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Abstract. We propose a new definition for privacy, called δ-privacy,
for privacy preserving data mining. The intuition of this work is, after
obtaining a result from a data mining method, an adversary has bet-
ter ability in discovering data providers’ privacy; if this improvement is
large, the method, which generated the response, is not privacy consid-
erate. δ-privacy requires that no adversary could improve more than δ.
This definition can be used to assess the risk of privacy leak in any data
mining methods, in particular, we show its relations to differential pri-
vacy and data anonymity, the two major evaluation methods. We also
provide a quantitative analysis on the tradeoff between privacy and util-
ity, rigorously prove that the information gains of any δ-private methods
do not exceed δ. Under the framework of δ-privacy, it is able to design
a pricing mechanism for privacy-utility trading system, which is one of
our major future works.

1 Introduction

Privacy is a high-profile public issue that attracts attention from the entire soci-
ety. Information collectors and/or processors, such as Internet business, market
consulting companies, and governments, are eager to collect as much information
as they could to discover people’s behavioral patterns. They acquires information
from a large number of people, then extract useful knowledges (e.g., statistics
and patterns) from the data set using statistical methods and/or data mining
techniques. However, data mining on genuine data would be harmful to data pri-
vacy, data providers are not willing to commit their sensitive data to a untrusted
data collector.

The goal of privacy preserving data mining is to extract knowledge from a
data set, while maintaining data contributor’s privacy. However, there is a trade-
off between knowledge discovering and privacy preservation: the more knowledge
discovered from the data set, the higher possibility that the privacy is leaked.
To preserve privacy, a data mining method should hide a certain amount of
information before giving them to public.
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There are two major classes of privacy protection methods in knowledge
discovering, one is input perturbation, which pre-process the input data to “de-
privatize” them, then extract knowledge from the modified data; the other is
output perturbation, which generates the true result on the original data set,
but modify it before publishing.

Input Perturbation. Input perturbations are also called data anonymity, the idea
was first proposed by Sweeney [23]. A database is divided into different equiva-
lence classes with a “identifying tag,” records that fit the identifying information
will fall into that class. Then those classes, along with the original private data
from each record, are published. In that case, even if an adversary knew a tar-
get’s identifying information and locates it in a equivalence class, he cannot
determine which one is it because there are multiple records having the same
identifying tag.

Sweeney proposed a rule for grouping similar records, called k-anonymity [23],
it requires each class to hold at least k records, such that even if an adversary
can identify that a target falls in one class, he only has 1/k chance to identify
the target record in the class. However, having k entries in a class is not enough,
if everyone in a class has the same private data, an adversary can still learn
the secret. l-diversity [17] is proposed based on k-anonymity, requiring that each
equivalence class should contain k records and l distinct values of private data.
t-closeness principle [13] is then developed based on k-anonymity and l-diversity,
it further requires the distribution of private data in a equivalence class should
be close to that in the whole data set. See Definition 10 for more details.

Output Perturbation. Instead of modifying the input data, output perturbation
methods modify the data mining results. Differential privacy [6,7] is a privacy
constraint on how to change the true result to prevent privacy leak. The result
should be “de-privatized” such that any adversary is not able to distinguish
whether it is generated from a data set that contains the target record, or from
a data set that does not contain the target. If the target is not in a data set, the
data mining result does not contain any information about the target, therefore,
adversary is not able to learn any privacy of the target from such a unrelated
result; if a data mining result “looks like” such a unrelated result, an adversary
is not likely to discover useful fact about the target either.

Our Contribution. In this paper, we propose a metric that measures the largest
possible privacy leak in a knowledge discovering process, and provide a new
definition of privacy, called δ-privacy, that restricts the privacy leak in a data
mining process. Compared with existing privacy definitions, δ-privacy is from
an adversary’s perspective; by studying adversaries’ behavior, we can tell how
they are going to harm privacy, that is the most direct way to assess the risk of
privacy leak. Under this framework, we are able to tell the data providers what’s
the risk that their secret is learned by an adversary, and in the meantime, we
can tell the data collectors how much information they could acquire. We also
show the following:
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1. Our framework can be used to evaluate any privacy preserving data mining
algorithms; in particular, we show the relation between δ-privacy and existing
privacy definitions, namely, if a method satisfy ε-differential privacy [6], it
will also satisfy δ-privacy with δ = ε (Lemma 2); if a data anonymity method
satisfies t-closeness [13] w.r.t. variational distance, it also satisfies δ-privacy
with δ = t (Lemma 3).

2. Utility and privacy are zero-summed in the sense that the maximum utility
gained by the data processor is bounded by the maximum privacy leak allowed
(Theorem 1). To obtain more information from the data set, data processors
need to ask the data provider to increase the privacy loss limit, i.e., δ. To the
best of our knowledge, this is the first work that quantitatively proves this
idea.

