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Abstract Although in the literature there appear ‘type-one’ fuzzy sets, ‘type-two’
fuzzy sets, ‘intuitionistic’ fuzzy sets, etc., this theoretically driven paper tries to
argue that only one type of fuzzy sets actually exists. This is due to the difference
between the concepts of a fuzzy set” and a “membership function”.

1 Introduction

Although in the literature there appear ‘type-one’ fuzzy sets, ‘type-two’ fuzzy sets,
‘intuitionistic’ fuzzy sets, etc., this theoretically driven paper tries to argue that only
one type of fuzzy sets actually exists. This is due to the difference between the
concepts of a fuzzy set” and a “membership function”. Both concepts deserve to be
clarified.

Fuzzy sets can, for instance, be contextually specified by a membership function
with values in the real unit interval but, nevertheless, membership functions with
values out of this interval can be, in some situations, significant, suitable and useful.
Situations in which either the range of their values cannot be presumed to be totally
ordered, or it is impossible to precisely determine the membership numerical val-
ues, or the linearly ordered real unit interval produces a drastic simplification of the
meaning of the fuzzy set’s linguistic label by enlarging it through its ‘working’
meaning.

Indeed, this paper negates the existence of ‘other fuzzy sets’ than fuzzy sets, but
it shows the possible suitability of designing their membership functions for
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sufficiently representing them, with as much as possible information available on
the contextual behavior of the linguistic label. If, as Zadeh likes to say, ‘fuzzy logic
is a matter of degree’, it is also a matter of design.

This paper starts with some historical notes on the development of the linguistic
approach to fuzzy sets and fuzzy logic in the second half of the 1960s and in the
first years of the 1970s. In the subsequent sections the paper presents a change of
perspective by placing fuzzy sets in their natural domain, plain language; by going
from ‘general definitions’ to ‘design’ in a given context, and depending on the
meaning of the corresponding linguistic label inasmuch as a fuzzy set membership
function should be carefully designed [19]. That is, they should be built up through
a typical process of design, in which the simplicity of representation is a not to be
forgotten practical value. Meaning is, indeed, only attributable to statements, and if
simplicity is always considered as beautiful in science, ‘design’ is an art.

The main problem, to put it roughly, is representing words in a formal frame-
work, similar to what Gottfried Wilhelm Leibniz had proposed more than 340 years
ago. With his famous ‘Calculemus!’ he intended to resolve any differences of
opinion: “The only way to rectify our reasonings is to make them as tangible as
those of the Mathematicians, so that we can find our error at a glance, and when
there are disputes among persons, we can simply say: Let us calculate [calculemus],
without further ado, to see who is right.” [6, p. 51].

We can find this idea of reducing reasoning to calculations already in the late
13th century in the work of the Catalonian, Ramon Llull. In his Art Abreujada
d’Atrobar Veritat (“The Abbreviated Art of Finding Truth”), later published under
the title Ars generalis ultima or Ars magna (“The Ultimate General Art” [Lull].
Leibniz had written his dissertation about Llull’s Art magna and he named it “ars
combinatoria” [7, p. 30].

Llull and Leibniz’s arts have been steps on the plan for computing with con-
cepts. All this deserves to be explained step-by-step; and in the first place, partic-
ularly the determination of words admitting of such a representation and where and
by means of what is actually possible.

Remark What will not be taken into account in this paper are cases like that of
the functions emerging from the aggregation of sets; that is, from aggregating their
Characteristic Functions. For instance, if in the universe X = {1, 2, 3, 4} the sets
A = {1, 3}, and B = {1, 3, 4} are aggregated by the mean M (a, b) = (2a + 3b)/5,
what is obtained is not a set but the function (2A + 3B)/
2 = 1/1 + 0/2 + 1/3 + 0.6/4, that is able to represent a fuzzy set provided a lin-
guistic label for it (induced from those of A and B) can be known.

2 What Is It a Fuzzy Set?

2.1. Fuzzy Sets were launched in 1964 in three seminal papers by Lotfi A. Zadeh, a
professor and chairman in the department of Electrical Engineering at the
University of California, Berkeley. Zadeh construed his fundamental term of a
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“fuzzy set” without any non-mathematical meaning or application-oriented
interpretation.

In the mid-summer of 1964 he was invited to a conference at Wright-Patterson
Air Force Base in Dayton, Ohio. In his talk there, Zadeh considered problems of
pattern classification, e.g. the process of representing the object patterns into a set of
real variables which represent these patterns correctly and which would also be
accepted by a computer.

Immediately after his travels he wrote on Fuzzy sets dealing with two problems:

• Abstraction—“the problem of identifying a decision function on the basis of a
randomly sampled set”, and

• Generalization—“referred to the use of the decision function identified during
the abstraction process in order to classify the pattern correctly”.

Zadeh first published this paper with his close friend Richard Bellman und
Robert Kalaba as co-authors as a RAND-memo, and two years later in a scientific
journal. Here he defined a “fuzzy set” as “a notion which extends the concept of
membership in a set to situations in which there are many, possibly a continuum of,
grades of membership.” [2, 3, p. 1].

As a historically interested system theorist he had written the article “From
Circuit Theory to System Theory” for the anniversary edition of the Proceedings of
the IRE to mark the 50th year of the Institute of Radio Engineers in May 1962. In
this article he stressed “the fundamental inadequacy of the conventional mathe-
matics—the mathematics of precisely-defined points, functions, sets, probability
measures, etc.—for coping with the analysis of biological systems, and that to deal
effectively with such systems, which are generally orders of magnitude more
complex than man-made systems, we need a radically different kind of mathe-
matics, the mathematics of fuzzy or cloudy quantities which are not describable in
terms of probability distributions” [22].

