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Abstract. Program code stored on the Ethereum blockchain is consid-
ered immutable, but this does not imply that its control flow cannot
be modified. This bears the risk of loopholes whenever parties encode
binding agreements in smart contracts. In order to quantify the issue,
we define a heuristic indicator of control flow immutability, evaluate
it based on a call graph of all smart contracts deployed on Ethereum,
and find that two out of five smart contracts require trust in at least
one third party. Besides, the analysis reveals that significant parts of
the Ethereum blockchain are interspersed with debris from past attacks
against the platform. We leverage the call graph to develop a method for
data cleanup, which allows for less biased statistics of Ethereum use in
practice.
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1 Introduction

Smart contracts are computer programs that encode agreements between parties.
They can be settled in virtual currency by decentralized systems of networked
nodes. This is advantageous in situations where conventional means of contract
enforcement are prohibitively costly, or the parties have no access to a common
arbiter or juridical system.

Like for conventional natural-language contracts, a number of conditions
must be fulfilled before a party can accept being bound by the terms: the party
must understand the content of the contract with the same semantic applied
by a potential judge, the integrity of the contract must be guaranteed over its
entire lifetime, and the contract must not contain or refer to any terms that can
be changed unilaterally after the contract is signed. These three conditions can
be mapped to technical requirements (in the same order): access to verifiable
source code, immutability of compiled code, and control flow immutability.

If any of these conditions is violated, the party accepting contract terms
must trust at least one third party in that the enforcement does not thwart the
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contract’s designated objectives. Ethereum presents itself as a platform for trust-
less smart contracts, and provides means to meet the above-mentioned technical
requirements. However, users are free to write smart contracts in a Turing com-
plete language, so the extent to which smart contracts meet the requirements in
practice remains an empirical question.

We set out to answer this question with special emphasis on control flow
immutability. We apply abstract interpretation techniques to all bytecode
deployed on the public Ethereum blockchain, and synthesize the information
in a complete call graph of static dependencies between all smart contracts.

We are not the first to systematically analyze smart contracts on Ethereum.
Luu et al. [13] execute 19 366 smart contracts symbolically with the intention
to uncover security vulnerabilities, which they find in about 8833 cases. Using
source code provided by Etherscan, Bartoletti and Livio [5] manually classify
811 smart contracts by application domain (e. g., financial, gaming, notary) and
identify typical design patterns. Norvill et al. [16] propose unsupervised cluster-
ing to group 936 smart contracts on the Ethereum blockchain. We are not aware
of any prior work that builds or analyzes a call graph of dependencies between
smart contracts on Ethereum or a similar platform.

Systemic analyses of all smart contracts on the Ethereum blockchain are
impeded by the presence of a significant number of smart contracts originat-
ing from attacks against the platform. Therefore, as a second contribution, we
propose a cleanup method to pre-process the smart contracts. This is necessary
before any meaningful and generalizable measurements of legitimate1 use can be
made.

The paper is organized as follows. Section 2 recalls the vision of trustless
smart contracts and derives necessary technical requirements for the trustless-
ness property. Section 3 briefly describes the Ethereum platform and documents
our data extraction and analysis methods. Section 4 motivates the cleanup and
describes how we accomplished it. Results are presented in Sect. 5. Finally, Sect. 6
concludes the paper with a discussion of limitations and implications.

2 Trustless Smart Contracts

We provide some background by reflecting on the notion of trustlessness.
Section 2.1 reviews the vision of smart contracts as defined by Szabo [18].
Section 2.2 defines the technical requirements to reach the vision of trustless
smart contracts.

2.1 The Vision

Smart contracts are not a very new concept. Szabo introduced the term in 1997.
The idea of smart contracts is that many kinds of contractual clauses, in fact

1 In a slight abuse of legal terminology, this notion of legitimacy includes everything
except attacks against the platform as a whole.
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every computable clause, can be encoded in logic. That means we can encode
contract clauses in computer programs and let the program decide what happens
in the course of the contract’s lifetime.

