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Abstract. The approach based on the Very Fast Decision Rules algo-
rithm in application to prediction of alarm state resulting from methane
hazard in coal mines is presented in this work. The approach introduces
the modification of rule induction process due to application of the Cor-
relation rule quality measure. An evaluation of the introduced method
on a real life stream data collected from coal mine sensors is performed.
The results show advantages of the introduced method considering both
the classification quality and the rule-based knowledge representation.
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1 Introduction

Nowadays, the data that have to be analysed are more seldom in a form of a
batch data set but increasingly often they are in a form of a data stream. The
stream of data is theoretically unrestricted what means that new examples can
arrive constantly and it is not possible to store them for later analysis. Machine
learning or data mining of such data requires incremental methods that are able
to learn with the incoming examples and to apply the created model at any time.
There is a number of approaches that meet the restrictions presented above [14].

Within the undertaken task of methane hazard forecasting in coal mines
it is important to create a prediction system that uses a comprehensible data
model, therefore a rule based approach was taken into consideration. There are
several rule based methods dedicated to stream data analysis, starting from
the STAGGER approach [16], through the FLORA methods [20], AQ11-PM
algorithm [13] and the FACIL method [5].

In recent years a new branch of methods [1,8,10,11] was initiated by applica-
tion of Hoefding bound to incremental rule induction. This approach was intro-
duced by the Very Fast Decision Rules (VFDR) algorithm [6].
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Due to the objective of the presented work the application of sequential cov-
ering rule induction algorithms seems to be the most sensible solution. The qual-
ity of the rule set obtained by the sequential covering algorithm depends on the
quality measure [2,4,9,18,19] used in the rule growing and pruning phases. The
applied quality measure is one of the factors affecting the prediction accuracy,
the number of rules induced and their other characteristics (e.g. the statisti-
cal significance). Therefore, possibility of the method quality improvement is a
motivation for the presented research.

The presented work aims in introducing the approach based on the VFDR
algorithm in application to prediction of alarm state resulting from methane
hazard in coal mines. The contribution of this work consists of the QVFDR
algorithm resulting from a modification of rule induction process by applica-
tion of the Correlation rule quality measure. The proposed method is properly
evaluated for the considered application taking into account both classification
quality and the rule interpretability.

The structure of the paper is as follows. Section 2 presents the VFDR algo-
rithm and the introduced modification of the rule induction method. Section 3
presents a data set and the results of the analysis enabling evaluation of the new
approach. The work is summarised in Sect. 4.

2 Incremental Rule Learning

Within this section at first the VFDR method is presented and next the pro-
posed approach named Quality-driven Very Fast Decision Rules (QVFDR) is
introduced.

2.1 Very Fast Decision Rules

The VFDR method [6] is a single pass algorithm that learns ordered and/or
unordered rules. The algorithm is initiated with an empty rule set (RS) and a
default rule → L, where L is initialized to NULL. L is a data structure containing
information used to incoming instances classification, and the sufficient statistics
needed to expand the rule. Each rule r, that was learnt, is a conjunction of
literals, that are conditions based on attribute values, and an Lr. If all the
literals are true for a given example, then the example is said to be covered by
the rule. The labelled examples covered by a rule r are used to update Lr. A
rule is expanded with the literal that has the highest gain measure (e.g. entropy)
among the examples covered by the rule. Lr accumulates the sufficient statistics
to compute the gain measure of all possible literals.

The number of observations, after which a rule can be expanded or a new
rule can be induced, is determined by the Hoeffding bound. In order to make the
computations more efficient, verification, whether the number of observations is
sufficient, is performed after every Nmin examples instead of after each new
example.

The general form of the VFDR method is presented in Algorithm1, whereas
the method of rule expanding is presented in Algorithm2.
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Algorithm 1. VFDR: Rule Learning Algorithm
1: input S: Stream of examples
2: Nmin: Minimum number of examples
3: ordered set: boolean flag
4: output RS: Set of Decision Rules
5: Let RS ← {}
6: Let default rule L ← ∅
7: for each example (x, yk) ∈ S do
8: for each rule r ∈ RS do
9: if r covers the example then

10: Update sufficient statistics of rule r
11: if Number of examples in Lr > Nmin then
12: r ← ExpandRule(r)
13: end if
14: if ordered set then
15: BREAK
16: end if
17: end if
18: end for
19: if none of the rules in RS trigger then
20: Update sufficient statistics of the empty rule
21: if Number of examples in L > Nmin then
22: RS ← RS ∪ ExpandRule(default rule)
23: end if
24: end if
25: end for

2.2 Quality-Driven Very Fast Decision Rules

The method introduced in this work and referred further as QVFDR modifies
the VFDR approach presented in the previous section.

