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Abstract We consider the problem of statistical inference for ranking data, namely

the problem of estimating a probability distribution on the permutation space. Since

observed rankings could be incomplete in the sense of not comprising all choice

alternatives, we propose to tackle the problem as one of learning from imprecise or

coarse data. To this end, we associate an incomplete ranking with its set of consistent

completions. We instantiate and compare two likelihood-based approaches that have

been proposed in the literature for learning from set-valued data, the marginal and

the so-called face-value likelihood. Concretely, we analyze a setting in which the

underlying distribution is Plackett-Luce and observations are given in the form of

pairwise comparisons.

1 Introduction

The study of rank data and related probabilistic models on the permutation space

(symmetric group) has a long tradition in statistics, and corresponding methods

for parameter estimation have been used in various fields of application, such as

psychology and the social sciences [1]. More recently, applications in information

retrieval (search engines) and machine learning (personalization, preference learn-

ing) have caused a renewed interest in the analysis of rankings and topics such as

“learning-to-rank” [2]. Indeed, methods for learning and constructing preference

models from explicit or implicit preference information and feedback are among the

recent research trends in these disciplines [3].

In most applications, the rankings observed are incomplete or partial in the sense

of including only a subset of the underlying choice alternatives, whereas no prefer-

ences are revealed about the remaining ones—pairwise comparisons can be seen as
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an important special case. In this paper, we therefore approach the problem of learn-

ing from ranking data from the point of view of statistical inference with imprecise
data. The key idea is to consider an incomplete ranking as a set-valued observation,

namely the set of all complete rankings consistent with the incomplete observation

[4]. This approach is especially motivated by recent work on learning from impre-

cise, incomplete, or fuzzy data [5–9].

Thus, our paper can be seen as an application of general methods proposed in that

field to the specific case of ranking data. This is arguably interesting for both sides,

research on statistics with imprecise data and learning from ranking data: For the

former, ranking data is an interesting test bed that may help understand, analyze, and

compare methods for learning from imprecise data; for the latter, general approaches

for learning from imprecise data may turn into new statistical methods for ranking.

In this paper, we compare two likelihood-based approaches for learning from

imprecise data. More specifically, both approaches are used for inference about the

so-called Plackett-Luce model, a parametric family of probability distributions on

the permutation space.

2 Preliminaries and Notation

Let 𝕊K denote the collection of rankings (permutations) over a set U = {a1,… , aK}
of K items ak, k ∈ [K] = {1,… ,K}. A complete ranking (a generic element of 𝕊K)

is a bijection 𝜋 ∶ [K] ⟶ [K], where 𝜋(k) is the position of the kth item ak in the

ranking. We denote by 𝜋

−1
the ordering associated with a ranking, i.e., 𝜋

−1(j) is

the index of the item on position j. We write rankings in brackets and orderings

in parentheses; for example, 𝜋 = [2, 4, 3, 1] and 𝜋

−1 = (4, 1, 3, 2) both denote the

ranking a4 ≻ a1 ≻ a3 ≻ a2.
For a possibly incomplete ranking, which includes only some of the items, we

use the symbol 𝜏 (instead of 𝜋). If the kth item does not occur in a ranking, then

𝜏(k) = 0 by definition; otherwise, 𝜏(k) is the rank of the kth item. In the corre-

sponding ordering, the missing items do simply not occur. For example, the ranking

a4 ≻ a1 ≻ a2 would be encoded as 𝜏 = [2, 3, 0, 1] and 𝜏

−1 = (4, 1, 2), respectively.

We let I(𝜏) = {k ∶ 𝜏(k) > 0} ⊂ [K] and denote the set of all rankings (complete or

incomplete) by 𝕊K .

An incomplete ranking 𝜏 can be associated with its set of consistent extensions

E(𝜏) ⊂ 𝕊K , where

E(𝜏) =
{
𝜋 ∶ (𝜏(i) − 𝜏(j))(𝜋(i) − 𝜋(j)) ≥ 0 for all i, j ∈ I(𝜏)

}

An important special case is an incomplete ranking 𝜏i,j in the form of a pairwise com-

parison ai ≻ aj (i.e., 𝜏i,j(i) = 1, 𝜏i,j(j) = 2, 𝜏i,j(k) = 0 otherwise), which is associated

with the set of extensions
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E(𝜏i,j) = E(ai ≻ aj) = {𝜋 ∈ 𝕊K ∶ 𝜋(i) < 𝜋(j)} .