Informally speaking, if a data mining method is δ-private, then any partial
privacy of data providers are protected, in the sense that no adversary can tell
the secret much better than random guessing. We model a partial privacy of a
target record r as a binary-valued function priv on r. An adversary discloses the
secret fact by calculating priv(r). We assume that the adversary is well-informed,
he is aware of all publicly accessible information of r, he knows the intrinsic
knowledge of priv, i.e., the distribution of priv over the records in the database.
He makes queries to the database, obtains result m (which is generated by a
privacy preserving data mining method) to discover more knowledge, then he
outputs one bit as the prediction of priv(r). We say the data mining result reveals
privacy if given m, the adversary can compute priv(r) with higher success rate
versus that before he gets the result. More generally, an adversary A computes
priv(r); his success rate increases after he gets m. This difference in probability
is the improvement of A after getting m, it reflects how much privacy A learns
from m. We use this difference as the indicator of privacy leak and say a data
mining method is δ-private if the privacy leak is always smaller than δ.

Our research focus on large scale databases, which enroll enough samples
from the real world. Therefore, the distribution of priv(r) over the records in the
database is close to that over the whole human population. This distribution
is an important prior knowledge for adversaries to predict priv on a particular
target.

The utility of a data mining method is the quantity of information that one
could learn from the data mining result, while the utility gain is the utility minus
the intrinsic utility, which can be achieved without querying. This research shows
that privacy loss and utility gain are zero-summed, the maximum knowledge that
can be extracted is no more than δ. To get more utility, data processor should
convince (using money) the data providers to increase the limit of privacy leak.
This enables “privacy trading” in the future: data providers can put a price tag
on their data based on the risk of privacy leak, and the data user can determine
the amount of information to purchase based on how much utility he could get
from the data mining process.
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2 Preliminaries

Records and Tables. A record is composed of fields, each field contains one
attribute of the record. More specifically, a record is a member of a Cartesian
product F � F1 ×F2 ×· · ·×Fk, where Fi is a finite set of all possible values for
a field. A table X is a collection of records. There are 2 different types of fields:

1. identifiers, such as name, social security number, or other information that
uniquely identifies a record in the database, or quasi-identifiers, such as
address, sex, etc. which can help to, albeit not uniquely, identify a record
in the database.

2. sensitive data, the information that the data contributors want to keep secret
from the public.

Take the farmer’s survey database (Table 1) as an example, gender, age, zip
code, and owned acres are quasi-identifiers, the combination of those fields can
be used to identify a farmer. Note that those fields are accessible to public:
gender and age are not considered secret to a farmer; his address and how many
acres he owns are available in county auditor. If an attacker knows a farmer in
person, he is able to get all those facts. On the other hand, the rented acres and
rental rates are sensitive fields in this database, they are not publicly accessible.
Also, because they are directly related to farmers’ income, farmers would like to
keep them secret. In this paper, we consider identifiers and quasi-identifiers as
public fields, which are accessible to public, and consider sensitive data as secret
fields, which should be kept secret from the public.

Table 1. The Original Farmers Database. In this table, gender, age, zip code and
owned acres are quasi-identifiers; rented acres and rental rate are considered secret.

Gender Age Zip code Owned acres Rented acres Rental rate

Female 43 43111 100 120 130

Male 37 42102 551 1100 140

Male 35 43110 120 91 125

Male 56 43208 625 110 180

Male 31 43315 220 630 175

Male 51 43111 64 0 NA

Female 45 43102 250 2000 200

Male 37 43215 320 1200 200

Male 41 43215 580 400 170

Male 25 43102 200 200 150

Queries. A query is a question or request for information to the database man-
agement system (or database for short). We regard it as step-by-step instruc-
tions which retrieve information and/or discover knowledge from the database.
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Traditionally, when given a query, the database follows the all instructions in
the query, then returns the result as response.

In our research, there is no constraint on the query, an adversary can ask
any question. Also, the adversary is allowed to ask multiple questions, and the
same question can be asked for multiple times. See Sect. 4 for more discussion.

Privacy-Preserving Data Mining Methods. We regard a privacy preserv-
ing data mining method M as a mechanism to generate responses to queries.
M(q,X ) takes as input one query q and a database X , it produces a result of
q, but that result should not reveal privacy of the records in X . Obviously, if
it exactly follows the instructions in q as a traditional database does, it is not
safe to data providers’ privacy because adversaries can design queries to retrieve
secret data he wants. To protect privacy, M would either (1) follow the instruc-
tions in q but add noise to the result, or (2) follow the instructions but perform
them over the de-privatized table, or (3) takes other possible approaches that
would not follow the instructions but still generate a response.

Usually, M is a randomized algorithm, the message generated by it is a
random variable. We denote by

m ← M(q,X )

the messages/transcripts generated by M and sent to A.

3 Attacker Model

To define privacy, we first discuss what information an adversary wants to learn,
and what prior knowledge he already has. In our discussion, we always assume
that an adversary, who wants to disclose partial privacy of records in the data-
base, is well informed, which means (1) he knows all the public information, e.g.,
the identifying information, of the target, and (2) he holds intrinsic knowledge,
i.e., he know how normal people behave. To discover more knowledge about the
target, he makes query to a database, which runs privacy preserving data mining
algorithms to answer queries. Finally, he makes a judgment on the target. In this
section, we will explain the above concepts.