In order to present the introduced changes we start with a definition of four
numbers: p, n, P and N , which are required during the rule induction. For a
classification rule r a value of P is calculated as:

P = |Pos(r)|, (1)

where Pos(r) is a set of all training examples whose decisions are equal to the
rule decision part. A value of N is calculated similarly:

N = |Neg(r)|, (2)

where Neg(r) is a set of all remaining training examples (that do not belong to
Pos(r)). Then:

p = |Pos(r) ∩ [r]|, (3)

n = |Neg(r) ∩ [r]|. (4)
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Algorithm 2. ExpandRule: Expanding one rule
1: input r: One rule
2: H: Split evaluation function
3: δ: one minus the desired probability of choosing the correct attribute
4: output r: Expanded rule
5: Let h0 the entropy of the class distribution at Lr

6: Compute ε =
√

R2ln(1/δ)
2n

(Hoeffding bound)
7: if h0 > ε then
8: for each attribute Xi do
9: Let hij be the H() of the best split based on attribute Xi and value vj

10: if hij < hbest and nij > 0.1 ∗ n then
11: Let hbest ← hij

12: end if
13: end for
14: if h0 − hbest > ε then
15: Extend r with a new condition based on the best attribute Xa = vj

16: Release sufficient statistics of Lr

17: r ← r ∪ {Xa = vj}
18: end if
19: end if

The above numbers are required to calculate a quality measure used in the
rule growing and pruning phases. Numerous measures were analysed in our pre-
vious research concerning classification rule induction [17,18]. In this work the
Correlation measure presented in formula 5 was applied.

φ =
pN − Pn

√
PN(p + n)(P − p + N − n)

(5)

The Correlation (φ) measure computes the correlation coefficient between the
predicted and target labels. It was applied to classification rule induction
algorithms as well as to subgroup discovery and evaluation of association
rules [7,9,21]. Correlation measure values are normalised within [−1, 1] range. It
enables comparison of rule quality for different P and N values. It is a particu-
larly valuable property in the context of the presented application, where P and
N values change with the new examples.

The presented QVFDR approach modifies the VFDR method within the
section presented as Algorithm 2, lines 8–13. The VFDR method uses entropy
as a function that evaluates if a new condition based on a given attribute and
its value should be introduced into a rule (line 9). Within the QVFDR method
this evaluation is performed by means of the Correlation measure (Eq. 5). Addi-
tionally, opposite to VFDR the presented method evaluates by means of the
Correlation measure not a new condition but a whole rule that is expanded.
When the two best candidate conditions are identified in this way, entropy is
calculated for them and they are verified against the Hoeffding bound condition
(Algorithm 2, line 14).
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When a rule is created its quality is evaluated and therefore, the values of
p, n, P and N numbers are calculated. Next, these values are modified with
the arrival of the new examples. If the rule is modified within the process of
incremental learning, the values of p, n, P and N numbers are reset for a new
rule form.

Classification by means of the presented method is performed as follows. If
a test example is covered by a rule, then it votes for its decision with the weight
corresponding to its quality. The weights are summed up and the example is
assigned to the class represented by a higher weight. If no rule covers the example,
then the default rule is applied.

3 Analysis and Results

This section presents a cases study that was performed in order to evaluate the
proposed QVFDR approach.

The analysis was performed utilising the Massive Online Analysis (MOA)
tool [3]. The VFDR implementation available in this tool was extended into the
QVFDR method.

The case study was performed on a data set containing coal mine sensor
measurements. The task was both to predict natural hazard related to methane
concentration in a coal mine gallery and to discover a valuable knowledge about
the analysed process from the induced rules.

3.1 Data Set

The data set, named Methane1, was collected within the DISESOR project [12].
Originally, the data set consisted of the measurements that were collected each
second by the following 9 sensors in a coal mine:

– one anemometer (represented by AN symbol),
– seven methanometers (represented by MM symbol),
– binary indication if the longwall shearer is running.

This data set was aggregated in order to receive a single entry for each 30 s of
measurements. The new data set was received applying the following aggregation
operators within the given 30 s range:

– minimum operation for anemometer measurements,
– maximum operation for methanometer measurements,
– dominant operation for longwall shearer operation indication.

The resulting data set consists of 100 577 observations. The task defined on this
data set was to predict the exceeded level of methane concentration in 3 min
horizon. A normal level of methane concentration (class 0) was set to be α < 1,
whereas an alarm (class 1) takes place when α ≥ 1. The data set is slightly
imbalanced as class 0 contains 58 288 examples and class 1 contains 42 289
examples.
1 The data set is available at http://adaa.polsl.pl/software.html.

http://adaa.polsl.pl/software.html
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3.2 Quantitative Results

Within the experiments the performance of both the QVFDR and the VFDR
methods on Methane data set was compared. The results of the analysis are pre-
sented in Table 1. They consist of both classification quality and process descrip-
tion conciseness which is expressed by a number of generated rules.

