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Abstract. In this paper we explore the problem of reconstruction of
RGB images with additive Gaussian noise. In order to solve this prob-
lem we use backward stochastic differential equations. The reconstructed
image is characterized by smoothing noisy pixels and at the same time
enhancing and sharpening edges. This novel look on the reconstruction
is fruitful, gives encouraging results and can be successfully applied to
denoising of high ISO images.
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1 Introduction

The backward stochastic differential equations (BSDEs) were introduced by Par-
doux and Peng [14] who proved the existence and uniqueness of their adapted
solution under suitable assumptions. Independently, Duffie and Epstein [9,10]
considered stochastic differential utilities in economics models, as solution of
certain BSDEs. Since then, it has been widely recognized that BSDEs provide a
useful framework for formulating many problems in mathematical finance [11].
These equations have also appeared to be useful for problems in stochastic con-
trol and differential games [13]. Many papers (for instance [15]) show the connec-
tions between BSDEs driven by a diffusion process and solutions of a large class
of quasilinear parabolic and elliptic partial differential equations (PDEs). These
results may be seen as a generalization of the celebrated Feynman-Kac formula.
Through all these results, a formal dictionary between BSDEs and PDEs can
be established, which suggests that existence and uniqueness results obtained
on the one side should have their counterparts on the other side. In our case,
we treat BSDEs as a starting point in the creation of reconstruction model of
the noisy image. In our opinion a stochastic description is more intuitive than
PDEs description. Moreover in order to solve the BSDE model we use tools of
stochastic analysis giving us completely new methodology.
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In image processing one can find some practical aspects [1–4] of BSDE-based
applications. In [1] the problem of reconstruction of the noisy chromaticity is
considered. Presented model of denoising is expressed in terms of Skorokhod
problem associated with the solution of BSDE and an epsilon neighbourhood of
two dimensional sphere. In that paper BSDE is driven by a trivial drift function
(f ≡ 0). This means that presented equation is a model of forward filtering and
has properties of smoothing filters. In [2] problems of reconstruction of the noisy
grayscale image (smoothing filters) and enhancing of the blurred grayscale image
(enhancing filters) are presented. Smoothing filter, similarly as in [1], models on
anisotropic forward diffusion with BSDEs with f ≡ 0. Enhancing filters pre-
sented in [2] are driven by BSDEs with non trivial drift function and correspond
to inverse heat equation. This equation is a model of backward filtering (not
forward) and in consequence this model fails to edge enhancing of the noisy
image. The paper [4] is a generalisation of [2] to images with values in Rn.
In papers [2,4] smoothing and enhancing filters were considered as two sepa-
rable models while in [3] authors proposed the model of image reconstruction
using backward stochastic diffusion associated with forward stochastic diffusion.
This method combines forward anisotropic filtering in perpendicular to gradient
direction and inverse anisotropic filtering in gradient direction, where effects of
smoothing, enhancing and sharpening join. The article [3] focuses only on images
with values in R1 (greyscale images).

In this paper we generalise the results from [3] to Rn valued images, in
particular to colour images and apply the proposed method to denoising of high
ISO images taken from digital cameras.

The paper is constructed as follows. Sections 2 and 3 contain basic ideas of fil-
tering in terms of BSDEs taken from [3]. Section 4 provides new results to recon-
struction of colour images. In Sect. 5 we give details of numerical approximation
of the proposed method. Finally, in Sect. 6 experimental results to denoising of
high ISO images taken from digital cameras are presented.

