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Abstract. Secure computation (i.e., performing computation while
keeping inputs private) is a fundamental problem in cryptography. In
this paper, we present an efficient and secure 2-party computation pro-
tocol for deterministic automata evaluation, a problem of large prac-
tical relevance. Our result is secure under standard assumptions and
bypasses roadblocks in previous general solutions, like Yao’s garbled
circuits and Gentry’s lattice-based fully homomorphic encryption, by
performing secure computations over data blocks (instead of bits) and
using typical-size (instead of impractically large) cryptographic keys.
An important efficiency property achieved is that the number of both
asymmetric and symmetric cryptographic operations in the protocol is
sublinear in the size of the circuit representing the computed function
(specifically, improving linear-complexity protocols by a multiplicative
factor equal to a block size). All previous protocols for deterministic
automata evaluation required a linear number of asymmetric crypto-
graphic operations. Moreover, we use quantitative comparison techniques
to show that in typical parameter settings, our protocols’ latency is at
least 1 to 2 orders of magnitude smaller than the protocol obtained by
a direct application of both state-of-the-art general-purpose secure 2-
party computation protocols. Even though not as general as in these two
general-purpose techniques, our result is applicable to the class of all
constant-space computations.

1 Introduction

Managing data privacy for real-life systems is a complex endeavor with many
different areas in need of investigation. Cryptography research has tradition-
ally produced cornerstone technical solutions to a large variety of data privacy
problems. In some domains, like communication security, a wide variety of cryp-
tography solutions with various dimensions of desirable properties have been
produced, and a typical system designer has several valid options to choose from
at development stage. Unfortunately this is not the case for other areas, many of
which related to data privacy. This paper focuses on one of these areas, 2-party
secure computation [22], where several solutions have been proposed, but still
different types of gaps remain towards regular deployment of this technology
in real-life systems. Existing solution paradigms, like garbled circuits [22] and
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fully homomorphic encryption [10], address a large spectrum of assumptions and
satisfy many desirable properties, but do not exhaustively cover needs that may
arise from real-life systems.

In this paper, we propose new cryptography solutions for 2-party secure com-
putation based on a recent paradigm of privacy-preserving computations over
encrypted data blocks [5]. We show that solutions can be exhibited for the impor-
tant problem of deterministic automata evaluation, going beyond a previous
result of [5] that only applied to monotone formulae over equality statements.

Automata evaluation. Deterministic automata evaluation is a well-known prob-
lem in computer science, also equivalent to regular expression matching, with
several applications (most notably, pattern matching). We consider the design
of secure 2-party protocols for deterministic automata evaluation, where Alice
holds the (pattern) automata, Bob holds the (text) string, and one of the two
parties obtains the match result, while the two parties learn no other information
on the other party’s input. A practical and secure 2-party protocol for determin-
istic automata evaluation is expected to have several interesting applications,
including DNA identity testing, firewall policy checking on web traffic, keyword
search on emails, etc.

Secure computation: state of the art. Secure two-party computation is a fun-
damental cryptographic primitive with significant application potential. In the
formulation of interest for this paper, there are two parties, Alice and Bob,
who would like to interactively compute a function f on their inputs x and y,
respectively, such that at the end of the protocol: Bob obtains f(x, y); an effi-
cient adversary corrupting Alice learns nothing new about Bob’s input y; and
an efficient adversary corrupting Bob learns nothing new about Alice’s input x,
in addition to what is efficiently computable from f(x, y). The first general solu-
tion to this problem for any arbitrary function f was presented by Yao in [22],
assuming that the adversary is semi-honest (i.e., he follows the protocol as the
corrupted party but may at the end try any polynomial-time algorithm to learn
about the other party’s input). The generality of this solution is so attractive
that, even decades after their introduction, researchers are considering improve-
ments and optimizations (see, e.g., [14,17]), thus bringing them closer to being
usable in practice, at least in some specific scenarios (i.e., with the help of addi-
tional servers [1]). An important roadblock in this process is represented by the
fact that Yao’s protocol, using a boolean circuit representation of the function
f , requires cryptographic operations for all input bits and binary gates in the
circuit.

Recently, another general and powerful cryptographic primitive, fully homo-
morphic encryption, has been realized [10]. This primitive allows arbitrary
polynomial-time computations over encrypted data and thus can be applied to
construct secure 2-party computation protocols for any arbitrary polynomial-size
arithmetic circuit (and therefore any polynomial-size boolean circuit). Even in
this case, researchers are recently considering improvements and optimizations,
trying to bring it closer to being usable in practice (see, e.g., [3]). The road-
block for garbled circuits does not apply here, when using arithmetic circuits,
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since in that case fully homomorphic encryption solutions typically do operate
over data blocks (instead of bits). However, another roadblock on the way to effi-
ciency appears here: the security of all known constructions of fully homomorphic
encryption is based on problems whose required key lengths are significantly high
and the overall scheme is only theoretically efficient, but not in practice.

Computations over encrypted data blocks, as introduced in [5], attempt to
combine the best features from both cited general-purpose approaches: com-
puting over encrypted data blocks (as in fully homomorphic encryption over
arithmetic circuits), limited requirements on key lengths (as in garbled circuits),
and achieving solutions for a large class of problems (as in both). The solution
proposed in [5], shows secure protocols over encrypted data blocks for the class
of monotone formulae over string equality statements.

Our contribution. Our main result in this paper is an efficient and secure 2-
party protocol, based on computations over encrypted data blocks, for determin-
istic automata evaluation, thus being applicable to all constant-space computa-
tions. The security of our protocol holds under standard cryptographic assump-
tions and is proved based on the existence of secure 2-party protocols for simpler
tasks: (a) pseudo-random function evaluation, which, in turn, were previously
proved secure based on standard number-theoretic assumptions with conven-
tional key lengths (see, e.g., [8,16]); and (b) conditional transfer [6] for string
equality and AND of string equality statements, which, in turn, can be based
on symmetric encryption alone, given the information shared between the two
parties during the protocol for pseudo-random function evaluation. We give two
instantiations of the secure 2-party protocols for these two simpler tasks, result-
ing in two instantiations of our main protocol with different desirable efficiency
properties.

