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Abstract. We have developed a procedure for hierarchical agglomera-
tive clustering of time series data. To measure the dissimilarity between
these data, we use classically the Euclidean distance or we apply the costs
of the series nonlinear alignment (time warping). In the latter approach,
we use the classical costs or the modified ones. The modification con-
sists in matching short signal segments instead of single signal samples.
The procedure is applied to a few datasets from the internet archive of
time series. In this archive, the series of the same classes possess visual
similarity but their time evolution is often different (the characteristic
waves have different location within the individual signals). Therefore
the use of the Euclidean distance as the dissimilarity measure gives poor
results. After time warping, the nonlinearly aligned signals match each
other better, and therefore the total cost of the alignment appears to be
a much more effective measure. It results in higher values of the Purity
index used to evaluate the results of clustering. In most cases, the pro-
posed modification of the alignment costs definition leads to still higher
values of the index.
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1 Introduction

Clustering is the operation of unsupervised data classification, employing differ-
ent measures of their similarity or dissimilarity. Usually the analyzed data are
described by vectors of a fixed length whose entries correspond to the specific
features of these data. Calculation of the Euclidean distance between them is one
of the most often applied approaches to the assessment of the data dissimilarity.
However, when clustering of time series is considered, we often have to compare
vectors of different length, corresponding to signals of different duration. Cal-
culation of the Euclidean distance between them is not always possible without
any auxiliary operations. One of such operations is the linear time-alignment
of the signals compared. This operation consists in shifting a selected segment
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of one signal along with the second signal until the best matching of the both
signals is achieved. After this operation, we are again able to use the Euclidean
distance between the aligned signal segments as the measure of their dissimi-
larity. With the development of the technique of nonlinear alignment, called as
dynamic time-warping (DTW), new possibilities emerged. Not only comparison
of different length signals appeared possible but also compensation of their differ-
ent time evolution. And indeed, in the 70s of the previous century the technique
was applied to time normalization in spoken words recognition applications [17].
In spite of its high computational cost, since its introduction in the early 70s
[16] DTW has often been applied in numerous research fields. Among others, it
was used for biomedical signals processing [5,8–10,12], and its applications to
time-series clustering are described e.g. in [6,7,13–15].

The goal of this paper is to apply the classical and the modified measure
of dissimilarity based on DTW to hierarchical agglomerative clustering of time-
series and to study the factors that influence the clustering results. The rest of
the paper is organized as follows. In Sect. 2, an outline of the algorithm for hier-
archical agglomerative clustering is provided. In Sect. 3, the similarity measures
based on DTW are defined. Numerical experiments are reported in Sect. 4 and
concluded in Sect. 5.

2 Hierarchical Agglomerative Clustering

We can distinguish two approaches to hierarchical clustering: divisive or agglom-
erative. In the former one, we start with a large cluster containing all data, and
we divide it, and then the ensuing smaller clusters, until all data points are sep-
arated. In the agglomerative approach an opposite strategy is applied. We start
with all data points belonging to different clusters and subsequently we merge
the closest of them, one after another until all data are conjunct. Results of both
approaches can be presented using a hierarchical tree structure called dendro-
gram [4]. A dendrogram consists of nodes corresponding to the created clusters.
Whereas the root node represents the whole datasets, the leaf nodes are associ-
ated with the individual data points, and the intermediate nodes correspond to
the respective clusters formed. Two vertical dendrograms are presented in the
experimental section in Fig. 3. The leaf nodes start at the bottom of the dendro-
grams. The nodes are connected by horizontal lines called edges. Their heights
correspond to the distances between the merged nodes. The structure of a den-
drogram depends on the applied linking strategy. Such strategy depends on the
measure of a distance between a pair of clusters. In this study, we have applied
two very basic linking strategies: the single and the complete linkage methods
(the definition of a distance between clusters is called as linkage itself). In the
single linkage algorithm a distance between two clusters Ωi and Ωj is defined as
the distance between two nearest points representing both clusters [4]

dmin (Ωi, Ωj) = min
x∈Ωi, x′∈Ωj

d(x,x′). (1)
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In the complete linkage algorithm a distance between two clusters is defined
as the distance between two farthest points representing both clusters

dmax (Ωi, Ωj) = max
x∈Ωi, x′∈Ωj

d(x,x′). (2)

Although there are also other linking strategies [2,11], in this paper we con-
fined our experiments to the above two. In the further part of the study, when
Euclidean distance between data points is considered the single linkage will be
denoted as deuc

min and the complete linkage as deuc
max.
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j

