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Abstract. We present a new, but simple, randomised order-preserving
encryption (OPE) scheme based on the general approximate common
divisor problem (GACDP). This appears to be the first OPE scheme to
be based on a computational hardness primitive, rather than a security
game. This scheme requires only O(1) arithmetic operations for encryp-
tion and decryption. We show that the scheme has optimal informa-
tion leakage under the assumption of uniformly distributed plaintexts,
and we indicate that this property extends to some non-uniform distri-
butions. We report on an extensive evaluation of our algorithms. The
results clearly demonstrate highly favourable execution times in com-
parison with existing OPE schemes.
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1 Introduction

Outsourcing computation to the cloud has become increasingly important to
business, government, and academia. However, in some circumstances, data on
which those computations are performed may be sensitive. Therefore, outsourced
computation proves problematic.

To address these problems, we require a means of secure computation in the
cloud. One proposal, is that of homomorphic encryption, where data is encrypted
and computation is performed on the encrypted data [32]. The data is retrieved
and decrypted. Because the encryption is homomorphic over the operations per-
formed by the outsourced computation, the decrypted result is the same as that
computed on the unencrypted data.

Fully homomorphic encryption has been proposed as a means of achieving
this. However, as currently proposed, it is not practical. Therefore, we believe
that somewhat homomorphic encryption, which is homomorphic only for certain
inputs or operations, is only of current practical interest.

For sorting and comparison of data we require an encryption scheme that
supports homomorphic comparisons of ciphertexts. Order-preserving encryption
(OPE) is a recent field that supports just such a proposition. An OPE is defined
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as an encryption scheme where, for plaintexts m1 and m2 and corresponding
ciphertexts c1 and c2,1

m1 < m2 =⇒ c1 < c2

Our work presents an OPE scheme that is based on the general approximate
common divisor problem (GACDP) [18], which is believed to be hard. Using
this problem we have devised a system where encryption and decryption require
O(1) arithmetic operations.

1.1 Notation

x
$←− S represents a value x chosen uniformly at random from the discrete set S.
KeyGen : S → K denotes the key generation function operating on the secu-

rity parameter space S and whose range is the secret key space K.
Enc : M × K → C denotes the symmetric encryption function operating

on the plaintext space M and the secret key space K and whose range is the
ciphertext space C.

Dec : C × K → M denotes the symmetric decryption function operating
on the ciphertext space C and the secret key space K and whose range is the
plaintext space M.

m,m1,m2, . . . denote plaintext values. Similarly, c, c1, c2, . . . denote cipher-
text values.

[x, y] denotes the integers between x and y inclusive.
[x, y) denotes [x, y] \ {y}.
R[x, y) denotes the real numbers in the interval [x, y).

1.2 Scenario

Our OPE system is intended to be employed as part of a system for single-party
secure computation in the cloud. In this system, a secure client encrypts data
and then outsources computation on the encrypted data to the cloud. Then
computation is performed homomorphically on the ciphertexts. The results of
the computation are retrieved by the secure client and decrypted. We intend
that our OPE scheme will support sorting and comparison of encrypted data.

1.3 Formal Model of Scenario

We have n integer inputs, m1,m2, . . . ,mn, where mi ∈ M = [0,M ] and n � M .2

We wish to be able to compare and sort these inputs. A secure client A selects
an instance EK of the OPE algorithm E using the secret parameter set K. A

1 This relationship is typically represented as m1 ≤ m2 =⇒ c1 ≤ c2. However, this
seems to introduce an insecurity, by permitting an equality test for plaintexts using
two comparisons.

2 We must assume n � M to avoid the “sorting attack” of Naveed et al. [27].
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encrypts the n inputs by computing ci = EK(mi), for i ∈ [1, n]. A uploads
c1, c2, . . . , cn to the cloud computing environment. These encryptions do not all
need to be uploaded at the same time but n is a bound on the total number of
inputs. The cloud environment conducts comparisons on the ci, i ∈ [1, n]. Since
E is an OPE, the mi will also be correctly sorted. A can retrieve some or all of
the ci from the cloud and decrypt each ciphertext ci by computing mi = E−1

K (ci).
A snooper is only able to inspect c1, c2, . . . , cn in the cloud environment.

The snooper may compute additional functions on the c1, c2, . . . , cn as part of a
cryptanalytic attack, but cannot make new encryptions.

1.4 Observations from Scenario

From our scenario we observe that we do not require public-key encryption as we
do not intend another party to encrypt data. Symmetric encryption will suffice.
Furthermore, there is no key escrow or distribution problem, as only ciphertexts
are distributed to the cloud.

It is common in the literature [2,3] to refer to an encryption or decryption
oracle in formal models of security. However, our scenario has no analogue of
an oracle because another party has no way of encrypting or decrypting data
without breaking the system. Any cryptological attacks will have to be per-
formed on ciphertexts only. Therefore, we see chosen plaintext attacks (CPA)
and chosen ciphertext attacks (CCA) as not relevant to our scenario. Indeed,
it can be argued that any notion of indistinguishability under CPA is not rel-
evant to OPE in practice (see Sect. 2.2). Various attempts have been made by
Boldyreva and others [5,6,33,36] to provide such indistinguishability notions.
However, the security models impose practically unrealistic restrictions on an
adversary. See, for example, our discussion of IND-OCPA below (Sect. 2.2). It
should also be pointed out that satisfying an indistinguishability criterion does
not guarantee that a cryptosystem is unbreakable, and neither does failure to
satisfy it guarantee that the system is breakable.