This automation of contracts has many advantages, such as reduced trans-
action cost, less subjectivity, easier auditing, etc. It also facilitates machines to
enforce in contractual agreements. Think of a car that only starts when the
insurance premium is paid. The vision also comprises scenarios where machines
enter contractual agreements as partners. Think of autonomous trading agents.

As long as programs encoding contracts are run on local trusted hard- and
software, and the source code (or some human readable representation) is avail-
able for verification, no trust in other parties is needed. This rationale has been
around for long. It serves, e. g., as a philosophical pillar of the free software
movement.

In the real world, contracts regulate relationships between different parties
who may have different interests and objectives, and do not necessarily trust each
other. This raises the question of who executes the program encoding a contract?
If only one party executes it, the others have to trust in its honesty. If many
execute it, what happens if they disagree about the output? A simple approach,
also known from paper-based contracts, is the involvement of an impartial trusted
third party. This can happen in two ways. First, the third party computes the
outcome of the contract. Second, whenever a conflict arises, the trusted third
party acts as an arbiter. In both cases, all other parties must trust that the third
party is fair and abide to its decisions.

Trusted third parties only shift the problem to another hopefully trustworthy
party. The declared vision of smart contracts is a system where nobody has to
trust a central party. Szabo argues that every algorithmic intermediary can be
replaced by a trustworthy virtual computer. He contemplates a trustless system
using “post-unforgeable transaction logs” and “mutually confidential computa-
tion” [18].

Although, in theory, it was known in 1997 that is is possible to build a trust-
less system based on cryptographic multiparty computation, practical universal
systems remained out of reach for lack of efficiency. The advent of blockchain-
based systems has demonstrated the existence of a sweet spot that offers more
efficient solutions by combining off-the-shelf cryptography with probabilistic dis-
tributed consensus protocols. This has led to a renaissance of the ideas behind
trustless smart contracts as well as practical freely programmable systems.

2.2 Technical Requirements of Trustless Smart Contracts

Blockchains, or more specifically their underlying consensus protocols, allow to
resolve conflicts between parties over a public network without a trusted third
party [15]. With the ideas behind Bitcoin, it was possible to build a more efficient
version of the trustworthy virtual computer, called consensus computer [14].

Consensus computers carry out and verify computations over a public net-
work as if they ran on local trusted hardware. Individual parties do not need to
trust in any other single party in the system. It is sufficient to make behavioral
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assumptions about collectives of parties, e. g., that the majority follows the pro-
tocol. This brings us back to the desirable situation where we do not have to
trust anyone as long as we can verify a program’s source code. But now we can
run programs that affect many parties, not just one.

If the programs encode contractual clauses, access to the source code is only
one of several necessary requirements for trustless smart contracts. We also need
immutability of control flow. Once we send a smart contract to a consensus
computer, it is not supposed to change anymore; just akin to conventional con-
tracts should not be altered after signing. More specifically, if a smart contract
has dependencies to other smart contracts on the consensus computer (e. g.,
by following the common practice of code reuse through libraries, which has
been adopted on practical consensus computers), those references should be hard
coded in the smart contract. Especially, they should not be determined by (later)
input or state of the consensus computer. In other words, once the program is
deployed, the control flow must not be changed.

Observe that code immutability is necessary but not sufficient for control
flow immutability; which again is necessary but not sufficient for trustlessness,
because a contract’s outcome may also depend on data, which can be unknown at
the time of the deployment. In this work, we make first steps towards measuring
trustlessness in practice using a heuristic indicator of control flow immutability.

3 Method

Now we describe the data collection and analysis process. Section 3.1 introduces
specifics of the Ethereum platform and the terminology needed to understand
the analysis (For details, we refer to [3,19].). Section 3.2 explains how we extract
smart contract code and build a call graph. Section 3.3 describes how we measure
trustlessness of the smart contracts deployed on the public Ethereum blockchain.