The main efficiency property is the protocol’s time complexity, as we show,
in our main protocol’s first instantiation, that it only requires a number of cryp-
tographic operations sub-linear in the size of the circuit computing the function.
Specifically, it improves over the natural application of the garbled circuit tech-
nique from [22] by a factor equal to the length of alphabet symbols. In practice,
depending on the alphabet required by the specific application, this can be any-
where between a small and a very large improvement. In our main protocol’s
second instantiation, we also show a variant that improves multiplicative con-
stants for small alphabets, by using an alternative implementation of the secure
2-party protocol for pseudo-random function evaluation. We show a performance
analysis of both variants, and comparisons with previously known protocols in
the literature [9,15,18], all requiring at least a linear number of asymmetric
cryptographic operations. Moreover, we use quantitative comparison techniques
to compare the latency of both our protocols with the protocol obtained by a
direct application of both state-of-the-art general-purpose secure 2-party com-
putation protocols. We obtain that our protocols’ latency is at least 1 to 2 orders
of magnitude smaller in typical parameter settings.

Organization of the paper. In Sect. 2 we detail definitions and models of
interest, including a formal definition for secure function evaluation protocols,



278 G. Di Crescenzo et al.

and for tools used in our constructions, such as symmetric encryption schemes,
pseudo-random functions, oblivious PRF evaluation protocols, and conditional
OT protocols.

In Sect. 3 we present our main result: a practical and secure protocol for 2-
party evaluation of a deterministic automata, based on building blocks such as a
PRF, an oblivious PRF evaluation protocol, and a conditional OT protocol for
string equality and AND of string equality conditions.

In Sect. 4 we describe a first instantiation of our main result that is par-
ticularly efficient for large automata alphabets, based on an adaptation of an
oblivious PRF evaluation protocol from [16], and a simple variant of conditional
OT protocols in [4,6].

In Sect. 5 we describe a second instantiation of our main result that is par-
ticularly efficient for small automata alphabets. This differs from the previous
instantiation in that the oblivious PRF evaluation protocol is now replaced by
a suitable combination of results from [19,20].

In Sect. 6 we discuss the practical performance of the two instantiations of our
protocols, showing improved efficiency with respect to previous work, including a
protocol that can be constructed by an application of the original Yao’s general-
purpose protocol [22].

2 Definitions and Background

In this section we give definitions and background useful in the rest of the doc-
ument. Definitions in Sect. 2.1 are specific to the main problem of interest in
the paper, and include deterministic automata, secure 2-party function evalua-
tion protocols, and efficiency requirements. Definitions in Sect. 2.2 are specific
to our solutions to the main problem considered, and include pseudo-random
functions, and secure 2-party protocols for pseudo-random function evaluation
and conditional transfer.

2.1 Secure 2-Party Evaluation of Deterministic Automata

Deterministic automata. A deterministic automata is formally defined as a
tuple DA = (S, s0, F,A, τ), where S is the set of automata states, s0 is the initial
state, F is a subset of S representing the set of final states, A is an alphabet,
and τ : S ×A → S is a transition function that maps any state and any alphabet
element to the next state (when defined). We also denote as |S| = s the number
of states, as |F | = f the number of final states, and as |A| = a the number of
alphabet symbols. An input string x = (x1, . . . , xm) is a sequence of alphabet
symbols xi ∈ A, for i = 1, . . . , m.

The deterministic automata evaluation (briefly, DAE) problem consists of
computing si = τ(si−1, xi), for i = 1, . . . , m, and then returning as output
outae = 1 if sm is in F (denoting that a final state is reached) or outae = 0
otherwise.
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In the 2-party DAE problem, the two parties, called Alice and Bob, are given
as input the automata objects S, s0, A and the parameters s, a,m; Alice is given
as input F, τ ; Bob holds the input string x; and at the end of the 2-party protocol,
Bob obtains the output outae, defined as for the DAE problem.

Secure 2-party function evaluation protocols. The expression z ← D
denotes the probabilistic process of randomly and independently choosing x
according to distribution D. By Prob[z ← D : E] we denote the probability of
event E after the execution of the probabilistic process z ← D. Let σ denote
a security parameter. A function over the set of natural numbers is negligible if
for all sufficiently large natural numbers σ ∈ N , it is smaller than 1/p(σ), for
all polynomials p. Two distribution ensembles {D0

σ : σ ∈ N} and {D1
σ : σ ∈ N}

are computationally indistinguishable if for any efficient algorithm A, the quan-
tity |Prob[x ← D0

σ : A(x) = 1] − Prob[x ← D1
σ : A(x) = 1]| is negligible in

σ (i.e., no efficient algorithm can distinguish if a random sample came from
one distribution or the other). In a 2-party protocol execution, a party’s view
is the sequence containing the party’s input, the party’s random string, and all
messages received during the execution.

We use the simulation-based definition from [11] for security of 2-party func-
tion evaluation protocols in the presence of semi-honest adversaries (i.e., adver-
saries that corrupt one party, follow the protocol as that party and then attempt
to obtain some information about the other party’s input). According to this
definition, a protocol π to evaluate a (possibly probabilistic) function f satis-
fies simulation-based security in the presence of a semi-honest adversary, if there
exists two efficient algorithms SimA, SimB (called the simulators), such that:

1. let outS,A be SimA’s output on input Alice’s input and Alice’s output (if
any); then, it holds that the pair (outS,A, Bob’s output) is computationally
indistinguishable from the pair (Alice’s view, Bob’s output); and

2. let outS,B be SimB ’s output on input Bob’s input and Bob’s output (if any);
then, it holds that the pair (Alice’s output, outS,B) is computationally indis-
tinguishable from the pair (Alice’s output, Bob’s view).