We also note that a known plaintext attack (KPA) is considered possible only
by brute force, and not through being given a sample of pairs of plaintext and
corresponding ciphertext.

Our notion of security requires only that determining the plaintext values
is computationally infeasible within the lifetime of the outsourced computation.
However, in some cases, we can show that the information leaked about the
plaintexts is not significantly greater than is leaked by the total ordering revealed
by the OPE.

1.5 Related Work

Prior to Boldyreva et al. [6], OPE had been investigated by Agrawal et al. [1]
and others (see [1] for earlier references). However, it wasn’t until Boldyreva
et al. that it was claimed that an OPE scheme was provably secure. Boldyreva
et al.’s algorithm constructs a random order-preserving function by mapping
M consecutive integers in a domain to integers in a much larger range [1, N ],
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by recursively dividing the range into M monotonically increasing subranges.
Each integer is assigned a pseudorandom value in its subrange. The algorithm
recursively bisects the range, at each recursion sampling from the domain until
it hits the input plaintext value. The algorithm is designed this way because
Boldyreva et al. wish to sample uniformly from the range. This would require
sampling from the negative hypergeometric distribution, for which no efficient
exact algorithm is known. Therefore they sample the domain from the hyperge-
ometric instead. As a result, each encryption requires at least log N recursions.
Furthermore, so that a value can be decrypted, the pseudorandom values gen-
erated must be reconstructible. Therefore, for each instance of the algorithm,
a plaintext will always encrypt to the same ciphertext. This implies that the
encryption of low entropy data might be very easy to break by a “guessing”
attack (see Sect. 4). For our OPE scheme, multiple encryptions of a plaintext
will produce differing ciphertexts. In [6], the authors claim that N = 2M , a
claim repeated in [10], although [5] suggests N ≥ 7M . We use N ≥ M2 in our
implementations of Boldyreva et al.’s algorithm, since this has the advantage
that the scheme can be approximated closely by a much simplified computation,
as we discuss in Sect. 3.2. The cost is only a doubling of the ciphertext size.
However both [5,6] take no account of n, the number of values to be encrypted.
As in our scheme, the scheme should have n � M to avoid the sorting attack
of [27]. If c = f(m) is Boldyreva et al.’s OPE, it is straightforward to show that
we can estimate f−1(c) by m̂ = Mc/N , with standard deviation approximately√

2m̂(1 − m̂/M). For this reason, Boldyreva et al.’s scheme always leaks about
half the plaintext bits.

Yum et al. [37] extend Boldyreva et al.’s work to non-uniformly distributed
plaintexts. This can improve the situation in the event that the client knows
the distribution of plaintexts. This “flattening” idea already appears in [1].
In Sect. 2.3 we discuss a similar idea.

In [5], Boldyreva et al. suggest an extension to their original scheme, modu-
lar order-preserving encryption (MOPE), by simply transforming the plaintext
before encryption by adding a term modulo M . The idea is to cope with some of
the problems discussed above, but any additional security arises only from this
term being unknown. Note also that this construction again always produces the
same ciphertext value for each plaintext.

Teranishi et al. [33] devise a new OPE scheme that satisfies their own security
model. However, their algorithms are less efficient, being linear in the size of the
message space. Furthermore, like Boldyreva et al., a plaintext always encrypts
to the same ciphertext value.

Krendelev et al. [22] devise an OPE scheme based on a coding of an integer
as the real number

∑
i bi2−i where bi is the ith bit of the integer. The algorithm

to encode the integer is O(n) where n is the number of bits in the integer. Using
this encoding, they construct a matrix-based OPE scheme where a plaintext is
encrypted as a tuple (r, k, t). Each element of the tuple is the sum of elements
from a matrix derived from the private key matrices σ and A. Their algorithms
are especially expensive, as they require computation of powers of the matrix A.
Furthermore, each plaintext value always encrypts to the same ciphertext value.
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Khadem et al. [19] propose a scheme to encrypt equal plaintext values to
differing values. Their scheme is similar to Boldyreva et al. where a plaintext is
mapped to a pseudorandom value in a subrange. However, this scheme relies on
the domain being a set of consecutive integers for decryption. Our scheme allows
for non-consecutive integers. This means that our scheme can support updates
without worrying about overlapping “buckets” as Khadem et al.

Liu et al. [25] addresses frequency of plaintext values by mapping the plain-
text value to a value in an extended message space and splitting the message
and ciphertext spaces nonlinearly. As in our scheme, decryption is a simple divi-
sion. However, the ciphertext interval must first be located for a given ciphertext
which is Ω(log n) when n is the total number of intervals.

Liu and Wang [24] describe a system similar to ours where random “noise”
is added to a linear transformation of the plaintext. However, in their examples,
the parameters and noise used are real numbers. Unlike our work, the security
of such a scheme is unclear.