Table 1. Quality of QVFDR and VFDR expressed by means of classification quality
and a number of generated rules

Accuracy [%] Kappa [%] Number of rules % of examples classified
by default rule

QVFDR 88.30 75.61 4 12%

VFDR 83.68 66.89 36 33%

The results presented in Table 1 show that QVFDR is characterised by better
classification quality and it generated smaller number of rules at the same time.
Additionally, as it is shown in the last column of Table 1, classification of QVFDR
is rule driven to a greater extent comparing to VFDR, because classification
performed by QVFDR is based on the knowledge gained from examples (and
expressed in the form of rules) in case of significantly larger number of examples.

3.3 Generated Rules

In this section the rules generated by QVFDR are presented. The descriptions
presented in Tables 2 and 3 show how these rules evolved with the new examples

Table 2. Rules generated for majority class 0 (normal operation)

Rule form Number of
examples by this
rule

Comment

Rule 1 MM532 ≤ 1.0 2 800 First condition

MM532 ≤ 1.0 &
AN662 ≤ 1.75

3 035 Second condition

MM532 ≤ 1.0 &
AN662 ≤ 1.1

11 065 Second condition modification

Rule 3 MM534 ≤ 0.9 12 263 First condition

MM534 ≤ 0.9 &
AN662 ≤ 2.1

42 870 Second condition

MM534 ≤ 0.9 &
AN662 ≤ 2.0

51 801 Second condition modification

Rule 4 MM534 ≤ 0.9 55 652 First condition
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taken into account and what knowledge they represent. The rules are presented
in the order in which they were generated.

Table 3. Rules generated for minority class 1 (alarm)

Rule form Number of examples
by this rule

Comment

Rule 2 MM534 > 0.9 5 898 First condition

MM534 > 0.9 & AN662 ≤ 1.9 6 107 Second condition

The rules presented in Tables 2 and 3 show, consistently with intuition, that
the main impact on a decision have the values of the sensor that is a basis of
the prediction (methanometer MM534). However, registering the high methane
concentration level (0.9) by this sensor does not necessarily lead to alarm con-
centration. Rule 2 expanded with the second condition shows that high methane
concentration level (MM534 > 0.9) has to be accompanied by poor ventilation
(AN662 ≤ 1.9) to lead to alarm methane concentration (class 1). At the same
time, looking at Rule 3 we can learn, that if the methane concentration level is
low (MM534 ≤ 0.9), then even poor ventilation (AN662 ≤ 2.0) will not lead to
alarm methane concentration value. Rule 1 shows the same dependency, how-
ever, for the methanometer placed at the beginning of the wall, which is less
dangerous and crucial for methane concentration monitoring.

Figures 1, 2, 3 and 4 show how the quality of the rules (expressed by the
Kappa measure) evolved with the learning process. It is possible to identify in
the presented figures when the rules were expanded and the values p, n, P and
N were reset, what resulted in rapid decrease of the rule quality regained with
the succeeding examples.

Fig. 1. Quality of Rule 1
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Fig. 2. Quality of Rule 2

Fig. 3. Quality of Rule 3

Fig. 4. Quality of Rule 4
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4 Conclusions

The work presented introduced a new approach, named Quality-driven Very Fast
Decision Rules (QVFDR), to rule-based incremental learning on data stream.
The method is based on the VFDR method and modifies the rule generation
process by controlling the rule quality by means of Correlation measure.

Within the performed evaluation of the introduced method it was analysed
how many examples was classified by the generated rules, and how many exam-
ples was classified by a default rule utilising a distribution of the historical exam-
ples.

Besides, it was analysed how the rule quality changes taking two different
cases into consideration. The first one is the change with the incoming examples
and the other one is the case when a rule is expanded (a new condition is added
or an existing condition is modified).

Finally, it was shown that the rules that were generated are meaningful and
can be interpreted from the domain knowledge perspective. It justifies applica-
tion of Correlation measure to a rule induction process within the incremental
learning method.

The contribution of this work seems to be valuable as, to the best of the
authors knowledge, there were no other approaches presenting the analysis of
both the classification quality and the rule interpretability. The issue of default
rule participation in classification was also not raised before.

Additionally, the presented experiments show that the introduced method
performs well for the analysed case study and outperforms the VFDR method.

As future work, removal of the Hoeffding bound from the algorithm is planned
as it is expected to be a reason of a large number of examples covered by a
default rule instead of generated rules. Additionally, the Hoeffding’s inequality
was shown [15] to be not appropriate for application to any evaluation func-
tion (heuristic measure), e.g., information gain or Gini index. Therefore, it was
suggested to be replaced by the McDiarmid’s bound in these applications [15].
Besides, the extension of the research on other quality measures (e.g. Lift, C2)
and analysis of benchmark data sets accompanied by thorough statistical evalua-
tion is planned. Finally, authors are planing to implement the proposed algorithm
as a part of the DISESOR system [12] and include its functionality within the
methane concentration prediction task.
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