
Inonymous:
Anonymous Invitation-Based System

Sanaz Taheri Boshrooyeh(B) and Alptekin Küpçü

Department of Computer Engineering, Koç University, İstanbul, Turkey
{staheri14,akupcu}@ku.edu.tr

Abstract. In invitation-based systems, a user is allowed to join upon
receipt of a certain number of invitations from the existing members. The
system administrator approves the new membership if he authenticates
the inviters and the invitations, knowing who is invited by whom. How-
ever, the inviter-invitee relationship is privacy-sensitive information and
can be exploited for inference attacks: The invitee’s profile (e.g., polit-
ical view or location) might leak through the inviters’ profiles. To cope
with this problem, we propose Inonymous, an anonymous invitation-
based system where the administrator and the existing members do not
know who is invited by whom. We formally define and prove the inviter
anonymity against honest but curious adversaries and the information
theoretic unforgeability of invitations. Inonymous is efficiently scalable
in the sense that once a user joins the system, he can immediately act
as an inviter, without re-keying and imposing overhead on the existing
members. We also present InonymouX, an anonymous cross-network
invitation-based system where users join one network (e.g., Twitter)
using invitations of members of another network (e.g., Facebook).

Keywords: Invitation-based system · Anonymity · Unforgeability ·
Cross-network invitation

1 Introduction

An invitation-based system consists of a server (administrator) and a group of
members. New users join the system only by obtaining invitations from a certain
number of existing members. Each invitation confirms some level of trust to the
invitee. This authentication method is also known as trustee-based social authen-
tication. Invitation-based systems benefit from trustee-based authentication for
the initial registration of a user to the system. Afterward, any authentication
technique e.g., a password, can be utilized for the further logging into the system.

Invitation-based systems are employed due to various reasons such as a lim-
ited number of server resources to cover an arbitrary number of users, improving
the quality of services by constraining the number of members, securing the sys-
tem against fake users, and providing data or service privacy for the system. As
a well-known historical example, Google applied invitation-based registration in
the early stages of its new services like Gmail, Orkut, and Google Wave [1].
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 219–235, 2017.
DOI: 10.1007/978-3-319-67816-0 13

220 S.Taheri.B and A. Küpçü

In invitation-based systems, the administrator knows the identity of the
user’s inviters to authenticate and manage new registrations. In some other
cases, not only the administrator but also other members of the system are
informed about the correspondence of a newcomer and his inviters. For exam-
ple, in Telegram chat application, once a new user joins a group, its referee’s
identity is broadcasted to the group members. The user’s referees are mostly
among the user’s acquaintances (e.g., colleagues, home mates, family members,
close friends) who have many common preferences with the user. Due to this
reason, information like location, religious beliefs, sexual orientation, and politi-
cal views can be inferred about a user by analyzing the common features among
his inviters [3,8]. Thus, the set of user’s referees is privacy-sensitive information.

Related Works: Typically, trustee-based social authentication is considered as
a backup authentication method, rather than the primary one. A backup authen-
tication method is employed where the user fails to pass the primary authen-
tication e.g., forgetting the password [4]. The account holder determines a set
of trustees to the server in advance. When the user loses access to his account,
the server sends recovery codes to the trustees. Upon collection of enough num-
ber (recovery threshold) of codes from the trustees, the user recovers his access.
Forest fire attack [9] is the most significant security issue in this context where
an attacker compromises a few seed accounts and exploits this to steal other
accounts. The main security measures against forest fire attack are increasing
the recovery threshold [10], assigning time to live to the recovery codes [10,13],
keeping the identity of trustees hidden from the recovery requester [9], bit stuff-
ing [9], and using encrypted recovery codes [13]. None of the mentioned solutions
preserve the anonymity of inviters as it is not a concern in those applications.
Instead, the identity of a trustee (i.e., inviter) is by default known to the server
so that the server can communicate with the trustees for the account recov-
ery procedure. On the contrary, in invitation based systems, the anonymity of
trustees (inviters) is a security concern due to the inference attacks. This indi-
cates that the existing trustee-based solutions are not applicable to invitation
based systems as they disregard the anonymity of trustees.

To cope with this problem, we developed an anonymous invitation-based sys-
tem named Inonymous. Our system overview is depicted in Fig. 1. Inonymous
consists of three entities: A server (administrator), existing members (inviters)
and a newcomer (invitee). The invitee receives invitations from a subset of
existing members i.e., inviters. The invitee knows the inviters beforehand via
some other means outside the network to be joined to. In the Gmail exam-
ple, Google employees and their families/friends are the inviters and invitees,
respectively. The invitee combines the invitations into a single invitation letter
and submits to the server. If the invitation is verified by the server, the invi-
tee joins the system. No interaction is required between inviters and the server.
In contrast to the prior studies, in Inonymous inviters can anonymously add
new users. This anonymity is not only against the server but also against the
other members including inviters of the same invitee. Despite the anonymity
of the inviters, the server can still verify the integrity of the invitations.

Inonymous: Anonymous Invitation-Based System 221

That is, a malicious invitee cannot join the system without threshold many
legitimate invitations. We formally define inviter anonymity and invitation
unforgeability and provide game based proofs of security. Furthermore, Inony-
mous efficiently enables the recently invited users to act as inviters. This
is done instantly and without rekeying the system and contacting existing
members.

