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Abstract. In the paper, the problem with the translation of ordinary
mathematical structures from the natural language into the formal one
is identified. As a concrete example of the system I used the Mizar sys-
tem, the interactive proof assistant for the formalization of mathematics.
Chosen testbed, both for new developments, and for revising old ones,
was the theory of Z-modules.
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1 Introduction

Growing popularity of computerized mathematical proof-assistants (Voevodsky
who won the Fields medal in 2002 underlines the future of computer approach
building new foundations of mathematics—univalent foundations) raises a num-
ber of new problems which should be solved in order to meet expectations of
researchers. It is important, that the formal approach should be flexible enough
both to be easily writeable and understandable for human and to allow for fur-
ther generalizations. In recent years, traditional model of printed contribution
fixed for years could be adjusted to take into account the possibilities given by
contemporary media where such knowledge is stored.

In this paper we focus on the area where mathematical structures can be
extensively used and their formal counterpart can be tuned accordingly as it
was already formalized within machine-verified mathematical knowledge repos-
itory. We mean the theory of Z-modules certified with the help of the Mizar
system [9]. The problem was, how to translate these objects expressed in the
natural language used by mathematicians into the formal language of Mizar.
The topic is quite well represented in the Mizar Mathematical Library [1], and
looks promising for the mathematics as a whole—modules are a basic appa-
ratus for representation theory, the tool for representing many other areas of
mathematics.

2 The Mizar System

The main aim of the Mizar system—the project steered by Andrzej Trybulec
from early seventies of the previous century – was to develop a formal app-
roach to mathematics which allows for faithful encoding of the definitions and
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theorems written in natural language in order to be verified for correctness by
computers. This formal approach should be flexible enough to be understand-
able for ordinary human without much pain, so one of the very basic points was
to be as close as possible to mathematical vernacular. On the other hand one
should have in mind the strictness and the relative simplicity of the grammar of
the artificial language in order to be easily scanned by the parser of the Mizar
system.

The second ingredient of the system is the repository of formal texts. The
Mizar Mathematical Library (MML) [9] is based on Tarski-Grothendieck set
theory, which is very close to the one used by the majority of mathematicians
[17]. Hence it is not very strange that general topology is one of the widely
represented parts of mathematics within this repository of knowledge. Among the
large formalization projects of the Mizar community, two were connected with
topology. The first one was the formalization of Jordan curve theorem, resulting
in many articles written in tight cooperation with Japanese Mizar group. The
second one, the formalization of A Compendium of Continuous Lattices by Gierz
et al. [19] (see [9]), although originally meant to be placed within lattice theory,
eventually was driven into the direction of category theory and topology.

Original motivation for our paper was to describe some of the issues raised in
the process of formalizing important mathematical structures – modules (or vec-
tor spaces). Mizar structures have shown its usefulness when modelling the the-
ory of tolerance approximation spaces connected with rough set theory defined
by Pawlak [5,20]. But soon we realized that in order to do this properly (at
least to use as much expressive power of the Mizar language as we can), we
should lift two fundamental notions into the common ground—of the descen-
dant of topological spaces merged with approximation spaces. We have observed
that developing alternative background for already well-established area of for-
malized knowledge can cause many troubles. Z-modules as our target occurred
rather accidentally, but vector spaces are one of the most frequently used math-
ematical objects. Of course, the hierarchy of algebraic structures is much richer
than that of topological spaces.

3 Towards Algebraic Hierarchy

The algebraic hierarchy is crucial to automate mathematical knowledge by means
of automated proof-assistants: in Nuprl it was developed to support computa-
tional abstract algebra. In Coq more than one algebraic hierarchy exists, we
name two of them: One was constructed as part of the FTA project to prove
the fundamental theorem of algebra, another one was used in the formalization
of the Feit-Thompson Theorem [4]. In the HOL/Isabelle Archive of Formal
Proofs one finds a number of proof libraries devoted to algebraic domains. Lately
in ACL2 an algebraic hierarchy has been built in order to support reasoning
about Common Lisp programs [12].

