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Abstract. We examine how the behaviour of high degree vertices in
a network affects whether an infection spreads through communities
or jumps between them. We study two stochastic susceptible-infected-
recovered (SIR) processes and represent our network with a spatial pref-
erential attachment (SPA) network. In one of the two epidemic scenarios
we adjust the contagiousness of high degree vertices so that they are less
contagious. We show that, for this scenario, the infection travels through
communities rather than jumps between them. We conjecture that this is
not the case in the other scenario, when contagion is independent of the
degree of the originating vertex. Our theoretical results and conjecture
are supported by simulations.
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1 Introduction

While community structure plays an important role in the spread of infections
[14], there are few analytic results on the topic and it is unclear precisely how
clustering interacts with other network properties. Part of the difficulties in this
area stem from the notion that communities consist of disjoint groups or small
cycles. Recently, however, many have taken an approach to studying community
structure by embedding vertices in a metric space [1,4,6,7,12]. One can interpret
the metric space as a feature space in which nearby vertices have more affinity
than the vertices at a distance and, accordingly, close vertices have a higher
probability of being connected. Since a community is a group of individuals who
share some similarities, we represent communities as geometric clusters. The use
of spatial networks allows for a more nuanced notion of community where groups
can overlap and boundaries are fuzzy. Not only is this approach more realistic,
but it is also easier to analyze. We will exploit the mathematical tractability of
a spatial model to study the interaction between community structure and the
spread of infections.

Specifically, our focus will be how the behaviour of high degree nodes changes
whether an infection spreads through communities or jumps between them.
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This question is important because understanding who spreads diseases between
communities can help guide interventions. For example, as [14] show, vaccinat-
ing hosts who bridge communities can be more effective than vaccinating highly
connected individuals. If high degree vertices connect communities, then these
two strategies amount to the same thing.

We model our infection with a stochastic susceptible-infected-recovered (SIR)
process in discrete time. Susceptible vertices can be infected in the future,
infected vertices are currently sick, and recovered vertices have gained immu-
nity from a previous infection. To control the behaviour of high degree vertices,
we recognize that infections spread through contacts (i.e. sexual contact, airborn
contact, etc.), but a network edge only refers to the potential for contacts. [13]
demonstrate that the number of contacts made with a neighbour has a significant
effect on epidemic dynamics. We consider two scenarios in which the “popular”
vertices behave differently: (A) high degree and low degree vertices make the
same number of total contacts per time step, so highly connected vertices make
fewer contacts with any individual neighbour and (B) the time vertices spend
with all their neighbours per time step is proportionate to their degree, so each
vertex gets an equal amount of time with any individual neighbours. In sce-
nario A, high degree nodes have many weak connections and, in scenario B, high
degree and low degree vertices have connections of equal strength so high degree
vertices should pass on the disease to more neighbours. We note that contacts
are not reciprocal—two vertices can make a different number of contacts with
one another. To model the relationship between contacts per neighbour per time
step and the probability of infecting a susceptible neighbour in a time step, we
use an STI model developed by Garnett and Anderson in [5].

To model our network, we use the Spatial Preferential Attachment (SPA)
Model proposed in [1]. These networks are sparse power-law graphs with positive
clustering coefficients [1]. It has been shown that the SPA model fits real-life
social networks well [8]. Since we are working with a stochastic process on a
random network, we modify the SPA model to remove some randomness. We
show that, compared to the SPA model, vertices in our modified networks have
the same expected degree and the overall degree distribution has the same power-
law coefficient.

Using techniques developed by [9], we will show that when popular high
degree nodes are less infectious (scenario A), the infection will travel slowly
through the metric space and respect the community structure. We also conjec-
ture that in scenario B, the infection will take long jumps between communities.
To support our result and conjecture, we run simulations on the modified SPA
model. While there are numerical studies exploring the relationship between the
behaviour of highly connected individuals and the spread of disease with respect
to community structure [14], we believe these are the first analytic results on the
topic.

Our research presents new strategies for understanding communities in net-
works. Networks generated by the modified SPA model display many properties
of real-world systems, and are more tractable than those generated by the origi-
nal SPA model. More generally, by representing communities with a continuous
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feature space rather than with disjoint subsets, we can easily leverage geometric
properties to prove otherwise difficult results. The work presented here develops
techniques for understanding this geometric conception of community structure
in networks.