3.1 Ethereum in a Nutshell

Ethereum [3,19] can be seen as a generalization of the ideas behind Bitcoin.
It is a decentralized system that updates a global state stored in an authen-
ticated data structure called blockchain. Besides transferring virtual currency
tokens, the Ethereum platform enables users to create smart contracts. Smart
contracts are implemented as a special kind of account, which is controlled by
program code. More specifically, the program in such a code account represents
an encoding for arbitrarily complex state transitions. Those state transitions are
triggered by sending transactions to the address of the code account. Parameters
can be passed in the transaction’s data field. Code accounts can hold private2

state in state variables . All state variables are persisted in the blockchain and
can be modified only by the code of the corresponding code account. Besides
code accounts, there exist user accounts that are controlled by external parties

2 Private refers to scope and write access. It does not imply any confidentiality.
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(i. e., private keys belonging to public keys that define the account). User
accounts are best comparable to standard Bitcoin accounts. Both account types
can create arbitrary transactions and thus interact with other code accounts,
create new code accounts, or transfer virtual currency tokens.

The program in a code account is executed by the Ethereum Virtual Machine
(EVM), a stack-based virtual machine that executes bytecode. Users typically
create smart contracts using a high-level programming language that compiles
to EVM bytecode. A popular smart contract language is Solidity [1].

Once a smart contract is compiled to EVM bytecode, it can be deployed to
the Ethereum blockchain and thus made available to others. This is done by
sending a transaction without a specified recipient to the Ethereum network.
The code is sent within the init field of the transaction. When the transaction
is included in a valid block, every node that processes and verifies the block sees
the transaction without recipient. If a node3 encounters such a transaction, it
passes the payload contained in the init field to the EVM, which executes it.
The output is saved as code of the newly created code account. The address
assigned to the code account is determined by the rightmost 160 bits of the
Keccak hash of the recursive length prefix (RLP) encoded creator address and the
account’s nonce. The nonce of a code account is incremented as smart contracts
are created.4

The typical payload of a smart contract creation looks as follows:
(initialization code ‖ code ‖ initialization parameters), where ‖
denotes concatenation. The EVM starts by executing the payload, thus the
initialization code is executed. The initialization code is responsible
for setting up initial values of state variables, if needed. The initialization
code returns the code that will be stored at the newly created address. By
default, the initialization code loads the code part from the payload into
memory and returns the memory address and length. But this is just a conven-
tion. The initialization code could also dynamically build code in memory,
or even return garbage. We found that almost all smart contract creations follow
the default deployment convention (see Table 1 on page 12).

When a code account is created, its code is part of the blockchain, inheriting
the property that it gets harder to modify as more blocks are added to the chain.
After several confirmations, the possibility of modification is negligible, therefore
the code becomes practically immutable over time. (Recall that immutable code
does not imply control flow immutability. Measuring the latter is our objective.).

Although code is practically immutable, there is a possibility to disable code
accounts. The EVM has an instruction that indicates that the current smart
contract should be disabled and the space used by state variables and the account
itself can be freed. This operation is called self destruction.5 After a code account
has self destructed, it can still be called, but it behaves as if there is no code

3 A node that follows the protocol. We make this assumption throughout the paper.
4 For completeness: also user accounts have nonces. The nonce of an user account is
the number of transactions sent by that account.

5 EVM instruction SELFDESTRUCT.
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available. This means a call to a self destructed smart contract returns without
any effect [4]. We call smart contracts that have called self destruct at some
point in time dead smart contracts . By contrast, all smart contracts that have
not called self destruct are called active smart contracts .

As mentioned in Sect. 2.2, source code availability is critical to smart con-
tracts. Whenever the semantic of a smart contract on the blockchain shall be
evaluated based on higher-level source code, a verifiable mapping between byte-
code, source code, and addresses is needed. We are aware of two relevant services
that aim to provide this mapping on a larger scale.

Etherscan6 is a closed source web application. Users can upload source code
that runs on a certain address. The user must provide the exact compiler version
and flags used to generate the bytecode at the address. Etherscan then checks if
the compiled source matches the bytecode at the supplied address. If it matches,
Etherscan saves the corresponding source code and considers this code account
a verified smart contract. At the time of writing,7 Etherscan hosts 1728 verified
smart contracts, which is less than 1% of all active smart contracts.