In [29], Popa et al. discuss an interactive protocol for constructing a binary
index of ciphertexts. Although this protocol guarantees ideal security, in that it
only reveals the ordering, it is not an OPE. The ciphertexts do not preserve the
ordering of the plaintexts, rather the protocol requires a secure client to decrypt
the ciphertexts, compare the plaintexts, and return the ordering. It is essentially
equivalent to sorting the plaintexts on the secure client and then encrypting
them. Popa et al.’s protocol has a high communication cost: Ω(n log n). This
may be suitable for a database server where the comparisons may be made in
a secure processing unit with fast bus communication. However, it is unsuitable
for a large scale distributed system where the cost of communication will become
prohibitive. Kerschbaum and Schroepfer [21] improved the communication cost
of Popa et al.’s protocol to Ω(n) under the assumption that the input is random.
However, this is still onerous for distributed systems. Kerschbaum [20] further
extends this protocol to hide the frequency of plaintexts. Boelter et al. [4] extend
Popa et al.’s idea by using “garbled circuits” to obfuscate comparisons. However,
the circuits can only be used once, so their system is one-time use.

Also of note is order-revealing encryption (ORE), a generalisation of OPE
introduced by Boneh et al. [7], that only reveals the order of ciphertexts. An
ORE is a scheme (C,E,D) where C is a comparator function that takes two
ciphertext inputs and outputs ‘<’ or ‘≥’, and E and D are encryption and
decryption functions. This attempts to replace the secure client’s responsibility
for plaintext comparisons in Popa’s scheme with an exposed function acting on
the ciphertexts.

Boneh et al.’s construction uses multilinear maps. However, as stated in
Chenette et al. [10], “The main drawback of the Boneh et al. ORE construc-
tion is that it relies on complicated tools and strong assumptions on these tools,
and as such, is currently impractical to implement”.

Chenette et al. offer a more practical construction, with weaker claims to
provable security. However, since it encrypts the plaintexts bit-wise, it requires
a number of applications of a pseudorandom function f linear in the bit size of
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the plaintext to encrypt an integer. The security and efficiency of this scheme
depends on which pseudorandom function f is chosen.

Lewi et al. [23] devise an ORE scheme where there are two modes of encryp-
tion: left and right. The left encryption consists of a permutation of the domain
and a key generated by hashing the permuted plaintext value. The right cipher-
text consists of encryptions of the comparison with every other value in the
domain. It is a tuple of size d + 1 where d is the size of the domain. Lewi et al.
then extend this scheme to domains of size dn. This results in right ciphertext
tuples of size dn + 1. Our experimental results compare favourably with theirs,
largely because the ciphertext sizes of Lewi et al.’s scheme are much larger.

The security of these ORE schemes is proven under a scenario similar to
IND-OCPA [6] (see Sect. 2.2). However, under realistic assumptions on what an
adversary might do, these ORE schemes seem to have little security advantage
over OPE schemes. For example, in O(n log n) comparisons an adversary can
obtain a total ordering of the ciphertexts, and, hence the total ordering of the
plaintexts. A disadvantage of ORE schemes are that they permit an equality
test on ciphertexts [7, p. 2] by using two comparisons. This could be used to
aid a guessing attack on low-entropy plaintexts, e.g. [15,27]. A randomised OPE
scheme, like ours, does not permit this. On the other hand, the information
leakage of the ORE schemes so far proposed appears to be near-optimal.

1.6 Road Map

In Sect. 2, we present our OPE scheme. In Sect. 3, we provide the generic version
of Boldyreva et al.’s algorithm and the Beta distribution approximation used in
our experiments. In Sect. 4, we discuss the results of experiments on our OPE
scheme. Finally, in Sect. 5 we conclude the paper.

2 An OPE Scheme Using Approximate Common Divisors

Our OPE scheme is the symmetric encryption system (KeyGen, Enc, Dec). The
message space, M, is [0,M ], and the ciphertext space, C, is [0, N ], where N > M .
We have plaintexts mi ∈ M, i ∈ [1, n] such that 0 < m1 ≤ m2 ≤ · · · ≤ mn ≤ M .

Key Generation. Both the security parameter space S and the secret key
space K are the set of positive integers. Given a security parameter λ ∈ S, with
λ > 8/3 lg M , KeyGen randomly chooses an integer k ∈ [2λ, 2λ+1) as the secret
key, sk. So k is a (λ+1)-bit integer such that k > M 8/3 (see Sect. 2.1). Note that
k does not necessarily need to be prime.

Encryption. To encrypt mi ∈ M, we compute,

ci = Enc(mi, sk) = mik + ri,

where ri
$←− (k3/4, k − k3/4).
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Decryption. To decrypt ci ∈ C, we compute,

mi = Dec(ci, sk) = 	ci/k
.

Order-Preserving Property. If m > m′, then c ≥ c′ provided mk + r >
m′k + r′, if k(m − m′) > (r′ − r), which follows, since the lhs is at least k, and
the rhs is less than (k − 1). If m′ = m, then the order of the encryptions is
random, since Pr(r′ > r) ≈ 1

2 − 1/k ≈ 1
2 .

2.1 Security of the Scheme

Security of our scheme is given by the general approximate common divisor
problem (GACDP), which is believed to be hard. It can be formulated [9,11] as:

Definition 1 (General approximate common divisor problem). Suppose
we have n integer inputs ci of the form ci = kmi + ri, i ∈ [1, n], where k is
an unknown constant integer and mi and ri are unknown integers. We have a
bound B such that |ri| < B for all i. Under what conditions on mi and ri, and
the bound B, can an algorithm be found that can uniquely determine k in a time
which is polynomial in the total bit length of the numbers involved?