2 Definitions

Here we present the definitions of the SPA model, the modified SPA model, and
our model of the infection.

2.1 The SPA Model

The SPA model was first proposed in [1]. It is a spatial digraph model where
vertices are embedded in a metric space. The metric space represents the feature
space, which reflects the attributes of the vertices that determine their linking
patterns. The model indirectly incorporates the principle of preferential attach-
ment, first proposed by Barabasi and Albert (BA) [2], through the notion of
spheres of influence around every vertex.

Vertices with a larger in-degree have a sphere of influence with greater vol-
ume, but as time progresses the spheres of influence of all nodes decrease. In the
BA model, the preferential attachment came from a probability of a newcomer
connecting to the old vertices. In the SPA model, we use the sphere of influence
to incorporate the preferential attachment process. If a newcomer falls within
an older vertex’s sphere of influence, we connect them.

Specifically, vertices are embedded in a hypercube C of dimension d with
unit volume. We endow the hypercube with the torus metric derived from any
of the Lp norms. The torus metric is used to avoid edge effects. If x and y are
two vertices in C, the distance between them is given by:

d(x, y) = min{‖x − y + u‖p : u ∈ {−1, 0, 1}m}

The SPA model has parameters A1 ∈ (0, 1) and A2 ∈ [0,∞). (The original
SPA model also has a parameter p representing the conditional probability that
a vertex which falls into the sphere of influence of vertex, actually links to that
vertex. We here assume this to be 1.)

The model consists of a stochastic sequence of n graphs {Gt = (Vt, Et)}0≤t≤n

with Vt ⊂ C. The index t is interpreted as the t-th time step. At each time t,
the sphere of influence S(v, t) of a vertex v ∈ Vt is the ball centered at v with
volume

|S(v, t)| = min
{

A1 deg−(v, t) + A2

t
, 1

}
(1)

Let G0 be the null graph. Given Gt−1, we define Gt = (Vt, Et) as follows.
Vt = Vt−1 ∪ {vt} where vt is placed uniformly at random in C. The edge set
Et = Et−1 ∪ {(vt, u) | vt ∈ S(u, t)}.

We now review the relevant properties of the SPA model. As shown in [1],
the network has a power law degree distribution, with an exponent of 1 + 1

A1
.
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The geometric nature of the network implies that there is a high amount of local
clustering [10]. In [3], logarithmic bounds on the directed diameter were given.
In [9] it was shown that the effective undirected diameter is also logarithmically
bounded.

2.2 The Modified SPA Model

While the SPA model generates spatial graphs that fit empirical networks well,
we must modify the model to make it mathematically tractable for our purposes.
Since the behaviour of a vertex during its early life significantly determines
its late time behaviour, working with the preferential attachment model can
be difficult. Instead, we modify the sphere of influence to depend upon the
deterministic expected in-degree, instead of the stochastic actual in-degree. First
we present a theorem from [10] on the expected in-degree of a vertex in the SPA
model.

Theorem 1. Let ω = ω(t) be any function tending to infinity together with t.
The expected in-degree at time t of a vertex vi born at time i ≥ ω is given by

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)A1

− A2

A1

A vertex’s birth time i and the size of the overall network t determines its
expected in-degree. Furthermore, if the expected degree is larger than log2 n then
the real in-degree is concentrated around its expected in-degree [10]. Hence, the
time a vertex is born can be used as a proxy for its degree, with old nodes being
more highly connected than young nodes.

We modify the SPA model by redefining the sphere of influence to depend on
the vertex’s expected in-degree, instead of its actual in-degree. This substitution
makes the size of the sphere of influence a nonrandom object. Precisely, the
modified spatial preferential attachment model is defined as the SPA model,
with the one difference being that the size of the sphere of influence of vertex vi

at time is changed to:

|S(vi, t)| = min
{

A2

t1−A1iA1
, 1

}
(2)

We derive Eq. (2) by replacing the actual in-degree in formula (1) for the
original sphere of influence with the expected in-degree and simplifying. We now
state and prove a theorem which shows that the modified SPA model generates
networks with an expected in-degree equivalent to the original model.

