
Threshold Single Password Authentication

Devriş İşler(B) and Alptekin Küpçü

Koç University, İstanbul, Turkey
{disler15,akupcu}@ku.edu.tr

Abstract. Passwords are the most widely used form of online user
authentication. In a traditional setup, the user, who has a human-
memorable low entropy password, wants to authenticate with a login
server. Unfortunately, existing solutions in this setting are either non-
portable or insecure against many attacks, including phishing, man-
in-the-middle, honeypot, and offline dictionary attacks. Three previous
studies (Acar et al. 2013, Bicakci et al. 2011, and Jarecki et al. 2016)
provide solutions secure against offline dictionary attacks by addition-
ally employing a storage provider (either a cloud storage or a mobile
device for portability). These works provide solutions where offline dic-
tionary attacks are impossible as long as the adversary does not corrupt
both the login server and the storage provider.

For the first time, improving these previous works, we provide a more
secure generalized solution employing multiple storage providers, where
our solution is proven secure against offline dictionary attacks as long
as the adversary does not corrupt the login server and threshold-many
storage providers. We define ideal and real world indistinguishability for
threshold single password authentication (Threshold SPA) schemes, and
formally prove security of our solution via ideal-real simulation. Our solu-
tion provides security against all the above-mentioned attacks, including
phishing, man-in-the-middle, honeypot, and offline dictionary attacks,
and requires no change on the server side. Thus, our solution can imme-
diately be deployed via a browser extension (or a mobile application) and
support from some storage providers. We further argue that our proto-
col is efficient and scalable, and provide performance numbers where the
user and storage load are only a few milliseconds.

Keywords: Password based authentication · Threshold secret sharing ·
Dictionary attack · Phishing

1 Introduction

Passwords are the most widely used form of online user authentication. In a
traditional password based authentication, there are two parties: the user who
has a human-memorable low entropy password and the login server that cre-
ates an account for the user and keeps the user’s account information (e.g.
<username, hash(password)>) to authenticate the user later when she wants

c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 143–162, 2017.
DOI: 10.1007/978-3-319-67816-0 9

144 D. İşler and A. Küpçü

to login. Another related field includes password authenticated key exchange
(PAKE) protocols, where a user and a server desire to establish a secure and
authenticated channel via a shared secret password [3,6,7,19,20]. Passwords are
also employed in password-protected secret sharing (PPSS) techniques, where
the user stores her credential(s) on a server or among multiple servers [5,8,9,16].
The server(s) verify that the user is legitimate before giving an access to the
stored secret, and this authentication is done via passwords.

The existence of servers’ adversarial behaviors such as phishing, man-in-the-
middle, and honeypot attacks, where the adversarial server tries to trick the
user to willingly reveal her password (unaware of the attack), as well as offline
dictionary attacks that can be mounted by the server or hackers obtaining the
server database are commonly known and powerful attacks on users’ passwords.
Unfortunately, all the above-cited constructions, where the server stores the
user’s password as plain text or the hash of the password, lose security against
such attacks. Indeed, such attacks are very prevalent, and recent studies even
propose improved offline dictionary attacks [24]. The damage of the successful
attack is increased dramatically if the user reuses the same password to register
with more than one login server, which is a common practice [13].

Our focus in this paper is on password based authentication secure against
those attacks. Consider the following approaches:

– Traditional insecure approach: Store the output of a deterministic (hash)
function of the password at the login server. The user’s password is easily com-
promised in the current traditional approach against adversarial servers (e.g.
phishing, man-in-the-middle, honeypot). Moreover, it is directly vulnerable
to offline dictionary attacks by hackers obtaining the login server database,
since recomputing the output of the deterministic function and comparing
against the database enables such offline dictionary attacks.

– Secure but non-portable approach: Store a verification key at the login
server, where the corresponding secret key is blinded by the user’s password
and stored on the user’s machine or USB device. When the keys are generated
independent of the password, such an approach will protect the user against
the mentioned attacks. Unfortunately, this approach is not user friendly in
the contemporary setting where each user owns multiple devices or employs
public terminals, as this incurs portability issues (even with USB storage
employed, note that not all devices have USB ports).1

– Secure and usable approach: Store the verification key at the login server
and securely store the corresponding secret key blinded by some function of
user password at storage provider(s) different from the login server. Such a
storage provider can be a cloud storage or mobile device (as opposed to a
non-portable location above). This was first observed and the first solution

1 Non-cloud-based password managers also fall into this setting.

Threshold Single Password Authentication 145

was constructed by Acar et al. [1] (with their patent application dating 2010
[2]), and later also used by Jarecki et al. [17] and also Bicakci et al. [4].2

The only known provably secure (against offline dictionary attacks) and usable
password based authentication or PAKE systems are the Acar et al. [1] (with
their patent application dating 2010 [2]) and Jarecki et al. [17] solutions (Bicakci
et al. [4] present a solution idea briefly, but without a formal security proof).
They include a single storage provider (which is either a cloud storage or a mobile
device) for the secret storage. The underlying assumption is that the protocol is
secure unless the login server and the storage provider are corrupted by the same
adversary. Thus, when the same adversary corrupts both the login server and the
storage provider, or they simply collude, they can mount an offline dictionary
attack to find the user password. Any weaker adversary can always perform an
online attack ; however, online attacks are not big threats due to several reasons.
Firstly, they are inherently many orders of magnitude slower compared to offline
attacks due to network delays. Secondly, the honest login servers and storage
providers will block the adversary after several unsuccessful attempts, or limit
the rate of such attempts.

