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Preface

The 14th Workshop on Algorithms and Models for the Web Graph (WAW 2017) took
place at the Fields Institute for Research in Mathematical Sciences, Canada, June 15–
16, 2017. This is an annual meeting, which is traditionally co-located with another,
related, conference. WAW 2017 was co-located with the Canadian Discrete and
Algorithmic Mathematics Conference (CanaDAM 2017) and was part of the Focus
Program on Random Graphs and Applications to Complex Networks at the Fields
Institute. Co-location of the workshop and conference provided opportunities for
researchers in two different but interrelated areas to interact and to exchange research
ideas. It was an effective venue for the dissemination of new results and for fostering
research collaboration.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest. The
algorithms supporting these activities combine the view of the Web as a text repository
and as a graph, induced in various ways by links among pages, hosts, and users. The
aim of the workshop was to further the understanding of graphs that arise from the Web
and various user activities on the Web, and stimulate the development of
high-performance algorithms and applications that exploit these graphs. The workshop
gathered the researchers who are working on graph-theoretic and algorithmic aspects of
related complex networks, including social networks, citation networks, biological
networks, molecular networks, and other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each submission
was reviewed by Program Committee members. Papers were submitted and reviewed
using the EasyChair online system. The committee members decided to accept seven
papers.

June 2017 Anthony Bonato
Fan Chung Graham

Paweł Prałat
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Moment-Based Parameter Estimation
in Binomial Random Intersection Graph Models

Joona Karjalainen(B) and Lasse Leskelä

Aalto University, Espoo, Finland
lasse.leskela@aalto.fi

http://math.aalto.fi/en/people/joona.karjalainen,

http://math.aalto.fi/~lleskela/

Abstract. Binomial random intersection graphs can be used as parsi-
monious statistical models of large and sparse networks, with one para-
meter for the average degree and another for transitivity, the tendency
of neighbours of a node to be connected. This paper discusses the esti-
mation of these parameters from a single observed instance of the graph,
using moment estimators based on observed degrees and frequencies of
2-stars and triangles. The observed data set is assumed to be a subgraph
induced by a set of n0 nodes sampled from the full set of n nodes. We
prove the consistency of the proposed estimators by showing that the rel-
ative estimation error is small with high probability for n0 � n2/3 � 1.
As a byproduct, our analysis confirms that the empirical transitivity
coefficient of the graph is with high probability close to the theoretical
clustering coefficient of the model.

Keywords: Statistical network model · Network motif · Model fitting ·
Moment estimator · Sparse graph · Two-mode network · Overlapping
communities

1 Introduction

Random intersection graphs are statistical network models with overlapping
communities. In general, an intersection graph on a set of n nodes is defined
by assigning each node i a set of attributes Vi, and then connecting those node
pairs {i, j} for which the intersection Vi ∩Vj is nonempty. When the assignment
of attributes is random we obtain a random undirected graph. By construction,
this graph has a natural tendency to contain strongly connected communities
because any set of nodes Wk = {i : Vi � k} affiliated with attribute k forms a
clique.

The simplest nontrivial model is the binomial random intersection graph G =
G(n,m, p) introduced in [13], having n nodes and m attributes, where any partic-
ular attribute k is assigned to a node i with probability p, independently of other
node–attribute pairs. A statistical model of a large and sparse network with non-
trivial clustering properties is obtained when n is large, m ∼ βn and p ∼ γn−1 for

c© Springer International Publishing AG 2017
A. Bonato et al. (Eds.): WAW 2017, LNCS 10519, pp. 1–15, 2017.
DOI: 10.1007/978-3-319-67810-8 1



2 J. Karjalainen and L. Leskelä

some constants β and γ. In this case the limiting model can be parameterised by
its mean degree λ = βγ2 and attribute intensity μ = βγ. By extending the model
by introducing random node weights, we obtain a statistical network model which
is rich enough to admit heavy tails and nontrivial clustering properties [4,5,8,10].
Such models can also be generalised to the directed case [6]. An important fea-
ture of this class of models is the analytical tractability related to component sizes
[3,15] and percolation dynamics [1,7].

In this paper we discuss the estimation of the model parameters based on a
single observed instance of a subgraph induced by a set of n0 nodes. We intro-
duce moment estimators for λ and μ based on observed frequencies of 2-stars
and triangles, and describe how these can be computed in time proportional to
the product of the maximum degree and the number of observed nodes. We also
prove that the statistical network model under study has a nontrivial empiri-
cal transitivity coefficient which can be approximated by a simple parametric
formula in terms of μ.

The majority of classical literature on the statistical estimation of network
models concerns exponential random graph models [19], whereas most of the
recent works are focused on stochastic block models [2] and stochastic Kronecker
graphs [9]. For binomial random intersection graphs with m � n, it has been
shown [17] that the underlying attribute assignment can in principle be learned
using maximum likelihood estimation. To the best of our knowledge, the current
paper appears to be the first of its kind to discuss parameter estimation in
random intersection graphs where m is of the same order as n.

The rest of the paper is organised as follows. In Sect. 2 we describe the
model and its key assumptions. Section 3 summarises the main results. Section 4
describes numerical simulation experiments for the performance of the estima-
tors. The proofs of the main results are given in Sect. 5, and Sect. 6 concludes
the paper.

2 Model Description

2.1 Binomial Random Intersection Graph

The object of study is an undirected random graph G = G(n,m, p) on node
set {1, 2, . . . , n} with adjacency matrix having diagonal entries A(i, i) = 0 and
off-diagonal entries

A(i, j) = min

(
m∑

k=1

B(i, k)B(j, k), 1

)
,

where B(i, k) are independent {0, 1}-valued random integers with mean p,
indexed by i = 1, . . . , n and k = 1, . . . ,m. The matrix B represents a ran-
dom assignment of m attributes to n nodes, both labeled using positive integers,
so that B(i, k) = 1 when attribute k is assigned to node i. The set of attributes
assigned to node i is denoted by Vi = {k : B(i, k) = 1}. Then a node pair {i, j}
is connected in G if and only if the intersection Vi ∩ Vj is nonempty.
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2.2 Sparse and Balanced Parameter Regimes

We obtain a large and sparse random graph model by considering a sequence of
graphs G(n,m, p) with parameters (n,m, p) = (nν ,mν , pν) indexed by a scale
parameter ν ∈ {1, 2, . . . } such1 that n � 1 and p � m−1/2 as ν → ∞. In this
case a pair of nodes {i, j} is connected with probability

P(ij ∈ E(G)) = 1 − (1 − p2)m ∼ mp2,

and the expected degree of a node i is given by

EdegG(i) = (n − 1)P(ij ∈ E(G)) ∼ nmp2. (2.1)

Especially, we obtain a large random graph with a finite limiting mean degree
λ ∈ (0,∞) when we assume that

n � 1, mp2 ∼ λn−1. (2.2)

This will be called the sparse parameter regime with mean degree λ.
The most interesting model with nontrivial clustering properties is obtained

when we also assume that p ∼ μm−1 for some constant μ ∈ (0,∞). In this case
the full set of conditions is equivalent to

n � 1, m ∼ (μ2/λ)n, p ∼ (λ/μ)n−1, (2.3)

and will be called as balanced sparse parameter regime with mean degree λ and
attribute intensity μ.

2.3 Induced Subgraph Sampling

Assume that we have observed the subgraph G(n0) of G induced by a set V (n0)

of n0 nodes sampled from the full set of n nodes, so that E(G(n0)) consists of
node pairs {i, j} ∈ E(G) such that i ∈ V (n0) and j ∈ V (n0). The sampling
mechanism used to generate V (n0) is assumed to be stochastically independent
of G. Especially, any nonrandom selection of V (n0) fits this framework. On the
other hand, several other natural sampling mechanisms [14] are ruled out by this
assumption, although we believe that several of the results in this paper can be
generalised to a wider context.

In what follows, we shall assume that the size of observed subgraph satisfies
nα � n0 ≤ n for some α ∈ (0, 1). An important special case with n0 = n
amounts to observing the full graph G.

1 For number sequences f = fν and g = gν indexed by integers ν ≥ 1, we denote f ∼ g
if fν/gν → 1 and f � g if fν/gν → 0 as ν → ∞. The scale parameter is usually
omitted.
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3 Main Results

3.1 Estimation of Mean Degree

Consider a random intersection graph G = G(n,m, p) in a sparse parameter
regime (2.2) with mean degree λ ∈ (0,∞), and assume that we have observed a
subgraph G(n0) of G induced by a set of nodes V (n0) of size n0, as described in
Sect. 2.3. Then a natural estimator of λ is the normalised average degree

λ̂(G(n0)) =
n

n2
0

∑
i∈V (n0)

degG(n0)(i). (3.1)

This estimator is asymptotically unbiased because by (2.1),

Eλ̂(G(n0)) =
n

n0
(n0 − 1)P(ij ∈ E(G)) ∼ λ.

The following result provides a sufficient condition for the consistency of the
estimator of the mean degree λ, i.e., λ̂ → λ in probability as n → ∞.

Theorem 3.1. For a random intersection graph G = G(n,m, p) in a sparse
parameter regime (2.2), the estimator of λ defined by (3.1) is consistent when
n0 � n1/2. Moreover, λ̂(G(n0)) = λ + Op(n1/2/n0) for m � n2

0/n � 1.

3.2 Transitivity Coefficient

For a random or nonrandom graph G with maximum degree at least two, the
transitivity coefficient (a.k.a. global clustering coefficient [12,16]) is defined by

t(G) = 3
NK3(G)
NS2(G)

(3.2)

and the model transitivity coefficient by

τ(G) = 3
ENK3(G)
ENS2(G)

,

where NK3(G) is the number of triangles2 and NS2(G) is the number of 2-stars3

in G. The above definitions are motivated by noting that

t(G) = PG( I2I3 ∈ E(G) | I1I2 ∈ E(G), I1I3 ∈ E(G) ),
τ(G) = P( I2I3 ∈ E(G) | I1I2 ∈ E(G), I1I3 ∈ E(G) ),

for an ordered 3-tuple of distinct nodes (I1, I2, I3) selected uniformly at ran-
dom and independently of G, where PG refers to conditional probability given
2 subgraphs isomorphic to the graph K3 with V (K3) = {1, 2, 3} and E(K3) =

{12, 13, 23}.
3 subgraphs isomorphic to the graph S2 with V (S2) = {1, 2, 3} and E(S2) = {12, 13}.
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an observed realisation of G. The model transitivity coefficient τ(G) is a non-
random quantity which depends on the random graph model G only via its
probability distribution, and is often easier to analyse than its empirical coun-
terpart. Although τ(G) �= Et(G) in general, it is widely believed that τ(G) is
a good approximation of t(G) in large and sparse graphs [4,8]. The following
result confirms this in the context of binomial random intersection graphs.

Theorem 3.2. Consider a random intersection graph G = G(n,m, p) in a bal-
anced sparse parameter regime (2.3). If n0 � n2/3, then

t(G(n0)) =
1

1 + μ
+ op(1). (3.3)

It has been observed (with a slightly different parameterisation) in [8] that the
model transitivity coefficient of the random intersection graph G = G(n,m, p)
satisfies

τ(G) =

⎧⎪⎨
⎪⎩

1 + o(1), p � m−1,
1

1+μ + o(1), p ∼ μm−1,

o(1), m−1 � p � m−1/2,

and only depends on n via the scale parameter. Hence, as a consequence of
Theorem 3.2, it follows that

t(G) = τ(G) + op(1)

for large random intersection graphs G = G(n,m, p) in the balanced sparse
parameter regime (2.3).

3.3 Estimation of Attribute Intensity

Consider a random intersection graph G = G(n,m, p) in a balanced sparse
parameter regime (2.3) with mean degree λ ∈ (0,∞) and attribute intensity
μ ∈ (0,∞), and assume that we have observed a subgraph G(n0) of G induced
by a set of nodes V (n0) of size n0, as described in Sect. 2.3. We will now introduce
two estimators for the attribute intensity μ.

The first estimator of μ is motivated by the connection between the empirical
and model transitivity coefficients established in Theorem 3.2. By ignoring the
error term in (3.3), plugging the observed subgraph G(n0) into the definition of
the transitivity coefficient (3.2), and solving for μ, we obtain an estimator

μ̂1(G(n0)) =
NS2(G

(n0))
3NK3(G(n0))

− 1. (3.4)

An alternative estimator of μ is given by

μ̂2(G(n0)) =
(

n0NS2(G
(n0))

2NK2(G(n0))2
− 1

)−1

, (3.5)
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where NK2(G
(n0)) = |E(G(n0))|. A heuristic derivation of the above formula is

as follows. For a random intersection graph G in the balanced sparse parameter
regime (2.3), the expected number of 2-stars in G(n0) is asymptotically (see
Sect. 5)

ENS2(G
(n0)) ∼ 3

(
n0

3

)
(mp3 + m2p4) ∼ 1

2
n3
0μ

3(1 + μ)m−2

and the expectation of NK2(G
(n0)) = |E(G(n0))| is asymptotically

ENK2(G
(n0)) ∼

(
n0

2

)
mp2 ∼ 1

2
n2
0μ

2m−1.

Hence
ENS2(G

(n0))
(ENK2(G(n0)))2

∼ 2
n0

(1 + μ−1),

so by omitting the expectations above and solving for μ we obtain (3.5).
The following result confirms that both of the above heuristic derivations

yield consistent estimators for the attribute intensity when the observed sub-
graph is large enough.

Theorem 3.3. For a random intersection graph G = G(n,m, p) in a balanced
sparse parameter regime (2.3), the estimators of μ defined by (3.4) and (3.5) are
consistent when n0 � n2/3.

3.4 Computational Complexity of the Estimators

The evaluation of the estimator λ̂ given by (3.1) requires computing the degrees
of the nodes in the observed subgraph G(n0). This can be done in O(n0dmax)
time, where dmax denotes the maximum degree of G(n0).

Evaluating the estimator μ̂1 given by (3.4) requires counting the number
of triangles in G(n0) which is a nontrivial task for very large graphs. A naive
algorithm requires an overwhelming O(n3

0) time for this, a listing method can
accomplish this in O(n0d

2
max) time, and there also exist various more advanced

algorithms [18].
The estimator μ̂2 given by (3.5) can be computed without the need to com-

pute the number of triangles. Actually, the computation of μ̂2 only requires to
evaluate the degrees of the nodes in G(n0). Namely, with help of the formulas

NK2(G
(n0)) =

1

2

∑

i∈V (n0)

degG(n0)(i) and NS2(G
(n0)) =

∑

i∈V (n0)

(
degG(n0)(i)

2

)
,

one can verify that

μ̂2(G(n0)) =
(

a2 − a1

a2
1

− 1
)−1

,
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where ak = n−1
0

∑
i∈V (n0) degG(n0)(i)k denotes the k-th moment of the empirical

degree distribution of G(n0).
We conclude that the parameters (λ, μ) of the random intersection graph

G = G(n,m, p) in the balanced sparse parameter regime (2.3) can be consistently
estimated in O(n0dmax) time using the estimators λ̂ and μ̂2.

4 Numerical Experiments

In this section we study the non-asymptotic behaviour of the parameter estima-
tors λ̂ (3.1), μ̂1 (3.4), and μ̂2 (3.5) using simulated data. In the first experiment,
a random intersection graph was generated for each n = 50, 70, . . . , 1000, using
parameter values (λ = 9, μ = 3) and (λ = 2, μ = 0.5). All of the data was used
for estimation, i.e., n0 = n.

Fig. 1. Simulated values of the estimators λ̂, μ̂1, and μ̂2 with n0 = n. The solid curves
show the theoretical values of the estimators when the feature counts N∗(G(n)) are
replaced by their expected values.

Fig. 2. 1000 simulated values of μ̂1 and μ̂2 with λ = 9, μ = 3, and n0 = n = 750.
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Figure 1 shows the computed estimates λ̂, μ̂1, and μ̂2 for each n. For compar-
ison, the theoretical values of these estimators are also shown when the counts of
links, 2-stars, and triangles are replaced by their expected values in (3.1), (3.4),
and (3.5).

With (λ = 9, μ = 3), the parameter μ is generally underestimated by μ̂1

and overestimated by μ̂2. The errors in μ̂1 appear to be dominated by the bias,
whereas the errors in μ̂2 are mostly due to variance. With (λ = 2, μ = 0.5), the
simulated graphs are morse sparse. The differences between the two estimators
of μ are small, and the relative error of λ̂ appears to have increased. The discon-
tinuities of the theoretical values of λ̂ are due to the rounding of the numbers of
attributes m.

In the second experiment, 1000 random intersection graphs were simulated
with n0 = n = 750 and (λ = 9, μ = 3). Histograms of the estimates of μ are
shown in Fig. 2. The bias is visible in both μ̂1 and μ̂2, and the variance of μ̂2 is
larger than that of μ̂1. However, the difference in accuracy is counterbalanced
by the fact that μ̂1 requires counting the triangles.

5 Proofs

5.1 Covering Densities of Subgraphs

Denote by Pow(Ω) the collection of all subsets of Ω. For A,B ⊂ Pow(Ω) we
denote A � B and say that B is a covering family of A, if for every A ∈ A there
exists B ∈ B such that A ⊂ B. A covering family B of A is called minimal if for
any B ∈ B,

(i) the family obtained by removing B from B is not a covering family of A,
and

(ii) the family obtained by replacing B by a strict subset of B is not a covering
family of A.

For a graph R = (V (R), E(R)), we denote by MCF(R) the set of minimal
covering families of E(R). Note that all members of a minimal covering family
have size at least two. For a family of subsets C = {C1, . . . , Ct} consisting of
t distinct sets, we denote |C| = t and ||C|| =

∑t
s=1 |Cs|. The notation R ⊂ G

means that R is a subgraph of G.
The following result is similar in spirit to [13, Theorem 3], but focused on

subgraph frequencies instead of appearance thresholds.

Theorem 5.1. If mp2 � 1, then for any finite graph R not depending on the
scale parameter,

P(G ⊃ R) ∼
∑

C∈MCF(R)

m|C|p||C||

The proof of Theorem 5.1 is based on two auxiliary results which are pre-
sented first.
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Lemma 5.2. For any intersection graph G on {1, . . . , n} generated by attribute
sets V = {V1, . . . , Vn} and any graph R with V (R) ⊂ V (G), the following are
equivalent:

(i) R ⊂ G.
(ii) E(R) � V.
(iii) There exists a family C ∈ MCF(R) such that E(R) � C � V.

Proof. (i) ⇐⇒ (ii). Observe that a node pair e ∈ (
V
2

)
satisfies e ∈ E(G) if and

only if e ⊂ Vj for some Vj ∈ V. Hence E(R) ⊂ E(G) if and only if for every
e ∈ E(R) there exists Vj ∈ V such that e ⊂ Vj , or equivalently, E(R) � V.

(ii) =⇒ (iii). If E(R) � V, define Cj = Vj ∩V (R). Then C = {C1, . . . , Cm} is
a covering family of E(R). Then test whether C still remains a covering family
of E(R) if one its members is removed. If yes, remove the member of C with
the highest label. Repeat this procedure until we obtain a covering family C′ of
E(R) for which no member can be removed. Then test whether some C ∈ C′ can
be replaced by a strict subset of C. If yes, do this replacement, and repeat this
procedure until we obtain a covering family C′′ of E(R) for which no member
can be shrunk in this way. This mechanism implies that C′′ is a minimal covering
family of E(R), for which E(R) � C′′ � V.

(iii) =⇒ (ii). Follows immediately from the transitivity of �.

Lemma 5.3. If mp2 � 1, then for any scale-independent finite collection C =
{C1, . . . , Ct} of finite subsets of {1, 2, . . . } of size at least 2, the probability that
the family of attribute sets V = {V1, . . . , Vn} of G = G(n,m, p) is a covering
family of C satisfies

P(V � C) ∼ m|C|p||C||.

Proof. For s = 1, . . . , t, denote by Ns =
∑m

j=1 1(Vj ⊃ Cs) the number of
attribute sets covering Cs. Note that Ns follows a binomial distribution with
parameters m and p|Cs|. Because |Cs| ≥ 2, it follows that the mean of Ns sat-
isfies mp|Cs| ≤ mp2 � 1. Using elementary computations related to the bino-
mial distribution (see e.g. [13, Lemmas 1,2]) it follows that the random integers
N1, . . . , Nt are asymptotically independent with P(Ns ≥ 1) ∼ mp|Cs|, so that

P(V � C) = P(N1 ≥ 1, . . . , Nt ≥ 1) ∼
t∏

s=1

P(Ns ≥ 1) ∼ mtp
∑t

s=1 |Cs|.

Proof (Proof of Theorem 5.1). By Lemma 5.2, we see that

P(G ⊃ R) = P

⎛
⎝ ⋃

C∈MCF(R)

{V � C}
⎞
⎠ .

Bonferroni’s inequalities hence imply U1 − U2 ≤ P(G ⊃ R) ≤ U1, where

U1 =
∑

C∈MCF(R)

P(V � C) and U2 =
∑
C,D

P(V � C,V � D),
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and the latter sum is taken over all unordered pairs of distinct minimal covering
families C,D ∈ MCF(R). Note that by Lemma 5.3,

U1 ∼
∑

C∈MCF(R)

m|C|p||C||,

so to complete the proof it suffices to verify that U2 � U1.
Fix some minimal covering families C = {C1, . . . , Cs} and D = {D1, . . . , Dt}

of E(R) such that C �= D. Then either C has a member such that Ci �∈ D, or D
has a member such that Dj �∈ C. In the former case C ∪ D ⊃ {Ci,D1, . . . , Dt},
so that by Lemma 5.3,

P(V � C ∪ D) ≤ P(V � {Ci,D1, . . . , Dt}) ∼ mt+1p|Ci|+
∑t

j=1 |Dj |

∼ mp|Ci|P(V � D).

Because C is a minimal covering family, |Ci| ≥ 2, and mp|Ci| ≤ mp2 � 1, and
hence P(V � C ∪D) � P(V � D). In the latter case where D has a member such
that Dj �∈ C, a similar reasoning shows that P(V � C ∪D) � P(V � C). We may
hence conclude that

P(V � C,V � D) = P(V � C ∪ D) � P(V � C) + P(V � D)

for all distinct C,D ∈ MCF(R). Therefore, the proof is completed by

U2 �
∑
C,D

(
P(V � C) + P(V � D)

)
≤ 2|MCF(R)|U1.

5.2 Covering Densities of Certain Subgraphs

In order to bound the variances of subgraph counts we will use the covering
densities of (partially) overlapping pairs of 2-stars and triangles. Figure 3 displays
the graphs obtained as a union of two partially overlapping triangles. Figure 4
displays the graphs produced by overlapping 2-stars.

Fig. 3. Graphs obtained as unions of overlapping triangles.

According to Theorem 3.1, the covering densities of subgraphs may be com-
puted from their minimal covering families. For a triangle R with V (R) =
{1, 2, 3} and E(R) = {12, 13, 23}, the minimal covering families are4 {123} and
4 For clarity, we write 12 and 123 as shorthands of the sets {1, 2} and {1, 2, 3}.
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Fig. 4. Graphs obtained as unions of overlapping 2-stars.

{12, 13, 23}. The minimal covering families of the a 3-path R with V (R) =
{1, 2, 3, 4} and E(R) = {12, 23, 34} are given by {1234}, {12, 234}, {123, 34},
and {12, 23, 34}.

The covering densities of stars are found as follows. Fix r ≥ 1, and let R be
the r-star such that V (R) = {1, 2, . . . , r + 1} and E(R) = {{1, r + 1}, {2, r +
1}, . . . , {r, r + 1}}. The minimal covering families of R are of the form C = {S ∪
{r + 1} : S ∈ S}, where S is a partition of the leaf set {1, . . . , r} into nonempty
subsets. For any such C we have |C| = |S| and ||C|| = r + |S|. Hence

P(G ⊃ r-star) ∼
r∑

k=1

{
r

k

}
mkpk+r,

where
{

r
k

}
equals the number of partitions of {1, . . . , r} into k nonempty sets.

These coefficients are known as Stirling numbers of the second kind [11] and can
be computed via

{
r
k

}
= 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jr. Hence,

P(G ⊃ r-star) ∼

⎧⎪⎨
⎪⎩

mp3 + m2p4, r = 2,

mp4 + 3m2p5 + m3p6, r = 3,

mp5 + 7m2p6 + 6m3p7 + m4p8, r = 4.

Table 1 summarises approximate covering densities of overlapping pairs of
2-stars and triangles. The table is computed by first listing all minimal covering
families of the associated subgraphs, as shown in Table 2. We also use the fol-
lowing observations (for p � m−1/2 � 1) to cancel some of the redundant terms
in the expressions.

4-path: m2p7 � m2p6 and m3p8 � m3p7

4-cycle: m2p6 � mp4

3-pan: m3p7 � m2p5

Diamond: m2p6 � mp4 and m4p9 � m3p7

Butterfly: m5p12 � m5p11, m4p11 � m3p8 � m2p6, m3p10 ≤ m3p8 � m2p6.
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Table 1. Approximate densities of some subgraphs.