Theorem 2. Let Gn be a graph generated by the modified SPA model with n
vertices. The expected in-degree of a vertex vi born at time i is given by

E(deg−(vi, n)) =
A2

A1

((n

i

)A1 − 1
)

− ε

where |ε| < A2
A1

.
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Proof. Let vj be a vertex born at time j > i. Let Xj be a random variable
that equals 1 if there is an edge from vj to vi and equals 0 otherwise. By the
definition of the modified SPA model, we place an edge from vj to vi if and only
if vj falls within the sphere of influence of vi. Since vj is placed in the hypercube
uniformly at random, Xj = 1 with probability equal to the volume of vi’s sphere
of influence at time j.

By the linearity of expectation,

E(deg−(vi, n)) = E

(
n∑

k=i+1

Xk

)

=
n∑

k=i+1

E (Xk)

=
n∑

k=i+1

|S(vi, k)|

We approximate this sum with an integral.

n∑
k=i+1

|S(vi, k)| =
∫ n

i

A2

x1−A1iA1
dx − ε

=
A2

A1

((n

i

)A1 − 1
)

− ε

To bound the error, we first recognize that,
∫ n+1

i+1

A2

x1−A1iA1
dx ≤

n∑
k=i+1

|S(vi, k)| ≤
∫ n

i

A2

x1−A1iA1
dx

Hence,

|ε| <

∫ n

i

A2

x1−A1iA1
dx −

∫ n+1

i+1

A2

x1−A1iA1
dx

=
A2

iA1

((i + 1)A1 − iA1) − ((n + 1)A1 − nA1)
A1

<
A2

iA1

(i + 1)A1 − iA1

A1

<
A2

A1

(
2A1 − 1

)

<
A2

A1 	

In addition to having equivalent expected in-degrees, we also derive that

both models lead to the same (power law) cumulative in-degree distribution.
The cumulative in-degree distribution ck is defined as the number of vertices
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with in-degree j ≤ k divided by the total number of vertices. As stated above,
from [1] we know that a.a.s. the cumulative in-degree distribution of networks
generated by the SPA model follows a power law with exponent 1

A1
. Theorem 3

states that the same is true of networks generated by the modified SPA model.
An event occurs with extreme probability (w.e.p.) if it occurs with probability at
least 1 − e−Θ(log2 n) as n → ∞.

Theorem 3. Let Gn be a graph generated by the modified SPA model with n
vertices. The cumulative in-degree distribution ck of Gn is w.e.p. a power law
with exponent 1

A1
for k > k′ = log2(n).

Proof. The in-degree of a vertex vi born at time i is the sum of n−i independent
Bernoulli variables Xj with success probability equal to the volume of the sphere
of influence |S(vi, j)|. We let f(i) equal the expected in-degree of a vertex born
at time i in a network of size n. By the generalized Chernoff bound [11], we know
that w.e.p. f(i) − ε ≤ deg−(vi, n) ≤ f(i) + ε where ε =

√
f(i) log n.

Using this bound, we determine how many vertices have in-degree greater
than k. If a vertex is born before i− = f−1(k + ε), then w.e.p. it has a degree
greater than k. Likewise, if a vertex is born after i+ = f−1(k − ε), then w.e.p.
it has a degree less than k. Hence, the number of vertices with degree greater
than k is between i− and i+. By inverting the formula for expected degree and
examining its asymptotic growth, we find

i− = f−1(k + ε) = (1 + o(1))f−1(k) i+ = f−1(k − ε) = (1 + o(1))f−1(k)

Hence, the number of vertices with degree greater than k is w.e.p. (1 +
o(1))f−1(k). This implies that ck = (1 + o(1))(kA1/A2 − 1)−1/A1 . 	


2.3 Infectious Processes

Now that we have a workable model of real-world networks, we define a SIR
disease model in discrete time. To begin the infectious process, we pick a node
at random to be the origin node. At time t = 0, we infect the origin node and
denote all other nodes as susceptible. In each time step, the infected nodes infect
each neighbour with probability β. Though the modified SPA model generates
directed graphs, we ignore the orientation of the edges. If a susceptible vertex
has multiple infected neighbours, they each independently attempt to infect the
susceptible vertex. At the end of each time step, all infected nodes recover. This
is a simplification of the typical SIR model because usually the recovery time
is modelled as a stochastic variable. Here we simplify and assume each vertex
to recover in exactly one time step. We run the process until no vertices are
infected. If we run the infection process for t time steps on a network with n
vertices, the infected and recovered vertices together with the edges taken by
the infection (oriented in the direction the infection travelled) form an acyclic
directed subgraph of the network. We denote this subgraph, It

n, the infection
graph at time t.
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Suppose that in a given time step vertex v is infected, vertex u is susceptible,
and they are neighbours. The probability β of v infecting u in the time step
depends on κ(v), the average number of contacts v makes with u per time step,
and the probability of transmitting the infection per contact τ . If v makes more
contacts on average with u or if the probability of infection per contact is higher,
the disease will have a greater chance of spreading. Following [5], we set

