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Abstract. We give a simple proof of the well-known property PASTA
for the workload and queue size process in the queueing systems with
Poisson input. The proof is based on a relation connecting the work-
load process at an arbitrary instants and the arrival instants of the cus-
tomers and, in particular, yields famous Pollaczeck-Khintchine equal-
ity. It is then shown that this equality transforms to the corresponding
inequality when the interarrival time has New-Better-than-Used (NBU)
or New-Worse-than-Used (NWU) distribution. Then the inequalities for
the stationary workload are extended to classical multiserver system
and multiserver model with simultaneous service, describing the modern
high performance cluster. The analysis is illustrated by simulation of the
single-server and cluster models with Weibull interarrival time, covering
NBU, NWU and Poisson inputs. The obtained results are of practical
interest for Quality-of-Service estimation of modern high-performance
computing systems.
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1 Introduction

It is well-known that the so-called PASTA (Poisson Arrivals See Time Average)
property holds if and only if the input to a queueing system is Poisson. Under
PASTA, the limiting fraction of time that the system spends in an arbitrary
fixed state equals the limiting fraction of the arrivals which meet the system
in this state. Moreover, the property PASTA allows to establish the celebrated
Pollaczeck-Khintchine formula expressing the mean stationary waiting time (sta-
tionary workload) via predefined moments of the governing sequences (interar-
rival times and service times). In general, the relation between the stationary
distributions of the queueing systems at the event instants and arbitrary instants
have been studied in a number of the works, with the pioneering one [10], see
also [3–5,7,9,11].
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In this note, we first give a simple regenerative proof of PASTA for the work-
load and queue-size process in FIFO single-server model with Poisson input.
Then we show that replacement of the exponential interarrival time distri-
bution (corresponding to the Poisson input) by the NBU/NWU distribution
yields stochastic inequalities between the basic processes and, as a result, trans-
forms Pollaczeck-Khintchine equality to the corresponding inequality. The earlier
known proofs of this result are rather complicated and, in particular, based on
the theory of stationary point processes [3]. Our proof is based on a modified
Lindley recursion, connecting the (imbedded) sequence of waiting times of cus-
tomers in the queue, and the waiting time process at arbitrary instant. This
relation, properly modified, is then used to establish the property PASTA in the
multiserver system GI/G/m and GI/G/m-type model with simultaneous ser-
vice, describing the workload of a high-performance cluster. Then we show how
the property PASTA is modified if the exponential interarrival time is replaced
by the NBU/NWU interarrival time. As a result, the upper (respectively, lower)
bound for the stationary workload, both at the imbedded and the arbitrary
instants is obtained. An important ingredient of the research is the verification
of the obtained inequalities by simulation of the systems with Weibull interar-
rival time, where we consider NBU, NWU and Poisson inputs. In particular, we
demonstrate how the tightness of the obtained bounds depends on the proxim-
ity between the interarrival time NBU/NWU distribution and the exponential
distribution. The obtaining these bounds is also an important motivation of this
research, because the mean stationary workload, being the key QoS parameter of
the system, is typically analytically unavailable in case of the non-Poisson inputs.

Thus, the contribution of this research is as follows. A novel simple proof
of property PASTA both for classical queueing systems and for the cluster
model with simultaneous service. The inequalities for the stationary workload
and queue size process in the models with NBU/NWU input. Verification of the
tightness of the obtained inequalities (as the corresponding bounds of the sta-
tionary performance) depending on the given parameters, by simulation of the
systems with the Weibull interarrival time.

The paper is organized as follows. In Sect. 1, we derive the property PASTA
both for the workload process and for the queue size process. Although this
result is well-known, we give very simple and transparent proof based on coupling
method, regenerative arguments and relation (2) connecting continuous-time and
imbedded (discrete-time) processes. The latter relation is then allows to deduce
corresponding inequalities in the Pollaczeck-Khintchine formula in the case when
the input belongs to the class of NBU/NWU distributions (Sect. 3). In Sect. 3
we also discuss Little’s formula and derive corresponding inequalities for the
workload vector process in classical multiserver queue GI/G/m, while, in Sect. 4,
we consider the cluster model with simultaneous service with the NBU/NWU
input process. In this analysis we apply a modification of the classical Kiefer-
Wolfowitz recursion defining the workload sequence. Finally, in Sect. 5 we present
results of simulation the workload process in single-server system and cluster
model with Weibull interarrival time, which covers NBU, NWU and Poisson
inputs.
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2 PASTA Property