R |V (R)| |E(R)| Appr. density (p � m−1/2 � 1) Appr. density (p ∼ μm−1)

1-star 2 1 mp2 μ2m−1

2-star 3 2 mp3 + m2p4 (1 + μ)μ3m−2

3-cycle 3 3 mp3 + m3p6 μ3m−2

3-star 4 3 mp4 + 3m2p5 + m3p6 (1 + 3μ + μ2)μ4m−3

3-path 4 3 mp4 + 2m2p5 + m3p6 (1 + 2μ + μ2)μ4m−3

4-cycle 4 4 mp4 + 4m3p7 + m4p8 μ4m−3

3-pan 4 4 mp4 + m2p5 + m4p8 (1 + μ)μ4m−3

Diamond 4 5 mp4 + 2m3p7 + m5p10 μ4m−3

4-star 5 4 mp5 + 7m2p6 + 6m3p7 + m4p8 (1 + 7μ + 6μ2 + μ3)μ5m−4

4-path 5 4 mp5 + 3m2p6 + 3m3p7 + m4p8 (1 + 3μ + 3μ2 + μ3)μ5m−4

Chair 5 4 mp5 + 4m2p6 + 4m3p7 + m4p8 (1 + 4μ + 4μ2 + μ3)μ5m−4

Butterfly 5 6 mp5 + m2p6 + 2m4p9 + 4m5p11 + m6p12 (1 + μ)μ5m−4

5.3 Proofs of Theorems 3.1, 3.2, and 3.3

Proof (of Theorem 3.1). Denote λ̂ = λ̂(G(n0)) and N̂ = NK2(G
(n0)). Then the

variance of λ̂ is given by

Var(λ̂) = 4
n2

n4
0

Var(N̂). (5.1)

By writing

N̂ =
∑

e∈([n0]
2 )

1(G ⊃ e) and N̂2 =
∑

e∈([n0]
2 )

∑
e′∈([n0]

2 )
1(G ⊃ e)1(G ⊃ e′),

we find that EN̂ =
(
n0
2

)
P(G ⊃ K2) and

EN̂2 =

(
n0

2

)
P(G ⊃ K2) + 2(n0 − 2)

(
n0

2

)
P(G ⊃ S2) +

(
n0

2

)(
n0 − 2

2

)
P(G ⊃ K2)

2.

Because the last term above is bounded by(
n0

2

)(
n0 − 2

2

)
P(G ⊃ K2)2 ≤

(
n0

2

)2

P(G ⊃ K2)2 = (EN̂)2,

it follows that

Var(N̂) ≤
(

n0

2

)
P(G ⊃ K2) + 2(n0 − 2)

(
n0

2

)
P(G ⊃ S2)

= (1 + o(1))
1
2
n2
0mp2 + (1 + o(1))n3

0(mp3 + m2p4).

Hence by (5.1),

Var(λ̂) = O(n−2
0 n2mp2) + O(n−1

0 n2mp3) + O(n−1
0 n2m2p4),
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Table 2. Minimal covering families of the subgraphs in Figs. 3 and 4 (stars excluded).

and by noting that n2mp2 ∼ λn, n2mp3 = m−1/2n1/2(nmp2)3/2 ∼
λ3/2m−1/2n1/2 and n2mp4 = (nmp2)2 ∼ λ2, we find that

Var(λ̂) = O
(
n−2
0 n + m−1/2n−1

0 n1/2 + n−1
0

)
= O

(
n−2
0 n + m−1/2n−1

0 n1/2
)

,

where the last equality is true because n−2
0 n ≥ n−1

0 . The claim now follows by
Chebyshev’s inequality.

Proof (of Theorems 3.2 and 3.3). The variances of NS2 and NK3 can be bounded
from above in the same way that the variance of NK2 was bounded in the
proof of Theorem3.1. The overlapping subgraphs contributing to the variance of
NK3 are those shown in Fig. 3. According to Table 1, the contribution of these
subgraphs is O(n|V (R)|

0 m−|V (R)|+1) for |V (R)| = 3, 4, 5, and the nonoverlapping
triangles contribute O(n6

0m
−5). Since ENK3 is of the order n3

0m
−2, it follows

that Var(NK3/ENK3) = o(1) for n0 � n2/3.
The same line of proof works for NS2 , i.e., we note that the subgraphs appear-

ing in Var(NS2) are those shown in Fig. 4 and their contributions to the variance
are listed in Table 1. Again, it follows that Var(NS2/ENS2) = o(1) for n0 � n2/3.
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Hence we may conclude using Chebyshev’s inequality that

NK3(G
(n0)) = (1 + op(1))ENK3(G

(n0)) = (1 + op(1))
(

n0

3

)
μ3m−2

NS2(G
(n0)) = (1 + op(1))ENS2(G

(n0)) = (1 + op(1))3
(

n0

3

)
(1 + μ)μ3m−2,

and the claim of Theorem 3.2 follows.
Further, in the proof of Theorem 3.1 we found that

NK2(G
(n0)) = (1 + op(1))ENK2(G

(n0)) = (1 + op(1))
(

n0

2

)
μ2m−1.

Hence the claims of Theorem 3.3 follow from the above expressions combined
with the continuous mapping theorem.

6 Conclusions

In this paper we discussed the estimation of parameters for a large random
intersection graph model in a balanced sparse parameter regime characterised
by mean degree λ and attribute intensity μ, based on a single observed instance
of a subgraph induced by a set of n0 nodes. We introduced moment estimators
for λ and μ based on observed frequencies of 2-stars and triangles, and described
how the estimators can be computed in time proportional to the product of
the maximum degree and the number of observed nodes. We also proved that
in this parameter regime the statistical network model under study has a non-
trivial empirical transitivity coefficient which can be approximated by a simple
parametric formula in terms of μ.

For simplicity, our analysis was restricted to binomial undirected random
intersection graph models, and the statistical sampling scheme was restricted
induced subgraph sampling, independent of the graph structure. Extension of
the obtained results to general directed random intersection graph models with
general sampling schemes is left for further study and forms a part of our ongoing
work.
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Aaltonen Foundation, Finland. We thank Mindaugas Bloznelis for helpful discussions,
and the two anonymous reviewers for helpful comments.
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Abstract. Anti-transitivity captures the notion that enemies of enemies
are friends, and arises naturally in the study of adversaries in social net-
works and in the study of conflicting nation states or organizations. We
present a simplified, evolutionary model for anti-transitivity influencing
link formation in complex networks, and analyze the model’s network
dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates
anti-clone nodes in each time-step, and joins anti-clones to the parent
node’s non-neighbor set. The graphs generated by ILAT exhibit famil-
iar properties of complex networks such as densification, short distances
(bounded by absolute constants), and bad spectral expansion. We deter-
mine the cop and domination number for graphs generated by ILAT, and
finish with an analysis of their clustering coefficients. We interpret these
results within the context of real-world complex networks and present
open problems.

1 Introduction

Transitivity is a pervasive and folkloric notion in social networks, summarized in
the adage that “friends of friends are more likely friends”. A simplified, determin-
istic model for transitivity was posed in [3,4], where nodes are added over time,
and each node’s clone is adjacent to it and all of its neighbors. The resulting
Iterated Local Transitivity (or ILT) model, while elementary to define, simulates
many properties of social and other complex networks. For example, as shown
in [4], graphs generated by the model densify over time, have the small world
property (that is, small distances and high local clustering), and exhibit bad
spectral expansion. For further properties of the ILT model, see [5,12]

Complex networks contain numerous mechanisms governing link formation,
however. Structural balance theory in social network analysis cites several mech-
anisms to complete triads [11]. Another folkloric adage is that “enemies of ene-
mies are more likely friends”. Adversarial relationships may be modelled by
non-adjacency, and so we have the resulting closure of the triad as described in
Fig. 1.

Such triad closure is suggestive of an analysis of adversarial relationships
between nodes as one mechanism for link formation. For instance, in social net-
works, we may consider both friendship ties and enmity (or rivalry) between

Research supported by grants from NSERC and Ryerson University.

c© Springer International Publishing AG 2017
A. Bonato et al. (Eds.): WAW 2017, LNCS 10519, pp. 16–26, 2017.
DOI: 10.1007/978-3-319-67810-8 2
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x

y
z

x

y
z

Fig. 1. Nodes x and y share z as a mutual adversary, and so form an alliance.

actors. We may also consider opposing networks of nation states or rival organi-
zations, and consider alliances formed by mutually shared adversaries. See [10]
for a recent study using the spatial location of cities to form an interaction
network, where links enable the flow of cultural influence, and may be used to
predict the rise of conflicts and violence. Another example comes from market
graphs, where the nodes are stocks, and stocks are adjacent as a function of their
correlation measured by a threshold value θ ∈ (0, 1). Market graphs were con-
sidered in the case of negatively correlated (or adversarial) stocks, where stocks
are adjacent if θ < α, for some positive α; see [1].

In the present paper, we consider a simplified, deterministic model for anti-
transitivity in complex networks. The Iterated Local Anti-Transitivity (or ILAT)
model duplicates nodes in each time-step by forming anti-clone nodes, and joins
them to the parent node’s non-neighbor set. We give a precise definition of
the model below in the next section. Perhaps unexpectedly, graphs generated
by the ILAT model exhibit familiar properties of complex networks such as
densification, small world properties, and bad spectral expansion (analogously
to, but different from properties exhibited by ILT).

We organize the discussion in this extended abstract as follows. In Sect. 2, we
give a precise definition of the ILAT model and examine its basic properties. We
prove that graphs generated by ILAT densify over time. We derive the density
of ILAT graphs, and consider their degree distribution. In Sect. 3, we prove
that ILAT graphs have diameter 3 for sufficiently large time-steps (regardless of
the initial graph). Further, we determine after several time-steps, ILAT graphs
have cop number at most 2 and domination number 3. We include in Sect. 4
an analysis of the clustering coefficients and provide upper and lower bounds.
The final section interprets our results within real-world complex networks, and
presents open problems derived from the analysis of the model.

We consider undirected graphs throughout the paper. For background on
graph theory, the reader is directed to [13]. Additional background on complex
networks may be found in the book [2].

2 The ILAT Model

The Iterated Local Anti-Transitivity (or ILAT) model generates a sequence
(Gt : t ≥ 0) of graphs over a sequence of discrete time-steps. The one para-
meter of the model is the initial graph G0. Assuming the graph at time Gt is
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defined, we define Gt+1 as follows. For a given node x ∈ V (Gt), define its anti-
clone x′ as a new node adjacent to non-neighbors of x. More precisely, x′ is
adjacent to all nodes in N c(x), where N c(x) = {y ∈ V (Gt) : xy �∈ E(G)}. To
form Gt+1, to each node x add its anti-clone x′.

The intuition behind that model is that the anti-clone x′ is adversarial with
x, and non-neighbors of x (that is, its own adversaries) become allied with x′.
This process, therefore, iteratively applies the triad closure in Fig. 1. Note that
the number of nodes doubles in each time-step, and the set of anti-clones forms
an independent set. See Fig. 2 for an example.

We introduce some simplifying notation. Let nt be the number of nodes at
time t, et be the number of edges at time t, and the degree of a node x at time
t will be denoted degt(x). We define the co-degree of x at time t as degct(x) =
nt − degt(x) − 1. It is straightforward to note that for t ≥ 1, nt = 2nt−1 = 2tn0.
Further, for an existing node x ∈ V (Gt),

degt+1(x) = nt − 1 (1)
degt+1(x

′) = degct(x). (2)

Fig. 2. An example of the first four time-steps of the ILAT model, where the initial
graph is the four-cycle C4.
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The ILAT model generates graphs that densify as we prove next. While
the proof is elementary, the result is not a priori obvious from the model. One
interpretation is that in networks where anti-transitivity is pervasive, we expect
that many alliances form in the network over time.

Theorem 1. The ratio et/nt tends to infinity with t.

Proof. Note that by the definition of the model and (2), we have that

et+1 = et +
∑

x∈V (Gt)

degt
c(x)

= et + nt
2 − 2et − nt

= nt
2 − et − nt.

Solving this recurrence, we derive that

et = nt−1
2

(
4
5

)(
1 −

(
−1

4

t−1))
− nt−1

(
2
3

)(
1 −

(
−1

2

t−1))

= 22t(n0)2
(

1
5

)(
1 −

(
−1

4

t−1))
(1 − o(1)).

Hence, we obtain that et/nt = Ω(2t). ��
Note that Theorem 1 immediately gives the limiting density of ILAT graphs.

Let Dt be the density of Gt; that is, Dt = et
(nt

2 ) .

Corollary 1. As t → ∞, we have that Dt → 2/5.

We next consider the degrees of vertices in the graph Gt. For each node x at
time t, we create its anti-clone x′ at time t + 1. Then at time t + 2 we create x′′

from x and (x′)′ from x′. For any node x that was created at a time-step k < t,
we have directly from (1) that

degt(x) =
nt

2
− 1.

If t > 1, then of the newly created nodes, half are anti-clones x′ of nodes x
that have already existed at time t − 2, and therefore, their degree at time t − 1
was

degt−1(x) =
nt−1

2
− 2 =

nt

4
− 1.

These anti-clones have at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 2.
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Similarly, if t > 2 then there are nt

8 nodes y′′ created at time t that are anti-
clones of nodes y′ created at time t − 1 from nodes y at least as old as t − 3.
Then since by the previous argument degt−1(y′) = nt−1

4 + 2, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at time t, we
have that 2−knt nodes have degree ak + (−1)k−12 provided that for k < t:

a1 =
nt

2
− 1,

and
ak =

1
2

− ak−1

2
.

If t > 1, then of the newly created nodes, half are anti-clones x′ of nodes x
that already existed at time t−2. Therefore, the degree of those nodes x at time
t − 1 was

degt−1(x) =
nt−1

2
− 1 =

nt

4
− 1.

Their new anti-clones x′ have, at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 1.

Similarly, if t > 2 then there are nt

8 nodes y′′ created at time t that are anti-
clones of nodes y′ created at time t − 1 from nodes y at least as old as t − 3.
Then since by the previous argument degt−1(y′) = nt−1

4 + 1, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at time t, we
have that 2−knt nodes of degree ak + (−1)k−12 provided that for k < t:

a1 =
nt

2
− 2,

and
ak =

1
2

− ak−1

2
.

3 Distances and Graph Parameters

The distances within graphs generated by ILAT become very small, with diame-
ter 3. Hence, highly anti-transitive networks exhibit short paths between nodes;
this occurs at time-step t = 2, regardless of the starting diameter of G0.
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Theorem 2. Let t ≥ 2, then the diameter diam(Gt) of Gt is 3.

Note that the value t = 2 in Theorem 2 is sharp. For example, we may take G0

to be a path of length 4. Or we may consider an initial graph of K3, in which
case the graph at t = 1 is disconnected.

Proof of Theorem 2. We show first that for t ≥ 1, the diameter of Gt is at least
3. To see this, consider the distance between some node x that existed at time
t − 1 and its anti-clone x′ created at time t. They are not adjacent and have no
common neighbors, and so we have that d(x, x′) ≥ 3.

We next show that for t ≥ 2, any two nodes that are not newly created are
at most distance 2 apart. For this, let x, y be two distinct nodes that already
existed at time t−1. Since the node degree at time t−1 is bounded by nt/4−1,
by the pigeonhole principle there is another node z that also existed at t − 1
that is not adjacent to either of them. Hence, z′ is adjacent to both nodes and
so d(x, y) ≤ 2.

Let x′, y′ be two separate nodes newly anti-cloned from some nodes x, y.
Since the node degree at time t − 1 is bounded by max{0, nt/4 − 1}, by the
pigeonhole principle there is another node z that also existed at t − 1 that
is not adjacent to either x or y. Then z is adjacent to both x′ and y′, and so
d(x′, y′) ≤ 2. Hence, any two nodes that both newly created are at most distance
2 apart.

The only case we have not considered are pairs of nodes where one is newly
created and one is not. But if t ≥ 3, then every newly created node has a
neighbor that is not newly created and vice versa. Therefore, any such pair can
be connected by a path of length at most 3. ��

The pairs of nodes we have not considered so far are ones where exactly
one node is newly created, but is not a anti-clone of the other. If they are not
adjacent, then we would like to know if they have a common neighbor. Let the
node that already existed at time t − 1 be x, and the newly created node be
y′, cloned from some node y �= x. Nodes x and y′ can have a common neighbor
unless the neighborhood of x at time t − 1 (other than possibly y itself) was a
subset of the neighborhood of y at time t − 1 (which would be the case when
x = y).

Theorem 3. If x and y are nodes of Gt that are not newly created at time t,
with t ≥ 2 and x �= y, and it is not the case that both x and y belonged to G0,
then d(x, y′) ≤ 2.

Proof. Unless x and y are adjacent, we have that d(x, y′) = 1. So suppose that
x and y are adjacent. Suppose that they did not both belong to the initial graph
G0. Since they are adjacent, one of them was created later than the other. If y
was created later, then every neighbor of x that was created at the same time
as y is now a common neighbor of x and y′. If x was created later, but before
t− 1, then every node adjacent to y but not x at the time produced a anti-clone
of the type we need. We are left with a case where x was created at time t − 1,
and y was created earlier.
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We want to find a common neighbor of x and y′ that was created at t − 2
or earlier. x was created at time t − 1, so it was cloned from a node with has
either nt/8−2, nt/16+2 or about nt/12 neighbors that already existed at time
t − 1, and so x has either nt/8 + 2, 3nt/16 − 2, or about nt/6 neighbors older
than itself. By the same argument, y′ has either nt/8 + 2, 3nt/16 − 2, or about
nt/6 neighbors at least as old as t − 2. There are in total nt/4 nodes at least as
old as t − 2. So by the pigeonhole principle, they must have such a neighbor in
common. ��

Let Lt denote the average distance at time t.

Corollary 2. The average distance Lt tends to 1.6 in t.

Proof. Notice that the number of pairs such that both x and y belong to G0 is
negligible, so will not change the average distance limit. Of the remaining pairs
of vertices, a proportion of 0.4 are adjacent and the rest are at distance 2. We
can thus, conclude that

lim
t→∞ Lt = 1.6.

��
We next turn to a brief discussion of the domination and cop numbers of the

ILAT graphs. As we have noticed with other parameters such as the diameter
and average distance, these two parameters are bounded above by very small
constants. For more on these graph parameters, see [6] (we omit their definitions
here as they are well-known and owing to space constraints). As a possible inter-
pretation of these, we note that in networks exhibiting high anti-transitivity, a
few important nodes emerge (either dominating nodes, or mobile agents rep-
resented by cops) which can reach all other nodes. Such so-called superpower
nodes organically emerge as important actors in the network.

Theorem 4. In Gt such that t ≥ 3, the domination number is 3.

Proof. Let A = {x, x′, (x′)′} be as follows. For any 1 ≤ k ≤ t−1, let x be a node
that existed at time k − 1 and x′ be the time-k anti-clone of x. Let x′′ be the
time-(k + 1) anti-clone of x′. Then any node of Gt not in A is either adjacent to
x′, adjacent to x′′, or a node created at time k + 1 that is not adjacent to x′, in
which case it must be adjacent to x. Therefore, A is a dominating set of Gt.

If t ≥ 1, then we can never find a dominating set of size 2. The node degrees
are bounded by nt

2 − 2. Therefore, the union of neighborhoods of any two nodes
contains at most nt − 4 nodes. ��
Theorem 5. If t ≥ 2, then the cop number of Gt is at most 2.

Proof. We now describe how two cops may capture the robber. Fix v ∈ V (Gt−1).
Then each vertex of Gt−1 is adjacent to one of v or v′. Place the cops on v and
v′. Hence, the robber must begin on an anti-clone say u′ newly created at time
t not adjacent to either v or v′. Now there must be an x in Gt joined to u′,
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otherwise, u is a universal vertex in Gt−1 which is a contradiction (here is where
we use t ≥ 2). It is straightforward to show that there is a perfect matching
between x, x′ and v, v′, and so the cops move to x, x′. The robber must move
to a vertex z in Gt−1. But z is joined to one of x or x′ and the robber is caught
in the next move. ��

Note that we must have t ≥ 2 in Theorem 5 or the cop number could be
larger than 2. For example, if G0 is a K3, then G1 is the disjoint union of K3

and K3, which has cop number 4.

4 Clustering Coefficient

For a node v, define ct(v) to be the (local) clustering coefficient of the node v
at time t. We note that in the ILAT model, older nodes exhibit significant local
clustering over time.

Theorem 6. Let k ∈ N. For node v created at time k, with t > k, if
limt→∞ ct(v) exists, then we have that

lim
t→∞ ct(v) = 0.4.

Hence, the clustering coefficient of a node v tends to 0.4 as v grows old, which
matches the density of the graph.

Proof of Theorem 6. Let c′
t(v) = c′

t be the density of v’s non-neighbor-hood set
at time t, and let c′′

t (v) = c′′
t be the density between the neighborhood and the

non-neighborhood of v. Hence, the number of edges with both endpoints in the
neighborhood of v is ct(v)

(
degt(v)

2

)
, the number of edges with both endpoints

in the non-neighborhood of v is c′
t

(
nt−degt(v)−1

2

)
, the number of edges with one

endpoint in the neighborhood of v, and the remaining number of edges in the
non-neighborhood of v is c′′

t degt(v)(nt − degt(v) − 1).
We write a ∼ b if a = b(1+o(1)). For large t, we may approximate the degree

by degt(v) ∼ nt − degt(v) − 1 ∼ nt

2 . Further, since the total number of edges in
the graph tends to 0.4

(
nt

2

)
, we have that

ct + c′t + 2c′′
t

4
∼ 2

5
,

and
c′
t ∼ 8

5
− ct − 2c′′

t .

Then we may determine ct+1(v) = ct+1 by counting the edges with both end-
points in the neighborhood of v at time t + 1. These are either the same edges
that contributed to ct(v), or edges between the t-time neighborhood of v and
the anti-clones of its non-neighborhood, giving the following equations:

ct+1

(
nt

2

)
∼ ct

(
nt/2

2

)
+ (1 − c′′

t )
nt

2

4
,

ct+1 ∼ ct
4

+
1 − c′′

t

2
.
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Further, we have that

c′′
t+1 =

c′′
t

4
+

1 − c′
t

4
+

1 − ct
4

c′′
t+1 =

c′′
t

4
+

1 − 2
5 + ct(v) + 2c′′

t

4
+

1 − ct
4

, and

c′′
t+1 =

3c′′
t + 2

5

4
.

By hypothesis, the limiting value of ct exists and we call this quantity c. In
particular, we have that for a sufficiently large t that, ct(v) ∼ ct+1 ∼ ct+1 ∼ c.
We have that

ct+2 =
ct+1

4
+

1 − c′′
t+1

2
=

ct+1

4
+

3
4

1 − c′′
t

2
+

1 − 2
5

8
,

and so ct+2 = ct+1 − 3ct
16 + 3

40 . By taking the limit as t → ∞, we have that
3
16c = 3

40 , and the result follows. ��
An open problem remains to prove that the limiting value of ct exist. Further,

computing the value of the clustering coefficient of Gt remains open.

5 Spectral Expansion

For a graph G = (V,E) and sets of nodes X,Y ⊆ V , define E(X,Y ) to be the set
of edges in G with one endpoint in X and the other in Y . For simplicity, we write
E(X) = E(X,X). The normalized Laplacian of a graph relates to important
graph properties; see [7] for a reference. Let A denote the adjacency matrix
and D denote the diagonal degree matrix of a graph G. Then the normalized
Laplacian of G is L = I − D−1/2AD−1/2. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2
denote the eigenvalues of L. The spectral gap of the normalized Laplacian is
defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A spectral gap bounded away from zero is an indication of bad expansion prop-
erties, which is characteristic for social networks; see [9]. The next theorem rep-
resents a drastic departure from the good expansion found in binomial random
graphs, where λ = o(1); see [7,8].

Theorem 7. If λt is the spectral gap of Gt, then λt ≥ 3/5 + o(1).

To prove Theorem 7, we use the expander mixing lemma for the normalized
Laplacian (see [7] for its proof). For sets of nodes X and Y we use the notation
vol(X) =

∑
v∈X deg(v) for the volume of X, X̄ = V \ X for the complement

of X, and, e(X,Y ) for the number of edges with one end in each of X and Y .
(Note that X ∩ Y does not have to be empty; in general, e(X,Y ) is defined to
be the number of edges between X \Y to Y plus twice the number of edges that
contain only nodes of X ∩ Y . In particular, e(X,X) = 2|E(X)|.)
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Lemma 1. For all sets X ⊆ V (Gt),
∣∣∣∣e(X,X) − (vol(X))2

vol(Gt)

∣∣∣∣ ≤ λt
vol(X)vol(X̄)

vol(Gt)
.

Proof of Theorem 7. Let X be the set of nt/2 the youngest nodes. Since X
induces an independent set, we note that e(X,X) = 0. We derive that

vol(Gt) ∼ 2nt
2/5,

vol(X̄) ∼ nt
2/4, and

vol(X) = vol(Gt) − vol(X̄) ∼ 3nt
2/20,

where the second expression holds as (nt/2)-many of the oldest nodes have degree
∼ nt/2. Hence, by Lemma 1, we have that

λt ≥ (vol(X))2

vol(Gt)
· vol(Gt)
vol(X)vol(X̄)

=
vol(X)
vol(X̄)

∼ 3/5,

and the proof follows. ��

6 Discussion and Future Work

We introduced the Iterated Local Anti-Transitivity (ILAT) model for complex
networks and analyzed properties of the graphs it generates. We proved that
graphs generated by ILAT densify over time, have diameter 3, and have density
tending to 0.4. ILAT graphs have small dominating sets and low cop number. We
analyzed the clustering coefficient of ILAT graphs, and noted that while older
nodes show high (local) clustering, the (global) clustering coefficient is less than
what is expected in binomial random graphs with the same expected degree.
In addition, we showed that graphs generated by ILAT exhibit bad spectral
expansion as found in social networks.