Modeling an incomplete observation 𝜏 by the set of linear extensions E(𝜏) reflects

the idea that 𝜏 has been produced from an underlying complete ranking 𝜋 by some

“coarsening” or “imprecisiation” process, which essentially consists of omitting

some of the items from the ranking. E(𝜏) then corresponds to the set of all possi-

ble candidates 𝜋, i.e., all complete rankings that are compatible with the observation

𝜏 if nothing is known about the coarsening, except that it does not change the relative

order of any items.

Sometimes, more knowledge about the coarsening is available, or reasonable

assumptions can be made. For example, it might be known that 𝜏 is a top-t rank-

ing, which means that it consists of the items that occupy the first t positions in 𝜋.

3 Probabilistic Models

Statistical inference requires a probabilistic model of the underlying data generat-

ing process, which, in our case, essentially comes down to specifying a probability

distribution on the permutation space. One of the most well-known probability dis-

tributions of that kind is the Plackett-Luce (PL) model [1].

3.1 The Plackett-Luce Model

The PL model is parametrized by a vector 𝜃 = (𝜃1, 𝜃2,… , 𝜃K) ∈ 𝛩 = ℝK
+ . Each 𝜃i

can be interpreted as the weight or “strength” of the option ai. The probability

assigned by the PL model to a ranking represented by a permutation 𝜋 ∈ 𝕊K is given

by

pl
𝜃

(𝜋) =
K∏
i=1

𝜃
𝜋
−1(i)

𝜃
𝜋
−1(i) + 𝜃

𝜋
−1(i+1) +⋯ + 𝜃

𝜋
−1(K)

(1)

Obviously, the PL model is invariant toward multiplication of 𝜃 with a constant c > 0,

i.e., pl
𝜃

(𝜋) = plc𝜃(𝜋) for all 𝜋 ∈ 𝕊K and c > 0. Consequently, 𝜃 can be normalized

without loss of generality (and the number of degrees of freedom is only K − 1
instead of K). Note that the most probable ranking, i.e., the mode of the PL dis-

tribution, is simply obtained by sorting the items in decreasing order of their weight:

𝜋

∗ = arg max
𝜋∈𝕊K

pl
𝜃

(𝜋) = arg sort
k∈[K]

{𝜃1,… , 𝜃K} . (2)

As a convenient property of PL, let us mention that it allows for a very easy computa-

tion of marginals, because the marginal probability on a subset U′ = {ai1 ,… , aiJ} ⊂
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U of J ≤ K items is again a PL model parametrized by (𝜃i1 ,… , 𝜃iJ ). Thus, for every

𝜏 ∈ 𝕊K with I(𝜏) = U′
,

pl
𝜃

(𝜏) =
∑

𝜋∈E(𝜏)
pl

𝜃

(𝜋) =
J∏
j=1

𝜃
𝜏
−1(j)

𝜃
𝜏
−1(j) + 𝜃

𝜏
−1(j+1) +… + 𝜃

𝜏
−1(J)

(3)

In particular, this yields pairwise probabilities

pl
𝜃

(𝜏i,j) = pl
𝜃

(ai ≻ aj) =
𝜃i

𝜃i + 𝜃j
.

This is the well-known Bradley-Terry model [1], a model for the pairwise compari-

son of alternatives. Obviously, the larger 𝜃i in comparison to 𝜃j, the higher the prob-

ability that ai is chosen. The PL model can be seen as an extension of this principle

to more than two items: the larger the parameter 𝜃i in (1) in comparison to the para-

meters 𝜃j, j ≠ i, the higher the probability that ai occupies a top rank.

3.2 A Stochastic Model of Coarsening

While (1) defines a probability for every complete ranking 𝜋, and hence a distribution

p ∶ 𝕊K ⟶ [0, 1], an extension of p from 𝕊K to𝕊K is in principle offered by (3). One

should note, however, that marginalization in the traditional sense is different from

coarsening. In fact, (3) assumes the subset of itemsU′
to be fixed beforehand, prior to

drawing a ranking at random. For example, focusing on two items ai and aj, one may

ask for the probability that ai will precede aj in the next ranking drawn at random

according to p.