β = 1 − e−τκ

To study how the behaviour of high degree nodes changes how a disease
spreads through the network, we consider two different scenarios: scenario A
and scenario B with their own infection probabilities βA and βB , respectively.
In scenario A, we define the average number of contacts a vertex v makes with
a neighbour per time step as

κA(v) =
T

E(deg−(v))

where T is the average number of contacts v makes with all its neighbours in
the time step. We use E(deg−(v)) as a rough approximation of the degree of v.
Hence, in scenario A, βA(v) = 1 − e−τκA(v). Since T is constant for all vertices,
high and low degree alike, high degree vertices make fewer contacts with any
single neighbour because their contacts are dispersed over a greater number
vertices. While high degree nodes have many neighbours, these connections may
be weaker than a node with few neighbours.

In scenario B, however, we no longer keep the average number of contacts
a vertex makes with all its neighbours in a time step constant. Instead, we let
T (v) depend on T and the expected in-degree of v. We define

T (v) = T
E(deg−(v))

〈deg−〉
where 〈deg−〉 is the average degree in the graph. From [1], we know a.a.s. that
〈deg−〉 = (1 + o(1)) A2

1−A1
in the SPA model, which is asymptotically constant.

Since the total number of edges in the network is the sum of Bernoulli variables,
by the linearity of expectation, it is a simple calculation to show that 〈deg−〉 is
equivalent in the modified and original SPA models. As in scenario A, we use
E(deg−(v)) to approximate the degree of v. From the average number of contacts
a vertex makes with all its neighbours in a time step, we can define the average
number of contacts a vertex makes with a specific neighbour in a time step as

κB(v) =
T (v)

E(deg(v))
=

T

〈deg−〉
Hence, in scenario B, βB = 1 − e−τκB , which is constant. Any infected vertex
v has an equal chance of infecting a neighbour, regardless of the degree of v.
Hence, in scenario B, we expect that high degree vertices will pass the infection
on to more individuals than low degree vertices.



High Degree Vertices and Spread of Infections 67

3 Spatial Spread of Infections

Our main result states that when highly connected vertices are less infectious,
the infection will not make large jumps through the metric space. Since our
metric space represents a feature space, this means that the infection spreads
through communities rather than jumping between them. To prove this result,
we treat the infection as percolating through the network. We first show that
a.a.s. all vertices in the network will only infect neighbours within a certain
distance. From this result, we conclude that any particular infection will a.a.s.
be bounded by a ball of a relatively small radius after a given number of time
steps.

Theorem 4. Let Gn be a graph with n vertices generated by the modified SPA
model. Let λ = n−φ be such that φ < A1(1−A1)

(A1+2)d . For scenario A, a.a.s. all nodes
in the infection graph at time t will be within tλ of the origin node u.

3.1 Proof of Theorem 4

Before we present the proof, we first adopt some conventions regarding the infec-
tion process. Instead of considering the infection spreading through a network
in time, we a priori consider whether any vertex would infect a neighbour given
that they are connected. If we “occupy” each pair of vertices with probability
βA, and restrict our occupied pairs to edges present in our network, we get a
subgraph consisting of where the infection could possibly travel, which we call
the potential infection graph. The infection graph, describing where the infection
actually spread, will be a subset of the potential infection graph.

Formally, let Gn = (Vn, En) be a network of order n generated by the mod-
ified SPA model, where we replace each directed edge by two edges in opposite
directions. We consider ordered pairs of vertices (vi, vj) and (vj , vi) because our
infection model ignores the orientation of the edges in the original network gen-
erated by the modified SPA model. In other words, even though all edges in the
modified SPA model are directed from younger to older vertices, we allow the old
to infect the young. Let u ∈ Vn be the node where the infection originates. With
each ordered pair of vertices (vi, vj) we associate a Bernoulli random variable
Ivi,vj

defined as

Ivi,vj
=

{
1 with probability βA(vi)
0 otherwise

(3)

We define the potential infection graph on Gn as the graph In = (VI , EI) where
VI = Vn and EI = {(vi, vj)|{vi, vj} ∈ En and Ivi,vj

= 1}. We can recover the
infection graph at time t, It

n, by taking the subgraph induced by the tth out-
neighbourhood of u in In.