What to Learn. In a database, sensitive fields contains private information
of a record. If any adversary is able to learn any partial information about a
secret field (not necessarily the whole field), it is considered a privacy leak. Take
the farmers’ survey as example (see Table 1), rented acres and rental rates are
secret fields. Adversaries may not know exactly how many acres a farmer rents,
but they are more interested in partial information like “does Bob rent over 200
acres” or “is Alice’s rental rate in between 90 to 110 dollars” or “is Eve’s rental
acres below average.” Conceptually, a partial privacy is a statement about the
records in the database. If an adversary can correctly determine whether the
statement is true or false, we say the adversary discloses the partial privacy of
the target record.
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We model such partial privacy as privacy predicates. A privacy predicate
priv : F �→ {0, 1} is a binary-valued function, its input is a record r (including
all fields), its output is either true or false on some statement about r. If the
statement is true, then priv(r) = 1, otherwise priv(r) = 0. An adversary is then
an algorithm computing priv(r) based on his knowledge about r.

Not every predicate is a privacy predicate. Computing priv on r should involve
at least one bit in the sensitive fields; predicates that can be computed using only
public information are not private. We will precisely define privacy predicates
in Definition 1. They should not be computed by any well-informed adversary,
who holds the public information of the target record, as well as the intrinsic
knowledge of the privacy, which we will discuss below.

Public Information. Public information of a record consists of (quasi-)
identifying fields of the record. We denote the public information as a func-
tion pub : F1 × · · · × Fk �→ F1 × · · · × Fl that maps a record to its public
fields, where fields F1, . . . ,Fl are (quasi-)identifiers, and Fl+1, . . . ,Fk are sensi-
tive fields. Public information is assumed accessible to adversaries. In the farmer
survey, the public information of a farmer are her/his gender, age, owned acres
and zip code. Those information are considered not private, for example, a curi-
ous neighbor of Bob is potentially an attacker of Bob. He knows the Bob’s age
and location, and he can learn the farmer’s ownership information from county
auditor. These information are not private to Bob’s neighbor. Any information
that is derivable from those fields are not considered private.

Once an adversary knows a target’s public information, he is able to perform
queries to discover more particular information about the target. For example,
if Bob’s zip code is 43111, adversaries design query like “what is the average
rental rate in area of zip code 43111”, where zip code 43111 is used to confined
the search range.

Public information function pub(r) is “one-wayed”: it is easy to compute
given r, but given pub(r), it is hard to recover all fields of r. We assume that
at least some “hardcore” bits in the sensitive fields Fl+1 × · · · × Fk are not
computable given pub(r), otherwise, if every bit in the sensitive fields is com-
putable given the public information, we say the database contains no secret.
See “Comments on Privacy Predicates and Hardcore Predicates” on Page 8 for
more discussion on the one-wayness of public informations.

Intrinsic Knowledges. Intrinsic knowledges are also referred to as common
knowledges, existing knowledge or prior knowledges. These knowledges are about
the privacy itself, they may come from the nature of priv, or from the perception
of behaviors of general people, or from social statistics, etc. Intrinsic knowledges
are of great importance in predicting priv on a particular target. For example, the
rental rates are from 0 to 500 dollar per acre, and this knowledge is a common
sense for all people, so the fact “is Bob’s rental rate less than 800” becomes
trivial because every adversary can answer it with 100% success rate. Another
example is, an experienced market analyst is aware that most rental rates are
below 400 dollars with only a few exceptions, then he can answer the question
“is Bob’s rental rate less than 400” with high success rate.
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We use the probability distribution of priv(r) over r ∈ X to represent the
intrinsic knowledge about priv:

ppriv � Pr[priv(r) = 0|r ← X ],

which we may simplify to p when understood. This knowledge is known to all
adversaries. Take the experienced market analyst as example again, he knows
that 98% of the rental rates are less than 400 dollar, that is, Pr[priv(r) = 1] = 0.98
for r ∈ X . When he tries to predict the rental rate of a particular person in the
database (say, Bob), suppose he does not know anything particular about Bob,
he will refer to his intrinsic knowledge about priv (i.e., 98% farmers’ rental rate
is less than 400) and predicts that Bob has rental rate under 400, as most people
do. This strategy is obviously better than random guessing. In this example, the
probability of priv(r) = 1 over all people plays an important role in predicting
priv on a particular person.

A very important assumption in our discussion is that the database is large-
scaled and it is equipped with real world data. Generally speaking, if a database
enrolls enough samples from the entire population, the distribution of priv over
the database would be close enough to that over the entire population, the latter
is what we call the “intrinsic knowledge.” Intrinsic knowledge is considered public
to a well-informed adversary.