Note that, while Inonymous guarantees the anonymity of the inviters in the
phase of registration, it does not tackle with the anonymous interaction and
relationship of users within the system. For example, while a user is invited to
a Facebook group using Inonymous, his interaction with other group members
might imply some information about his potential inviters. Thus, the anonymous
interaction of users must be addressed independently and is out of the scope of
this paper. But recall that the application of invitation-based system is not
limited to the social networks e.g., a cloud does not constitute a social network
while it may employ invitation-based notion to offer a limited service or storage
to the recommended customers.

Additionally, we construct InonymouX, an anonymous cross-network
invitation-based system on top of Inonymous which can be of independent inter-
est. In the cross-network design, a user joins one system e.g., Twitter, by obtain-
ing invitations from members of another network e.g., Facebook. The cross-
network design is beneficial especially to bootstrap a system, for example in the
case where a research group wants to hire qualified researchers from another
group. A qualified researcher is the one with enough recommendations i.e., invi-
tations from his own group.

Our contributions are as follows:

– Inonymous is the first anonymous invitation-based system that provides
inviter anonymity and invitation unforgeability.

– We provide formal security definitions and proofs for both security
objectives.

– Inonymous is efficiently scalable in terms of the number of inviters.
– We propose the first cross-network anonymous invitation-based sys-

tem called InonymouX where the possibility of inter-network invitation is
provided.

Fig. 1. Inonymous system overview.

222 S.Taheri.B and A. Küpçü

2 Model

Inonymous is composed of three entities: a server, a set of existing members
and a new user who is willing to join the system. The server is responsible for
managing and validating users’ registrations and generating certificates upon
the occurrence of a new membership. The existing members are given neces-
sary information which enables them to make anonymous individual invitations
for their trusted ones. The newcomer becomes the member of the system if
he obtains a certain number (denoted by t as threshold) of invitations from the
existing members i.e., inviters. The invitee knows his inviters prior to joining the
system. He collects and aggregates individual invitations to make a single final
invitation letter. The aggregation of invitations has the main effect in inviters
anonymity. Once the newcomer hands over his invitation to the server, the server
is in charge to authenticate the invitation and provide necessary information for
him. We assume that the system starts with at least t initially registered mem-
bers (e.g., Google employees in the Gmail example), who are given credentials to
join the system by the server directly. Henceforth, those existing members start
inviting others.

Throughout the paper, we assume secure and authenticated channels per
communication. In Inonymous, we seek two security objectives:

– Inviter anonymity: By inviter anonymity, we aim at protecting the identity
of the inviters against the server and other members. The invitations should
not leak any information about the inviters. We assume that the adversary is
the server who may collude with a subset of a newcomer’s inviters (obviously
not all of them). The adversary is presumed to be honest but curious. We
formally prove that the identity of non-colluding inviters remains anonymous
to the adversary. Note that the newcomer is supposed to be concerned about
his privacy hence does not reveal the identity of his inviters to the adversary,
otherwise, the inviter anonymity is meaningless. This is defined in Sect. 7.1
as a game where the adversary controls the server and t − 1 inviters.

– Invitation unforgeability: The invitation unforgeability indicates that a
user i.e., an adversary who has an insufficient number (t

′
) of inviters (t

′
< t)

should not be able to join the system even if he acts maliciously. The adversary
can join if he forges some invitations on his own. Recall that the assumption of
t

′
< t is not a restriction imposed by our system but it is a requirement in any

invitation-based system. Indeed, threshold-many members collude then they
can control the system in the sense that they can add an arbitrary number
of users to the system by generating valid invitations. Thus, a collusion of t
members threats any invitation-based system independent of how the system
is cryptographically designed. We define invitation unforgeability in Sect. 7.2
as a game where the adversary controls up to t − 1 existing users, but the
server and other members are honest.

Overview: Inonymous is managed by a server who owns a master value and a
decryption key. The server shares the master value among the existing members

Inonymous: Anonymous Invitation-Based System 223

using (t)-Shamir secret sharing scheme where t is the threshold value. Each
newcomer requires t invitations to join the system. Each invitation is the masked
version of an inviter’s master share alongside with the encryption of masking
value that is pseudorandomly generated. Once the invitee obtains his invitations,
he can unify them into a single invitation by utilizing the homomorphic property
of Shamir shares and El Gamal encryption scheme. Invitations are tied to a
specific invitee using a server generated token given to each invitee.

3 Preliminaries

Negligible Function. A function f is called negligible if for every polynomial
p(.) there exists integer N such that for every n > N , f(n) < 1

p(n) .