Theoretical results presented here for the ILAT model are suggestive of sev-
eral emergent properties in networks where anti-transitivity governs link forma-
tion. For instance, the presence of small (3-element) dominating sets suggest
the emergence of nodes we describe as superpowers, which have broad influence
in the network. Such nodes may emerge naturally in real-world networks which
are highly anti-transitive, owing to a high number of alliances against common
adversaries. Similarly, the presence of short paths, high density, and high (local)
clustering of older nodes in ILAT graphs suggests that networks, where com-
mon adversaries forge alliances, naturally form tight-knit communities that are
well-connected. In the sequel, it would be interesting to empirically test these
hypotheses with real-world networked data.

Besides applications of the ILAT model, it raises a number of interesting
graph-theoretic questions. An open problem remains to compute the clustering
coefficient for ILAT graphs. Another question is to determine the induced sub-
graph structure of such graphs. A characterization of the induced subgraphs of
ILAT graphs (that is, to determine its age) remains open. For example, do all
finite trees appear as induced subgraphs of ILAT graphs?
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Abstract. Kernels and, broadly speaking, similarity measures on
graphs are extensively used in graph-based unsupervised and semi-
supervised learning algorithms as well as in the link prediction problem.
We analytically study proximity and distance properties of various ker-
nels and similarity measures on graphs. This can potentially be useful
for recommending the adoption of one or another similarity measure in
a machine learning method. Also, we numerically compare various sim-
ilarity measures in the context of spectral clustering and observe that
normalized heat-type similarity measures with log modification gener-
ally perform the best.

1 Introduction

Many graph-based semi-supervised learning methods, see e.g., [1–3,7,23,24,43]
and references therein, can be viewed as the methods comparing some distances
or similarity measures from unlabelled nodes to the labelled ones. An unlabelled
node is attributed to a class whose labelled nodes are closer with respect to
distances or similarity measures. Also, unsupervised machine learning methods
such as K-means and its numerous variations are based on grouping points in a
metric space, see e.g. [19,32,44]. While the plain K-means method discovers only
linear boundaries between clusters in a metric space, kernel K-means methods
have better sensitivity and can discover clusters of more general shapes. In addi-
tion, some kernel K-means methods are equivalent to spectral clustering [19].
A choice of a kernel may have significant impact on the clustering quality. More-
over, the distance property of the kernels can be exploited for quick grouping of
points in the K-means methods [18,19]. Similarity measures are also used in the
link prediction problem [5,33].

Most but not all similarity measures are defined with the help of kernels
on graphs, i.e., positive semidefinite matrices with indices corresponding to the
nodes. Note that according to Schoenberg’s theorem [34,35] one can always
transform a positive semidefinite matrix to a set of points in an Euclidian space.
In contrast, the proximity property [13] is much more subtle and not all kernels
on graphs appear to be proximity measures.

In this paper, we analyse distance and proximity properties of the similarity
measures and kernels on graphs. All similarity measures and kernels that we
c© Springer International Publishing AG 2017
A. Bonato et al. (Eds.): WAW 2017, LNCS 10519, pp. 27–41, 2017.
DOI: 10.1007/978-3-319-67810-8 3
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study are defined in terms of one of the following three basic matrices: weighted
adjacency matrix, combinatorial Laplacian and (stochastic) Markov matrix. We
compare similarity measures and kernels on graphs both theoretically and by
numerical experiments in the context of spectral clustering on the stochastic
block model. We hope that our analysis will be useful for recommending the
adoption of one or another similarity measure in a machine learning method.
It was interesting to observe that in the context of the spectral clustering, the
normalized heat-type kernels with logarithmic transformation perform the best
on the stochastic block model.

2 Definitions and Preliminaries

The weighted adjacency matrix W = (wij) of a weighted undirected graph G
with vertex set V (G) = {1, . . . , n} is the matrix with elements

wij =
{

weight of edge (i, j), if i ∼ j,
0, otherwise.

In what follows, G is connected.
The ordinary (or combinatorial) Laplacian matrix L of G is defined as follows:

L = D − W, where D = Diag(W ·1) is the degree matrix of G, Diag(x) is the
diagonal matrix with vector x on the main diagonal, and 1 = (1, . . . , 1)T . In
most cases, the dimension of 1 is clear from the context.

Informally, given a weighted graph G, a similarity measure on the set of its
vertices V (G) is a function κ : V (G)×V (G)→R that characterizes similarity (or
affinity, or closeness) between the vertices of G in a meaningful manner and thus
is intuitively and practically adequate for empirical applications [2,18,24,33].

A kernel on graph is graph similarity measure that has an inner product
representation. Inner product matrices (also called Gram matrices) with real
entries are symmetric positive semidefinite matrices. On the other hand, any
semidefinite matrix has a representation as a Gram matrix with respect to the
Euclidean inner product [25].

We note that following [31,39] we prefer to write kernel on graph rather than
graph kernel, as the notion of “graph kernel” refers to a kernel between graphs [41].

A proximity measure (or simply proximity) [13] on a finite set A is a function
κ : A×A → R that satisfies the triangle inequality for proximities, viz.:
for any x, y, z ∈ A, κ(x, y) + κ(x, z) − κ(y, z) ≤ κ(x, x), and if z = y and y �= x,
then the inequality is strict.

A proximity κ is a Σ-proximity (Σ ∈ R) if it satisfies the normalization
condition:

∑
y∈A κ(x, y) = Σ for any x ∈ A.

By setting z = x in the triangle inequality for proximities and using the
arbitrariness of x and y one verifies that any proximity satisfies symmetry :
κ(x, y) = κ(y, x) for any x, y ∈ A.

Furthermore, any Σ-proximity has the egocentrism property: κ(x, x) >
κ(x, y) for any distinct x, y ∈ A [13]. If κ(x, y) is represented by a matrix
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K = (Kxy) = (κ(x, y)), then egocentrism of κ(x, y) amounts to the entrywise
diagonal dominance of K.

If xi and xj are two points in the Euclidean space R
n, then ||xi − xj ||22

is the squared distance between xi and xj . Schoenberg’s theorem establishes
a connection between positive semidefinite matrices (kernels) and matrices of
Euclidean distances.

Theorem 1. ([34,35]). Let K be an n×n symmetric matrix. Define the matrix

D = (dij) =
1
2
(
diag(K) · 1T + 1 · diag(K)T

) − K, (1)

where diag(K) is the vector consisting of the diagonal entries of K. Then there
exists a set of vectors x1, . . . ,xn ∈ R

n such that dij = ||xi−xj ||22 (i, j = 1, . . . , n)
if and only if K is positive semidefinite.

In the case described in Theorem 1, K is the Gram matrix of x1, . . . ,xn.
Given K, these vectors can be obtained as the columns of the unique positive
semidefinite real matrix B such that B2 = BT B = K. B has the expression
B = UΛ1/2U∗, where Λ = Diag(λ1, . . . , λn), Λ1/2 = Diag(λ1/2

1 , . . . , λ
1/2
n ), and

A = UΛU∗ is the unitary decomposition of A [25, Corollary 7.2.11].
Connections between proximities and distances are established in [13].

Theorem 2. For any proximity κ on a finite set A, the function

d(x, y) =
1
2
(κ(x, x) + κ(y, y)) − κ(x, y), x, y ∈ A (2)

is a distance function A×A → R.

This theorem follows from the proof of Proposition 3 in [13].

Corollary 1. Let D = (dxy) be obtained by (1) from a square matrix K. If D
has negative entries or

√
dxy +

√
dyz <

√
dxz for some x, y, z ∈ {1, . . . , n}, then

the function κ(x, y) = Kxy, x, y ∈ {1, . . . , n} is not a proximity.

Proof. If
√

dxy +
√

dyz <
√

dxz, then dxy + dyz + 2
√

dxydyz < dxz, i.e., the
function d(x, y) = dxy violates the ordinary triangle inequality. Thus, it is not a
distance, as well as in the case where D has negative entries. Hence, by Theo-
rem 2, κ is not a proximity. �	

The following theorem describes a one-to-one correspondence between dis-
tances and Σ-proximities with a fixed Σ on the same finite set.

Theorem 3. ([13]). Let S and D be the set of Σ-proximities on A (|A| = n;
Σ ∈ R is fixed) and the set of distances on A, respectively. Consider the mapping
ψ(κ) defined by (2) and the mapping ϕ(d) defined by

κ(x, y) = d(x, ·) + d(y, ·) − d(x, y) − d(·, ·) +
Σ

n
, (3)

where d(x, ·) = 1
n

∑
y∈A d(x, y) and d(·, ·) = 1

n2

∑
y,z∈A d(y, z). Then ψ(S) = D,

ϕ(D) = S, and ϕ(ψ(κ)), κ ∈ S and ψ(ϕ(d)), d ∈ D are identity transformations.
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Remark 1. The K → D transformation (1) is the matrix form of (2). The
matrix form of (3) is

K = −HDH + ΣJ, (4)

where J = 1
n1·1T and H = I − J is the centering matrix.

3 Kernel, Proximity and Distance Properties

3.1 Adjacency Matrix Based Kernels and Measures

Let us consider several kernels on graphs based on the weighted adjacency matrix
W of a graph.

Katz Kernel. The Katz kernel [28] (also referred to as walk proximity [14] and
von Neumann1 diffusion kernel [37,38]) is defined2 as follows:

KKatz(α) =
∞∑

k=0

(αW )k = [I − αW ]−1,

with 0 < α < (ρ(W ))−1, where ρ(W ) is the spectral radius of W .
It is easy to see that [I − αW ] is an M-matrix3, i.e., a matrix of the form

A = qI − B, where B = (bij) with bij ≥ 0 for all 1 ≤ i, j ≤ n, while q
exceeds the maximum of the moduli of the eigenvalues of B (in the present
case, q = 1). Thus, [I − αW ] is a symmetric M-matrix, i.e., a Stieltjes matrix.
Consequently, [I − αW ] is positive definite and so is KKatz(α) = [I − αW ]−1.
Thus, by Schoenberg’s theorem, KKatz can be transformed by (1) into a matrix
of squared Euclidean distances.

Moreover, the Katz kernel has the following properties:
If [I − αW ] is row diagonally dominant, i.e., |1 − αwii| ≥ α

∑
j �=i |wij | for all

i ∈ V (G) (by the finiteness of the underlying space, one can always choose α
small enough such that this inequality becomes valid) then

– KKatz(α) satisfies the triangle inequality for proximities (see Corollary 6.2.5
in [29]), therefore, transformation (2) provides a distance on V (G);

– KKatz(α) satisfies egocentrism (i.e., entrywise diagonal dominance; see also
Metzler’s property in [29]).

Thus, in the case of row diagonal dominance of [I − αW ], the Katz kernel is
a non-normalized proximity.
1 M. Saerens [36] has remarked that a more suitable name could be Neumann diffusion

kernel, referring to the Neumann series
∑∞

k=0 T k (where T is an operator) named
after Carl Gottfried Neumann, while a connection of that to John von Neumann
is not obvious (the concept of von Neumann kernel in group theory is essentially
different).

2 In fact, L. Katz considered
∑∞

k=1(αW )k.
3 For the properties of M-matrices, we refer to [29].



Kernels on Graphs as Proximity Measures 31

Communicability Kernel. The communicability kernel [20,21,23] is defined
as follows:

Kcomm(t) = exp(tW ) =
∞∑

k=0

tk

k!
W k.

(We shall use letter “t” whenever some notion of time can be attached to the
kernel parameter; otherwise, we shall keep using letter “α”.) It is an instance
of symmetric exponential diffusion kernels [31]. Since Kcomm is positive semi-
definite, by Schoenberg’s theorem, it can be transformed by (1) into a matrix
of squared Euclidean distances. However, this does not imply that Kcomm is a
proximity.

In fact, it is easy to verify that for the graph G with adjacency matrix

W =

⎛
⎜⎜⎝

0 2 0 0
2 0 1 0
0 1 0 2
0 0 2 0

⎞
⎟⎟⎠ , (5)

Kcomm(1) violates the triangle inequality for proximities on the triple of vertices
(1,2, 3) (the “x” element of the inequality is given in bold). On the other hand,
Kcomm(t) → I as t → 0, which implies that Kcomm(t) with a sufficiently small t
is a [non-normalized] proximity.

Note that the graph corresponding to (5) is a weighted path 1–2–3–4, and
immediate intuition suggests the inequality d(1, 2) < d(1, 3) < d(1, 4) for a
distance on its vertices. However, Kcomm(3) induces a Euclidean distance for
which d(1, 3) > d(1, 4). For Kcomm(4.5) we even have d(1, 2) > d(1, 4). However,
Kcomm(t) with a small enough positive t satisfies the common intuition.

By the way, the Katz kernel behaves similarly: when α > 0 is sufficiently
small, it holds that d(1, 2) < d(1, 3) < d(1, 4), but for α > 0.375, we have
d(1, 3) > d(1, 4). Moreover, if 0.38795 < α < (ρ(W ))−1, then d(1, 2) > d(1, 4) is
true.

Double-Factorial Similarity. The double-factorial similarity [22] is defined
as follows:

Kdf(t) =
∞∑

k=0

tk

k!!
W k.

As distinct from the communicability measure, Kdf is not generally a kernel.
Say, for the graph with weighted adjacency matrix (5), Kdf(1) has two negative
eigenvalues. Therefore Kdf does not generally induce a set of points in R

n, nor
does it induce a natural Euclidean distance on V (G).

Furthermore, in this example, matrix D obtained from Kdf(1) by (1) has
negative entries. Therefore, by Corollary 1, the function κ(x, y) = Kdf

xy(1), x, y ∈
V (G) is not a proximity.

However, as well as Kcomm(t), Kdf(t) → I as t → 0. Consequently, all
eigenvalues of Kdf(t) converge to 1, and hence, Kdf(t) with a sufficiently small
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positive t satisfies the triangle inequality for proximities. Thus, Kdf(t) with a
small enough positive t is a kernel and a [non-normalized] proximity.

3.2 Laplacian Based Kernels and Measures

Heat Kernel. The heat kernel is a symmetric exponential diffusion kernel [31]
defined as follows:

Kheat(t) = exp(−tL) =
∞∑

k=0

(−t)k

k!
Lk,

where L is the ordinary Laplacian matrix of G.
Kheat(t) is positive-definite for all values of t, and hence, it is a kernel. Then,

by Schoenberg’s theorem, Kheat induces a Euclidean distance on V (G). For our
example (5), this distance for all t > 0 obeys the intuitive inequality d(1, 2) <
d(1, 3) < d(1, 4).

On the other hand, Kheat is not generally a proximity. E.g., for the exam-
ple (5), Kheat(t) violates the triangle inequality for proximities on the triple of
vertices (1,2, 3) whenever t > 0.431. As well as for the communicability kernel,
Kheat(t) with a small enough t is a proximity. Moreover, it is an 1-proximity,
as L has row sums 0, while L0 = I has row sums 1. Thus, the 1-normalization
condition is satisfied for any t > 0.

Normalized Heat Kernel. The normalized heat kernel is defined as follows:

Kn-heat(t) = exp(−tL) =
∞∑

k=0

(−t)k

k!
Lk,

where L = D−1/2LD−1/2 is the normalized Laplacian, D being the degree matrix
of G [15].

For this kernel, the main conclusions are the same as for the standard heat
kernel. For the example (5), Kheat(t) violates the triangle inequality for prox-
imities on the triple of vertices (1,2, 3) when t > 1.497. It is curious to observe
that the triangle inequality of the example (5) is violated starting with a larger
value of t in comparison with the case of the standard heat kernel. An impor-
tant distinction is that generally, L has nonzero row sums. As a result, Kn-heat

does not satisfy the normalization condition, and even for small t, Kn-heat is a
non-normalized proximity.

Regularized Laplacian Kernel. The regularized Laplacian kernel , or forest
kernel is defined [11] as follows:

KregL(t) = [I + tL]−1,

where t > 0.
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As was shown in [12,14], the regularized Laplacian kernel is a 1-proximity
and a row stochastic matrix. Since [I + tL] is positive definite, so is [I + tL]−1,
and by Schoenberg’s theorem, KregL induces a Euclidean distance on V (G).

For the example (5), the induced distances corresponding to KregL always
satisfy d(1, 2) < d(1, 3) < d(1, 4). Regarding the other properties of KregL, we
refer to [3,12].

It is the first encountered example of similarity measure that satisfies the
both distance and proximity properties for all values of the kernel parameter.

Absorption Kernel. The absorption kernel [27] is defined as follows:

Kabsorp(t) = [tA + L]−1, t > 0,

where A = Diag(a) and a = (a1, . . . , an)T is called the vector of absorption
rates and has positive components. As Kabsorp(t−1) = t(A + tL)−1, this kernel
is actually a generalization of the previous one.

Since [tA+L] is positive definite, Schoenberg’s theorem attaches a matrix of
squared Euclidean distances to Kabsorp(t).

[tA + L] is a row diagonally dominant Stieltjes matrix, hence, by Corol-
lary 6.2.5 in [29] we conclude that Kabsorp satisfies the triangle inequality for
proximities, i.e., Kabsorp is a proximity (but not generally a Σ-proximity).

3.3 Markov Matrix Based Kernels and Measures

Personalized PageRank. Personalized PageRank (PPR) similarity measure
is defined as follows:

KPPR(α) = [I − αP ]−1,

where P = D−1W is a row stochastic (Markov) matrix, D is the degree matrix
of G, and 0 < α < 1, which corresponds to the standard random walk on the
graph.

In general, KPPR(α) is not symmetric, so it is not positive semidefinite, nor
is it a proximity.

Moreover, the functions d(x, y) obtained from KPPR by transformation4

d(x, y) =
1
2
(κ(x, x) + κ(y, y) − κ(x, y) − κ(y, x)) (6)

need not generally be distances. Say, for

W =

⎛
⎜⎜⎜⎜⎝

0 2 0 0 0
2 0 1 0 0
0 1 0 1 0
0 0 1 0 2
0 0 0 2 0

⎞
⎟⎟⎟⎟⎠ (7)

4 If K is symmetric, then (6) coincides with (2).



34 K. Avrachenkov et al.

with KPPR(α), one has d(1, 3) + d(3, 4) < d(1, 4) whenever α > 0.9515.
KPPR has only positive eigenvalues. However, its symmetrized counterpart

1
2 (KPPR+(KPPR)T ) may have a negative eigenvalue (say, with α ≥ 0.984 for (5)
or with α ≥ 0.98 for (7)). Thus, it need not be positive semidefinite and, conse-
quently, by Theorem 1, D obtained from it by (1) (or from KPPR by (6)) is not
generally a matrix of squared Euclidean distances.

KPPR satisfies the normalization condition. For a small enough α, it can be
transformed (as well as Kcomm and Kdf) into a distance matrix using (6).

On the other hand, one can slightly modify Personalized PageRank so it
becomes a proximity. Rewrite KPPR as follows:

[I − αD−1W ]−1 = [D − αW ]−1D.

Then, consider

Modified Personalized PageRank.

KmodifPPR(α) = [I − αD−1W ]−1D−1 = [D − αW ]−1, 0 < α < 1,

which becomes a non-normalized proximity by Corollary 6.2.5 in [29]. In partic-
ular, the triangle inequality becomes

KPPR
ii (α)

di
− KPPR

ji (α)
di

− KPPR
ik (α)

dk
+

KPPR
jk (α)

dk
≥ 0,

which looks like an interesting inequality for Personalized PageRank. Due to
symmetry, KmodifPPR

ij = KmodifPPR
ji , and we obtain an independent proof of the

following identity for Personalized PageRank [2]:

KPPR
ij (α)

dj
=

KPPR
ji (α)

di
.

Note that replacing the Laplacian matrix L = D−W with D−αW is a kind
of alternative regularization of L. Being diagonally dominant,

D − αW = d̄I − (d̄I − D + αW ) (8)

(where d̄ is the maximum degree of the vertices of G) is a Stieltjes matrix.
Consequently, D−αW is positive definite and so is KmodifPPR(α) = [D−αW ]−1.
Thus, by Schoenberg’s theorem, KmodifPPR can be transformed by (1) into a
matrix of squared Euclidean distances.

We note that Personalized PageRank can be generalized by using non-homo-
geneous restart [4], which will lead to the discrete-time analog of the absorption
kernel. However, curiously enough, the discrete-time version has a smaller num-
ber of proximity-distance properties than the continuous-time version.
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PageRank Heat Similarity Measure. PageRank heat similarity measure [16]
is defined as follows:

KheatPPR(t) = exp(−t(I − P )).

Basically, the properties of this measure are similar to those of the standard
Personalized PageRank. Say, for the example (7) with KheatPPR, one has d(1, 2)+
d(2, 3) < d(1, 3) whenever t > 1.45.

3.4 Logarithmic Similarity Measures and Transitional Properties

Given a strictly positive similarity measure s(x, y), the function κ(x, y) =
ln s(x, y) is the corresponding logarithmic similarity .

Using Theorem 2 it can be verified [8] that whenever S = (sij) = (s(i, j))
produces a strictly positive transitional measure on G (i.e., sij sjk ≤ sik sjj for
all vertices i, j, and k, while sij sjk = sik sjj if and only if every path from i to k
visits j), we haves that the logarithmic similarity κ(x, y) = ln s(x, y) produces a
cutpoint additive distance, viz., a distance that satisfies d(i, j) + d(j, k) = d(i, k)
iff every path from i to k visits j:

d(i, j) = 1
2 (κ(i, i) + κ(j, j) − κ(i, j) − κ(j, i)) = ln

√
s(i, i)s(j, j)
s(i, j)s(j, i)

. (9)

In the case of digraphs, five transitional measures were indicated in [8],
namely, connection reliability , path accessibility with a sufficiently small para-
meter, walk accessibility , and two versions of forest accessibility ; the undirected
counterparts of the two latter measures were studied in [10] and [9], respectively.

Proposition 1. Kabsorp, KPPR, and KmodifPPR produce transitional measures.

Proof. For Kabsorp(t) = [tA+L]−1, let h = maxi{ait+di −wii}, where di is the
degree of vertex i. Then Kabsorp(t) = [hI−(hI−tA−D+W )]−1 = [I−W ′]−1h−1,
where W ′ = h−1(hI − tA − D + W ) is nonnegative with row sums less than 1.
Hence, Kabsorp(t) is positively proportional to the matrix [I − W ′]−1 of walk
weights of the graph with weighted adjacency matrix W ′.

Similarly, by (8), KmodifPPR(α) = [D − αW ]−1 = [I − W ′′]−1d̄−1, where
W ′′ = d̄−1(d̄I−D+αW ) is nonnegative with row sums less than 1. Consequently,
KmodifPPR(α) is proportional to the matrix of walk weights of the graph whose
weighted adjacency matrix is W ′′.

Finally, KPPR(α) is the matrix of walk weights of the digraph with weighted
adjacency matrix αP.

Since by [8, Theorem 6], any finite matrix of walk weights of a weighted
digraph produces a transitional measure, so do Kabsorp, KPPR, and KmodifPPR.

�	
Thus, as by Proposition 1 and the results of [8], KKatz, KregL, Kabsorp, KPPR,

and KmodifPPR produce transitional measures, we have that the corresponding
logarithmic dissimilarities (9) are cutpoint additive distances.
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Furthermore, if S = (sij) = (s(i, j)) produces a strictly positive transitional
measure on G, then, obviously, κ(x, y) = ln s(x, y) satisfies κ(y, x) + κ(x, z) −
κ(y, z) ≤ κ(x, x), which coincides5 with the triangle inequality for proximi-
ties whenever s(x, y) is symmetric. Therefore, as KKatz, KregL, Kabsorp, and
KmodifPPR are symmetric, we obtain that the corresponding logarithmic simi-
larities κ(x, y) = ln s(x, y) are proximities.

KPPR is not generally symmetric, however, it can be observed that K̃PPR

such that K̃PPR
ij =

√
KPPR

ij KPPR
ji is symmetric and produces the same logarith-

mic distance (9) as KPPR. Hence, the logarithmic similarity κ(x, y) = ln K̃PPR
xy

is a proximity.
At the same time, the above logarithmic similarities are not kernels, as the

corresponding matrices have negative eigenvalues.
This implies that being a proximity is not a stronger property than being a

kernel. By Corollary 1, the square root of the distance induced by a proximity
is also a distance. However, this square rooted distance need not generally be
Euclidean, thus, Theorem 1 is not sufficient to conclude that the initial proximity
is a kernel.

It can be verified that all logarithmic measures corresponding to the similarity
measures under study preserve the natural order of distances d(1, 2) < d(1, 3) <
d(1, 4) for the example (5).

4 Numerical Comparison of Similarity Measures
in the Context of Unsupervised Learning

Here we compare various kernels, proximities, and generally similarity measures
in the context of unsupervised learning method – spectral clustering (for back-
ground on spectral clustering see, e.g., [19,42]). We test them on random undi-
rected graphs that are built according to the stochastic block model.

More precisely, each graph G = (V,E) has the following structure: it consists
of two clusters V = C1 ∪ C2 with the intracluster edge density pin and the
intercluster density pout, i.e.

pin = P{(i, j) ∈ E | i, j ∈ C1} = P{(i, j) ∈ E | i, j ∈ C2},

pout = P{(i, j) ∈ E | i ∈ C1, j ∈ C2}.

We introduce the following reference classification:

clstrue[i] = k if i ∈ Ck.

Given a similarity measure (matrix) K, which is computed using one of the
basic graph matrices (W , L or P ), we apply the spectral clustering algorithm
to separate the graph into m clusters, m = 2 in our case. The algorithm we
use is similar to the one proposed in [19]. Let us recap it here for completeness:

5 On various alternative versions of the triangle inequality, we refer to [17].
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find normalized eigenvectors of K that correspond to its largest m eigenvalues
and put them into columns of matrix X; flip signs of column of X in a way
that elements with maximum absolute values in each column are positive; run
K-means algorithm on rows of X with m output clusters and place the result
into the array cls.

