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Abstract. Visual odometry, map-assisted methods and place recogni-
tion are all popular approaches to localize a mobile vehicle from three
different perspectives. Separate implementation of these methods may
cause the localization system vulnerable due to the drift issue and local
pose estimation of visual odometry, the on-road assumption and tough
initialization of map-assisted methods and the discontinuous output of
place recognition. In order to give full play to their advantages, an inte-
grated localization strategy is presented in this paper, where metric data
such as visual odometry measurement, a digital map and topological data
of place recognition results are incorporated. Place recognition assists
initialization process and provides topological place estimation at all
times. Gaussian-Gaussian Distribution is used for visual odometry raw
measurement representation such that the errors of odometry is appro-
priately modelled. By comparing similarities between the digital map
and odometry trajectories, we then use map-assisted approach to cor-
rect odometry estimation. Finally, a mutual check gives a criterion for
judging whether metric and topological results are sufficiently consistent.
Experiment results show that the integrated system outperforms subsys-
tems with mean localization error at 2.9 m on our self-collected dataset
with off-road scenarios.
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1 Introduction

Over the past decades, vision-based approaches have been sufficiently explored
in robotics and computer vision area due to camera’s strength such as low cost,
light-weight and data redundancy. Visual Odometry (VO) [10] as an alternative
in mobile vehicle’s localization, is the process of locally tracking the position of a
vehicle using only consecutive images as the input. Due to the iterative principle,
drift issue of VO in long range navigation is still yet to be solved. Specified to
monocular systems, since the Monocular VO (MVO) is not able to recover the

c© Springer International Publishing AG 2018
A. Gruca et al. (eds.), Man-Machine Interactions 5,
Advances in Intelligent Systems and Computing 659, DOI 10.1007/978-3-319-67792-7 34



342 S. Yang et al.

absolute depth of each feature, motion estimates and map structure can only be
recovered up to scale [4].

In [3], we have presented a localization framework that uses an available dig-
ital map and the on-road assumption to reduce the estimation error of MVO
or SVO. The framework has been designed based on Monte Carlo Localization,
where VO is used to generate particles with specific probabilities, i.e. possi-
ble trajectories, and shape matching between trajectories and the digital map
is used to further weight the particles. By assuming that the scale of MVO fol-
lows uniform distribution in the interval [a, b], an Uniform-Gaussian distribution
model has been proposed to handle the scale ambiguity in MVO. Although good
localization results have been obtained from the presented approach on KITTI
dataset, there are still some challenges as follows:

1. The map-assisted approach only works in on-road scenarios due to the on-road
assumption. It is desired to make the approach applicable to both on-road
and off-road situations since the vehicle does not always run on the road, or
a dated map is used such that newly-built roads have not been added.

2. The vehicle’s initial position and orientation are unknown and the initializa-
tion process relies extremely on shape matching performance. A very large
number of initial particles needs to be generated to cover all possible trajec-
tories (with different starting positions, orientations and scales). Thus, the
initialization process may be time consuming. Occasionally, the initialization
result converges to wrong locations due to similar road shapes.

3. After initial position estimation, it is more reasonable to model the scale
distribution as Gaussian instead of uniform, as the optimal estimation of
true scale must be a particular point instead of an interval.

Place recognition is the process of matching one query image against a data-
base of geo-tagged images with known poses. It is actually an image retrieval
task in computer vision field. Many localization approaches have been developed
based on place recognition technique. The most well-known approaches are Fast
Appearance-Based Mapping (FAB-MAP) [1,2,9] and SeqSLAM [6–8]. The for-
mer performs very large trajectory estimation based on a probabilistic frame-
work, which is applicable even in visually repetitive environments. The latter
uses sequential frame matching to find the best candidate and is applicable over
extreme perceptual changes. Although the metric position of the query image
can not be computed, a rough topological location can be obtained through place
recognition operation. Noticed that a rough position information helps signifi-
cantly to the initialization process of [3], it is promising to incorporate place
recognition into our geometric map-assisted approach.

In this work, we aim at localizing a mobile vehicle equipped with one
panoramic camera, one mono-camera and a digital map. Compared to the rele-
vant work, the main contributions of the integrated approach are:

1. A sensor fusion strategy is proposed to combine metric data from digital map-
assisted VO and topological data from place recognition results. Within the
strategy, a mutual check thread is implemented to measure the accordance
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between different data sources and to determine whether topological results
and metric results should be trusted.