Recalling our idea of a coarsening process, it is more natural to consider the data

generating process as a two step procedure:

p
𝜃,𝜆

(𝜏, 𝜋) = p
𝜃

(𝜋) ⋅ p
𝜆

(𝜏 |𝜋) (4)

According to this model, a complete ranking 𝜋 is generated first according to p
𝜃

(⋅),
and this ranking is then turned into an incomplete ranking 𝜏 according to p

𝜆

(⋅ |𝜋).
Thus, the coarsening process is specified by a family of conditional probability dis-

tributions {
p
𝜆

(⋅ |𝜋) ∶ 𝜋 ∈ 𝕊K , 𝜆 ∈ 𝛬

}
, (5)

where 𝜆 collects all parameters of these distributions; p
𝜃,𝜆

(𝜏, 𝜋) is the probability of

producing the data (𝜏, 𝜋) ∈ 𝕊K × 𝕊K . Note, however, that 𝜋 is actually not observed.
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4 Statistical Inference

As for the statistical inference about the process (4), our main interest concerns the

“precise part”, i.e., the parameter 𝜃, whereas the coarsening is rather considered as a

complication of the estimation. In other words, we are less interested in inference

about 𝜆 or, stated differently, we are interested in 𝜆 only in so far as it helps to

estimate 𝜃. In this regard, it should also be noted that inference about 𝜆 will gen-

erally be difficult: Due to the sheer size of the family of distributions (5), 𝜆 could be

very high-dimensional. Besides, concrete model assumptions about the coarsening

process may not be obvious.

Therefore, what we are mainly aiming for is an estimation technique that is effi-

cient in the sense of circumventing direct inference about 𝜆, and at the same time

robust in the sense that it yields reasonably good results for a wide range of coarsen-

ing procedures, i.e., under very weak assumptions about the coarsening (or perhaps

no assumptions at all). As a first step toward this goal, we look at two estimation

principles that have recently been proposed in the literature, both being based on the

principle of likelihood maximization.

In the following, the random variableX will denote the precise outcome of a single

random experiment, i.e., a complete ranking 𝜋, whereas Y denotes the coarsening 𝜏.

We assume to be given an i.i.d. sample of size N and let 𝜏 = (𝜏1,… , 𝜏N) ∈ (𝕊K)N
denote a sequence of N independent incomplete observations of Y .

4.1 The Marginal Likelihood

The perhaps most natural approach is to consider the marginal likelihood function

(also called “visible likelihood” in [10]), i.e., the probability of the observed data Y
given the parameters 𝜃 and 𝜆:

LV (𝜃, 𝜆) = p(𝝉 | 𝜃, 𝜆) =
N∏
i=1

p(Y = 𝜏i | 𝜃, 𝜆)

=
N∏
i=1

∑
𝜋∈𝕊K

p
𝜃

(𝜋)p
𝜆

(𝜏i |𝜋) (6)

The maximum likelihood estimate (MLE) would then be given by

(𝜃∗, 𝜆∗) = arg max

(𝜃,𝜆)∈𝛩×𝛬
LV (𝜃, 𝜆) ,

or, emphasizing inference about 𝜃, by

𝜃

∗ = arg max
𝜃∈𝛩

max
𝜆∈𝛬

LV (𝜃, 𝜆) .
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As can be seen, this approach requires assumptions about the parametrization of the

coarsening, i.e., the parameter space 𝛬. Of course, since both 𝕊K and 𝕊K are finite,

these assumptions can be “vacuous” in the sense of allowing all possible distribu-

tions. Thus, the family (5) would be specified in a tabular form by letting

p
𝜆

(𝜏 |𝜋) = 𝜆
𝜋,𝜏

(7)

for all 𝜏 ∈ 𝕊K and 𝜋 ∈ E(𝜏) (recall that p
𝜆

(𝜏 |𝜋) = 0 for 𝜋 ∉ E(𝜏)). In other words,

𝛬 is given by the set of all these parametrizations under the constraint that

∑
𝜏∈𝕊K

𝜆
𝜋,𝜏

=
∑

𝜏∈E(𝜏)
𝜆
𝜋,𝜏

= 1

for all 𝜋 ∈ 𝕊K . We denote this parametrization by 𝛬vac.

4.2 The Face-Value Likelihood

The face-value likelihood is expressed as follows [11, 12]:

LF(𝜃, 𝜆) =
N∏
i=1

P
(
X ∈ E(𝜏i) | 𝜃, 𝜆

)
(8)

=
N∏
i=1

∑
𝜋∈E(𝜏i)

p
𝜃

(𝜋)

Note that the face-value likelihood does actually not depend on 𝜆, which means that

we could in principle write LF(𝜃) instead of LF(𝜃, 𝜆). Indeed, this approach does

not explicitly account for the coarsening process, or at least does not consider the

coarsening as a stochastic process. The only way of incorporating knowledge about

this process is to replace the set of linear extensions, E(𝜏i), with a smaller set of

complete rankings associated with an incomplete observation 𝜏i. This can be done if

the coarsening is deterministic, like in the case of top-t selection.