Swarm [2], the other service, is a decentralized peer-to-peer system built as
storage service for the Ethereum development stack. It is linked to Ethereum’s
virtual currency to incentivize honest participation. The idea is as follows: when-
ever a smart contract is deployed to the blockchain, at the same time one deploys
to Swarm a metadata file containing compiler version, flags, and source code.
The address of the metadata in Swarm is the hash of its content. This hash is
added to the compiled bytecode, hence the bytecode itself refers to its metadata.
The verification of the mapping involves the same steps as done by Etherscan,
but all metadata is available and can be automatically gathered from Swarm.
Although this system sounds promising, and the Solidity compiler already gener-
ates metadata and adds hashes to the compiled bytecode, we found that Swarm
is barely used to host metadata at the time of writing (see “Swarm metadata”
and “Swarm hashes” in Table 1).

3.2 Parsing, Data Extraction and Call Graph Creation

Our goal is to analyze smart contracts and especially the call relationships
between them. We extract the call relationship information directly from byte-
code because source code is barely availability, as discussed in the previous
section.

To extract bytecode from the Ethereum blockchain, we built upon an existing
open source blockchain parser project.8 The project uses the JSON–RPC API,
which is part of all major Ethereum node implementations,9 to extract data from
the blockchain. Although this approach is probably slower than parsing the on-
disk blockchain format directly, it is more convenient and less error prone.

6 https://etherscan.io/.
7 Accessed on 19 June 2017.
8 https://github.com/alex-miller-0/Ethereum Blockchain Parser.
9 https://github.com/ethereum/wiki/wiki/JSON-RPC.

https://etherscan.io/
https://github.com/alex-miller-0/Ethereum_Blockchain_Parser
https://github.com/ethereum/wiki/wiki/JSON-RPC
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As already said, code accounts are created by transactions without recip-
ient. To extract the code of all smart contracts, we iterate over all transac-
tions and select those which have no recipient. The code of the smart contract
can be found in the init field of the transaction [19]. Unfortunately, this app-
roach is limited to smart contracts created by user accounts. smart contracts
created by code accounts are not manifested as transactions in the blockchain
itself, but are side effects of the transaction that invoked the contract execution.
Interactions between smart contracts (calls) or creations of new smart contracts
by other smart contracts are done by so called internal transactions. To make
internal transaction visible, the execution of the smart contract code needs to
be instrumented. Fortunately, the parity client supports a tracing mode10 that
instruments the EVM for this purpose. The tracing API also allows to analyze
whether a contract self destructed during an invocation.

All smart contract creations found are written to a MongoDB11 instance for
further processing. We store the bytecode, creation block number, and destruc-
tion block number of every smart contract we found. This enables us to filter for
active smart contracts in a given time range.

To analyze if a smart contract is trustless, we need to know its call rela-
tionships to other smart contracts. We want to distinguish calls to hard coded
addresses from calls to addresses provided as input parameter or read from state
variables. If a call destination is hard coded, we want to be able to extract it.
Our target is to build a call graph of all smart contracts we parsed. To do so,
we analyze the bytecode of all smart contracts to extract calls to other smart
contracts.

We start by disassembling the bytecode. For that purpose, we use the
evmdis12 project as a starting point. Evmdis supports data flow analysis13 on
EVM bytecode. Of interest to us is the reaching definition analysis. Informally
speaking, reaching definition means that instructions are annotated with a set
of variables that are visible to this instruction. For every such variable, evmdis
stores the position in code where the variable was assigned last before the instruc-
tion. Therefore, evmdis annotates every instruction with the EVM’s stack layout
before the execution of the instruction. Instead of actual values, this stack layout
contains references to instructions that could have produced this stack entry.