In the above, the first (resp., second) condition says that a semi-honest adver-
sary’s view when corrupting Alice (resp., Bob), can be generated by an efficient
algorithm not knowing Bob’s (resp., Alice’s) input, and thus the adversary does
not learn anything about the uncorrupted party’s input. This definition also
implies correctness of the protocol’s output: that is, the intended recipient of
the 2-party problem formulation’s output does receive this output at the end of
the protocol.

Efficiency requirements. We will consider the following efficiency metrics,
relative to a single execution of a given secure 2-party protocol:

1. time complexity: time between the protocol execution’s beginning and end;
2. communication complexity: length of all messages exchanged; and
3. round complexity: number of messages exchanged.
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All efficiency metrics are expressed as a function of the security parameter σ, and
parameters s, a,m associated with the deterministic automata and input string
that are input to the protocol. In evaluating protocol latency, we will pay special
attention to the number of asymmetric cryptography operations (e.g., modular
exponentiations in a large group) and of symmetric cryptographic operations
(e.g., block cipher executions), since the former are typically orders of magni-
tude more expensive than the latter (although the latter might be applied a
larger number of times). As a comparison result, we will target the general solu-
tion from [22] for the 2-party secure evaluation of function f(x, y), where x is
Alice’s input and y is Bob’s input, which requires O(|y|) asymmetric cryptogra-
phy operations and O(|Cf |) symmetric cryptography operations, if Cf denotes
the size of the boolean circuit computing f . Even if we will mainly focus our
efficiency analysis on time complexity, our design targets minimization of all the
mentioned efficiency metrics.

2.2 Cryptographic Primitives and Protocols Used in Our Solutions

Pseudo-random function families. A family of functions {rn : n ∈ N} is a
random function family if, for each value of the security parameter n, the func-
tion rn associated with that value is chosen with distribution uniform across
all possible functions of the pre-defined input and output domains. A fam-
ily of keyed functions {Fn(k, ·) : n ∈ N} is a pseudo-random function family
(briefly, a PRF family, first defined in [12]) if, after key k is randomly chosen,
no efficient algorithm allowed to query an oracle function On can distinguish
whether On is Fn(k, ·) or On is a random function Rn(·) over the same input
and output domain, with probability greater than 1/2 plus a negligible (in n)
quantity. We consider symmetric-type PRFs, which are implemented in practice
using symmetric-key cryptography primitives (e.g., block ciphers like AES), and
asymmetric-type PRFs, which are based on a public and a secret key, usually
implemented using number-theoretic functions, the most expensive often being
modular exponentiations.

Secure evaluation protocols for specific functions. In our solutions, we
use or build constructions of 2-party secure evaluation protocols for the follow-
ing functionalities: pseudo-random function, scalar product, and real-or-random
conditional transfer.

A secure pseudo-random function evaluation protocol (briefly, sPRFeval pro-
tocol) is a protocol between two parties: Alice, having as input a key k for a PRF
F , and Bob, having as input a string x, where the description of F is known
to both parties. The protocol is defined as a secure function evaluation of the
value F (k, x), returned to Bob (thus, without revealing any information about
x to Alice, or any information about k to Bob in addition to F (k, x)). Efficient
constructions of sPRFeval protocols, based on the hardness of number-theoretic
problems, were given in [8,16].

A secure conditional transfer protocol for the condition predicate p (briefly,
p-sCTeval protocol, or sCTeval protocol when p is clear from the context) is a
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protocol between two parties: Alice, having as input a message m and a string x,
and Bob, having as input a string y. The protocol is defined as a secure function
evaluation of the value m′, returned to Bob, where m′ = m if p(x, y) = 1 or
m′ is computationally indistinguishable from a string random and independent
from m, and of the same length as m, if p(x, y) = 0. Thus, an execution of the
protocol does not reveal any information about y to Alice, or any information
about x to Bob in addition to m′, and m′ only reveals m when p(x, y) = 1 or the
(possibly padded) length of m when p(x, y) = 0. Also, note that if m is a pseudo-
random string, then at the end of a p-sCTeval protocol, Bob does not obtain any
information about the value of predicate p. The notion of a p-sCTeval protocol is
a generalization of the symmetrically-private conditional transfer notion in [4],
which, in turn, generalizes the conditional oblivious transfer from [6]. Specifically,
it differs in formalizing privacy according to the secure computation notion. Both
notions from [4,6] are, in turn, variants of the much studied oblivious transfer
(OT) protocol notion from [21].

3 Secure Evaluation of Deterministic Automata

In this section we present our 2-party protocol for secure evaluation of a deter-
ministic automata. The protocol consists of a private evaluation of Alice’s
deterministic automata on Bob’s input string, using cryptographic primitives
such as encrypted data blocks (also called pseudonyms), a symmetric-type and
an asymmetric-type pseudo-random function, a secure pseudo-random function
evaluation protocol, and a secure conditional transfer protocol. Formally, our
protocol satisfies the following result.

Theorem 1. Assume the existence of:

1. symmetric-type pseudo-random function family prFs

2. asymmetric-type pseudo-random function family prFa,
3. an sPRFeval protocol for the evaluation of prFa, and
4. an sCTeval protocol for equalities, and AND of equalities condition predicates.

There exists a (black-box) construction of a 2-party sDAeval protocol π, requir-
ing O(m) executions of the sPRFeval protocol, and O(sam) applications of an
sCTeval protocol, where s, a denote the number of states and alphabet symbols
of the Alice’s input automata, and m denotes the number of alphabet symbols
in Bob’s input string.