All algebraic structures in Mizar are defined in similar manner: first we have
to give a structure, where names of fields (called selectors) with their specification
(the type and the arity) are given. In our concrete case there were
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definition

struct (1-sorted) addMagma (# carrier -> set,

addF -> BinOp of the carrier #);

end;

and

definition

struct (ZeroStr,addMagma) addLoopStr (# carrier -> set,

addF -> BinOp of the carrier,

ZeroF -> Element of the carrier #);

end;

Structures in Mizar can be used to model mathematical notions like groups,
topological spaces, categories, etc. which are usually represented as tuples. A
structure definition contains, therefore, a list of selectors to denote its fields,
characterized by their name and type, e.g.:

definition
struct multMagma (# carrier -> set,

multF -> BinOp of the carrier #);
end;

where multMagma is the name of a structure with two selectors: an arbitrary set
called its carrier and a binary operation on it, called multF. This structure
can be used to define a group, but also upper and lower semilattices [7], so in
fact any notion that is based on a set and a binary operation on it. It should be
observed that the above structure does not define a group yet (nor any other more
concrete object), because there is no information on the properties of multF. The
structure is just a basis for developing a theory. In practice, after introducing a
required structure, a series of attributes is also defined to describe the properties
of certain fields.

As mentioned before, the above multMagma structure can be used to define
notions which are not only groups. Still, the operation in such structures inherit
the name multF, because the current Mizar implementation does not provide a
mechanism to introduce synonyms for selectors (or whole structures). Therefore,
in cases when a different name is frequently used in standard mathematical
practice, it may be better to introduce a different structure. For example, lattice
operations are commonly called meet and join, so a lower semilattice may be
better encoded as:

definition
struct /\-SemiLattStr (# carrier -> set,

L_meet -> BinOp of the carrier #);
end;

Mizar supports multiple inheritance of structures that makes a whole hierar-
chy of interrelated structures available in the Mizar library, with the 1-sorted



264 A. Grabowski

structure being the common ancestor of almost all other structures. For example,
formalizing topological groups in Mizar can be done by independently defining
and developing group theory and the theory of topological spaces, and then
merging these two theories together [6] based on a new structure, e.g.:

definition
struct (1-sorted) TopStruct (# carrier -> set,

topology -> Subset-Family of the carrier #);
end;

definition
struct (multMagma, TopStruct) TopGrStr (# carrier -> set,

multF -> BinOp of the carrier,
topology -> Subset-Family of the carrier #);

end;

The advantage of this approach is that all notions and facts concerning groups
and topological spaces are naturally applicable to topological groups. Let us note
that when introducing a new structure, the inherited selectors can be listed in
any order, as far as relations between them are preserved. The list of names of
ancestor structures is put in brackets before the name of the structure being
defined. Concrete mathematical objects, e.g. the additive group of integers are
introduced with aggregates—special term constructors defined automatically by
the definition of a structure, e.g.: multMagma(#INT,addint#), where INT is the
set of integers, and addint represents the addition function. It is necessary that
all terms used in the aggregate have the respective types declared in the struc-
ture’s definition. In our example INT is obviously a set, and addint must be
of type BinOp of INT. Every structure defines implicitly a special attribute,
strict. The corresponding adjective’s meaning is that an object of a structure
type contains nothing more, but the fields defined for that structure. For exam-
ple, a term with structural type based on TopGrStr may be strict TopGrStr,
but it is neither strict multMagma, nor strict TopStruct. Clearly, every term
constructed using a structure’s aggregate is strict.

Finally, the Mizar language has means to restrict a given term with a complex
structure type to its well-defined subtype. This special term constructor, the
forgetful functor also utilizes the structure’s name, e.g. the multMagma of G,
where G has a potentially wider type which inherits the multMagma structure.
Again, such terms are strict, with respect to the given structure type.

Magmas’ and loops’ names are credited to Bourbakists’ unifying approach to
algebra. Then comes the structure of left module over a ring (actually 1-sorted,
which is sometimes called setoid in the world of proof-assistants) (Fig. 1).

definition let F be 1-sorted;

struct (addLoopStr) VectSpStr over F (# carrier -> set,

addF -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of [:the carrier of F,the carrier:], the carrier #);

end;
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1-sorted

ZeroStrOneStr addMagmamultMagma TopStruct

ZeroOneStr addLoopStrmultLoopStr TopaddGrStr

multLoopStr_0

doubleLoopStr

ModuleStr over FRightModStr over F

AlgebraStr over F

BiModStr over F

Fig. 1. Net of basic algebraic structures in the Mizar Mathematical Library [10]

where [:A,B:] stands for the Cartesian product of sets A and B. What was con-
fusing, dual structures with right multiplication were named more traditionally—
RightModStr. We decided to unify the approach and to better reflect algebraic
convention, eventually changed the name into ModuleStr over F. But there is
also another structure informally meaning the same:

definition

struct (addLoopStr) RLSStruct (# carrier -> set,

ZeroF -> Element of the carrier,

addF -> BinOp of the carrier,

Mult -> Function of [:REAL, the carrier:], the carrier #);

end;

Essentially, the difference between structures of the form

〈L, 0,+, ·〉 vs. 〈L,+, 0, ∗〉
(besides the ordering of fields which is obviously not very binding) is in the result
type of both multiplications: ∗ is a function, where R appears in the domain, in
the earlier case the set of all real numbers is replaced by the arbitrary set, and
also the name space is different.