2. A robust place recognition aided initialization scheme is presented to ini-
tialize the localization framework and the initialization time consumption is
significantly reduced.

3. Gaussian probability assumption instead of uniform assumption is used to
represent scale distribution of MVO. The drift and scale ambiguity of SVO
and MVO are modelled by Gaussian-Gaussian distribution more robustly.

4. An on-road/off-road judging scheme is proposed such that the integrated
approach is applicable for both on-road and off-road scenarios.

2 Methodologies

In this section, topological and metric localization methods are explained sepa-
rately first. Then an integrated framework is proposed based on their pros and
cons.

2.1 Topological Localization Based on Place Recognition

Place recognition is one typical topological localization approach due to its dis-
continuous position estimation. Usually, there are two steps: database creation
and online localization, involved in place recognition.

Database Creation. Lategahn et al. [5] introduced one visual feature, which
they dub DIRD (Dird is an Illumination Robust Descriptor), among several
millions that is best suited to represent places under illumination variations.
Comparative experiments between DIRD and other descriptors demonstrated
the effectiveness and efficiency of DIRD in place recognition. In this work, some
changes are necessary to fit the particular application, and an improved DIRD
is used to describe our panoramic images.

A vehicle equipped with one panoramic camera and a differential GPS
(DGPS) travels the route to be recognized one or more times. As the vehicle
travels the route, a database graph is created using the vehicle position at fixed
distance intervals. Each node of the graph is annotated with the vehicle position
and visual features. Vehicle positions are obtained from DGPS, while visual fea-
tures are extracted from panoramic image. Both the vehicle position and visual
features are stored in the database.

Thus, the database consists of the set D = {fk}, k = 1, · · ·,K with compo-
nents fk = {DIRDk, lk}, where DIRDk is the visual descriptor of the kth node;
lk is the ground truth location of the vehicle in the map.

Online Location Estimation. At run time, as the vehicle drives over the
mapped routes, a search process is proposed to match the current panoramic
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view It against the pre-stored database D through feature matching. A column
vector dt of L1 distances can be computed by

dt = (‖DIRD1 − DIRDt‖1, . . . , ‖DIRDK − DIRDt‖1)T (1)

Intuitively, the minimum argument of (1) can be considered as the result of
the place recognizer.

However, matching the current query image with all the images stored in
the database is quite time consuming. Furthermore, the place with the smallest
L1 distance is not necessarily the best match due to dynamic objects, lateral
shift or visual aliasing. To make our online localization scheme more efficient
and reliable, several tricks are implemented. Firstly, a search window is used to
restrict the matching range once place recognition has been initialized. Suppose
fk0 is the matching result at previous time step; w is the window size. This leads
to a finite set W forming a sliding window around fk0 placed in its center as:

W = {fk0−w
2
, . . . , fk0 , . . . , fk0+

w
2
} (2)

Then feature matching is only implemented inside this window and dt becomes a
vector of size w. The time consumption of this step is almost the same no matter
how massive the database is. More importantly, the sequential consistency is
maintained and positioning jump problem caused by perceptual aliasing is solved
effectively. One thing should be noticed that global matching is still executed at
intervals to correct failures of sliding window.

Secondly, a parametrized logistic function logit(·) is used to convert all dis-
tances of dt into matching probability pt in the range (0, 1). The logistic function
is represented as

logit(d) = 1 − 1
1 + exp (−α(d − d0))

(3)

where d is one element of dt; d0 is the L1 distance when the matching prob-
ability is 0.5 and α denotes the steepness of this sigmoid curve. Through this
sigmoid function, large distance values are translated to small matching prob-
abilities (near zero) and small distance values are translated to large matching
probabilities (near one).