Two years later he had found this new mathematics and he explained its con-
cepts in his second seminal paper: “Essentially, these concepts relate to situations in
which the source of imprecision is not a random variable or a stochastic process but
rather a class or classes which do not possess sharply defined boundaries” [23,
p. 29].

In his third seminal paper, “Fuzzy Sets”, he motivated the need for his new
theory as follows: “More often than not, the classes of objects encountered in the
real physical world do not have precisely defined criteria of membership. For
example, the class of animals clearly includes dogs, horses, birds, etc. as its
members, and clearly excludes such objects as rocks, fluids, plants, etc. However,
such objects as starfish, bacteria, etc. have an ambiguous status with respect to the
class of animals. The same kind of ambiguity arises in the case of a number such as
10 in relation to the “class” of all real numbers which are much greater than 1.
Clearly, the “class of all real numbers which are much greater than 1,” or “the class
of beautiful women,” or “the class of tall men, do not constitute classes or sets in
the usual mathematical sense of these terms” [24].
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2.2. After he had launched Fuzzy sets Zadeh proposed its use and applications to
various disciplines. Computers and Computer Science (CS) have become part of
Electrical Engineering (EE) Zadeh was very active to change his department’s name
from “EE” to “EECS”. In 1969 in a talk at the conference “Man and Computer” in
Bordeaux, France, he said: “As computers become more powerful and thus more
influential in human affairs, the philosophical aspects of this question become
increasingly overshadowed by the practical need to develop an operational
understanding of the limitations of the machine judgment and decision making
ability” [26, 27, p. 130]. He called it a paradox that the human brain is always
solving problems by manipulating “fuzzy concepts” and “multidimensional fuzzy
sensory inputs” whereas “the computing power of the most powerful, the most
sophisticated digital computer in existence” is not able to do this. Therefore, he
stated that “in many instances, the solution to a problem need not be exact”, so that
a considerable measure of fuzziness in its formulation and results may be tolerable.
The human brain is designed to take advantage of this tolerance for imprecision
whereas a digital computer, with its need for precise data and instructions, is not”
[26, 27, p. 132]. He intended to push his theory of fuzzy sets to model the imprecise
concepts and directives: “Although present-day computers are not designed to
accept fuzzy data or execute fuzzy instructions, they can be programmed to do so
indirectly by treating a fuzzy set as a data-type which can be encoded as an array
[…]” [26, 27, p. 132].

2.3. Already in 1968 Zadeh has presented “fuzzy algorithms” [25]. Usual
algorithms depend upon precision. Each constant and variable is precisely defined;
every function and procedure has a definition set and a value set. Each command
builds upon them. Successfully running a series of commands requires that each
result (output) of the execution of a command lies in the definition range of the
following command, that it is, in other words, an element of the input set for the
series. Not even the smallest inaccuracies may occur when defining these coordi-
nated definition and value ranges. Zadeh now saw “that in real life situations people
think […] like algorithms but not precisely defined algorithms”. Inspired by this
idea, he wrote: “The concept in question will be called fuzzy algorithm because it
may be viewed as a generalization, through the process of fuzzification, of the
conventional (nonfuzzy) conception of an algorithm. [25] To illustrate, fuzzy
algorithms may contain fuzzy instructions such as:

(a) “Set y approximately equal to 10 if x is approximately equal to 5,” or
(b) “If x is large, increase y by several units,” or
(c) “If x is large, increase y by several units; if x is small, decrease y by several

units; otherwise keep y unchanged.”

The sources of fuzziness in these instructions are fuzzy sets which are identified
by their names in italics.

To execute fuzzy algorithms by computers they have to receive an expression in
fuzzy programming languages. Consequently, the next step for Zadeh was to define
fuzzy languages. “All languages”, he wrote in a paper on Architecture and Design
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of Digital Computers, “whether natural or artificial, tend to evolve and rise in level
through the addition of new words to their vocabulary. These new words are, in
effect, names for ordered subsets of names in the vocabulary to which they are
added.” [28, p. 16] He argued explicitly for programming languages that are—
because of missing rigidness and preciseness and because of their fuzziness—more
like natural languages. He mentioned the concept of stochastic languages that was
published by the Finnish mathematician Paavo Turakainen in the foregoing year
[21], being such an approximation to our human languages using randomizations in
the productions, but however, he preferred fuzzy productions to achieve a formal
fuzzy language. With his Ph. D student Edward T.-Z. Lee he co-authored a short
sketch of a program to extend non-fuzzy formal languages to fuzzy languages in
“Note on Fuzzy Languages” [5].

2.4. On the other hand, in the first years of Fuzzy sets Zadeh believed in
successful applications of his new concepts in non-technical fields as he wrote in
1969: “What we still lack, and lack rather acutely, are methods for dealing with
systems which are too complex or too ill-defined to admit of precise analysis. Such
systems pervade life sciences, social sciences, philosophy, economics, psychology
and many other “soft” fields” [25].

His search for application fields led to a period of interdisciplinary scientific
exchange on the campus of his university between himself and the mathematician
Hans-Joachim Bremermann, the psychologist Eleanor Rosch (Heider) and the lin-
guist George Lakoff.