Information that is not yet known. Although a well-informed adversary
has a good sense of common knowledge, he does not know anything about any
specific record(s). As a counter example, suppose A knew his friend Bob was
enrolled in the database X , and he also knew Bob’s rental rate is around 140
to 180 dollars (this fact is considered a personal secret, it is not common for
every farmer); when given question “is Bob’s rental rate greater than 140?”
he was quite confident to answer yes, regardless of the rental rate distribution
in X . The second example is, the fact “area of zip code 43113 has rental rate
from 200 to 350 dollar per acre” is not considered a common knowledge either,
because this fact does not apply to all farmers. Actually, such knowledges are
what A wants to learn in a data mining process. After he knows this kind of
knowledge, he is able to make better prediction on priv(r). We required that a
well-informed adversary only knows the general information over all records; he
does not hold any specific information on any record(s), before he makes queries
to the database. See Sect. 4 for more discussion on what information A has before
and after the knowledge discovering process.

Defining Privacy Predicate. More formally, a well informed adversary A
knows the public information pub(r) on a target record r, as well as the overall
distribution of priv(r) over r ∈ X . He wants to predict priv(r) on target r. We
denote as r ← X that r is chosen from X at uniform random. Let Ω(·) be the big
Ω notation, denote |X | the number of records in the table. Let p = Pr[priv(r) =
0|r ← X ] (therefore, 1−p = Pr[priv(r) = 1|r ← X ]); p represents the distribution
of priv over r ∈ X . We define privacy predicate as one that no adversary can
compute it better than random guessing, even they know pub(r) and p.
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Definition 1 (Privacy Predicate). A predicate priv is a privacy predicate if
(1) it is efficiently computable from r, and (2) there exists a function in Ω(|X |)
such that for any well informed, probabilistic polynomial time adversary A,

Pr
r←X

[A(pub(r), p) = priv(r)] ≤ max{p, 1 − p} +
1

Ω(|X |) . (1)

Remark. If priv is a privacy predicate, no adversary can predict it better than
random guessing, even if they know the public information of the target. That
is, the success rate of any adversary given the public information pub(r) is less
than maxA {Prr←X [A(p) = priv(r)]} = max{p, 1 − p}, the best success rate in
guessing priv(r), without pub(r). See “maximum success rate in guessing” for
more discussion. It is required that priv(r) involves at least some bits in the
sensitive fields, those bits are not predicable given pub(r).

Definition 1 only considers adversaries A(pub(r), p) who never make query
to the database before. After getting data mining result m ← M from method
M, an adversary A(pub(r), p,m) gains new knowledge, then he makes a better
judgment on priv(r). See Sect. 4 for more details.

Maximum Success Rate in Guessing. Given the distribution of a predicate
priv over X , the best strategy of guessing priv(r) (without any information of r,
merely guessing) for a randomly chosen input is simply returning the majority
bit b in {priv(r)|r ∈ X}, which yields a success rate equal to the ratio of b in
all priv(r). It is not hard to see that other guessing strategies have lower success
rate, that is,

max
A

{
Pr

r←X
[A(p) = priv(r)]

}

= max
b∈{0,1}

{
Pr

r′←X
[priv(r′) = b]

}

= max{p, 1 − p} (2)

that’s because, if A does not know any information about r, he can only output
a random bit. Suppose A outputs 0 with probability q, and 1 with probability
1 − q. By calculating the success rate of A:

Pr[A = priv(r)]
= Pr[A = 0, priv(r) = 0] + Pr[A = 1, priv(r) = 1]
= q · p + (1 − q) · (1 − p)
= 1 − q − p + 2qp

= p − (2p − 1)(1 − q) = (1 − p) − q(1 − 2p) (3)

we have if p > 0.5 then he gets the maximum rate p with q = 1, otherwise if
p < 0.5 then he gets the maximum 1 − p with q = 0. That means, A will get the
best success rate when it always returns the majority bit in {priv(r)|r ∈ X}.

Comments on Privacy Predicates and Hardcore Predicates. Readers
with knowledge on cryptography may have been aware that the definition of a
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privacy predicate is superficially similar to that of a hardcore predicate. Infor-
mally, public information function pub(r) is “one-wayed” in the sense that it is
hard to compute r given pub(r)1, privacy predicate can be viewed as its “hard-
core predicate.” Indeed, hardcore predicate is a special form of privacy predi-
cate. Assume that there exists a one-way function f : {0, 1}n �→ {0, 1}∗ with a
hardcore predicate h : {0, 1}n �→ {0, 1}, then for any PPT adversary A, and x
sampled from the universe {0, 1}n at uniform random, there exists a negligible
function negl such that

Pr
x←{0,1}n

[A(f(x)) = h(x)] <
1
2

+ negl(|x|). (4)

Due to its definition, distribution of {h(x)} is 50 : 50 for x ← {0, 1}n, where each
possible x is equally chosen. Compare Eq. (4) to Eq. (1), a hardcore predicate
is indeed a privacy predicate with p = 0.5 and X = F = {0, 1}n. Notice that if
X = {0, 1}n, then |X | = 2|x|. If negl(|x|) = 2−|x| (a typical choice of negligible
function), then negl(|x|) = 1

|X | ∈ 1
Ω(|X |) , still satisfies Eq. (1).