GACDP and partial approximate common divisor problem (PACDP), its close
relative, are used as the basis of several cryptosystems, e.g. [12,14,16]. Solving
the GACDP is clearly equivalent to breaking our system. To make the GACDP
instances hard, we need k � M (see below). Furthermore, we need the mi to
have sufficient entropy to negate a simple “guessing” attack [26]. However, note
that the model in [26] assumes that we are able to verify when a guess is correct,
which does not seem to be the case here. Although our scenario does not permit
it, even if we knew a plaintext, ciphertext pair (m, c), it would not allow us to
break the system, since c/m = k + r/m ∈ [k, k + k/M ], which is a large interval
since k � M . A number n of such pairs would give more information, but it still
does not seem straightforward to estimate k closer than Ω

(
k/(M

√
n)

)
. Thus the

system has some resistance to KPA, even though this form of attack is excluded
by our model of single-party secure computation.

Howgrave-Graham [18] studied two attacks against GACD, to find divisors
d of a0 + x0 and b0 + y0, given inputs a0, b0 of similar size, with a0 < b0. The
quantities x0, y0 are the “offsets”. The better attack in [18], GACD L, succeeds
when |x0|, |y0| < X = bβ0

0 , and the divisor d ≥ bα0
0 and

β0 = 1 − 1
2α0 −

√
1 − α0 − 1

2α2
0 − ε.

where ε > 0 is a (small) constant, such that 1/ε governs the number of possible
divisors which may be output. We will take ε = 0. This is the worst case for
Howgrave-Graham’s algorithm, since there is no bound on the number of divisors
which might be output.
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Note that β0 < α0, since otherwise
√

1 − α0 − 1
2α2

0 ≤ 1− 3
2α0. This can only

be satisfied if α0 ≤ 2
3 . But then squaring both sizes of the inequality implies

α0 ≥ 8
11 > 2

3 , contradicting α0 ≤ 2
3 .

Suppose we take α0 = 8
11 . Then, to foil this attack, we require β0 ≥ 6

11 .
For our system we have, b0 − a0 = max mi − min mi = M .3 To ensure that the
common divisor k will not be found we require bα0

0 ≥ k, so we will take k = b
8/11
0 .

Since b0 ∼ Mk, this then implies b0 = M11/3. Thus the ciphertexts will then
have about 11/3 times as many bits as the plaintexts. Now GACD L could only
succeed for offsets less than bβ0

0 = b
6/11
0 = k3/4. Thus, we choose our random

offsets in the range (k3/4, k − k3/4).
Cohn and Heninger [11] give an extension of Howgrave-Graham’s algorithm

to find the approximate divisor of m integers, where m > 2. Unfortunately, their
algorithm is exponential in m in the worst case, though they say that it behaves
better in practice. On the other hand, [8, Appendix A] claims that Cohn and
Heninger’s algorithm is worse than brute force in some cases. In our case, the
calculations in [11] do not seem to imply better bounds than those derived above.

We note also that the attack of [9] is not relevant to our system, since it
requires smaller offsets, of size O(

√
k), than those we use.

For a survey and evaluation of the above and other attacks on GACD, see [17].

2.2 Security Models

One-Wayness. The one-wayness of the function c(m) = km + r used by the
scheme clearly follows from the assumed hardness of the GACD problem, since
we avoid the known polynomial-time solvable cases.

IND-OCPA. The model in [6, p. 6] and [23, p. 20] is as follows: given two equal-
length sequences of plaintexts (m1

0 . . . mq
0) and (m1

1 . . . mq
1), where the mj

b (b ∈
[0, 1], j ∈ [1, q]) are distinct,4 an adversary is allowed to present two plaintexts to
a left-or-right oracle [2], LR(m0,m1,b), which returns the encryption of mb. The
adversary is only allowed to make queries to the oracle which satisfy mi

0 < mj
0

iff mi
1 < mj

1 for 1 ≤ i, j ≤ q. The adversary wins if it can distinguish the left
and right orderings with probability significantly better than 1/2.

However, Boldyreva et al. [6, p. 5] note, concerning chosen plaintext attacks:
“in the symmetric-key setting a real-life adversary cannot simply encrypt mes-
sages itself, so such an attack is unlikely to be feasible”. Further, they prove that
no OPE scheme with a polynomial size message space can satisfy IND-OCPA.
Lewi et al. [23] strengthen this result under certain assumptions.

The IND-OCPA model seems inherently rather impractical, since an adver-
sary with an encryption oracle could decrypt any ciphertext using lg M compar-
isons, where M is the size of the message space. Furthermore, Xiao and Yen [35]

3 Note this is our M , not Howgrave-Graham’s.
4 [6, p. 6] and [23, p. 20] do not clearly state this assumption but it appears that all

plaintext values used must be distinct. This assumption clearly does not weaken the
model.
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construct an OPE for the domain [1, 2] and prove that it is IND-OCPA secure.
However, this system is trivially breakable using a “sorting” attack [27]. For
these reasons, we do not consider security models assuming CPA to be relevant
to OPE.