It was in these 1970s when psychologist Rosch developed her prototype theory
on the basis of empirical studies. This theory assumes that people perceive objects
in the real world by comparing them to prototypes and then subsequently ordering
them. In this way, according to Rosch, the meanings of words are formed from
prototypical details and scenes and then incorporated into lexical contexts
depending on the context or situation. It could therefore be assumed that different
societies process perceptions differently depending on how they go about solving
problems [12]. When Lakoff heard about Rosch’s experiments, he was working at
the Center for Advanced Study in Behavioral Sciences at Stanford. During a dis-
cussion about prototype theory, someone there mentioned Zadeh’s name and his
idea of linking English words to membership functions and establishing fuzzy
categories in this way. Lakoff and Zadeh met in 1971/72 at Stanford to discuss this
idea after which Lakoff wrote his paper “Hedges: A Study in Meaning Criteria and
the Logic of Fuzzy Concepts” [4]. In this work, Lakoff employed “hedges”
(meaning barriers) to categorize linguistic expressions, he used the term “fuzzy
logic” in his article and he therefore deserves credit for first introducing this
expression in scientific literature. Based on his later research, however, Lakoff came
to find that fuzzy logic was not an appropriate logic for linguistics: “It doesn’t work
for real natural languages, in traditional computer systems it works that way.” [4]

However, “Inspired and influenced by many discussions with Professor G. Lakoff
concerning the meaning of hedges and their interpretation in terms of fuzzy sets,”
Zadeh had also written an article in 1972 in which he contemplated “linguistic
operators”, which he called “hedges”: “A Fuzzy Set-Theoretic Interpretation of
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Hedges”. Here he wrote: “A basic idea suggested in this paper in that a linguistic
hedge such as very, more, more or less, much, essentially, slightly etc. may be
viewed as an operator which acts on the fuzzy set representing the meaning of its
operand [31].

2.5. Zadeh’s occupation with natural and artificial languages gave rise to his
studies in semantics. This intensive work let him to the question “Can the fuzziness of
meaning be treated quantitatively, at least in principle?” [29, p. 160]. His 1971 article
“Quantitative Fuzzy Semantics” [30] starts with a hint to these studies: “Few con-
cepts are as basic to human thinking and yet as elusive of precise definition as the
concept of »meaning«. Innumerable papers and books in the fields of philosophy,
psychology, and linguistics have dealt at length with the question of what is the
meaning of »meaning« without coming up with any definitive answers.” [29, p. 159]

Zadeh started a new field of research “to point to the possibility of treating the
fuzziness of meaning in a quantitative way and suggest a basis for what might be
called quantitative fuzzy semantics” combining his results on fuzzy languages and
fuzzy relations. In the section “Meaning” of this paper, he set up the basics:
“Consider two spaces: (a) a universe of discourse, U, and (b) a set of terms, T,
which play the roles of names of subsets of U. Let the generic elements of T and U
be denoted by x and y, respectively. Then he started to define the meaning M(x) of
a term x as a fuzzy subset of U characterized by a membership function μ(y|x)
which is conditioned on x. One of his examples was: “Let U be the universe of
objects which we can see. Let T be the set of terms white, grey, green, blue, yellow,
red, black. Then each of these terms, e.g., red, may be regarded as a name for a
fuzzy subset of elements of U which are red in color. Thus, the meaning of red, M
(red), is a specified fuzzy subset of U.”

In his “Outline of a new approach to the analysis of complex systems and decision
processes” [32] and in the three-part article “The concept of a Lingustic Variable and
its Application to Approximate Reasoning” [33], in “Fuzzy Logic and Approximate
Reasoning” [34] and finally in “PRUF—a meaning representation language for
natural languages” [35] Zadeh developed a linguistic approach to Fuzzy sets. He
defined linguistic variables as those variables whose values are words or terms from
natural or artificial languages. For instance, “not very large”, “very large” or “fat”,
“not fat” or “fast”, “very slow” are terms of the linguistic variables size, fatness and
speed. Zadeh represented linguistic variables as fuzzy sets whose membership
functions map the linguistic terms onto a numerical scale of values.

2.6. A fuzzy set is a concept associated by a linguistic label of which no mathe-
matical axiomatic theory is currently known. A fuzzy set is nothing other than
something just exhibited in plain languages, and through the usual forms of speaking;
it is a concept actually well anchored in language, and is useful for roughly, eco-
nomically, and quickly describing what once perceived by people is translated into
words. At each context, a fuzzy set is seen by the speakers as a unique entity associated
to its linguistic label’s use that, usually, is context-dependent and purpose-driven.

The usual confusion between fuzzy set and membership function in a given
universe of discourse is not sustainable, since there is not a one-to-one corre-
spondence, but a one-to-many between fuzzy sets and its membership functions that
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can be given by expressions of different functions, even sharing some common
properties among them. As it is well known, a linguistic label P in a universe of
discourse X does not admit of a single membership function, but several such
functions can be chosen, unless P is a precisely used label.

For instance, the use of the label ‘big’ in the closed interval [0, 10] and in plain
language, can be represented by several membership functions like, for instance,
x/10, x2/100, etc., depending on the available additional information on its shape. It
is commonly accepted that the use of ‘big’ in the universe [0, 10] can be described
by the four rules:

(1) x is less big than y ⟺ x ≤ y;
(2) 10 is totally big;
(3) 0 is not at all big;
(4) If x can be qualified as big, it exists ε (x) > 0, such that all the points in the

interval [x − ε (x), x] can also be qualified as big.

With them, the membership functions representing ‘big’ can be all those map-
pings mbig: [0, 10] → [0, 1], such that:

(1′) If x ≤ y, then mbig (x) ≤ mbig (y);
(2′) mbig (10) = 1;
(3′) mbig (0) = 0;
(4′) mbig is continuous.