We use the reaching definition annotations to find the source of call addresses.
To do so, we first search the bytecode for call instructions.14 A call instruction on
the EVM consumes seven stack entries. We are interested in the address, which
is stored in the second entry. What we obtain from the annotation is either a
static value or a set of n instructions that could have generated the relevant stack
entry. If we reach a static value, we are done. Otherwise we follow the links to
the instructions that potentially produced the stack entry. We recursively follow

10 https://github.com/paritytech/parity/wiki/JSONRPC-trace-module.
11 https://www.mongodb.com/.
12 https://github.com/Arachnid/evmdis/.
13 Via abstract interpretation.
14 Specifically: CALL, DELEGATECALL, CALLCODE.

https://github.com/paritytech/parity/wiki/JSONRPC-trace-module
https://www.mongodb.com/
https://github.com/Arachnid/evmdis/


364 M. Fröwis and R. Böhme

all stack positions consumed by the instruction until we either find evidence
(in the form of indicator instructions) that the address is derived from input
parameters,15 state variables,16 or we find a constant pushed to the stack.17

The fact that we do not evaluate address calculations besides length padding
sounds over-simplifying. However, this does not matter in practice for two rea-
sons. First, if the address is not hard coded, we are not interested in its computa-
tion because it has no effect on our measurement. Second, we are not aware of any
instance where smart contracts use hard coded addresses that are modified before
the call. Address arithmetic is impractical on the EVM because addresses can-
not be systematically assigned. Moreover, the most popular high-level language
Solidity disallows address computation. Nevertheless, there remains a small risk
of wrongly extracted addresses, which we handle later in the analysis.

Another thing to consider are smart contracts that cannot be analyzed at all.
This may happen if a code account hosts invalid bytecode. The code provided
to the EVM upon creation of a smart contract is not necessarily valid EVM
bytecode. We also have to consider the time needed for the extraction of call
data. Although smart contracts tend to be rather small (see “Bytecode size” in
Table 1), it can take some time to follow all code paths to extract the address
origin. To keep the time to extract data manageable over all code accounts, we
limit the runtime of the extraction process to 30 s per smart contract. A total of
539 smart contracts where not included in our dataset because of this restriction.

With the calls extracted from the bytecode of all code accounts, we can
build the desired call graph. The graph is generated by iterating over all active
smart contracts in our database.18 Vertices represent smart contracts and are
annotated with the address and the block number of the smart contract creation.
Edges are directed and represent call relationships (from caller to callee).

Our graph contains five special nodes. Not all active smart contracts have
corresponding transactions in the blockchain: the EVM supports four19 hard
coded smart contracts. Our fifth special node is Unknown. It is used whenever
a smart contract has calls where no hard coded address could be extracted. In
the later analysis, we treat Unknown as not trustless because the code is not
known, whereas the hard coded addresses of the EVM are considered trustless.

Another possible point of failure is the extraction of hard coded addresses,
especially if arithmetic on addresses is involved. To prevent wrong addresses, we
check before the creation of new edges if the called address belongs to an active
smart contract. If so, we insert the edge. Otherwise we check if the address is in
the set of dead smart contracts. If so, we can be almost certain that the smart
contract is no longer active. If not, we either extracted a wrong address or the
user deployed a smart contract with a wrong address. We ignore calls to wrong
addresses as well as calls to dead smart contracts for our analysis of trustlessness.

15 Reaching a CALLDATALOAD instruction.
16 Reaching a SLOAD instruction.
17 Reaching a PUSH20: an address is 20 bytes long.
18 Using the networkX graph library, https://networkx.github.io/.
19 at the addresses 0x1, 0x2, 0x3, 0x4.

https://networkx.github.io/
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As calls to addresses that do not host code return without effect, we consider
such calls as trustless. Even though we do distinguish between dead and wrong
to build our call graph, we learned how many smart contracts refer to smart
contracts that are not longer active (see “Calls to dead addresses” in Table 1).

3.3 Measuring Trustlessness

The call graph is the basis for analyzing the trustlessness of smart contracts.
A simple indicator of trustlessness can be defined as follows: Let G = (V,E)

be the directed call graph and succ(v) = { w | (v, w) ∈ E} with v, w ∈ V . Now,

trustless(v) =

⎧
⎪⎨

⎪⎩

true, if succ(v) = ∅
false, if Unknown ∈ succ(v)
∧s∈succ(v)trustless(s), otherwise.

Informally, a smart contract is trustless if and only if all calls in its depen-
dency tree have hard coded addresses, hence all code that a smart contract can
execute is fixed upon deployment of the smart contract.