The proof of our main result is based on an analysis of the edges in the
potential infection digraph. Define the length of an edge as the distance between
its two end points. We first establish a lemma stating that there is an asymptotic
bound on the length of edges in the potential infection graph.
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Lemma 1. Let Gn be a graph with n vertices generated by the modified SPA
model and In be a potential infection graph on Gn in scenario A. Let λ = n−φ

such that φ < A1(1−A1)
(A1+2)d . Then a.a.s. In does not contain any edges of length

greater than λ.

Proof. Let L represent the event of there being an edge in In where the distance
between its endpoints is greater than λ. We will call such edges “long”and all
other edges “short”. Given two (not necessarily connected) nodes in Vn, vi and
vj , let Lvi,vj

represent the event of there being a long edge from vi to vj in In.
Thus, Lvi,vj

occurs if vi and vj (the vertices born at time i and j, respectively)
have distance at least λ, there is an edge between vi and vj , and the infection
can travel from vi to vj . Since L =

⋃n−1
i=0

⋃n
j=i+1

(
Lvi,vj

∪ Lvj ,vi

)
, by taking the

union bound, we know

P(L) ≤
n−1∑
i=0

n∑
j=i+1

P(Lvi,vj
) + P(Lvj ,vi

)

Our proof will show that this double sum goes to 0 as n approaches infinity.
We first need an expression for P(Lvi,vj

) + P(Lvj ,vi
). Since i < j, by the

definition of the potential infection graph, Lvi,vj
occurs if and only if three other

events also occur: d(vi, vj) > λ, vj ∈ S(vi, j), and Ivi,vj
= 1. In other words, for

there to be a long edge between vi and vj , Ivi,vj
must equal 1 and vj must be

far enough away from vi to be considered long, but close enough to be in the
sphere of influence of vi at time j.

Since vj is placed uniformly at random in the hypercube, the distance d(vj , vi)
and the event Ivi,vj

= 1 are independent. Therefore, for any specific values for j
and i. i < j, we can write

P(Lvi,vj
) = P(d(vi, vj) > λ, vj ∈ S(vi, j), Ivi,vj

= 1)
= P(d(vi, vj) > λ, vj ∈ S(vi, j))P(Ivi,vj

= 1)

For the edge oriented in the opposite direction, we can make a similar argu-
ment. Hence, we can write

P(Lvj ,vi
) = P(d(vi, vj) > λ, vj ∈ S(vi, j), Ivj ,vi

= 1)
= P(d(vi, vj) > λ, vj ∈ S(vi, j))P(Ivj ,vi

= 1)

Combining our expressions for P(Lvi,vj
) and P(Lvj ,vi

) we find that

P(Lvi,vj
)+P(Lvj ,vi

) = P(d(vi, vj) > λ, vj ∈ S(vi, j))(P(Ivi,vj
= 1)+P(Ivj ,vi

= 1))

We know P(Ivi,vj
= 1) = βA(vi) and P(Ivj ,vi

= 1) = βA(vj) from Eq. (3),
but we need expressions for P(d(vi, vj) > λ, vj ∈ S(vi, j)) and P(Ivi,vj

= 1).
We use a geometric argument to find P(d(vj , vi) > λ, vj ∈ S(vi, j)), which

is the probability of there being a long edge between vi and vj in the original
network. There are three cases. In the first case, the sphere of influence of vi has
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radius smaller than λ at its time of birth. Since spheres of influence only shrink,
in this case there will never be a time when vj can both fall within vi’s sphere of
influence and be greater than λ away from vi. This case occurs when i exceeds
a critical value m, which is the first time when vertices are born with a sphere
of influence that has radius smaller than λ.

In the second case, i is smaller than the critical value m, but j is larger than
the second critical value mi. This critical value is reached when the radius of
vi’s sphere of influence equals λ. Again, since spheres of influence only shrink,
vertices born at times after mi cannot have d(vj , vi) > λ and vj ∈ S(vi, j)). In
these first two cases, P(d(vj , vi) > λ, vj ∈ S(vi, j)) = 0.