Consider a single-server infinite buffer FIFO queueing system GI/G/1 with the
renewal arrival instants tn, independent identically distributed (iid) interarrival
times τn := tn+1 − tn and the iid service times Sn, ≥ 1. Here and in what
follows, we omit serial index to denote a generic element of an iid sequence, and
introduce input rate λ := 1/Eτ ∈ (0,∞) and service rate μ := 1/ES ∈ (0,∞).
Assume stability, that is ρ := λ/μ < 1 and denote by W (t) the workload (current
work) in the system at instant t−. Also denote W (t−n ) = Wn, and let Z(t) be the
number of arrivals in [0, t). First of all we deduce the property PASTA for the
workload of the system [1]. To this end, we write well-known Lindley recursion
defining the sequence Wn:

Wn+1 = [Wn + Sn − τn]+, n ≥ 0, (1)

where W0 is the initial workload. It is easy to see that the following relation
holds

W (t) = [WZ(t) + SZ(t) − τ̄(t)]+, n ≥ 0, (2)

where τ̄(t) := infn(t−tn : t−tn > 0) is the attained interarrival time at instant t
and SZ(t) is the service time of customer Z(t), the last customer arriving before
instant t. In particular, Z(tn+1) = n. Since, by construction, τ̄(tn+1) = τn,
then relation (2) transforms to (1) for t = tn. Since stability condition ρ < 1,
or equivalently, Eτ > ES, implies P(τ > S) > 0, then the sequence {Wn} is
aperiodic. Now we define the regeneration instants of this sequence as

βn+1 = inf(k > βn : Wk = 0), n ≥ 0 (β0 = 0). (3)

In other words, regenerations generated by arrivals of the non-waiting customers.
It is well-known that under ρ < 1, this sequence is positive recurrent, that is the
mean generic regeneration period is finite, Eβ < ∞ [1]. By the aperiodicity of
the regeneration period, there exists the weak limit Wn ⇒ W∞, n → ∞, where
W∞ is the stationary workload and ⇒ stands for the convergence in distribution.

Now we consider continuous-time workload process W (t), t ≥ 0 with regen-
eration instants defined as Tn = tβn

, n ≥ 0. Let T be generic regeneration period
in continuous time, that is, T =st Tn+1 − Tn. Let β be the generic regeneration
period in discrete time. Then, by the Wald’s identity, ET = EτEβ. Assume that
interarrival time τ is non-lattice (it holds automatically for the Poisson input).
Then the regeneration period T is so, and (provided ρ < 1) the weak limit

W (t) ⇒ W (∞), t → ∞, (4)

exists as well [1]. Note that Z(t) → ∞ with probability (w.p.1), as t → ∞, and
stochastic equivalence SZ(t) =st S holds.

Now we assume that τ is exponential. Then τ̄(t) =st τ for any t. Also note that
the mapping [·]+ is continuous. Then, taking limits in (1) and (2) as n → ∞,
t → ∞, respectively, we apply continuous mapping theorem [2] to obtain the
stochastic equivalence,

W (∞) =st [W∞ + S − τ ]+ =st W∞. (5)
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This relation expresses property PASTA [10] of the workload process. The sim-
ilar analysis can be easily developed for ν(t), the number of customers in the
system, and for Q(t), the queue size, at arbitrary instant t, and at the arrival
instants. Really, denote ν(t−n ) = νn, Qn = Q(t−n ), and let d(τn) be the number of
departures during interarrival time τn, provided the server is permanently busy
in interval [tn, tn+1]. Then we can write evident balance relations:

νn+1 = [νn + 1 − d(τn)]+, (6)

ν(t) = [νZ(t) + 1 − d(τ̄(t))]+, (7)

which as above give (in evident notation) stochastic equivalence between the
limiting number of customers in the system, ν(∞), ν∞, at arbitrary and arrival
instants, respectively. Then we obtain stochastic equality,

ν∞ =st [ν∞ + 1 − d(exp)]+ =st ν(∞), (8)

expressing property PASTA of the the queue size process. (We denote by exp
the exponential r.v.). This property is also known as ESTA and ASTA, see [9].
Now we apply regenerative approach [6], and using geometrical considerations
we obtain

EW (∞) =: lim
t→∞

1
t

∫ t

0

W (u)du =
E

∫ T

0
W (u)du

ET

= λ
E
[ ∑β−1

i=0 (Wn Sn + S2
n/2)