A disadvantage of this recursive indicator is that it does not terminate on
cyclic graphs. Note that Ethereum makes it difficult (but not impossible) to
produce cycles. Every smart contract is deployed in its own transaction. The
address is returned after the smart contract is deployed. To introduce cyclical
dependencies, one has to deploy a smart contract with a reference to a smart
contract that is not yet deployed. Thus, one must be able to predict the address
a smart contract is deployed to. This is possible because the address creation
is deterministic. Therefore, with some effort, it is possible to deliberately cre-
ate dependency loops. We found that loops do exist (see Table 1). To handle
cyclic dependencies, we use a set that tracks already visited vertices when calcu-
lating the trustlessness indicator and stop the recursion. A vertex encountered
twice signals that there is a cycle in the dependency graph. We consider smart
contracts with cyclic dependencies as not trustless in our analysis.

4 Call Graph Cleanup

Extracting statistics from the raw Ethereum call graph can be misleading as the
data is interspersed with attack debris. Here we report our cleanup procedure.

The Ethereum platform has been target of multiple attacks in the last couple
of months [9,10]. Two attacks are especially notable because they led to hard
forks of the Ethereum blockchain [8,12]. One of them is the infamous DAO
Attack. The DAO (Decentralized Autonomous Organisation) is a blockchain-
based venture capital fund, designated to fund new Ethereum projects. Due to
a bug, an attacker was able to steal coins worth roughly 60 million USD, at the
time of the attack [9]. Besides the ominious fork, the DAO Attack has left no
obvious traces in the call graph of smart contracts.
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Fig. 1. Creation and destruction rate (moving window over 100 k blocks)

This cannot be said of the other major attack on Ethereum, a DoS (Denial
of Service) attack which unfolded in October 2016. An attacker flooded the
Ethereum network with transaction spam, using various strategies to overload
and slow down the network [17]. To prepare the attack, the attacker deployed
thousands of smart contracts that called other smart contracts in a tree structure.
The addresses of the called smart contracts are hard coded in the calling smart
contract. The leaves of the tree carried out the actual attack, e. g., by cheap
contract creation via self-destruct [7].

One example of such an attack can be seen in block 2 416 461,20 where
one invocation of a smart contract caused 15 000 others to call self-destruct.
The attack is easily observable in our dataset. In Fig. 1a, the spike in contract
destructions in October 2016 as well as the spike in contract creations July
and October 2016 are indicators of the attack. We also observed many smart
contracts created and destructed in the same block, which is atypical for non-
malicious uses (see “With zero lifetime” in Table 1).

The volume and patterns of smart contracts involved in the DoS attack
present a significant bias for our analysis. To clean our data, we asked the
Ethereum community for help and were provided with a set of 99 addresses that
where directly involved in the attacks. 34 of them are code accounts. Directly
involved means they were used for the actual attack on the network. We know
that the attacker created far more code accounts than he actually used in the
attack. Ideally, we want to filter all smart contracts created in preparation of
the attack. Therefore we started to look for patterns to identify suspect code
accounts.

One pattern we filter are code accounts created and destroyed in the same
block around the time of the attacks21 (see “With zero lifetime” in Table 1).

By looking at connected components in the call graph, we found 45 star-
shaped subgraphs with 171 vertices each, sharing a very similar structure: one
20 See TxHash: 0xf435a354924097686ea88dab3aac1dd464e6a3b387c77aeee94145b0fa

5a63d2.
21 From 01 May 2016 until the hard fork on 18 Oct 2016.
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Fig. 2. Call graph perspective on the 2016 DoS attack (selected components)

master code account deployed in October called 170 sub-code accounts deployed
earlier. Figure 2 illustrates this behavior for one selected death star. All of them
were created between July and October 2016 by the same address.22 This address
is in the set provided by the Ethereum community. As illustrated in Fig. 2, the
attackers also deployed at least two large connected components in October 2016.

Our final set of smart contracts to be excluded from the analysis is composed
of all 34 smart contracts flagged by the Ethereum community, all code accounts
identified by our heuristics as well as their direct and indirect neighbors in the
directed call graph. We obtain a total of 95 791 code accounts that are potentially
related to the attack, of which 30 668 are still active on 01 May 2017.