5 Comparison of the Approaches

These two likelihood functions (6) and (8) coincide when the collection of possible

values for Y forms a partition of the collection of permutations 𝕊K , since the events

Y = 𝜏i and X ∈ E(𝜏i) are then the same. But they do not coincide in the general case,

where the event Y = 𝜏i implies but does not necessarily coincide with X ∈ E(𝜏i).
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In the following, we refer to the parameter estimation via maximization of (6) and

(8) as MLM (marginal likelihood maximization) and FLM (face-value likelihood

maximization), respectively.

5.1 Known Coarsening

A comparison between the marginal and face-value likelihood is arguable in the

case where the coarsening is assumed to be known, because, as already said, the

face-value likelihood is not able to exploit this knowledge (unless the coarsening

is deterministic and forms a partition). Obviously, ignorance of the coarsening may

lead to very poor estimates in general, as shown by the following example.

Let K = 3 and U = {a1, a2, a3}. To simplify notation, we denote a ranking ai ≻
aj ≻ ak inducing 𝜋

−1 = (i, j, k) by aiajak. We assume the PL model and suppose the

coarsening to be specified by the following (deterministic) relation between complete

rankings 𝜋 and incomplete observations 𝜏, which are all given in the form of pairwise

comparisons:

a1 ≻ a2 a2 ≻ a1 a1 ≻ a3 a3 ≻ a1 a2 ≻ a3 a3 ≻ a2
a1a2a3 0 0 0 0 1 0
a1a3a2 0 0 0 0 0 1
a2a1a3 0 1 0 0 0 0
a2a3a1 0 1 0 0 0 0
a3a1a2 0 0 0 1 0 0
a3a2a1 0 1 0 0 0 0

Denoting by ni,j the number of times ai ≻ aj has been observed, the face-value like-

lihood function reads as follows:

LF(𝝉; 𝜃) =
3∏
i=1

∏
j≠i

(
𝜃i

𝜃i + 𝜃j

)ni,j
.

Let now nijk denote the number of occurrences of the ranking aiajak in the sample.

According to the above relation, we have the following:

n1,2 = 0
n2,1 = n213 + n231 + n321
n1,2 = 0
n1,3 = n312
n2,3 = n123
n3,2 = n132
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Therefore,

LF(𝜃) =
(

𝜃2
𝜃1 + 𝜃2

)n213+n231+n321

×
(

𝜃3
𝜃1 + 𝜃3

)n312
×
(

𝜃2
𝜃2 + 𝜃3

)n123
×
(

𝜃3
𝜃2 + 𝜃3

)n132
.

For an arbitrary triplet 𝜃 = (𝜃1, 𝜃2, 𝜃2) with 𝜃1 + 𝜃2 + 𝜃3 = 1, we observe that

LF(𝜃1, 𝜃2, 𝜃3) ≤ LF
(
0, 𝜃′2, 𝜃

′
3
)
,

where 𝜃

′
2 =

𝜃2
𝜃2+𝜃3

and 𝜃

′
3 =

𝜃3
𝜃2+𝜃3

. In fact,

LF(0, 𝜃′2, 𝜃
′
3) = (𝜃′2)

n123 ⋅ (𝜃′3)
n132

,

and therefore

LF(𝜃) =
[(

𝜃2
𝜃1 + 𝜃2

)n213+n231+n321
⋅
(

𝜃3
𝜃1 + 𝜃3

)n312]
× LF(0, 𝜃′2, 𝜃

′
3) ,

which is clearly less than or equal to LF(0, 𝜃′2, 𝜃
′
3). Furthermore, according to Gibb’s

inequality, the above likelihood value, LF(0, 𝜃′2, 𝜃
′
3), is maximized for

( ̂𝜃′2, ̂𝜃
′
3) =

(
n123

n123 + n132
,

n132
n123 + n132

)
.

For instance, if we assume that the true distribution over 𝕊3 is PL with parameter

𝜃 = (𝜃1, 𝜃2, 𝜃3) = (0.99, 0.005, 0.005), then our estimation of 𝜃 based on the face-

value likelihood function will be

(
0,

n123
n123 + n132

,

n132
n123 + n132

)
,

which tends to (0, 0.5, 0.5) as n tends to infinity.