We note that the sPRFeval protocol from [8] only requires O(1) asymmetric
cryptography operations, and thus an execution of π based on them only requires
O(m) asymmetric cryptography operations, which is linear in the number of
alphabet symbols input to Bob, and thus sublinear in the length n = O(m log a+
sa log s) of the input to the 2-party DAE problem. Instead, a direct application of
the general solution from [22] would require O(m log a) asymmetric cryptography
operations. We now prove Theorem 1 with a description of protocol π, and then
show its efficiency and security properties.
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Narrative and formal description of π. The description of protocol π can be
divided into 4 phases: Alice’s input processing, Bob’s input processing, transition
processing and output computation. At a high-level, π can be summarized as
follows: in the first two phases, Alice and Bob compute encrypted data blocks or
pseudonyms for their inputs; in the transition processing phase, Alice and Bob
compute the transition steps in the DAE problem over encrypted data blocks; in
the output computation phase, Alice and Bob compute the output of the DAE
problem over encrypted data blocks, in a way that Bob receives the cleartext
output. We now describe all 4 phases of protocol π in greater detail.

Alice’s input processing. In this phase, Alice randomly chooses two keys: ks for the
symmetric-type pseudo-random function prFs, and ka for the asymmetric-type
pseudo-random function prFa. Then, Alice computes an initial set of encrypted
pseudonyms for all s DFA states, as the output of the pseudo-random function
prFs on input the state symbol sj and a position index i = 0, for j = 1, . . . , s.
Moreover, Alice computes an encrypted pseudonym for the a DFA alphabet sym-
bols, as the output of the pseudo-random function prFa on input the alphabet
symbol ah, for h = 1, . . . , a. The detailed steps of this phase go as follows:

1. Alice randomly chooses keys ks, ka

2. For j = 1, . . . , s, Alice computes pS,j,0 = prFs(ks, (0|j))
3. For h = 1, . . . , a, Alice computes pA,h = prFa(ka, h)

Bob’s input processing. In this phase, Bob transforms each symbol in Bob’s input
string x into an encrypted pseudonym, to be computed as output of the pseudo-
random function prFa on input the symbol x(i). This computation is performed
by an execution of the sPRFeval protocol for each i = 1, ...,m, where Alice uses key
ka as input, and Bob uses xi as input and receives prFa(ka, xi) as output. By the
end of this phase, Bob has obtained the encrypted pseudonyms associated with all
his input symbols x1, . . . , xm. A formal description of this phase goes as follows:

1. For i = 1, . . . ,m,
Alice and Bob run the sPRFeval protocol for function prFa, where

Alice’s input is key ka

Bob’s input is xi

Bob’s output is px,i, intended to be = prFa(ka, xi)

Circuit processing. In this phase, Alice sends to Bob the encrypted pseudonym
associated with the initial state s0 (set, wlog, =1), also being the current state.
The invariant that Bob holds a valid encrypted pseudonym for the current state
will be maintained throughout the protocol execution. Alice and Bob perform
private evaluation of the deterministic automata, using the sCTeval protocol
and the encrypted pseudonyms computed in the input processing phases. In
the private evaluation of the deterministic automata, the execution continues
in n iterations, where the i-th iteration, for i = 1, . . . , n, goes as follows. First,
Alice randomly chooses permutations αi of (1, . . . , s) and βi of (1, . . . , a), and



Privacy-Preserving Deterministic Automata Evaluation 283

computes an encrypted pseudonym for i-th variants of the s DFA states, as
follows: the pseudonyms are outputs of the pseudo-random function prFs on
input the state symbol sj and the position index i, for j = 1, . . . , s. Then, for
each symbol and state, Alice transfers the next state pseudonym to Bob, using
an sCTeval protocol, where the condition is an AND of 2 equalities, defined so
that Bob obtains the next state pseudonym sent by Alice in correspondence to
the current state pseudonym and the current symbol pseudonym held by Bob.
Alice will perform one execution of an sCTeval protocol for each of the possible
current states and each of the possible symbols (in random orders according
to permutations αi, βi), but only for one such pair is Bob holding the valid
pseudonyms that meet both equalities; thus, Bob will receive the next state
pseudonym only in correspondence of one such pair, in a random position, except
with negligible probability. The detailed steps of this phase go as follows:

1. Alice computes pS,1,0 = prFs(ks, (0|1)) and sends pS,1,0 to Bob
2. Bob sets qS,0 = pS,1,0

3. For i = 1, . . . , m,
Alice randomly chooses permutations αi of (1, . . . , s) and βi of (1, . . . , a)
for j = 1, . . . , s,

Alice computes pS,j,i = prFs(ks, (i|j))
4. For i = 1, . . . , m,

for j = αi(1), . . . , αi(s),
for h = βi(1), . . . , βi(a),

Alice and Bob run the sCTeval protocol for the AND-of-equality function, where
Alice uses as input key ks and pseudonyms pS,j,i−1, pA,h and pseudonym pS,j,i

Bob uses as input pseudonyms qS,i−1 and px,i

Bob’s output is in {⊥, z} for some string z ∈ {0, 1}�, and
it is intended to be = pS,j,i �=⊥ if (pS,j,i−1 = qS,i−1) AND (pA,h = px,i)

if Bob’s output is z �=⊥ then Bob sets qS,i = z

Output computation. In the output computation phase, after the last symbol from
string x is processed, Alice computes encrypted pseudonyms for the two expres-
sions in set {yes, no} = {final-state, non-final-state} and transfers each of these
two pseudonyms using an sCTeval protocol, using an equality condition, defined
so that Bob obtains the appropriate pseudonym sent by Alice in correspondence to
the current state pseudonym held by Bob. Alice will perform one execution of an
sCTeval protocol for each of the possible current states, but only for one of these
states, Bob is holding the valid pseudonym; thus, Bob will receive the final-state or
non-final-state pseudonym only in correspondence of one such state, except with
negligible probability. The detailed steps of this phase go as follows:

1. For j = 1, . . . , s,
Alice and Bob run the sCTeval protocol for the equality function, where

Alice sets sj =‘yes’ if j ∈ F or sj =‘no’ if j �∈ F
Alice uses as input key ks, pseudonym pS,j,m, and string sj

Bob uses as input pseudonym qS,m

Bob’s output is in {⊥, z} for some string z ∈ {0, 1}�, and
it is intended to be = sj �=⊥ if (pS,j,m = qS,m) and ⊥ otherwise

if Bob’s output is z �=⊥ then Bob returns z and halts.
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Pictorial description. A pictorial description of this protocol can be found
in Fig. 1. We remark that the circuit processing phase may be actually run in
parallel across all i = 1, . . . , n, and that the protocol in Fig. 1 can be easily
adapted if we require Alice to be the party receiving the computation output, as
follows. In the output computation phase, instead of obliviously transferring to
Bob a yes or no string, Alice obliviously transfers a large random pseudonym for
such strings, and then Bob sends back the received string to let Alice determine
the output.