There are an enormous amount of all the strictly non-decreasing functions [0,
10] → [0, 1] joining the points of coordinates (0, 0) and (1, 10). Anyway, the four
laws (1′)–(4′) cannot specify a single mbig; for specifying one of them, some
additional information is required. For instance, provided it can be presumed that
function mbig should be linear, then it only exists mbig (x) = x/10, but if what can be
supposed is that mbig is quadratic several of them exist, with mbig(x) = x2/100
among them. Notice that provided it were known that the curve defined by mbig

passes through the point (5, 0.6), then neither x/10, nor x2/100, are acceptable. Etc.
Clearly, fuzzy sets do not admit to being specified by a single membership

function, with the only exception corresponding to the case in which the linguistic
label is precise, that is, its use in X is describable by ‘if and only if’ rules. With this
exception, fuzzy sets cannot be confused with the measures of their meaning, or
membership functions. For instance, provided the use of ‘big’ in [0, 10] were
described by just the precise rule,

′x is big⇔ 8 ≤ x ≤ 10′,

then its only membership function will be,

mbig * xð Þ = 0, if 0 ≤ x < 8, and mbig * xð Þ = 1, if 8 ≤ x ≤ 10;

and, accordingly with the ‘specification axiom’ of set theory [4], ‘big’ is specified
by the set [8, 10] = (mbig*)

−1(1).
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It should be pointed out that function mbig* verifies the former properties (1′),
(2′), and (3′), but not property (4′) as a consequence of the failing of rule (4), since
for instance, for any ε > 0, no point 8—ε can be qualified as big in the current use
of this label. Function mbig* is not a continuous one. It is rule (4) which distin-
guishes the imprecise from the precise uses of ‘big’ in [0, 10].

Notice that even defining the fuzzy set ‘big’ by each pair (big, mbig) instead of by
only a function mbig, as it is also usually done [11], it not only follows that the
linguistic label ‘big’ generates several fuzzy sets instead of a single one, but also a
partial externalization of the concept of fuzzy set from language. The meaning of
the imprecise word ‘big’, and what the functions mbig mean is hidden. For scien-
tifically domesticating fuzzy sets, meaning and its measuring should be analyzed.

2.7. A linguistic label P names a property p the elements of the universe of
discourse X enjoy, and which use is exhibited by the meaning attributed to the
elemental statements ‘x is P’, for all x in X. Notice that the elements x can be
physical or virtual, etc., but the new elements ‘x is P’ are just statements in the
intellect, and belong to the set X [P] = {x is P; x in X} that is different of X;
actually, meaning is attributed to statements, and it is usually context-dependent
and purpose-driven. Meaning depends on the context on which the statements ‘x is
P’ are used either in written form, or uttered, or gestured, etc., and depend on the
purpose for such use [16, 17]. For instance, the same word P = odd, when used in
the context of Arithmetic has a different meaning than when it is used in a social
context, and, if in the first case it can only be used with purposes limited by the
definition ‘the rest of its division by two is one’, in the second, it can be used with
several and open purposes such as the descriptive, the insulting, etc. In the first
case, its use is precise or rigid, but in the second it is imprecise or flexible.
Analogously, in different contexts the word ‘interesting’ can be used with non
coincidental purposes. Semantics is what really matters in language; without cap-
turing the meaning of words, language is unintelligible.

The meaning of a word P is privative of a given universe of discourse; for
instance, the same person can be tall in a population of pygmies, and short in one of
giants. The concept of the meaning requires the joint consideration of both a
universe of discourse X, and the word P, as it was formerly shown with the same
word ‘odd’ in the respective universes of integer numbers, and of people.

2.8. To capture what it means P in X, it is necessary to know the relationship ‘x
is less P than y’, expressing the recognition that x shows the property p named P
less than y shows it [17, 18]; how the application of P varies along X. Of course, if
P is precisely used in X, such a relationship just degenerates into ‘x is equally P
than y’, and ‘x is not equally P than y’. For instance, the numbers 3 and 21, 515 are
equally odd, and the numbers 3 and 20 are not equally odd; in the universe of
integer numbers there are only odd and not odd numbers.

Let’s symbolically represent such relationship by ‘x <P y’; it can be equivalently
said that ‘y is more P than x’. The symbol <P reflects a mathematical relation in X,
of which it only can be quietly asserted that is reflexive, x <P x, for all x in X; a
property assuring that the relation <P ⊆ X x X is not empty. The graph (X, <P)
specifies the ‘qualitative meaning’ of P in X, and when the use of P is precise, the
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relations <P and < − 1
P (whose intersection gives the relation =P, ‘equally P than’),

just collapses in =P. The qualitative meaning of a precisely used word P is the
graph (X, =P), between whose arcs are the loops at each element in X, and, of
course, if P is imprecise in X, the graph (X, <P) contains the graph (X, =P).

These graphs agree with the common view that when telling something people
introduce some organization, or rough order, in what is taken into account.

By another side, it should be observed that, in plain language, words do ‘col-
lectivize’ in the universe of discourse. For instance, if X is the set of London’s
inhabitants, P = young facilitates in X the linguistic-collective of the ‘Young
Londoners’. Linguistic-collectives, such as ‘ripe tomatoes’, ‘high mountains’,
‘comfortable chairs’, ‘tall people’, etc., are well anchored in plain languages since
its speakers not only easily use them, but immediately capture what they express.
Such ‘collectives’ are linguistically generated in X by the corresponding meaning
of P in X, and, by using an old philosophical expression, it allows us to say that the
linguistic label has some ‘extension’ in the corresponding universe of discourse.

Of course, linguistic-collectives are not always sets; they are only sets if P is
precise, as it is, for instance, in the collective of the ‘thirty five year old Londoners’,
as it is guaranteed by the ‘axiom of specification’ of the theory of sets [4]. Even if they
are a kind of cloudy entities, linguistic-collectives are empirically recognized, they
exist in language; they are ‘a reality’ in language like clouds are in the atmosphere.