For the first time, we present a single password authentication (SPA)
protocol that can employ possibly more than one storage provider (any combi-
nation of cloud or mobile devices). In our Threshold SPA solution, we employ
a total of n storage providers, and a threshold 1 ≤ t ≤ n. This setting serves two
purposes. Firstly, for an adversary to be able to successfully mount an offline dic-
tionary attack, he must corrupt the login server in addition to t storage providers.
Secondly, to login, the user must access t storage providers out of n; thus avail-
ability can be balanced against security easily by setting these parameters. While
the underlying techniques are different, in terms of security, the previous solu-
tions correspond to setting t = n = 1.

Delving deeper, Acar et al. [1] discuss in one paragraph that it is possible
to convert their solution to employ more than one storage provider using secret
sharing. Unfortunately, when done in a straightforward manner, this results in
an insecure solution in the sense that corrupting the login server and only one
storage provider will still enable the adversary to perform an offline dictionary
attack. As mentioned earlier, they employ the storage provider to store the secret
key needed for authentication. This secret key is protected by the password.
When this secret is simply shared among multiple storage providers, there needs
to be a mechanism to prevent the login server to obtain these shares from the
storage providers, as otherwise the adversarial login server can simply request
these shares and perform an offline dictionary attack. To prevent this, only the
entity knowing the password should be able to retrieve these shares, meaning that
there needs to be another password based authentication mechanism also done at
the storage provider side, creating a recursive problem, needing further storage
providers indefinitely. If traditional password based authentication approaches
2 Cloud-based password managers are related to this setting, but almost all of them

employ the user master password for authenticating with their own servers, hence
having the same insecurities there.

146 D. İşler and A. Küpçü

are employed instead, then this password based authentication subprotocol will
enable the login server to collude with only one storage provider to mount the
offline dictionary attack, since the user only has a single password and hence the
same authentication is employed at every storage provider. Moreover, their one
paragraph extension idea lacks any formal proof where we give a formal proof
for Threshold SPA for the first time.

In our solution, while the user still has only a single password, our protocol
provably ensures that the following adversaries will be completely
unsuccessful:

– An adversary that controls threshold-many storage providers (but not the
login server).

– An adversary that controls less than threshold-many storage providers in
addition to the login server.

– An adversary who successfully mounts a phishing, man-in-the-middle, or hon-
eypot attack.

We assume that if any party is corrupted by an adversary once, it remains
corrupted (which is realistic, since the adversary can install backdoors on a
system once corrupted). Our solution only fails against a local adversary (such
as a keylogger on the user’s computer), since it can sniff the password. Our
contributions are as follows:

1. We define a general structure of threshold single password authentication
(Threshold SPA) systems and propose the first construction with a formal
proof.

2. We formally present ideal and real world definitions for security of Thresh-
old SPA protocols, for the first time in the literature.

3. We formally prove the security of our Threshold SPA solution via ideal-real
simulation, showing impossibility of offline dictionary attacks.

4. Our Threshold SPA method is also secure against phishing and man-in-
the-middle attacks during authentication, after a secure registration, and
honeypot attacks during registration and authentication.

5. We present performance evaluation numerically, showing that our tech-
niques are easily applicable with today’s hardware.

6. Our construction does not require any change at the login server side and
can work with a variety of storage providers (e.g. mobile devices and cloud
providers).

Overview: Our solution achieves full threshold security as follows: We create
a salt as the secret independent of the password pwd and compute verification
information as the hash of salt, password, and login server domain name ls
(Hash(salt||pwd||ls)). Then, the verification information is shared with the login
server whereas the salt is secret shared. But, these shares are not directly sent
to the storage providers. We employ a layer of encryption to hide each share,
and this encryption employs an oblivious pseudorandom function (OPRF) F
output over the password pwd as its key. Moreover, each storage provider will

Threshold Single Password Authentication 147

use a different key ki for the OPRF, and thus each share will be encrypted with
the corresponding Fki

(pwd) as the key. This means, the storage providers also
hold essentially no information regarding the password. This is true because
as first observed by Acar et al. [1] (for this discussion simply assume one time
pad is employed for encryption, though they discuss in further detail how a
block cipher can be employed), when a random value (such as the secret key or
shares) is encrypted with the password or any deterministic value derived from
the password (such as hash or OPRF over the password), an offline dictionary
attack is impossible without knowing what the decryption needs to reveal since
any password in the dictionary would yield a valid plaintext.

Later, for authentication, the user interacts with threshold-many servers
using the OPRF protocol, reconstructs the original secret salt after decryption
with her correct password, and then computes the verification information as
Hash(salt||pwd||ls) and sends it along with her username to the login server.
Only when the login server and at least threshold-many storage providers collude
they can reconstruct the secret salt by trying different passwords, and calculate
the hashes offline. Otherwise, offline dictionary attacks are impossible. Consider,
for example, the adversarial login server potentially colluding with t − 1 storage
providers. He needs to interact online through the OPRF protocol with at least
one honest storage provider to be able to reconstruct the secret salt, which can be
rate/attempt limited. Moreover, consider that threshold-many storage providers
are colluding while the login server is honest. Even though they can reconstruct
a secret salt, since all passwords yield to a valid (in terms of format) secret salt,
they can only try to authenticate online with the login server to verify whether
or not the secret salt they constructed is the correct one. Again, this can easily
be rate/attempt limited.

2 Related Work

Traditional password-based authentication takes place between two parties (a
user and a login server). However, Boyen [5] showed that any password-based
authentication between a user and a login server is vulnerable to an offline dic-
tionary attack by the login server (or hackers obtaining its database). Tatlı [24]
improved offline dictionary attacks on password hashes to find some additional
passwords assumed to be strong and complex.