We will measure the difference between two clusterings with m clusters on a
set of n nodes by the following function:

E(cls1, cls2) = 1 − 1
n

maxσ∈Sm
|{i ∈ {1, .., n}|σ(cls1[i]) = cls2[i]}|.

Here Sm is the group of all permutations on the set {1, 2, ..,m}. This function
corresponds to the minimum relative classification error that can be achieved by
renumbering the clusters. Its computation is equivalent to solving the assignment
problem of size m.

Since the transformation from W to KKatz, Kcomm, Kdf is monotonic for
eigenvalues and does not affect eigenvectors, these similarity measures all lead to
the same result by spectral clustering. The similarity measures Kheat and KregL

are in the same sense equivalent to −L = W −D. Kn−heat is equivalent to −L =
−D−1/2LD−1/2 and to D−1/2WD−1/2. KPPR and KheatPPR are equivalent to
P = D−1W .

Hence, it is meaningful to test the clustering procedure on W , −L, −L and
P . Looking ahead, we say that for the unbalanced case that we tested the typical
error for W and −L was about 0.4 that was much more than for other similarity
measures. Hence, we included results only on P , −L and also added the results
of spectral clustering algorithm from scikit-learn Python library, which is based
on left eigenvectors of P .

The logarithmic transformation, however, changes both eigenvalues and
eigenvectors. Hence, it is interesting to test it for different similarity measures.
Since they all depend on some parameters, we minimize the error over the para-
meter space for each graph and than average it over the set of graph realizations.

4.1 Balanced Model

We tested the unsupervised learning algorithms on 100 graph realizations of 200
nodes stochastic block model with two clusters of 100 nodes each, intracluster
density pin = 0.1 and intercluster density pout = 0.02. Errors, minimized over the
parameter space and averaged over 100 graph realizations are shown in Fig. 1.
The black thin bars correspond to the 95% confidence intervals. Spectral sklearn
corresponds to the spectral clustering algorithm from scikit-learn Python library.
Spectral P and Spectral NL correspond to the spectral clustering algorithm
with P = D−1W and I − L = D−1/2WD−1/2. The others correspond to the
spectral clustering algorithm with logarithmic transformations of corresponding
similarity measures. Black errorbars correspond to the 95% confidence interval.

We observe that all the tested methods provide roughly the same error that
is around 0.01%. This is the manifestation of the fact that in the balanced case
clustering is relatively easy.
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Fig. 1. Averaged minimum error for the balanced model.

Fig. 2. Averaged minimum error for the unbalanced model.
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4.2 Unbalanced Model

We also tested the algorithms on 1000 graphs of 200 nodes with two clusters of
50 and 150 nodes and the same edge densities pin = 0.1 and pout = 0.02. As
expected, clustering unbalanced classes is more challenging.

Here we observe significant difference between results obtained with different
similarity measures. Katz, communicability and normalized heat log measures
lead to best results in this case.

We note that some other aspects of the comparative behavior of several
kernels on graphs in clustering tasks have been studied in [26,30,40].
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Abstract. We study a duopoly market on which there is uncertainty of
a product quality. Consumers adaptively learn about quality of products
when they buy them (direct learning) or from other consumers with
whom they are interacting in a social network modelled as a SPA graph
(indirect learning). We show that quality uncertainty present in such
a market leads to endogenous segmentation of consumers’ preferences
towards suppliers. Additionally, we show that in this setting, even if
both companies have the same expected quality, the company with lower
variance of quality will gain higher market share.

1 Introduction

In economics textbooks a discussion of network effects is usually limited to pos-
itive or negative externalities caused by preferential attachment process. In this
paper we argue that below the surface of these evident and well known phe-
nomena there is a layer of more subtle and less understood ones. Specifically the
subject of our study is perception of product quality by consumers embedded in a
network of social interactions induced by a SPA graph. We show how presence of
quality uncertainty in this setting leads to diversification of quality expectations
and endogenous differentiation of consumer preferences towards suppliers.

The significance of quality expectations for market mechanism has been orig-
inally revealed in the seminal paper of George Akerlof (1970). Using a market for
second hand cars as an example, Akerlof has shown how presence of quality uncer-
tainty leads to adverse selection of low quality products and degeneration or even
failure of a market. More specifically, he considered a market comprised of two
types of agents — car owners and potential car buyers. The first group was offer-
ing cars for sale, asking for prices reflecting their actual quality, but bids from
the second group were based on the average quality of the cars on the market, as
the true quality distribution was hidden from them. The mismatch of supply and
demand discouraged owners of better than average cars causing them to withdraw
from the market. This, in turn, triggered a feedback loop of gradual deterioration
of quality of cars on sale until the market collapsed in the end.

c© Springer International Publishing AG 2017
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The discovery of this apparently simple mechanism of adverse selection has
proven to be one of the most fruitful insights in modern economics, spawn-
ing development of vast literature and helping to explain market phenomena as
diverse as drastic loss of value suffered by brand-new vehicles on their first days of
use, difficulties of elderly people or young motorcyclists to get insurance cover,
dearth of credit markets in underdeveloped countries or high unemployment
among minorities. Its profound influence was eventually recognized by awarding
Akerlof and his collaborators the Nobel Memorial Prize in Economic Sciences
in 2001. With such prominence and after nearly half a century of research, one
would hardly expect any novelty on the topic. So the paper of Izquierdo and
Izquierdo (2007) came as a surprise by providing a new insight into the phe-
nomena and suggesting that influence of uncertain quality on markets is still not
entirely understood.

Akerlof (1970) and his followers considered information asymmetry between
the transacting parties to be the necessary prerequisite for a market degrada-
tion to occur. This assumption has been considered so fundamental that the 2001
Nobel Prize was awarded to Akerlof, Spence and Stiglitz “for their analyses of
markets with asymmetric information.” Quite unexpectedly therefore Izquierdo
and Izquierdo (2007) claimed that the same effect could be induced by quality
uncertainty alone. To prove it they proposed an agent-based model in which con-
sumers estimated quality of a product based upon experiences of their own and
of their acquaintances. As they have demonstrated under the assumed adaptive
quality estimation process the symmetry of supply and demand breaks down and
market degenerates, down to a point of non-existence of equilibrium, in the same
way as in the model of Akerlof (1970). The effect is more pronounced when there
is only individual quality estimation, whereas social interaction mitigates it. In
contrast to the model of Akerlof (1970) no a priori assumption of information
asymmetry is required as it is replaced by endogenous differentiation of quality
expectations in the population of consumers.

It may surprise at first that the mechanism described by Izquierdo and
Izquierdo (2007) has not been revealed earlier during nearly half a century of
research. However under scrutiny one will notice a fundamental difference in a
way quality expectations are formed in the two models. Car buyers in Akerlof
(1970) follow what is known as the rational expectations hypothesis (REH). In
short REH assumes agents to know the “true” structural form of the underly-
ing data generating process the parameters of which they estimate, and their
subjective expectations to be consistent with this knowledge. So car buyers are
assumed to have perfect knowledge of the average quality of cars on sale at any
moment (although not of quality of each individual item). In contrast consumers
of Izquierdo and Izquierdo (2007) follow the adaptive expectations hypothesis
(AEH), which does not assume this accurate a priori knowledge. Instead, agents
apply a simplistic first-order prediction error correction formula with exponen-
tially decaying weights.

AEH and REH are the two extremes on the spectrum of expectation formu-
lation methods. AEH as the earlier approach was commonly used in economics
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(for a classic example see Nerlove 1958) until the critique by Muth (1960) who
shown its non-optimal statistical properties as the “backward-looking” biased
estimator. Use of AEH was discouraged afterwards and replaced by REH as
subsequently proposed by Muth (1961) and advocated by Lucas (1972) and
Sargent (1973). The fact that REH has been integrated into the paradigm of
the mainstream neoclassical economics does not discredit the adaptive approach
nonetheless. In fact REH is often criticized for making too strong, psychologi-
cally unrealistic assumptions of agents rationality and their ability to perceive
and process information (Evans and Honkapohja 2001). Another problem is that
in many models REH results in multiple equilibria but does not indicate how to
resolve the conundrum. For these reasons AEH is being actively researched as a
viable alternative and many hybrid learning tactics combining AEH and REH
are proposed (Frydman and Phelps 2013).

We hence find effects spotted by Izquierdo and Izquierdo (2007) as intriguing
enough to deserve further exploration, although in a slightly modified setting.
Both the discussed models required disgruntled agents, car sellers in Akerlof
(1970) and consumers in Izquierdo and Izquierdo (2007), to retreat from the
market for its contraction to occur. While this assumption could be justified
in some circumstances, in many others it would be unrealistic. A person would
rather look for substitutes than give up consumption altogether. Therefore in our
model we assume a market with alternative suppliers of a homogeneous good and
we allow consumers to switch suppliers to maximize satisfaction.

Note that although technically we consider a case of oligopoly, we are not
interested in strategic interplay of suppliers. We use term “oligopoly” not in a
classical sense but merely to signal that a key assumption of our model is ability
of consumers to distinguish between multiple suppliers. The subject of our study
is dynamics of consumer preferences under quality uncertainty and adaptive
expectations. The ability of consumers to discriminate suppliers is a necessary
prerequisite for it, but does not restrict the context to the textbook definition of
oligopoly. Our conclusions are general and extend onto any market where con-
sumers are able to perceive quality variability and discern suppliers, regardless
of market power exercised by the latter. So they readily apply to monopolistic or
perfect competition, as long as the key assumption of supplier distinction holds.
In other words our aim is to study dynamics of quality expectations in isolation
and we assume both supply and demand to be totally inelastic.

The remaining part of the paper is organized as follows. In Sect. 2 we describe
the model of the market with quality uncertainty in detail. For better understa-
ting it will be presented in two variants for (a) finite and (b) continuous state
space. In Sect. 3 we present results of the base analysis of an isolated consumer
which do not take into account effects of social interaction. In Sect. 4 we extend
the analysis with network effects induced by a socially realistic SPA connection
graph. Section 5 presents the summary of the results and concludes.



Endogenous Differentiation of Consumer Preferences 45

2 Model

In this section, we define the model that we investigate. In order to validate
robustness of presented results we present two variants of it. The first variant
is a minimal specification that exhibits base properties we want to explore and
better understand; it uses a finite state-space representation. The other vari-
ant has uncountable state-space and so it is more realistic, but obviously more
challenging to handle.

2.1 Finite State-Space Model

Let G = (A,C) be a directed graph of connections between agents from set A.
A connection c ∈ C ⊆ A×A is an ordered tuple (a1, a2) ∈ C indicating that agent
a1 has influence on opinion of agent a2. As mentioned, the graph is directed. It
will be assumed at some point that G is a random geometric graph generated by
the Spatial Preferential Attachment model that received some attention recently,
see Sect. 4.1.

Suppose that there are two companies in the model, each providing some
product or service. Customer buying product from company i ∈ {1, 2} observes
its value equal to a sample being random variable Qi. It is assumed that sam-
plings are independent. We take that Qi is defined as an identity on the proba-
bility space (Ω, 2Ω , Pi), where Ω = {−1, 0, 1}. We will say that −1 is a bad value
of the product, 0 is a normal value of the product and 1 is an excellent value of
the product. For this probability space we naturally define a probability mass
function pi : Ω →]0, 1[ (we assume that each state has strictly positive probabil-
ity). In the model, we consider discrete time-steps. Each agent a ∈ A, in each
time-step t, has evaluation of quality of company i as et

a,i ∈ {−1, 0, 1}, i.e. the
agent believes that the company has bad, normal or excellent quality product.
A vector of evaluations of agent a in time t is denoted as et

a.
We start with time-step t = 0. Assume that e0a,i is a random i.i.d. drawn

from Qi. The dynamics of the model is defined by the following procedure:

1. increase time-step t ← t + 1;
2. select a ∈ A uniformly at random;
3. agent a selects company i to buy from as a draw from random variable S(et

a)
specified below;

4. agent a observes quality of selected company i as qi being a random sample
from Qi;

5. individual learning : agent a updates her beliefs et
a,i as a draw from random

variable Γ (et
a,i, qi) where Γ is specified below;

6. social learning : each agent b for which (a, b) ∈ C updates her beliefs et
b,i as a

draw from random variable Δ(et
a,i, qi), where Δ is specified below.

Definition of random variable S is the following:

– if et
a,i = et

a,j then
Pr(S = i) = Pr(S = j) = 1/2;
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– if et
a,i > et

a,j then

Pr(S = i) = β and Pr(S = j) = 1 − β, where β ∈ [0.5, 1);

Definition of random variable Γ is the following:

Pr(Γ = qi) = γ and Pr(Γ = et
a,i) = 1 − γ, where γ ∈ (0, 1).

Definition of random variable Δ is the following:

Pr(Δ = qi) = δ and Pr(Γ = et
a,i) = 1 − δ, where δ ∈ [0, 1).

2.2 Continuous State Space

For simplicity, here we will discuss only the differences in specification of this
model in comparison to the previous, finite state-space model. The model is
analysed on the same graph G and has the same specification of dynamics. We
provide new parameter names in this model, but there is a direct correspondence
between these parameters and the parameters in finite state-space variant.

As before, we consider two companies. Customer buying a product from com-
pany i observes its value equal to sample from random variable Qi ∼ N (μi, σ

2
i ).

The parameter pair (μi, σi) corresponds to pair (pi(−1), pi(1)) in the finite state
space model.

We may assume that initially (that is, at time t = 0) agents have beliefs that
are based on their first time purchases, i.e. e0i,a is a sample from Qi. Alternatively,
we may assume that each agent start with a given value of e0i,a, say, e0i,a = μi.
The selection function S(et

a) is specified as:

S(et
a) = arg max

i
{et

i,a + εi},

where εi ∼ N(0, ω2) and are independent. Parameter ω corresponds to parameter
β in finite state-space model.

After company i is selected agent a observes a sample of quality Qi denoted
as qi.

Beliefs in the continuous state space model are deterministically updated.
Individual learning is governed by the rule:

et+1
i,a ← (1 − λ1)et

i,a + λ1qi,

where λ1 ∈ (0, 0.5) is an individual learning parameter. Social learning follows
the rule:

et+1
i,b ← (1 − λ2)et

i,b + λ2qi,

where λ2 ∈ [0, 0.5) is a social learning parameter. Observe that λ1 corresponds
to γ, and λ2 to δ in the finite state-space model.
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3 Baseline Analysis Without Network Effects

In this section, we investigate both models in a simple scenario where network
does not affect the behaviour of agents (that is, δ = 0 or λ2 = 0, depending on
the variant considered).

3.1 Finite State-Space Model

If δ = 0, then our model can be thought of as a single customer model where
an evolution of customer’s state is given by a Markov process. The transition
matrix M9×9 can be explicitly analytically derived.1 Observe that the process
is irreducible and positive recurrent, given the assumed domains of parameters.
Therefore, it has a unique steady state π that is a solution of the following system
of equations: {

πT (M − I) = 0
πT 1 = 1

Additionally, we can observe that then γ only influences the speed of con-
vergence of the process as M − I = γX, where X does not depend on γ. Under
such observations π can be expressed as a function of five parameters: β, p1(−1),
p1(1), p2(−1), and p2(1).

In order to assess the model we use the following metrics of the steady state:

– Mean evaluation of company i by the customer: E(ea,i);
– Probability that company i is evaluated better than company j: Pr(ea,i > ea,j);
– Probability that company i is evaluated equally to company j: Pr(ea,i = ea,j).

Since the model is symmetric with respect to companies 1 and 2, in the fol-
lowing analysis we concentrate on company 1. In Figs. 1, 2 and 3 we show these
metrics for the case when we assume that offers of companies are symmetric,
i.e. pi(−1) = pi(1), which means that E(Qi) = 0 for both companies (the plots
show averages over β uniformly distributed in intervals specified in subplot cap-
tions). We argue that this case is interesting because it represents the situation
where both companies are equally good but only differ in the dispersion of their
qualities. In this text we will solely concentrate on this scenario.

One can conclude from plots that in the steady state:

(F1) Pr(ea,i = −1) > Pr(ea,i = 1) so E(ea,i) < 0; on the average customers
have negatively biased opinion; this bias is potentially significant and reaches
≈ −0.6, when the range of possible results is [−1, 1];

(F2) pi(1) < pj(1) ⇒ E(ea,i) > E(ea,j); company with higher variance has
lower market share; this is the crucial finding of no-network model: it pays
off to give customers service with predictable quality;

(F3) forhighβ,p1(1),p2(1)wehavebimodality, i.e.mini∈{1,2} Pr(ea,i > ea,3−i) >
Pr(ea,1 = ea,2); most likely client has a clear preference for one product or the
other.

1 We omit it in the text as it is large but easy to derive.
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As a side note (not investigated in detail in this paper), let us observe that
the system exhibits significantly nonlinear behaviour; shape of relationships of
measured quantities changes with β.

The key question raised in this paper is how network structure affects the
results F1–F3 (i.e., what happens when δ = 0 is replaced by δ > 0). In particular:

– how does the in-degree of a given agent influence bias of her preferences;
– do customers that are connected in a graph have correlated preferences;
– how does δ influence bias in evaluation of performance of companies;
– how does δ influence the presence of bimodality of preferences.

3.2 Continuous State-Space Model

We move to continuous state-space model but continue investigating the variant
with no network effects, that is, when λ2 = 0. We present two approaches to
highlight tools that can be used in such situations. The first one is asymptotic in
nature and provides a statement that holds asymptotically almost surely (and so
can be considered to be more rigorous). The second one is based on simulations
and can be applied for finite (but usually large) number of agents (and so can
be considered to be more realistic).

Differential Equations Approach. As typical in random graph theory, all
results in this subsection are asymptotic; that is, for n = |A| tending to infinity.
We say that an event holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to one as n → ∞.

The general setting that is used in the differential equation method (Wormald
1999) is a sequence of random processes indexed by n (which in our case is
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Fig. 1. E(ea,1): mean of evaluation of company 1 for symmetric offers (mu1).
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Fig. 2. Pr(ea,1 > ea,2): probability that company 1 has better evaluation than company
2 (b1).
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Fig. 3. Pr(ea,1 = ea,2): probability that companies are equally evaluated (eq).

the number of agents). The aim is to find asymptotic properties of the ran-
dom process and the conclusion we aim for is that variables defined are well
concentrated, which informally means that a.a.s. they are very close to certain
deterministic functions. These functions arise as the solution to a system of
ordinary first-order differential equations. One of the important features of this
approach is that the computation of the approximate behavior of processes is
clearly separated from the proof that the approximation is correct.
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First, let us discretize the space of potential states agents can be in. Fix a real
number z > 0, an integer k, and let us restrict ourselves to (2k+1) values of possi-
ble believes for a company c ∈ {1, 2}: μc − zk/k, μc − z(k − 1)/k, . . . , μc, . . . , μc +
z(k−1)/k, μc+zk/k. Each time some belief is updated, it is immediately rounded
up or down to the nearest possible value (for a given company c).

For −k ≤ i, j ≤ k, let Xi,j(t) be a random variable counting the number of
agents of type (i, j) with belief about product 1 equal to μ1 + zi/k and with
belief about product 2 equal to μ2 + zj/k. Let q(i, j) be the probability that
agent of type (i, j) buys product 1; that is,

q(i, j) = P
(
μ1 + zi/k + N(0, ω) ≥ μ2 + zj/k + N(0, ω)

)

= P
(
N(0, 2ω) ≥ (μ2 − μ1) + z(j − i)/k

)
.

The probability that she buys product 2 is, of course, q(j, i) = 1−q(i, j). Now, let
r(s, i, μ, σ2) be the probability that an agent changes her believes from μ+ zs/k
to μ + zi/k after buying product with the corresponding quality distribution
N(μ, σ2) (and after rounding, of course); that is, for −k < i < k

r(s, i, μ, σ2) = P
(
μ +

z(i − 1/2)

k
≤ (1 − λ1)

(
μ +

zs

k

)
+ λ1N(μ, σ2) ≤ μ +

z(i + 1/2)

k

)

= P
(z(i − s(1 − λ1) − 1/2)

kλ1
≤ N(μ, σ2) − μ ≤ z(i − s(1 − λ1) + 1/2)

kλ1

)

= P
(z(i − s(1 − λ1) − 1/2)

kλ1
≤ N(0, σ2) ≤ z(i − s(1 − λ1) + 1/2)

kλ1

)
.

For the two extreme values (i = −k and i = k) we have

r(s,−k, μ, σ2) = P
(
N(0, σ2) ≤ z(i − s(1 − λ1) + 1/2)

kλ1

)

r(s, k, μ, σ2) = P
(z(i − s(1 − λ1) − 1/2)

kλ1
≤ N(0, σ2)

)
.

Our goal is to estimate the conditional expectation
E [Xi,j(t + 1) − Xi,j(t) | X] (given the set X of all variables Xi,j(t)). Note that
an agent of type (i, j) is selected with probability Xi,j(t)/n. Conditioning on this
event, the probability she stays within this group is equal to

q(i, j) · r(i, i, μ1, σ
2
1) + q(j, i) · r(j, j, μ2, σ

2
2).

For s �= i, an agent of type (s, j) is selected with probability Xs,j(t)/n, and
conditioning on that, she becomes of type (i, j) with probability

q(s, j) · r(s, i, μ1, σ
2
1).

Similarly, for y �= j, an agent of type (i, y) is selected with probability Xi,y(t)/n,
and conditioning on that, she becomes of type (i, j) with probability

q(y, i) · r(y, j, μ2, σ
2
2).
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It follows that

E [Xi,j(t + 1) − Xi,j(t) | X] = −Xi,j(t)
n

+
k∑

s=−k

Xs,j(t)
n

q(s, j)r(s, i, μ1, σ
2
1)

+
k∑

y=−k

Xi,y(t)
n

q(y, i)r(y, j, μ2, σ
2
2).

For simplicity, as this is just an illustration of the general method, we may
assume that, say, X0,0 = n, and other values are 0 (that is, initially every agent
believes that product 1 has quality μ1 and product 2 has quality μ2). Any other
scenario can be investigated the same way affecting only the initial value for the
system of differential equations we are about to set up.

Now, one can scale everything down (both the time n and the number of
members of each group, n) to get the system of differential equations. Here,
function fi,j(x) is used to model random variable Xi,j(xn)/n. We get the system
of (2k + 1)2 equations: for −k ≤ i, j ≤ k,

f ′
i,j(x) = −fi,j(x)

+
k∑

s=−k

fs,j(x)q(s, j)r(s, i, μ1, σ
2
1)

+
k∑

y=−k

fi,y(x)q(y, i)r(y, j, μ2, σ
2
2),

with the initial value f0,0(0) = 1 and fi,j(0) = 0 if |i| + |j| > 0.
Finally, the differential equations method (introduced and developed by

Wormald 1999) can be used to show that our random variables are well-
concentrated around their expectations. Using the general purpose theorem
(Theorem 5.1 in Wormald 1999), we get that a.a.s. for any −k ≤ i, j ≤ k,
and any t, we have

Xi,j(t) = (1 + o(1))fi,j(t/n)n.

In order for the discretized model to approximate with good accuracy the
original, continuous model, one should take: (i) z large enough so that, for any
company c ∈ {1, 2}, in the original model, the number of agents that get belief
below μc − z or above μc + z is negligible; (ii) k large enough to capture a large
spectrum of beliefs. As a result, plotting all (2k + 1)2 functions is an impossible
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task but the following three functions should describe well the behaviour of the
system:

f=(x) :=
k∑

i=−k

fi,i(x) (fraction of agents that equally like both products)

f>(x) :=
k∑

i=−k

i−1∑
j=−k

fi,j(x) (fraction of agents that like product 1 more)

f<(x) :=
k∑

i=−k

k∑
j=i+1

fi,j(x) (fraction of agents that like product 2 more)

Figure 4 presents an example of the dynamics of the process. If σ2 > σ1,
then the company with a product having lower variability gains higher market
share. Interestingly, the transient behavior of this simulation is that initially
company 2 gains market share, but then starts losing it as f= drops and f>

continues to increase. As k increases f= will tend to 0 in general. Economically
this might have twofold implications: (1) it might be profitable to launch even a
product that is known to be inferior than competition because profits that can
be reaped in the initial period might justify it and (2) investors should look at
initial success of a product with care as it might be only transient characteristic
of a system.

Finally, let us stress again that we present an application of the differential
equations method in a very simple setting but it can be easily generalized to
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Fig. 4. Example of the dynamics of the model. Black line represents f=, red line f>,
and green line f<. On the left plot we consider a symmetric case: σ1 = σ2 = 1 (red
and green lines overlap). On the right plot an asymmetric case is considered: σ1 = 1
and σ2 = 1.25. In both plots μ1 = μ2, λ1 = 0.5 and ω = 0.1. In approximation we used
z = 5 and k = 100. Initial beliefs are equal to μc, for both companies. (Color figure
online)
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more sophisticated scenarios. For example, when agents are not selected uni-
formly at random from set A (see step 2) but, instead, with probability that is
affected by type (i, j) a given agent is of. Or perhaps agents select company to
buy from (see step 3) with probability that depends on how many other agents
have similar believes. In these examples, this method seems to be the only tool
one can use. On the other hand, in our example, one can avoid using it as it
is straightforward to predict (a.a.a., as always) how many agents at time xn
(for some constant x) made 
 purchases (
 = 0, 1, . . . ). Then, each agent can
be investigated independently (based on the assigned value of 
) using Markov
processes, as for the finite state-space model (but with (2k + 1) states instead
of 9). Putting things together, we can calculate the expected number of agents
of a given type and the concentration will follow from standard tools (such as
Chernoff bound), since the corresponding events are independent.