A fuzzy set in X with linguistic label P, is nothing else than the linguistic-
collective generated by P in X; it can be specified by the graph (X, <P) if P is
imprecise, or the simpler graph (X, =P) if P is precise. There is no difference
between the concepts of linguistic-collective, fuzzy set, and qualitative-meaning;
they just denote the same concept.

2.9. Once a qualitative meaning of P in X is recognized, it should be pointed out
that its defining relation <P is not always a linear one; that is, there are often
elements x and y in X such that it is neither x <P y, nor y <P x; elements that are
‘not comparable’ under <P. Typical examples are obtained with P = interesting in a
universe of possible businesses, with P = beautiful in a universe of paintings, with
P = odd in a universe of people, with P = nice with houses, etc. In collections of
paintings for instance, there are often pairs of which it is impossible to state that any
one of them is less, or more beautiful than the other.

Once the qualitative meaning (X, <P) is captured, it can be said that P is
‘measurable’ in X, since measures mP of the extent up to which each x is P can be
defined analogously to the former case of P = big in X = [0, 10]. If no relation <P

can be even imagined, P is ‘meaningless’, or ‘metaphysical’ in X [17]. For instance,
if <big is recognized as the linear order ≤ of the interval [0, 10] when such a word
is used in it, there is no way of knowing <big seems to exist when ‘big’ is applied to
dreams; hence ‘big’ is measurable in [0, 10], but it is in principle meaningless
among dreams.

Although measurability is truly important for a scientific domestication of
concepts, the metaphysical ones cannot be fully contemptible since at least they can
have a true ‘suggestive power’. What can be measured belongs to reasoning, and
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what cannot belongs to thinking; reasoning is but an organization of thinking for
directing it towards a goal. A word that is currently metaphysical in X, can suggest
to be applied in Y (different of X) in a measurable way. Anyway, this topic belongs
to the kind of questions that are beyond what this paper is trying to consider.

3 How Fuzzy Sets Can Be Computationally Managed?

3.1. In the first place, it should be pointed out that a general definition of what is a
measure should be liberated from the typical additive law always presumed in
probability theory. It supposes that ‘things grow’ by superposition of
non-overlapping pieces, and that the total measure is the sum of the measures of
such pieces; something that cannot be always presumed, and less again with cloudy
entities resembling linguistic-collectives.

From the background of game theory and decision-making, the Japanese
physicist and engineer Michio Sugeno also had the idea that the property of
additivity seemed to be too strong and therefore he reduced the integral form to
monotonicity. In a later interview he recalled: “I put the adjective ‘fuzzy’ to this
monotone measure simply because max-min-operations were used in its integral
form as in fuzzy sets; this naming was later found to be not adequate. More
precisely, I should have called it monotone measure or even ‘non-additive mea-
sure’. I found that the monotonicity of the fuzzy measure well fits the calculations
of max-min.” Sugeno gave a mathematical foundation to this “fuzzy integral”, it
was later called the “Sugeno integral”, at first in a Japanese journal in 1972 and in
1974 published in his doctoral thesis “Theory of Fuzzy Integrals and its Applica-
tions” [13–15].

Adapting Sugeno’s concept of a ‘fuzzy measure’ [15] allows a general clear
enough definition of a measure of meaning as follows [17, 18, 20].

Given the qualitative meaning (X, <P), a measure of it is a mapping mP: X
[0, 1], such that:

(1) x <P y => mP (x) ≤ mP (y),
(2) If z is maximal relatively to <P, it is mP (z) = 1,
(3) If z is minimal relatively to <P, it is mP (z) = 0.

This definition deserves some comments. Concerning (1), it just reflects that the
growing variation of P along X, expressed by <P, is translated into the growing of
numbers in the unit interval given by its linear order ≤ ; what it does not reflect is
how this growing is produced, something that each type of problem would require a
particular form of decomposing elements in constitutive pieces.

Concerning (2), z is a maximal provided no other x ∈ X exists such that z <P x;
a maximal is a ‘prototype of P’ in X, and its existence cannot be taken for granted,
but if a single one exists it is called the maximum. Concerning (3), z is a minimal
provided no other y exists such that y <P z; a minimal is an ‘anti-prototype of P’ in
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X, and its existence is also unsure, but if a single one exists it is called the
minimum. When no maximal, or no minimal exist, then laws (2) or (3) cannot be
applied; anyway, it does not imply that elements in X with measure one or zero are
inexistent, such elements, if existing, can be respectively called ‘working proto-
types’, and ‘working anti-prototypes’. For instance, it is well known in probability
theory there can be elements in the sigma-algebra of events that, not being an empty
event, have a zero probability.

Nevertheless, the existence of prototypes and anti-prototypes seem to make
consistent the recognition of the qualitative meaning; they allow the comparison of
other elements in a form similar to the old Standard Meter Prototype for the
(decimal system’s) measuring of length. For instance concerning P = tall in a
population, once recognized that Ruth is the tallest among inhabitants (Ruth is a
prototype of tall), the tallness of the others is recognized by comparing them with
Ruth; moreover, a stick with the same height as Ruth can serve for attaching
relative and fractional measures of tallness. Of course, the same can be said once it
is recognized that John is a less taller inhabitant, that he is an anti-prototype of tall
in the population under consideration. For instance, in X = [0, 10], and respect to
the former toy-example with P = big, there is initially recognized a unique maximal
(the maximum 10), and a unique minimal (the minimum 0).

It should be pointed out that in the original Sugeno’s definition of a ‘fuzzy
measure’, X is a power-set 2Ω, and the comparable relation (<) is the inclusion of
sets ⊆ with the maximum Ω, and the minimum Ø.