Ford et al. [14] suggest a password hardening protocol where the user, hold-
ing a weak-password pwd, interacts with one or more servers by blinding the
password to create a secret credential (to decrypt, or authenticate herself to
a login server, etc.) from shares received by the hardening server(s) (which is
like storage providers). The hardening server(s) cannot learn anything about the
password and the secret unless all of them collude. During the authentication,
for each login server, the user runs the password hardening protocol to retrieve
the same secret as in the registration by communicating with hardening servers.
The solution proposed do not have a formal proof and requires interaction with
all of the servers to be able to reconstruct the secret. MacKenzie et al. [20]

148 D. İşler and A. Küpçü

propose a threshold PAKE where the password is secure unless threshold-many
servers collude. [20] requires servers to know each other. [18] proposes to create a
password file storing false passwords called honeywords per user account. In case
the adversary steals the password file, and mistakenly employs a honeyword, the
system is alerted.

Mannan et al. [21] propose to secure user’s password from untrusted user
computer (malicious browser) assuming the server holds the user password.
Camenish et al. [10] distribute the password verification over multiple servers
to secure the password against server compromise where the server keeps the
hash of username and password hash(username||password). PwdHash [22] pro-
duce a different password for each login server by simply computing the hash
of the password and login server domain where the hash is a pseuodorandom
function of the domain keyed with the user password H(password, domain) =
PRFpassword(domain) and the server stores the hash value. The discussed solu-
tions do not provide security against offline dictionary attack in case the server
database is compromised. Increasing the number of parties by adding storage
provider(s) is one way to help prevent offline dictionary attacks.

Acar et al. [1] (with their patent application dating 2010 [2]) present the first
provably secure single password authentication protocols where the user employs
a cloud or mobile storage provider to keep her secret to prevent offline dictionary
attacks. The user’s password is secure against offline dictionary attacks unless the
storage provider and the server are colluding. Their mobile device based solution
inputs the password to the device, and hence provides security against malware
on the public terminal. They provide security against phishing indirectly because
the user identifier used at the storage provider depends on the server name. Since
the phishing site name is different from the actual login server name, the retrieval
of the user secret fails. Our main differences are to enable a fully secure threshold
construction for the first time, without requiring any changes at the login server,
making our solution much easier to deploy.

Following Acar et al. [1], Jarecki et al. [17] provided a device enhanced pass-
word authenticated key exchange protocol employing a mobile device storage.
Similar to [1], their protocol is secure against offline dictionary attacks assuming
the login server and the mobile device are not colluding. They provide a recov-
ery procedure in case the device is lost. They leave threshold authentication as
future work, which is what we achieve.

Bicakci et al. [4] discuss briefly a single password solution employing a storage
provider for unique blind signatures (similar to Acar et al. [1]), but they neither
delve into the details of their solution nor present a security proof. Nevertheless,
we are influenced by their work in terms of requiring no change at the login
server, and achieve to distribute the storage provider for the first time.

3 Preliminaries

Let λ ∈ N be security parameter. A probabilistic polynomial time (PPT) algo-
rithm A is a probabilistic algorithm taking 1λ as an input and has running time

Threshold Single Password Authentication 149

bounded by a polynomial in λ. We say that a function negl(λ) is negligible if
for every positive polynomial poly(λ) there exists a λ′ ∈ N such that ∀λ > λ′

negl(λ)<1/poly(λ).

Hash Function: A hash function H is a deterministic function from an arbitrary
size input to a fixed size output, denoted H : {0, 1}∗ → {0, 1}l. The hash function
is assumed to be collision resistant if it is hard to find two different inputs x �= y
that hash to the same output H(x) = H(y).

Oblivious Pseudorandom Function (OPRF): A psuedorandom function
(PRF) F is a function that takes two inputs: a secret function key k and an input
x to compute on, and outputs Fk(x). A function chosen randomly from a PRF
family (a PRF with random key k) is secure if it is distinguishable from a random
function with the same domain and range with only negligible probability for
all PPT distinguishers given oracle access. An Oblivious PRF (OPRF) [15] is a
protocol between two parties (sender and receiver) that securely computes Fk(x)
where the k and x are the inputs of sender and receiver, respectively, such that
the sender learns nothing from the interaction and the receiver learns Fk(x).

Symmetric Encryption Scheme: consists of three PPT algorithms:
KeyGen(1λ) generates a secret key sk, Encsk(msg) encrypts the message using
the secret key and outputs the ciphertext c. The decryption algorithm Decsk(c)
uses the secret sk to decrypt the ciphertext c, and outputs the original message
msg. The encryption scheme we use need to be semantically secure.

Threshold Secret Sharing (TSS): consists of two PPT algorithms
<s1, ..., sn> ← TSS(S) to create the n shares of the secret S, and for a threshold
t we use S ← TSSRecon(s1, ..., st) to reconstruct the original secret. We employ
the methodology of Shamir [23]. The security is that less than threshold many
shares provide theoretically no information regarding the original secret.