A ball of radius λ has volume λdcp where cp depends on our Lp norm. Using
this, we find that

m =
A2

λdcp
mi =

(
A2

iλdcp

) 1
1−A1

In the last case, i < m and j < mi, which means d(vj , vi) > λ and vj ∈
S(vi, j)) is possible. Since vj is placed in the hypercube uniformly at random
and the hypercube has unit volume, P(d(vj , vi) > λ, vj ∈ S(vi, j)) is equal to
the volume of the spherical shell between the sphere of influence and the ball
centered at vi with radius λ which we denote B(vi, λ). Hence, in this case,
P(d(vj , vi) > λ, vj ∈ S(vi, j)) = |S(vi, j)| − |B(vi, λ)|.

Combining the results from the previous paragraphs,

P(L) ≤
m∑

i=0

mi∑
j=i+1

(|S(vi, j)| − |B(vi, λ)|)(βA(vi) + βA(vj))

Since the oldest vertex will always have the largest sphere of influence, we
know that mi < m1 for all i ∈ [1,m] and that m < m1. Also, A2 = |S(v1, 1)| >
|S(vi, j)−B(vi, λ)| for all i, j ∈ [1,m1]. Finally, since vm1 has the lowest expected
degree of all vertices born at or before time m1, βA(vm1) > βA(vi), βA(vj) for
all i, j ∈ [1,m1]. Hence, we can write

P(L) ≤
m1∑
i=1

m1∑
j=i+1

2A2βA(vm1) (4)

≤ 2

⎛
⎜⎜⎝1 − exp

⎛
⎜⎜⎝− τT

A2
A1

((
n

m1

)A1 − 1
)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ A2m

2
1 (5)
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From the formula for m1, we see that m1 ∼ n
φd

1−A1 . Setting φ = A1(1−A1)
(A1+2)d and

γ = τT , we see that

P(L) ≤ 2

⎛
⎜⎜⎝1 − exp

⎛
⎜⎜⎝− γ((

n
m1

)A1 − 1
)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ A2m

2
1 (6)

∼ 2
(

1 − exp
(

−γn
A1

(
φd

1−A1
−1
)))

A2n
2φd

1−A1 (7)

∼ 2
(

1 −
(

1 − γn
A1

(
φd

1−A1
−1
)

+ O

(
n
2A1

(
φd

1−A1
−1
))))

A2n
2φd

1−A1 (8)

= o(1) (9)

	

Using this lemma, we can now prove our main result, Theorem 4.

Proof. Let B represent the bad event where there is a node v in the infection
digraph at time t, It

n, where d(v, u) > tλ. If B occurs, then there is a path from
v to u with at most t edges because It

n is the tth neighbourhood of u in In. By
the triangle inequality, at least one of the edges in the path from v to u has
a length greater than λ and, more generally, there is an edge in the potential
infection graph with a length greater than λ. Let L represent the event of there
being an edge in In where the distance between its endpoints is greater than λ.
Since B ⊂ L, P(B) ≤ P(L), but by the previous lemma, a.a.s. P(L) = 0. 	


3.2 Conjecture for Scenario B

We conjecture that in scenario B, the negation of Lemma 1 holds. We know that
the modified SPA model a.a.s. has edges greater than length λ′ where λ′ = μn−θ

with θ > 1 − A1
4A1+2 and μ constant. We conjecture that the potential infection

graph will have long edges as well.

Conjecture 1. Let Gn be a graph with n vertices generated by the modified SPA
model and In be a potential infection graph on Gn in scenario B. There exists
φ > 0 such that if we let λ = n−φ, a.a.s. In contains an edge of length greater
than λ.

4 Simulations

Using simulations, we test our theoretic result that the infection in scenario A
will not make long jumps. We also use simulations to provide evidence for our
conjecture that, in scenario B, the infection can make long jumps if we pick the
origin vertex correctly. Recall that in both infection scenarios, we can vary how
easily the infection spreads by altering T , the total number of contacts made
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per time step, and τ , the probability of transmission per contact. Also recall
that we denote γ = τT . For the 2 infection scenarios, we consider 3 levels of
contagiousness: γ = 1, γ = 10 and γ = 100.

We generated 10 networks with the modified SPA network in R
1 with A1 =

0.5 and A2 = 1. Our results are highly asymptotic and the bound is lowest in
low dimensions so, due to computational constraints, we choose to simulate in
R

1. The 10 networks are of increasing size, beginning at n = 1000 and increasing
by increments of 1000 to a maximum of n = 10000.