Observe from Fig. 1b that the cleanup largely removed the spikes in smart
contract creation and destruction. There remains a suspicious spike in smart
contract creations in July 2016. We conjecture that most of the smart contracts
created in July 2016 are also related to the attacks. But due to a lack of evidence
and the risk of false positives, we decided to not filter our data further.

5 Results

We study the Ethereum main chain from the day of its inception until 01 May
2017.23 We report results before and after the cleanup, as described in Sect. 4. We
have 225 000 active smart contracts before cleanup and 194 332 after cleanup.

5.1 Stylized Facts

Table 1 summarizes our quantitative results. General statistics include the mean
and median of bytecode sizes (“Bytecode size”). Observe that the cleanup
reduced both mean and median bytecode sizes. This means that the smart con-
tracts used for the attacks were exceptionally large. We also measured the mean
and median lifetime of smart contracts (“Lifetime”). It is easy to see the bias
22 Address: 0x1fa0e1dfa88b371fcedf6225b3d8ad4e3bacef0e.
23 Block number: 3 633 433.
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Table 1. Summary of active smart contracts in Ethereum until 01 May 2017

Concept Statistic Analysis mode

Before cleanup After cleanup

Smart Contracts

Total active smart contracts # 225 000 194 332

Bytecode size (bytes) mean 1078 775

median 578 542

With zero lifetimea # 52 689 65

Lifetime of dead contracts (blocks) mean 10 061 40 687

median 0 39 001

Violate deployment convention # 6 6

Source Code Availability

Swarm hashes # 29 496 29 480

Swarm metadata # 14 14

Dependencies

Smart contracts with calls # 196 176 167 110

Smart contracts without calls # 25 456 24 430

Could not analyze dependencies # 3368 2792

Smart contracts with self loopsb # 1 1

Smart contracts with loops # 30 7

Calls to dead addresses # 14 196 1712

Calls to wrong addresses # 6983 5487

Trustlessness

Trustless smart contracts # 122 375 119 493

% of total 54.4 61.5
a Created and self destruct in the same block.
b Address: 0x938162cc5d6f4fc5d3f9edec18c93c5379d56062.

introduced by the attacks in the before cleanup column. The median smart con-
tract lifetime before cleanup is 0. This is a consequence of the 52 689 smart
contracts created and self destructed in the same block (“With zero lifetime”).
This is a significant bias in a set of 69 875 destructed smart contracts in total. If
we look at the results after cleanup, we see that mean an median are about the
same, approximately five and a half days.24 As mentioned in Sect. 3.1, we found
only 6 smart contracts that violated the default deployment convention.

In terms of source code availability, we find that about 13 to 15% of all
active smart contracts contain references to Swarm metadata (Swarm hashes).
But only 14 (in absolute terms!) actually host metadata (Swarm content). We
conclude that Swarm is not a reliable source of source code for the study period.

24 Assuming 12 s block time.
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Fig. 3. Cumulative degree distributions of the directed call graph

When it comes to dependencies, we find that most smart contracts have calls
(dependencies) to other smart contracts (“smart contracts with calls”,“smart
contracts without calls”). Our cleanup filtered very few smart contracts without
calls. Many of the smart contracts used in the attacks create big dependency
trees to amplify the attack, thus the result is not surprising. The row “Could
not analyze dependencies” reports the number of smart contracts we were not
able to extract dependency information from. Both values are around 1.5% of the
total active smart contracts. As mentioned in Sect. 3.3, our call graph contains
cyclic dependencies. Interestingly, most of the loops we found are related to
the attacks, only 7 are left after cleanup. In Sect. 3.2 we described how we deal
with calls to wrong and dead smart contracts. It is interesting to see that after
cleanup, the references to self destructed smart contracts decrease significantly
(“Call to dead addresses”).