4 Threshold Single Password Authentication

In a Threshold SPA protocol, there are three types of players. There are users
who register with one or more login servers using (possibly) the same password,
and later on authenticate with these login servers. For this purpose, the users
store some secret information (that is needed for authentication with the login
servers) at one or more storage providers. The main objective of a Threshold
SPA solution is to protect the user’s password against offline dictionary attacks
by the storage providers, the login servers, and many other adversaries (including
phishing sites). Figure 1 shows an overview of the registration and authentica-
tion phases of a Threshold SPA protocol, considering a single user who registers
with a login server and stores the secret at n storage providers. Threshold in
this context refers to the fact that the user must communicate with some subset
(defined by the threshold) of storage providers to facilitate authentication with
the login server. It furthermore refers to the security of the solution: An offline
dictionary attack is possible only when the adversary controls the login server
and at least threshold many storage providers.

150 D. İşler and A. Küpçü

Fig. 1. Threshold-SPA Overview. The registration and authentication protocols are
separated by the dashed line.

The registration phase is for the user to register with the login server and
store the secret among storage providers. The user registers with the login server
whose domain is ls using a low-entropy password pwd (only secure against online
attacks). The login server obtains the user’s verification information vk and iden-
tifier userID such that the login server can authenticate the legitimate user
whenever the user wants to login. The user further stores some secret informa-
tion sharei with the storage providers, in a distributed manner. Some identifier
storUIDi is associated with this secret to facilitate later retrieval. More formally
we have the following multi-party protocol:

Registration

1. The user’s inputs are a user name userID for the login server whose domain
is ls, and a password pwd.

2. Each storage provider receives as output an identifier storUIDi and
a share sharei and stores the data received in the database. This share is
what the user wants to store among the storage providers depending on the
Threshold SPA protocol. The identifier is employed for later retrieval of the
stored share.

Threshold Single Password Authentication 151

3. The login server receives as output an identifier userID and a server
verification information based on user’s password vk of the user, and stores
them in his database. The verification information vk is used by the login
server to verify the user during the authentication phase.

The authentication phase is for the user who remembers the user name
userID and the password pwd to authenticate herself to the login server with
domain ls by interacting with threshold-many (t) storage providers to retrieve
and reconstruct the secret needed for authentication. Of course, in general it is
possible that t = n and hence all storage providers may need to be contacted.

Authentication

1. The user’s inputs are as before: the user name userID, the password pwd,
and the domain ls of the login server to authenticate with.

2. The login server’s inputs include the user identifier userID, as well as the
verification information vk corresponding to the user, and its domain ls.

3. Each storage provider’s inputs are the share sharei that they hold for
that user and the identifier storUIDi of that user.

4. The login server outputs accept or reject. The domain name ls is employed
to prevent phishing/man-in-the-middle attacks.

4.1 Security Definition

We define the ideal world and the real world for a Threshold SPA protocol, in
the spirit of Canetti [11].

Ideal World: The ideal world consists of a user U , a login server LS, n-many
storage providers SP = (Stor1, Stor2, . . . , Storn) (realize that SP denotes the
set of storage providers), and the universal trusted party T P (which is not a
real entity, and only exists in the ideal world).

Registration

1. U sends <userID, pwd> to T P.
2. T P computes the necessary steps to obtain the shares sharei and identifiers

storUIDi, and the verification information vk.
3. T P sends <userID, vk> to LS and <storUIDi, sharei> to each storage

provider in SP.

Authentication

1. U sends <userID, pwd> to T P.
2. T P sends userID to LS for login request.
3. T P sends storUIDi to at least threshold-many storage providers in SP for

retrieving the secret shares (wlog. assume all storage providers are employed).
4. SP send their shares share = {share1, share2, . . . , sharet}.
5. T P calculates the verification information vk using the shares from the SP

and the pwd from U , and sends vk to LS.

152 D. İşler and A. Küpçü

Real World: The real world consists of a user U , a login server LS, and storage
providers SP = (Stor1, Stor2, . . . , Storn). There is no universal trusted party
T P for a real world protocol π for the threshold-single password authentication.
The parties U , LS, and SP are involved in the real execution of the protocol π.

Definition 1 (Secure Threshold Single Password Authentication). Let
π be a probabilistic polynomial time (PPT) protocol for a threshold single pass-
word authentication. We say that π is secure if for every non-uniform PPT real
world adversary A attacking π, there exists a non-uniform PPT ideal world sim-
ulator S such that for both registration and authentication phases, the real and
ideal world interactions and outputs are computationally indistinguishable;

{IDEALS(aux)(userID, pwd, ls, λ)} ≡c {REALπ,A(aux)(userID, pwd, ls, λ)}

where aux ∈ {0, 1}∗ denotes the auxiliary input, and λ is the security parameter.

Note that such an ideal world definition assumes secure and authenticated
channels between parties. Furthermore, as there is only a single login server in
the ideal world, it does not include phishing (this is why ls domain is not part
of the ideal world). But it provides security against offline dictionary attacks.
In Sect. 5.2 we discuss the security of our solution for attacks like phishing not
covered by this ideal model definition.

5 Threshold SPA Construction

Our Threshold SPA construction is represented visually in Fig. 2 (registration
phase) and Fig. 3 (authentication phase). It is also described below.

Fig. 2. Threshold SPA construction registration phase

Threshold Single Password Authentication 153

Fig. 3. Threshold SPA construction authentication phase

Registration

1. The user
(a) generates a random salt as salt ← {0, 1}λ

(b) generates one OPRF key per storage provider as
ki ← OPRFKeyGen(1λ).

(c) runs threshold secret sharing construction scheme on salt to create the
secret share for each storage provider <s1, s2, ..., sn> ← TSS(salt).

(d) encrypts each share using oblivious pseudorandom function of the pass-
word pwd using generated OPRF key of each storage provider obtaining
ci ← EncFki

(pwd)(si).
Remark: Since the secret shares are random bitstrings, offline dictionary
attacks on these encryptions are impossible. Therefore, in our solution,
even all the storage providers,without the help of the login server, they
cannot break the security.