Lastly, it is noted that our panoramic camera has six small ones. Each cam-
era has a constant field of view. It often happens that part of these cameras
are filled with moving vehicles and pedestrians, which will cause partial appear-
ance variations. If the panorama is considered as a whole, these partial appear-
ance variations will severely disrupted feature matching performance. Instead,
the images from each camera are considered separately in this work, so that
partial appearance variations or aliasing will not determine the overall result.
After computing the six probability vectors {pt

1, . . . ,pt
6} from Eq. (3), their

summation

pt =
6∑

n=1

pt
n (4)
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will be considered as the overall similarities. Then the node who has the highest
matching similarity will be considered as the best matching result and the node’s
location

lk = argmax
fk∈W

pt (5)

will be treated as the position estimation of place recognizer.

2.2 Metric Localization with Road-Constrained Visual Odometry
Based on Gaussian-Gaussian Distribution

Compared with place recognition, the positioning result of visual odometry is a
more accurate metric localization. Road-constrained VO is implemented to pro-
vide continuous pose estimation in [3]. In this work, most of the metric localiza-
tion procedure follows our previous work [3] except that (1) Gaussian-Gaussian
Distribution is used to generate possible MVO measurements; (2) Place recog-
nition is implemented to assist initialization process.

Gaussian-Gaussian Distribution for Odometry Measurement Repre-
sentation. Consider MVO measurement equation

tk,k−1 = sktrawk,k−1 (6)

where tk,k−1 and trawk,k−1 denote scaled translational vector and raw translational
vector, respectively; sk ∈ R

+ is a scaling factor at time instant k.
In Monte-Carlo localization, improper model of MVO measurement may gen-

erate low-quality particles such that localization performance is degraded. Con-
ventional methods usually regard tk,k−1 as Gaussian. In our previous work [3],
we model tk,k−1 based on product distribution, where sk and trawk,k−1 are uniform-
distributed and Gaussian-distributed random variables. Without a priori knowl-
edge, it is reasonable to estimate scale sk using uniform distribution. However,
after obtaining the initial scale estimation, Gaussian-distributed sk is preferred,
as the true value of scale should be a point instead of an interval. In this paper,
Gaussian-Gaussian distribution, which is used as MVO measurement model, can
be defined as follows:

Definition 1 (Gaussian-Gaussian Distribution, GGD). Given random
variable S and random vector X, the variate Y = SX obeys Gaussian-Gaussian
distribution GG(ES,DS,EX,ΣX) if S ∼ N(ES,DS) and X ∼ N(EX,ΣX),
where N(·) denotes Gaussian distribution with corresponding expectation and
covariance matrix (or variance).

The expectation EY and variance DY of Gaussian-Gaussian distributed Y
can be derived as

EY = ESEX (7)
DYj = DXjES2 + DSEX2

j + DSDXj (8)
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where DS, DXj and DYj denote the variance of S, the variance of jth element
in X and the variance of jth element in Y, respectively.

Based on the above definition, the scaled MVO measurement tk,k−1 can be
represented with Gaussian-Gaussian Distribution GG(ES,DS,EX,ΣX). Given
the four parameters of GGD, samples denoting possible MVO measurements can
be generated. With GGD, both scale ambiguity and measurement randomness
are modelled simultaneously.

Similar to our previous work, a Monte-Carlo framework is leveraged to com-
bine MVO measurement and geometric map. Each particle is considered as one
possible trajectory of the vehicle. After map preparation and initialization, par-
ticles are generated from VO raw measurement. By comparing the trajectory
of each particle with road shape obtained from geometric map through chamfer
matching, weights are assigned to each trajectory. Resampling is implemented
to retain trajectories with higher weights for position and scale estimation. The
estimated scale will be used to generate particles in the next time step. Through
the processes of this framework, visual odometry drift is corrected and scale
ambiguity is eliminated.

Place Recognition Aided Initialization. Pure odometry based localization
system could not possibly give a global position estimation without an accurate
initial global position and orientation. An initialization scheme is proposed in
[3], where a large number of initial particles is generated to cover all possible
trajectories (with different starting positions, orientations and scales). And for
each possible trajectory, one query edge map will be created. Then an exhaus-
tive shape matching between the road edge map and all the query edge maps
will be implemented to find the most possible localization hypotheses. Although
experiments on KITTI benchmark had shown the effectiveness of shape matching
based initialization, several challenges are still yet to be solved. First of all, shape
matching performance depends on vehicle’s trajectory and road conditions. Gen-
erally, the more complicate vehicle’s trajectory is, the better performance will
be. However, the vehicle’s trajectory does not guarantee to meet such complex-
ity. Pure road shape assisted initialization cannot ensure position convergence
to true value. Moreover, the number of initial particles relates to the map size.
The larger the map size is, the more initial particles are needed. Thus the ini-
tialization process becomes time consuming when the searching region is large.