For each network, we run each of the 6 infection processes 50 times. We chose
to begin the infections at the oldest vertex because it has the highest likelihood
of having neighbours far away in the metric space. On one hand, we want to give
the infection in scenario B the opportunity to make long jumps and, on the other
hand, we do not want to mistakenly conclude that the infection in scenario A
makes short jumps only because it was never exposed to long edges. While our
main result states that given a number of time steps, a.a.s. the infection remains
within a certain region, this result depends on both the size of the network and
the current time step in the infection process. We thought it would be more
clear to compare Lemma 1 to our simulations, which states that the edge length
taken by the infection in scenario A is bounded. To compare scenario A and B,
we likewise observe the maximum edge length the infection in scenario B takes.

Fig. 1. Longest jump made by the infection vs. network size in scenario A and B
stratified by 3 levels of contagion.

The results of our simulations are shown in Fig. 1. We make two conclusions
from our simulations. First, we see that in scenario A, when high degree nodes are
less contagious, the infection takes shorter jumps than in scenario B. As indicated
by our asymptotic result, the difference becomes more pronounced in larger
networks. One might notice that in scenario B the infection does not always
make long jumps, which seems to contradict our conclusion. These outliers can
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be explained by recognizing that the longest edge in the entire network is a non-
clustered random variable. Vertices receive long edges in a brief period during
the early steps of the model and, consequently, whether there are long edges
in the network at all is highly variable. It is not that the infection avoids the
long edges, but rather, that the infection has no long edges to take in the first
place. Second, we see that this difference between scenario A and scenario B
becomes less pronounced when we make the infection more contagious. Again,
this matches our theoretic result, since our bound on the probability of long
infection increases when γ is larger. We expect that if we could generated large
enough networks, eventually we would see the difference between scenario A and
B reemerge, even at high levels of contagion.

Fig. 2. A log-log plot of the longest jump made by the infection vs. network size in
scenario A with γ = 10. The equation for the regression line is log(y) = −0.51log(x) +
1.40 (R2 = 0.19).

To compare our analytic bound φ to our simulations, we perform a linear
regression on a log-log plot of longest jump vs. network size for infections in
Scenario A with γ = 10 (see Fig. 2). The simulations are the same as those rep-
resented in Fig. 1. We have added a small amount of noise to the x-values in order
to make the distribution of data more clear. If our result is true, then we should
expect that the slope of the regression line should be less than −A1(1−A1)

(A1+2)d = −0.1.
We found the slope to be −0.51, which provides support for our lemma. Of
course, our data is highly variable and this plot only gestures towards the fact
that our bound is valid. We expect that for larger networks, this variation would
decrease.

To illustrate that the infection spreads slowly through the feature space in
scenario A, we simulate one run of the process on a graph generated by the
modified SPA model in R

2 with A1 = 0.5, A2 = 1, γ = 10, and n = 1000.
We present the simulation in Fig. 3. The blue vertices were infected earlier in
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Fig. 3. A scenario A infection with γ = 10 on a modified SPA network with A1 = 0.5,
A2 = 1, and n = 1000. The gradient from blue to red represents earlier to later
infections. (Color figure online)

the process and red vertices later. Since nearby vertices have similar colours
(recall that we are using the torus metric), this simulation provides additional
qualitative evidence for our finding that the infection does not make long jumps
in scenario A.

5 Conclusion

When modelling contagious processes, it is important to take contacts made per
neighbour into account. With analytic and numeric results, we show that if all
vertices make an equal number of contacts, the infection will spread through
communities rather than jumping between them. High degree vertices are more
likely to have neighbours in distant communities and when these popular individ-
uals are less contagious, the infection is less likely to spread from one community
to another. We also show with simulations that scaling the number of contacts
a vertex makes by its degree results in an epidemic that spreads irrespective of
the communities in the network.

In addition to our conjecture, we identify two areas of future research. First,
since infections in scenario A and scenario B behave differently with respect to
community structure, interventions may benefit from exploiting this distinction.
In other words, if we know a contagious process will spread through communities,
how can we use this fact to control the epidemic? Likewise, how should we
control diseases that jump between communities? The second area of potential
research is studying scenario A infections further. While we find that these types
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of contagious processes will be a.a.s. bounded by a ball with a growing radius, we
do not discuss how this may affect the success of an infection spreading through
a network. If a disease does not jump, does community structure prevent the
infection from spreading beyond its original group?
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