Pseudo Random Generator. A deterministic polynomial time function P :
{0, 1}n → {0, 1}l(n) (where l(.) is a polynomial) is called Pseudo Random Gen-
erator (PRG) if n < l(n) and for any probabilistic polynomial-time distinguisher
D there exists a negligible function negl(.) such that:

|Pr[x ← {0, 1}n : D(P (x)) = 1] − Pr[y ← {0, 1}l(n) : D(y) = 1]| = negl(n) (1)

Shamir Secret Sharing Scheme. Secret sharing is a tool by which a secret is
shared among several parties such that the secret is recoverable in the presence
of a certain number of shareholders. The Shamir secret sharing scheme [2,6]
works based on polynomial evaluations. The secret owner selects a polynomial
f of degree t − 1 randomly and sets the secret data S as the evaluation of that
function at point 0 i.e., f(0) = S. Since each polynomial of degree t − 1 can
be uniquely reconstructed by having t distinct points of that function, t Shamir
shareholders are able to reconstruct the secret. Shamir shares are homomorphic
under addition operation i.e., let [s1] and [s2] be Shamir shares of S1 and S2,
then [s1] + [s2] constitutes a share of S1 + S2.

Multiplicative Homomorphic Encryption Scheme. A public key encryp-
tion scheme consists of three algorithms π = (KeyGen,Enc,Dec). π is called
multiplicative homomorphic encryption if for every a and b, Enc(a) ⊗ Enc(b) =
Enc(a · b) where a and b belong to the encryption message space and ⊗ is an
operation over ciphertexts. As an example, in El Gamal encryption [11], ⊗ cor-
responds to a simple multiplication of two ciphertexts. Additionally, we have
Enc(a)c = Enc(ac) where a is a plain message and c is any integer. Throughout
the paper, we consider El Gamal scheme as our underlying encryption scheme.

Signature Scheme. A signature scheme [12] consists of three algorithms γ =
(SGen, Sign, SV rfy). A pair of keys (sk, vk) is generated via SGen where sk
is the signature key and vk is the verification key. The signer signs a message m
using sk by computing η = Signsk(m). Given the verification key vk, a receiver
of signature runs SV rfyvk(η,m) to verify.

Bilinear Map. Consider G1 and G2 as multiplicative groups of prime order q.
Let g1 be the generator of G1. We employ an efficiently computable bilinear map
e : G1 × G1 → G2 with the following properties [14]

224 S.Taheri.B and A. Küpçü

– Bilinearity: ∀u, v ∈ G1 and ∀a, b ∈ Zq : e(ua, vb) = e(u, v)a·b.
– Non-degeneracy: e(g1, g1) �= 1.

Computational Diffie-Hellman Assumption. Given a cyclic group G of
prime order q with a generator g, and two randomly selected group elements
h1 = gr1 , h2 = gr2 , the Computational Diffie-Hellman (CDH) assumption [5] is
hard relative to G if for every PPT adversary A there exists a negligible function
negl(λ) where λ is the security parameter, such that:

Pr[A(G, q, g, h1, h2) = gr1·r2] = negl(λ)

4 Construction

Inonymous consists of six algorithms: SetUp, Token generation (Tgen), Invi-
tation generation (Igen), Invitation collection (Icoll), Invitation Verification
(Ivrfy) and Registration (Reg). Figure 2 visualizes the interaction of entities and
the order of execution of algorithms in Inonymous. The server runs the SetUp
algorithm to set the system’s parameters. Every new user (invitee) must obtain
a token from the server. To generate a token, the server runs Tgen algorithm.
The invitee receives the token and delivers to his inviters. Tokens are used in the
invitation generation and tie each invitation to its invitee (i.e., the invitations
issued using different tokens cannot be used interchangeably). This makes sure
that invitees cannot cheat by combining invitations that are for different pur-
poses. Provided a token, an inviter executes Igen algorithm to make an invita-
tion. The invitee aggregates the individual invitations by running Icoll algorithm
and delivers a unified invitation letter to the server. If the server authenticates
the invitations by running Ivrfy algorithm, then the user is allowed to join the
system. The server generates data necessary for the new member to be able to
invite others by executing the Reg algorithm. Thenceforth, the invitee who is now
a new member is able to add other users to the system. Detailed descriptions
of the algorithms follow (the entity running the algorithm is indicated inside
square braces).

Fig. 2. The order of algorithms’ execution in Inonymous.

Inonymous: Anonymous Invitation-Based System 225

SetUp(1λ). This algorithm is run by the server who inputs the security para-
meter λ and generates system parameters as follows.

– Two big primes p and q such that q|p − 1.
– g is a generator of a cyclic subgroup G of order q in Z∗

p . Let h ∈ Zp and

h �= 0, then g satisfies g = h
p−1
q mod p.

– El Gamal encryption scheme π = (EGen,Enc,Dec) with the key pair (ek, dk)
denoting encryption key and decryption key, respectively. dk remains at the
server while ek is published publicly.

– A signature scheme γ = (SGen, Sign, SV rfy). The signature and verification
keys (sk, vk) are generated according to SGen. vk is publicized.

– A pseudo random generator PRG:{0, 1}λ → Zq

– A master value S ← Zq

– A randomly chosen polynomial function F (y) = ft−1y
t−1 + ... + f1y + f0 of

degree t − 1 whose coefficients f1, ..., ft−1 belong to Zq and f0 = S.

We assume that there are (at least) t users initially registered in the system.
Each registered user is known by a unique numerical index i. Each member has
the evaluation of function F on his own index i.e. the ith member is given master
share si = F (i).