]

Eβ
= λ(EW∞ ES +

ES2

2
). (9)

By (5), for the Poisson input, we denote W (∞) =st W∞ =st W , and, by (9),
immediately arrive to Pollaczeck-Khintchine formula:

EW =
λES2

2(1 − ρ)
. (10)

3 NBU/NWU Input

Now we replace exponential τ by random variable with the NBU distribution
Fτ := F meaning that (denoting tail F̄ = 1 − F ) for any x, y ≥ 0,

F̄ (x + y) ≤ F̄ (y)F̄ (x). (11)

Now we need to define also the remaining interarrival time at instant t as

τ̂(t) := inf
n

(tn − t : tn − t ≥ 0). (12)

Note that τ̂(tn) = 0. Ordering (11) is equivalent to (by coupling) the following
inequality between original variable τ and the remaining interarrival time τ̂(t)

τ ≥st τ̂(t). (13)
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Recall that, by the renewal theory, both variables, τ̂(t) and τ̄(t), are equivalent in
the limit as t → ∞, τ̂(∞) =st τ(∞) := τ̂ , and have the so-called integrated-tail
distribution (with λ := 1/Eτ) [1]:

G(x) := P(τ̂ ≤ x) = λ

∫ x

0

(1 − F (u))du. (14)

Now (2) and (13) yield

W (∞) =st [W∞ + S − τ̂ ]+ ≥st [W∞ + S − τ ]+ =st W∞. (15)

Because relation (9) holds for arbitrary distributions, in particular, for NBU and
NWU distributions, then Pollaczeck-Khintchine equality (10) transforms, in the
NBU case, in the following inequality

EW∞ ≤ EW (∞) ≤ λES2

2(1 − ρ)
. (16)

Analogously, if τ has NWU distribution, that is, for any x, y ≥ 0,

F̄ (x + y) ≥ F̄ (y)F̄ (x), (17)

then

EW∞ ≥ EW (∞) ≥ λES2

2(1 − ρ)
. (18)

Also note the evident inequalities for the k-moments,

EW k(∞) ≥ EW k
∞, EW k(∞) ≤ EW k

∞, k > 0, (19)

for NBU and NWU distributions, respectively.
Denote Q(t) the queue size at instant t, and let Q(t) ⇒ Q(∞). Then we

obtain, by regenerative arguments as t → ∞, the famous Little’s formula

Eν(∞) := lim
t→∞

1
t

∫ t

0

ν(u)du = λ
E
[ ∑β−1

j=0 (Wj + Sj)
]

Eβ

=λEW∞ + λES = EQ(∞) + ρ, (20)

connecting stationary mean queue size and workload, which holds for general
interarrival time τ . Using (19), we can obtain the corresponding inequality
instead of the equality (20). For instance, for the NBU input, we obtain

λEW (∞) ≥ Eν(∞), (21)

while for the NWU input,

λEW (∞) ≤ Eν(∞). (22)

We now consider a multiserver FCFS system GI/G/m with m stochastically
equivalent servers and the same iid sequence of interarrival times {τn, n ≥ 1} [8].
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We assume stability condition ρ < m to be held. Denote by W
(i)
k the ith smallest

remaining workload at the arrival instant t−k of customer k ≥ 1, and let Wk :=
(W (1)

k , . . . ,W
(m)
k ), where W

(i)
k ≤ W

(i+1)
k . The sequence of vectors {Wn} satisfies

the following celebrated Kiefer-Wolfowitz recursion

Wn+1 = R
(
(W (1)

n + Sn − τn)+, . . . , (W (m)
n − τn)+

)
, (23)

where operator R puts the components of vector in an increasing order.
Denote by Wi(t) the ith smallest workload at instant t, and let W (t) =
(W1(t), . . . , Wm(t)) be continuous-time analogue of the Kiefer-Wolfowitz vector.
As above and using the same notation, we can write continuous-time analogue
of (23)

W (t) = R
(
(W (1)

Z(t) + SZ(t) − τ̄(t))+, . . . , (W (m)
Z(t) − τ̄(t))+

)
. (24)

For the Poisson input, (24) implies property PASTA as the stochastic vector
equality W (∞) =st W∞. Moreover, we obtain (component-wise) inequality
W (∞) ≥st W∞ for the NBU interarrival time τ , while for the NWU interar-
rival time, it follows that W (∞) ≤st W∞. In particular, for the mean stationary
summary workload, it gives the inequality

m∑
i=1

EWi(∞) ≥
m∑

i=1

EW (i)
∞ , (25)

when τ is NBU, and the opposite inequality when τ is NWU.