4 Attributes

The (part of) hierarchy of algebraic structures deliver only a signature for cor-
responding algebras; the real semantics is given by axioms. In Mizar formalism,
axioms are defined as adjectives (called also attributes). We give some basic
ones below, leaving them without much comment as the names and the syntax
is explanatory enough—at least we hope so.
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definition let IT be addMagma;

attr IT is Abelian means :: RLVECT_1:def 2

for v,w being Element of IT holds v + w = w + v;

attr IT is add-associative means :: RLVECT_1:def 3

for u,v,w being Element of IT holds (u + v) + w = u + (v + w);

end;

definition

let F be add-associative right_zeroed right_complementable Abelian

associative well-unital distributive non empty doubleLoopStr;

mode LeftMod of F is scalar-distributive vector-distributive

scalar-associative scalar-unital add-associative right_zeroed

right_complementable Abelian non empty VectSpStr over F;

end;

The above definition looks too technical from human point of view. Remem-
ber however, that this plays a role of a macro expanding every time when used
[1], and for a human it is enough to write just LeftMod of F with underlying F
which is a ring; the rest is provided by Mizar typing mechanisms (understanding
all the properties, catching the hierarchy of notions, etc.).

The original definition of Z-module in [2]—the first in the series formalizing
these structures – was the following:

definition

struct (addLoopStr) Z_ModuleStruct (# carrier -> set,

ZeroF -> Element of the carrier,

addF -> BinOp of the carrier,

Mult -> Function of [:INT, the carrier:], the carrier #);

end;

and this structure was equipped with the adjectives:

definition

mode Z_Module is Abelian add-associative right_zeroed

right_complementable scalar-distributive vector-distributive

scalar-associative scalar-unital non empty Z_ModuleStruct;

end;

Four attributes were newly defined with the isomorphic meaning as in the
general case (we mean scalar- and vector-distributivity, scalar-associativity and
the existence of scalar unit). There is no surprise that it is just a copy of
RLSStruct with REAL exchanged by INT—the set of all real numbers has been
replaced by the set of all integers. Hence many articles could be copied without
much thinking (although, to be honest, there are some module-specific properties
formalized, so our revision couldn’t be of the form of deleting all the content).

Of course, vector spaces are just (left) modules over fields instead of rings. As
vector spaces were main needed formalized objects, the authors of the original
approach did not pay much attention to possible generalizations. Luckily enough,
thank to the mechanism of identification of various (but isomorphic in different
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theories) operations [18], most of the symbols remain untouched. For example,
dealing with the field of real numbers, we have in the following registration
contained in VECTSP 1:

registration let a,b be Element of F_Real, x,y be Real;

identify a+b with x+y when a = x, b = y;

end;

So the symbols of real addition and the addition in the field of reals are
identical (and unified).

5 The Revision

I decided to make a revision of the MML preventing from repetition of the
existing knowledge and in the same time generalizing and unifying approaches
to modules and vector spaces treated formally. The gains were obvious, and
the work looked rather promising and not very time-consuming—at least our
preliminary change of ZMODUL01 was rather easy (Table 1).

Table 1. Revision results

MML identifier kB LOC kB after LOC after

ZMODUL01 120.442 4136 64.983 2096

ZMODUL02 115.489 3863 55.448 1898

ZMODUL03 92.101 2602 93.689 2626

ZMODUL04 115.419 2987 117.879 3030

ZMODUL05 100.220 2986 107.969 3135

ZMODUL06 135.526 3568 138.144 3610

ZMODUL07 120.020 3430 115.496 3200

ZMATRLIN 207.060 5700 189.223 5488

GAUSSINT 81.166 2616 81.916 2625

Although there are tools for automatic replacement of references and sym-
bols (among other mechanisms for automatic discovery of knowledge [5]), I also
expected some changes which should be done by hand and this was something
I did eventually. However I met some unexpected traps: matrices were defined
on fields, and in the framework of the set of reals all desired properties were
satisfied. As the ring of integers INT.Ring is obviously not a field, I had the
choice either to drop my approach, or to generalize more knowledge than I was
initially concerned with. Of course, this forced me to touch even such articles as
MATRLIN or LAPLACE on matrices of linear maps or Laplace expansions. Eventu-
ally I ended up with integral domains, and as I noticed, for MML that was quite
a good move (sooner or later one can face the problem of generalizing the cur-
rent notion of determinant: it is not simple as dropping some more attributes as
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determinants can be defined on matrices over noncommutative rings—Gelfand’s
quasideterminants are well-known counterparts to determinants in noncommu-
tative algebras, but here the notion of a determinant is even not unique). Dealing
with determinants of matrices of real numbers is rather safe, but note that in
the light of our discussion of the formal distinction between modules with REAL
and the carrier of the real space they are just two different (although isomorphic
in some sense) approaches.