However, secret predicate priv is not a hardcore predicate of pub. priv and
pub’s input are records sampled from X , but the records in X is not necessarily
evenly distributed over the universe F : some values in F are never chosen to
X and some may be chosen multiple times. As a result, the distribution of
{priv(r)|r ∈ X} is not 50 : 50 for most priv.

In next section, we will define δ-privacy. Our intuition is, if A’s success rate
increases a lot after he gets a response from M, we say M reveals too much
information. δ-privacy is defined as even after the adversary gains new knowl-
edge from data mining, his success rate in predicting priv(r) is not much higher
(limited by δ) than before.

4 δ-privacy

We provide a new privacy definition for privacy preserving data mining, called
δ-privacy. δ-privacy protects all partial secrets in the following sense: a well-
informed adversary A makes a guess on priv(r); then he makes a query to the
database, gets a response from a privacy preserving data mining method M,
from which he learns new knowledge about r; then he makes a new judgment on
priv(r). The second prediction is supposed to have higher success rate compared
with that before he makes a query; δ-privacy requires that the extra success rate
is limited by δ, for any privacy predicate priv.

To better illustrate the above idea, we design a game between adversary A
and a privacy preserving data mining method M as follow.

1 If f is a one-way function, then given f(x), it is hard to compute an x′ such that
f(x′) = f(x). But by definition of pub, given pub(r), it is not hard to find a r′ ∈ F
such that pub(r′) = pub(r), therefore, pub is not a one-way function. See Chap. 6
of [5] or Chap. 6 of [12] for rigorous definition of one-way functions and hardcore
predicates.
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Game 1. Game of Privacy Preserving Data Mining.
1: Target record r ← X is chosen at uniform random.
2: A is given the public information pub(r).
3: A chooses a privacy predicate priv.
4: A is given the probabilities {p, 1 − p} of distributions of priv(r′) over r′ ∈ X .
5: A(pub(r), p) predicts priv(r).
6: A makes query q = qpriv,pub(r).
7: M is given the query q and the database X . It returns a result m to A.
8: A(pub(r), p, m) makes a new judgement on priv(r).

In the above game, the adversary gets the public information of r and the
intrinsic knowledge of priv, we say he becomes a well informed adversary at
step 4; he makes the first judgment at step 5. After that, he starts a knowledge
discovering process, retrieves more information from the database. Finally, based
on all information he receives in the game, he computes priv(r).

The success rate of prediction made in step 8 should not be much higher than
that of the guess made in step 5; if the gap is large, which means A performs
much better in computing priv(r) after he gets m, we say m discloses excessive
information/privacy. The difference

Pr
r∈X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

− Pr
r∈X

[A(pub(r), p) = priv(r)]

is the extra success rate after A gets a response from M. We also notice that
before A makes any query to the database, the best possibility A(pub(r), p) can
achieve is max{p, 1 − p}, as shown in Eq. (1). We use the following difference to
capture the probability gain (in successfully computing priv(r)) after A discovers
new knowledge from the database:

Pr
r∈X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

− max{p, 1 − p}. (5)

Intuitively, this difference is the amount of privacy leaked to the adversary.
For the purpose of protecting privacy, this difference should be small. δ-privacy
is then defined as no adversary can gain extra success rate more than δ.

Definition 2 (δ-privacy). Let priv be a privacy predicate. Suppose a com-
putationally bounded adversary A is given pub(r) of some r ∈ X , and let
p = Pr[priv(r) = 0|r ← X ] denote the distribution of priv(r) over r ∈ X . A
makes query q and obtains response m from a privacy preserving data mining
method M. A outputs a bit to predict priv(r). M is said to preserving δ-privacy if
there exists a positive real number δ, for any privacy predicate priv,

Pr
r←X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

≤ max{p, 1 − p} +
1

Ω(|X |) + δ, (6)
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where, on the left hand side, the probability of A successfully computing priv(r)
depends on the random coin used by M.

Remark. For the ease of presentation, we sometimes may omit the term
1/Ω(|X |) in our discussion. Also, we only consider the case that δ ∈ (0, 1

2 ],
because if δ > 1

2 , max{p, 1 − p} + δ exceeds 1, the formula will be always true.

Variants of δ-Privacy. The privacy Definition 2 introduces a absolute bound
on the privacy leaks. This constraint can also be in other mathematical forms,
the following variant introduces a relative bound, which depends on the intrinsic
knowledge of the secret.

Definition 3 (δ-privacy-variant-I). Let the notations be the same with those
in Definition 2. The variant I of δ-privacy requires that for all computationally
bounded adversaries in Game 1,

Pr
r←X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

≤
(

max{p, 1 − p} +
1

Ω(|X |)
)

· exp(δ). (7)

Dealing with Multiple Queries. Note that in Game 1, step 6 and 7 can
be repeated multiple times, that is, we allow the adversary to make multiple
queries, and to adaptively choose queries. If the queries are different, we can
consider them as one big query, and that will be just the same with the single
query case.