Another way of looking at dependencies is the degree distribution of the
call graph depicted in Fig. 3. The in-degrees follow a typical Pareto shape in the
cumulative log-scaled representation both before and after cleanup. We annotate
the smart contract that are called from the highest number of other smart con-
tract in Fig. 3a. Two of them are hard coded smart contracts (cf. Sect. 3.2). The
distribution of out-degrees is visibly more affected by the attacks. The singularity
around degree 170 can be attributed to the death stars. It disappears largely, but
not completely, after cleanup. We conjecture that we might have missed 10–20
suspicious smart contracts after successfully removing several hundreds. Com-
paring both distributions highlights the importance of removing attack debris
from the Ethereum call graph.
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5.2 Trustlessness

In Sect. 2.2 we described the requirements for trustless smart contracts. Some
of the requirements are supported by the design of the Ethereum platform,
such as distribution, consensus, fairness, and determinism. The extent to which
these requirements are met depends largely on behavioral assumptions about
the participating nodes, which are beyond the scope of this paper. Here we
concentrate on the immutability of the control flow, a necessary requirement for
trustlessness and a property of individual smart contracts.

Figure 4 compares active smart contracts to trustless active smart contracts
using the trustlessness indicator presented in Sect. 3.3 over time. We find that,
before cleanup, 54% of all active smart contracts in our sample are trustless in
principle. The ratio raises to 62% after cleanup.

Fig. 4. Active smart contracts compared to active trustless smart contracts

In other words, two out of five smart contracts deployed on Ethereum do
require trust in at least one third party who, in principle, can alter the con-
trol flow of the program that enforces an agreement after it is committed to
the blockchain. This is not necessarily concerning, but a remarkable observation
against the backdrop of trustlessness being framed as the key benefit of smart
contracts and blockchain-based systems in general over conventional (central-
ized) infrastructures. In simple terms, there remains a gap between vision and
practice.

6 Discussion and Conclusion

We have developed a measurement approach for the trustlessness of smart con-
tracts and applied it to all the smart contracts on Ethereum. Two out of five
smart contracts we found on Ethereum are not trustless according to our call
graph-based indicator. This means it is hard or even impossible for users to ver-
ify these smart contracts. We also motivated the need for data cleanup when
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analyzing smart contract properties in order to avoid biases introduced by the
large scale attacks against the Ethereum platform. Accordingly, we propose a
cleanup strategy that leverages the call graph. This allows us to produce unbi-
ased summary statistics of legitimate use of Ethereum, including indicators of
bytecode size, smart contract lifetime, and source code availability.

Our approach has some limitations. It is based on the extraction of hard
coded addresses from bytecode. Although it seems to be robust in practice, it
is heuristic in nature with the possibility of extracting wrong information. The
apparent robustness also depends on the usage conventions on the Ethereum
platform. For example, if languages that allow address arithmetic gain popu-
larity, the current approach will resolve fewer dependencies. Other limitations
persist independent of the extraction of code dependencies. Currently, our app-
roach is blind to data dependencies. Those can range from simple deactivation
flags, which differ from self destruct only in the gas impact, to emulations of
Turing equivalent machines inside the smart contract. This means that even if a
smart contract is trustless according to our indicator, it can still encode agree-
ments where trust in individual parties is needed. Tackling data dependencies is
hard, because many use cases of smart contract need them.

Furthermore, we do not consider gas restrictions at the moment. Callers can
limit the amount of work a callee can do by restricting the gas supply of the
callee, this directly influences the amount of trust needed between parties.

Let us conclude with a broader outlook: Ethereum promises to fulfill the
vision of trustless smart contracts. However, trustlessness is not only a property
of the platform, but also of every individual smart contract. Our measurements
show that many smart contracts violate necessary conditions for trustlessness
in practice. We assume that many of these violations are the result of a lack
of awareness rather than intentional. This raises the need for tooling that helps
to avoid such mistakes, or at least increases awareness for the subject. Static
analysis of source code (for example Solidity) could be used to prevent the most
common trustlessness violations, such as calling addresses obtained from para-
meters or state variables. Furthermore, there is a relation to the verifiability
of smart contracts: existing formal verifiers for Ethereum [6,11] need certain
assumptions, which seem to be implied in our notion of trustlessness. Therefore,
the subset of trustless smart contracts is more amenable to formal verification
than general code for the Ethereum platform.
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