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Abstract. In this paper, the problems related on spectrum sensing in Cognitive
Radio (CR) devices are discussed. In this context, the conventional mechanisms
require that the operation signal sampling would be performed at least at the
Nyquist rate and also allowing only narrowband sensing operation or wideband
sensing limited by sensing continuous narrowband channels. Therefore, this
problem is approached from the Compressive Sensing (CS) approach, which is a
proposal that reduces the dimensionality of the signals, and therefore can be
applied to sub-Nyquist sampling allowing the wideband spectrum sensing
operation. In this context, it is proposed to use Signal representation, coding
signal (sampling) and reconstruction, in this way signal representation is per-
formed by hard thresholding, sampling the wideband signal is performed using
the random demodulator and reconstruction through implementation recon-
struction algorithm based on modified orthogonal matching pursuit (OMP). As a
whole, the wideband spectrum sensing mechanism proposed verifies the
methodological steps are valid and applicable to this type of scenario, and also
allows to check the advantages and disadvantages of the sampling mechanism
used as the reconstruction algorithm implemented.

Keywords: Compressive sensing � Convex programming � Sampling �
Spectrum sensing � Random demodulator

1 Introduction

Currently, the demand for wireless communication services has grown exponentially,
this has generated some overcrowded band [1], because they are used by commercial
systems. However, there are frequencies bands which are sub-used [2], like TV Bands,
those band offer a great opportunity to solve this problem. Therefore, there are spectral
holes that are permanent in some cases and in others, occur at certain times on some
frequency bands; which implies a dilemma, because users from some services such as
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mobile, do not have enough spectrum to transmit, but on the other hand, some spectral
bands are not completely used. This happens due to the current static spectrum allo-
cation strategy, and consequently dynamic spectrum access (DSA) is proposed as a
solution strategy.

So, the technology which can help to implement devices with DSA capabilities is
Cognitive Radio. This technology allows changing the parameters of the devices and
the network itself in order to establish an efficient communication in terms of radio
resource use, but this communication must not interfere with the users who have a legal
concession of the band. CR devices have 3 steps to work and do the dynamic channel’s
assignment which are: Spectrum sensing, Radio Environment analysis and Transmis-
sion Parameters adjustment. Spectrum sensing is known as the CR enabler and it must
be done continuously in the CR for giving key data such as traffic and noise statistics,
channel state, White Spaces information, and so on, to finally do the transmission
parameter adjustment, and doing so allowing the CR to adapt the environment

However, spectrum sensing is a task that involves significant challenges from the
perspective of the computational resources required, and to implement this function
using traditional methods such as the energy detector [3, 4], sensing per adapted filters
[4, 5] sensed by cyclo-stationary characteristics [4, 6] and a wavelet detector [7, 8]
among others, involves sampling the broadband spectrum at rates above the Nyquist
rate; this is the reason why the new paradigm implemented called Compressive Sensing
(CS) [9, 10] is so appealing; it provides an efficient way to sample and process sparse
signals or signals that can be adequately approximated by sparse signals, in other
words, those which can be approximated by an expansion in terms of a suitable base,
that only has a few significant terms. Therefore, to solve the problems of spectrum
sensing it is necessary to establish a set of methodological steps for the developing of
sub-Nyquist sampling sensing in wideband signals. In addition, proposing an
approximation with sensing algorithms for wideband signals is key to solve the sam-
pling problem in rates below the Nyquist rate, and doing so improving the processing
capacity requirements, which are proportional to the number of samples to process. In
the same way, an alternative solution for solving this problem will be generated, which
compared with the traditional spectrum techniques, it will allow to sense narrowband
signals and wideband signals in sequential way.

Then, using the frequency domain sparse property of the wireless signals in outdoor
scenarios [11], it is proposed a methodology for the use of CS in CR to solve spectrum
sensing problem in wideband signals. The band of interest is divided into a finite
number of spectral bands, in which the presence or absence of carriers through the
reconstruction of the sampled spectrum is examined. The sampling process is per-
formed with a random demodulator proposed in [11], and the reconstruction of the
same for the identification the occupied bands by means of identifying the presence or
absence of carrier is performed with the convex relaxation algorithm based on mini-
mizing the norm ‘1.