Note that all generalizations should be done from bottom to top – any super-
fluous assumptions in fundamental articles are inherited by all its descendants.
As the final result, Z-modules are defined in a very simple and intuitive way:
mode Z Module is LeftMod of INT.Ring, which fully agrees with the standard
definition.

6 Some Statistics

The structure RLSStruct was originally used more often—2467 times in MML
according to MML Query browsing tool (together with CLSStruct which is a
version of the vector space in case of complex numbers). Analogous query in
case of VectSpStr, which is more general, returned 1953 occurrences, so the
idea of the choice of the approach based only on statistical data (follow the
path which is used by more authors) can be misleading. Such similarities can
be discovered automatically and the Library Committee of the Association of
Mizar Users (of which the author is the head) suggests to remove unnecessary
repetitions. The problem is that some proofs can be written by the copy-and-
paste technique, which of course can be also discovered, but this is also the case
of natural analogies between proofs [16], which are very frequent in mathematics.

One of the structures, Z ModuleStruct was completely eliminated, as well
as attributes which have been defined as axioms. As the MML is quite large,
the revision can be measured by purely quantitative means. The change of the
length is striking on two first articles in the series (by some 50% each)—this
was the cost of knowledge repetitions. Then the number of lines of code (LOC)
stabilizes, and sometimes it is even a little bit bigger (as a result of exchang-
ing original arithmetical computations, which were quite efficient, with similar
symbolic algebraic calculations, but not built-in in such an extent). The MML
version with new generalized approach is 5.30.1229 (and six new articles were
written until now in this new approach). The changes can be browsed in detail
even by ordinary diff tool on Mizar distributions. At the current stage the
revision is frozen, as new articles like [3] devoted to the topic use this approach.

7 Conclusion and Future Work

In the paper I tried to show how theoretically straightforward examples can
lead to difficult problems during their translation from informal presentation
in natural human language into formalism of the Mizar language, a variant of
mathematical vernacular. Based on the example of Z-modules we could observe
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that even if the approach is given in a not satisfactory way, it can be corrected
in a process of the so-called revision [11]. The part of the work could be less
painful—the splitting of the original definition as we proposed and automatic
replacement of the references into new ones. The level of generality is obviously
higher in our approach, so we hope to open some new paths in the formalization
of algebraic structures, especially in more abstract form.

The second part, which could be done gradually and with the possible use
of automatic tools, is that this proposed new version should be consumed in
the MML—the theorems and definitions which can be formalized in the more
general way, should be formulated so. This would also enable reusing purely
algebraic constructions in another areas of mathematics – as representation the-
ory is quite important field; this will not be restricted for the Mizar library
only, as the translation from the Mizar formalism into other formal languages
are available [13]. Also external tools can be used in a limited way [15]. The
Mizar language itself is also flexible enough to offer new mechanisms, as e.g.
defining the so-called flexary connectives [14]. In the informal form of a math-
ematical publication written by human in natural language, such process could
(and eventually led in real life, as it was in the world of rough sets [8]) to the
sequence of papers generalizing the approach gradually. Hence it is also a kind
of a problem for repository storing the knowledge. In the case of MML, some
automatic enhancements are possible. The repetitions are deleted, shrinking the
files, and opening the way to improve the overall algebraic framework available
in the MML. But the work in the described case of Z-modules is by no means
finished, as still there are many articles using RLSStruct. I plan to revise all the
approach in the nearest future—recent experiments have shown it should not
fail.

Although natural language is rather flexible, formal counterpart benefits from
the relative coherence of the existing approaches. Furthermore, on the contrary to
the provers like EQP, Vampire or Prover9, we should stress the role of the interac-
tion between human and the machine. The distinction between other interactive
proof-assistants like HOL-Light or Isabelle is that the interaction is still impor-
tant after the inclusion of human submission into the repository of texts: I have
shown how the process of revisions can significantly improve the quality of a
text, which can be automatically checked by the software for correctness and is
readable for human in the same time.
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