In this work, the above challenges are solved by incorporating place recogni-
tion with road constrained approach. On the one hand, place recognition is firstly
activated and the rough position estimation from place recognizer is then used to
narrow down the initial searching region of the metric localization method. Only
the nearby on-road area will be considered as the possible starting position. On
the other hand, the road direction can be computed from the tangent orientation
of the corresponding pixel point when generating road edge map. Assuming that
initially the vehicle is parallel to the road, then the vehicle’s starting orientation
is always in accordance with the road direction. Hence, the number of the possi-
ble starting orientations is reduced dramatically. Initial particles are generated
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to cover all the possible starting states. Then these particles will be fed into the
shape matching scheme, from which the weight of each particle is obtained. A
metric pose estimation will be computed after particle re-sampling. With this
place recognition aided initialization, the large number of initial particles as well
as the high requirement on road shape complexity in [3] are no longer needed.
In other words, the initialization process becomes much easier.
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Fig. 1. The flowchart of the integrated vehicle localization method.

2.3 Integrated Localization Strategy

In previous sections, both topological and metric methods are described to local-
ize a mobile vehicle. In order to give full play to their advantages, an integrated
strategy is presented in this section.

Figure 1 demonstrates the flowchart of our integrated method, where no GPS
or other sensors is involved, and only visual information and an OpenStreetMap
is utilized to accomplish the localization goal. First of all, a state variable indi-
cating the state of the whole framework is introduced. At each time step, this
state is firstly checked. If it is “NOT INITIALIZED”, place recognition aided
initialization scheme explained in previous section will be performed. Once ini-
tialization is succeeded, the state variable will be assigned as “OK”.

Another important feature in this framework is the on/off-road judging
scheme, which makes the integrated approach applicable for both on-road and
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off-road scenarios. When generating the panoramic database, on-road frames are
labelled as one and off-road frames are labelled as zero. At run time, given one
panoramic frame, the label of the best matched database frame will be con-
sidered as the current vehicle’s state. If “ON ROAD” flag is false, only visual
odometry is implemented since our road-constrained approach only works in on-
road scenario. Otherwise, full road-constrained approach will be implemented.
Afterwards, a mutual check thread is implemented to determine if the estima-
tion difference between place recognition and road-constrained threads is smaller
than a user defined threshold ε. If yes, the metric estimation will be considered as
the final pose estimation. Otherwise, the initialization step will be re-executed.

3 Experimental Validation

3.1 Comparison Between GGD and UGD

Gaussian probability assumption instead of uniform assumption is used to rep-
resent scale distribution of MVO. This is the only improvement from GGD to
UGD. In order to show their performance difference, evaluation experiments are
conducted on KITTI benchmark. Scale estimation performance rather than the
positioning result is leveraged to verify the advantage of the proposed local-
ization frame. Some critical scale estimation results are shown in Fig. 2. The
purple and red curves in the left are the upper and lower limits of the estimated
scale interval from UGD. As can be seen, not all the estimated intervals cover
the true scale. Since the scale estimation result is used for generating particles
iteratively, once the scale interval [a, b] estimated from the parameter estima-
tion scheme does not contain the real one, the particle filter may diverge. The
location estimation might be accurate but the scale ambiguity increases when
the true scale is out of the estimated interval. This is an inherent flaw of UGD.
To the contrary, GGD does not have this issue. The curves in the right show
the estimated scale’s expectation and variance from GGD. As can be seen, the
expectation curves fit the ground truth well. The variance decreases rapidly at
the beginning and becomes stable after a few iterations. Although, their are cases
when the estimated means are a little far away from the true scales, particles
generated in the next time step can still cover the truth with large probability
as long as the true scales lie within three standard deviations of the mean. Thus,
convergence can be ensured.

3.2 Localization Results

In order to evaluate the localization performance of the integrated strategy,
experiments are conducted on our self-collected dataset.