3.2. Let us recall that the three laws of a measure do not allow us to specify a
single one unless P is precisely used in X; for instance, in the case of ‘big’ it was
necessary to add some contextual information, or some reasonable hypothesis on
the shape of the curve y = mbig (x), as it could be, respectively, that it passes
through (5, 0.6), or that it is linear, or quadratic, etc. If P is imprecise there is not a
single measure for the meaning of P in X, but rather a set of them. It is similar to
what happens, for example, with the probabilities of getting ‘n points’ (1 ≤ n
6) by throwing a single die, or with Sugeno’s fuzzy measures containing many
types of them as they are the big family of additive, sub-additive, and super-additive
lambda-measures [15].

Only in the precise case is the measure unique. Since it is,

If x = Py⇔ x < Py & y < Px = > mP xð Þ ≤mP yð Þ&mP yð Þ≤mP xð Þ⇔
mP xð Þ=mP yð Þ,

the measure preserves the relation =P that, in addition to reflexive is also symmet-
rical; provided <P were transitive, then =P is also transitive and, thus, an equiva-
lence. Hence, because X is perfectly classified in the set specifying P (containing all
the prototypes), and its complement (containing all the anti-prototypes), it only
exists in the measure given by mP (x) = 1 for all the first, and mP (x) = 0 for all the
second.
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Notice that the only set with neither prototypes, nor anti-prototypes, is the empty
set; it is a very ‘odd set’ since it is self-contradictory, Ø ⊆ X = Øc; indeed, it is the
only self-contradictory set: A ⊆ Ac

⟺ A = Ø. Its acceptance as a set derives at
least, from two practical reasons; the first is for guaranteeing that the intersection of
sets is always a set, and the second for denoting the ‘extensionality’ of statements
that are non-applicable to a given universe, and as it is, for instance, ‘getting nine’
in the universe of the six elemental events {1, 2, 3, 4, 5, 6} obtainable when
throwing a single die.

Hence, it can be said that the linguistic-collective given by the graph (X, <P),
shows several contextual states (X, <P, mP); each time a measure is specified, a
‘contextual informational state’ (in short, ‘state’) of the fuzzy set is manifested.
Measures, or membership functions, represent known states of the fuzzy set; once
designed, a membership function is practically employed to ‘describe’ the corre-
sponding fuzzy set; they facilitate the management of fuzzy sets for computational
purposes.

3.3. Once a measure mP is specified, it defines the new relation in X,

x ≤ mPy⇔mP xð Þ ≤mP yð Þ,

that is a linear ordering in X, and is obviously greater than <P:

x< y= >mP xð Þ≤mP yð Þ⇔x≤ mPy; that is, < P⊆ ≤ mP.

If there can be elements x and y for which it is neither x <P y, nor y <P x,
nevertheless one of the two numbers mP (x), mP (y) will be greater than the other;
there are no incomparable elements under ≤mP. The difference set ≤mP − <P is
not always empty, even not necessarily if <P is linear.

Thus, the new and linear relation ≤mP enlarges the qualitative meaning, and
gives the linear ‘working’ meaning (X, ≤mP), only known after a measure mP is
specified, that is, a state of the fuzzy set is described; the working meaning is not
unique and comes before specifying a measure. The process of designing a measure
[19], can conduct (as it typically happens in the applications of fuzzy set theory) to
only considering P through the ‘membership function’ y = mP (x), and, then, to the
possibility of forgetting its qualitative meaning and just considering its working
meaning.

It should be clear by now, that membership functions are (ideally) measures of
words that are measurable in a universe of discourse; measures designed accord-
ingly with what at each case is available on the relation <P. It is said ‘ideally’, since
in the design process some deviation from a measure can appear. It is something
similar with stating that the probability of obtaining ‘five points’ in throwing a
single die is 1/6, by presuming the die is perfectly constructed, and that the landing
surface is perfectly smooth. Is an ‘ideal die’.

Membership functions should be seen as ‘designed approximations’ to measures,
a respect at which it lacks a definition that, for instance, can be the following: A
designed membership function μP can be seen as a ‘good enough’ one provided for
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each ε > 0 it exists a measure mP such that ImP (x − μP (x)I < ε, for all x in X.
Obviously, when μP is itself a measure this definition is immediately satisfied.

Measures/membership functions/states of the fuzzy set, are always designed on
the basis of the current knowledge of the relation ‘less P than’ available to the
designer, and only if the linguistic label is precise can it be potentially considered as
perfectly known. Nevertheless, it does not mean that the membership function’s
values of an either precise, or imprecise label can be easily computed; it suffices to
think in the membership function of the precise linguistic label ‘transcendental’ for
real numbers. It is very difficult to know if a somehow defined real number is, or is
not, expressible by an integer followed by a denumerable number of digits without
any pattern’s periodicity. It is the case for proving that the numbers π, e, eπ, the
Euler-Mascheroni constant γ, the Liouville constant Σ10−n!, the Dottie number x
(such that cos x = x), the Chaitin halting constant Ω, etc., are actually
non-algebraic, or transcendental. Proving that these numbers are transcendental
requires sophisticated mathematical methods; the set of transcendental numbers has
the power of continuum, is one-to-one and adjacent with all the real numbers of
which they are a particular case. As Mathematics demonstrates, there are extremely
complex precise concepts; precise is not a synonym of easy.

Notice that if relation <P is (artificially) identified with its sub-relation =P, it
means a forced ‘precisification’ of P in X, a change of its qualitative meaning that
will imply just considering a {0, 1}—valued membership function for P, and
avoiding the multiple measures that can exist for the graph (X, <P). It is a risky
change of the meaning of P in X, since it can imply an understanding of P in a
different form than that in current use. It can happen, for instance, if ‘x is big’ is
understood in [0, 10] and in plain language, as ‘x > 8’.