Window One-Wayness. We may further analyse our scheme under the same
model as in [5], which was called window one-wayness. The scenario is as follows.
An adversary is given the encryptions c1 ≤ c2 ≤ · · · ≤ cn of a sample of n
plaintexts m1 ≤ m2 ≤ . . . ≤ mn, chosen uniformly and independently at random
from the plaintext space [0,M). The adversary is also given the encryption c of
a challenge plaintext m, and must return an estimate m̂ of m and a bound r,
such that m ∈ (m̂ − r, m̂ + r) with probability greater than 1/2, say. How small
can r be so that the adversary can meet the challenge?

This model seems eminently reasonable, except for the assumption that
the plaintexts are distributed uniformly. However, as we show in Sect. 2.3, this
assumption can be weakened in some cases for our scheme.

Since the mi are chosen uniformly at random, a random ciphertext satisfies,
for c ∈ [0, kM),

Pr(c = c) = Pr(km + r = km + r) = Pr(m = m) Pr(r = r) =
1
M

1
k

=
1

Mk
,

where m $←− [0,M), r $←− [0, k). Thus c is uniform on [0, kM). Note that this is
only approximately true, since we choose r uniformly from [k3/4, k − k3/4]. How-
ever, the total variation distance between these distributions is 2Mk3/4/Mk =
2/k1/4. The difference between probabilities calculated using the two distribu-
tions is negligible, so we will assume the uniform distribution.

By assumption, the adversary cannot determine k by any polynomial time
computation. So the adversary can only estimate k from the sample. Now, in a
uniformly chosen sample c1 ≤ c2 ≤ · · · ≤ cn from [0, kM), the sample maximum
cn is a sufficient statistic for the range kM , so all information about k is captured
by cn. So we may estimate k by k̂ = cn/M . This is the maximum likelihood
estimate, and is consistent but not unbiased. The minimum variance unbiased
estimate is (n + 1)k̂/n, but using this does not improve the analysis, since the
bias k/(n+1) is of the same order as the estimation error, as we now prove. For
any 0 ≤ ε ≤ 1,

Pr
(
k̂ ∈ k(1 ± ε)

) ≤ Pr
(
cn ≥ kM(1 − ε)

)

= 1 − (1 − ε)n

{ ≤ nε < 1/2 if ε < 1/(2n);
≥ 1 − e−nε ≥ 1/2 if ε ≥ ln 2/n.

Now, if c = mk + r, we can estimate m by m̂ = c/k̂ ≈ mk/k̂. Then

Pr
(
m ∈ m̂(1 ± ε)

) ≈ Pr
(
m ∈ mk/k̂(1 ± ε)

)
= Pr

(
k̂ ∈ k(1 ± ε)

)
< 1/2,

if ε < 1/(2n). Thus, if r ≤ m/2n, Pr(m ∈ m̂±r) < 1/2. Similarly, if r ≥ m lg 2/n,
Pr(m ∈ m̂ ± r) ≥ 1/2. Thus the adversary cannot succeed if r ≤ m/2n, but can
if r ≥ m lg 2/n.
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It follows that only lg m− lg(m/n)+O(1) = lg n+O(1) bits of m are leaked
by the system. However, lg n bits are leaked by inserting c into the sequence
c1 ≤ c2 ≤ · · · ≤ cn, so the leakage is close to minimal. By contrast the scheme
of [6] leaks 1/2 lg m + O(1) bits, independently of n. Therefore, by this criterion,
the scheme given here is superior to that of [6] for all n � √

M . Note that we
have not assumed that m is chosen uniformly from [0,M), but the leakage of
the random sequence c1 ≤ c2 ≤ · · · ≤ cn is clearly n lg n + O(n) of the M lg M
plaintext bits. This reveals little more than the n lg n bits revealed by the known
order m1 ≤ m2 ≤ · · · ≤ mn.

2.3 Further Observations

This scheme can be used in conjunction with any other OPE method, i.e. any
unknown increasing function f(m) of m. We might consider any integer-valued
increasing function, e.g. a polynomial function of m, or Boldyreva et al.’s scheme.
If f(m) is this function, then we encrypt m by c = f(m)k + r, where r

$←−
(k3/4, k − k3/4), and decrypt by m = f−1

(	c/k
). The disadvantage is that the
ciphertext size will increase.

If f(m) is an unknown polynomial function, we solve a polynomial equation
to decrypt. The advantage over straight GACD is that, even if we can break
the GACD instance, we still have to solve an unknown polynomial equation to
break the system. For example, suppose we use the linear polynomial f(m) =

a1(m + a0) + s, where s
$←− [0, a0] is random noise. But this gives c = a1k(m +

a0) + (ks + r), which is our OPE system with a deterministic linear monic

polynomial f(m) ← m + a0, k ← a1k and r ← ks + r
$←− [0, a1k), so f(m)

contains a single unknown parameter, a0. More generally, we need only consider
monic polynomials, for the same reason.

If c = f(m) is Boldyreva et al.’s OPE, we can invert f only with error
O(

√
m). Therefore a hybrid scheme offers greater security than either alone.