5.2 Unknown Coarsening

The comparison between the two approaches appears to be more reasonable when the

coarsening is assumed to be unknown. In that case, it might be fair to instantiate the

marginal likelihood with the parametrization 𝛬vac, because just like the face-value

likelihood, it is then essentially ignorant about the coarsening. However, the estima-

tion of the coarsening process under𝛬vac is in general not practicable, simply because
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the number of parameters (7) is too large: One parameter 𝜆
𝜋,𝜏

for each 𝜏 ∈ 𝕊K and

𝜋 ∈ E(𝜏) makes about 2KK! parameters in total. Besides, 𝛬vac may cause problems

of model identifiability. What we need, therefore, is a simplifying assumption on the

coarsening.

5.2.1 Rank-Dependent Coarsening

The assumption we make here is a property we call rank-dependent coarsening. A

coarsening procedure is rank-dependent if the incompletion is only acting on ranks
(positions) but not on items. That is, the procedure randomly selects a subset of ranks

and removes the items on these ranks, independently of the items themselves. In other

words, an incomplete observation 𝜏 is obtained by projecting a complete ranking 𝜋

on a random subset of positions A ∈ 2[K], i.e., the family (5) of distributions p
𝜆

(⋅ |𝜋)
is specified by a single measure on 2[K]. Or, stated more formally,

p
𝜆

(
𝜋

−1(A) |𝜋−1) = p
𝜆

(
𝜎

−1(A) | 𝜎−1)

for all 𝜋, 𝜎 ∈ 𝕊K
and A ⊂ [K], where 𝜋

−1(A) denotes the projection of the ordering

𝜋

−1
to the positions in A.

In the following, we make an even stronger assumption and assume observations

in the form of (rank-dependent) pairwise comparisons. In this case, the coarsening

is specified by probabilities

{
𝜆i,j | 1 ≤ i < j ≤ K, 𝜆i,j ≥ 0,

∑
1≤i<j≤K

𝜆i,j = 1
}
,

where 𝜆i,j denotes the probability that the ranks i and j are selected.

5.2.2 Likelihoods

Under the assumption of the PL model and rank-dependent pairwise comparisons as

observations, the marginal likelihood for an observed set of pairwise comparisons

ain ≻ ajn , n ∈ [N], is given by

LV (𝜃, 𝜆) =
N∏
n=1

∑
𝜋∈𝕊K ,𝜋(in)<𝜋(jn)

𝜆
𝜋(in),𝜋(jn) pl𝜃(𝜋) . (9)

The corresponding expression for the face-value likelihood is

LF(𝜃) =
N∏
n=1

𝜃in

𝜃in + 𝜃jn
=
∏
i≠j

(
𝜃i

𝜃i + 𝜃j

)ni,j
, (10)
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where ni,j denotes the number of times ai ≻ aj has been observed. This is the Bradely-

Terry-Luce (BTL) model, which has been studied quite extensively in the literature

[13].

Obviously, since the face-value likelihood is ignorant of the coarsening, we can-

not expect the maximizer ̂
𝜃 of (10) to coincide with the true parameter 𝜃. Interest-

ingly, however, in our experimental studies so far, these parameters have always been

asymptotically comonotonic, which is enough to recover the most probable ranking

(2). That is, the face-value likelihood seems to yield reasonably strong estimates

�̂� = arg sort
k∈[K]

{
̂
𝜃1,… ,

̂
𝜃K

}
, (11)

for sufficiently large samples, although the parameter ̂
𝜃 itself might be biased. The

question whether or not this comonotonicity holds in general is still open. Yet, we

could prove an affirmative answer at least under an additional assumption.

Theorem 1 Suppose complete rankings to be generated by the PL model with para-
meters 𝜃1 > 𝜃2 > ⋯ > 𝜃K. Moreover, let the coarsening procedure be given by a
rank-dependent selection of pairwise comparisons between items where 𝜆 satisfies
the following condition:

𝜆i,j ≥ 𝜆i′,j′ , if 1 ≤ i ≤ i′ < j′ ≤ j ≤ K.

Then, for an arbitrarily small 𝜖 > 0 there exists N
𝜖

∈ ℕ such that, for every N ≥ N
𝜖

the maximizer ̂
𝜃 of (10) satisfies

̂
𝜃1 > ̂

𝜃2 > ⋯ >
̂
𝜃K

with probability at least 1 − 𝜖.

The proof of Theorem 1 can be derived from Lemmas 1 to 6.