4 Cluster Model

We now consider a recently proposed m-server FCFS GI/G/m-type system with
simultaneous service (describing modern high-performance clusters) [8], the same
input {τn}, in which customer k needs Nk servers simultaneously for a random
service time Si being identical at all Nk occupied servers. Variables {Ni} are iid.
For the cluster model, the following modified Kiefer-Wolfowitz recursion holds
true,

Wi+1 =R
( Ni components︷ ︸︸ ︷
(Wi,Ni

+ Si − τi)+, . . . , (Wi,Ni
+ Si − τi)+,

(Wi,Ni+1 − τi)+, . . . , (Wi,m − τi)+
)
, i ≥ 0, (26)

where we denote by Wi,k the kth minimal component of the workload vector Wi

at the arrival instant of customer i. A key difference between recursion (26) and
classical recursion (2) is that, in the cluster model, service time Si of customer i
is added, at the arrival instant ti of customer i, to the remaining work in the first
Ni servers having minimal remaining works. Recall that Z(t) is the number of
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arrivals in the interval [0, t). Then continuous-time analogue of expression (26)
is (in an evident notation)

W (t) =R(

NZ(t) components︷ ︸︸ ︷
(WZ(t), NZ(t)

+ SZ(t) − τ̄(t))+, . . . , (WZ(t), NZ(t)
+ SZ(t) − τ̄(t))+,

(WZ(t), NZ(t)+1 − τ̄(t))+, . . . , (WZ(t), m − τ̄(t))+
)
, t ≥ 0. (27)

Note that (27) becomes (26) with t = ti+1. Now we assume stability, see [8],
implying the existence of the corresponding weak limits. Comparing (26)
and (27), it is easy to check that, for exponential τ , PASTA holds again,

W (∞) =st W∞. (28)

Moreover, as above we obtain vector analogue of (component-wise) inequality (3)
for NBU interarrival time τ , and the inequality W (∞) ≤st W∞ for the NWU
interval τ .

It is worth mentioning that recursions (1), (26) define discrete-time Markov
chains, while recursions (2), (27) define continuous-time Markov processes.

5 Verification of the Inequalities by Simulation

In this section, we apply simulation to verify the accuracy of the obtained bounds
for the stationary workload in single-server system and in the cluster model. We
use Weibull interarrival time τ with the density

f(x) =
a

b

(x

b

)a−1

e−(x/b)a , x ≥ 0, (29)

which is NBU distribution, if the exponent a > 1, NWU distribution, if a < 1,
and exponential with parameter 1/b, if a = 1.

We consider first a single-server system Weibull/M/1 with service time para-
meter μ = 1, and study two scenarios: light traffic, ρ = 0.1, and heavy traffic,
ρ = 0.9, where ρ := 1/Eτ . We vary parameter a ∈ [0.5, 2] (with step 0.02), and,
for ρ fixed, find parameter b from the expression

1
ρ

= Eτ = bΓ (1 +
1
a
), (30)

where Γ is the gamma-function. To evaluate the proximity between EW (∞),
EW∞ and Pollaczeck-Khintchine value (the r.h.s of (10)), we perform 100 experi-
ments with N = 105 arrivals in each experiment, and then take the sample mean.
Two plots, corresponding to light and heavy traffics, are depicted on Fig. 1, where
Ŵ (∞), Ŵ∞ denote the (sample mean) estimates of EW (∞) and EW∞, respec-
tively. Note that, because for given parameters, ES2/2 = 1, then the r.h.s. of
Pollaczeck-Khintchine (10) equals 1/9 for ρ = 0.9, and 9 for ρ = 0.1, see Fig. 1.
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Fig. 1. The Pollaczeck–Khintchine value (straight line) vs. sample mean estimates of
the stationary workloads, Ŵ (∞), Ŵ∞, in system Weibull/M/1: light traffic ρ = 0.1
(left) and heavy traffic ρ = 0.9 (right).

