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Abstract. The different types of signals in the image and signal process-
ing applications can be modeled with generalized Gaussian distribution
(GGD). When limiting to the special cases, then the closed form equa-
tions can be determined. The special cases with the exponents p = 2
(Gaussian distribution), p = 1 (Laplacian distribution), p = 1/2 and
p = 1/3 are considered in literature. In the article, more general app-
roach for the exponents 1/m, m = 2, 3, . . . is analyzed, which are related
to the peaky shapes of GGD. The maximum likelihood method for a
discrete random variable is derived for this subclass of distributions.
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1 Introduction

GGD has been used in many image and signal processing areas. It is very often
applied to model the transform coefficients. The coefficients of DCT (Discrete
Cosine Transform), WHT (Walsh-Hadamard Transform) and DST (Discrete Sine
Transform) could be modeled with GGD [2]. The DCT coefficients are available
in the current video and image compression standards (MPEG, JPEG). DCT is
performed for a block 8 × 8. The estimation of the shape parameters of GGD
is applied to DCT coefficients. When Ci,j denotes a coefficient in i row and j
column in the block 8×8 of DCT coefficients then the indexes of DCT coefficients
Ci,j vary i, j ∈< 0, 7 >, where C0,0 corresponds to DC coefficient. A table with
the estimated power parameters for the “Cameraman” image was presented in
[6], where the values were in the range 0.26–0.59. The values depends on the
source image, where for the “Lenna” and “Barbara” images the distributions
were more close to GGD 0.5 [9].

The tangential wavelet coefficients for compressing three-dimensional trian-
gular mesh data were modeled with zero-mean GGD [10]. GGD was used in
the image segmentation algorithm based on the wavelet transform [17]. Certain
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regular statistical properties of natural images to get the natural scene statis-
tics (NSS) model were modeled with GGD and asymmetric GGD (AGGD) [19].
GGD was applied to approximate an atmosphere point spread function (APSF)
kernel to propose the efficient method to remove haze from a single image [18]. A
GGD based model to introduce more facial details into the initial image synthesis
was constructed by Song et al. [15]. The stereoscopic image quality assessment
was proposed in [11], where the statistical properties of the stereoscopic image
of the reorganized discrete cosine transform (RDCT) subband coefficients were
modeled with GGD.

Many methods have been designed to estimate the parameters of GGD. A
comparison of different methods for the estimation of a shape parameter can be
found in [16]. These methods are complex and the approximated approach was
proposed in [5,8].

For p → ∞, the GGD density function becomes a uniform distribution, and
for p → 0, f(x) approaches an impulse function. Chapeau-Blondeau and Monir
[1] considered another special case p = 1/2. More peaky case of GGD p = 1/3
was discussed in [6].

When the encoder applies the quantization, the information is reduced, and
only quantized coefficients are available to the decoder. Thus, the modeling of
coefficients distribution should be performed with a discrete density function.
Having this discrete distribution model, the reconstructed coefficients can be
modified with, for instance, the centroid reconstruction to reduce the loss of a
signal.

The cumulative distribution of GGD, the probability density function of
GGD, the estimator of discrete GGD based on the maximum likelihood (ML)
method, the centroid reconstruction of GGD for an exponent p = 1/2 were pre-
sented in [9]. The same set of equations for GGD with an exponent p = 1/3 was
shown in [6].

By assuming a source signal with GGD with a power parameter p = 1/m,
the equations for the centroid reconstruction in a closed form can be obtained,
whereas for a GGD model it cannot be done and the ML method of discrete
GGD p = 1/m requires the estimation of only one parameter.

The article is organized in the following manner. In Sect. 2 the continuous
GGD p = 1/m is presented and in Sect. 3 the discrete GGD p = 1/m is discussed.
In Sect. 4 the biased reconstruction of quantized coefficients assuming GGD p =
1/m is introduced. The experimental results are presented in Sect. 5.