Token Generation: A new user who tends to join the system, initially must
connect to the server and obtain an index and the corresponding token. For this
sake, the server executes the token generation algorithm shown in Algorithm 4.1.
In this procedure, the server assigns the user a unique index and a corresponding
token. Indices can simply be given to the users sequentially based on their arrival
order hence the jth coming user receives the index value of j. Then, the server
computes a token as ω = gr (line 2) where r is a randomly selected value
(line 1). The server certifies the association of user index and ω by generating
a signature on their concatenation (line 3). The server’s generated certificate
constitutes the user’s token (line 4). Observe that the server need not remember
any information regarding a registration attempt. Thus, generated tokens can
simply be discarded and only the last value of j (the number of token requests)
need to be remembered, not incurring any storage load on the server per token.

Algorithm 4.1. Tgen [Server]
Input: sk, j
Output: Token

1 r ← Zq

2 ω = gr

3 η = Signsk(j||ω)
4 Token = (η, j, ω)

Invitation Generation: The user, after obtaining his token Token, asks his
inviters to issue an invitation letter. Each inviter uses his master share si to

226 S.Taheri.B and A. Küpçü

compute an invitation letter as indicated in Algorithm 4.2. Firstly, the referee
authenticates the token (line 1). Then, he computes a masked version of his
master share as given in lines 2–4. δi is the masking value which is the output of
the PRG (line 3). He also encrypts the masking value under the server’s public
encryption key (line 5). Note that the invitation letter is tied to the token as τi

is the combination of the token and the inviter’s master share.

Algorithm 4.2. Igen [Inviter]
Input: Token, si, vk, ek
Output: Invi

1 if Svrfyvk(η, j||ω)=accept then

2 r ← {0, 1}λ

3 δi = PRG(r)

4 τi = ωsi+δi

5 eδi = Encek(ωδi)
6 Invi = (τi, eδi)

Invitation Collection: Invitation Collection (Icoll) is run by the new user i.e.,
invitee, once he obtains a set of t individual invitations. He computes the final
invitation letter i.e. InvLet as indicated in Algorithm 4.3. The final invitation
letter is indeed the aggregation of the individual invitations Invi (line 3–4). For
aggregation, we benefit from the homomorphic property of both Shamir shares
and encryption scheme under addition and multiplication operations, respec-
tively. The invitee re-masks the aggregated invitation letter by contributing to
the sum of masking values with another randomness i.e., δ∗. The re-masking
is required to cancel out the effect of Lagrange coefficients and make the final
masking value independent of Bi values. Recall that the Lagrange coefficients
are dependent on the inviters’ indices. This way, we achieve inviter anonymity.

We expand lines 3 and 4 of Algorithm 4.3 in Eqs. 2 and 3, respectively, where
Bi values are the Lagrange coefficients computed with respect to the index of
the ith inviter. As indicated, T is composed of the token ω and a masked version
of master value i.e., S + Δ. eΔ constitutes the encryption of masking value Δ.
The encryption of masking value i.e., eΔ would be required at the server for the
verification purpose (see invitation verification).

T = ωδ∗ ·
t∏

i=1

τBi
i = ωδ∗ ·

t∏

i=1

ωBi·si+Bi·δi = ωδ∗+
∑t

i=1 Bi·si+
∑t

i=1 Bi·δi

= ωS+δ∗+
∑t

i=1 Bi·δi = ωS+Δ

(2)

eΔ = Encek(ωδ∗
).

t∏

i=1

eδBi
i = Encek(ωδ∗

).
t∏

i=1

Encek(ωBi·δi)

= Encek(ωδ∗+
∑t

i=1 Bi·δi) = Encek(ωΔ)

(3)

Inonymous: Anonymous Invitation-Based System 227

Algorithm 4.3. Icoll [Invitee]
Input: {Invi = (τi, eδi)|1 ≤ i ≤ t}, ek
Output: InvLet

1 r ← {0, 1}λ

2 δ∗ = PRG(r)

3 T = ωδ∗ ·∏t
i=1 τBi

i

4 eΔ = Encek(ωδ∗
) ·∏t

i=1 eδBi
i

5 InvLet = (T, eΔ)

Invitation Verification: This protocol (shown in Algorithm 4.4) is invoked by
the server to verify the validity of a new user’s invitation letter InvLet corre-
sponding to a Token. First, the token is authenticated (line 1). When the authen-
tication phase passed, the server checks the validity of the invitation letter. He
first decrypts the masking value (line 2) and checks whether the invitations are
issued by existing members and really intended for the new user (line 3). If
all the invitations are generated correctly then the verification of line 3 will be
accepted (the correctness results from Eqs. 2 and 3). If all the verification steps
passed successfully, then the server accepts the user’s membership request.

Algorithm 4.4. IVrfy [Server]
Input: InvLet = (T, Delta), T oken = (η, j, ω),vk, dk
Output: reject/accept

1 if Svrfyvk(η, j||ω)=accept then
2 ωΔ = Decdk(eΔ)

3 if ωS · ωΔ = T then
4 return accept

Registration: When a user passes the verification phase, the server runs the
registration algorithm given in Algorithm 4.5 to issue the new member’s master
share sj . sj is the evaluation of function F on the point j that was in the user’s
token (line 1). Hereinafter, the new user is able to invite other users to the
system.