This paper is organized as follows: In Sect. 2 the reference framework is described,
then in Sect. 3 the methodology based on the proposed steps is defined in Sect. 4 the
results are shown, and finally in Sect. 5 the conclusions of the study are shown.
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2 Reference Framework

In the compressive sensing paradigm [14], it is assumed that a signal z 2 R
n is formed

by samples taken at the Nyquist rate; this signal, in turn, can be represented by an
sparse approximation in a transformed domain, wherein, denoting by U the matrix of
size n� n which represents the transformation between the original signal domain and
the domain in which the signal is sparse, and assuming that in the transformed domain,
the signal x 2 R

n is described as x ¼ Uz and has significant components only, where
k\\n and the remaining components are approximately zero. Therefore it is said that
the signal x 2 R

n is k-sparse, which is represented as xk k0� k, where the operator xk kp
denotes vector norm ‘p of x when p ¼ 0, and is not according with triangular inequality
then xk k0:¼ suppj j and represent cardinality of x vector support, and the ‘p rule is
defined as shown in Eq. 1.

xk kp¼
supp xð Þj j para p ¼ 0Pn
i¼1 xij jp

� �1
p para p 2 1;1½ Þ

maxi¼1;2;3;...;n xij j para p ¼ 1

8<: ð1Þ

It may be interpreted manner not so precise, but highly illustrative, that compres-
sive sensing allows sampling at the Nyquist rate followed by a sub-sampling performed
by a matrix A of size m� n, where m\ n, therefore, the process of making m linear
measurement by an acquisition system, can be represented mathematically as indicated
by Eq. 2.

y ¼ Ax ð2Þ

Where y 2 R
m is the measurements vector.

To ensure the recovery of only the original signal from the linear measurements y,
the sensing matrix A must satisfy, generally, the restricted isometry property
(RIP) [14], which is illustrated in the following definition.

Definition 1. A matrix A satisfies the restricted isometry property of order k, if a
dk 2 ð0; 1Þ such that

ð1� dkÞ xk k22� Axk k22�ð1þ dkÞ xk k22 ð3Þ

For all x 2 Sk , where Sk is the set of all k-sparse signals.
If a matrix A satisfies the restricted isometry property of order 2k, then from Eq. 3 it

can be interpreted that the matrix A preserves the distance of any pair of k-sparse
vectors.

The problem of reconstructing the signal x 2 R
n from the measurement vector

y 2 R
m, can be done using algorithms based on convex relaxation which are a key

focus of the sparse approach; they replace the combinatorial function ‘0 with the
convex function ‘1, which converts the combinatorial problem in a convex opti-
mization problem [13], the ‘1 norm is the convex function which is most approximated
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to the ‘0 function. The natural approach, from which the sparse approximation problem
addressed, is to find the sparse solution y ¼ Ax, by solving the optimization problem

minx xk k0 subject to y ¼ Ax ð4Þ

However the problem posed in Eq. 4 is a combinatorial problem which in general is
NP-Hard [14], and the simple fact of working with all media cardinality k becomes an
intractable computational problem, by replacing the ‘0 norm with the ‘1 standard the
problem becomes the one raised in Eq. 5.

minx xk k1 subject to y ¼ Ax ð5Þ

When dealing with imperfectly sparse measurements (measurements contaminated
by noise), the sensing model given by Eq. 6 is considered.

y ¼ Axþw ð6Þ

Where A is the sensing matrix of size m� n, y 2 R
m is the measurement vector and

w 2 R
m is the noise vector, therefore, inputs from y are the measurements from x

contaminated by noise, therefore the optimization problem of Eq. 5 becomes

minx xk k1 subject to Ax - yk k2 � 2 ð7Þ

Or equivalently

minx xk k1þ
l
2

Ax� yk k22
� �

ð8Þ

The two programs are equivalent in the sense that the solution of a problem is also
the solution of the other provided that the parameters 2 and l are properly established;
however, the correspondence between 2 and l is not known beforehand; depending on
the application and the information available, one of the two may be easier to obtain,
which makes one of the two problems stated in Eqs. 7 and 8 preferred over the other.
Properly selecting 2 or l is a problem that is very important in practice, therefore,
general principles for selection include:

• Perform statistical assumptions about w and x and interpret Eqs. 7 or 8 as e.g.
maximum a posteriori estimates.