Lemma 1 Suppose complete rankings to be generated by the PL model with para-
meters 𝜃i1 > 𝜃i2 > ⋯ > 𝜃iK . Given i ≠ j, let pik ,il = P(X ∈ E(aik ≻ ail )) =

𝜃ik

𝜃ik+𝜃il
denote the probability that aik is preferred to ail . Then, the following inequalities
hold:

pik ,il ≥ pik′ ,il′ , ∀ k ≤ k′, l ≥ l′.

Proof Straightforward, if we take into account that the mapping fc(x) =
x

x+c
is increas-

ing on ℝ+ for all c > 0 while gc ∶ (x) = c
c+x

is decreasing on ℝ+.

Definition 1 Consider a complete ranking 𝜋 ∈ 𝕊K , and let us consider two indices

i ≠ j. We define the (i, j)-swap ranking, 𝜋i,j ∶ [K] → [K], as follows: 𝜋i,j(k) = 𝜋(k),
∀ k ∈ [K] ⧵ {i, j}, 𝜋i,j(i) = 𝜋(j) and 𝜋i,j(j) = 𝜋(i).
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Lemma 2 Suppose complete rankings to be generated by the PL model pl
𝜃

. Take
i, j ∈ [K] such that 𝜃i > 𝜃j and 𝜋 ∈ 𝕊K . Then:

𝜋(i) < 𝜋(j) if and only if pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j).

Proof Let us take an arbitrary ranking 𝜋 ∈ 𝕊k satisfying the restriction 𝜋(i) < 𝜋(j)
We can write:

pl
𝜃

(𝜋) = Ci,j ⋅
𝜃
𝜋
−1(𝜋(i))∑

𝜋(K)
s=𝜋(i) 𝜃𝜋−1(s)

⋅
𝜃
𝜋
−1(𝜋(j))∑

𝜋(K)
s=𝜋(j) 𝜃𝜋−1(s)

pl
𝜃

(𝜋i,j) = Ci,j ⋅
𝜃
𝜋

−1
i,j (𝜋i,j(i))

∑𝜋i,j(K)
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

⋅
𝜃
𝜋

−1
i,j (𝜋i,j(j))

∑𝜋i,j(K)
s=𝜋i,j(j)

𝜃
𝜋

−1
i,j (s)

,

where

Ci,j =
∏

r∉{𝜋(i),𝜋(j)}

𝜃
𝜋
−1(r)

𝜃
𝜋
−1(r) + 𝜃

𝜋
−1(r+1) +… + 𝜃

𝜋
−1(K)

=
∏

r∉{𝜋i,j(i),𝜋i,j(j)}

𝜃
𝜋

−1
i,j (r)

𝜃
𝜋

−1
i,j (r)

+ 𝜃
𝜋

−1
i,j (r+1)

+… + 𝜃
𝜋

−1
i,j (K)

.

According to the relation between 𝜋 and 𝜋i,j, we can easily check the following

equality:

𝜋(K)∑
s=𝜋(i)

𝜃
𝜋
−1(s) =

𝜋i,j(K)∑
s=𝜋i,j(j)

𝜃
𝜋

−1
i,j (s)

(In fact, both 𝜃i and 𝜃j appear in both sums). Therefore, pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j) if and only

if
∑

𝜋(K)
s=𝜋(j) 𝜃𝜋−1(s) <

∑𝜋i,j(K)
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

. Furthermore, we observe that:

𝜋(K)∑
s=𝜋(j)

𝜃
𝜋
−1(s) −

𝜋i,j(K)∑
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

= 𝜃j − 𝜃i,

and therefore pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j) if and only if 𝜃j < 𝜃i.

Lemma 3 If a > a′ and b > b′ then ab + a′b′ > ab′ + a′b.

Proof Straightforward.

Lemma 4 Suppose that 𝜆k,l ≥ 𝜆k′,l′ for all k, l, k′, l′ such that k ≤ k′, l ≥ l′, k < l k′ <
l′. Suppose complete rankings to be generated according to a distribution p satisfying
p(𝜋) > p(𝜋i,j) for every 𝜋 ∈ E(ai ≻ aj), for every pair i < j.
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Let qi,j =
∑

𝜋∈E(ai>aj) p(𝜋)𝜆𝜋(i),𝜋(j), for all i ≠ j denote the probability of observing
that ai is preferred to aj. Then

qi,j > qi′,j′ if i ≤ i′ and j ≥ j′.

Proof We will divide the proof into three cases.

∙ Let us first prove that qi,j > qj,i, for all i < j. By definition, we have:

qi,j =
∑

𝜋∈E(ai>aj)
p(𝜋)𝜆

𝜋(i),𝜋(j) and qj,i =
∑

𝜋∈E(aj>ai)
p(𝜋)𝜆

𝜋(j),𝜋(i).