Fig. 1. Allowable step directions of a warping path

3 Dynamic Time Warping Based Linkages

Dynamic Time Warping (DTW) is a technique developed to solve the problem
of matching two signals of possibly different length. DTW uses the technique of
dynamic programming [1,17] to determine the best alignment (optimal warping
path) between the signals considered. Having two signals x(n), n = 1, 2, ..., Nx

and y(n), n = 1, 2, ..., Ny (where Nx can be different from Ny), we appropriately
squeeze or stretch their temporal axes to obtain the minimal cost of their align-
ment. These costs can be exploited by clustering algorithms, trying to assign the
signals to the proper clusters. The warping path consists of the ordered pairs of
time indices: {(ik, jk)|k = 1, 2, · · · ,K}, which indicate the elements y(ik) and
x(jk) of the time-warped series that are assigned with each other. Classically the
cost of matching y(i) and x(j) is defined as

di,j = (y(i) − x(j))2 (3)

and the warping path minimizes the total cost of the alignment:

Q =
K∑

k=1

dik,jk (4)

preserving the specified constraints, assuring that

• the alignment function aligns all points

i1 = j1 = 1 and iK = Nx, jK = Ny (5)
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• the function is increasing monotonically

ik ≥ ik−1 and jk ≥ jk−1 (6)

• no point is omitted

ik+1 − ik ≤ 1, jk+1 − jk ≤ 1. (7)

These constraints correspond to the so-called step directions of the warping path
presented in Fig. 1.

Using the square root of the classical definition of the total alignment costs√
Q, we obtain the definition of the distance between two time series dcdtw which

is equal to the Euclidean distance between the time-warped series. The corre-
sponding single and complete linkages will be denoted as dcdtw

min and dcdtw
max , respec-

tively (cdtw stands for classical DTW). In [10] the DTW technique was applied
to ECG cycles or EEG evoked potentials alignment prior to their time averaging.
The aim of this operation was to suppress noise and enhance the desired sig-
nals. It appeared that the operation was much more effective when the classical
definition of alignment costs was replaced be the following one

d′
i,j =

∥∥∥x(i) − y(j)
∥∥∥ (8)

where ‖·‖ denotes the Euclidean norm, and vectors x(n) and y(n) are defined as

x(n) = [x(n − v), x(n − v + 1), . . . , x(n), . . . , x(n + v)]T (9)

which means that they are composed of 2v + 1 successive signal samples (with
the nth sample being the central one). With this modified definition of the
alignment costs, using the ensuing total alignment costs as the definition of
the distance between two time series, we obtain the single and the complete
linkages, denoted as dmdtw

min and dmdtw
max , respectively (mdtw stands for modified

DTW). Remark For the modified definition of the alignment costs (8), the
following difficulty emerges. For v ≥ i or v ≥ j we cannot construct vectors
defined by (9). Therefore we find l = min(i − 1, j − 1) and we construct shorter
vectors

x(n) = [x(n − l), x(n − l + 1), . . . , x(n), . . . , x(n + v)]T (10)

Similarly we proceed on the right side ends of the time-warped series.

4 Numerical Experiments

We have applied the developed algorithms to cluster signals contained in five
datasets from the UCR (University of California Riverside) time series classi-
fication archive [3]. We used the following datasets: Trace, Mallat, BeetleFly,
OSULeaf and Plane. The first (presented in Fig. 2) and the second one are syn-
thetic; the other three are one dimensional time series created on the basis of
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Fig. 2. The Trace dataset from the UCR archive. In upper subplots, we can see groups
of signals of the existing four classes, contained in the learning part of the dataset.
Below individual examples are presented.

two-dimensional pictures of beetles or flies, leaves, and planes, respectively. Each
database contains both learning and testing part, prepared for experiments on
time series classification. In our experiments, we used the signals contained in
the learning parts of these datasets (each signal was normalized to be of zero
mean and unit variance). Parameter v was established separately for each of the
above datasets, so as the length 2v + 1 of vectors (9) used to calculate dmdtw

min

and dmdtw
max was equal to approximately one 10th of the signals length. After the

signals clustering, the information on the classes they belong to was used to
evaluate the results of clustering. To this end, the Purity index was calculated,
showing if the results of clustering were similar to the true assignment of the
signals to the classes specified. If each of the created clusters contains the data
of the same class, the index reaches the value of 1, otherwise it is smaller (but
always greater than 0).

First, to visualize the operation of hierarchical clustering, we chose 8 time
series from the Trace dataset: two examples from each of the existing data
classes. The selected signals were clustered using the deuc

min and dcdtw
min linkages.

The obtained dendrograms are presented in Fig. 3. By cutting the dendrogram
obtained using dcdtw

min at the level of about 3, a correct data clustering is achieved.
We can see that the height of the edges connecting the leaf nodes corresponding
to the same class signals (e.g. number 1 and 2) are relatively low what shows
that the costs of nonlinear alignment were small. The edges connecting larger
clusters (each consisting of two elements) are much higher, what corresponds
to minimal distances between signals of different classes (see definition (1) of
the applied dcdtw

min linkage). Using the deuc
min linkage for the series of the same

class, in most cases we obtained much higher edges (their relative height is con-
sidered). As a result, no correct clustering appeared possible for this, Euclidean
distance based linkage. To visualize the reasons of such a failure, in Fig. 4 we have
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Fig. 3. Dendrograms obtained for the selected 8 signals from the Trace dataset using
the Euclidean distance based linkage: deucmin (on the left) and the classical DTW costs
based one: dcdtwmin (on the right). The numbers of the signals of the selected subset,
corresponding to the leaf nodes, are presented at the bottom.

presented a few signals corresponding to the leaf nodes of the dendrograms.
Dealing with signals of limited length, we can assume that they are the selected
segments of longer traces. Therefore the operation performed to determine the
Euclidean distance deuc can be regarded as a kind of linear time alignment.
Results of such an alignment are presented in subplots A and B, whereas the
nonlinearly aligned signals are shown in C and D. The differences between the
linearly aligned signals can be watched in E and F, and the differences between
the time-warped ones, in G and H. The pair of signals presented in the left
subplots belongs to the same class, whereas the pair on the right to different
classes. We can notice that even for signals that are visually very similar (A)
the difference between them can be relatively large (E) because of the different
location of the characteristic waves occurring within these signals. After the non-
linear alignment, the signals match to each other very precisely (G). As a result,
the difference between them is much reduced, and the calculated dcdtw distance
small. Even when the signals are of different classes, time warping often leads to
the distance reduction (if compared to the Euclidean one); however, for the same
class signals the operation is usually much more effective, and for such signals
smaller distances are more likely. In Fig. 5, we have presented the dendrograms
horizontally, showing additionally the time series selected when using the deuc

min

and dcdtw
min linkages to calculate distances among clusters. In the upper subplot

of Fig. 5, where the results of correct clustering are presented, we can see that
to compose clusters containing two elements, the algorithm was able to select
the series of the same classes. In the uppermost group, however, the two series
(number 3 and 4), although visually similar, are distant, as far as the Euclidean
distance is regarded, which results from different positions of the characteristic
negative deflections within the two series considered. Therefore in the dendro-
gram created using the deuc

min linkage, they are assigned to completely different
clusters.

Results of the experiment performed on the whole learning subsets of the
datasets from the UCR archive are gathered in Table 1. This table contains
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Fig. 4. Results of linear (A,B) and nonlinear (C,D) alignment of the signals of the same
(on the left) and different (on the right) classes. Differences E,F and G,H correspond
to the calculations of the Euclidean distance and the DTW based one, respectively.
The numbers of the signals: 1, 2 and 4 correspond to the numbers of the leaf nodes in
Fig. 3. In A, B, C and D the lower signals are vertically shifted for better presentation.

the Purity index obtained for algorithms using the DTW based distances or
the Euclidean one, and the single or the complete linkage. As we could have
expected, for the Trace dataset the algorithms using the DTW based distances
are much more effective than those using the Euclidean one. This observation is
valid for all datasets investigated. However, we can also notice that it is justified
to use the complete linkage (dmax) instead of the single one (dmin). In three
cases, using the modified definition of the alignment costs and the complete
linkage, we have obtained significant improvement of the Purity index. For the
synthetic datasets, however, no improvement was observed; on the contrary, for
the Mallat dataset even deterioration of the results was caused.
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Fig. 5. Dendrograms from Fig. 3 presented horizontally, with the time series on the
basis of which the between clusters distances dcdtwmin (up) and deucmin (down) were com-
puted. The signals numbers correspond to the leaf nodes in Fig. 3.

Table 1. The purity index obtained for the selected datasets from the UCR archive
while using different clustering algorithms. For each dataset, the best results achieved
are bolded.

Linkage

Dataset NAME deucmin deucmax dcdtwmin dcdtwmax dmdtw
min dmdtw

max

Trace 0.57 0.57 0.78 0.78 0.78 0.57

Mallat 0.67 0.75 0.64 0.95 0.67 0.76

OSULeaf 0.29 0.40 0.29 0.41 0.31 0.46

BeetleFly 0.55 0.60 0.55 0.80 0.6 0.8

Plane 0.70 0.70 0.88 0.98 0.88 1
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5 Conclusions

We have developed a procedure for time series clustering, using different defi-
nitions of distances between pairs of signals and between pairs of clusters. To
measure the dissimilarity between signals, we have applied the Euclidean dis-
tance and two definitions based on the costs of the series nonlinear alignment.
To measure the distance between data clusters, we have used the single linkage
and the complete one. For the clustered datasets, an easy conclusion can be
inferred that it is favorable to use dynamic time warping to assess dissimilarity
between signals, instead of the Euclidean distance. It has also appeared advan-
tageous to apply the complete linkage instead of the single one. However, the
major contribution of this study is the application of the new definition of the
alignment costs. With this definition, we have achieved the highest values of the
Purity index for most datasets studied; however, for one dataset the results were
poorer. Therefore additional studies are necessary to find the reasons of such
antithetical results of the modification proposed.
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