• Cross validation (perform reconstruction from a subset of the recovery action and
validate on another subset of steps)

• Find the best values of the parameters on a test data set and use these parameters on
current data with appropriate adjustments to compensate for differences in scale,
dynamic range, sparsity and noise.
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3 Proposed Methodological Approach

Next, the methodological stages to be covered in the process of developing an efficient
spectrum-sensing algorithm are defined by the particular functionality of the obser-
vation phase defined in the cognitive cycle proposed by Mitola [15]. In this phase of
observation, the following can be defined as objectives associated with spectrum
sensing: (1) Identification of Blank Spaces, (2) Identification of radio technology,
modulation, coding or characteristics of the signal present in the channel; (3) Identifi-
cation of the quality or condition of the channel; Considering these objectives, the
proposed methodological stages are:

3.1 Pre-processing and Digitizing the RF Signal

At this stage, it must be decided that the alternative of digitizing the Radio Frequency
(RF) signal present in the radio environment is more convenient according to the
objectives set for the spectrum sensing operation. In this phase, the major challenges
are presented in the aspects related to the hardware components required for the
acquisition of the signal, such as Digital Analog Converters (ADC), Low Noise Filters
and Amplifiers (LNA); with respect to the digitization process, in the scenario in which
broadband spectrum sensing is sought, ideally, the CR should be supported by fully
radio software hardware, in which the RF signal is directly digitized. However, there
are fundamental physical limits to be exceeded according to the operating bandwidths,
operating frequencies and number of bits required in the resolution of the conversion;
in addition, it is relevant to consider in this scenario the number of measurements
generated in the process of digitizing the RF signal since, depending on it, more or less
processing capacities will be required in the later phases. As for the characteristics
required in the filters, an important aspect is related to the bandwidths and low ripple of
the passing band, small transition bands and levels in the attenuated band which
involves complex and high-order filters that require components with important
restrictions in their frequency response, finally with respect to the amplification of the
received signal when it is broadband. The amplifier is required to operate in its linear
region, which is a major challenge given the frequency response required by the
amplifier components.

According to the aforementioned, it is important to decide which sampler to use
according to the specific objective that is sought with the spectrum sensing, in this
sense, the possibilities to consider are the Nyquist Sampling or the Sub-Nyquist
Sampling. If the objectives of the spectrum sensing are (1) or (3) it is convenient to
perform a sub-nyquist sampling because of the low computational complexity asso-
ciated with the pre-processing stage associated with the selected sampler, this because
in order to achieve these sensing targets do not require a perfect reconstruction of the
signal; if the objective of the spectrum sensing is (2) It is advisable to perform a
Nyquist sampling since perfect reconstruction of the signal is required. The above is
shown in the decision diagram of the proposed methodological approach, which is
illustrated in Fig. 1.
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In this sense, since the objective of sensing is the identification of blanks, it is
proposed to use sub-nyquist sampling based on compressive sensing, covering the
stage of digitalization of signal by means of a dispersed representation of the multiband
signal and obtaining sub samples -nyquist using the analog converter - information
called Random Demodulator [10].

3.2 Extraction of Characteristics

Once digitized measurements of the RF signal present in the channel are taken, these
measurements must be processed to obtain adequate representation for classification
and identification purposes. This is a very delicate stage since the different spaces of
characteristics lead to different representations of the signal. Therefore, the feature
space used must be strictly related to the sensing objective.

Fig. 1. Proposed methodological approach
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Some of the characteristics related to the objectives associated to spectrum sensing
are signal power, interference temperature, power spectral density, cycle - stationary,
time - frequency distribution, eigenvalue distribution, signal covariance, etc. Each of
them can be used to represent the signal according to the objective associated with
spectrum sensing. For example, if the objective of the spectrum sensing is identification
of blanks, it is possible to use characteristics such as signal strength, interference
temperature, power spectral density, signal cycle distribution, distribution of the
eigenvalues of the matrix channel, time - frequency distributions or signal correlation
matrix. Nevertheless, if the purpose of the spectrum sensing is the identification of the
radio technology of the primary user, modulation, coding or characteristics of the signal
present in the channel, it is advisable to use characteristics such as power spectral
density, signal cycle distribution or distributions time - frequency. Finally, if the
objective of the spectrum sensing is the identification of the quality or state of the
channel, it is most appropriate to make use of characteristics such as signal strength,
interference temperature, power spectral density or time - frequency distributions.