Simulation Approach. The simulation was run for 1’000’000 iterations which
was enough for it to reach steady-state. In Figs. 5 and 6 we can observe that
expected evaluation of company 1 is negative and that it decreases with σ1

and increases with σ2. Additionally increase of ω reduces those differences (as
customers behave more randomly).
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Fig. 5. E(ea,1): mean evaluation of company 1 (for two values of ω).

In Fig. 7 we show distribution of beliefs of agents for σ1 = σ2 = 1, λ1 =
0.1 and λ2 = 0. For this parameterization we have that E(ea,i) ≈ −0.27 and
correlation between ea,1 and ea,2 equals to approximately −0.65. The crucial
thing is that as depicted on the plot we observe bimodality in the beliefs of
agents — both in one belief and for combination of two beliefs.
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Fig. 6. E(ea,1 −ea2): mean difference of evaluation of company 1 and 2 (for two values
0.1 and 0.2 of ω).
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Fig. 7. Density of ea,1 and joint density distribution of (ea,1, ea,2).

4 Results for SPA-connected Agents

In this section we extend the analysis onto network effects induced by the SPA
model that is a stochastic and geometric model of complex networks. Here it is
used to model social connections between agents. We first start with specification
of SPA model and then present analysis of model performance.

4.1 Spatial Preferential Attachment Model

The Spatial Preferential Attachment (SPA) model, introduced in Aiello et al.
(2009), is designed as a model for the World Wide Web and combines geometry
and preferential attachment, as its name suggests. Setting the SPA model apart
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is the incorporation of “spheres of influence” to accomplish preferential attach-
ment: the greater the degree of a vertex, the larger its sphere of influence, and
hence the higher the likelihood of the vertex gaining more neighbours.

We now give a precise description of the SPA model. Let S = [0, 1]m be the
unit hypercube in R

m, equipped with the torus metric derived from any of the
Lk norms. This means that for any two points x and y in S,

d(x, y) = min
{||x − y + u||k : u ∈ {−1, 0, 1}m

}
.

The torus metric thus “wraps around” the boundaries of the unit square; this
metric was chosen to eliminate boundary effects. The parameters of the model
consist of the link probability p ∈ [0, 1], and two positive constants A1 and A2,
which, in order to avoid the resulting graph becoming too dense, must be chosen
so that pA1 < 1. The SPA model generates stochastic sequences of directed
graphs (Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-
degree of the vertex v in Gt, and deg+(v, t) its out-degree. We define the sphere
of influence S(v, t) of the vertex v at time t ≥ 1 to be the ball centered at v
with volume |S(v, t)| defined as follows:

|S(v, t)| = min
{

A1deg−(v, t) + A2

t
, 1

}
. (1)

The process begins at t = 0, with G0 being the null graph. Time step t, t ≥ 1,
is defined to be the transition between Gt−1 and Gt. At the beginning of each
time step t, a new vertex vt is chosen uniformly at random from S, and added
to Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t − 1)|.

The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks (see Aiello et al. 2009, Cooper et al. 2014).
In Janssen et al. (2013a), it was shown that the SPA model gave the best fit, in
terms of graph structure, for a series of social networks derived from Facebook.
In Janssen et al. (2013b), some properties of common neighbours were used to
explore the underlying geometry of the SPA model and quantify vertex similarity
based on distance in the space. However, the distribution of vertices in space was
assumed to be uniform Janssen et al. (2013b) and so in Janssen et al. (2016) non-
uniform distributions were investigated which is clearly a more realistic setting.
Finally, in Ostroumova Prokhorenkova et al. 2017 modularity of this model was
investigated, which is a global criterion to define communities and a way to
measure the presence of community structure in a network.

Specifically, in Aiello et al. (2009) (Theorem 1.1) it was proved that the SPA
model generates a graph with a power law in-degree distribution with exponent
1+1/(pA1). On the other hand, the average out-degree is asymptotic to pA2/(1−
pA1) (see Theorem 1.3 in Aiello et al. 2009). In this text we take m = 2, k = 2
(two-dimensional Euclidean space), and a graph of |A| = 10, 000 agents, A1 = 1,
A2 = 6 and p = 0.5. This means that in our simulation power law has coefficient
3 and the average out-degree (and so also in-degree) is 6.
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4.2 Results: Finite State-Space Model

The model is still Markov process, however its state space has now size 9|A|.
Moreover, the process is still irreducible and positive recurrent given the assumed
domains of parameters. Therefore, it has a unique steady state π.

Table 1. Influence of variables on target characteristics approximated by linear regres-
sion; experiment setup: γ ∈ {0.25, 0.5}, δ ∈ {0, 0.25, 0.5}, β ∈ {0.6, 0.7, 0.8, 0.9} and
pi(−1) = pi(1) ∈ {0.1, 0.2, 0.3, 0.4}. Estimates significant at 0.001 marked with *.

Variable Mean p1(−1) = p1(1) p2(−1) = p2(1) β γ δ

degcor1 0.0583 0.0888* −0.0875* 0.2584* −0.0036 0.1723*

E(ea,1) −0.1346 −0.4789* 0.2230* −0.5920* −0.0495 0.2300*

Pr(ea,1 > ea,2) 0.3219 −0.1408* 0.5299* 0.0735* 0.0035 −0.0201

Pr(ea,1 = ea,2) 0.3566 −0.3869* −0.3878* −0.1352* −0.0050 0.0450

edgecor1 0.0594 0.0151 −0.0131 0.0245* 0.0712* 0.2064*

In the following analysis by degcor1 we denote correlation of in-degree of
agent a and her ea,1 and by edgecor1 we denote correlation of ea,1 and eb,1 for
all agents a and b that are connected by an edge.

In Table 1 we concentrate our analysis on means and want to understand the
influence of parameter δ on the results. The analyzed data were collected from
384 runs of the simulation for Cartesian product of p1, p2 ∈ {0.1, 0.2, 0.3, 0.4},
β ∈ {0.6, 0.7, 0.8, 0.9}, γ ∈ {0.25, 0.5} and δ ∈ {0, 0.25, 0.5}. We report the
parameters of the influence of input variables on simulation outputs estimated
using linear regression metamodel.

On the average, agents with higher in-degrees have higher evaluations of
product qualities. Remembering that it is on the average negative it means that
higher in-degree reduces bias in evaluation of product quality. Also we observe
that agents that are connected by edge have on the average positive correlation
of opinions. The analysis of parameters at δ variable shows that it has relatively
low impact of the structure of preferences in the population (Pr(ea,1 > ea,2)
and Pr(ea,1 = ea,2) variables) — the structure of bimodality is approximately
similar to no-network case. However, higher values of δ strongly reduce bias of
estimates (E(ea,1)) and increase correlation of opinion with degree and between
agents that are connected in the network.

4.3 Results: Continuous State-Space Model

The results are analogous to the finite state-space case. In Table 2 we still con-
centrate our analysis on means but this time we want to observe the influ-
ence of parameter λ2 on the results. The analyzed data were collected from
384 runs of the simulation for Cartesian product of σ1, σ2 ∈ {0.1, 0.2, 0.3, 0.4},
ω ∈ {0.6, 0.7, 0.8, 0.9}, λ1 ∈ {0.25, 0.5} and λ2 ∈ {0, 0.25, 0.5}. We report the
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Table 2. Influence of variables on target characteristics approximated by linear
regression; experiment setup: λ1 ∈ {0.25, 0.5}, λ2 ∈ {0, 0.25, 0.5}, ω, σ1, σ2 ∈
{0.1, 0.2, 0.3, 0.4}. Estimates significant at 0.001 marked with *.

Variable Mean σ1 σ2 ω λ1 λ2

degcor1 0.0731* 0.3940* −0.1352* −0.3431* 0.1650* 0.2022*

E(ea,1) −0.0458* −0.3502* 0.0873* 0.2460* −0.1357* 0.0536*

Pr(ea,1 > ea,2) 0.5010* −0.6479* 0.6559 0.0064 −0.0045 0.0038

edgecor1 0.2027 0.0190 −0.0187 −0.0353 0.0620 0.5657*

parameters of the influence of input variables on simulation outputs estimated
using linear regression metamodel.

On the average, agents with higher in-degree have higher evaluation of prod-
uct quality. Remembering that it is on the average negative it means that higher
in-degree reduces bias in evaluation of product quality. Also we observe that
agents that are connected by edge have on the average positive correlation of
opinions. The analysis of parameters at λ2 variable shows that it has relatively
low impact of the structure of preferences in the population (Pr(ea,1 > ea,2)
variable) — the structure of bimodality is approximately similar to no-network
case. However, higher λ2 reduces bias of estimates (E(ea,1)) and increases cor-
relation of opinion with degree and between agents that have a connection in a
graph.

5 Concluding Remarks

Influence of quality uncertainty on markets has been traditionally studied in con-
text of asymmetric information and rational expectations, an approach rooted
in the seminal publication of Akerlof (1970). In this setting, uncertain quality
causes a market to degenerate or even vanish altogether. Izquierdo and Izquierdo
(2007) have demonstrated that equivalent results are obtained on markets with-
out an a priori assumption of information asymmetry but with consumers having
adaptive expectations of quality. In this paper we contributed to this stream of
research by proposing a model of a market with multiple suppliers and consumers
adaptively switching suppliers to maximize satisfaction. We made several inter-
esting observations.

First, we noticed that under assumption of adaptive expectations quality
uncertainty is a sufficient condition for endogenous differentiation of consumer
preferences towards suppliers. As depicted on the joint density plot on Fig. 7 this
effect takes shape of a bimodal distribution of expected quality with majority
of consumers having clear preference for one of the suppliers and almost none
being indifferent. Interestingly the effect is observed regardless if network effects
are taken into account or not. Traditionally in economic modelling this kind of
horizontal differentiation of preferences is attributed to exogenous factors such
as purposeful diversification of product characteristics by sellers to increase their
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market power. As we have shown similar effects may occur spontaneously and
without intentional effort, by means of random variations of a product quality.

Next, we found out that lowering quality variability provides a competitive
advantage to suppliers, as those who second-order dominate quality distribution
of the competitors, systematically increase their market share to eventually take
over the market (Fig. 4). Note that we did not assume consumers to be risk averse
so this effect emerged as the endogenous property of the model. This finding
may have important practical implications as it provides credible justification
for implementing quality assurance policies such as TQM or Six Sigma which
are sometimes criticised for being merely costly “fads” having no theoretical
underpinning (Linderman et al. 2003; Schroeder et al. 2008).

Finally by embedding consumers in a socially realistic SPA network we have
the following findings: (a) agents with higher in-degree are better informed,
(b) there is a correlation of beliefs of agents that are connected in a network,
(c) higher rate of learning from neighbours reduces average bias of expectations.
The analysis of dynamics of this process shows that the time to reach steady-state
in the model is dramatically accelerated by social interaction as more signals are
reaching the customers per one time period. This discovery reinforces the above
practical conclusions regarding quality assurance policies as it indicates that the
observed effects may strongly influence real markets, where information about
bad quality product can spread fast and be hard to erase later. This effect is
explained by our model and has been witnessed many times by companies in
social media like Facebook or Twitter.

In next steps we will test robustness of our results under more “rational”
Bayesian quality estimators. Another interesting question to be addressed is if
lower quality could be compensated by its lower volatility i.e. is there a trade-off
between expected quality and its variance. Numerical experiments confirm such
possibility but this remains to be proven.
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Abstract. We examine how the behaviour of high degree vertices in
a network affects whether an infection spreads through communities
or jumps between them. We study two stochastic susceptible-infected-
recovered (SIR) processes and represent our network with a spatial pref-
erential attachment (SPA) network. In one of the two epidemic scenarios
we adjust the contagiousness of high degree vertices so that they are less
contagious. We show that, for this scenario, the infection travels through
communities rather than jumps between them. We conjecture that this is
not the case in the other scenario, when contagion is independent of the
degree of the originating vertex. Our theoretical results and conjecture
are supported by simulations.

Keywords: Spatial graph model · Preferential attachment · Infection
in networks · Contact process

1 Introduction

While community structure plays an important role in the spread of infections
[14], there are few analytic results on the topic and it is unclear precisely how
clustering interacts with other network properties. Part of the difficulties in this
area stem from the notion that communities consist of disjoint groups or small
cycles. Recently, however, many have taken an approach to studying community
structure by embedding vertices in a metric space [1,4,6,7,12]. One can interpret
the metric space as a feature space in which nearby vertices have more affinity
than the vertices at a distance and, accordingly, close vertices have a higher
probability of being connected. Since a community is a group of individuals who
share some similarities, we represent communities as geometric clusters. The use
of spatial networks allows for a more nuanced notion of community where groups
can overlap and boundaries are fuzzy. Not only is this approach more realistic,
but it is also easier to analyze. We will exploit the mathematical tractability of
a spatial model to study the interaction between community structure and the
spread of infections.

Specifically, our focus will be how the behaviour of high degree nodes changes
whether an infection spreads through communities or jumps between them.
c© Springer International Publishing AG 2017
A. Bonato et al. (Eds.): WAW 2017, LNCS 10519, pp. 60–74, 2017.
DOI: 10.1007/978-3-319-67810-8 5
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This question is important because understanding who spreads diseases between
communities can help guide interventions. For example, as [14] show, vaccinat-
ing hosts who bridge communities can be more effective than vaccinating highly
connected individuals. If high degree vertices connect communities, then these
two strategies amount to the same thing.

We model our infection with a stochastic susceptible-infected-recovered (SIR)
process in discrete time. Susceptible vertices can be infected in the future,
infected vertices are currently sick, and recovered vertices have gained immu-
nity from a previous infection. To control the behaviour of high degree vertices,
we recognize that infections spread through contacts (i.e. sexual contact, airborn
contact, etc.), but a network edge only refers to the potential for contacts. [13]
demonstrate that the number of contacts made with a neighbour has a significant
effect on epidemic dynamics. We consider two scenarios in which the “popular”
vertices behave differently: (A) high degree and low degree vertices make the
same number of total contacts per time step, so highly connected vertices make
fewer contacts with any individual neighbour and (B) the time vertices spend
with all their neighbours per time step is proportionate to their degree, so each
vertex gets an equal amount of time with any individual neighbours. In sce-
nario A, high degree nodes have many weak connections and, in scenario B, high
degree and low degree vertices have connections of equal strength so high degree
vertices should pass on the disease to more neighbours. We note that contacts
are not reciprocal—two vertices can make a different number of contacts with
one another. To model the relationship between contacts per neighbour per time
step and the probability of infecting a susceptible neighbour in a time step, we
use an STI model developed by Garnett and Anderson in [5].

To model our network, we use the Spatial Preferential Attachment (SPA)
Model proposed in [1]. These networks are sparse power-law graphs with positive
clustering coefficients [1]. It has been shown that the SPA model fits real-life
social networks well [8]. Since we are working with a stochastic process on a
random network, we modify the SPA model to remove some randomness. We
show that, compared to the SPA model, vertices in our modified networks have
the same expected degree and the overall degree distribution has the same power-
law coefficient.

Using techniques developed by [9], we will show that when popular high
degree nodes are less infectious (scenario A), the infection will travel slowly
through the metric space and respect the community structure. We also conjec-
ture that in scenario B, the infection will take long jumps between communities.
To support our result and conjecture, we run simulations on the modified SPA
model. While there are numerical studies exploring the relationship between the
behaviour of highly connected individuals and the spread of disease with respect
to community structure [14], we believe these are the first analytic results on the
topic.

Our research presents new strategies for understanding communities in net-
works. Networks generated by the modified SPA model display many properties
of real-world systems, and are more tractable than those generated by the origi-
nal SPA model. More generally, by representing communities with a continuous
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feature space rather than with disjoint subsets, we can easily leverage geometric
properties to prove otherwise difficult results. The work presented here develops
techniques for understanding this geometric conception of community structure
in networks.

2 Definitions

Here we present the definitions of the SPA model, the modified SPA model, and
our model of the infection.

2.1 The SPA Model

The SPA model was first proposed in [1]. It is a spatial digraph model where
vertices are embedded in a metric space. The metric space represents the feature
space, which reflects the attributes of the vertices that determine their linking
patterns. The model indirectly incorporates the principle of preferential attach-
ment, first proposed by Barabasi and Albert (BA) [2], through the notion of
spheres of influence around every vertex.

Vertices with a larger in-degree have a sphere of influence with greater vol-
ume, but as time progresses the spheres of influence of all nodes decrease. In the
BA model, the preferential attachment came from a probability of a newcomer
connecting to the old vertices. In the SPA model, we use the sphere of influence
to incorporate the preferential attachment process. If a newcomer falls within
an older vertex’s sphere of influence, we connect them.

Specifically, vertices are embedded in a hypercube C of dimension d with
unit volume. We endow the hypercube with the torus metric derived from any
of the Lp norms. The torus metric is used to avoid edge effects. If x and y are
two vertices in C, the distance between them is given by:

d(x, y) = min{‖x − y + u‖p : u ∈ {−1, 0, 1}m}

The SPA model has parameters A1 ∈ (0, 1) and A2 ∈ [0,∞). (The original
SPA model also has a parameter p representing the conditional probability that
a vertex which falls into the sphere of influence of vertex, actually links to that
vertex. We here assume this to be 1.)

The model consists of a stochastic sequence of n graphs {Gt = (Vt, Et)}0≤t≤n

with Vt ⊂ C. The index t is interpreted as the t-th time step. At each time t,
the sphere of influence S(v, t) of a vertex v ∈ Vt is the ball centered at v with
volume

|S(v, t)| = min
{

A1 deg−(v, t) + A2

t
, 1

}
(1)

Let G0 be the null graph. Given Gt−1, we define Gt = (Vt, Et) as follows.
Vt = Vt−1 ∪ {vt} where vt is placed uniformly at random in C. The edge set
Et = Et−1 ∪ {(vt, u) | vt ∈ S(u, t)}.

We now review the relevant properties of the SPA model. As shown in [1],
the network has a power law degree distribution, with an exponent of 1 + 1

A1
.
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The geometric nature of the network implies that there is a high amount of local
clustering [10]. In [3], logarithmic bounds on the directed diameter were given.
In [9] it was shown that the effective undirected diameter is also logarithmically
bounded.

2.2 The Modified SPA Model

While the SPA model generates spatial graphs that fit empirical networks well,
we must modify the model to make it mathematically tractable for our purposes.
Since the behaviour of a vertex during its early life significantly determines
its late time behaviour, working with the preferential attachment model can
be difficult. Instead, we modify the sphere of influence to depend upon the
deterministic expected in-degree, instead of the stochastic actual in-degree. First
we present a theorem from [10] on the expected in-degree of a vertex in the SPA
model.

Theorem 1. Let ω = ω(t) be any function tending to infinity together with t.
The expected in-degree at time t of a vertex vi born at time i ≥ ω is given by

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)A1

− A2

A1

A vertex’s birth time i and the size of the overall network t determines its
expected in-degree. Furthermore, if the expected degree is larger than log2 n then
the real in-degree is concentrated around its expected in-degree [10]. Hence, the
time a vertex is born can be used as a proxy for its degree, with old nodes being
more highly connected than young nodes.

We modify the SPA model by redefining the sphere of influence to depend on
the vertex’s expected in-degree, instead of its actual in-degree. This substitution
makes the size of the sphere of influence a nonrandom object. Precisely, the
modified spatial preferential attachment model is defined as the SPA model,
with the one difference being that the size of the sphere of influence of vertex vi

at time is changed to:

|S(vi, t)| = min
{

A2

t1−A1iA1
, 1

}
(2)

We derive Eq. (2) by replacing the actual in-degree in formula (1) for the
original sphere of influence with the expected in-degree and simplifying. We now
state and prove a theorem which shows that the modified SPA model generates
networks with an expected in-degree equivalent to the original model.

Theorem 2. Let Gn be a graph generated by the modified SPA model with n
vertices. The expected in-degree of a vertex vi born at time i is given by

E(deg−(vi, n)) =
A2

A1

((n

i

)A1 − 1
)

− ε

where |ε| < A2
A1

.
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Proof. Let vj be a vertex born at time j > i. Let Xj be a random variable
that equals 1 if there is an edge from vj to vi and equals 0 otherwise. By the
definition of the modified SPA model, we place an edge from vj to vi if and only
if vj falls within the sphere of influence of vi. Since vj is placed in the hypercube
uniformly at random, Xj = 1 with probability equal to the volume of vi’s sphere
of influence at time j.

By the linearity of expectation,

E(deg−(vi, n)) = E

(
n∑

k=i+1

Xk

)

=
n∑

k=i+1

E (Xk)

=
n∑

k=i+1

|S(vi, k)|

We approximate this sum with an integral.

n∑
k=i+1

|S(vi, k)| =
∫ n

i

A2

x1−A1iA1
dx − ε

=
A2

A1

((n

i

)A1 − 1
)

− ε

To bound the error, we first recognize that,
∫ n+1

i+1

A2

x1−A1iA1
dx ≤

n∑
k=i+1

|S(vi, k)| ≤
∫ n

i

A2

x1−A1iA1
dx

Hence,

|ε| <

∫ n

i

A2

x1−A1iA1
dx −

∫ n+1

i+1

A2

x1−A1iA1
dx

=
A2

iA1

((i + 1)A1 − iA1) − ((n + 1)A1 − nA1)
A1

<
A2

iA1

(i + 1)A1 − iA1

A1

<
A2

A1

(
2A1 − 1

)

<
A2

A1 	

In addition to having equivalent expected in-degrees, we also derive that

both models lead to the same (power law) cumulative in-degree distribution.
The cumulative in-degree distribution ck is defined as the number of vertices
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with in-degree j ≤ k divided by the total number of vertices. As stated above,
from [1] we know that a.a.s. the cumulative in-degree distribution of networks
generated by the SPA model follows a power law with exponent 1

A1
. Theorem 3

states that the same is true of networks generated by the modified SPA model.
An event occurs with extreme probability (w.e.p.) if it occurs with probability at
least 1 − e−Θ(log2 n) as n → ∞.

Theorem 3. Let Gn be a graph generated by the modified SPA model with n
vertices. The cumulative in-degree distribution ck of Gn is w.e.p. a power law
with exponent 1

A1
for k > k′ = log2(n).

Proof. The in-degree of a vertex vi born at time i is the sum of n−i independent
Bernoulli variables Xj with success probability equal to the volume of the sphere
of influence |S(vi, j)|. We let f(i) equal the expected in-degree of a vertex born
at time i in a network of size n. By the generalized Chernoff bound [11], we know
that w.e.p. f(i) − ε ≤ deg−(vi, n) ≤ f(i) + ε where ε =

√
f(i) log n.

Using this bound, we determine how many vertices have in-degree greater
than k. If a vertex is born before i− = f−1(k + ε), then w.e.p. it has a degree
greater than k. Likewise, if a vertex is born after i+ = f−1(k − ε), then w.e.p.
it has a degree less than k. Hence, the number of vertices with degree greater
than k is between i− and i+. By inverting the formula for expected degree and
examining its asymptotic growth, we find

i− = f−1(k + ε) = (1 + o(1))f−1(k) i+ = f−1(k − ε) = (1 + o(1))f−1(k)

Hence, the number of vertices with degree greater than k is w.e.p. (1 +
o(1))f−1(k). This implies that ck = (1 + o(1))(kA1/A2 − 1)−1/A1 . 	


2.3 Infectious Processes

Now that we have a workable model of real-world networks, we define a SIR
disease model in discrete time. To begin the infectious process, we pick a node
at random to be the origin node. At time t = 0, we infect the origin node and
denote all other nodes as susceptible. In each time step, the infected nodes infect
each neighbour with probability β. Though the modified SPA model generates
directed graphs, we ignore the orientation of the edges. If a susceptible vertex
has multiple infected neighbours, they each independently attempt to infect the
susceptible vertex. At the end of each time step, all infected nodes recover. This
is a simplification of the typical SIR model because usually the recovery time
is modelled as a stochastic variable. Here we simplify and assume each vertex
to recover in exactly one time step. We run the process until no vertices are
infected. If we run the infection process for t time steps on a network with n
vertices, the infected and recovered vertices together with the edges taken by
the infection (oriented in the direction the infection travelled) form an acyclic
directed subgraph of the network. We denote this subgraph, It

n, the infection
graph at time t.



66 J. Feldman and J. Janssen

Suppose that in a given time step vertex v is infected, vertex u is susceptible,
and they are neighbours. The probability β of v infecting u in the time step
depends on κ(v), the average number of contacts v makes with u per time step,
and the probability of transmitting the infection per contact τ . If v makes more
contacts on average with u or if the probability of infection per contact is higher,
the disease will have a greater chance of spreading. Following [5], we set

β = 1 − e−τκ

To study how the behaviour of high degree nodes changes how a disease
spreads through the network, we consider two different scenarios: scenario A
and scenario B with their own infection probabilities βA and βB , respectively.
In scenario A, we define the average number of contacts a vertex v makes with
a neighbour per time step as

κA(v) =
T

E(deg−(v))

where T is the average number of contacts v makes with all its neighbours in
the time step. We use E(deg−(v)) as a rough approximation of the degree of v.
Hence, in scenario A, βA(v) = 1 − e−τκA(v). Since T is constant for all vertices,
high and low degree alike, high degree vertices make fewer contacts with any
single neighbour because their contacts are dispersed over a greater number
vertices. While high degree nodes have many neighbours, these connections may
be weaker than a node with few neighbours.