Algorithm 4.5. Reg [Server]
Input: j
Output: sj

1 sj = F (j)

5 InonymouX: Anonymous Cross Network
Invitation-Based System

Consider the situation where one system e.g. Twitter offers a special service for
users of another system e.g. Facebook. You may assume other scenarios as well.

228 S.Taheri.B and A. Küpçü

We name Twitter as the host network i.e. the network serving a special service
whereas Facebook is called the guest network whose users will benefit from the
services offered by the host network. A user of the guest network is served by the
host network by convincing the host server on being invited by adequate inviters
from the guest network. To do so, one simple but cumbersome solution is to fol-
low the regular invitation-based system i.e., each time a guest user wants to join
the host network, the guest server authenticates that user and communicates
the authentication result to the host server. However, this solution requires two
servers keep in contact with each other and imposes unnecessary overhead on the
guest server. Whereas in our proposal i.e. InonymouX, we provide an efficient
solution for cross network invitations which is independent of two servers interac-
tion. in InonymouX, the host server is given enough information to authenticate
guest users by his own. The solution is as follows.

The guest network with the master value Sguest publicizes gSguest along-
side the signature verification key vkguest. On the other side, the host network
announces an encryption key denoted by ekhost. Members of the guest network
proceed as in the regular invitation procedure where the inviters use the encryp-
tion key of host network to encrypt their masking values. Indeed, in Algorithms
4.2 and 4.3, the inviter uses ekhost as input. Therefore, the invitation letters
received by the host server are of the form InvLet = (T, eΔ) where eΔ is an
encrypted masking value under ekhost. The host server runs a different verifi-
cation routine, which is given in Algorithm 5.1. We assume the existence of a
bilinear map e: G×G → G2 where G and G2 are multiplicative groups of prime
order q. The only difference between Algorithm 5.1 and Algorithm 4.4 is at the
second verification step i.e., line 3. The correctness holds by the bilinearity of
the bilinear map e, as in Eq. 4.

e(ω, gSguest) · e(ωΔ, g) = e(ω, g)Sguest · e(ω, g)Δ = e(w, g)Sguest+Δ = e(wSguest+Δ, g)

= e(T, g)
(4)

Algorithm 5.1. XIVerify [Host Server]
Input: InvLet = (T, eΔ), T oken = (η, j, ω), vkguest, dkhost, gSguest

Output: reject/accept

1 if Svrfyvkguest(η, j||ω)=accept then
2 ωΔ = Decdkhost(eΔ)

3 if e(ω, gSguest) · e(ωΔ, g) = e(T, g) then
4 return accept

6 Performance

In this section we aim at analyzing the running time of each algorithm. Table 1
shows the results in millisecond. We used DSA signature scheme [7] with the key
size of 1024 bits. The required number of inviters i.e., t is set to 5. The running
time is measured on a standard laptop with 8 GB 1600 MHz DDR3 memory

Inonymous: Anonymous Invitation-Based System 229

Table 1. Running time of Inonymous Algorithms.

SetUp Tgen Igen Icoll IVerify Reg

842 ms 3.46 ms 37.4 ms 35.3 ms 29.4 ms 0.129 ms

and 1.6 GHz Intel Core i5 CPU. Although the running time of SetUp algorithm
has a huge difference with the other algorithms, it is run only once by the server
just to bootstrap the system.

7 Security

In this section, we provide security definitions for inviter anonymity and invita-
tion unforgeability, and then prove the security of Inonymous.

7.1 Inviter Anonymity

Security Definition: An invitation-based system protects inviter anonymity if
a new user having enough inviters can convince the server without revealing the
identity of his inviters. We model this security objective as a game denoted by
InvAnonymA(λ) played between a challenger and an adversary. The members
controlled by the adversary and challenger are called colluding and non-colluding
members, respectively. The adversary controls the server as well. The challenger
acts as a new user who wants to join the system and is required to obtain t
invitations from t different members. We assume that t − 1 inviters come from the
colluding members (clearly it is the maximum power that can be considered for
the adversary). The adversary selects two non-colluding members. The challenger
uses one of them as the remaining inviter and registers into the system. If the
adversary cannot guess the identity of the non-colluding inviter with more than
a negligible advantage, then the system provides inviter anonymity.

Inviter Anonymity Experiment InvAnonymA(λ)

1. The adversary outputs encryption key ek and signature verification
key vk.

2. The challenger registers polynomially many users denoted by U to the
system.

3. The adversary selects two users u0, u1 ∈ U and generates a token
Token. Also, the adversary outputs t−1 individual invitations for the
given Token.

4. The challenger tosses a coin and selects a bit value b accordingly. Then,
the challenger generates an invitation letter InvLet using ub as one
of the inviters in addition to the t − 1 invitations received from the
adversary, and sends InvLet to the adversary.

5. The adversary guesses a bit b
′

indicating that which of the two users
u0, u1 is used as the inviter.