This process does the Sub-Nyquist sampling of the signal x 2 R
n, using a set of

samples y 2 R
m where y ¼ Axþw and the matrix A must satisfy RIP. Then, it is done

the processing of the disperse signal in which the obtained samples y 2 R
m are used to

recover the signal x 2 R
n using greedy search algorithms or convex programming

algorithms [9].

3.3 Classification and Identification

Once it has been defined, which feature or feature sets are to be used for signal
representation, it is necessary to establish where and how the decision process will be
performed. For this, it is necessary to consider the most relevant aspects according to
the objective of spectrum sensing and the particular problem to be addressed. From the
present methodological proposal and according to the ways in which the spectrum
sensing mentioned in Sect. 1 can be realized, three alternatives are seen for the
decision-making process in CR.

(1) Spectrum Sensing: In this alternative, each secondary user, individually, makes
the decisions according to the established sensing objective, based on locally
available measurements.

(2) Cooperative Spectrum Sensing (Centralized): In this alternative, all secondary
users who share a geographic area or radius of influence environment send the
decisions taken locally to a central entity. Which exploits all available knowledge
to make the decision in accordance with the goal of established senses.

(3) Collaborative Spectrum Sensing (Distributed): In this alternative, all secondary
users who share a geographic area or radius of influence environment send
decisions made locally to all other collaborating members in the radio environ-
ment. Where each secondary user individually exploits all available knowledge,
and makes decisions according to the goal of established senses.

For each alternative of spectrum sensing, it is necessary to define the rule or set of
decision rules to be used, which is why, for the case of local spectrum sensing, the
decision rule to be used par excellence is the rule of maximum a (MAP) [16], and for
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cooperative and collaborative spectrum sensing, the decision rules to be used may be
rules of logical fusion [17] such as AND, OR or XOR, or Bayesian fusion rules [18].
There are other learning-based decision mechanisms such as Neural Networks [19],
Vector Support Machines [20], Self-Organized Maps [21], Q-Learning [22] and
Genetic Algorithms [23]. Leave to the discretion of the reader, as they are addressed in
the learning phase defined in the cognitive cycle proposed by Mitola [15]. In general,
the proposed methodological approach is summarized as illustrated in Fig. 1 at the end
of the article.

4 Methodology Validation

Considering a single-antenna CR device that operates over a multiband (licenced) with
a total bandwidth of B Hz, which is divided into non-overlapping k sub-bands of equal
bandwidth b, equivalent to B=k Hz per channel, as shown in Fig. 2

Assuming that the multiband signal samples are independent random variables that
follow a normal distribution of zero mean and rs variance (Nð0; rsÞ), a presumption that
is valid for any multiband signal in which each carrier of a sub-band is modulated
independently by data-streams; and that noise samples in each antenna are random
variables normally distributed, independent, of zero mean and rn variance (Nð0; rnÞ), la
signal received in the antenna of the CR device can be expressed as indicated in Eq. (9).

Fig. 2. Wideband spectrum sensing scenario
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xj nð Þ ¼ hjsj nð ÞþwjðnÞ ð9Þ

where xj nð Þ is the n-th component of the signal received by the SU in the j-th sub-band
with j ¼ 1; 2; ::; k, hj represents the channel response in the j-th sub-band, sj nð Þ is the
n-th component of the signal transmitted by the j-th PU on the j-th sub-band and received
by the SU antenna and wjðnÞ is the n-th noise component in the j-th sub-band. The
spectrum sensing problem in the j-th sub-band can be formulated as a statistical
hypothesis testing problem in which a selection must be made between the hypothesis
H0;j which indicates that the j-th sub-band is available, and hypothesis H1;j which
indicates that the j-th sub-band is occupied; the aforementioned can be expressed
according to Eq. (10).