Alice (input: FA=(S,s0=1,F,A,τ)) Bob(input: x=x(1),…,x(m))

Circuit
Processing,
for i=1,…,m

Alice’s input 
processing

Alice randomly chooses keys ks,ka and computes state 
pseudonyms pS,j,0 = prFs(ks,(0|j)), for j=1,…,s, and alphabet 
symbol pseudonyms pA,h = prFa(ka,h) for h=1,…,a  

Interac�vely compute and return to Bob (using an sPRFeval protocol) 
pseudonyms px,i = prFa (ka,x(i)), for each symbol x(i), i=1,…,m

pseudonym ps,1,0 of ini�al state s0=1

Set qS,0 = pS,1,0

Alice randomly chooses permuta�ons αi of (1,…,s) and βi of (1,…,a), and 
computes pseudonyms pS,j,i = prFs(ks,(i|j)), for j=1,…,s. Alice transfers to Bob 
(using an sCTeval protocol) next state pseudonyms pS,j,i using a τ-based condi�on 
“(pS,j,i-1 = qS,i-1) AND (pA,h = px,i)”, for all j=αi(1),…,αi(s) and h=βi(1),…,βi(a).

Set qS,i be the received pS,j,i for some j in {1,..,s}

Output 
Computa�on

Alice transfers to Bob (using an sCTeval protocol) a “yes” (resp., “no”) string 
using as condi�on “(pS,j,m = qS,m)”, for all pS,j,m in F (resp., not in F)

Output:  received yes/no string

Bob’s input 
processing

Fig. 1. Our sDAeval protocol

Properties of π. It is easy to calculate Alice and Bob’s runtime by inspection
of protocol π. Specifically, Alice’s runtime is dominated by her program in m
executions of an sPRFeval protocol, (ma+1)s executions of an sCTeval protocol,
(m + 1)s computations of pseudo-random function prFs and a computations of
pseudo-random function prFa. Bob’s runtime is dominated by his program in m
executions of an sPRFeval protocol and in (ma + 1)s executions of an sCTeval
protocol. We now show the security properties of protocol π, considering two
cases, depending on which of the two participants is corrupted by the adversary
Adv.

Security, part 1 (Adv corrupts Alice): We note that in protocol π Alice’s pro-
gram consists of running a polynomial number of sPRFeval and sCTeval proto-
cols, and sending an initial state pseudonym to Bob. Since these subprotocols
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are secure, they admit an efficient simulator whose output is computationally
indistinguishable from the adversary’s view during protocol execution. By suit-
ably composing these simulators and running some of Alice’s instructions, we
obtain an efficient simulator for Adv’s view when corrupting Alice in π. Specifi-
cally, simulator SimA runs Alice’s program to simulate Alice’s view during her
input processing phase, runs the simulator for the sPRFeval protocol to sim-
ulate Alice’s view during Bob’s input processing phase, runs Alice’s program
to simulate the sending of the initial state pseudonym from Alice to Bob, and
runs the simulator for the sCTeval protocol to simulate Alice’s view during the
circuit processing and output computation phases. The simulation’s output is
computationally indistinguishable from Alice’s view since an analogue property
holds for the simulators for the sPRFeval protocol and the sCTeval protocol.

Security, part 2 (Adv corrupts Bob): We note that in protocol π Bob’s program
consists of running a polynomial number of sPRFeval and sCTeval protocols, and
receiving multiple pseudo-random state pseudonyms. Since these subprotocols
are secure, they admit an efficient simulator whose output is computationally
indistinguishable from the adversary’s view during protocol execution. For every
i = 1, . . . ,m, sa sCTeval protocols are executed by Bob and only one results in
a pseudo-random state pseudonym (different than the error symbol) as output.
The position of this non-erroneous execution can be simulated as a random posi-
tion in the s × a matrix, and the received pseudo-random state pseudonyms can
be simulated using a random string of the same length. By suitably composing
these simulators and the generation of the next-state pseudonyms, we obtain an
efficient simulator for Adv’s view when corrupting Bob in π. Specifically, simu-
lator SimB runs the simulator for the sPRFeval protocol to simulate Bob’s view
during Bob’s input processing phase, randomly chooses pseudonym ps,1,0 of ini-
tial state s0 = 1 and sets qs,0 = ps,1,0, randomly chooses next state pseudonym
ps,j,i and sets qs,j = ps,j,i, runs the simulator for the sPRFeval protocol to sim-
ulate Bob’s view during the executions of the sPRFeval protocol in the circuit
processing phase, and runs the simulator for the sCTeval protocol to simulate the
output computation phase. The simulation’s output is computationally indistin-
guishable from Alice’s view since an analogue property holds for the simulators
for the sPRFeval protocol and the sCTeval protocol, and since a random per-
mutation of both rows and columns of the transition matrix at each iteration
i = 1, . . . ,m implies that the distribution of the position of the state pseudonym
received by Bob during the protocol is random within the s × a matrix.

4 Our sDAeval Protocol: A First Instantiation

In this section we describe a first instantiation of our main result that is asymp-
totically more efficient than previous schemes in the literature, having, in par-
ticular, running time sublinear in the length of Bob’s input string x. The instan-
tiation is obtained by an adaptation of the family of asymmetric-type PRF and
related sPRFeval protocol from [2,7,13,16], and a simple sCTeval protocol for
an AND of equalities between pseudo-random cryptographic pseudonyms, based
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on any symmetric-type PRF. In the rest of this section, we describe these 3
ingredients, and the efficiency properties of the resulting instantiation, denoted
as π1, of our main protocol.