6. The output of game is 1 if b == b
′
, 0 otherwise.

230 S.Taheri.B and A. Küpçü

Definition 1. An invitation-based system has inviter anonymity if for every
probabilistic polynomial time adversary A there exists a negligible function
negl(.) such that:

Pr[InvAnonymA(λ) = 1] =
1
2

+ negl(λ)

Security Proof: Before the formal proof, let us summarize informally. In Inony-
mous, the anonymity of inviter relies on the security of the pseudo random gen-
erator. The invited user delivers to the server (the adversary) an invitation letter
of the form InvLet = (ωS+Δ, eΔ) where S is the server’s master value, eΔ is the
encryption of Δ and Δ = ωδ∗+

∑t
i=1 Bi·δi (δ∗ is the masking value added by the

invitee, δi is inviter’s masking value resulted from a PRG and Bi is the Lagrange
coefficient computed based on the inviter’s index). The adversary may get some
idea about the inviters’ identity by extracting the Lagrange coefficients from Δ
value (Lagrange coefficients are the function of inviters’ indices). Two cases may
occur. If the random values δi and δ∗ are selected truly at random, then we
know that Δ is also a random value and conveys nothing about the Lagrange
coefficient Bi. Though, if δi and δ∗ are the output of a PRG then the adversary
may have advantages to extract the Lagrange coefficients. We denote the adver-
sary’s advantage by ε. If ε is non-negligible, it implies that we can distinguish
between a PRG and a random number generator hence we break the security of
the PRG. In the following we provide the formal proof.

Theorem 1. If PRG is a pseudo random generator then Inonymous provides
inviter anonymity.

We reduce the security of Inonymous to the security of the employed PRG. If
there exists a PPT adversary A who breaks the inviter anonymity of Inonymous
with non-negligible advantage then we can construct a PPT adversary B who
distinguishes between a random generator and a pseudo random generator with
the same advantage of A. Assume A’s success probability is

Pr[InvAnonymA(λ) = 1] =
1
2

+ ε(λ) (5)

B runs A as its subroutine to distinguish the pseudo random number generator
from the truly random generator. B is given a vector of values in Zq denoted by
→
δ = (δ

′
, δ

′′
) and aims at specifying whether

→
δ is selected truly at random or

is the output of a PRG. B invokes A as his subroutine and emulates the game

of inviter anonymity for A as follows. If A succeeds then B realizes that
→
δ is

pseudo random, otherwise random.

1. B is given the security parameter λ and a vector of two values denoted by
→
δ = (δ

′
, δ

′′
) where δ

′
, δ

′′ ∈ Zq. Adversary A outputs the encryption and
signature public keys ek and vk, respectively.

Inonymous: Anonymous Invitation-Based System 231

2. B registers polynomially many users into the system. U indicates the set of
indices registered by B.

3. A outputs two users u0, u1 ∈ U and a token Token = (η, u∗, ω). u∗ is the index
of the new user. A also submits t − 1 invitation letters i.e. Invi = (τi, eδi) for
1 ≤ i ≤ t − 1.

4. B selects a random bit b and creates an invitation letter from ub as Invub
=

(τub
, eδub

) = (ωsub
+δ

′
, Encek(ωδ

′
)). He finally computes

T = ωδ
′′ · τ

Bub
ub · ∏t−1

i=1 τBi
i

and
eΔ = Encek(ωδ

′′
) · Encek(ωδ

′
)Bub ·∏t−1

i=1 eδBi
i = Encek(ωδ

′′
+δ

′ ·Bub
+
∑t−1

i=1 δi·Bi).

Bi and Bub
denote the Lagrange coefficients. B submits InvLet = (T, eΔ) to

the adversary A.
5. A outputs a bit b

′
.

6. If b = b
′
then B outputs 0, otherwise 1.

Let
→
δ be a truly random vector. Once the adversary decrypts eΔ he obtains

Δ = ωδ
′′
+Γ

where

Γ = δ
′ · Bub

+
t−1∑

i=1

δi · Bi

Γ is a function of inviters indices due to the presence of Lagrange coefficients

whereas δ
′′

is a random value completely independent of inviters. If
→
δ is a random

vector then δ
′′

is also a random value from Zq. Therefore, in ωδ
′′
+Γ , Γ is indeed

masked with δ
′′

(δ
′′

+ Γ mod q is a completely random element of Zq). By this
masking, Δ becomes completely independent of Lagrange coefficients and A has
no advantage to infer the inviters identity. Thus, A’s advantage is exactly 1

2 i.e.,

Pr[B(
→
δ ← Zq) = 1] = Pr[b = b

′
] =

1
2

(6)

but if δ is the output of a PRG then

Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] = Pr[b = b

′
] =

1
2

+ ε(λ) (7)

where 1
2 + ε(λ) is the success probability of A as assumed in our proof in Eq. 5.

By combining Eqs. 6 and 7 we have

|Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] − Pr[B(

→
δ ← Zq) = 1]| = ε(λ) (8)

232 S.Taheri.B and A. Küpçü

Equation 8 corresponds to the security definition of PRG (see Eq. 1). Thus, if ε(λ)
is non-negligible then the distinguisher B can distinguish a PRG from a random
generator which contradicts with the security definition of PRG. Therefore, ε(λ)
must be negligible according to the PRG definition. This concludes the security
proof of inviter anonymity of Inonymous.