H0;j : xj ¼ wj

H1;j : xj ¼ hjsjþwj

�
ð10Þ

Where xj 2 R
p is the vector of the signal received by the SU in the j-th sub-band, with

p equal to the amount of samples taken per sub-band; wj 2 R
p is the vector repre-

senting the white noise components present in the j-th sub-band; hj 2 ½0; 1� represents
the channel response in the j-th sub-band; finally, sj 2 R

p is the vector representing the
signal transmitted by the j-th PU on the j-th sub-band. To develop the spectrum sensing
we define the following stages.

A. SubNyquist Sampling
With the Random Demodulator (RD) [10] we performs Sub-Nyquist Sampling of
multiband signal xðtÞ, it can be considered as a new type of sampling system, which
can be used for the acquisition of sparse bandlimited signals. From sub-Nyquist
sampling process, the obtained samples can be represented as:

y ¼ Ax ð11Þ

where A 2 R
m�n is the sensing matrix, y 2 R

m the measurements vector and x 2 R
n is

the k-sparse vector that represents the multiband signal, therefore, y entries are
sub-Nyquist samples of x.

B. Characteristics Extraction
From (3) we can see that, by the calculation of the samples covariance matrix of y,
results the following relation:

Ry ¼ ARxAT ð12Þ

where Rx 2 R
n�n is the signal covariance matrix and Ry 2 R

m�m is the samples
covariance matrix.

Therefore, it is possible from the samples covariance matrix to obtain the signal
covariance matrix, and with it the performance of the wideband spectrum sensing
operation identifying the energy in each of the k sub-bands.
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To obtain the signal covariance matrix Rx from samples covariance matrix Ry, we
must solve the optimization problem (13).

min Rxk k1 subject toRy ¼ ARXAT ð13Þ

The proposed solution to (13) is a modification of the OMP (Orthogonal Matching
Pursuit) algorithm [25] which does not work with vectors, and the Kronecker product is
not used, instead it works directly in matrix form as illustrated in the next section.

C. Clasification and Identification
Identification of the occupation or not of each sub-band is done in two stages:
(1) decide on the preliminary occupation or not in function of the energy present in
each sub-band of the signal estimated in antenna. (2) Decide on the final occupation of
the multiband according to the occupation average associated to the preliminary
decisions obtained for each sub-band. The spectrum sensing function is possible to
complete by identifying the values in the main diagonal of the estimated signal
covariance matrix Rx, doing diagðRxÞ ¼ bX½f �. Then, to perform energy detection for
each sub-band (stage 1), the energy of the signal received is compared to a detection
threshold, thus, deciding the occupation or not of a sub-band. Thereby, the energy
present in each sub-band can be calculated according to Eq. (14).

ej fð Þ ¼ hj
�� ��2X

Sbj
bX½f ���� ���2 ð14Þ

Where ej represents energy in the j-th sub-band over a sequence of N samples, Sbj
represents the j-th sub-band, hj represents the channel response in the j-th sub-band, andbX f½ � represents the signal estimated in the multiband. Then, if the energy in the j-th

sub-band is higher than the T hðej [ T hjÞ decision threshold, the decision made is H1;j

(occupied sub-band); on the contrary, the decision is H0;j (free sub-band - WS).
Detection probabilities, Pdj , miss detection probability, Pmdj ; and false alarm

probability, Pfj , in the j-th sub-band are defined as indicated in Eqs. (15), (16) and (17).

Pdj ¼ PðH1;jjH1;jÞ ð15Þ

Pmdj ¼ PðH0;jjH1;jÞ ¼ 1� Pdj ð16Þ

Pfj ¼ PðH1;jjH0;jÞ ð17Þ

According to the central limit theorem [24], if the number of samples is sufficiently
large (� 10 in practice), the test statistics (mean and variance) of ej associated to
hypotheses H0;j and H1;j are normally distributed asymptotically and given by
Eqs. (18) and (19).
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EðejÞ ¼
2Nr2nj : H0;j

ðSNRjþNÞr2nj : H1;j

(
ð18Þ

VarðejÞ ¼
2Nr4nj : H0;j

2ð2SNRjþNÞr4nj : H1;j

(
ð19Þ

With r2nj , noise energy is denoted in the j-
th sub-band and SNRj denotes the signal to

noise ratio in the j-th sub-band.
Then, the detection probabilities and false alarm in the j-th sub-band can be

expressed, as indicated in Eqs. (20) and (21).