(e) computes verification information for the login server via a collusion-
resistant hash function as vk = H(salt||pwd||ls)
Remark: Salt is a randomstring with size of security parameter. For
that reason, the login server, without colluding at least t-many storage
provider, cannot perform a successful dictionary attack.

(f) computes the same identifier for all storage providers via a collusion-
resistant hash function as storUIDi ← H(userID||ls).
Remark: This identifier is only used to retrieve the correct values from
the storage providers that serve multiple clients. Remember that ls is
the domain name of the server the user is registering/connected to (e.g.
ls = paypal.com).

(g) sends <userID, vk = H(salt||pwd||ls)> to the login server, and
<storUIDi, sharei = (ci, ki)> to each storage provider.

(h) can forget all the data she computed that are cumbersome for her to
remember (e.g. K, ki=1,..,n).

154 D. İşler and A. Küpçü

2. The login server receives <userID, vk = H(salt||pwd||ls)>, and stores the
pair in his database.

3. Each storage provider receives <storUIDi, sharei = (ci, ki)> and stores
in the database.

Authentication

1. The user who is trying to authenticate with the login server with domain ls
computes the same storage identifier storUIDi ← H(userID||ls) and sends
it to at least t-many storage providers, and sends userID to login server.

2. Each storage provider finds the associated <sharei = (ki, ci)> with
storUIDi.

3. The user and each storage provider jointly execute the oblivious
pseudorandom function (OPRF) protocol. Each storage provider acts the
sender and the user acts as the receiver in these protocol executions. The
user obtains the OPRF value (with key ki) of the password Fki

(pwd) ←
OPRF (pwd, ki) as the output.
Remark: The OPRF result is received only by the user.

4. Each storage provider sends ci to the user.
5. The user decrypts each ciphertext ci using the corresponding OPRF output

already received to obtain the secret shares si ← DecFki
(pwd)(ci) and com-

putes threshold secret sharing reconstruction algorithm to reconstruct the
secret salt ← TSSRecon(s1, s2, ..., st).
Remark: Even when at least threshold-many storage providers collude and
reconstruct the ciphertext salt of the original secret salt by trying different
passwords in the dictionary, they still need to try the resulting salts online
against the login server, since each password in the dictionary would result
in a valid salt when decrypting shares S.

6. The user computes the verification information as vk = H(salt||pwd||ls)
and sends <userID, vk = H(salt||pwd||ls)> to the login server.

7. The login server looks up the verification information vk associated with
userID, and it accepts the response if and only if the vk sent by the user same
as the vk in the database.3

Remark: The domain name of the login server ls in the hash is to prevent
a phishing/man-in-the-middle attacks. This attack prevention is discussed in
Sect. 5.2 in details.

5.1 Security Proof

Theorem 1. Our Threshold SPA protocol is secure according to Definition 1
against any non-uniform PPT adversary A corrupting the login server LS
and (t-1) many storage providers SPc, assuming that the threshold secret
sharing construction is secure, encryption scheme is semantically-secure, the
oblivious pseudorandom function is secure, and the hash function is collision
resistant.
3 Or a hashed version of vk can be stored in the database, as usual.

Threshold Single Password Authentication 155

Proof. The simulator S simulates honest parties in the real world (which are
the user U and n − t + 1 storage providers denoted by SPh = {Storih} where
ih = t, ..., n wlog. since all storage providers in our solution are identical) and
corrupted parties in the ideal world (which are the login server LS and t − 1
storage providers denoted by SPc = {Storic} where ic = 1, ..., t − 1). S behaves
as follows:

Registration Phase:

1. S receives <userID, vk = H(salt||pwd||ls), {storUIDi, sharei = (ci,
ki)}i=1,...,t−1> from T P.
Remark: Since S simulates LS and SPc = {Storic}ic=1,...,t−1 in the ideal
world, S receives whatever they receive from T P. Because of the symmetry
of the actions of the storage providers in our construction, which ones are
corrupted by the adversary does not change anything in the proof as long as
the number of corrupted storage providers is below the threshold.

2. S sends <userID, vk = H(salt||pwd||ls)> to the adversarial LS in the real
world.

3. S follows the protocol as a user choosing a random password pwd′ from the
dictionary and a secret share si

′
c for each corrupted storage provider, and

sends <storUIDic , shareic = (c′
ic

, kic)> where ci
′
c = EncFki

(pwd′)(si
′
c) to

each adversarial storage provider {Storic}ic=t,...,n.
Remark: Adversarial storage providers receive encrypted shares of random
values with the random password pwd′. There is no efficient way for adver-
sarial storage providers to distinguish this from real behavior since one more
storage provider needs to be corrupted to mount a successful offline dictionary
attack. For our protocol, all storUIDi values are the same.

4. S stores all the data in its database.

Authentication Phase:

1. S receives <{storUIDi}i=1,...,t−1> from T P.
Remark: In general, since T P may pick any (threshold size) subset of storage
providers to work with, and so not all adversarial storage providers may need
to be contacted. We are assuming the most powerful adversary here, therefore
suppose that all adversarial storage providers are contacted.

2. S sends storUIDic to each storage provider Storic where ic = 1, ..., t − 1.
Remark: While S could already contact the T P regarding the storage
providers at this point (since it already possesses the necessary shares), this
may be distinguishable by the adversary. It is possible that the adversarial
storage providers will not provide correct values in the real world, and hence
the real authentication may fail. The simulator must ensure in that case that
the ideal authentication also fails. The following steps are hence necessary for
indistinguishability.