Our evaluation mobile vehicle–Venus, is a self designed four wheeled mobile
robot. It can be navigated by joystick at human walking speed. The robot is
equipped with a DGPS to provide us with meter level position ground truth. A
stereo camera set is mounted on the robot and oriented forward. It is configured
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Fig. 2. Scale estimation comparison between UGD and GGD on KITTI 00 (up) and 08
(down). The left figures show the estimated scale’s lower bound a and upper bound b
of UGD. The right figures show the estimated scale’s mean Es and standard deviation
σs of GGD. The ground truth scales are represented with black dots.

to acquire stereo frames at 10 Hz with a resolution of 1280× 1024. The baseline
of this stereo camera is configured at 30 cm to have a good effective depth range.
The robot is also equipped with one Ladybug2 camera, which will be used to
capture panoramic view images. Other sensors like IMU, laser range finder and
compass are also available from this platform. All the sensors are configured by
one CPU.

Our dataset was collected by driving Venus around the campus of Nanyang
Technological University. The testing routes have two parts with a 3000 m length,
including both on-road and off-road area. Figure 3 (left) is one screen shot of our
experiment on route one. Trajectories estimated from DGPS, visual odometry,
place recognition and the integrated approach are represented with different
colors. As can be seen, visual odometry works fine in the first place, but it
becomes worse and worse as the vehicle moves, especially when it comes to the
off-road area. At the mean time, the positioning results from our integrated
strategy are restricted to the road when the vehicle is travelling on the road.
When the vehicle travels off the road, visual odometry takes over. A consistent
good performance in both on-road and off-road areas is given from the proposed
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integrated strategy. Noted that the positioning results from road-constrained
approach are not plotted because they are the same with the results from the
integrated approach when the vehicle travels on road.

Localization error curves from each of the above methods are demonstrated
in the right side of Fig. 3. Place recognition updates at a low frequency while
the other methods work continuously. The three circles show situations when
re-initializations are activated due to the huge positioning difference between
place recognition and road-constrained threads.

Table 1 lists the quantitative results of place recognition, visual odometry,
road-constrained method and the proposed integrated approach, respectively.
The whole position error of the integrated is less than 3 m over the 3 Km run,
while the other methods either has a much larger error or has restrictions to
use. Since all the roads in geometric map are modelled with centre lines, posi-
tioning error in the lateral direction of the road could not be eliminated. A 3 m
positioning error is quite acceptable.
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Table 1. Quantitative results of place recognition, visual odometry, road-constrained
approach and our integrated strategy, respectively.

Place
recognition

Visual
odometry

Road-
constrained

Integrated

Avg error (m) 9.0 10.9 2.9 (only
on road)

2.9

Median error (m) 2.7 10.7 4.6 (only
on road)

4.3

Max error (m) 138.9 19.1 11.1 (only
on road)

11.1

3.3 Initialization Analysis

In the particle filter framework, a lot of initial particles need to be generated to
cover all the possible initial states. This makes initialization process be the most



Integrated Metric-Topological Localization by Fusing Visual Odometry 351

time consuming part. In [3], the number of initial particles is largely determined
by the map size. The red curve of Fig. 4 shows the relationship between the
initialization time of [3] and the map size. It can be seen that as the map size
increases, the initialization time grows in quadratic function. It is easy to under-
stand this variation curve as the possible starting position increases in a square
number when the map size increases. At the same time, the number of the initial
states of the proposed place recognition aided initialization no longer depends on
the map size. The purple curve of Fig. 4 shows the corresponding time variation.
As can be seen, the proposed has a slightly increased initialization time due to
the growing place recognition database. But the time consumption (around 3 s)
is far less than [3]. The integrated approach is implemented in C++. And all
the experiments run on a mobile workstation with an i7-4710MQ processor.

4 Conclusions

An integrated strategy has been proposed to localize a mobile vehicle equipped
with one panoramic camera, one mono-camera and one digital map in this work.
Place recognition, visual odometry and road-constrained approaches have been
incorporated into one framework. With in this framework, place recognition
plays a role of topological localization and assists initialization process. Road-
constrained is responsible for on-road localization while visual odometry handles
the off-road scenario. Gaussian assumption instead of uniform assumption has
been proposed to model the scale distribution of monocular visual odometry.
Evaluation results show that the proposed framework is highly accurate.
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