Pdj ¼ Q
T hj � E ejjH1;j

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ejjH1;j

� �
2
q

264
375 ¼ Q

T hj � ðSNRjþNÞr2njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2SNRjþNÞr4nj2

q
264

375 ð20Þ

Pfj ¼ Q
T hj � E ejjH0;j

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ejjH0;j

� �
2
q

264
375 ¼ Q

T hj � 2Nr2njffiffiffiffiffiffiffiffiffiffiffiffi
2Nr4nj

2
q

264
375 ð21Þ

Where

Q xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1

x
e�

t2
2dt ð22Þ

Thereby, the decision threshold T hj for a specific value of Pfj is given by (23).

T hj ¼ Q�1 Pfj

� � ffiffiffiffiffiffiffiffiffiffiffiffi
2Nr4nj

2
q

þ 2Nr2nj ð23Þ

Finally, the detection probabilities, Pd , miss detection probability, Pmd , and false
alarm probability, Pf ; of the multiband are calculated according to Eqs. (24), (25), and
(26).

Pd ¼
1
K

XK

j¼1 Q
T hj � ðSNRjþNÞr2njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2SNRjþNÞr4nj
2
q

264
375

8><>:
9>=>; ð24Þ

Pmd ¼
1
K

XK

j¼1 1� Q
T hj � ðSNRjþNÞr2njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2SNRjþNÞr4nj
2
q

264
375

8><>:
9>=>; ð25Þ
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Pf ¼
1
K

XK

j¼1 Q
T hj � 2Nr2njffiffiffiffiffiffiffiffiffiffiffiffi

2Nr4nj
2
q

264
375

8><>:
9>=>; ð26Þ

5 Wideband Spectrum Sensing Algorithm

The idea is to reconstruct the covariance matrix, Rx, from the representation of the
covariance matrix, Ry; as the weighted sum of the lowest amount possible of external
products of the columns of matrix A. To perform the estimate of the covariance matrix
of the signal it is important to calculate the K amount of significant components of the
multiband signal that permit conducting a correct detection with probability above or
equal to 0.95; this amount of significant components represents the amount of iterations
the covariance estimation algorithm must perform. Experimental results permit estab-
lishing the relation existing between the number of significant components of the
multiband signal and the bandwidth total of the multi-band B, the bandwidth of each
sub-band (channel) b and the sub-sampling n=m factor, as indicated in (27)

K ¼ n
m

� �
B=b ð27Þ

A. Covariance Estimation Algorithm
Let X 2 R

n be the representation in the frequency domain of signal x; and W 2 R
n�n

the Fourier discrete transformation matrix, such that X ¼ F xð Þ ¼ Wx where X presents
only k � n significant values (inputs different from zero); upon sampling X with the
sampling matrix u 2 R

m�n where k\m\n to obtain y ¼ uX ¼ uWx ¼ Ax; if u

fulfills the restricted isometry property (RIP) in the k order [14] and has low coherence
with W, then X may be effectively recovered from y. To carry out the estimation
process of the signal’s covariance matrix in the channel and solve the problem posed in
Eq. (13), we need to use two auxiliary variables. The first of these ði; jÞ to avoid
re-selecting external products, coordinates ði; jÞ keep the indices of the external
products that can be selected. The second R 2 R

m�n to store the remainders produced
upon removing the external products selected from Ry. Initially, R is equal to Ry and
variable ði; jÞ starts with all the possible combinations of indices of external products of
the columns of the sensing matrix i; jð Þ  f 1; 1ð Þ; 1; 2ð Þ; . . .; ðn; nÞg; then the external
product is selected that best adapts to the remainder through

ðit; jtÞ  arg maxði0 ;j0 Þ2 i;jð Þ
R;P

i
0
;j
0

D E��� ���
P
i
0
;j
0

			 			
2

, excluding from the indices those corresponding

to the external product selected and calculating the weights associated to each external

product selected through least squares û arg minu Ry �
Pt

t0¼1 ut0Pi0 ;j0

			 			
2
; then the

remainder is updated, according to the external products selected and associated
weights R Ry �

Pt
t0 ¼1 ût0Pi0 ;j0 . The process is carried out on K occasions to obtain
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the estimated covariance matrix, bRx, in which all its inputs are zero, except in the K
inputs that correspond to the external products selected, inputs assigned the calculated
weighted values.