Another case is A makes the same queries for multiple times. As mentioned
above, M(q,X ) is a random variable (r.v.). To learn the distribution of this r.v.,
adversaries may make the same query q for multiple times to get more samples.
The more samples he gets, the more detailed he learns about the distribution,
then he is able to use the distribution of M to predict q(X ) and hence priv(r).
There are three strategies to deal with multiple queries:

1. M will always return the same answer for the same query. An example for
this is the anonymized table (Definition 10): once the anonymized table is
published, adversaries run the query on the (deterministic) anonymized table,
that is equivalent to a method M that always output the same answer to the
same query.

2. M returns the same answer by maintaining a hash table, with the key being
the input pair 〈q,X〉 and the value being the output m; when a request is
made to M, it first checks the hash table. If the request is new, M generates
a new answer m, add it to the hash table and returns it; otherwise, it returns
the existing answer. Such a method requires a large amount of storage space if
there are many different queries and/or the database X is updated frequently.
Also, this method may be not safe either: if X is updated frequently, and
each update is small (such that the changes of q(X ) is small in each update),
adversaries may still have a good estimation on q(X ).
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3. M generates a new answer to every request. That means adversary is able
to learn the distribution of M(q,X ). It implicitly requires that even if A
knows the distribution of M(q,X ), he does not know q(X ), or the relationship
between q(X ) and M(q,X ).

5 Tradeoff Between Privacy and Utility

In this section, we will discuss the relation between privacy and utility. Intu-
itively, the need for privacy is incompatible with the need for utility: to protect
privacy, a data provider wishes to hide information, while a data user wishes to
collect as much information as he could. We provide a quantitative analysis for
the tradeoff between privacy and utility, showing that the amount of informa-
tion gain is bounded by the largest possible privacy loss of the data provider. To
get more information, the data user should negotiate with the data provider to
increase the limit of privacy leak.

The utility of a data mining method is how much knowledge can be discovered
from its results. If the result is generated by a privacy preserving data mining
method M(q,X ), its utility should be measured by the “distance” to the true
result q(X ). More precisely, the output of M(q,X ) is a random variable; the
utility is the closeness between the random variable and the true value q(X ).
Intuitively, if M(q,X ) is close to q(X ), the result is likely to be useful, otherwise
it is not.

Some literatures (e.g., [24]) employ the entropy of M(q,X ) to estimate util-
ities for perturbation-based methods. The idea behind is, the more “concen-
trated” are the results (which are drawn from M(q,X ), the closer they are to
the real result q(X ). However, this definition is correct if and only if the true
answer is always at the “center” of the random variable, it does not apply to all
methods.

Utility of a Data Mining Method. Before we define the utility of a method
M on query q and database X , we first introduce one kind of adversaries called
honest users to determine the utility of a method. An honest user is a determin-
istic algorithm that, given the answer of q(X ), he correctly computes a knowl-
edge knlg, where knlg : F �→ {0, 1}. More specifically, we define an honest user
Ã = Ãknlg as an adversary who takes part in the Game 2. He would like to com-
pute a knowledge predicate (a privacy predicate) knlg on some r ∈ X . He is an
honest user if he always wins the game, that is, Ã designs query q = qknlg,pub(r),
after he receives the true result of q(X ), he returns one bit as result such that

Ã(pub(r), q(X )) = knlg(r) (8)

for any X , any choice of r ∈ X , and any appropriately chosen knlg.

Existence of Honest Users. Note that such honest user and knlg may not always
exist; if pub(r) is not unique, Ã may not win the game with probability 1. For
example, assume that there are two records r and r′ which have the same public
information, but one’s rental rate is 150 and the other is 250. Then Ã may only
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Game 2. Game of Honest User.
1: A target record r is chosen uniformly at random from the database X .
2: User Ã is given the public information pub(r).
3: User Ã chooses a knowledge predicate knlg.
4: Based on knlg, Ã designs query q = qknlg,pub(r).
5: An oracle O responses to Ã with the true result of q(X ).
6: Ã outputs a bit b.
7: User Ã wins the game if b = knlg(r).

have 1
2 chance in computing knowledge predicate “does r’s rental rate greater

than 200”, no matter how Ã designed the query qknlg,pub(r). We assume here that
the public information pub(r) is unique in database X , so that such intelligent
adversaries always exist.

Loosely speaking, we can think of a honest user as a person who lives in a
world that people trust each other, he will treat any result given to him as the
true q(X ) and computes knlg(r) from it. Now suppose we replace the oracle O
by a privacy preserving method M, Ã remains innocent. Game 2 becomes the
Game 1 (on Page 10), with knlg being priv.

Definition 4 (Utility of a Single Result m). Given a single result m ←
M(q,X ), the utility of m with respect to a honest user Ã = Ãknlg is defined by
a function uÃ:

uÃ(r,m) =
{

1 ifÃ(pub(r),m) = knlg(r)
0 otherwise

(9)

If an honest user Ã correctly computes knlg given m, we say that m is useful
(uÃ(m) = 1), otherwise it is not (uÃ(m) = 0).