To summarize what has been said: Given a measurable linguistic label P in a
universe of discourse X, its qualitative meaning generates in X a unique
linguistic-collective, or fuzzy set, labeled P, that can be denoted by P. To consider
P in a form allowing for its scientific and practical management, a measure of its
qualitative meaning/linguistic-collective/fuzzy set, should be carefully designed to
represent its contextual informational state. Once anyone of such possible
states/membership functions mP is ‘designed’, thanks to the contextual information
furnished by <P plus the additional information (or the reasonable hypotheses) the
designer will be able to add (for example, that the measure is a linear function, a
triangular one, a bell shaped one, etc.), the particular use of P in X, or the
linguistic-collective/fuzzy set, is just ‘seen’ from such membership function mP,
that is, from the currently known state of the fuzzy set. There should be an
awareness of the danger that can exist when forcing an imprecise P up to be precise.

Hence, there will be cases in which the qualitative meaning <P will not fully
coincide with the corresponding state’s working meaning ≤mP; the second will
actually enlarge the first, and, in addition, the working meaning is not only linear but
can introduce into the graph (X, <P) new arcs, that depending on the character of what
is presumed for the design of themeasure, can be spurious.Moreover, there can appear
new working prototypes, or anti-prototypes than those that were initially recognized
as such; that is, elements with ameasure of one or zero that are not properly qualitative
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prototypes, or, respectively, qualitative anti-prototypes under <P. Only seeing the
meaning of P in X by a working meaning of it, implies some sort of risk.

It should still be pointed out that the usual identification of mP (x) with a truth
degree of the statement ‘x is P’, can result in identifying meaning with truth; that is,
to simplify the concept of meaning to that of truth. Truth (= T) is a concept that, in
its turn, has a meaning in the universe X [P] of the statements x is P, x ∈ X, and
that should be formerly recognized for specifying a measure mT for the meaning of
T in X [P]. Actually, such identification means accepting mP (x) = mT (x is P),
something very risky if no qualitative meaning of T is known, and that previously
requires proving that mT (x is P) is, for all x in X, a measure of the meaning of P in
X. Surely, it will require establishing some criterion of ‘compatibility’ [17] between
P in X, and T in X [P].

4 Towards Approaching Qualitative and Working
Meanings

4.1. When the working meaning coincides with the qualitative meaning, it can be
said that the graph (X, ≤mP) perfectly reproduces the initially ‘observed’ graph
(X, <P); the measure is not adding a, may be spurious, information on the use of P
in X. Because of the non-linear character of <P, and the linear of ≤mP, a perfect
reproduction of the previously observed qualitative meaning is not always reached;
the act of designing a measure valued in the unit interval can modify what was
formerly observed.

Fuzzy sets can be practically and computationally managed thanks to their states,
and seeing a fuzzy set through a current state can mean a true modification of the
linguistic-collective produced by changing (X, <P) by (X, ≤mP). To ‘observe’ a
fuzzy set is only possible under a ‘microscope’ showing its information’s states as
best as possible.

Measuring can modify the initial qualitative meaning, and, obviously, the same
can happen if [0, 1] were changed by whatsoever closed interval [a, b] in the real
line, with prototypes taking the measure b, and anti-prototypes the measure a, and
preserving property (1) of the measure.

Anyway, such a topic can be considered from two points of view. The first, is
due to the practical fact that there are actual cases in which it is very difficult, if not
impossible, to appreciate at each point that the measure is exactly some number in
[0, 1]; for instance, sometimes it can be only recognized that such number belongs
to some interval. The second, is that in plain language there are often proffered
statements as, for example, ‘It is highly possible that he is rich’, or ‘It is barely
possible that she is a gifted girl’, etc., whose (exact) numerical degree is surrounded
by such an amount of uncertainty that it seems to better correspond to a blurred,
approximate, number like ‘around 0.8’, ‘less than 0.5’, ‘between 0.4 and 0, 6’,
‘high’, etc.
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Thus, there are actual situations in which it can be more suitable to adopt a range
for the measure’s values different from the real line, and not being linearly ordered.
It is similar, for instance, to what happens when measuring the ‘electrical impe-
dance’ by a complex number whose real part is the ‘resistance’, and its imaginary
part is the ‘reactance’. Recall that complex numbers are not linearly, but partially
ordered, and that if its use was required by the two-fold physical phenomenon,
often enough linguistic phenomena are very complex. Hence, reconsidering the
range of values a measure can take cannot appear as something bizarre.

4.2. Instead of the unit interval for the values of the measure, it can be supposed
a partially ordered set (V, ≤ ), with maximum ω and minimum α. With it, the laws
of a measure m ranging in V (m: X → V) can be easily changed by preserving its
first property, but placing ω instead of 1 in the first, and α instead of 0 in the second.
With this change, the working meaning ≤mP is not more linear, but a partial order,
whose coincidence with <P cannot be guaranteed, but it can be expected that more
possibilities for it may appear. Preserved the inclusion <P ⊆ ≤ mP, the difference
set ≤mP − <P have more chances to be either empty, or, at least, reduced to
contain less arcs; in sum, to approach the first to the second relation. This depends
on the particular problem, but it seems clear that the chances for reaching a perfect
representation of the qualitative meaning by the working one will not decrease.