2 Continuous Density Function with Exponent 1/m

Probability density function of the continuous random variable of GGD is [2,3]

f(x) =
λ · p

2 · Γ
(

1
p

)e−[λ·|x|]p , (1)

where Γ (z) =
∫ ∞
0

tz−1e−tdt, z > 0 [12], p is the shape parameter and λ is
connected to the variance of the distribution.
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The subclass of the density function of GGD with the exponents p = 1/m,
m = 2, 3, . . . of the continuous random variable is

f(x) =
λ

2 · m!
e−[λ·|x|]1/m . (2)
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Fig. 1. Density function of GGD of the continuous random variable for the exponents
p = 1/3, p = 1/4 and p = 1/5.

Figure 1 depicts the density functions of GGD of the continuous random
variable for three selected parameters m = 3, m = 4 and m = 5.

The cumulative distribution is obtained by integrating (3)

F (x) =

x∫

−∞
f(z)dz, (3)

which results in the cumulative GGD p = 1/m

F (x) =
{

A, for x ≤ 0
1 − A, for x > 0 , (4)

where

c = (λ · |x|)1/m
,{

R(c, k) = ck + k · R(c, k − 1) k > 1
R(c, 1) = c + 1 k = 1 ,

A = exp(−c)
2·(m−1)! · R(c,m − 1).

The advantage of fixing the power parameter is that the cumulative GGD
p = 1/m can be presented in a closed form (4).
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The ML estimator for continuous GGD p = 1/m can be obtained by finding
the maximum likelihood function of (2) and maximizing it with respect to λ.
After certain transformations the estimator takes the form

λ =

(
1

m · N

N∑
i=1

|xi|1/m

)−m

, (5)

where N denotes the number of observations.
The coefficients, before quantization available to the encoder, are usually

modeled with a probability density function of the continuous zero-mean random
variable.

3 Discrete Density Function with Exponent 1/m

The coefficients, available to the decoder, are reconstructed to the bin center for
the JPEG and MPEG standards. The reconstructed values are yi = i · Q, where
i is both the quantized value and the bin index, Q is the quantization factor (the
length of the interval) and yi represents a reconstructed value.

The probability density function of the discrete random variable of GGD
1/m is received by integrating (2) over the interval (Q · i − 0.5 · Q,Q · i + 0.5 · Q)

Pi =
λ

2 · m!

(i+0.5)·Q∫

(i−0.5)·Q

e−[λ·|x|]1/mdx, (6)

which gives
{

Pi = 1
2·(m−1)! · [e−gi · R(gi,m − 1) − e−hi · R(hi,m − 1)] i �= 0

P0 = 1 − exp(−a)
(m−1)! · R(a,m − 1) i = 0

, (7)

where

a = (0.5 · λ · Q)1/m
,

hi = (λ · (|yi| + 0.5 · Q))1/m
,

gi = (λ · (|yi| − 0.5 · Q))1/m
.

Figure 2 depicts the density function of GGD with exponent p = 1/5 and
λ = 1 for the discrete random variable (Pi (7)) and continuous random variable
(f(x) (2)).

The ML function of (7) is set and then it is maximized with respect to λ
[6,9,14]. After some transformations the ML estimator of discrete GGD 1/m
becomes

N0 · e−a · Q

P0

+
1
λ

N1∑
i=1

e−hi · hm
i − e−gi · gm

i

Pi
= 0, (8)
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Fig. 2. Density function of GGD with the exponent p = 1/5 and λ = 1 for the discrete
random variable (Pi (7)) and continuous random variable (f(x) (2)).

where N0 denotes the number of observations equal zero, N1 denotes the number
of observations not equal zero and N = N0 + N1.

The estimated λ parameter is received only from the discrete observations
(the quantized values available to the decoder).

4 Centroid Reconstruction of Coefficients

The reconstructed coefficients can be modified to improve the quality of recon-
structed signal. The reconstruction for the Laplace distribution with a centroid
was presented in [7,14].

The application of the centroid reconstruction equation [13] for GGD 1/m
gives

ŷi = sgn(yi) · 1
λ

· Li

Pi
, (9)

where

Li = 1
2·(m−1)! · [e−gi · R(gi, 2 · m − 1) − e−hi · R(hi, 2 · m − 1)].

The value reconstructed with a centroid ŷi minimizes the Mean Square Error
(MSE) in the interval (Q · i − 0.5 · Q,Q · i + 0.5 · Q).

It should be noted that the reconstruction equation can be presented in a
closed form.