In scenario B, however, we no longer keep the average number of contacts
a vertex makes with all its neighbours in a time step constant. Instead, we let
T (v) depend on T and the expected in-degree of v. We define

T (v) = T
E(deg−(v))

〈deg−〉
where 〈deg−〉 is the average degree in the graph. From [1], we know a.a.s. that
〈deg−〉 = (1 + o(1)) A2

1−A1
in the SPA model, which is asymptotically constant.

Since the total number of edges in the network is the sum of Bernoulli variables,
by the linearity of expectation, it is a simple calculation to show that 〈deg−〉 is
equivalent in the modified and original SPA models. As in scenario A, we use
E(deg−(v)) to approximate the degree of v. From the average number of contacts
a vertex makes with all its neighbours in a time step, we can define the average
number of contacts a vertex makes with a specific neighbour in a time step as

κB(v) =
T (v)

E(deg(v))
=

T

〈deg−〉
Hence, in scenario B, βB = 1 − e−τκB , which is constant. Any infected vertex
v has an equal chance of infecting a neighbour, regardless of the degree of v.
Hence, in scenario B, we expect that high degree vertices will pass the infection
on to more individuals than low degree vertices.
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3 Spatial Spread of Infections

Our main result states that when highly connected vertices are less infectious,
the infection will not make large jumps through the metric space. Since our
metric space represents a feature space, this means that the infection spreads
through communities rather than jumping between them. To prove this result,
we treat the infection as percolating through the network. We first show that
a.a.s. all vertices in the network will only infect neighbours within a certain
distance. From this result, we conclude that any particular infection will a.a.s.
be bounded by a ball of a relatively small radius after a given number of time
steps.

Theorem 4. Let Gn be a graph with n vertices generated by the modified SPA
model. Let λ = n−φ be such that φ < A1(1−A1)

(A1+2)d . For scenario A, a.a.s. all nodes
in the infection graph at time t will be within tλ of the origin node u.

3.1 Proof of Theorem 4

Before we present the proof, we first adopt some conventions regarding the infec-
tion process. Instead of considering the infection spreading through a network
in time, we a priori consider whether any vertex would infect a neighbour given
that they are connected. If we “occupy” each pair of vertices with probability
βA, and restrict our occupied pairs to edges present in our network, we get a
subgraph consisting of where the infection could possibly travel, which we call
the potential infection graph. The infection graph, describing where the infection
actually spread, will be a subset of the potential infection graph.

Formally, let Gn = (Vn, En) be a network of order n generated by the mod-
ified SPA model, where we replace each directed edge by two edges in opposite
directions. We consider ordered pairs of vertices (vi, vj) and (vj , vi) because our
infection model ignores the orientation of the edges in the original network gen-
erated by the modified SPA model. In other words, even though all edges in the
modified SPA model are directed from younger to older vertices, we allow the old
to infect the young. Let u ∈ Vn be the node where the infection originates. With
each ordered pair of vertices (vi, vj) we associate a Bernoulli random variable
Ivi,vj

defined as

Ivi,vj
=

{
1 with probability βA(vi)
0 otherwise

(3)

We define the potential infection graph on Gn as the graph In = (VI , EI) where
VI = Vn and EI = {(vi, vj)|{vi, vj} ∈ En and Ivi,vj

= 1}. We can recover the
infection graph at time t, It

n, by taking the subgraph induced by the tth out-
neighbourhood of u in In.

The proof of our main result is based on an analysis of the edges in the
potential infection digraph. Define the length of an edge as the distance between
its two end points. We first establish a lemma stating that there is an asymptotic
bound on the length of edges in the potential infection graph.
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Lemma 1. Let Gn be a graph with n vertices generated by the modified SPA
model and In be a potential infection graph on Gn in scenario A. Let λ = n−φ

such that φ < A1(1−A1)
(A1+2)d . Then a.a.s. In does not contain any edges of length

greater than λ.

Proof. Let L represent the event of there being an edge in In where the distance
between its endpoints is greater than λ. We will call such edges “long”and all
other edges “short”. Given two (not necessarily connected) nodes in Vn, vi and
vj , let Lvi,vj

represent the event of there being a long edge from vi to vj in In.
Thus, Lvi,vj

occurs if vi and vj (the vertices born at time i and j, respectively)
have distance at least λ, there is an edge between vi and vj , and the infection
can travel from vi to vj . Since L =

⋃n−1
i=0

⋃n
j=i+1

(
Lvi,vj

∪ Lvj ,vi

)
, by taking the

union bound, we know

P(L) ≤
n−1∑
i=0

n∑
j=i+1

P(Lvi,vj
) + P(Lvj ,vi

)

Our proof will show that this double sum goes to 0 as n approaches infinity.
We first need an expression for P(Lvi,vj

) + P(Lvj ,vi
). Since i < j, by the

definition of the potential infection graph, Lvi,vj
occurs if and only if three other

events also occur: d(vi, vj) > λ, vj ∈ S(vi, j), and Ivi,vj
= 1. In other words, for

there to be a long edge between vi and vj , Ivi,vj
must equal 1 and vj must be

far enough away from vi to be considered long, but close enough to be in the
sphere of influence of vi at time j.

Since vj is placed uniformly at random in the hypercube, the distance d(vj , vi)
and the event Ivi,vj

= 1 are independent. Therefore, for any specific values for j
and i. i < j, we can write

P(Lvi,vj
) = P(d(vi, vj) > λ, vj ∈ S(vi, j), Ivi,vj

= 1)
= P(d(vi, vj) > λ, vj ∈ S(vi, j))P(Ivi,vj

= 1)

For the edge oriented in the opposite direction, we can make a similar argu-
ment. Hence, we can write

P(Lvj ,vi
) = P(d(vi, vj) > λ, vj ∈ S(vi, j), Ivj ,vi

= 1)
= P(d(vi, vj) > λ, vj ∈ S(vi, j))P(Ivj ,vi

= 1)

Combining our expressions for P(Lvi,vj
) and P(Lvj ,vi

) we find that

P(Lvi,vj
)+P(Lvj ,vi

) = P(d(vi, vj) > λ, vj ∈ S(vi, j))(P(Ivi,vj
= 1)+P(Ivj ,vi

= 1))

We know P(Ivi,vj
= 1) = βA(vi) and P(Ivj ,vi

= 1) = βA(vj) from Eq. (3),
but we need expressions for P(d(vi, vj) > λ, vj ∈ S(vi, j)) and P(Ivi,vj

= 1).
We use a geometric argument to find P(d(vj , vi) > λ, vj ∈ S(vi, j)), which

is the probability of there being a long edge between vi and vj in the original
network. There are three cases. In the first case, the sphere of influence of vi has
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radius smaller than λ at its time of birth. Since spheres of influence only shrink,
in this case there will never be a time when vj can both fall within vi’s sphere of
influence and be greater than λ away from vi. This case occurs when i exceeds
a critical value m, which is the first time when vertices are born with a sphere
of influence that has radius smaller than λ.

In the second case, i is smaller than the critical value m, but j is larger than
the second critical value mi. This critical value is reached when the radius of
vi’s sphere of influence equals λ. Again, since spheres of influence only shrink,
vertices born at times after mi cannot have d(vj , vi) > λ and vj ∈ S(vi, j)). In
these first two cases, P(d(vj , vi) > λ, vj ∈ S(vi, j)) = 0.

A ball of radius λ has volume λdcp where cp depends on our Lp norm. Using
this, we find that

m =
A2

λdcp
mi =

(
A2

iλdcp

) 1
1−A1

In the last case, i < m and j < mi, which means d(vj , vi) > λ and vj ∈
S(vi, j)) is possible. Since vj is placed in the hypercube uniformly at random
and the hypercube has unit volume, P(d(vj , vi) > λ, vj ∈ S(vi, j)) is equal to
the volume of the spherical shell between the sphere of influence and the ball
centered at vi with radius λ which we denote B(vi, λ). Hence, in this case,
P(d(vj , vi) > λ, vj ∈ S(vi, j)) = |S(vi, j)| − |B(vi, λ)|.

Combining the results from the previous paragraphs,

P(L) ≤
m∑

i=0

mi∑
j=i+1

(|S(vi, j)| − |B(vi, λ)|)(βA(vi) + βA(vj))

Since the oldest vertex will always have the largest sphere of influence, we
know that mi < m1 for all i ∈ [1,m] and that m < m1. Also, A2 = |S(v1, 1)| >
|S(vi, j)−B(vi, λ)| for all i, j ∈ [1,m1]. Finally, since vm1 has the lowest expected
degree of all vertices born at or before time m1, βA(vm1) > βA(vi), βA(vj) for
all i, j ∈ [1,m1]. Hence, we can write

P(L) ≤
m1∑
i=1

m1∑
j=i+1

2A2βA(vm1) (4)

≤ 2

⎛
⎜⎜⎝1 − exp

⎛
⎜⎜⎝− τT

A2
A1

((
n

m1

)A1 − 1
)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ A2m

2
1 (5)
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From the formula for m1, we see that m1 ∼ n
φd

1−A1 . Setting φ = A1(1−A1)
(A1+2)d and

γ = τT , we see that

P(L) ≤ 2

⎛
⎜⎜⎝1 − exp

⎛
⎜⎜⎝− γ((

n
m1

)A1 − 1
)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ A2m

2
1 (6)

∼ 2
(

1 − exp
(

−γn
A1

(
φd

1−A1
−1
)))

A2n
2φd

1−A1 (7)

∼ 2
(

1 −
(

1 − γn
A1

(
φd

1−A1
−1
)

+ O

(
n
2A1

(
φd

1−A1
−1
))))

A2n
2φd

1−A1 (8)

= o(1) (9)

	

Using this lemma, we can now prove our main result, Theorem 4.

Proof. Let B represent the bad event where there is a node v in the infection
digraph at time t, It

n, where d(v, u) > tλ. If B occurs, then there is a path from
v to u with at most t edges because It

n is the tth neighbourhood of u in In. By
the triangle inequality, at least one of the edges in the path from v to u has
a length greater than λ and, more generally, there is an edge in the potential
infection graph with a length greater than λ. Let L represent the event of there
being an edge in In where the distance between its endpoints is greater than λ.
Since B ⊂ L, P(B) ≤ P(L), but by the previous lemma, a.a.s. P(L) = 0. 	


3.2 Conjecture for Scenario B

We conjecture that in scenario B, the negation of Lemma 1 holds. We know that
the modified SPA model a.a.s. has edges greater than length λ′ where λ′ = μn−θ

with θ > 1 − A1
4A1+2 and μ constant. We conjecture that the potential infection

graph will have long edges as well.

Conjecture 1. Let Gn be a graph with n vertices generated by the modified SPA
model and In be a potential infection graph on Gn in scenario B. There exists
φ > 0 such that if we let λ = n−φ, a.a.s. In contains an edge of length greater
than λ.

4 Simulations

Using simulations, we test our theoretic result that the infection in scenario A
will not make long jumps. We also use simulations to provide evidence for our
conjecture that, in scenario B, the infection can make long jumps if we pick the
origin vertex correctly. Recall that in both infection scenarios, we can vary how
easily the infection spreads by altering T , the total number of contacts made
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per time step, and τ , the probability of transmission per contact. Also recall
that we denote γ = τT . For the 2 infection scenarios, we consider 3 levels of
contagiousness: γ = 1, γ = 10 and γ = 100.

We generated 10 networks with the modified SPA network in R
1 with A1 =

0.5 and A2 = 1. Our results are highly asymptotic and the bound is lowest in
low dimensions so, due to computational constraints, we choose to simulate in
R

1. The 10 networks are of increasing size, beginning at n = 1000 and increasing
by increments of 1000 to a maximum of n = 10000.

For each network, we run each of the 6 infection processes 50 times. We chose
to begin the infections at the oldest vertex because it has the highest likelihood
of having neighbours far away in the metric space. On one hand, we want to give
the infection in scenario B the opportunity to make long jumps and, on the other
hand, we do not want to mistakenly conclude that the infection in scenario A
makes short jumps only because it was never exposed to long edges. While our
main result states that given a number of time steps, a.a.s. the infection remains
within a certain region, this result depends on both the size of the network and
the current time step in the infection process. We thought it would be more
clear to compare Lemma 1 to our simulations, which states that the edge length
taken by the infection in scenario A is bounded. To compare scenario A and B,
we likewise observe the maximum edge length the infection in scenario B takes.

Fig. 1. Longest jump made by the infection vs. network size in scenario A and B
stratified by 3 levels of contagion.

The results of our simulations are shown in Fig. 1. We make two conclusions
from our simulations. First, we see that in scenario A, when high degree nodes are
less contagious, the infection takes shorter jumps than in scenario B. As indicated
by our asymptotic result, the difference becomes more pronounced in larger
networks. One might notice that in scenario B the infection does not always
make long jumps, which seems to contradict our conclusion. These outliers can
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be explained by recognizing that the longest edge in the entire network is a non-
clustered random variable. Vertices receive long edges in a brief period during
the early steps of the model and, consequently, whether there are long edges
in the network at all is highly variable. It is not that the infection avoids the
long edges, but rather, that the infection has no long edges to take in the first
place. Second, we see that this difference between scenario A and scenario B
becomes less pronounced when we make the infection more contagious. Again,
this matches our theoretic result, since our bound on the probability of long
infection increases when γ is larger. We expect that if we could generated large
enough networks, eventually we would see the difference between scenario A and
B reemerge, even at high levels of contagion.

Fig. 2. A log-log plot of the longest jump made by the infection vs. network size in
scenario A with γ = 10. The equation for the regression line is log(y) = −0.51log(x) +
1.40 (R2 = 0.19).

To compare our analytic bound φ to our simulations, we perform a linear
regression on a log-log plot of longest jump vs. network size for infections in
Scenario A with γ = 10 (see Fig. 2). The simulations are the same as those rep-
resented in Fig. 1. We have added a small amount of noise to the x-values in order
to make the distribution of data more clear. If our result is true, then we should
expect that the slope of the regression line should be less than −A1(1−A1)

(A1+2)d = −0.1.
We found the slope to be −0.51, which provides support for our lemma. Of
course, our data is highly variable and this plot only gestures towards the fact
that our bound is valid. We expect that for larger networks, this variation would
decrease.

To illustrate that the infection spreads slowly through the feature space in
scenario A, we simulate one run of the process on a graph generated by the
modified SPA model in R

2 with A1 = 0.5, A2 = 1, γ = 10, and n = 1000.
We present the simulation in Fig. 3. The blue vertices were infected earlier in
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Fig. 3. A scenario A infection with γ = 10 on a modified SPA network with A1 = 0.5,
A2 = 1, and n = 1000. The gradient from blue to red represents earlier to later
infections. (Color figure online)

the process and red vertices later. Since nearby vertices have similar colours
(recall that we are using the torus metric), this simulation provides additional
qualitative evidence for our finding that the infection does not make long jumps
in scenario A.

5 Conclusion

When modelling contagious processes, it is important to take contacts made per
neighbour into account. With analytic and numeric results, we show that if all
vertices make an equal number of contacts, the infection will spread through
communities rather than jumping between them. High degree vertices are more
likely to have neighbours in distant communities and when these popular individ-
uals are less contagious, the infection is less likely to spread from one community
to another. We also show with simulations that scaling the number of contacts
a vertex makes by its degree results in an epidemic that spreads irrespective of
the communities in the network.

In addition to our conjecture, we identify two areas of future research. First,
since infections in scenario A and scenario B behave differently with respect to
community structure, interventions may benefit from exploiting this distinction.
In other words, if we know a contagious process will spread through communities,
how can we use this fact to control the epidemic? Likewise, how should we
control diseases that jump between communities? The second area of potential
research is studying scenario A infections further. While we find that these types
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of contagious processes will be a.a.s. bounded by a ball with a growing radius, we
do not discuss how this may affect the success of an infection spreading through
a network. If a disease does not jump, does community structure prevent the
infection from spreading beyond its original group?
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work. In: Gleich, D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2015. LNCS, vol.
9479, pp. 107–118. Springer, Cham (2015). doi:10.1007/978-3-319-26784-5 9

10. Janssen, J., Pralat, P., Wilson, R.: Geometric graph properties of the spatial pre-
ferred attachment model. Adv. Appl. Math. 50(2), 243–267 (2013)

11. Lu, L., Chung, F.: Old and new concentration inequalities. Complex Graphs and
Networks, Chap. 2, pp. 23–56. American Mathematical Society, Providence (2006)

12. Newman, M.E.J., Peixoto, T.P.: Generalized communities in networks. Phys. Rev.
Lett. 115(8), 08871 (2015)

13. Nordvik, M.K., Liljeros, F.: Number of sexual encounters involving intercourse
and the transmission of sexually transmitted infections. Sex. Transm. Dis. 33(6),
342–349 (2006)
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Abstract. Various models have been recently proposed to reflect and
predict different properties of complex networks. However, the commu-
nity structure, which is one of the most important properties, is not
well studied and modeled. In this paper, we suggest a principle called
“preferential placement”, which allows to model a realistic community
structure. We provide an extensive empirical analysis of the obtained
structure as well as some theoretical heuristics.

1 Introduction

The evolution of complex networks attracted a lot of attention in recent years.
Empirical studies of different real-world networks have shown that such struc-
tures have some typical properties: small diameter, power-law degree distrib-
ution, clustering structure, and others [9,15,35]. Therefore, numerous random
graph models have been proposed to reflect and predict such quantitative and
topological aspects of growing real-world networks [9,11,15,38,41].

The most extensively studied property of complex networks is their vertex
degree distribution. For the majority of studied real-world networks, the portion
of vertices of degree d was observed to decrease as d−γ , usually with 2 < γ < 3 [5,
18,36]. Such networks are often called scale-free. The most well-known approach
to the modeling of scale-free networks is called preferential attachment. The main
idea of this approach is that new vertices emerging in a graph connect to some
already existing vertices chosen with probabilities proportional to their degrees.
Preferential attachment is a natural process allowing to obtain a graph with a
power-law degree distribution, and many random graph models are based on
this idea, see, e.g., [10,13,23,26,45].

Another important characteristic of complex networks is their community (or
clustering) structure, i.e., the presence of densely interconnected sets of vertices,
which are usually called clusters or communities [19,21]. Several empirical studies
have shown that community structure of different real-world networks has some
typical properties. In particular, it was observed that the cumulative community
size distribution obeys a power law with some parameter λ. For instance, [14]
reports that λ = 1 for some networks; [3] obtains either λ = 0.5 or λ = 1; [22]
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also observes a power law with λ close to 0.5 in some range of cluster sizes;
[39] studies the overlapping communities and shows that λ is ranging between 1
and 1.6.

Community structure is an essential property of complex networks. For exam-
ple, it highly affects the spreading of infectious diseases in social networks [24,29],
spread of viruses over computer networks [43], promotion of products via viral
marketing [25], propagation of information [42], etc. Therefore, it is crucial to
be able to model realistic community structures.

Nowadays, there are a few random graph models allowing to obtain cluster-
ing structures. Probably the most well-known model was suggested in [28] as a
benchmark for comparing community detection algorithms. In this model, the
distributions of both degrees and community sizes follow power laws with pre-
determined exponents. However, there are two drawbacks of this model. First, it
does not explain the power-law distribution of community sizes, these sizes are
just sampled from a power-law distribution at the beginning of the process. Sec-
ond, a subgraph induced by each community is very similar to the configuration
model [8], which does not allow to model, e.g., hierarchical community structure
often observed in real-world networks [3,14].

A weighted model which naturally generates communities was proposed
in [27]. However, the community structure in this model is not analyzed in details
and only the local clustering coefficient is shown. From the figures presented
in [27] it seems that the community size distribution does not have a heavy tail
as it is observed in real-world complex networks.

Finally, let us mention a paper [40] which analyzes a community graph, where
vertices refer to communities and edges correspond to shared members between
the communities. The authors show that the development of the community
graph seems to be driven by preferential attachment. They also introduce a
model for the dynamics of overlapping communities. Note that [40] only models
the membership of vertices and does not model the underlying network.

In this paper, we propose a process which naturally generates clustering
structure. Our approach is called preferential placement and it is based on the
idea that vertices can be embedded in a multidimensional space of latent features.
The vertices appear one by one and their positions are defined according to
preferential placement: new vertices are more likely to fall into already dense
regions. We present a detailed description of this process in Sect. 2. After n
steps we obtain a set of n vertices placed in a multidimensional space. In Sect. 3
we empirically analyze the obtained structure: in particular, we show that the
communities are clearly visible and their sizes are distributed according to a
power law. Note that after the placement of all vertices is defined, one can easily
construct an underlying network, using, e.g., the threshold model [12,31]. We
discuss possible models and their properties in Sect. 4.

2 Preferential Placement

In this section, we describe the proposed approach which we call preferential
placement. We assume that all vertices are embedded in R

d for some d ≥ 1.



Preferential Placement for Community Structure Formation 77

One can think that coordinates of this space correspond to latent features of
vertices. Introducing latent features has recently become a popular approach
both in predictive and generative models. These models are known by different
names such as latent feature models [33,34], matrix factorization models [4,16,
32], spatial models [2,6,7], or geographical models [12,31]. The basic idea behind
all these models is that vertices having similar latent features are more likely to
be connected by an edge.

Preferential placement is the procedure describing the embedding of vertices
in the space Rd. After that, given the coordinates of all vertices, one can construct
a graph using one of many well-known approaches (see Sect. 4 for the discussion
of possible variants).

Our model is parametrized by a distribution Ξ taking nonnegative values.
The proper choice of Ξ is discussed further in this section.

We construct a random configuration of vertices (or points) Sn =
{x1, . . . ,xn}, where xi = (x1

i , . . . , x
d
i ) denotes the coordinates of the i-th vertex

vi. Let S1 = {x1}, x1 is the origin. Now assume that we have constructed St for
t ≥ 1, then we obtain St+1 by adding a vertex vt+1 with the coordinates xt+1

chosen in the following way:

– Choose a vertex vit+1 from v1, . . . , vt uniformly at random.
– Sample ξt+1 from the distribution Ξ.
– Sample a direction et+1 from a uniform distribution on a multidimensional

sphere ‖et+1‖2 = 1, where ‖ · ‖2 denotes the Euclidean distance in R
d.

– Set xt+1 = xit+1 + ξt+1 · et+1.

We argue in this paper that in order to obtain a realistic clustering structure
one should take Ξ to be a heavy tailed distribution. In this case, according to
the procedure described above, new vertices will usually appear in the dense
regions, close to some previously added vertices; however, due to the heavy tail
of Ξ, from time to time we get outliers, which originate new clusters.

We call the described above procedure “preferential placement” due to its
analogy with preferential attachment. Assume that at some step of the algorithm
we have several clusters, i.e., groups of vertices located close to each other, and
a new vertex appears. Then the probability that this vertex will join a cluster C
is roughly proportional to its size, i.e., the number of vertices already belonging
to this cluster. This is the basic intuition which we discuss further in this paper
in more details.

3 Analysis of Preferential Placement

3.1 Experimental Setup

In this section, we analyze graphs obtained using the preferential placement pro-
cedure described above. We take Ξ to be a slightly modified Pareto distribution
with the density function fβ(x) = β

(x+1)β+1 , x ≥ 0 for fixed β > 0.
In all the experiments we take d = 2 since the obtained structures are easy

to visualize. However, we also tried other values of d ≥ 1 and obtained results
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(a) β = 0.5 (b) β = 1

(c) β = 2.5 (d) β = 4

Fig. 1. Clustering structure depending on Ξ

similar to shown on Figs. 4 and 6. Also, if not specified otherwise, we generated
structures with the number of points n = 100 K.

3.2 Clustering Structure Depending on Ξ

First, let us visualize the structures obtained by our algorithm. We tried several
values of β, β ∈ {0.5, 1, 1.5, 2.5, 4}. The results are presented on Figs. 1 and 2.
The value β = 0.5 produces the heaviest tail, in this case the distribution Ξ
does not have a finite expectation. Although some clusters are clearly visible
in this case, they are located far apart from each other, which seems to be not
very realistic. Graphs obtained from configurations (using one of the procedures
discussed in Sect. 4) are expected to have small diameter and giant connected
component of size Θ(n), which does not seem to be the case for β = 0.5. Note
that for too large β, e.g., for β = 4, the variance is too low and we obtain only
one giant cluster with minor fluctuations, as presented on Fig. 1d. Further in
this paper we discuss the case β = 1.5 presented on Fig. 2. In this case Ξ has a
finite expectation but an infinite variance.

Another interesting observation is a hierarchical clustering structure pro-
duced by our algorithm. To illustrate this, we take the figure obtained for β = 1.5
and zoom it to see more details. Figure 2 shows that the largest cluster further
consists of several sub-clusters.
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Fig. 2. β = 1.5, different scales

3.3 The Distribution of Cluster Sizes

In this section, we analyze the distribution of cluster sizes produced by prefer-
ential placement. We present both theoretical and empirical observations.

The main difficulty with the analysis of clustering structure is the fact that
there are no standard definitions of clusters, both in graphs and metric spaces.
For example, clusters are often defined as a result of some clustering algorithm.1

This causes a lot of difficulties for both theoretical and empirical analysis.

Theoretical Heuristics. First, let us discuss why we expect to observe a power-
law distribution of cluster sizes in our model. As we discussed above, due to the
absence of a rigorous definition of a cluster, further in this section we are able
to present only some heuristic theory.