A family of asymmetric-type PRFs. In this instantiation of π, the family
of asymmetric-type pseudo-random functions, denoted as prFa, is realized as an
adaptation of the family used in [16], as we detail here. First, on input a security
parameter 1σ, the function’s parameters are generated by running the following
steps:

1. randomly choose p1, p2, p
′
1, p

′
2 ∈ {0, 1}σ such that

p1 = 2p′
1 + 1, p2 = 2p′

2 + 1, and p1, p2, p
′
1, p

′
2 are primes

2. set n = p1p2
3. randomly choose an element g1 of order n in a group Z∗

p such that
p is the first prime such that p divides (n − 1)

4. output: parameters (n, g1)

Then, on input a randomly chosen key k in Z∗
n and an input string x in {0, 1}q,

the function prFa returns gt
1 mod p, for t = 1/(k + x) if gcd(k + x, n) = 1

and 1 otherwise. Two remarks are necessary on this definition. First, the event
gcd(k + x, n) �= 1 happens with negligible probability over the random choice
of k, assuming the hardness of factoring numbers of the same distribution as n.
Second, the length q of the input string was first thought in [16] to be limited
by the number-theoretic assumption needed to prove the pseudo-randomness of
this function family, but later [13] observed that such restriction is not needed
(see below for more details). This function family, defined in [16], is a variant
of the one in [7], in turn based on an unpredictable function from [2], the only
modification being of using a group whose order is a safe RSA modulus instead
of a group of prime order. The function from [2] was proved to be unpredictable
under a number-theoretic assumption on the underlying group (i.e., the com-
putational q-DHI assumption). A proof from [7] can be extended to show that
this same function is a pseudo-random function under the mentioned number-
theoretic assumption. Moreover, as stated in [16], the same arguments from [2]
for prime-order groups also imply that (1) the function family considered here
in a composite-order group is pseudo-random assuming the decisional q-DHI
assumption on such groups and the hardness of factoring, and (2) the same
generic-group argument which motivated trust in the q-DHI assumption on the
prime-order groups carries to composite-order groups as well. Here, we recall a
sketch of the definition of the q-DHI assumption: all efficient algorithms, given
n and g, can only distinguish the two tuples

– (g, gu, gu2
, . . . , guq

, g1/u),
– (g, gu, gu2

, . . . , guq

, h)

for random h ∈ Z∗
p and u ∈ Z∗

n, with negligible probability. In later work [13], it
has been showed that no restriction of value q is needed by observing that the
function family we consider is (almost) a permutation.
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An sPRFeval protocol for function prFa. This protocol is a simplified ver-
sion of the oblivious evaluation protocol from Fig. 1 of [16] for the above pseudo-
random function prFa. Specifically, this protocol evaluates the pseudo-random
function fK in Sect. 2.1 of the same paper and uses the encryption scheme in
Sect. 2.2 of the same paper. The simplification is possible since we only require
our protocol to be secure against semi-honest adversaries, and is thus obtained
by removing the three zero-knowledge proofs of knowledge π1, π2, and π3 from
the protocol in Fig. 1 of [16]. The resulting protocol is an sPRFeval protocol for
pseudo-random function prFa, which will be run interactively by Alice and Bob
and evaluate function prFa on input Bob’s input symbols. The proof for this
fact is obtained as a corollary of the proof in [16]. As an optimization that does
not affect the theorem validity, our implementation for π1 also avoids the initial
exponentiation to the k-th power of generator g2 and just randomly chooses a
symmetric key k instead. In this instantiation of π, function prFa will also be
computed non-interactively by Alice, on input relatively short strings denoting
the alphabet symbols of the DA states.

An sCTeval protocol for 2 equalities conditions. We describe an sCTeval
protocol for an equality condition and then one for an AND-of-equality condition.
In both cases, we assume that all inputs to the equality statements are (large-size
and pseudo-random) cryptographic pseudonyms. First, assume Alice wants to
transfer some pseudonym p to Bob under the condition that Alice’s pseudonym
pA is equal to Bob’s pseudonym pB . Based on any symmetric-type PRF prFs

with output length, the sCTeval protocol goes as follows:

1. Alice sets kA = pA, randomly chooses r ∈ {0, 1}σ, computes u = prFs(kA, r),
v = u ⊕ (p|0σ), and sends (r, v) to Bob;

2. Bob sets kB = pB, computes u′ = prFs(kB , r); if u′ ⊕ v = (m|0σ) for some
m, it returns: p; if not, it returns a special error symbol.

Note that if Alice’s pseudonym pA is equal to Bob’s pseudonym pB then Bob
returns the same pseudonym p sent by Alice with probability 1; moreover, if
Alice’s pseudonym pA is not equal to Bob’s pseudonym pB then Bob returns p
only with negligible probability; finally, by the pseudo-randomness properties of
prFs, Alice learns no information about pB and Bob learns no information about
pA, which implies the security of the protocol. This protocol is run s times in
the output computation phase of π1. Now, assume Alice wants to transfer some
pseudonym p to Bob under the condition that Alice’s pseudonym pA is equal to
Bob’s pseudonym pB and Alice’s pseudonym qA is equal to Bob’s pseudonym
qB . Based on any symmetric-type PRF prFs with output length, the sCTeval
protocol goes as follows:

1. Alice randomly chooses p1 and computes p2 = p ⊕ p1
2. Alice transfers p1 via the above sCTeval protocol for the string equality pred-

icate, using the equality (pA = pB) as condition;
3. Alice transfers p1 via the above sCTeval protocol for the string equality pred-

icate, using the equality (qA = qB) as condition;
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4. If Bob returns p′
1, p

′
2 (and thus no error symbol) on any of these two execu-

tions, he returns p′ = p′
1 + p′

2; else Bob returns an error symbol.

Note that if both equalities are satisfied then Bob can compute p′
1 = p1 and

p′
2 = p2 and return p′ = p with probability 1; moreover, if at least one equality

is not satisfied then Bob returns p′ = p only with negligible probability. The
security of this protocol directly follows from the security of the individual single-
equality sCTeval protocols used.

Efficiency properties of π1. Protocol π1 only requires 3 messages between
Alice and Bob, as the sPRFeval protocols require 3 messages (where Alice sends
first), the sCTeval protocols require a single messages between Alice and Bob,
and this latter message can be combined with the last message in the sPRFeval
protocols. Alice’s input processing phase requires O(s) symmetric cryptogra-
phy operations in Alice’s executions of prFs and O(a) asymmetric cryptography
operations in Alice’s executions of prFa. Bob’s input processing phase requires
O(m) applications of an sPRFeval protocol, which only need O(m) asymmetric
cryptography operations. The circuit processing and output computation phase
require (sa+1)m applications of an sCTeval protocol, which need O(sam) sym-
metric cryptography operations. Thus, in total, π1 only requires O(sam) sym-
metric cryptography and O(m) asymmetric cryptography operations (instead
of O(m log a), as required in a direct application of the general solution from
[22]). An analogue improvement is observed in the protocol’s communication
complexity.

5 Our sDAeval Protocol: A Second Instantiation

In this section we describe a second instantiation of our main protocol that,
although asymptotically less efficient than the first instantiation, is actually effi-
cient for small automata alphabets, including some encountered in practice. The
instantiation is obtained by replacing the use of asymmetric-type PRFs with any
symmetric-type PRFs, and realizing a sPRFeval protocol by a suitable combina-
tions of protocols from [19,20]. This realization uses the fact that the automata
alphabet is small (i.e., polynomial in the security parameter), and that the PRF
needs to be evaluated over any one of the a alphabet elements. In the rest of this
section, we describe this different sPRFeval protocol, and the efficiency proper-
ties of the resulting instantiation, denoted as π2, of our main protocol.

An sPRFeval protocol for any small-domain symmetric-type function
prFs. While in the first instantiation of π, we used a simplified version of the
oblivious pseudo-random function evaluation protocol from Fig. 1 of [16], here,
assuming that the number a of automata’s alphabet symbols is small (i.e., poly-
nomial in the security parameter, as opposed to super-polynomial), we use a
protocol that can be based on: (1) any arbitrary symmetric-type pseudo-random
function, including the already assumed prFs, which we implement using a block
cipher (e.g., AES), and (2) any secure (1-out-of-a)-OT protocol, such as the one
in [19], which is in turn based on any arbitrary symmetric-type pseudo-random
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function, including the already assumed prFs, and any arbitrary (1-out-of-2)-
OT protocol, such as the one in [20], based on the hardness of the Decisional
Diffie-Hellman problem. Specifically, the new oblivious pseudo-random function
evaluation protocol will be an oblivious protocol for the evaluation of function on
input (i, xi), where xi is the i-th element from Bobs input string x = x1, . . . , xm,
for all i = 1, . . . ,m. This protocol goes as follows:

1. Alice computes zh = prFs(h, ash), for h = 1, . . . , a, where ash denotes the
h-th alphabet symbol according to a standard, lexicographic, ordering;

2. Alice uses the (1-out-of-a)-OT protocol from [19] to transfer zt to Bob, where
Alice uses as input strings z1, . . . , za, Bob uses as input t ∈ {1, . . . , a} such
that ast = xj

The resulting protocol is a sPRFeval protocol for pseudo-random function prFs,
whenever a is polynomial in the security parameter. To summarize, protocol
π1 and π2 differ in how the design of the sPRFeval protocol, affecting the type
of PRF used and the assumption on the size of the automata alphabet. In π1,
the sPRFeval protocol is designed as an adaptation of the scheme from [16],
and works for a specific asymmetric-type PRF, and for arbitrary-size automata
alphabets. On the other hand, in π2, the sPRFeval protocol is designed building
from a (1-out-of-a)-OT scheme from [19], works for any arbitrary symmetric-type
PRF, and for polynomial-size automata alphabets.

Efficiency properties of π2. Protocol π2 only requires 2 messages between
Alice and Bob, as the sPRFeval protocols require 2 messages (where Bob sends
first), the sCTeval protocols require a single messages between Alice and Bob,
and this latter message can be combined with the last message in the sPRFe-
val protocols. As in π1, Alice’s input processing phase requires O(s) symmet-
ric cryptography operations in Alice’s executions of prFs and O(a) asymmetric
cryptography operations in Alice’s executions of prFa. Bob’s input processing
phase requires O(m) applications of an sPRFeval protocol, which need O(m log a)
asymmetric and symmetric cryptography operations. The circuit processing and
output computation phase require (sa + 1)m applications of an sCTeval proto-
col, which need O(sam) symmetric cryptography operations. Thus, in total, π2

requires O(sam) symmetric cryptography and O(m log a) asymmetric cryptog-
raphy operations, which is asymptotically similar to a direct application of the
general solution from [22], but, as later shown in the performance evaluation of
our implementation, comes with considerable runtime improvements.

6 Performance Analysis

In this section we discuss the practical performance of the two instantiations
π1, π2 of our main protocol π, showing improved latency with respect to the
original Yao’s protocol, as well as previous protocols in the literature. We per-
formed two types of analysis of our protocols’ on-line computation (or latency):
an asymptotic analysis, with comparison with previous sDAeval protocols,
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and a more practical numerical analysis based on measurements of our imple-
mentations running time.

Implementation setup, metric and parameter settings. Testing of our implemen-
tations of protocols π1 and π2 was done on 2 Dell PowerEdge 1950 processors and
one Dell PowerEdge 2950 processor, Intel(R) Xeon(R) CPU E5405 @ 2.00 GHz.
We run Alice and Bob’s programs on the 2 PowerEdge 1950 processors, and the
testing control was run on the 2950 processor. All offline and online communica-
tion traffic was run over a dedicated gigabit Ethernet LAN. Testing control and
collection of timing measurement traffic was isolated on a separate dedicated
gigabit Ethernet LAN.