Discussion: We proved inviter anonymity against an honest but curious adver-
sary who follows the algorithm descriptions, whereas a malicious adversary
breaks the anonymity of the inviters in the following attack scenario. First
note that for the inviter anonymity, the adversary is the server who is col-
luding with t − 1 inviters. According to the inviter anonymity game defini-
tion, the server obtains InvLet = (T = ωS+Δ, eΔ). As we discussed, if all
the inviters act honestly and use their real master shares for the invitation gen-
eration, then the adversary obtains the wS value. According to Shamir secret
sharing scheme, even if the adversary knows t− 1 inviters, the remaining inviter
can be any of the existing shareholders, hence the inviter anonymity holds.
Now, consider that the colluding t − 1 inviters put zeros instead of their real
master shares i.e., s1 = ... = st−1 = 0 (wlog. 1, ..., t − 1 are the indices
of colluding inviters). Then, the server obtains wS

′
with the following value:

S
′
= s1.B1 + ... + st−1.Bt−1 + st.Bt = st.Bt. The adversary can simply try all

the combinations of generated master shares st with different possible values for
Bt and figure out the honest inviter’s index (the possible number of values is
linear in the number of remaining inviters, which in the inviter anonymity game
is 2, and in practice corresponds to the number of registered users). This attack
is defeated only if the inviters act honestly and follow the genuine routine of
algorithms.

7.2 Invitation Unforgeability

Security Definition: In an invitation based system, the invitation unforgeabil-
ity indicates that people who do not have enough inviters (<t) should not be
able to join the system. Hence, no adversary can forge invitations by his own.
We define the following game denoted by InvUnforgeA(λ) running between
a challenger and an adversary. The adversary controls a set of t − 1 members
denoted by Q. The adversary may query as many tokens as he wants and queries
the challenger to check the validity of his pseudo-invitation letters. Finally, if
the adversary registers to the system successfully, it shows that the invitations
are forgeable, otherwise the system has invitation unforgeability. Note that we
assume secure authenticated channels between entities hence we ignore the threat
of eavesdropping.

Inonymous: Anonymous Invitation-Based System 233

Invitation Unforgeability experiment InvUnforgeA(λ):

1. The challenger runs the setup algorithm. The adversary is given the
encryption key ek, the signature verification key vk, as well as the
security parameter λ.

2. The adversary registers a set of t − 1 users denoted by Q.
3. The adversary asks the challenger to issue a token. The challenger

generates a token for the next available index j. This step may be
repeated polynomially many times upon the adversary’s request.

4. The adversary queries invitation verification function on the invita-
tions of his own choice. The challenger responds accordingly.

5. The challenger outputs a token denoted by Token∗. The adversary
outputs an invitation letter InvLet corresponding to the given token.

6. If the output of IV rfy(InvLet, Token∗, vk, dk) is accepted then the
game’s output is 1 indicating the adversary’s success, 0 otherwise.

Definition 2. An invitation-based system has invitation unforgeability if for
every probabilistic polynomial time adversary A there exists a negligible func-
tion negl(.) such that:

Pr[InvUnforgeA(λ) = 1] = negl(λ)

Security Proof. Forging invitations is information-theoretically infeasible. In
fact, the adversary, in the best case, has t − 1 inviters hence t − 1 evaluations
of function F (.). Recall that a valid invitation letter contains the master value
S i.e. ωS+Δ (S is the evaluation of F (0)). Since the adversary is confined to
t − 1 points on this polynomial, he cannot reconstruct the S value in any way.
Without the final share of S, ωS+Δ is a random element. Therefore, Inonymous
has information-theoretic invitation unforgeability.

7.3 Security of InonymouX

InonymouX provides inviter anonymity as Inonymous does, hence the same
proof of Sect. 7.1 applies here. However, invitation unforgeability needs a differ-
ent proof, due to the publicity of gSguest , which provides computational infor-
mation to the adversary. Note that a final aggregated invitation letter has the
form of T = ωSguest+Δ = gr·Sguest+r·Δ. For an adversary who has ω and gSguest ,
making a valid invitation letter corresponds to solving the Computational Diffie-
Hellman (CDH) problem i.e., given gSguest and gr compute gr·Sguest . Thus,
assuming that CDH is hard to solve, then the invitation unforgeability holds
for InonymouX as well. Full reduction follows.

Security Proof

Theorem 2. If the computational Diffie-Hellman problem is hard to solve rela-
tive to G, then InonymouX has invitation unforgeability.

234 S.Taheri.B and A. Küpçü

If there exists a PPT adversary A who breaks the invitation unforgeability with
probability ε(λ), then we construct an adversary B who solves CDH problem
with ε(λ) probability. The adversary A acts as a new user with t-1 inviters. The
adversary B plays as host and guest servers and the rest of members. B simulates
the invitation unforgeability game for adversary A to break CDH problem.

1. B is given (G, q, g, gr, gS) (G is a cyclic group of order q with generator g) and
the security parameter λ. B generates signature key pair vk, sk and public
encryption key pair ek, dk. B sends gS , vk and ek to A. Note that S is the
master value which is unknown to B.

2. Adversary A registers t − 1 users to the system. As B does not know the
master value S, he generates random master shares for A’s requests. Adver-
sary A cannot distinguish between the real master shares and the randomly
generated ones. Note that for every given t − 1 points, we can construct a
polynomial F of degree t such that F (0) = S. Thus, as long as the adversary
A has only t − 1 points of F , he does not distinguish whether B knows the
master value (i.e., has generated real master shares) or is a simulator.