Flattening. Another use of such a transformation is when the distribution func-
tion F (m) of the plaintexts is known, or can be reasonably estimated. Then the
distribution of the plaintexts can be “flattened” to an approximate uniform dis-
tribution on a larger set [0, N), where N � M . Thus, suppose the distribution
function F (m) (m ∈ [0,M)) is known, and can be computed efficiently for given
m. Further, we assume that Pr(m = m) ≥ 1/N , so F is strictly increasing. This
assumption is weak, since the probability that m is chosen to be an m with too
small probability is at most M/N , which we assume to be negligible.

We interpolate the distribution function linearly on the real interval R[0,M),
by F (x) = (1 − u)F (m) + uF (m + 1) for x = (1 − u)m + u(m + 1), where
u ∈ R[0, 1). Then we will transform m ∈ [0,M) randomly by taking m̃ = NF (x)
where u is chosen randomly from the continuous uniform distribution on R[0, 1).
It follows that m̃ is uniform on R[0, N), since F is increasing, and m̃ = NF (x),
since

Pr(m̃ ≤ y) = Pr(x ≤ F−1(y/N)) = F (F−1(y/N)) = y/N.
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Now, since we require a discrete distribution, we take m̄ = 	m̃
. We invert this
by taking m̂ = 	F−1(m̄)
. Now, since F is strictly increasing,

m̂ = 	F−1(m̄/N)
 ≤ F−1(m̃/N) < F−1(NF (m + 1)/N) = m + 1

m̂ = 	F−1(m̄/N)
 > F−1((m̃ − 1)/N) ≥ F−1(NF (m − 1)/N) = m − 1,

and so m̂ = m. Thus the transformation is uniquely invertible. Of course, this
does not imply that m̂ and m will have exactly the same distribution, but we
may also calculate

Pr(m̂ ≤ x) ≤ Pr(m̄ ≤ NF (x)) < Pr(m̃ ≤ NF (x) + 1) = F (x) + 1/N,

Pr(m̂ ≤ x) ≥ Pr(m̄ < NF (x + 1)) ≥ Pr(m̄ < NF (x)) = F (x).

This holds, in particular, for integers x ∈ [0,M). Thus the total variation dis-
tance between the distributions of m̂ and m is at most M/N . Thus the difference
between the distributions of m and m̂ will be negligible, since N � M .

This flattening allows us to satisfy the assumptions of the window one-
wayness scenario above. The bit leakage in m is increased, however. It is not
difficult to show that it increases by approximately lg(mpm/F (m)), where pm

is the frequency function Pr(m = m). Thus the leakage remains near-optimal
for near-uniform distributions, where α/M ≤ pm ≤ β/M , for some constants
α, β > 0. In this case lg(mpm/F (m)) ≤ lg(β/α) = O(1). There are also distrib-
utions which are far from uniform, but the ratio mpm/F (m) remains bounded.
Further, suppose we have a distribution satisfying 1/mα ≤ pm ≤ 1/mβ , for con-
stants α, β > 0 such that 0 < α − β < 1/2. Then lg(mpm/F (m)) < 1/2 lg m, so
the leakage is less than in the scheme of [6].

This transformation also allows us to handle relatively small plaintext spaces
[0,M), by expanding them to a larger space [0, N).

Finally, note that the flattening approach here is rather different from those
in [1,37], though not completely unrelated.

3 Algorithms of Boldyreva Type

We have chosen to compare our scheme with that of Boldyreva et al. [6], since
it has been used in practical contexts by the academic community [5, p. 5], as
well as in Popa et al.’s original version of CryptDB [30], which has been used or
adopted by several commercial organisations [31]. However, scant computational
experience with the scheme has been reported [30]. Therefore, we believe it is of
academic interest to report our experimental results with respect to Boldyreva
et al.’s scheme. We also discuss some simpler variants which have better com-
putational performance. These are compared computationally with our scheme
in Sect. 4 below. The relative security of the schemes has been discussed above.

In this section we describe generic encryption and decryption algorithms
based on Boldyreva et al.’s algorithm [6], which sample from any distribution
and which bisect on the domain (Sect. 3.1). We also present an approximation of
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Boldyreva et al.’s algorithm which samples from the Beta distribution (Sect. 3.2).
The approximation and generic algorithms are used in our experimental evalu-
ation presented in Sect. 4.

3.1 Generic Algorithms

Algorithm 1 below constructs a random order-preserving function f : M → C,
where M = [0,M ],M = 2r, and C = [1, N ], N ≥ 22r, so that c = f(m) is the
ciphertext for m ∈ M. Algorithm 1 depends on a pseudorandom number gener-
ator, P , and a deterministic seed function, S. Likewise, Algorithm 2 constructs
the inverse function f−1 : C → M so that m = f−1(c).