5 Experiments

In the first experiment, the continuous (5) and discrete (8) ML estimators of
GGD 1/m are compared. The initial sequence is generated with the GGD gen-
erator [4] for m = 4. Then the sequence is quantized and dequantized, which
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corresponds to lossy compression. The dequantized coefficients are used as input
observations for the estimators. The simulation was repeated 1000 times. Rela-
tive Mean Square Error (RMSE) was calculated from the equation

RMSE =
1
M

M∑
i=1

(λ̂ − λ)2

λ2
, (10)

where λ̂ is a value estimated by the model and λ is a real value from the generator.
M denotes the number of repetitions.
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Fig. 3. Difference between RMSE of the estimators (5) and (8) for the sequence length
N = 1000.

Figure 3 depicts the difference between RMSE of the continuous estimator
(5) and discrete one (8) for N = 1000 and the selected λ values over vary-
ing a quantization factor. RMSE is higher in a value for the continuous esti-
mator than RMSE of discrete one, so the difference between two ΔRMSE =
RMSEcont − RMSEdiscr is a non-negative value (as in Fig. 3). The higher the
difference is, the better the discrete estimator is. It can be noticed that the esti-
mator based on the discrete distribution outperforms the estimator based on the
continuous distribution and the RMSE difference increases with the increase of
the quantization factor.

Figure 4 also confirms better performance of the discrete estimator for a
varying sequence length.

In the next experiment, the DCT coefficients are generated with the GGD
generator for m = 4. Then the inverse of DCT (IDCT) is calculated for them
creating the input sequence xi. The DCT coefficients are quantized and dequan-
tized, and then the sequence zi is calculated with IDCT. MSE is calculated for
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0 200 400 600 800 1000
10−2

10−1

100

N

ΔR
M
SE

λ=2
λ=3

Fig. 4. Difference between RMSE of the estimators (5) and (8) for the quantization
factor Q = 10.
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Fig. 5. Difference between MSE of normally reconstructed signal zi and modified recon-
struction ẑi (9) for the sequence length N = 1000 (IDCT).

the reconstructed sequence zi (or the modified reconstructed sequence ẑi) and
the input signal xi

MSE =
1
N

N∑
i=1

(ẑi − xi)2. (11)

The reconstructed DCT coefficients are modified according to (9) before
IDCT.
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Fig. 6. Difference between MSE of normally reconstructed signal zi and modified recon-
struction ẑi (9) for the quantization factor Q = 10 (IDCT).
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Fig. 7. Difference between MSE of normally reconstructed signal zi and modified recon-
struction ẑi (9) for the sequence length N = 1000 (IDWT).

Figures 5 and 6 depict the difference between MSE of normally reconstructed
signal zi and modified reconstruction ẑi (9). It can be noticed that the modi-
fied reconstruction ẑi gives smaller MSE than MSE of normally reconstructed
signal zi.

In the last experiment, the detailed Discrete Wavelet Transform (DWT) coef-
ficients are generated with the GGD generator for m = 4. Then the inverse of
DWT (IDWT) is calculated for them (the approximation DWT coefficients are
set to zero) creating the input sequence xi. The DWT coefficients are quantized
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Fig. 8. Difference between MSE of normally reconstructed signal zi and modified recon-
struction ẑi (9) for the quantization factor Q = 10 (IDWT).

and dequantized, and then the sequence zi is calculated with IDWT. The recon-
structed DWT coefficients are modified according to (9) before IDWT.

Figures 7 and 8 depict the difference between MSE of normally reconstructed
signal zi and modified reconstruction ẑi (9). It should be noticed that the mod-
ified reconstruction ẑi also gives smaller MSE than MSE of normally recon-
structed signal zi.

6 Summary

By setting 1/m, m = 2, 3, . . . for the power parameter in GGD it becomes pos-
sible to denote the subclass of GGD with the cumulative distribution, the prob-
ability density function and the centroid reconstruction for GGD with a closed
form equations. The discrete estimator based on the ML method for this GGD
subclass has been derived. The simulations showed that MSE can be improved
by the application of the modified reconstruction for the signals that are trans-
formed with either DWT or DCT, where the information is lost by quantization.
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