It is seen that, for the light traffic, the mean workload at the arrival epochs
corresponding to the actual delays of the customers, is very close to Pollaczeck–
Khintchine value, for all values of parameter a (Weibull exponent). It indicates
that, in the light traffic system with NBU/NWU input, Pollaczeck–Khintchine
formulae can be used for an accurate upper/lower bound, respectively, for the
average stationary actual delay of the customers. In heavy traffic, the difference
between the estimates and the Pollaczeck–Khintchine value is significant, how-
ever both estimates are remarkably close, and it shows that in this case, instead
of the two estimates, we can calculate only the more simple estimate Ŵ∞.

Next simulation experiments describe a Weibull/M/10 cluster system (where
an analog of the Pollaczeck–Khintchine formulae does not exist) with exponen-
tial service time with parameter μ = 1. We have assumed that the (sufficient)
stability condition of this system is

ρ :=
1

μEτ

m∑
k=1

1
k

m∑
j=k

pk∗
j

m∑
t=m+1−j

pt < 1, (31)

where p∗i
j := P(N1 + · · · + Ni = j) with Ni being the number of servers required

by customer i, and pi is the probability that a customer requires i servers. (This
stability criterion has been proved for MAP/M/-type cluster model in [8].) As
the experiments show, condition (31) indeed implies stability of the cluster model
under consideration.

We see that, for light traffic, the difference between two estimates is sig-
nificant, while for heavy traffic, both estimates almost coincide, see Fig. 2. In
practice it allows to perform the QoS check of a high-performance cluster only
in the (discrete) moments of the arrival of customers, to estimate the continuous-
time performance. This effect seems to be quite important, since extremely
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Fig. 2. The estimates of the mean stationary summary workload in continuous time,
Ŵ(∞), and at arrival epochs, Ŵ∞, in Weibull/M/10 cluster model: light traffic ρ = 0.1
(left) and heavy traffic ρ = 0.9 (right).

frequent observations (to calculate continuous-time performance), being time-
and energy-consuming, have negative impact on the overall QoS of the system.

It is instructive to discuss in brief how to simulate and estimate the workload
vector process in continuous time for the cluster model (which include the single-
server model as well). Note that (26) describes the evolution of the workload
vector process at the arrival epochs only, but for simulation of the continuous-
time process we need to include also the departure epochs. To this end, we recall
that Wn,Nn

is the delay of the nth customer, so its departure epoch is

Dn := tn + Wn,Nn
+ Sn, n ≥ 1. (32)

Now we consider together arrival and departure epochs, and denote by t̂n the
nth order statistics among {tn,Dn, n � 1}. If t̂n is a departure epoch, then we
declare this epoch to be an arrival of observer, with the following properties:
Nn = 1, Sn = 0. In other words, an observer does not bring any additional work
to the system and does not induce additional idle time of servers included in the
workload vector and caused by insufficient resources for the head-of-line customer
in the queue, see (26). (Note that we also have to renumber the driving sequences
{Sn, Nn, n ≥ 1} properly.) Now recursion (26) formally covers also departure
epochs, and interarrival times become τn := t̂n+1 − t̂n. It now follows that the
vector W (t) can be obtained via the imbedded vector Wn by recursion (27),
where now the counting process Z(t) := max(k : t̂k < t). An important QoS
parameter is the summary workload at time t, W(t) :=

∑m
j=1 Wj(t), which can

now be calculated by means of the imbedded sequence Wi := W(ti) as

W(t) := WZ(t) + SZ(t) − τ(t)
m∑

j=1

I
(
Wj

(
t+Z(t)

)
> 0

)
, (33)
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where I is the indicator function. It remains to define the consistent estimator
of the mean stationary summary workload in continuous time, EW(∞), as

Ŵ(∞) =
1
T

∑
i<Z(T )

⎡
⎣(Wi + Si)τi − τ2

2

m∑
j=1

I
(
Wj

(
t+i

)
> 0

)
⎤
⎦ , (34)

which is based on a given simulation period [0, T ], where we apply simple geo-
metrical properties of the summary workload process trajectory between arrivals.
The sample mean estimator of the stationary summary workload at the arrival
epochs, EW∞ (based on N observations) is Ŵ∞ = 1/N

∑N
i=1 Wi, see Fig. 2.

6 Conclusion

We give a simple proof of the known property PASTA. For the NBU/BWU
input, we obtain the corresponding inequalities for the stationary workload at
arbitrary instants and at arrival instants both for classical (multiserver) system
and for the cluster model with simultaneous service. The analysis is verified by
simulation of the systems with Weibull input.
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