Algorithm 1. Generic Boldyreva-type Encryption Algorithm
1: function RecursiveEncrypt(a, b, f(a), f(b), m)
2: x ← (a + b)/2
3: y ← f(b) − f(a)
4: Initiate P with seed S(a, b, f(a), f(b))
5: Determine z ∈ [0, y] pseudorandomly, so that Pr(z /∈ [y/4, 3y/4]) is negligible
6: � The condition implies that y cannot become smaller than

3N/4(1/4)r = 3N/4M2 = 3M/4, with high probability.
7: f(x) ← f(a) + z
8: if x = m then
9: return f(x)

10: else if x > m then
11: return RecursiveEncrypt(a, x, f(a), f(x), m))
12: else
13: return RecursiveEncrypt(x, b, f(x), f(b), m)
14: end if
15: end function
16: Initiate P with a fixed seed S0.
17: Choose f(0), f(M) pseudorandomly so that f(M) − f(0) > 3N/4
18: return RecursiveEncrypt(0, M, f(0), f(M), m)

3.2 An Approximation

We have a plaintext space,[1,M ], and ciphertext space, [1, N ]. Boldyreva et al.
use bijection between strictly increasing functions [1,M ] → [1, N ] and subsets of
size M from [1, N ], so there are

(
N
M

)
such functions. There is a similar bijection

between nondecreasing functions [1,M ] → [1, N ] and multisets of size M from
[1, N ], and there are NM/M ! such functions. If we sample n points from such
a function f at random, the probability that f(m1) = f(m2) for any m1 �= m2

is at most
(
n
2

) × 1/N < n2/2N . We will assume that n � √
N , so n2/2N

is negligible. Hence we can use sampling either with or without replacement,
whichever is more convenient.
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Algorithm 2. Generic Boldyreva-type Decryption Algorithm
1: function RecursiveDecrypt(a, b, f(a), f(b), c)
2: x ← (a + b)/2
3: y ← f(b) − f(a)
4: Initiate P with seed S(a, b, f(a), f(b))
5: Determine z ∈ [0, y] pseudorandomly
6: f(x) ← f(a) + z
7: if f(x) = c then
8: return x
9: else if f(x) > c then

10: return RecursiveDecrypt(a, x, f(a), f(x), c)
11: else
12: return RecursiveDecrypt(x, b, f(x), f(b), c)
13: end if
14: end function
15: Initiate P with a fixed seed S0.
16: Choose f(0), f(M) pseudorandomly so that f(M) − f(0) > 3N/4
17: return RecursiveDecrypt(0, M, f(0), f(M), c)

Suppose we have sampled such a function f at points m1 < m2 < · · · < mk,
and we now wish to sample f at m, where mi < m < mi+1. We know f(mi) = ci,
f(mi+1) = ci+1, and let f(m) = c, so ci ≤ c ≤ ci+1.5 Let x = m − mi,
a = mi+1 − mi − 1, y = c − ci, b = ci+1 − ci + 1, so 1 ≤ x ≤ a and 0 ≤ y ≤ b.
Write f̃(x) = f(x+mi)−ci. Then, if we sample a values from [0, b] independently
and uniformly at random, c−ci will be the xth smallest. Hence we may calculate,
for 0 ≤ y ≤ b,

Pr
(
f̃(x) = y

)
=

a!
(x − 1)! (a − x)!

(y

b

)x−1 1
b

(
b − y

b

)a−x

(1)

This is the probability that we sample one value y, (x − 1) values in [0, y) and
(a−x) values in (y, b], in any order. If b is large, let z = y/b, and dz = 1/b, then
(1) is approximated by a continuous distribution with, for 0 ≤ z ≤ 1,

Pr
(
z ≤ f̃(x)/b < z + dz

)
=

zx−1(1 − z)a−x

B(x, a − x + 1)
dz (2)

which is the B(x, a−x+1) distribution. Thus we can determine f(m) by sampling
from the Beta distribution to lg N bits of precision. In fact, we only need lg b
bits. However, using n ≤ M ≤ √

N ,

Pr(∃i : mi+1 − mi < N1/3) ≤ nN1/3

N
≤ M

N2/3
≤ 1

N1/6

is very small, so we will almost always need at least 1
3 lg N bits of precision. Thus

the approximation given by (2) remains good even when a = 1, since it is then
the uniform distribution on [0, b], where b ≥ N1/3 with high probability.
5 We can have equality because we sample with replacement.
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When the mi arrive in random order, the problem is to encrypt them consis-
tently without storing and sorting them. Boldyreva et al. use binary search. If
M = 2r, we will always have a = 2s and x = 2s−1 in (2), so a − x = x, and (2)
simplifies to

Pr
(
z ≤ f̃(x)/b < z + dz

)
=

zx−1(1 − z)x

B(x, x + 1)
dz,

for 0 ≤ z ≤ 1, This might be closely approximated by a Normal distribution if
Beta sampling is too slow.

4 Experimental Results

To evaluate our scheme in practice, we conducted a simple experiment to pseudo-
randomly generate and encrypt 10,000 ρ-bit integers. The ciphertexts were then
sorted using a customised TeraSort MapReduce (MR) algorithm [28]. Finally,
the sorted ciphertexts were decrypted and it was verified that the plaintexts were
also correctly sorted.