Two possibilities for V are the complex unit interval {a + ib; a, b ∈ [0, 1]}, and
the set of the closed sub-intervals [a, b] ⊆ [0, 1], that actually are not mathemati-
cally different sets since they can be seen as isomorphic [20, 33]. Anyway, the first
can have the advantage of admitting the writing of complex (Cartesian) numbers
a + ib by its Euler’s modulo-argument expression ρ. eiθ, with ρ = √(a2 + b2), and
θ = tan−1 (b/a) that eventually can allow geometrical considerations to be added in
a given problem.

Another candidate is the set of ‘fuzzy numbers’, those functions [0, 1] → [0, 1]
specifying linguistic labels like ‘high’, ‘around 0.6’, ‘bigger than 0.4’, ‘between 0.3
and 0.4’, etc. It is clear that the subintervals [a, b] of [0, 1] can be seen as a particular
type of fuzzy numbers; for instance, the interval [0.3, 0.4] is the same as the
membership function equal to 1 in it, and to zero in [0, 0.3) U (0.4, 1]. The label
‘high’, for example, can be represented by the identity function, or by its square, etc.

Membership functions, and in particular those of fuzzy numbers in [0, 1], are
almost always point-wise ordered by,

μ ≤ σ⇔ μ xð Þ ≤ σ xð Þ, for all x in 0, 1½ �,

a partial order that comprises the linear ordering of crisp numbers. Its minimum is
the function μ0 (x) = 0, and its maximum is μ1 (x) = 1, both for all x in X. Of
course, and even if it can go against simplicity, other orderings can be chosen for
the set [0, 1][0, 1] (containing, at least, all membership functions) and perhaps that
can be better related with a given problem. In any case, when restricted to precise
numbers, such orderings should coincide with the linear order of the unit interval,
and before deciding to change the unit interval by the set of ‘fuzzy numbers’, the
designer should try to refine and improve the design.

What a Fuzzy Set Is and What It Is not? 15



In this way a fuzzy set P, labeled P, can be newly specified by the membership
function of a fuzzy number,

mP xð Þ=mfuzzy number;

this is, in essence, what was initially called a ‘type-two fuzzy set’ in the 3-part
article from 1975 “The concept of a linguistic variable and its application to
approximate reasoning” [33]. In the first part Zadeh introduced these type-2 fuzzy
sets as follows: “… suppose that A is a fuzzy subset of a universe of discourse U,
and the values of the membership function, µA, of A are allowed to be fuzzy subsets
of the interval [0, 1]. To differentiate such fuzzy sets from those considered pre-
viously, we shall refer to them as fuzzy subsets of type 2 with the fuzzy sets whose
membership functions are mappings from U to [0, 1] classified as type 1.”

That is, the measure does not take numerical values at each point, but mem-
bership function ones; it is another and wider representation of the information’s
state of the fuzzy set, and requires to previously fix a partial ordering for the
membership functions of fuzzy numbers for guaranteeing its measure’s character.
Since the fuzzy set is but a different name for the linguistic-collective, a ‘type-two
fuzzy set’ refers to nothing else than a new representation of the states of the fuzzy
set/linguistic-collective by means of functional values; that is, a particular type of
non exclusively numerical values able to take into account the uncertainty asso-
ciated to the difficulties for establishing a crisp number as a measure when it exists.
It is a way of ‘fuzzifying’ the membership idea of ‘being in’ a fuzzy set, and for
trying to approach the qualitative and the working meanings. More generally, in the
same paper Zadeh defined then “A fuzzy set is of type n, n = 2, 3, …, if its
membership function ranges over fuzzy sets of type n-1. The membership function
of a fuzzy set of type 1 ranges over the interval [0, 1]” [33].

4.3. It is still possible to take V as a set of pure words, defining the partial
ordering between them, in a form that can be associated with what they mean.

A particular and suggestive case is the following. If <P is a preorder (that is, a
transitive relation in addition to its presumed reflexivity), with a maximum r, and a
minimum t, then the relation =P is an equivalence generating the quotient set X/=P,
constituted by the equivalence classes [x] = {y ∈ X; y =P x⟺x <P y & y <P x}.
These classes inherit the order of X through the definition [x] <* [z] ⟺ x <P

z; <* is a partial order, and (X/=P, <*) is a partially ordered set with maximum
[r] = {r}, and minimum [t] = {t}.

Then, the mapping m*: X → X/=P, given by m* (x) = [x], verifies the three
laws of a measure valued in the partially ordered set (X/=P, <*), and, obvi-
ously, <*m* is isomorphic with <P, that is, the working meaning perfectly reflects
the qualitative meaning. Measure m* can be named the ‘natural measure’.

Provided each class [x] can be named by a word synthesizing what it represents,
(X/=P, <*) is isomorphic to the set of these words once it inherits the partial
order <*. Hence, and without going outside the problem’s data, an example is
obtained of a natural and perfect representation by words of the qualitative
meaning.
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4.4. There is again another view facilitated by the so-called ‘interval type-two
fuzzy sets’ [11], employed in some applications and consisting in not considering
the subintervals by their crisp membership functions, but by a kind of blurred
triangular membership function for them, and more or less inspired in [33]. In this
case, capturing the way of ordering these blurred functions, allowing to look at
them as meaning’s measures, is still difficult. It is not even clear enough what
happens with prototypes and anti-prototypes; that is, how their ‘measure values’ are
defined, what are the ‘subintervals’ null and unity, and if they are respectively the
minimum and the maximum among them; at the end, and when linguistically
describing some system, precise words can also appear in between the imprecise
ones, and the maximum and minimum values preserved for them.

Mendel’s ‘interval type-two fuzzy sets’ could be a different form of representing
words, but its relation with their meaning and its measuring needs to be clarified. At
least it should remain that the words considered for computing with words should
be, in some clear sense, measurable.

5 Conclusion

5.1. For what has been said, expressions like ