finally produced an optimised neuron (Appendix
Fig. 9A) showing discriminatory EPSP amplitudes with its improved S/N ratio
of 48.987556, as shown in Fig. 6(C) & (E). Performance of a most fit neuron in
each generation was compared against its SMP and DMP length which showed
a negative correlation of −0.7937 and −0.4947 respectively, indicating growing
improvements in the neuronal performance (S/N ratio) with closer synapses to
the soma, see Fig. 7(A) & (B).
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Whilst this is the case, it is also key to measure the significance of clustered
synapses, when input signals are manually arranged. Synaptic strengthening
of a cell in forms of weight values depends however on where, how many and
how often synapses are activated. A set containing 10 fixed stored patterns was
designed by variably concentrating 20% to 25% of active inputs at 4 different
regions across the dendritic tree. These spatial arrangements of synaptic inputs
played a major role for somatic integration by controlling the strength of com-
bined active signals. The calculated neuronal performance was 126.9557 in an
ANN model, frequency distribution is shown in Fig. 6(B). On the contrary, the
maximum S/N ratio of 83.5114 was found (results not shown) in a population
with 100 compartmental neurons, which further increased to 338.8579 after 100
evolutionary iterations (the evolved neuron is in Appendix Fig. 9B), showing a
clear distinction between the synaptic patterns, as indicated in Fig. 6(D) & (F).
Again, the S/N ratio for each generation was compared against the SMP and
DMP lengths, and a negative association of −0.4210 and −0.3258 was recorded
as shown in Fig. 7(C) & (D) respectively.

Fig. 7. The S/N ratio of a most fit neuron from each evolutionary generation was
compared against its SMP and DMP length, recognising both the random and clustered
input patterns in (A), (B) & (C), (D) respectively.
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3.3 Temporal Asynchrony of Somatic Integration

Since the random and a wide distribution of synaptic inputs show a great vari-
ety of distances from soma, there exists a temporal asynchrony of signal arrival
at the final integration site. An effect of which broadly affects the neuronal
response by making it highly inhomogeneous, as shown in Fig. 5. Therefore, it is
also likely that the variety of these EPSP responses are proportional to the tem-
poral irregularity of incoming inputs. It would be useful to ascertain whether
these temporal irregularities of signal arrival have a causal relationship with
their associated inhomogeneous somatic responses. An experiment was carried
out in which an EA recorded the temporal irregularity of signal arrival for each
most fit neuron for 100 generations. Once they were compared with the vary-
ing peak responses of stored patterns, a positive association of 0.631279039 was
found, suggesting growing variations of somatic responses with increasing tempo-
ral asynchrony of signal arrival at soma. Similarly, the temporal asynchrony was
also compared against the measure of s/n ratio which depicted a negative corre-
lation of −0.5151, showing poor neuronal performance with a growing synaptic
irregularity, see Fig. 8.

Fig. 8. Temporal irregularity of signal arrival at soma and its impact on the S/N ratio.
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4 Discussion

The pattern recognition capacity of a cell was assessed in an artificial neural
network model of an associative memory, discerning between two sets of tran-
sient input patterns. To estimate the likely effect of different dendritic topologies
and the impact of spatio-temporal noise on neuronal performance, a compart-
mental model simulated the postsynaptic integration of synaptic inputs. The
performance of a neuron is directly associated with the spatial distribution of its
synapses. Consequently, it performs sufficiently well when inputs are clustered
as opposed to when they are purely random. Persistent and clustered synaptic
inputs to a specific region of a dendrite enhances the strength and arrival timing
of these signals at soma, complying with the Hebbian learning rule for long-term
potentiation and synaptic plasticity. However, when inputs are randomly gener-
ated, a neuron receives these signals widely across its dendritic arbour, attaining
apportioned synaptic weights to exhibit its average discriminatory performance.
The EA successfully generated best possible individuals in each generations and
the evolved neurons performed sufficiently well compared to the originally gener-
ated neurons. Considering the impact of different dendritic distance on neuronal
performance, a measure of mean path length was compared with the S/N ratio
of each evolving neuron from the population. An outcome of this showed a neg-
ative association of mean path lengths with improving neuronal performance.
Furthermore, the obvious impact of temporal irregularity introduced due to dif-
ferent synaptic distances from soma, as explained in Sect. 3.3, showed a growing
association with the variability of somatic voltage amplitudes. Whilst there is
a relationship between the two variables, it is still least relevant to support
the assertion that such irregularity causes other variations to occur. It can be
argued due to the fact that attenuation or strengthening of somatic voltage does
not solely dependent upon such temporal irregularities, and that the arrival of
such irregular inputs could still perform better if they are clustered and if arrived
with strong potentials, as it was the case with fixed synaptic patterns (Sect. 3.2),
suggesting weak relevance with the dependency of synaptic distance.

The measure of S/N is proportional to the differing responses between the
stored and novel patterns, where the reduction in variability of each of the pat-
tern set’s peak responses directly influence the cell’s pattern recognition per-
formance. Performance of a neuron with a large number of active synapses (in
stored patterns) nearer to soma depicts a least variability of somatic voltage
amplitudes, since there is a smaller variance of synaptic distances. As a result,
arriving signals get integrated at soma more or less synchronously, also enhanc-
ing the measure of signal to noise ratio.

The increasing value of compartment length and axial resistivity, Ra exhibit
a degrading and prolonged amplitude of somatic voltage. To verify these effects,
different values such as 200, 300, 400 µm for compartment length and 50, 100,
150 Ωcm for Ra were considered, which showed decreasing mean stored (µs)
responses; −57.02, −59.79, −61.20 (each affected by an increasing compartment
length) and −57.70, −59.35, −60.31 (each affected by an increasing Ra) respec-
tively. An appropriate value of axial resistivity is quite uncertain and it was
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estimated between 50–400 Ωcm [4]. A relatively lower value of Ra improves
the S/N ratio by decreasing intracellular resistance for ions to move, ultimately
reducing the variability of somatic responses to stored and novel patterns.

The present study is an extension of work done by Graham [4] and De
Sousa [3] in which synaptic patterns were composed of synchronously arriv-
ing randomly generated transient inputs. A study carried out by Graham [4]
involved pattern recognition of 100 and 200 active inputs, which in the current
study are considered as stored and novel patterns, but with equal number of
active inputs. Currently, a notion of clustered synaptic inputs is used in addi-
tion to the randomly generated input patterns along with an EA to optimise
number of inputs that each active synapse receives. Clustered synapses aim to
minimise the distance variations of inputs to soma and grow the membrane volt-
age in each cluster by controlling the strength of combined signals - which as
a result produce least variable EPSP amplitudes for an improved S/N ratio.
The implication of this findings is that the spatial organisation of active inputs
determines dendritic integration of a postsynaptic neuron with a little depen-
dency on any specific structure of a morphology. In other words, a correlated and
synchronous arrival of inputs to soma is the best predictor for high performing
neurons.

Acknowledgements. I would like to express my sincere gratitude to Dr. Rene te
Boekhorst for his valued support and guidance extended to me.

Appendix

Fig. 9. Dendritic morphologies evolved after 100 evolutionary iterations to recognise
random and clustered input patterns in (A) & (B) respectively.
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Abstract. Proteins encoded by the genes associated with a common
disorder interact together, participate in similar pathways, and share
Gene Ontology (GO) terms. Drug discovery for certain disease may arise
from a hypothesis that genes contributing to a common disorder have an
increased tendency for their products to be linked at various functional
levels. This may be induced from experimental studies of protein-protein
interactions, co-regulation, co-expression, and annotated semantic infor-
mation (e.g., those stored in Gene Ontology). Our aim is to improve
the quality of aggregation discovery in dense biological interactions by
incorporating such information embedded in biological repositories and
mapping them in the spectral embedding space.

Keywords: Biological community detection · Semantic enrichment ·
Clustering ensemble · Fuzzy clustering · Spectral clustering

1 Introduction

Protein-protein interactions (PPIs) occur when two or more proteins bind
together in a cell in vitro or in a living organism. The interaction interface of
proteins is evolved to a specific purpose. Interactions between proteins are impor-
tant for the majority of biological functions. Not all possible PPIs will occur in
any cell at a given time. Proteins involved in the same cellular processes often
interact with each other. Therefore, the functions of uncharacterized proteins
can be predicted through comparison with the interactions of similar known
proteins, and the detection of pertinent communities in PPIs networks can be
used to predict the function of uncharacterized proteins based on the functions
of others they are grouped with.

In many studies of biological networks, such as Saccharomyces (S.) cerevisiae
PPIs [11] networks we analyze in this paper, community detection techniques are
used to extract aggregations showing dense relationships. The most used com-
munity detection algorithms can be categorized into graph based partitioning
c© Springer International Publishing AG 2017
A. Bracciali et al. (Eds.): CIBB 2016, LNBI 10477, pp. 235–247, 2017.
DOI: 10.1007/978-3-319-67834-4 19
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(bisection), hierarchical clustering, partitional clustering [7], spectral cluster-
ing [17], edge removal, and modularity based methods [21].

We propose here a method for community detection based on spectral and
fuzzy clustering and exploiting semantic information able to infer the possible
overlaps between protein communities in networks, and we study its application
to the analysis of the S. cerevisiae PPI network.

This paper is organized as follows: Semantic and spectral modularity graph
based clustering approaches for community detection are presented in Sects. 2
and 3; in Sect. 4 we describe the semantic clustering based Fuzzy C-Means Spec-
tral Modularity community detection method, while its application to the dis-
covery of communities in the PPI network of S. cerevisiae is shown in Sect. 5;
Sect. 6 contains the conclusions.

2 Measuring Similarity Based on Semantic Clustering
of Semantic Terms

Nowadays, several biological repositories including protein data banks such as
KEGG1, or Gene Ontology (GO) [1] contain annotated information and biolog-
ical knowledge either extracted with the help of experts or from papers or other
sources. This annotated information can be used to improve the effectiveness of
community detection in biological networks using similarity measures entailed
in those frameworks.

Lord et al. [13] demonstrated the feasibility of using semantic similarity mea-
sures in a biological setting. In this study, the GO (semantic) similarity between
two proteins was calculated as the semantic similarity of their annotated GO
terms. They also noticed a strong correlation between protein GO similarity
using annotations from the UniProt/SwissProt database2 and their sequence
similarity.

The semantic similarity measures between two terms a and b can be catego-
rized into:

– Feature-based [24] obtained by extracting the shared features between terms
and estimating the weighting parameters that balance the contribution of each
feature (often not available)

– Edge-based [23] that depend on the path length linking the terms in an ontol-
ogy and then showing low discriminant power for detailed or wide ontologies;

– Information-Content-based (or Node-based) that rely on estimating the
semantic similarity between two terms or nodes a and b based on the amount
of mutual information they share.

In their turn, the information content based approaches can be classified into
annotation-based and topology-based. They evaluate the similarity between two
terms or nodes a and b based on the amount of mutual information they share,
such as:
1 http://www.genome.jp/kegg/.
2 http://www.uniprot.org/.

http://www.genome.jp/kegg/.
http://www.uniprot.org/.
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– Resnik’s similarity measure [26] that estimates the information content (IC)
of Least informative Common Ancestor (LCA), where LCA is a term in the
Ontology having the shortest distance from the two terms being compared:

simres(a, b) = IC(LCA(a, b)), (1)

where IC(a) = −log(P (a)). However, Resnik’s similarity may result in incon-
sistent similarities as it ignores significant graph characteristics and considers
only the information content of LCA.

– Lin’s similarity measure [12] that enhances Resnik’s similarity by considering
the information content of LCA and the two compared terms:

simlin(a, b) =
2simres(a, b)

IC(a) + IC(b)
. (2)

– Jiang and Conrath’s similarity measure [10] that is similar to Lin’s one:

disj&c(a, b) = IC(a) + IC(b) − (2simres(a, b)). (3)

– The eXtended Graph based Similarity Measure (XGraSM) [5] is a hybrid
approach in which the features of both the parent and child terms of GO are
taken into account and is one of the most powerful annotation based semantic
similarity measures [19]. In XGraSM all the Informative Common Ancestors
(ICA(a, b)) are considered when computing the semantic similarity between
two different terms a and b in GO, and the score between a term and itself is
set to 1.
XGraSM shows a higher correlation between protein families and seman-
tic similarity on all aspects of GO unlike the aforementioned (LCA) based
measures, namely Eqs. 1, 2, 3 [10,12,26] that rely on the Least informative
Common Ancestor (LCA) only.
XGraSM derives new semantic similarities such as simresnikXG, simlinXG,
and simj&cXG by estimating the average information content between
ICA(a, b)) terms t. Hence the overall information content IC(a,b) as well
as simresnikXG are given by:

simresnikXG = IC(a, b) = max
t

{IC(t)|t ∈ ICA(a, b)}. (4)

– GO-universal [18] is a topology based information content measure in which
the child is expected to be more specific than its parents. The more children
a term has, the more specific its children are compared to that term, and the
greater the biological difference. In addition, the more parents a term has,
the greater the biological difference between this term and each of its parent
terms.
Let NGO is the set of GO terms and links, (a, b) ∈ LGO represents the link or
association between a given parent a and its child b, and the level of the link
(a, b) is the level of its source node a, [a, b] ∈ NGO indicates that the level of
term a is lower than that of b.
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The Topological information ICT of a given term z ∈ NGO is given by
ICT (z) = −ln(μ(z)) where μ(z) is a topological position characteristic of
z, recursively obtained using its parents gathered in the set pz = {a : (a, z) ∈
LGO} and it is given by:

μ(z) =

{
1 if z is a root,∏

a∈pz

μ(a)
ca

otherwise,
(5)

where ca is the number of children of parent term a.
GO-universal [18] is given by:

simGOu(a, b) =
ICT (a, b)

max{ICT (a), ICT (b)} , (6)

where ICT (a, b) = −lnμ(a, b). simGOu(a, b) induces a distance (dGOu(a, b))
or a metric based on information theory that is given by: dGOu(a, b) =
1 − simGOu(a, b). The more topological information two concepts share, the
smaller their distance and the more similar they are.

3 Fuzzy Spectral Modularity

Network modularity is used for measuring the strength of community structure
in networks and also as an objective function to maximize with suitable opti-
mization methods. Q is a scalar value ranging between −1 and 1. Networks with
high modularity imply the existence of dense connections within communities
and of sparse links between them. Although modularity suffers a resolution limit
especially in the case of small communities, it has the advantages of not requiring
prior knowledge about the number or sizes of communities, and it is capable of
discovering network partitions composed of communities having different sizes.
Network modularity (Q) [21] is defined as:

Q =
1

2m

∑
i,j

[
Aij − kikj

2m

]
δ(ci, cj) (7)

where Aij is the weight of edge linking vertices i and j, ki =
∑

j Aij is the degree
of vertex i, ci is the community to which node i is assigned, m = 1

2

∑
ij Aij , and

δ(ci, cj) function is 1 if ci is the same as cj and 0 otherwise.
Spectral clustering refers to methods used to cluster n objects based on the

evaluation of the Laplacian matrix obtained from the data similarity matrix
(which is symmetric and non negative), and then in application of a cluster-
ing technique (such as K-Means) to data in a subspace spanned by the first k
eigenvectors of the Laplacian matrix. Several approaches exploit spectral theory
for clustering, such as un-normalized spectral clustering by Shi and Malik [7],
normalized spectral clustering by Ng et al. [22], random-walk spectral clustering
by Melia and Shi [7].
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The Fuzzy C-Means Spectral Clustering Modularity (FSM) commu-
nity detection method introduced in [16] applies the following three improve-
ments to the original Ng et al. [22] spectral clustering algorithm, when used to
detect communities in networks:

1. First, the estimation of the number of clusters k is performed by the modu-
larity maximization procedure presented by Newman and Girvan in [21]; the
estimated number of clusters is applied for both selecting the top eigenvectors
of the Laplacian matrix, and setting the number of clusters for the clustering
algorithm.

2. Then, clustering in the affinity subspace spanned by the first k eigenvectors
is performed with the application of the Fuzzy C-Means (FCM) clustering
algorithm [4] instead of K-Means (used in [22]). As FCM considers that an
instance may belong to two or more clusters at the same time, with different
membership degrees, this choice supports the detection of overlapping com-
munities and can allow us to understand the role that each protein may play
in different communities. The distortion that is minimized by the FCM is
defined as: ∑

l

∑
j

(Ulj)m||xl − yj ||2, (8)

with m a fuzziness parameter, m > 1, again subject to
∑

j Ulj = 1 ∀l.
3. Following FCM, we applied the spreadability measure ξ [15] as a threshold to

remove the nodes with low membership. Spreadability refers to the node capa-
bility of spreading information among the different communities belonging to
a network. A node s has a high ξ if it belongs to more than one community.
Such nodes affect the network flow and information broadcasting in different
communities. The spreadability measure depends on the dispersion in node
memberships.
It is calculated using the following steps:
(a) For each node s, having membership U1..k(s) in k communities and stan-

dard deviation σ, we measure the spreadability cut given by:

� = σ(U1..k(s)) − σ2(U1..k(s)). (9)

(b) Assign s to each community ci having membership > �, then estimate
the number of belonging communities given by:

λs =
∣∣I/s

∣∣ , I/s = |{ci|Uci (s) > �}| . (10)

(c) Nodes having λ > 1 are identified as fuzzy, and the more the λ > 1 the
more the node is spreadable (that is, has significant influence across the
network communities), while nodes having λ = 1 are referred as crisp
(that is, their influence does not extend beyond their own communities).

(d) Spreadability for a fuzzy node s belongs to λ overlapping communities is
given by:

ξ =
λ∑

i=1

Ui(s), (11)
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s.t, s is member in ci, while for crisp node is given by:

ξ = 1 − max(U1..k(s)). (12)

It is worth noting that � provides s a robust and global fuzzy community
identification criterion, and unlike other such as mean μ =

∑
U1..k(s), which

is sensitive to noise and membership variation. Moreover, it does not have
the limitation of other measures, e.g., the method in [27], exponential entropy
given by χ(s) = Πk

i=1ui(s)−ui(s), and the bridgeness score in [20] given by
b(s) = 1 − √

kσ2(U1..k(s)), that requires an external parameter choice for
tuning significant memberships [9].

4 The SC-FSM Community Detection Method

The Semantic Clustering Fuzzy Spectral Modularity community detection
method (SC-FSM ) measures the semantic similarity using both annotation
and topology basis by employing an ensemble of XGraSM and GO-universal
(see Sect. 2) similarities to characterize the analyzed proteins. We use the evi-
dence accumulation coding to build a consensus similarity exploiting the protein-
protein interaction weights known experimentally from [11] and we apply FSM
to the consensus similarity matrix for detecting the communities in spectral
space.

The annotation-based measures use annotations of related semantic terms,
while the topology based approaches consider the intrinsic topology of GO. After
employing the semantic enrichment of data using the annotation technique based
on XGraSM method [5] and Resnik similarity, we built a consensus similarity [8]
combining this metric with the topological similarity based GO-universal app-
roach [18] as shown in Fig. 1.

As a protein may participate in several biological processes or carry out
different molecular functions, it may be annotated to several terms in Gene
ontology. To obtain the semantic similarity between two interacting proteins,
we can combine semantic enrichment measures using different mixing strategies
such as average, maximum, averaging all the best matches, and best match
average [2,25].

The Best Match Average (BMA) estimates the average of similarity between
best matching terms [2]; For two annotated proteins p and q it is the mean of the
following two values: average of best matches of GO terms annotated to protein
p against those annotated to protein q, and average of best matches of GO terms
annotated to protein q against those annotated to protein p, it is given by:

BMA(p, q) =
1
2

⎛
⎝ 1

n

∑
t∈TX

p

max
s∈TX

q

S(s, t) +
1
m

∑
t∈TX

q

max
s∈TX

p

S(s, t)

⎞
⎠ (13)

where S(s, t) is the semantic similarity score between terms s and t, TX
p is a set

of GO terms in X representing the molecular function (MF), biological process
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Fig. 1. The proposed semantic clustering fuzzy spectral modularity community detec-
tion method (SC-FSM ). The method builds an ensemble of the annotation and topol-
ogy based semantic similarities together with PPI and employ FSM community detec-
tion method to infer the overlapping significant k communities with nodes having
membership exceeding �.

(BP) or cellular component (CC ) ontology annotating a given protein p and
n = |TX

p | and m = |TX
q | are the number of GO terms in these sets. These two

approaches produce different scores and they are equal only when n = m, which
is not often the case in a set of annotated genes or proteins.

In [19] simresnikXG together with BMA supported the best results among
all the analyzed annotation based approaches, and simGOu together with BMA
mixing strategy showed the best results among all the analyzed topology based
approaches We use the same settings in SC-FSM as well as the experiments
shown in Sect. 5. The proposed approach could then infer significant interaction
communities in the spectral space.

The XGraSM and GO-universal semantic similarity measures were obtained
using Proteins interactions and ontology3, and IT-GOM : Integrated Tool for
IC-based GO Semantic Similarity Measures4.

Note that many studies showed that while analyzing the correlation between
semantic similarity and other biological aspects (or dimensions) such as protein
pathways, protein complex, protein families (Pfam), and gene expression is much
more interesting to characterize the semantic relations than sequence similarity
in many biological scenarios. Moreover, the information obtained from these
aspects may be not be uniform (i.e., in some biological cases some dimensions
may contain more interesting information than others), therefore relying on one
dimension only may not be sufficient to infer the intrinsic relations between the
biological entities (proteins) existing in the network.

3 http://www.lasige.di.fc.ul.pt/webtools/proteinon/.
4 http://www.cbio.uct.ac.za/ITGOM/tools/itgom.php.

http://www.lasige.di.fc.ul.pt/webtools/proteinon/.
http://www.cbio.uct.ac.za/ITGOM/tools/itgom.php.
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Hence, SC-FSM rely on building an ensemble of this information when mea-
suring the semantic similarity. This helps to infer significant biological results as
we will experimentally show in Sect. 5.

5 Saccharomyces Cerevisiae PPIs Discovery

5.1 Dataset

In this work we analyzed the S. cerevisiae’s PPIs network. The study of the
S. cerevisiae genetic interactions and their organization by function is the target
of many bioinformatic studies [3]. S. cerevisiae genome sequence and a set of
deletion mutants represents about 90% of the yeast genome. S. cerevisiae PPIs
can be used to infer regulation of eukaryotic cells. With some 12 million base pairs
and 6,466 genes, at least 31% of S. cerevisiae genes have a human homologue [3].

We use the S. cerevisiae proteins dataset of Krogan et al [11]. In that paper
the authors used a tandem affinity purification to process 4,562 different tagged
proteins of the yeast Saccharomyces cerevisiae. Each preparation was analyzed
by both matrix-assisted laser desorption/ionization time of flight mass spectrom-
etry and liquid chromatography tandem mass spectrometry. Then an ensemble
of decision trees was applied to integrate the mass spectrometry scores and to
assign the probabilities of protein-protein interactions that were collected in the
dataset.

This dataset is an undirected, weighted graph G = (V,E) with V vertices,
corresponding to proteins, and E edges indicating protein-protein interaction
probabilities (weights) obtained from experiments shown in [11].

We performed our experiments on subgraph from S. cerevisiae benchmark
dataset having characteristics of 80 proteins and 76 interactions chosen on the
basis of prior knowledge about protein involved in different biological process. For
instance, protein YAL001C is the largest of six subunits of the RNA polymerase
III transcription initiation factor complex (TFIIIC); part of the TauB domain of
TFIIIC that binds DNA at the BoxB promoter sites of tRNA and similar genes
cooperates with Tfc6p in DNA binding [6].

5.2 Experimental Results and Discussion

We note that many community detection methods such as Newman’s edge
betweenness community detection method [21] are not efficient on large sub-
graphs because in these situations the random null model underlying modularity
becomes unreasonable.

To apply the SC-FSM community detection method proposed in Sect. 4,
we evaluated the number of clusters k using Newman & Girvan’s modularity
approach [21] on the analyzed subgraph.
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Then we built the ensemble information content semantic similarity by com-
bining both XGraSM [5] annotations, and applying GO-Universal [18] which
consider the topological structure in gene ontology. Using the Evidence Accu-
mulation Coding (EAC) [8], we built a consensus similarity matrix using the
semantic information and PPI interaction measurements of [11] study.

Using the proposed SC-FSM approach, we could characterize the fuzzy com-
munities by calculating their fuzzy memberships. We consider a protein a belong-
ing to community c if it has a significant membership value, as illustrated in
Sect. 4 depicted in Fig. 2.

Fig. 2. Fuzzy membership heatmap of the analyzed S. cerevisiae proteins in five
communities.

In [14] we showed that FSM community detection method employed in SC-
FSM (see Fig. 1) outperforms the state of the art methods in terms of stability of
the detected communities, performance, and accuracy using different benchmark
networks.

In Fig. 3, we depict the semantic similarity between proteins (sim(a,b)) for
each of the 80 interactions (edges) in the analyzed S. cerevisiae’s PPIs network.
For each interaction we measured XGRASm-Resnik annotation based similarity,
and GO-universal topology-based semantic similarity through biological process
(BP), molecular function (MF), and cellular component (CC) directed acyclic
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graphs of gene ontology. The results demonstrate higher correlation between
measures in biological process specially because it is better defined than others
in the gene ontology.

Moreover, we highlight that the proposed SC-FSM extends the depth of
community analysis and infers the core interactions in the detected communities
those having strong correlation throughout the different biological spaces (aka,
dimensions) of gene ontology. For instance, proteins YAL001C and YGR047C
are strongly correlated together in terms of BP, MF, CC dimensions either in
the topology space or the annotation space as depicted in Fig. 3.

Fig. 3. Semantic enrichment in yeast S.cerevisiae PPIs of GO biological process (BP),
molecular function (MF), and cellular component (CC) aspects. The graphs compare
the evaluations obtained using GO-universal and XGraSM.

Figure 4 shows the inferred fuzzy communities obtained in spectral space
using SC-FSM approach (see Sect. 3). The number of communities (k = 5) is
obtained using modularity maximization. We depict the fuzzy membership of
nodes in Fig. 4 and we adopted the spreadability measure to eliminate the nodes
with very low membership to each cluster.

We observe that exploiting annotation and topological structure during
semantic enrichment enriched the significance of detected communities.
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Fig. 4. Results of the SC-FSM community detection method on the analyzed S. cere-
visiae PPIs network. Edges weights are PPIs probabilities. The network is partitioned
into five communities. Proteins in the gray region, framed with diamonds, act as bridge
nodes with fuzzy memberships.

6 Conclusions

In this paper we proposed a semantics-based fuzzy spectral modularity approach.
We performed a semantic enrichment of data using the annotation technique
based on the XGraSM method [5] and Resnik’s similarity, and we built a con-
sensus similarity [8] combining this metric with the topological similarity-based
GO-universal approach [18] with an application to yeast Saccharomyces cere-
visiae PPIs. The proposed approach inferred five significant overlapping inter-
action communities in the spectral space.

We conclude that estimating the semantic similarity by combining different
sources and biological repositories such as gene ontology or KEGG pathway can
boost the detected functional communities. Moreover, mixing the semantic sim-
ilarity measures together considering different graph characteristics can improve
the community detection methods in biological networks.
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