Let Ft(s) denote the number of clusters of size s at step t. In order to analyze
Ft(s) we consider its dynamics inductively. Assume that after a step t we obtain
some clustering structure. At step t + 1 we add a vertex vt+1 and choose its
“parent” vit+1 from v1, . . . , vt uniformly at random. Clearly, the probability to
choose a parent from some cluster C with |C| = s is equal to s

t . In this case, we
call C a parent cluster for vt+1. Now let us make the following assumptions:

1. All clusters can only grow, they cannot merge or split.
2. At step t + 1 a new cluster appears with probability p(t) = c

tα , c > 0, 0 ≤
α ≤ 1.

3. Given that a vertex t + 1 does not create a new cluster, the probability to
join a cluster C with |C| = s is equal to s

t .

These assumptions are quite strong and even not very realistic. For instance,
it seems reasonable that two clusters can merge if many vertices appear some-
where between them. Regarding the second assumption, p(t) can possibly depend

1 Modularity, introduced in [37], can be used to define communities in graphs. However,
this characteristic has certain drawbacks, as discussed in [20]. Moreover, modularity
favors partitions with approximately equal communities, which contradicts the main
idea of power-law distribution of community sizes.
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on the current configuration St. However, these assumptions allow us to analyze
the behavior of Ft(s) formally. Namely, we prove the following theorem.

Theorem 1. Under the assumptions described above the following holds.

1. If α = 0, then

EFn(s) =
c (s − 1)! Γ

(
2 + 1

1−c

)

(2 − c)Γ
(
s + 1 + 1

1−c

)
(
n + O

(
s

1
1−c

))

∼
cΓ

(
2 + 1

1−c

)

(2 − c)
· n

s1+
1

1−c

.

2. If 0 < α ≤ 1, then for any ε > 0

EFn(s) =
c (s − 1)! Γ(3 − α)

(2 − α)Γ(s + 2 − α)

(
n1−α + O

(
nmax{0,1−2α}s1−α+ε

))

∼ cΓ(3 − α)
2 − α

· n1−α

s2−α
.

To sum up, if the probability p(n) of creating a new cluster is of order 1
nα for

α > 0, then the distribution of cluster sizes follows a power law with parameter
2 − α growing with p(n) from 1 to 2; if p(n) = c, 0 < c < 1, then the parameter
grows with c from 2 to infinity. Recall that the parameter of the cumulative
distribution is one less than discussed above. The proof of Theorem 1 is technical
and we place it to Appendix.

Let us also explain why we do not consider p(n) decreasing faster than c
n . It

is natural to assume that a new cluster appears if a new vertex chooses a parent
node near the border of some cluster and then ξt+1 and et+1 are chosen such
that xt+1 = xit+1 + ξt+1 · et+1 falls quite away from the parent cluster. This
probability is roughly proportional to the number of vertices located near the
borders of the clusters. Extreme case, 1 vertex, provides the bound c

n .
Finally, let us mention that in practice the probability p(n) of creating a new

cluster can depend not only on Ξ, but also on the definition of clusters. Further
in this section we demonstrate that parameters of a clustering algorithm can
affect the parameter of the obtained power law.

Empirical Analysis. As we already mentioned, there is no standard definition
of a clustering structure. In many cases, clusters and communities are defined
just as a result of some clustering algorithm. Therefore, we first analyze the
performance of several clustering algorithms, then choose the most appropriate
one and analyze clusters it produces.

We compare the following algorithms: k-means [30], EM (expectation max-
imization), and DBSCAN (density-based spatial clustering of applications with
noise) [17]. For k-means and EM one has to specify the number of clusters.
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(a) k-means, k = 50 (b) EM, k = 50

(c) DBSCAN, L = 125, k = 1

Fig. 3. The comparison of different clustering algorithms

We tried several values of k, k ∈ {10, 50, 100, 500, 1000}, but both algorithms
turned out to be not suitable for out problem. As expected, in all cases they
unnaturally split the largest cluster into several small ones (see Figs. 3a and b).

On the contrary, DBSCAN produces more realistic results. It requires two
parameters: radius of neighborhood ε and the minimum number of neighbors
required to form a dense region k. We consider k ∈ {1, 2, 3} and ε is chosen in
such a way that if we connect all vertices i, j such that ‖i− j‖2 < ε, then we get
Ln edges, L ∈ {5, 25, 125}, where n is the number of vertices. For all parameters
we get reasonable clustering structures. The result for L = 125, k = 1 is presented
on Fig. 3c. For these parameters we also analyze the distribution of cluster sizes
(see Fig. 4a). Note that for not too large values of s (s < 300) the cumulative
distribution follows a power law with parameter λ ≈ 0.95. In Theorem 1 this
value corresponds to the case α = 0.05, i.e., p(n) ∝ n−0.05. Based on this, we
expect the number of clusters to grow as n0.95, i.e., close to linearly. On Fig. 5
we plot the empirical number of clusters and fit it by n0.95.

Finally, as we promised above, we show that λ can depend on the clustering
algorithm. Figure 4b shows the cumulative cluster size distribution for DBSCAN
with L = 5, k = 1. Note that λ = 1.44, so it is larger in this case. Intuitively,
the reason is that p(n) is larger for L = 5 than for L = 125. Smaller values of L
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(a) DBSCAN with L = 125, k = 1 (b) DBSCAN with L = 5, k = 1

Fig. 4. Cluster size distribution

Fig. 5. Growth of the number of clusters, DBSCAN with L = 125, k = 1

correspond to smaller ε, which means that it is harder for a new vertex to join
some existing cluster, which makes p(n) larger.

4 Graph Models

4.1 Possible Definitions

In this section, we discuss how a graph can be constructed based on the vertices
embedding produced by the preferential placement procedure.

The basic idea behind many known spatial models is that we want to increase
the probability of connecting two vertices if they have similar latent features.
Various methods can be found in the literature, which are usually combined
with some other ideas like introducing weights of vertices or taking into account
degrees of vertices (see, e.g., a survey of spatial models in [7]). We now briefly
describe some possible approaches:

– threshold model [12,31]:

P
(
(vi, vj) ∈ E

)
= I

[‖xi − xj‖2 ≤ θ
]
;
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– p-threshold model :

P
(
(vi, vj) ∈ E

)
= pI

[‖xi − xj‖2 ≤ θ
]
, 0 < p < 1 ;

– p-threshold model with random edges (as in spatial small-world models [7]):

P
(
(vi, vj) ∈ E

)
= p0 + p1I

[‖xi − xj‖2 ≤ θ
]
, 0 < p0, p1, p0 + p1 < 1 ;

– inverted distance model :

P
(
(vi, vj) ∈ E

) ∝ 1
‖xi − xj‖2 ;

– Waxman model [44]:

P
(
(vi, vj) ∈ E

) ∝ e−‖xi−xj‖2/d .

Here we denote by E the set of edges. We assume that all edges are mutually
independent, hence to describe a random graph it is enough to define the proba-
bility of each edge. Further we focus on the threshold model, however, we expect
similar results for other models.

4.2 Degree Distribution

In this section, we empirically analyze the degree distribution for the threshold
model. As before, we take Ξ to be a distribution with the density function
fβ(x) = β

(x+1)β+1 , x ≥ 0 for β = 1.5. We choose θ such that we have 5n edges in
our graph. The cumulative degree distribution for this case is presented on Fig. 6.
Observe that the cumulative degree distribution does not follow a power law.
However, it is very similar to degree distributions obtained in many real-world
networks (numerous examples can be found in [1]).

Fig. 6. Cumulative degree distribution for the threshold model

We are currently working on theoretical analysis of the degree distribution
in the threshold model. We plan to add these results, together with the empir-
ical analysis of other properties like diameter and clustering coefficient, to the
extended version of this paper.
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5 Conclusion and Future Work

In this paper, we introduced a principle called preferential placement. Our
method is designed to model a realistic clustering structure. The algorithm is
parametrized only by a distribution Ξ, and if Ξ is a Pareto distribution, which
is the most natural choice, then we essentially have only one parameter — the
exponent β. The proposed algorithm naturally models clusters and the distribu-
tion of cluster sizes follows a power law, which is a desirable property. Although
preferential placement only generates the coordinates of vertices, one can easily
construct a graph based on the obtained structure using one of the methods
discussed in this paper. We showed that applying a threshold model to the
configuration generated by preferential placement leads to a realistic degree dis-
tribution.

In this paper, we made only a first step to understanding the cluster forma-
tion in complex structures and there are many directions for future research.
First of all, more formal analysis of the distribution of cluster sizes would be
useful. As we discussed, the main problem here is the lack of any suitable formal
definition of clusters. However, one can try, e.g., to analyze clusters produced by
one of well-known clustering algorithms. Second direction is the analysis of the
obtained graphs. We are currently working on theoretical analysis of the degree
distribution in the threshold model. We also plan to analyze other properties,
like diameter and clustering coefficient.

Acknowledgements. This work is supported by Russian President grant
MK-527.2017.1.

Appendix

Proof of Theorem 1

First, recall the process of cluster formation:

– At the beginning of the process we have one vertex which forms one cluster.
– At n-th step with probability p(n) a new cluster consisting of vn is created.
– With probability 1 − p(n) new vertex joins already existing cluster C with

probability proportional to |C|.
So, we can write the following equations:

E(Ft+1(1)|St) = Ft(1)
(

1 − 1 − p(t)
t

)
+ p(t) , (1)

E(Ft+1(s)|St) = Ft(s)
(

1 − s(1 − p(t))
t

)
+ Ft(s − 1)

(s − 1)(1 − p(t))
t

, s > 1 .

(2)
Now we can take expectations of the both sides of the above equations and
analyze the behavior of EFt(s) inductively.
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Consider the case α = 0, i.e., p(n) = c. Let us prove that in this case

EFn(s) =
c(s − 1)! Γ

(
2 + 1

1−c

)

(2 − c)Γ
(
s + 1 + 1

1−c

) (n + θn,s) . (3)

where θn,s ≤ C s
1

1−c for some constant C > 0.
We prove this result by induction on s and for each s the proof is by induction

on n. Note that for n = 1 Eq. (3) holds for all s. Consider now the case s = 1.
We want to prove that

EFn(1) =
c

2 − c
(n + θn,1) .

For the inductive step we use Eq. (1) and get

E(Ft+1(1)) = EFt(1)
(

1 − 1 − c

t

)
+ c =

c

2 − c
(t + θt,1)

(
1 − 1 − c

t

)
+ c

=
c

2 − c

(
t + 1 + θt,1

(
1 − 1 − c

t

))
.

Since

C

(
1 − 1 − c

t

)
≤ C,

this finishes the proof for α = 0 and s = 1.
For s > 1 we use Eq. (2) and get

E(Ft+1(s)) = EFt(s)
(

1 − s (1 − c)
t

)
+ EFt(s − 1)

(s − 1) (1 − c)
t

=
c(s − 1)! Γ

(
2 + 1

1−c

)
(t + θt,s)

(2 − c) Γ
(
s + 1 + 1

1−c

)
(

1 − s(1 − c)
t

)

+
c(s − 1)! Γ

(
2 + 1

1−c

)
(1 − c)(t + θt,s−1)

(2 − c) Γ
(
s + 1

1−c

)
t

=
c(s − 1)! Γ

(
2 + 1

1−c

)

(2 − c) Γ
(
s + 1 + 1

1−c

)
(

t + 1 + θt,s

(
1 − s(1 − c)

t

)
+ θt,s−1

s(1 − c) + 1
t

)
.

To finish the proof we need to show that

(s − 1)
1

1−c
s(1 − c) + 1

t
≤ s

1
1−c

s(1 − c)
t

.

It is easy to show that the above inequality holds.
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Now we consider the case p(n) = cn−α for 0 < α ≤ 1. Let us prove that in
this case

EFn(s) =
c(s − 1)! Γ(3 − α)

(2 − α)Γ(s + 2 − α)
(
n1−α + θn,s

)
,

where θn,s ≤ Cnmax{0,1−2α}s1−α+ε for some constant C > 0 and for any ε > 0.
The proof is similar to the case α = 0. Again, for n = 1 the theorem holds.

Consider s = 1. We want to prove that

EFn(1) =
c

2 − α

(
n1−α + θn,1

)
.

Inductive step in this case becomes

E(Ft+1(1)) = EFt(1)
(

1 − 1 − ct−α

t

)
+ ct−α

=
c

2 − α

(
t1−α + θt,1

) (
1 − 1 − ct−α

t

)
+ ct−α

=
c

2 − α

(
t1−α − t−α + c t−2α + (2 − α)t−α + θt,1

(
1 − 1 − ct−α

t

))

=
c

2 − α

(
(t + 1)1−α + O

(
t−α−1

)
+ c t−2α + θt,1

(
1 − 1 − ct−α

t

))
.

In order to finish the proof for the case s = 1 it is sufficient to show that

O
(
t−α−1

)
+ c t−2α ≤ Ctmax{0,1−2α} 1 − ct−α

t
,

which holds for sufficiently large C.
For s > 1 we have:

E(Ft+1(s)) = EFt(s)
(

1 − s (1 − ct−α)
t

)
+ EFt(s − 1)

(s − 1) (1 − ct−α)
t

=
c(s − 1)! Γ(3 − α)

(2 − α)Γ(s + 2 − α)
(
t1−α + θt,s

) (
1 − s (1 − ct−α)

t

)

+
c(s − 2)! Γ(3 − α)

(2 − α)Γ(s + 1 − α)
(
t1−α + θt,s−1

) (s − 1) (1 − ct−α)
t

=
c(s − 1)! Γ(3 − α)

(2 − α)Γ(s + 2 − α)

(
(t + 1)1−α + O

(
t−α−1

) − c(1 − α)t−2α

+θt,s

(
1 − s (1 − ct−α)

t

)
+ θt,s−1

(s + 1 − α) (1 − ct−α)
t

)
.

In order to finish the proof, it remains to show that

O
(
t−α−1

)
+ c(1 − α)t−2α + C tmax{0,1−2α}(s − 1)1−α+ε (s + 1 − α) (1 − ct−α)

t

≤ Ctmax{0,1−2α}s1−α+ε s (1 − ct−α)
t

,
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O
(
t−α) +

t1−2αc(1 − α)

1 − ct−α
≤ Ctmax{0,1−2α} (s2−α+ε − (s + 1 − α)(s − 1)1−α+ε) ,

O
(
t−α

)
+

t1−2αc(1 − α)
1 − ct−α

≤ Ctmax{0,1−2α}s1−α+εε ,

which holds for sufficiently large C.
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Abstract. We are interested in the probability that two randomly
selected neighbors of a random vertex of degree (at least) k are adja-
cent. We evaluate this probability for a power law random intersection
graph, where each vertex is prescribed a collection of attributes and two
vertices are adjacent whenever they share a common attribute. We show
that the probability obeys the scaling k−δ as k → +∞. Our results are
mathematically rigorous. The parameter 0 ≤ δ ≤ 1 is determined by
the tail indices of power law random weights defining the links between
vertices and attributes.

Keywords: Clustering coefficient · Degree distribution · Random inter-
section graph · Complex network

1 Introduction and Results

It looks plausible, that in a social network the chances of two neighbors of a given
actor to be adjacent is a decreasing function of actor’s degree (the total number
of its neighbors). Empirical evidence of this phenomenon has been reported in
a number of papers, see, e.g., [7,8,13,15]. Theoretical explanations have been
derived in [6,13] with the aid of a hierarchical deterministic network model,
and in [2] with the aid of a random intersection graph model of an affiliation
network. We note that theoretical results [2,6,13] only address the scaling k−1,
i.e., δ = 1. In particular, they do not explain empirically observed scaling k−δ

with δ ≈ 0.75 reported in [15], see also [8]. In the present paper we develop
further the approach of [2] and address the range 0 ≤ δ < 1. The development
resorts to a more realistic fitness model of an affiliation network that accounts
for variable activities of actors and attractiveness of attributes described below.

An affiliation network defines adjacency relations between actors by using
an auxiliary set of attributes. Let V = {v1, . . . , vn} denote the set of actors
(vertices) and W = {w1, . . . , wm} denote the set of attributes. Every actor vi

is prescribed a collection of attributes and two actors vi and vj are declared
adjacent in the network if they share a common attribute. For example, in the
film actor network two actors are adjacent if they have played in the same movie,
in the collaboration network two scientists are adjacent if they have coauthored
c© Springer International Publishing AG 2017
A. Bonato et al. (Eds.): WAW 2017, LNCS 10519, pp. 90–104, 2017.
DOI: 10.1007/978-3-319-67810-8 7
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a publication, in the consumer copurchase network two consumers are adjacent
if they have purchased similar products.

A convenient model of a large affiliation network is obtained by linking
(prescribing) attributes to actors at random [9,10,12]. Furthermore, in order
to model the heterogeneity of human activity, we assign every actor vj a random
weight Yj reflecting its activity. Similarly, a random weight Xi is assigned to
an attribute wi to model its attractiveness. Now wi is linked to vj at random
and with probability proportional to the attractiveness Xi and activity Yj . The
random affiliation network obtained in this way is called a random intersection
graph, see [5].

We assume in what follows that X0,X1, . . . , Xm, Y0, Y1, . . . , Yn are indepen-
dent non-negative random variables. Furthermore, each Xi (respectively Yj) has
the same probability distribution denoted PX (respectively PY ). Given realized
values X = {Xi}m

i=1 and Y = {Yj}n
j=1 we define the random bipartite graph

HX,Y with the bipartition W ∪ V , where links {wi, vj} are inserted with proba-
bilities pij = min{1,XiYj/

√
nm} independently for each (i, j) ∈ [m] × [n]. The

random intersection graph G = G(PX , PY , n,m) defines the adjacency relation
on the vertex set V : vertices v′, v′′ ∈ V are declared adjacent (denoted v′ ∼ v′′)
whenever v′ and v′′ have a common neighbor in HX,Y . Such a neighbor belongs
to the set W and it is called a witness of the edge v′ ∼ v′′. We note that for
n,m → +∞ satisfying m/n → β for some β > 0, the random intersection graph
G admits a tunable global clustering coefficient and power law degree distribution
[3,4].

Next we introduce network characteristics studied in this paper. Given a
finite graph G and integer k = 2, 3, . . . , define the clustering coefficients

cG(k) = P
(
v∗
2 ∼ v∗

3

∣
∣v∗

2 ∼ v∗
1 , v

∗
3 ∼ v∗

1 , d(v∗
1) = k

)
, (1)

CG(k) = P
(
v∗
2 ∼ v∗

3

∣
∣v∗

2 ∼ v∗
1 , v

∗
3 ∼ v∗

1 , d(v∗
1) ≥ k

)
. (2)

Here (v∗
1 , v

∗
2 , v

∗
3) is an ordered triple of vertices of G drawn uniformly at random,

d(v) denotes the degree of a vertex v. Note that for a deterministic graph G,
coefficients (1) and (2) are the respective ratios of subgraph counts

∑
v: d(v)=k NΔ(v)

∑
v: d(v)=k

(
d(v)
2

) and

∑
v: d(v)≥k NΔ(v)

∑
v: d(v)≥k

(
d(v)
2

)
.

(3)

Here NΔ(v) and
(
d(v)
2

)
are the numbers of triangles and cherries incident to v.

Differently, for the random graph G the conditional probabilities (1) and (2) refer
to the two sources of randomness: the random sampling of vertices (v∗

1 , v
∗
2 , v

∗
3)

and the randomly graph generation mechanism. From the fact that the proba-
bility distribution of G is invariant under permutation of its vertices we obtain
that

cG(k) = P
(
v2 ∼ v3

∣
∣v2 ∼ v1, v3 ∼ v1, d(v1) = k

)
, (4)

CG(k) = P
(
v2 ∼ v3

∣
∣v2 ∼ v1, v3 ∼ v1, d(v1) ≥ k

)
. (5)
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An argument bearing on the law of large numbers suggests that for large n,m
the ratios (3) can be approximated by respective probabilities (4) and (5).

Our Theorem2 below establishes a first order asymptotics as n,m → +∞ of
the probabilities (4) and (5)

cG(k) =
(
1 + β1/2b(k)a−1(k)

)−1

+ o(1), (6)

CG(k) =
(
1 + β1/2B(k)A−1(k)

)−1

+ o(1). (7)

Here a(k), b(k) and A(k), B(k) are defined in Theorem 2 below. Our Theorem 1
describes the dependence on k of the leading term of (7). Namely, for a power
law distributions PX and PY the leading term of (7) obeys the scaling k−δ.

Theorem 1. Let α, γ > 5 and β, cX , cY > 0. Let m,n → ∞. Assume that
m/n → β. Suppose that as t → +∞

P(X > t) = (cX + o(1))t−α, P(Y > t) = (cY + o(1))t−γ . (8)

Then for δ = ((α − γ − 1) ∧ 1) ∨ (−1) we have as k → +∞
B(k)
A(k)

= (c + o(1))kδ. (9)

The constant c = c(α, γ, β, cX , cY ) > 0 admits an explicit expression in terms of
α, γ, β, cX , cY .

It follows from (9) that for large n and m the clustering coefficient CG(k) obeys
the scaling k−δ, where 0 ≤ δ ≤ 1. A related result establishing k−1 scaling for
cG(k) has been shown in [2] in the case where PY is heavy tailed and PX is
degenerate (P (Xi = c) = 1 for some c > 0).

We note the “phase transition” in the scaling k−δ at α = γ +2: for α ≥ γ +2
we have δ = 1 and for α < γ + 2 we have δ < 1. Our explanation of this
phenomenon is as follows. Every attribute wi forms a clique in G induced by
vertices linked to wi. Given the weight Xi (of wi), the expected size of the
clique is proportional to Xi. Now, for relatively small α (namely, α < γ + 2) the
sequence X1,X2, . . . , Xm contains sufficiently many large weights so that the
corresponding large cliques (formed by attributes) have a tangible effect on the
probability (2). Indeed, large cliques may increase the value of (2) considerably.

The proof of Theorem1 uses known results about the tail asymptotics of
randomly stopped sums of heavy tailed independent random variables in the
case where the random number of summands is heavy tailed [1]. Similar results
are likely to be true also for the local probabilities of randomly stopped sums
(work in progress). They would extend Theorem 1 to cG(k) as well.

Before formulating Theorem 2 we introduce some more notation. We denote
ar = EXr

0 , br = EY r
0 . Let β ∈ (0,+∞). Let Λk, k = 0, 1, 2 be mixed Poisson

random variables with the distributions

P(Λk = s) = Ee−λkλs
k/s!, s = 0, 1, . . . .
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Here λ0 = Y1β
1/2a1 and λk = Xkβ−1/2b1 for k = 1, 2. Furthermore, for r =

0, 1, 2, . . . and k = 0, 1, 2, let Λ
(r)
k be a non-negative integer valued random

variable with the distribution

P(Λ(r)
k = s) =

(
Eλr

k

)−1
E

(
e−λkλs+r

k /s!
)
, s = 0, 1, 2, . . . .

Note that Λ
(0)
k have the same probability distribution as Λk. Let τi, i ≥ 1 be

random variables with the probability distribution

P(τi = s) =
s + 1
EΛ1

P(Λ1 = s + 1), s = 0, 1, 2 . . . .

Assuming that random variables {τi, i ≥ 1} are independent of Λ
(r)
0 we introduce

the random variables

d
(r)
∗ =

Λ
(r)
0∑

j=0

τj , r = 0, 1, 2. (10)

We denote for short d∗ = d
(0)
∗ =

∑Λ0
j=1 τj .

Theorem 2. Let m,n → ∞. Assume that m/n → β for some β ∈ (0,+∞).
Suppose that EX4

1 < ∞ and EY 4
1 < ∞. Then for each integer k ≥ 2 relations

(6) and (7) hold with

a(k) = a3b
3
1P

(
d
(1)
∗ + Λ

(3)
1 = k − 2

)
, b(k) = a2

2b
2
1b2P

(
d
(2)
∗ + Λ

(2)
1 + Λ

(2)
2 = k − 2

)
,

A(k) = a3b
3
1P

(
d
(1)
∗ + Λ

(3)
1 ≥ k − 2

)
, B(k) = a2

2b
2
1b2P

(
d
(2)
∗ + Λ

(2)
1 + Λ

(2)
2 ≥ k − 2

)
.

Here we assume that random variables d
(1)
∗ and Λ

(3)
1 are independent. Further-

more, we assume that random variables d
(2)
∗ , Λ

(2)
1 and Λ

(2)
1 are independent and

Λ
(2)
2 has the same distribution as Λ

(2)
1 .

2 Proof

We first prove Theorem 2 and then Theorem 1. Before the proof we introduce
some notation. We denote {1, 2, . . . , r} = [r] and (x)k = x(x − 1) · · · (x − k + 1).
We denote by {wi → vj} the event that wi and vj are neighbors in the bipartite
graph H = HX,Y . We denote

Iij = I{wi→vj}, λij =
XiYj√

mn
.

Let P∗ = PX1,Y1 and P∗∗ = PX1,X2,Y1 denote the conditional probabilities given
X1, Y1 and X1,X2, Y1 respectively. Furthermore, for i = 1, 2, we denote by PXi

and PYi
the conditional probabilities given Xi and Yi respectively.
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Proof of Theorem 2. We only prove (6). The proof of (7) is much the same.
Introduce events

A = {v1 ∼ v2, v1 ∼ v3, v2 ∼ v3}, B = {v1 ∼ v2, v1 ∼ v3}, K = {d(v1) = k}.