B. Wideband Spectrum Sensing Algorithm
To implement the spectrum sensing function, the algorithm illustrated in Fig. 3 is
proposed, where the input parameters of the proposed algorithm are: sensing matrix A,
samples vector y, the total bandwidth of the multiband B, the bandwidth of each
sub-band b, the size m of samples vector and sample size signal vector n at Nyquist rate
(line 1). The proposed algorithm returns occupied and available sub-bands vector in the
multiband denoted by ch (line 2); two auxiliary variables are used, Psb to store the
energy per sub-band in all multiband (line 3) and Pc (line 4) which stores the energy of
each signal component. The spectrum sensing process starts calculating the sub-bands
that are in the multiband (line 7) and the amount of significant components of the
multiband (line 8). Then, the signal covariance matrix Rx is estimated by Covari-
ance_Estimation function (line 9). Next, the main diagonal vector of Rx is obtained
(line 11) and it contains the estimated energy signal components. The sub-band energy
is calculated (line 13), and finally the presence or absence of signal in each sub-band is
estimated (lines 14 to 17).

Fig. 3. Compressive wideband spectrum sensing algorithm
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6 Performance Evaluation

In this section, the performance of the proposed algorithm is analyzed in a multiband
signal scenario composed of six sub-bands (channels) of 3.3 MHz bandwidth each,
which have a random occupation. To evaluate the performance of the proposed
spectrum sensing algorithm, there are used as metrics the detection probability and
Receiver Operating Characteristic compared to the metrics obtained from the sequential
energy detection algorithm [26] and CS based algorithms [27–30]; the obtained results
are shown in Figs. 4 and 5. In Fig. 4 the performance of the proposed algorithm is
observed versus the performance of the other algorithms listed above; in the figure, it
can be seen that the performance of the algorithms in [26–30] is lower than the
performance achieved by the proposed algorithm. Figure 3 shows that the detection
probability of the proposed algorithm is approximately equal to 1 for values of SNR
greater than 0 dB, while other algorithms reach this detection probability for higher
values of SNR.

Figure 5 reveals that the best performance in terms of ROC curves corresponds to
the algorithm proposed; this is because the area below the curve of the algorithm
proposed is the biggest, indicating the capacity of the algorithm proposed to identify
correctly the WS. As also noted in Fig. 5, the algorithm with the worst performance is
that proposed by Sun [29], given that the ROC curve indicates a probability of 0.5 of
correctly detecting the WS. Considering that the results illustrated in Fig. 5 correspond
to the ROC curves of the five algorithms contrasted to an SNR of 1 dB, it is further
evidence that the algorithm proposed improves significantly the performance of the
other algorithms under low SNR conditions.
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Fig. 4. Compressive wideband spectrum sensing algorithm
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7 Conclusions

This article presents a methodological stages to perform spectrum sensing based on
compressive sensing, where the validity of the proposal is demonstrated, at same time,
is presented a bandwidth spectrum sensing algorithm based on CS, which allows
successful signal recovery and identify occupied bands and white spaces reaching a
superior performance than sequential energy detector.

The proposed algorithm presents superior performance at SNR values below 5 dB
using sub-Nyquist sampling in comparison with sequential energy detector which uses
Nyquist sampling rate, at SNR values above 5 dB performance is same.

Similarly, the success of the proposed model based on compressive sensing for
spectrum sensing in Cognitive Radio systems, which it can be evidenced, that the
proposed model successfully performs the operation of spectrum sensing, but it also
makes evident the deficiency in the comprehensive sampling mechanism called a
random modulator; the restriction that the ratio n=m be a whole number, makes the
number of samples to be taken from the sparse signal be much higher than the esti-
mated theoretical, in which the one proposed for the simulation scenario would be 36.
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