Table 1. Timings for each experimental configuration (n = 10000). ρ denotes the
bit length of the unencrypted inputs. Init is the initialisation time for the encryp-
tion/decryption algorithm, Enc is the mean time to encrypt a single integer, Exec is
the MR job execution time, Dec is the mean time to decrypt a single integer

Algorithm ρ Encryption MR job Decryption

Init. (ms) Enc. (μs) Exec. (s) Init. (ms) Dec. (μs)

GACD 7 50.13 1.51 63.79 11.62 1.47

GACD 15 58.04 2.18 61.28 10.86 2.46

GACD 31 58.66 2.07 63.02 12.18 2.59

GACD 63 70.85 1.94 65.20 10.61 4.22

GACD 127 91.94 2.38 61.08 11.10 6.29

BCLO 7 143.72 191.48 70.78 154.01 192.42

BCLO 15 135.04 74390.95 65.47 148.29 79255.23

Beta 7 189.52 57.87 64.77 208.16 58.27

Beta 15 202.64 124.79 63.70 218.91 121.53

Beta 31 181.14 221.92 63.64 208.22 221.83

Beta 63 176.24 477.23 66.74 193.03 466.03

Uniform 7 167.66 42.61 64.64 182.27 42.92

Uniform 15 166.98 83.40 66.29 176.14 82.53

Uniform 31 162.11 179.92 63.89 176.53 180.52

Uniform 63 156.53 409.13 63.91 173.57 412.79

Uniform 127 162.17 1237.34 65.30 170.74 1232.19
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The MR algorithm was executed on a Hadoop cluster of one master node
and 16 slaves. Each node was a Linux virtual machine (VM) having 1 vCPU
and 2 GB RAM. The VMs were hosted in a heterogeneous OpenNebula cloud.
In addition, a secure Linux VM having 2 vCPUs and 8 GB RAM was used to
generate/encrypt and decrypt/verify the data.

Our implementation is pure, unoptimised Java utilising the JScience library
[13] arbitrary precision integer classes. It is denoted as algorithm GACD in
Table 1. In addition, to provide comparison for our algorithm we have imple-
mented Boldyreva et al.’s algorithm (referred to as BCLO) [6] along with two
variants of the Boldyreva et al. algorithm. These latter variants are based on our
generic version of Boldyreva et al.’s algorithm (see Sect. 3.1). One is an approxi-
mation of Boldyreva et al.’s algorithm which samples ciphertext values from the
Beta distribution (referred to as Beta in Table 1). The derivation of this approx-
imation is given in Sect. 3.2. The second samples ciphertexts from the uniform
distribution (referred to as Uniform in Table 1). This variant appears in Popa
et al.’s CryptDB [30] source code [31] as ope-exp.cc. The mean timings for
each experimental configuration is tabulated in Table 1. The chosen values of
ρ for each experimental configuration are as a result of the implementations of
Boldyreva et al. and the Beta distribution version of the generic Boldyreva algo-
rithm. The Apache Commons Math [34] implementations of the hypergeometric
and Beta distributions we used only support Java signed integer and signed
double precision floating point parameters respectively, which account for the
configurations seen in Table 1. To provide fair comparison, we have used similar
configurations throughout. It should be pointed out that, for the BCLO, Beta
and Uniform algorithms, when ρ = 7, this will result in only 128 possible cipher-
texts, even though we have 10,000 inputs. This is because these algorithms will
only encrypt each plaintext to a unique value. Such a limited ciphertext space
makes these algorithms trivial to attack. Our algorithm will produce 10,000 dif-
ferent ciphertexts as a result of the “noise” term. Each ciphertext will have an
effective entropy of at least 21 bits for ρ = 7 (see Sect. 2.1). So, our algorithm is
more secure than BCLO, Beta, and Uniform for low entropy inputs.

As shown by Table 1, our work compares very favourably with the other
schemes. The encryption times of our algorithm outperform the next best algo-
rithm (Uniform) by factors of 28 (ρ = 7) to 520 (ρ = 127). Furthermore, the
decryption times grow sublinearly in the bit length of the inputs. Compare this
with the encryption and decryption times for the generic Boldyreva algorithms
which, as expected, grow linearly in the bit length of the inputs. Boldyreva et
al.’s version performs even worse. We believe this is down to the design of the
algorithm, as stated in [6], which executes n recursions where n is the bit-size
of the ciphertexts. We also discovered that the termination conditions of their
algorithm can result in more recursions than necessary.

It should also be noted that the size of the ciphertext generated by each
algorithm seems to have minimal bearing on the MR job execution time. Table 1
shows that the job timings are similar regardless of algorithm.
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Of course, it is impossible to compare the security of these systems exper-
imentally, since this would involve simulating unknown attacks. But we have
shown above that the GACD approach gives a better theoretical guarantee of
security than that of [5,6,33], which defines security based on a game, rather
than on the conjectured hardness of a known computational problem.

5 Conclusion

Our work has produced an OPE scheme based on the general approximate com-
mon divisor problem (GACDP). This appears to be the first OPE scheme to
be based on a computational hardness primitive, rather than a security game.
We have described and discussed the scheme, and proved its security properties,
in Sect. 2. In Sect. 4 we have reported on experiments to evaluate its practi-
cal efficacy, and compare this with the scheme of [6]. Our results show that our
scheme is very efficient, since there are O(1) arithmetic operations for encryption
and decryption. As a trade-off against the time complexity of our algorithms, our
scheme produces larger ciphertexts, ∼ 3.67 times the number of bits of the plain-
text. However, as pointed out in Sect. 4, ciphertext sizes had minimal impact on
the running time of the MR job used in our experiments.

With regard to our stated purpose, our experimental results show that the
efficiency of our scheme makes it suitable for practical computations in the cloud.

We have noted that, like any “true” OPE, our scheme cannot guarantee
indistinguishability under CPA [6], unlike the non-OPE protocols of Popa and
others [21,29]. However, with proper choice of parameters, we believe that its
security is strong enough for the purpose for which it is intended: outsourcing
of computation to the cloud.
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