2 Continuous Model

A general model of the image reconstruction in terms of BSDE is the
following [3]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt = x +
∫ t

0

σ(s,Xs) dWs + KD
t , t ∈ [0, T ]

Yt = ξ +
∫ T

t

f(s, Ys,Xs)ds −
∫ T

t

Zs dWs, t ∈ [0, T ]

(1)

where ξ is some random variable which depends on the noisy image u0 : D → Rn

and {Wt}t∈[0,T ] is two-dimensional Wiener process. {Xt}t∈[0,T ] is a stochastic
diffusion process with reflection with values in the domain of the image D and
is driven by some function σ. The function σ is called the diffusion coefficient.
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The process X characterizes the behaviour of the continuous time stochastic
process X as an Itö integral. A heuristic interpretation is that in a small time
interval of length σ the stochastic process X changes its value by an amount
that is normally distributed with variance σ(t,Xt) and is independent of the
past behaviour of the process. This is so because the increments of a Wiener
process are independent and normally distributed. The term {KD

t }t∈[0,T ] is the
minimal push needed to keep process X in D. {Yt}t∈[0,T ] (the first component
of the solution to the BSDE) is a backward stochastic diffusion process with
values in the codomain of the image Rn and is driven by some function f .
{Zt}t∈[0,T ], the second component of the solution to the BSDE determines the
measurability of the process Y . The process Y is constructed so that it starts
at t = T until t = 0. A drift function f causes the correction of values of Y in
expected strength and direction. The value of the process Y at time t = 0 is the
reconstructed pixel u(x). Note that Y0 is a deterministic value.

In the case of image processing we have the following interpretation of this
BSDE equation. For a fixed pixel x we consider a certain BSDE equation. The
values of the process X determines pixels from domain of the image D which
we will use in process reconstruction. We can say that this process determines
neighbourhood of the pixel x (with irregular shape). The reconstructed value
u(x) is the sum of pixels from its neighbourhood multiplied by some weights.
The weight values are determined by the process Y , a more specifically by the
function f . Appropriate definition of the function f allows as to give weight
values (also negative) which depend on direction and distance from reconstructed
pixel.

3 Grayscale Images

In [3] the authors proposed the following method of the reconstruction of
grayscale images:

⎧
⎪⎪⎨

⎪⎪⎩

Xt = x +
∫ t

0

σ(s,Xs) dWs + KD
t , t ∈ [0, T ],

Yt = u0(XS) +
∫ T

t

c(s)(Ys − u0(Xs))ds −
∫ T

t

Zs dWs, t ∈ [0, T ],
(2)

where S < T ,

σ(s,Xs) =

⎡

⎢
⎢
⎣

−
(
1 − c(s)

c

)
(Gγ∗u0)x2 (Xs)

|∇(Gγ∗u0)(Xs)| ,
c(s)

c

(Gγ∗u0)x1 (Xs)

|∇(Gγ∗u0)(Xs)|

(
1 − c(s)

c

)
(Gγ∗u0)x1 (Xs)

|∇(Gγ∗u0)(Xs)| ,
c(s)

c

(Gγ∗u0)x2 (Xs)

|∇(Gγ∗u0)(Xs)|

⎤

⎥
⎥
⎦

c(t) =
{

0 if t < S or |∇(Gγ ∗ u0)(x)| < d,
c if t ≥ S and |∇(Gγ ∗ u0)(x)| ≥ d,

uxi
(y) = ∂u

∂xi
(y) and by ∗ we denote a convolution operation.
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Fig. 1. Results of the reconstruction using [3] of grayscale Lenna image (512 × 512
pixels) for different values of the parameter c. Standard deviation of the noise is 10.
The time of the reconstruction is 8 s (CPU: 2 × 2.5 GHz).

The Eq. (2) is a particular case of (1) for given specific functions σ and f .
In this model we deblur in gradient direction from time T to S and smooth out
in perpendicular to gradient direction from S to 0. To avoid false detections due
to noise, u0 is convolved with a Gaussian kernel Gγ (in practice 3 × 3 Gaussian
mask). Parameter T defines the size of the neighbourhood used in the reconstruc-
tion procedure. The parameter d determines which pixels will be reconstructed
with using smoothing model (only in gradient direction) and which with using
enhancing model (in gradient and in perpendicular to gradient direction). The
parameter c is responsible for effect of sharpening of edges (see Fig. 1).

If reconstructed pixel x belongs to the edge (the condition |∇(Gγ∗u0)(x)| ≥ d
is true) the process X has values as in Fig. 2 and we will use pixels along edges
(from time 0 to S) and pixels in gradient direction (from time S to T ). The final
value u(x) is the sum of the pixel given by XS multiplied by positive weight
and pixels from time S to T multiplied by negative weights. If the condition
|∇(Gγ ∗u0)(x)| ≥ d is false then we explore only pixels along edges with positive
weights and resign from sharpening effect.
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Fig. 2. Example of a trajectory of the process X defined by (2) which starts from the
edge of the image.

4 Vector Valued Images

Now we concentrate on images with values in Rn. A very common idea to restore
vector-valued images is to use scalar diffusion on each channel of a noisy image.
But one may quickly notice that this scheme is useless, since each image channel
evolves independently with different smoothing geometries. To avoid this blend-
ing effect, the regularization process has to be driven in a common and coherent
way for all vector image channels. In order to execute that we use Di Zenzo geom-
etry [7,8]. Let u : D → Rn be a vector valued image and x ∈ D be fixed. Consider
the function Fx : V → R, Fx(v) =

∣
∣∂u

∂v (x)
∣
∣2 , where V = {v ∈ R2; |v| = 1}.

We are interested in finding the arguments θ+(u, x), θ−(u, x) and correspond-
ing values λ+(u, x) = Fx(θ+(u, x)), λ−(u, x) = Fx(θ−(u, x)) which maximize
and minimize the function Fx, respectively. Note that Fx can be rewritten as
Fx(v) = Fx([v1, v2]T ) = vTG(x)v. In the useful case of colour RGB images G is
defined by the following [7]

G(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3∑

i=1

(
∂ui

∂x1
(x)

)2

,

3∑

i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x)

3∑

i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x),

3∑

i=1

(
∂ui

∂x2
(x)

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

The interesting point about G(x) is that its positive eigenvalues λ+(u, x),
λ−(u, x) are the maximum and the minimum of Fx while the orthogonal eigen-
vectors θ+(u, x) and θ−(u, x) are the corresponding variation orientations. Three
different choices of vector gradient norms N(u, x) have been proposed in the liter-
ature:

√
λ+(u, x),

√
λ+(u, x) − λ−(u, x) and

√
λ(u, x) + λ−(u, x). In this paper

we have used N(u, x) =
√

λ+(u, x) as a natural extension of the scalar gradient
norm viewed as the value of maximum variations.



190 D. Borkowski and K. Jańczak-Borkowska

Fig. 3. Results of the reconstruction using Eq. (4) of RGB Lenna image (512 × 512
pixels) for different values of the parameter c. Standard deviation of the noise is 10
(independently added to all coordinates). The time of the reconstruction is 19 s (CPU:
2 × 2.5 GHz).

Replacing in Eq. (2) |∇(u, x)| and [ux1(x), ux2(x)]T by N(u, x) and
θ+(u, x), θ−(u, x) respectively, we obtain the following model for vector-valued
images:

⎧
⎪⎪⎨

⎪⎪⎩

Xt = x +
∫ t

0

σ(s,Xs) dWs + KD
t , t ∈ [0, T ],

Yt = u0(XS) +
∫ T

t

c(s)(Ys − u0(Xs))ds −
∫ T

t

Zs dWs, t ∈ [0, T ],
(4)

where S < T ,

σ(s,Xs) =
[(

1 − c(s)
c

)
θ−(Gγ ∗ u0,Xs),

c(s)
c θ+(Gγ ∗ u0,Xs)

]

c(t) =
{

0 if t < S or N(Gγ ∗ u0, x) < d,
c if t ≥ S and N(Gγ ∗ u0, x) ≥ d.

In Fig. 3 we can see similar as before results of the reconstruction using (4) for
RGB Lenna image and different values of the parameter c. The parameter d
depends on the noise of the image, and it can be set as the standard deviation
of the noise.
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5 Approximation

The following theorem allows us to transition from a continuous model to the
discrete model.

Theorem 1. Let S < T , u0 : D → Rn, x ∈ D. Assume that f(t, y) = c(t)(y −
u0(Xt)), c(t) = 0 for t < S and ξ = u0(XS), where X is two-dimensional
diffusion process with reflection with values in D and starting from x. If (Y,Z)
is a solution to BSDE

Yt = ξ +
∫ T

t

f(s, Ys)ds −
∫ T

t

Zs dWs, t ∈ [0, T ],

then
lim

m→+∞ Y m
0 = Y0,

where

Y m
0 =

m−1∑

k=j

akE [u0(Xtk
)] , (5)

and j is a index of discretisation, such that

0 = t0 < t1 < · · · < tj ≤ S < tj+1 < · · · < tm = T, ti+1 − ti =
T

m
,

aj =
m−1∏

r=j

(

1 +
c(tr)T

m

)

− c(tj)T
m

, (6)

ak = −c(tk)T
m

k−1∏

r=j

(

1 +
c(tr)T

m

)

, k = j + 1, j + 2, ...,m − 1, (7)

and by E we denote the expected value.

The coefficients ak, k = j, j + 1, ...,m − 1 define the weights used in the process
reconstruction and satisfy the useful condition

∑m−1
k=j ak = 1. The proof of the

above theorem is analogous to the proof of Theorem 5.1 in [3]. Repeating argu-
ments from the work [3] and using the above theorem we obtain the following
discrete inverse formula for RGB images.

u(x) ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
N0

N0∑

n0=1

u0(Xx
tj

(ωn0)) if N(Gγ ∗ u0, x) < d,

1
N0

∑N0
n0=1

[
aju0

(
Xx

tj
(ωn0)

)

+ 1
N1

∑N1
n1=1

∑m−1
k=j+1 aku0

(

X
Xx

tj
(ωn0 )

tk
(ωn1)

)]

if N(Gγ ∗ u0, x) ≥ d

(8)

where Xa
t (ω) is the value at time t of ω-trajectory of the process X starting

from a point a.
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6 Experimental Results

Measure of quality for our evaluation experiments regarding the new method
and other classic methods: total variation [12] and non local means [6] for colour
images are presented in Table 1. The results refer to RGB image Lenna corrupted
(channels independently) with the Gaussian noise with standard deviation ρ.
Noisy images have been reconstructed with vector analysis in RGB space. The
maximum values of Peak Signal to Noise Ratio (in short PSNR) is given in
the table. The analysis of PSNR measure shows that the new method performs
better then PDE approach and is comparable to the method based on non-local
similarity of patches.

Note that the type of high ISO noise generated by a typical digital camera
sensor can be modelled as an additive white Gaussian distribution with standard
deviation proportional to the value of the ISO [5]. In Fig. 4 we present the images
taken with high ISO value and the result of the reconstruction using the new
algorithm, non local means [6] and total variation [12]. Parameters of all methods
were set to the default values as recommended by [3,6,12]. It should be noted
that we have one unknown parameter: standard deviation of the noise. This
parameter is determined from the background of the image and set to 5. Looking
(carefully) at the images you can observe that the image created by the new
method is visually more sharp and therefore all the details are more visible (see
Fig. 4).

Table 1. Lenna (PSNR)

ρ Non local means [6] New method (c = 1.5) Total variation [12]

10 34.7758 33.4106 33.2549

15 33.1034 32.2666 31.7692

20 31.9212 31.3412 30.7777

25 30.8765 30.6641 29.9996

30 30.1963 30.0058 29.3863

35 29.5205 29.4037 28.8702

40 28.8700 28.8767 28.4306

45 28.3743 28.3912 28.0531

50 27.7861 27.9544 27.7119

55 27.3753 27.5024 27.4102
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Fig. 4. (a) Input high ISO image (b) Result of reconstruction using total variation
[12] (c) Result of reconstruction using non local means [6] (d) Result of reconstruction
using the new method

7 Conclusion

In this paper we proposed a new method of colour image denoising. The
obtained results demonstrate that proposed approach can be used successfully to
reconstruction of high ISO images and can provide a good alternative to other
methods.
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