We derive (6) from the identity

P(v2 ∼ v3 | v1 ∼ v2, v1 ∼ v3, d(v1) = k) =
P(A ∩ K)
P(B ∩ K)

(11)

combined with the relations shown below

P(A ∩ K) = n−2β−1/2a(k) + o(n−2), (12)
P(B ∩ K) = n−2β−1/2a(k) + n−2b(k) + o(n−2). (13)

Proof of (12) and (13). Introduce the sets of indices

C1 = [m], C2 = {(i, j) : i �= j; i, j ∈ [m]},

C3 = {(i, j, k) : i �= j �= k �= i; i, j, k ∈ [m]}

and split

B = B1 ∪ B2, A = B1 ∪ B3, Bk =
⋃

x∈Ck

Bk.x, k = 1, 2, 3,

where

B1.i = {wi → v1, wi → v2, wi → v3},

B2.(i,j) = {wi → v1, wi → v2, wj → v1, wj → v3},

B3.(i,j,k) = {wi → v1, wi → v2, wj → v1, wj → v3, wk → v2, wk → v3}.

We write

P(A ∩ K) = P(B1 ∩ K) + P((B3 ∩ K) \ B1), (14)
P(B ∩ K) = P(B1 ∩ K) + P(B2 ∩ K) − P(B1 ∩ B2 ∩ K) (15)

and evaluate P(Bk ∩ K), for k = 1, 2, using inclusion-exclusion,
∑

x∈Ck

P(Bk.x ∩ K) −
∑

{x,y}⊂Ck

P(Bk.x ∩ Bk.y) ≤ P(Bk ∩ K) ≤
∑

x∈Ck

P(Bk.x ∩ K).

(16)
We show in Lemma 2 below that the quantities

Rk :=
∑

{x,y}⊂Ck

P(Bk.x ∩ Bk.y), k = 1, 2, (17)

R3 := P((B3 ∩ K) \ B1), R4 := P(B1 ∩ B2 ∩ K)
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are negligibly small. More precisely, we establish the bounds Ri = O(n−3),
1 ≤ i ≤ 4. Invoking these bounds in (14)–(16) we obtain

P(A ∩ K) = P(B1 ∩ K) + o(n−2) = mP(B1.1 ∩ K) + o(n−2), (18)
P(B ∩ K) = P(B1 ∩ K) + P(B2 ∩ K) + o(n−2) (19)

= mP(B1.1 ∩ K) + (m)2P(B2.(1,2) ∩ K) + o(n−2).

In the remaining part of the proof we evaluate the probabilities

p1 := P(B1.1 ∩ K) and p2 := P(B2.(1,2) ∩ K).

We shall show that

(nm)3/2p1 = a(k) + o(1) and (nm)2p2 = b(k) + o(1). (20)

Finally, invoking (20) in (18), (19) we obtain (12), (13) thus proving (6).
It remains to prove (20). For convenience we divide the proof into three steps.

For this part of the proof we need some more notation. Let d∗
1 (respectively d∗

2)
denote the number of neighbors of v1 in V ∗ = {v4, v5, · · · , vn} witnessed by the
attribute w1 (respectively w2). Let d′

1 (respectively d′
2) denote the number of

neighbors of v1 in V ∗ witnessed by some attributes from W ′
1 = {w2, w3, . . . , wm}

(respectively W ′
2 = {w3, w4, . . . , wm}).

Step 1. We firstly show that

p1 = P
(
B1.1 ∩ {d∗

1 + d′
1 = k − 2})

+ O(n−4), (21)

p2 = P
(
B2.(1,2) ∩ {d∗

1 + d∗
2 + d′

2 = k − 2})
+ O(n−5). (22)

To show (21) we count neighbors of v1 in V ∗. The number of such neighbors is
denoted d∗(v1). We have d∗(v1) = d∗

1 +d′
1 −d0, where d0 is the number of neigh-

bors of v1 witnessed by w1 and by some attribute(s) wi ∈ W ′
1 simultaneously.

Combining the inequality

d0 ≤
n∑

j=4

(

I1jI11

m∑

i=2

IijIi1

)

with Markov’s inequality we obtain

P
(
B1.1 ∩ {d0 ≥ 1}) ≤ EIB1.1d0 ≤ (n − 3)(m − 1)EIB1.1I14I11I24I21.

Furthermore, invoking the inequality

EIB1.1I14I11I24I21 = Ep11p12p13p14p21p24 ≤ a2a4b
2
1b

2
2(nm)−3

we obtain P
(
B1.1 ∩ {d0 ≥ 1}) = O(n−4). Now (21) follows from the fact that

the event B1.1 implies d(v1) = d∗(v1) + 2.
The proof of (22) is almost the same. We color w1 red, w2 green and all

wi ∈ W ′
2 we color yellow. Let d′

0 denote the number of neighbors of v1 witnessed
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by at least two attributes of different colors. Note that the number d∗(v1) of
neighbors of v1 in V ∗ satisfies, by inclusion-exclusion,

d∗
1 + d∗

2 + d′
2 − 2d′

0 ≤ d∗(v1) ≤ d∗
1 + d∗

2 + d′
2. (23)

We combine the inequality

d′
0 ≤

n∑

j=4

(

I11I1jI21I2j + (I11I1j + I21I2j)
m∑

i=3

Ii1Iij

)

with the identity IB2.(1,2)I11I21 = IB2.(1,2) and obtain, by Markov’s inequality and
symmetry, that

P
(
B2.(1,2) ∩ {d′

0 ≥ 1}) ≤ EIB2.(1,2)d
′
0 ≤ (n − 3)EIB2.(1,2)

(
I14I24 + 2(m − 2)I14I31I34

)
.

Furthermore, invoking the inequalities

EIB2.(1,2)I14I24 = Ep11p12p14p21p23p24 ≤ a2
3b

2
1b

2
2(mn)−3,

EIB2.(1,2)I14I31I34 = Ep11p12p14p21p23p31p34 ≤ a2
2a3b

2
1b2b3(mn)−7/2

we obtain P
(
B2.(1,2) ∩ {d′

0 ≥ 1}) = O(n−5). Now (22) follows from (23) and the
identity d(v1) = d∗(v1) + 2.

Step 2. We secondly show that

(nm)3/2p1 = b21E
(
X3

1Y1P
(
Λ1 + d∗ = k − 2

∣
∣ X1, Y1

))
+ o(1), (24)

(nm)2p2 = b21E
(
X2

1X2
2Y1P

(
Λ1 + Λ2 + d∗ = k − 2

∣
∣ X1,X2, Y1

))
+ o(1).(25)

Let us prove (24). We have

P
(
B1.1 ∩ {d∗

1 + d′
1 = k − 2}) = b21E

(
p11p12p13P

∗(d∗
1 + d′

1 = k − 2)
)

(26)
= b21E

(
λ11λ12λ13P

∗(d∗
1 + d′

1 = k − 2)
)
+ o((nm)−3/2)

and

(nm)3/2E
(
λ11λ12λ13P

∗(d∗
1 + d′

1 = k − 2)
)
= E
(
X3

1Y1P
∗(d∗

1 + d′
1 = k − 2)

)
(27)

= E
(
X3

1Y1P
∗(d∗ + Λ1 = k − 2)

)
+ o(1).

Here (27) follows from Lemma 1, by Lebesgue’s dominated convergence theorem.
Furthermore, (26) follows from the inequalities

λ11λ12λ13 ≥ p11p12p13 ≥ λ11λ12λ13

(
1 − I{λ11>1} − I{λ12>1} − I{λ13>1}

)
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combined with the simple bound

E
(
λ11λ12λ13(I{λ11>1} + I{λ12>1} + I{λ13>1})

)
= o
(
E
(
λ11λ12λ13

))
= o
(
(nm)−3/2).

Note that (21), (26), (27) imply (24).
The proof of (25) is much the same. We have

P
(
B2.(1,2) ∩ {d∗

1 + d∗
2 + d′

2 = k − 2})

= E
(
p11p12p21p23P∗∗(d∗

1 + d∗
2 + d′

2 = k − 2)
)

= E
(
λ11λ12λ21λ23P∗∗(d∗

1 + d′
1 = k − 2)

)
+ o((nm)−2)

and

(nm)2E
(
λ11λ12λ21λ23P∗∗(d∗

1 + d∗
2 + d′

2 = k − 2)
)

= b21E
(
X2

1X2
2Y 2

1 P
∗∗(d∗

1 + d∗
2 + d′

2 = k − 2)
)

= b21E
(
X2

1X2
2Y 2

1 P
∗∗(d∗ + Λ1 + Λ2 = k − 2)

)
+ o(1).

Step 3. In this final step we show that

E
(
X3

1Y1P∗(d∗ + Λ1 = k − 2)
)

= a3b1P(d(1)∗ + Λ
(3)
1 = k − 2). (28)

E
(
X2

1X2
2Y1P∗∗(d∗ + Λ1 + Λ2 = k − 2)

)
(29)

= a2
2b2P(d(2)∗ + Λ

(2)
1 + Λ

(2)
2 = k − 2).

In the proof we use the observation that

E
(
Y r
1 PY1(d∗ = s)

)
= E

∑

i≥0

⎛

⎝Y r
1 PY1(Λ0 = i)P

⎛

⎝
i∑

j=0

τj = s

⎞

⎠

⎞

⎠

=
∑

i≥0

⎛

⎝brP
(
Λ
(r)
0 = i

)
P

⎛

⎝
i∑

j=0

τj = s

⎞

⎠

⎞

⎠

= brP
(
d
(r)
∗ = s

)
.

To show (28) we write the quantity on the left in the form

E

(

X3
1Y1

∑

s+t=k−2

PY1

(
d∗ = s

) · PX1(Λ1 = t)

)

=
∑

s+t=k−2

b1P
(
d
(1)
∗ = s

) · a3P
(
Λ
(3)
1 = t

)

= b1a3P
(
d
(1)
∗ + Λ

(3)
1 = k − 2

)
.
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To show (29) we write the quantity on the left in the form

E

⎛

⎝X2
1X2

2Y 2
1

∑

s+t+u=k−2

PY1

(
d∗ = s

) · PX1 (Λ1 = t) · PX2 (Λ2 = u)

⎞

⎠

=
∑

s+t+u=k−2

b2P
(
d
(2)
∗ = s

) · a2P
(
Λ
(2)
1 = t

) · a2P
(
Λ
(2)
2 = u

)

= b2a2
2P
(
d
(2)
∗ + Λ

(2)
1 + Λ

(2)
2 = k − 2

)
.

��
Proof of Theorem 1. In the proof we use shorthand notation Ã(k) = P(d(1)∗ +
Λ
(3)
1 ≥ k) and B̃(k) = P(d(2)∗ + Λ

(2)
1 + Λ

(2)
2 ≥ k). Given two positive functions

f(t) and g(t) we denote f(t) � g(t) whenever f(t)/g(t) → 1 as t → +∞.
Using asymptotic formulas for the tail probabilities of randomly stopped

sums d
(r)
∗ reported in [1], and the formulas for the tail probabilities of Λ

(r)
k

shown in Lemma 3, we obtain

P(d(1)∗ ≥ k) � cY
γ

γ − 1
aγ−1
2 bγ−2

1 k1−γ , (30)

P(d(2)∗ ≥ k) � cY
γ

γ − 2
aγ−2
2 bγ−2

1 b−1
2 k2−γ ,

P(Λ(r)
1 ≥ k) � cX

α

α − r
β(r−α)/2a−1

r bα−r
1 kr−α, r = 2, 3.

Next we combine these asymptotic formulas with the aid of Lemma 4. We
have

Ã(k) � P(d(1)∗ ≥ k), for α > γ + 2, (31)

Ã(k) � P(d(1)∗ ≥ k) + P(Λ(3)
1 ≥ k), for α = γ + 2,

Ã(k) � P(Λ(3)
1 ≥ k), for α < γ + 2

and

B̃(k) � P(d(2)∗ ≥ k), for α > γ, (32)

B̃(k) � P(d(2)∗ ≥ k) + P(Λ(2)
1 ≥ k) + P(Λ(2)

2 ≥ k), for α = γ,

B̃(k) � P(Λ(2)
1 ≥ k) + P(Λ(2)

2 ≥ k), for α < γ.

Finally, from (30), (31), (32) we derive (9). ��

3 Auxiliary Lemmas

Let d̃∗
1 (respectively d̃∗

2) denote the number vertices in V ∗ = {v4, v5, · · · , vn}
linked to the attribute w1 (respectively w2). Let x1, x2, y1 ≥ 0. For k = 1, 2, let
d̃k, Λ̃k denote the random variables d̃∗

k, Λk conditioned on the event Xk = xk
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(to get d̃k, Λ̃k we replace Xk by a non-random number xk in the definition of d̃∗
k,

Λk). Let d̂1, d̂2 and d̂∗ denote the random variables d′
1, d′

2 and d∗ conditioned on
the event Y1 = y1 (to get d̂1, d̂2 and d̂∗ we replace Y1 by a non-random number
y1 in the definition of d′

1, d′
2 and d∗).

Lemma 1. Let β > 0. Let n,m → +∞. Assume that m/n → β. Assume that
EX2

i < ∞ and EYj < ∞. For any x1, x2, y1 ≥ 0 and s, t, u = 0, 1, 2, . . . , we have

P(d̂1 = s, d̃1 = t) → P(d̂∗ = s, Λ̃1 = t) = P(d̂∗ = s)P(Λ̃1 = t), (33)

P(d̂2 = s, d̃1 = t, d̃2 = u) → P(d̂∗ = s, Λ̃1 = t, Λ̃2 = u) (34)

= P(d̂∗ = s)P(Λ̃1 = t)P(Λ̃2 = u).

We remark that (33) tells us that random vector (d̂1, d̃1) converges in dis-
tribution to the random vector (d̂∗, Λ̃1). Similarly, (34) tells us that random
vector (d̂1, d̃1, d̃2) converges in distribution to the random vector (d̂∗, Λ̃1, Λ̃2). In
particular, (33) implies for any r = 0, 1, 2, . . . that

P(d̂1 + d̃1 ≥ r) → P(d̂∗ + Λ̃1 ≥ r) and P(d̂1 + d̃1 = r) → P(d̂∗ + Λ̃1 = r)

as n,m → +∞. (34) implies that

P(d̂2 + d̃1 + d̃2 ≥ r) → P(d̂∗ + Λ̃1 + Λ̃2 ≥ r),

P(d̂2 + d̃1 + d̃2 = r) → P(d̂∗ + Λ̃1 + Λ̃2 = r).

Proof of Lemma 1. Before the proof we introduce some notation. Let P1 denote
the conditional probability given {Y4, Y5, . . . , Yn}. For a > 0 and s = 0, 1, 2 . . .
we denote by fs(a) = ase−a/s! the Poisson probability. Below we use the fact
that |fs(a) − fs(b)| ≤ |a − b|. Furthermore we denote

λ̃k = xkβ−1/2b1 and λ̃3|k =
n∑

j=4

λ̃kj , λ̃4|k =
n∑

j=4

p̃kj , k = 1, 2.

Here p̃kj , λ̃kj are defined in the same way as pkj , λkj , but with Xk replaced by
xk, for k = 1, 2.

Proof of (33). We have

P(d̂1 = s, d̃1 = t) = EP1(d̂1 = s, d̃1 = t) = E
(
P1(d̂1 = s)P1(d̃1 = t)

)
. (35)

Given {Y4, Y5, . . . , Yn}, the random variable d̃1 is a sum of independent Bernoulli
random variables. We invoke Le Cam’s inequality, see, e.g., [14],

∣
∣P1(d̃1 = t) − ft(λ̃4|1)| ≤

n∑

j=4

p̃21j =: R∗
1 (36)
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and use simple inequalities

∣
∣ft(λ̃4|1) − ft(λ̃3|1)

∣
∣ ≤ ∣

∣λ̃4|1 − λ̃3|1
∣
∣ ≤

n∑

j=4

λ̃1jI{λ̃1j>1} =: R∗
2, (37)

∣
∣ft(λ̃3|1) − ft(λ̃1)

∣
∣ ≤ |λ̃3|1 − λ̃1| = x1

∣
∣
∣
∣
∣
∣

√
n/m

⎛

⎝n−1
n∑

j=4

Yj

⎞

⎠ − β−1/2b1

∣
∣
∣
∣
∣
∣
. (38)

Note that
∣
∣ft(λ̃3|1) − ft(λ̃1)

∣
∣ → 0 almost surely, by the law of large numbers.

Furthermore,

ER∗
2 = (n − 4)(nm)−1/2x1EY4I{x1Y4>

√
nm} = o(1),

because EY4I{x1Y4>
√

nm} = o(1). We similarly show that ER∗
1 = o(1). For any

ε ∈ (0, 1) the inequality p̃21j ≤ λ̃1j

(
ε + I{λ̃1j>ε}

)
implies

ER∗
1 = (n−4)Ep̃2i4 ≤ (n−4)Eλ̃14

(
ε+I{λ̃14>ε}

)
≤ (n−4)(nm)−1/2

(
x1b1ε+o(1)

)
.

We obtain the bound ER∗
1 ≤ β−1/2x1b1ε + o(1), which implies ER∗

1 = o(1).
Now it follows from (36)–(38) that

E
(
P1(d̂1 = s)P1(d̃1 = t)

)
= E

(
P1(d̂1 = s)ft(λ̃1)

)
+ o(1) (39)

= P(d̂1 = s)ft(λ̃1) + o(1).

Next we use the fact that P(d̂1 = s) → P(d̂∗ = s). The proof of this fact repeats
literally the proof of statement (ii) of Theorem 1 of [3]. Finally, from (35) and
(39) we obtain (33):

P(d̂1 = s, d̃1 = t) = E
(
P1(d̂1 = s)P1(d̃1 = t)

) → P(d̂∗ = s)ft(λ̃1).

Proof of (34). It is similar to that of (33). We have

P
(
d̂2 = s, d̃1 = t, d̃2 = u

)
= E

(
P1(d̂2 = s)P1(d̃1 = t)P1(d̃2 = u)

)
. (40)

By the same argument as above (see (36)–(38)), we obtain

E
(
P1(d̂2 = s)P1(d̃1 = t)P1(d̃2 = u)

)
= E
(
P1(d̂2 = s)ft(λ̃1)P1(d̃2 = u)

)
+ o(1) (41)

= E
(
P1(d̂2 = s)ft(λ̃1)fu(λ̃2)

)
+ o(1)

= ft(λ̃1)fu(λ̃2)P(d̂2 = s) + o(1).

Finally, we use the fact that P(d̂2 = s) → P(d̂∗ = s). The proof of this fact
repeats literally the proof of statement (ii) of Theorem 1 of [3]. Now from (40),
(41) we obtain (34). ��
Lemma 2. The quantities Ri, 1 ≤ i ≤ 4 defined in (17) satisfy Ri = O(n−3).
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Proof of Lemma 2. The bound R1 = O(n−3) is obtained from the identity R1 =(
m
2

)
P(B1.1 ∩ B1.2) and inequalities

P(B1.1 ∩ B1.2) = EI11I12I13I21I22I23

≤ Eλ11λ12λ13λ21λ22λ23 = a2
3b

3
2(nm)−3.

The bound R2 = O(n−3) follows from inequalities

R2 =
∑

{(i,j),(i,r)}⊂C2,j 
=r

P(B2.(i,j) ∩ B2.(i,r))

+
∑

{(i,j),(k,j)}⊂C2,i 
=k

P(B2.(i,j) ∩ B2.(k,j))

+
∑

{(i,j),(j,i)}⊂C2

P(B2.(i,j) ∩ B2.(j,i))

+
∑

{(i,j),(k,r)}⊂C2,i 
=j 
=k 
=r 
=i

P(B2.(i,j) ∩ B2.(k,r))

= 2−1(m)3P(B2.(1,2) ∩ B2.(1,3)) + 2−1(m)3P(B2.(1,3) ∩ B2.(2,3))

+ (m)2P(B2.(1,2) ∩ B2.(2,1)) + 2−1(m)4P(B2.(1,2) ∩ B2.(3,4))

= 2−1(m)3Ep11p12p21p23p31p33 + 2−1(m)3Ep11p12p21p22p31p33

+ (m)2Ep11p12p13p21p22p23 + 2−1(m)4Ep11p12p21p23p31p32p41p43

≤ (m)3
a3
2b1b2b3
(nm)3

+ (m)2
a2
3b

3
2

(nm)3
+ 2−1(m)4

a4
2b

2
2b4

(nm)4
.

The bound R3 = O(n−3) is obtained from the inequalities

P(B3) ≤
∑

x∈C3

P(B3.x) = (m)3P(B3.(1,2,3))

= (m)3Ep11p12p21p23p32p33 ≤ (m)3
(nm)3

a3
2b

3
2.

The bound R4 = O(n−3) is obtained from the inequalities

P(B1 ∩ B2) ≤
∑

y∈C2

P(B1 ∩ B2.y) = m(m − 1)P(B1 ∩ B2.(1,2)), (42)

P(B1 ∩ B2.(1,2)) ≤ P(B1.1 ∩ B2.(1,2)) + P(B1.2 ∩ B2.(1,2))
+ (m − 2)P(B1.3 ∩ B2.(1,2))

and bounds

P(B1.1 ∩ B2.(1,2)) = P(B1.2 ∩ B2.(1,2)) = Ep11p12p13p21p23 ≤ a2a3b1b
2
2(nm)−5/2,

P(B1.3 ∩ B2.(1,2)) = Ep11p12p21p23p31p32p33 ≤ a2
2a3b

2
2b3(nm)−7/2.

��
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Lemma 3. Let α, c > 0. Let r be an integer and 0 ≤ r < α. Let t → +∞. For
a non-negative random variable Z satisfying P(Z > t) = (c + o(1))t−α we have

E
(
Zr

I{Z>t}
)

= (c + o(1))α(α − r)−1tr−α. (43)

Denote hr = EZr. For a random variable ΛZ with the distribution P(Λ(r)
Z =

k) = h−1
r E

(
e−ZZk+r/k!

)
, k = 0, 1, 2, . . . , we have

P(Λ(r)
Z > t) = (1+o(1))h−1

r E
(
Zr

I{Z>t}
)

= (1+o(1))h−1
r cα(α−r)−1tr−α. (44)

Proof of Lemma 3. Denote F (x) = P(Z ≤ x) = 1 − F̄ (x). To show (43) for
r = 1, 2, . . . we apply integration by parts formula for the Lebesgue-Stieltjes
integral

E(Zr
I{Z>t}

)
=

∫ +∞

t

xrdF (x) = −
∫ +∞

t

xrdF̄ (x)

= trF̄ (t) +
∫ +∞

t

rxr−1F̄ (x)dx

and invoke F̄ (x) = P(Z > x) = (c + o(1))x−α.
Proof of (44). Fix r. For s, t, x > 0 and k = 0, 1, 2, . . . we denote

S(k)
x (s) :=

∑

i<s

e−xxi+k/i!, S̄(k)
x (t) :=

∑

i≥t

e−xxi+k/i!

For 0 < s < x < t we will use the inequalities (see [11])

S(0)
x (s) ≤ es−x(x/s)s and S̄(0)

x (t) ≤ et−x(x/t)t. (45)

Given 0 < ε < 1 we write for short t1 = t(1 − ε), t2 = t(1 + ε) and split the
probability

P(Λ(r)
Z > t) = h−1

r ES̄
(r)
Z (t) = h−1

r (I1 + I2 + I3), Ik = ES̄
(r)
Z (t)I{Z∈Ak},

A1 = [0, t1), A2 = [t1, t2], A3 = (t2,+∞).

We let ε = t−1/3 and evaluate I1, I2 and I3. The second inequality of (45) implies

I1 = E
(
ZrS̄

(0)
Z (t)I{Z<t1}

) ≤ E
(
e−ZZt+r(e/t)t

I{Z<t1}
) ≤ e−t1tt+r

1 (e/t)t. (46)

In the last step we used the fact that z → e−zzt+r is an increasing function on
(0, t1). Furthermore, the quantity on the right of (46) is less than

tret−t1(t1/t)t = treεt(1 − ε)t = tretε+t ln(1−ε) ≤ tre−tε2/2 = o(tr−α).

Hence I1 = o(tr−α). While estimating I2 we use the inequalities t−α
1 − t−α

2 ≤
c′αεt−α−1 and S̄

(0)
x (t) ≤ 1. We obtain

I2 ≤ EZr
I{t1≤Z≤t2} ≤ tr2P(t1 ≤ Z ≤ t2) = tr2(t

−α
2 − t−α

1 )c(1 + o(1)) = o(tr−α).



Correlation Between Clustering and Degree in Affiliation Networks 103

We finally evaluate I3. From the identity S
(0)
x (t)+S̄

(0)
x (t) = 1 we obtain S̄

(r)
x (t) =

xr
(
1 − S

(0)
x (t)

)
. Using this expression we write I3 in the form

I3 = E
(
Zr

I{Z>t2}
)

+ R, where R = E
(
ZrS

(0)
Z (t)I{Z>t2}

)
.

Note that (43) implies

E
(
Zr

I{Z>t2}
)

= (c + o(1))α(α − r)−1tr−α.

We complete the proof by showing that R = o(tr−α). The first inequality of (45)
implies

R ≤ E
(
Zt+re−Z(e/t)t

I{Z>t2}
) ≤ tt+r

2 e−t2(e/t)t = tr2e
−εt(1 + ε)t

≤ tr2e
−ε2t/4 = o(tr−α).

In the second inequality we used the fact that the function z → zt+re−z decreases
on (t2,+∞). In the last inequality we estimated ln(1 + ε)t = t ln(1 + ε) ≤
t(ε − ε2/4). ��

In the next lemma we collect several simple facts used in the proof of
Theorem 1.

Lemma 4. Let α ≥ β > 0 and a, b > 0. Let t → +∞. Let η, ξ be independent
non-negative random variables. Assume that

P(η > t) = (a + o(1))t−α and P(ξ > t) = (b + o(1))t−β .

Put c = a + b for α = β, and c = b for α > β. We have

P(η + ξ > t) = (c + o(1))t−β .
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