3. The adversary A asks for polynomially many tokens from B.
4. The adversary A outputs an invitation letter and asks B to verify it. A

may repeat invitation verification query polynomially many times. B runs
Algorithm 6 to answer the queries.

5. The challenger outputs Token∗ as (η, adv, w) where adv is an index, η =
Signsk(adv||w) and w = gr (B sets w as one of the inputs given in the CDH
game). A outputs an invitation letter:

InvLet = (T = wS+Δ, eΔ = Encek(ωΔ)).

If XIvrfy(InvLet, Token∗) = accept then B computes wΔ = Decdk(eΔ). As
the solution for CDH problem, B outputs

T.(wΔ)−1 = wS+Δ.w−Δ = wS = gr.S (9)

If A manages to output a valid invitation letter InvLet, then B can extract
the solution of CDH problem from that invitation letter as indicated in Eq. 9.
Therefore,

Pr[B breaks CDH] = Pr[A breaks Invitation Unforgeability] = ε(λ)

If ε(λ) is non-negligible then CDH problem is also solved with non-negligible
probability. This implies a contradiction for the hardness assumption of CDH,
hence we conclude that ε(λ) must be negligible. Therefore, invitation unforge-
ability of InonymouX is proven.

8 Conclusion

We proposed Inonymous, an anonymous invitation-based system by seeking two
security objectives i.e., inviter anonymity against the system administrator and

Inonymous: Anonymous Invitation-Based System 235

existing members and invitation unforgeability against newcomers with insuffi-
cient inviters. We present security definition and formal proof for each security
objective. The anonymity of inviter relies on the security of the employed pseudo
random generator (for masking value generation) and the invitation unforgeabil-
ity is information-theoretically proven due to the Shamir secret sharing scheme’s
security. We also proposed InonymouX, an anonymous cross-network invitation-
based system by a slight modification on Inonymous so that users of one network
can act as inviters for another network. InonymouX invitation unforgeability
assumes Computational Diffie-Hellman problem. In the future, we aim to provide
efficient user revocation capability as well as inviter anonymity against malicious
adversaries.

Acknowledgements. We acknowledge the support of the Royal Society of UK
Newton Advanced Fellowship NA140464 and European Union COST Action IC1306.

References

1. http://www.macworld.com/article/1055383/gmail.html
2. Bogdanov, D.: Foundations and properties of Shamir’s secret sharing scheme

research seminar in cryptography. University of Tartu, Institute of Computer Sci-
ence, 1 May 2007

3. Chaabane, A., Acs, G., Kaafar, M.A., et al.: You are what you like! information
leakage through users interests. In: Proceedings of the 19th Annual Network and
Distributed System Security Symposium (NDSS) (2012)

4. Gong, N.Z., Wang, D.: On the security of trustee-based social authentications.
IEEE Trans. Inf. Forensics Secur. 9(8), 1251–1263 (2014)

5. Gu, K., Jia, W., Chen, R., Liu, X.: Secure and efficient proxy signature scheme in
the standard model. Chin. J. Electron. 22(4), 666–670 (2013)

6. Harn, L., Lin, C.: Authenticated group key transfer protocol based on secret shar-
ing. IEEE Trans. Comput. 59(6), 842–846 (2010)

7. Kravitz, D.W.: Digital signature algorithm. US Patent 5,231,668, 27 July 1993
8. Mahmood, S.: Online social networks: privacy threats and defenses. In: Chbeir,

R., Al Bouna, B. (eds.) Security and Privacy Preserving in Social Networks, pp.
47–71. Springer, Vienna (2013)

9. Malar, G.P., Shyni, C.E.: Facebook’s trustee based social authentication
10. Parameswari, S.M., Sukumaran, S.: Trustee based authentication mechanism for

social network. Int. J. Latest Res. Sci. Technol. 4, 84–88 (2015)
11. Rao, F.-Y.: On the security of a variant of ELGamal encryption scheme. IEEE

Trans. Dependable Secure Comput. (2017)
12. Roy, A., Karforma, S.: A survey on digital signatures and its applications. J. Com-

put. Inf. Technol. 3(1), 45–69 (2012)
13. Sharimila, K., Janaki, V., Nagaraju, A.: Enhanced user authentication techniques

using the fourth factor “some body the user knows”. In: Proceedings of Interna-
tional Conference on Advances in Computer Science, AETACS. Elsevier (2013)

14. Yu, J., Kong, F., Cheng, X., Hao, R., Li, G.: One forward-secure signature scheme
using bilinear maps and its applications. Inf. Sci. 279, 60–76 (2014)

http://www.macworld.com/article/1055383/gmail.html

	Inonymous: Anonymous Invitation-Based System
	1 Introduction
	2 Model
	3 Preliminaries
	4 Construction
	5 InonymouX: Anonymous Cross Network Invitation-Based System
	6 Performance
	7 Security
	7.1 Inviter Anonymity
	7.2 Invitation Unforgeability
	7.3 Security of InonymouX

	8 Conclusion
	References