3. S executes the OPRF protocol with each {Storic}ic=1,...,t−1 using the pass-
word pwd′, and receives pic = Fkic

(pwd′) and also cic from each real Storic .

156 D. İşler and A. Küpçü

4. S checks whether or not each {Storic}ic=1,...,t−1 used the correct correspond-
ing shareic = (cic , kic) values. S already possesses the correct values obtained
from T P during registration in the database. For each pic , cic received from
Storic , S does the following: Using the corresponding c′

ic
, ki stored in its

database during registration, it computes pi = Fki
(pwd′) locally and checks

whether or not pic = pi and cic = c′
ic

. There are two cases for each Storic :
(a) Case 1: Correct shareic = (cic , kic) employed by the adversary in

the real protocol. S detects this by verifying that pic = pi and cic =
c′
ic

. Therefore, S sends (ci, ki) in its database to T P where ci, ki was
sent by T P during the registration.

(b) Case 2: Incorrect shareic = (cic , kic) employed by the adversary
in the real protocol. S detects this by verifying that pic �= pi or cic �=
c′
ic

.
i. If pic = pi and cic �=c′

ic
, S sends (cic , ki) to T P, where ki was in its

database.
ii. If pic �= pi, S generates a random OPRF key k′

i �= ki, and sends
(ci, k

′
i) to T P where ci sent by T P during registration.

Remark: Even though S does not have any knowledge about kic used
by Storic , he can easily understand if each Storic used the correct
input ki by computing the OPRF locally using ki in the database.
Then, if incorrect kic or cic are employed in the real protocol, S also
sends incorrect values to T P, in which case both the real and ideal
responses will fail.

5. T P calculates and sends the verification information vk and userID to S
based on the {ci, ki}i=1,...,t−1 received from S, together with (at least) one
(ci, ki) pair from one of the remaining n-t+1 honest storage providers to reach
the threshold t.
Remark: T P employs the ideal user provided password in the ideal world.
Therefore, if the adversarial storage providers in the real world acted honestly
meaning that the simulator provided correct ci, ki pairs, then the calculated
verification information will be valid, since it is computed using the actual
password. On the other hand, if the storage providers acted maliciously in
the real world, S would have detected this in the previous step, and would
have provided wrong pairs to T P in the ideal world, so in both worlds the
response will be invalid.

6. S forwards <userID, vk> to the adversarial LS in the real world.

Claim. The view of adversary A, controlling the login server LS and t − 1 stor-
age providers SPc, in his interaction with the simulator S is indistinguishable
from the view of his interaction with a real honest party.

Proof. S acts differently while sending shares c′
i calculated based on randomly

chosen pwd′ instead of sending actual ci (sent by T P) calculated based on actual
password pwd and executing the OPRF with the Storic using the password
pwd′ chosen randomly because S does not have the correct password. If A can
distinguish these behaviors, then we can construct another adversary A′ which

Threshold Single Password Authentication 157

breaks either the OPRF construction or TSS construction. We skip this relatively
straightforward reductions for the sake of space, but intuitively;

1. Reduction 1: The OPRF security ensures that the sender (the adversarial
storage providers) cannot distinguish the receiver (the simulated user) input,
whether it is the actual password pwd or another randomly chosen password
pwd′. Such a reduction will be a hybrid proof, where if at least one adversarial
storage provider distinguishes the simulator from the real user, that can be
used to distinguish the OPRF receiver input.

2. Reduction 2: The TSS security ensures that less than threshold many
providers cannot reconstruct the secret and also cannot check if the shares are
indeed related to the same secret. Intuitively, if adversarial storage providers
can distinguish the simulator, who employs random secret shares during the
registration, from the real user, then that can be used to break the security
of the underlying threshold secret sharing scheme.

Moreover, even though A knows the verification information vk =
H(salt||pwd||ls) and {ci, ki}i=1,...,t−1 from the registration, A cannot perform
an offline dictionary attack on the password because he needs one more (ci, ki)
to reach the threshold t to reconstruct the secret salt. This part can be informa-
tion theoretically secured if an information theoretically secure threshold secret
sharing scheme (e.g. Shamir [23]), semantically secure encryption scheme and
collision resistant hash function are employed.

Theorem 2. Our Threshold-SPA protocol is secure according to Definition 1
against any non-uniform PPT adversary A corrupting threshold many (t) stor-
age providers SPc, assuming that the threshold secret sharing construction
is secure, encryption scheme is semantically-secure, the oblivious pseudorandom
function is secure, and the hash function is collision resistant.

Proof. The simulator S simulates honest parties (which are the login server LS
n-t storage providers denoted by SPh = {Storih where ih = t+1, ..., n−t wlog.}
the user U) in the real world and corrupted parties (which are n storage providers
denoted by SPc = {Storic}ic=1,...,t) in the ideal world. S behaves as follows:

Registration Phase

1. S receives <storUIDi, sharei = (ci, ki)>, where i = 1, ..., t from T P. S fol-
lows the protocol as a user choosing a random password pwd′ from the
dictionary and a secret share sic for each corrupted storage provider, and
sends <storUIDic , shareic = (c′

ic
, kic)> where ci

′
c = EncFki

pwd′(si
′
c) to �-

many adversarial storage providers {Storic}ic=1,...,� and for the rest, it sends
<storUIDic , shareic = (ci, ki)> in the real world

2. S stores the all the data in its database.

158 D. İşler and A. Küpçü

Authentication Phase

1. S receives {storUIDi}i=1,...,t from T P.
Remark: If more than t-many storage providers (e.g. t+1) are corrupted then
they can employ a successful offline dictionary attack by taking advantage of
TSS. Since a wrong password would result wrong shares (from decryption
by the wrong password) and two reconstruction results of these shares (e.g.
two different combinations of t+1 shares) will be two different salts. If the
password is correct, then the reconstruction of the combinations will result
same salt.