Given results from M(q,X ), Ã evaluates the utilities of single results, we
define the utility of the method as the expectation of utilities.

Definition 5 (Utility of M(q,X )). The utility (with respect to Ã = Ãknlg) of
a method M on query q and data set X is defined as the expected utility of the
random variable M(q,X ):

UÃ(M(q,X )) � E[uÃ(r,m)|r ← X ,m ← M(q,X )]

=
∑
r,m

uÃ(r,m) × Pr[r ← X ,M(q,X ) = m] (10)

Notice that the intrinsic knowledge p = pknlg of knlg also provides some
“utility”: even without querying to M, there are adversaries that can achieve
some utility, which we refer to as intrinsic utility. Assume, w.l.o.g., that p > 0.5.
We fix an adversary (denoted as A′ = Aknlg) which outputs 0 with probability
1 (that is, A′(r,m) = 0 for all r and m). We define the intrinsic utility as the
expected utility evaluated by A′ (perhaps with a little abuse of notation):
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Definition 6 (Intrinsic Utility of knlg). The intrinsic utility of knowledge
predicate knlg is defined as the expected utility evaluated by a user A′ = Aknlg

UA′(1) � E[uA′(r, 1)|r ← X ] (11)

The reason we employ the special user A′ to define intrinsic utility is this
user is the one that achieves the largest possible utility among all guessing users,
see “maximum success rate in guessing”, Page 8 for more information.

The intrinsic utility is the one that obtained by a user without querying
to M, we define the utility gain of a method M on q and X as the utility of
M(q,X ) (w.r.t. Ãknlg) minus the intrinsic utility of knlg.

Definition 7 (Utility Gain of M(q,X )). The utility gain (w.r.t. Ãknlg) of
M(q,X ) is the difference between the utility of the method minus the prior utility
of knlg, that is,

GÃ(M(q,X )) � UÃ(M, q,X ) − UA′(1), (12)

the (value of) utility of M(q,X ) depends on the choice of Ã.

The utility gain reflects how much information is gained from the data mining
method. Intuitively, the larger is the gain, the better is the result. However, we
show the following theorem, saying that the largest possible utility gain of a
δ-private method, can not exceed the amount of privacy loss, namely, δ.

Theorem 1. If M is δ-private, then

GÃ(M(q,X )) ≤ δ +
1

Ω(|X |)
for all q, all X , all knlg and all Ã.

Remark. We can achieve a similar result for δ-privacy-variant-I (but in different
mathematics form). This theorem is an important result that shows the relation
between privacy and utility: they are zero-summed in the sense that the utility
gain is always less than the amount of largest possible privacy leak. Suppose a
user wants to learn some knowledge knlg, he wants to get Δ utility gain versus
his intrinsic knowledge, he have to ask his data providers to increase the privacy
leak limit to at least Δ.

The Theorem also depicts a framework for potential privacy trading. Data
providers can consider “selling” their private data, the price is the largest possible
privacy leak; and data processors can purchase those data based on how much
information they can learn from them.

6 The Relations Between δ-privacy and Other Existing
Privacy Definitions

In this section, we will discuss the relationship between δ-privacy and existing
privacy definitions, namely, differential privacy and data anonymity. We will
show that differential privacy (with parameter δ) implies δ-privacy-variant-I,
and t-closeness w.r.t. variational distance implies δ-privacy with t = δ.
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6.1 A Supporting Lemma

We will show a lemma used in the proof Lemmas 2 and 3. Reader may proceed
to the next sections for now and come back for this lemma later.

We will show that if two random variables Y1 and Y2 are close, then the r.v.’s
generated by running A on Y1 and Y2 are still close.

Denote A(Y) the binary-valued random variable generated by randomized
algorithm A, whose input is sampled from discrete random variable Y. We argue
that if the distance between two random variables Y1 and Y2 is less than δ, then
A(Y1) and A(Y2) also have distance less than δ. On the other hand, if for all
algorithm A, A(Y1) and A(Y2) are close, then Y1 and Y2 must be close to each
other.

A very important question arises: how to define the distance of two random
variables? There are many way to define it, for example, variational distance,
Kullback-Leibler distance, Earth Mover’s Distance, just to name a few. In this
paper, we use the variational distance to define statistical distance of two random
variables.

Definition 8 (Variational Distance of Two Random Variables [15]).
Suppose P1 and P2 are probability distribution functions (p.d.f.) of two dis-
crete random variables (with respect sample space Ω1 and Ω2). The two random
variables are statistically close if for some δ > 0,

sup
S⊆Ω1∪Ω2

|P1(S) − P2(S)| ≤ δ.

If the random variables are discrete ones, the above formula becomes

max
S⊆Ω1∪Ω2

⎧
⎨
⎩

∑
y∈S

(P1(y) − P2(y))

⎫
⎬
⎭ ≤ δ. (13)

Variation distance is the maximum difference between the probabilities that two
p.d.f.’s can assign to the same event.