In our performance experiments, we mainly evaluated on-line computation
time (or latency), divided into asymmetric cryptographic operations, with secu-
rity parameter σ, and symmetric cryptography operations, with security parame-
ter λ. Recall that in practice the former type of operations is expected to require
computing resources greater than the latter type by orders of magnitude (slightly
more than 3 orders on our machines, when setting σ = 2048 and λ = 128). In
addition than σ and λ, latency was evaluated over input length parameters s
(the number of DA states), a (the number of DA alphabet symbols) and m (the
number of symbols in Bob’s input string x).

Performance evaluation of π1, π2. Off-line computation performance (used for
the generation of one-time public keys and parameter value settings) required
200 s in π1 and less than 4 s in π2. Memory used by π1 (resp., π2) was 337 Mbytes
(resp., 2.553 Mbytes).

Practical numeric latency times of our protocols are heavily dependent on the
subset of values that we consider as settings for parameters s, a, n. We considered
three main cases for parameter a, reflecting related application scenarios; namely:

– a = 2 (binary alphabet),
– a = 27 (English alphabet plus one special symbol for all other alphabet

symbols),
– a = 128 (smallest power of 2 that includes all ASCII symbols).

For these three values, we measured running times and extrapolated them into
estimates of close-to-maximum values of s and n such that the overall latency
of the protocols would remain below 30 s or 10 s.

The found values are captured in Table 1 below.

Comparison of asymptotic performance with previous sDAeval protocols. We
compared our protocols π1, π2 with previous sDAeval protocols achievable from
results in [9,15,18,22]. This comparison was performed by evaluation of asymp-
totic expressions for their latency, and is summarized in Table 2 below. (While
we were able to extend the protocol from [22] to a non-binary automata alphabet
size, it was unclear how to do the same with the protocol in [18], which is defined
for binary alphabets.)

We remark that the number O(m) of asymmetric cryptography operations
in π1 is sublinear in the total length of the input n = O(m log a + sa log s) to
Alice and Bob.
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Table 1. Max s, a, n parameter values obtained for our protocols, under constraints of
latency ≤ 30 s (columns 2, 3, 4) and of latency ≤ 10s s (columns 5, 6, 7).

Protocol s a n s a n

π1 200 2 84 200 2 28

π1 70 27 70 70 27 23

π1 80 128 42 80 128 14

π2 200 2 6200 200 2 2100

π2 100 27 1500 100 27 500

π2 80 128 75 80 128 25

Table 2. Asymptotic latency analysis, relative to alphabet type.

Protocol Asymmetric crypto Symmetric crypto Alphabet

Operations Operations Type

[22] O(m log a) O(sm log a log s) a-ary, for any a ≥ 2

[9] O(ms log a) None a-ary, for any a ≥ 2

[15] O(ms log a) None a-ary, for any a ≥ 2

[18] O(m log a) O(sm log a) Binary

π1 O(m) O(sam) a-ary, for any a ≥ 2

π2 O(m log a) O(sam) a-ary, for any a ≥ 2

Performance comparison with Yao’s protocol. To obtain some insights on the
‘computing with encrypted data blocks’ paradigm underlying our sDAeval pro-
tocol, we compared our sDAeval protocols’ performance with sDAeval protocols
obtained by instantiating the state-of-the-art solutions in the area of general-
purpose secure 2-party function evaluation (specifically, the garbled circuit par-
adigm, starting with [22], and the fully homomorphic encryption paradigm, start-
ing with [10]). We expanded the quantitative performance comparison framework
used in [5] to obtain numeric (as opposed to asymptotic) performance estimates
and derive a comparison of these 3 approaches. It was quickly apparent that an
sDAeval protocol obtained using the fully homomorphic encryption paradigm,
would be the least efficient. Accordingly, we focused our analysis on comparing
our sDAeval protocols obtained using the computing with encrypted data blocks
paradigm with the sDAeval protocol obtained using the garbled circuit paradigm
from [22].

Let πY denote the 2-party sDAeval protocol obtained using the garbled cir-
cuit paradigm from [22]. Then, for any 2-party sDAeval protocol π, we define
the latency ratio for π, as follows:

latency ratio(π) = latency(πY )/latency(π).

In our analysis, we have found that the latency ratio is essentially independent
on parameter m, which makes it much easier to analyze as a function of the
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Fig. 2. Latency ratio of π1 and π2, with alphabet size 27, as a function of the number
s of states

remaining parameters s and a. Using a combination of runtime measurements
and estrapolations based on protocol analysis, we characterized the latency ratio
for our protocols π1 and π2 in Fig. 2 below. We observe that the improvement of
π1 (respectively, π2) over πY varies between almost 1 to about 1.8 (respectively,
almost 1.5 to about 2.2) orders of magnitude in the shown parameter value space
and further increases with the number s of states.

7 Conclusions and Open Directions

This work can be considered a next step in the direction of [5], where we have
introduced a paradigm for the design of more efficient secure function evalua-
tion protocols, performing the most computationally expensive operations (i.e.,
asymmetric cryptography operations) over input data blocks instead of input
data bits, while maintaining efficient key sizes. This addresses performance short-
comings of the 2 main general-purpose secure function evaluation approaches in
the literature: Yao’s garbled circuits, which has efficient key sizes but operates
on single data bits, and Gentry’s fully homomorphic encryption, which operates
on input data blocks when applied to arithmetic circuits, but with inefficient
key sizes. In [5], we had shown efficient secure function evaluation protocols
satisfying both requirements, for the class of monotone formulae over equality
statements. In this paper, we show such a protocol for deterministic automata
evaluation, which, being equivalent to regular expression matching, captures all
constant-space computations. A first open research direction is to improve the
practical performance of secure protocols for pseudo-random function evalua-
tion protocols, which would improve the performance of the first instantiation of
our protocol on practical parameter settings. A second and more general open
research direction is that of finding more instances of protocols following the
paradigm of computations over encrypted data blocks, possibly including large
classes of polynomial-size circuits.
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