2. S sends storUIDic to each Storic where ic = 1, ..., t.
3. S executes OPRF protocol with each {Storic}ic=1,...,t using the password

pwd′, and receives pic ← OPRF (pwd′, kic) and cic from each Storic in real.
4. S checks whether or not each {Storic}ic=1,...,t used the correct corresponding

shareic = (cic , kic) values. S already holds the correct corresponding values
during registration in the database. For each (pic , cic) received from Storic ,
S does the following: Using the corresponding ci, ki stored in its database
during registration, it computes pi = Fki

(pwd′) locally and checks whether
or not pic = pi, cic = ci for corresponding t − � Storic and cic = c′

ic
for �

many Storic . There are two cases for each Storic :
(a) Case 1: Correct shareic = (cic , kic) employed by the adversary

in the real protocol. S detects this by verifying that pic = pi and
cic = c′

ic
for �-many Storic and cic = ci for n-�-many Storic . Therefore,

S sends (ci, ki) in its database to T P.
(b) Case 2: Incorrect shareic = (cic , kic) employed by the adversary

in the real protocol. S detects this by verifying that pic �= pi or
cic �= c′

ic
for �-many Storic and cic �= ci for t-�-many Storic .

i. If pic = pi and cic �= ci are sent by α − many Storic and pic = pi and
cic �= c′

ic
are sent by β −many Storic , S sends α+β many (cic , ki) to

T P,where ki was in its database, in case α+β ≥ n− t+1. Otherwise,
meaning that α + β = t, S sends α + β many (ci, ki) to T P.

ii. If pic �= pi, S generates a random OPRF key k′
i �= ki, and sends

(cic , k
′
i) to T P.

Remark: Even though S does not have any knowledge about kic used
by Storic , he can easily understand if each Storic used the correct
input ki by computing the OPRF locally using ki in the database.
Then, if incorrect kic or cic are employed in the real protocol, S also
sends incorrect values to T P, in which case both the real and ideal
responses will fail. On the other hand, if t values were correct in the
real protocol, responses in ideal and real worlds will be both valid.

5. S will not receive anything from T P, and hence halts.

Claim. The view of adversary A, controlling t-many storage providers SPc, in
his interaction with the simulator S is indistinguishable from the view of his
interaction with a real honest party.

Threshold Single Password Authentication 159

Proof. S acts differently while sending �-many shares c′
i calculated based on

randomly chosen pwd′ instead of sending actual ci (sent by T P) calculated based
on actual password pwd and executing the OPRF with the Storic using the
password pwd′ chosen randomly because S does not have the correct password.
If A can distinguish this behavior, then we can construct another adversary A′

which breaks either the OPRF construction (as in Theorem 1) or password based
encryption scheme.

If adversarial storage providers can distinguish the simulator, who employs �
random secret shares and t−� actual shares during the registration, from the real
user, than it can distinguish actual secret share ci based on pwd from chosen ran-
dom share c′

ic
based on pwd′, that can be used to break the security of the under-

lying encryption scheme. Moreover, A can compute sic ← DecFkic
(pwd∗)(cic) for

each pwd∗ in the dictionary, then compute the threshold secret sharing recon-
struction algorithm to reconstruct the salt∗ ← TSSRecon(s1, s2, ..., st). For A
to verify if salt∗ (and hence pwd∗) is correct, he needs to have actual verifi-
cation information vk = H(salt||pwd||ls) to compare, which he does not have,
since only the login server has that information.

5.2 Further Analysis

Phishing protection: We consider a strong phishing attack with man-in-the-
middle between the user and the login server during authentication (not reg-
istration). This means, the user registered with a legitimate server with ls
(e.g. ls = paypal.com), but now is trying to authenticate with an attacker
with ls′ (e.g. ls′=paypat.com). Therefore, during registration, the user com-
puted storUIDi ← H(userID||ls), but now for authentication, storUID′

i ←
H(userID||ls′) values are computed instead. Thus, honest storage providers will
not proceed with the OPRF protocol if a phishing domain ls′ is used. Even when
all storage providers are corrupted by the phishing attacker and the correct salt is
obtained, remember that the original registered vk ← H(salt||pwd||ls), whereas
during attack, the user will send vk′ ← H(salt||pwd||ls′) to the attacker. This
means the phishing/man-in-the-middle attacker cannot authenticate with the
original login server on the user’s behalf. Furthermore, because of the security
of salt, the adversary cannot obtain any information about the user password,
unless threshold-many storage providers are also corrupted.

Handling different domains of the same login server: Ross et al. [22] sug-
gest an approach that enables recognizing that amazon.com.de and amazon.co.uk
accounts belong to the same login server and one registration is indeed enough.
Using the same approach for setting ls values, we can also enable the user to
authenticate with any one of the valid domains of the login server.

Remembering the storage providers: The human user is not required to
remember the storage providers. There are several easy solutions. As addressed
by Camenisch et al. [9], the user can remember only a few storage providers who
can help direct to other storage providers. Alternatively, a browser extension or
a mobile device may remember the list of storage providers employed. Finally,

https://www.amazon.de/
https://www.amazon.co.uk/

160 D. İşler and A. Küpçü

if all storage providers in the whole system are employed by all users, such a
public list can be employed, and t of them may be contacted by the user for any
given authentication attempt. Observe that publicly listing storage providers
does not affect cryptographic security. Our ideal model allows the adversary to
know all the storage providers. Therefore, their identities are not hidden when
protecting against offline dictionary attacks.