Lemma 1. Suppose A is a randomized algorithm whose output is one bit, Y1

and Y2 are two discrete random variables with sample space Ω. A(Y1) and
A(Y2) satisfy

Pr [A(Y1) = b] ≤ Pr [A(Y2) = b] + δ (14)

for b = 0, 1 if and only if the variational distance of Y1 and Y2 are less than δ,
i.e., for any subset S ⊆ Ω,

Pr [y ∈ S|y ← Y1] ≤ Pr [y ∈ S|y ← Y2] + δ. (15)

Lemma 1 will be used to show the relationship between δ-privacy and differ-
ential privacy, and between δ-privacy and t-closeness. Note that even if Eq. (14)
is true for both b = 0 and 1, it does not imply that

Pr[A(y) = f(y)|y ← Y1] ≤ Pr[A(y) = f(y)|y ← Y2] + δ

is true for all binary valued function f .



δ-privacy: Bounding Privacy Leaks in Privacy Preserving Data Mining 139

Corollary 1. Let algorithm A, random variables Y1 and Y2, sample space Ω be
the ones defined in Lemma 1. The random variables A(Y1) and A(Y2) satisfy

Pr [A(Y1) = b] ≤ Pr [A(Y2) = b] × exp(δ) (16)

if and only if for any set S ⊆ Ω,

Pr [y ∈ S|y ← Y1] ≤ Pr [y ∈ S|y ← Y2] × exp(δ). (17)

6.2 Relation to Differential Privacy

In this section, we will show the relation between differential privacy and δ-
privacy. If a privacy preserving data mining method is differentially private (with
parameter ε), then it is δ-private-variant-I with parameter δ = ε. But on the
other hand, a method satisfies δ-privacy does not necessarily mean it satisfies
δ-differential privacy. That means, in terms of the maximum privacy leak, δ-
differential privacy is more secure than δ-privacy, which, by Theorem 1, gives
less flexibility in getting utility.

Differential privacy [6] is one of the most influential definition of privacy,
which is widely adopted by output perturbation methods. It captures the idea
that the result of the query should not leak information of any person, as if the
target person were not included in the table.

Definition 9 (differential privacy [6]). An algorithm M is said to satisfy ε-
differential privacy if for all database X and X1 which only differ in one record,
and for any set S of possible outcomes,

Pr [m1 ∈ S|m1 ← M(q,X1)]
≤ Pr [m ∈ S|m ← M(q,X ) ∈ S] × exp(ε). (18)

Lemma 2. If M satisfies ε-differential privacy, it also satisfies ε-privacy-
variant-I.

Remarks. Lemma 2 shows that if a method is ε-differential privacy, then it
is ε-private-variant-I, however, the reverse is not necessarily true: a method is
δ-private is not necessarily δ-differentially-private.

6.3 Relation to Data Anonymity

Data anonymity is family of privacy preserving data mining methods. In this
section, we will show that if a data anonymity method is t-close w.r.t. variational
distance (which is the strongest requirement in the series), it is δ-private with
δ = t.

Instead of answering to queries, data anonymity methods publish a modified
table for everyone to query on. Records in the database are grouped into equiva-
lence classes sharing a same identifying tag, their secret fields remain unchanged.
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Using the (original) public information of a target record, an adversary can locate
the target to a specific class by the tags on the classes, but he does not know
which one in the class is the target, since everyone in the group looks the same.

It is required that in each equivalence class, the distribution of the sensitive
data is close to that of the entire table, otherwise, if for some class, the distribu-
tion is greatly different from that of the entire table, an adversary can conclude
that targets in this class have special properties that other records do not have.

Definition 10 (t-closeness [13]). An equivalence class is t-close to the whole
table if the distance between the following two distributions is no more than a
threshold t: the distribution of sensitive data in that equivalence class, and the
one in the whole table. An anonymized table is t-close to the original table if all
equivalence classes are t-close to the whole table.

The definition of t-closeness does not specify how to measure the divergence
of two distributions. In the following lemma, we will show that data anonymity
methods satisfies t-closeness w.r.t. variational distance (Definition 8), then it is
δ-private:

Lemma 3. A privacy preserving method M publishes an anonymized table with
equivalence classes, it is δ-private if the variational distance between the distrib-
ution of sensitive data in any equivalence class, and the distribution of sensitive
data in the whole table, is no more than δ.

7 Conclusion

In this paper, we proposed δ-privacy, a new privacy definition for privacy pre-
serving data mining. By analyzing adversaries’ behaviors, δ-privacy directly tells
the data provider the risk of privacy leak in a data mining process. We show that
existing data privacy analysis mechanisms are also compatible to ours; actually,
our method can be applied to any data mining process, not limited to particular
ones. Another important contribution of our work is, we mathematically shows
that the amount of information extracted from a data mining process does not
exceed the amount of possible privacy loss; this idea seems not surprising, but
to the best of our knowledge, we are the first one to rigorously prove this conjec-
ture. A potential application for this is, we can develop a pricing system for “data
trading,” data providers could sell their data, get compensated based on their
(possible) privacy loss; on the other hand, data users could purchase data based
on the amount of information they could get. This trading system is possible
under our δ-privacy framework.
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