Furthermore, E(aj ≻ ai) = {𝜋i,j ∶ 𝜋 ∈ E(ai ≻ aj)} and thus we can alternatively

write:

qj,i =
∑

𝜋∈E(ai>aj)
p(𝜋i,j)𝜆𝜋i,j(j),𝜋i,j(i) =

∑
𝜋∈E(ai>aj)

p(𝜋i,j)𝜆𝜋(i),𝜋(j).

We easily deduce that qi,j > qj,i, ∀ i < j from the above hypotheses.

∙ Let us now prove that qi,j > qi+1,j, for all (i, j)with i + 1 < j.By definition we have:

qi,j =
∑

𝜋∈E(ai>aj)
p(𝜋)𝜆

𝜋(i),𝜋(j) =
∑
𝜋∈𝕊k

p(𝜋)𝛼
𝜋(i),𝜋(j),

where 𝛼k,l = 𝜆k,l for k < l and 𝛼k,l = 0 otherwise. We can alternatively write:

qi,j =
∑

𝜋∈E(ai>ai+1)
p(𝜋)𝛼

𝜋(i),𝜋(j) +
∑

𝜋∈E(ai+1>ai)
p(𝜋)𝛼

𝜋(i),𝜋(j),

or, equivalently:

qi,j =
∑

𝜋∈E(ai>ai+1)
[p(𝜋)𝛼

𝜋(i),𝜋(j) + p(𝜋i,i+1)𝛼𝜋(i+1),𝜋(j)].

Analogously, we can write:

qi+1,j =
∑

𝜋∈E(ai>ai+1)
[p(𝜋)𝛼

𝜋(i+1),𝜋(j) + p(𝜋i,i+1)𝛼𝜋(i),𝜋(j)].

Now, according to the hypotheses, for every 𝜋 ∈ E(ai ≻ ai+1), p(𝜋) > p(𝜋i,i+1) and

𝛼
𝜋(i),𝜋(j) > 𝛼

𝜋(i+1),𝜋(j). Then, we can easily deduce from Lemma 3 that qi,j > qi+1,j.
∙ It remains to prove that qi,j > qi,j−1 for all (i, j) with i + 1 < j. The proof is analo-

gous to the previous one.

Lemma 5 For every i ≠ j let ni,j the number of times ai ≻ aj is observed in a sample
of size N. Given 𝜖 > 0 there exists N

𝜖

∈ ℕ such that for every N ≥ N
𝜖

, the following
equalities hold with probability at least 1 − 𝜖:
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ni,j ≥ ni′,j′ , ∀ 1 ≤ i ≤ i′ < j′ ≤ j ≤ K.

Proof This result is a direct consequence of the WLLN and Lemma 4.

Lemma 6 Consider the mapping g ∶ MK(ℝ+) ×MK(ℝ+) → ℝ+ defined over the
collections of pairs of K-square matrices of positive numbers as follows:

g(𝐫, 𝐬) = g((ri,j)i,j∈[K], (si,j)i,j∈[K]) =
∏
i≠j

rsi,ji,j .

Suppose that the matrix 𝐬 = (si,j)i,j∈[K] satisfies the following restriction:

si,j ≥ si′,j′ , if i ≤ i′, j ≥ j′.

Suppose that there exists i∗ ≠ j∗ such that ri,j ≤ ri′,i′ for all (i, j), (i′, j′) with:

i ≤ i′, j ≥ j′, {i, j} ∩ {i∗, j∗} ≠ ∅ and {i′, j′} ∩ {i∗, j∗} ≠ ∅.

Consider the matrix 𝐫′ = (r′i,j)i∈K,j∈[K] where: r
′
i,j = r

𝜎(i),𝜎(j), where 𝜎 ∈ 𝕊K swaps i∗

and j∗, i.e., 𝜎(i∗) = j∗, 𝜎(j∗) = i∗, 𝜎(k) = k, ∀ k ∈ [K] ⧵ {i∗, j∗}.
Then g(𝐫′, 𝐬) ≥ g(𝐫, 𝐬).

Proof It is easy to prove that, under the above conditions, the ratio
g(𝐫′,𝐬)
g(𝐫,𝐬) is greater

than 1.

5.2.3 Experiments

In order to compare the two approaches experimentally, synthetic data was produced

by fixing parameters 𝜃 and 𝜆 and drawing N samples at random according to (4).