6 Performance Evaluation

In this section, we discuss performance evaluation for the user and storage
providers. Since the login server acts the same as current servers, we did not
discuss its efficiency. Performance measurement is processed on a standard lap-
top machine with Intel Core(TM) i7-5600U CPU 2.60 GHz, 8.00 GB RAM, and
64-bit OS. For our implementation, we choose AES [12], OPRF in [17], and
TSS [23] with various thresholds. Table 1 shows the computational performance
of the authentication and registration phases. For the registration, the storage
providers do not compute anything, only receive and store some value. Finally,
the user can communicate with the storage providers in parallel, which decreases
the network round trip to 1.5 rounds per authentication, which should be added
to the login total time in practice.

Table 1. Performance evaluation of Threshold SPA (in milliseconds)

User (Reg.) User (Auth.) Storage provider Login total

1–1 Threshold 0.85 1.14 0.35 1.50

3–6 Threshold 2.84 2.83 0.70 3.53

5–10 Threshold 4.46 3.99 1.30 5.30

7 Conclusion

Recent studies [1,4,17] introduced cloud or mobile storage providers to secure
passwords against offline dictionary attacks currently prevalent in password-
based authentication systems. They provided solutions that ensure that as long
as the adversary does not corrupt the login server and the storage provider
together, offline dictionary attacks will be prevented. For the first time, in this
paper, we provide novel techniques to ensure that multiple storage providers can
be employed, and the adversary now must corrupt the login server and threshold-
many storage providers to be able to mount an offline dictionary attack. We
provided an ideal and real world security definition and presented an ideal-real
simulation proof. We further ensure phishing, man-in-the-middle, and honeypot
attacks are also thwarted. Lastly, our construction employs efficient symmet-
ric key primitives and can easily work with today’s hardware, even on mobile
devices.

Threshold Single Password Authentication 161

Acknowledgements. We thank Prof. Jens Groth from University College London
for his valuable comments and discussions that greatly improved the manuscript, and
acknowledge the support of TÜBİTAK (the Scientific and Technological Research
Council of Turkey) under project numbers 114E487 and 115E766, European Union
COST Action IC1306, and the Royal Society of UK Newton Advanced Fellowship
NA140464.

References

1. Acar, T., Belenkiy, M., Küpçü, A.: Single password authentication. Comput. Netw.
57(13), 2597–2614 (2013)

2. Belenkiy, M., Acar, T., Morales, H., Küpçü, A.: Securing passwords against dic-
tionary attacks (2015). US Patent 9,015,489

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, pp. 72–84. IEEE (1992)

4. Bicakci, K., Atalay, N.B., Yuceel, M., van Oorschot, P.C.: Exploration and field
study of a browser-based password manager using icon-based passwords. In: Work-
shop on Real-Life Cryptographic Protocols and Standardization (2011)

5. Boyen, X.: Hidden credential retrieval from a reusable password. In: Proceedings of
the 4th International Symposium on Information, Computer, and Communications
Security, pp. 228–238. ACM (2009)

6. Boyen, X.: HPAKE: password authentication secure against cross-site user imper-
sonation. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 279–298. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6 19

7. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 12

8. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-authenticated
secret sharing UC-secure against transient corruptions. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 283–307. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 13

9. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: how to recon-
struct your secrets from a single password in a hostile environment. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 256–275. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-44381-1 15

10. Camenisch, J., Lehmann, A., Neven, G.: Optimal distributed password verifica-
tion. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 182–194. ACM (2015)

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Heidelberg (2013)

13. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 657–666. ACM
(2007)

14. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: Proceedings of the IEEE 9th International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WET ICE 2000), pp. 176–
180. IEEE (2000)

http://dx.doi.org/10.1007/978-3-642-10433-6_19
http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/978-3-662-46447-2_13
http://dx.doi.org/10.1007/978-3-662-46447-2_13
http://dx.doi.org/10.1007/978-3-662-44381-1_15

162 D. İşler and A. Küpçü

15. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 17

16. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45608-8 13

17. Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Device-enhanced password
protocols with optimal online-offline protection. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pp. 177–188. ACM
(2016)

18. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, pp. 145–160. ACM (2013)

19. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). doi:10.1007/
3-540-44987-6 29

20. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 385–400.
Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 25

21. Mannan, M., van Oorschot, P.C.: Using a personal device to strengthen password
authentication from an untrusted computer. In: Dietrich, S., Dhamija, R. (eds.)
FC 2007. LNCS, vol. 4886, pp. 88–103. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77366-5 11

22. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: Usenix Security, Baltimore, MD, USA,
pp. 17–32 (2005)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Tatli, E.I.: Cracking more password hashes with patterns. IEEE Trans. Inf. Foren-

sics Secur. 10(8), 1656–1665 (2015)

http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-662-45608-8_13
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-45708-9_25
http://dx.doi.org/10.1007/978-3-540-77366-5_11
http://dx.doi.org/10.1007/978-3-540-77366-5_11

	Threshold Single Password Authentication
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Threshold Single Password Authentication
	4.1 Security Definition

	5 Threshold SPA Construction
	5.1 Security Proof
	5.2 Further Analysis

	6 Performance Evaluation
	7 Conclusion
	References