Then, estimations ̂
𝜃 and �̂� were obtained for both likelihoods, i.e., by maximizing (9)

and (10). As a baseline, we also included estimates of 𝜃 assuming the coarsening 𝜆 to

be known; to this end, (9) is maximized as a function of 𝜃 only. The three approaches

are called MLM, FLM, and TLM, respectively.

The quality of estimates is measured both for the parameters and the induced

rankings (11), in terms of the Euclidean distance between 𝜃 and ̂
𝜃, and in terms of

the Kendall distance (relative number of pairwise inversions between items) between

𝜋 and �̂�. The expectations of the quality measures were approximated by averaging

over 100 simulation runs.

Here, we present results for a series of experiments with parameters K = 4, 𝜃 =
(0.4, 0.3, 0.2, 0.1), and different assumptions on the coarsening:
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Fig. 1 Euclidean distance of parameter estimate ̂
𝜃 (left column) and Kendall distance of predicted

ranking �̂� (right column) for three experimental settings: uniform selection of pairwise comparisons

(top), top-2 selection (middle), and rank-proportional selection (bottom). Curves are plotted in solid

lines for MLM, dashed for FLM, and dotted for TLM
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∙ In the first experiment, we set 𝜆1,2 = ⋯ = 𝜆3,4 = 1∕6. Thus, pairwise comparisons

are selected uniformly at random. In this case, the face-value likelihood coincides

with the likelihood of 𝜃 assuming the coarsening to be known, so this setting is

clearly in favor of FLM (which, as already said, also coincides with TLM). Indeed,

as can be seen in Fig. 1 (top), FLM yields very accurate estimates that improve with

an increasing sample size. Nevertheless, MLM is not much worse and performs

more or less on a par.

∙ In the second experiment, 𝜆1,2 = 1 and 𝜆1,3 = 𝜆1,4 = ⋯ = 𝜆3,4 = 0. This corre-

sponds to the top-2 setting, in which always the two items on the top of the ranking

are observed. As expected, FLM now performs worse than MLM. As can be seen

in Fig. 1 (middle, left), the parameter estimates of FLM are biased. Nevertheless,

the estimation �̂� is still decent (Fig. 1, middle, right) and continues to improve

with increasing sample size.

∙ In the last experiment, items are selected with a probability inversely proportional

their ranks: 𝜆i,j ∝ (8 − i − j). Thus, pairs on better ranks are selected with a higher

probability than pairs on lower ranks. The results are shown in Fig. 1 (bottom).

As can be seen, FLM is again biased and performs worse than MLM. However,

the bias and the difference in performance are much smaller than in the top-2

scenario. This is hardly surprising, given that the coarsening 𝜆 in this experiment

is less extreme than in the top-2 case. Instead, it is closer to the uniform coarsening

of the first experiment, for which, as already said, FLM is the right likelihood.

6 Conclusion

This paper is meant as a first step toward learning from incomplete ranking data based

on methods for learning from imprecise (set-valued) data. Needless to say, the scope

of the paper is very limited, both in terms of the methods considered (inference based

on the marginal and the face-value likelihood) and the setting analyzed (observation

of pairwise comparisons based on the PL model with rank-dependent coarsening)—

generalizations in both directions shall be considered in future work. Nevertheless,

our results clearly reveal some important points:

∙ The arguably “correct” way of tackling the problem is complete inference about

(𝜃, 𝜆), i.e., about the complete data generating process, as done by MLM. While

this approach will guarantee theoretically optimal results, it will not be practica-

ble in general, unless the number of items is small or the parametrization of the

coarsening process is simplified by very restrictive assumptions.

∙ Simplified estimation techniques such as FLM, which make incorrect assumptions

about the coarsening or even ignore this process altogether, will generally lead to

biased results.

∙ Yet, in the context of ranking data, one has to distinguish between the estimation

of the parameter 𝜃, i.e., the identification of the model, and the prediction of a

related ranking 𝜋 (typically the most probable ranking given 𝜃, i.e., the mode of
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the distribution). Indeed, the main interest often concerns 𝜋, while 𝜃 only serves

an auxiliary purpose. As shown by the case of FLM, a biased estimation of 𝜃 does

not exclude an accurate prediction of 𝜋, at least under certain assumptions on the

coarsening process.

These observations suggest a natural direction for future work, namely the search for

methods that achieve a reasonable compromise in the sense of being practicable and

robust at the same time, where we consider a method robust if it guarantees a strong

performance over a broad range of relevant coarsening procedures. Such methods

should improve on techniques that ignore the coarsening, albeit at an acceptable

increase in complexity.
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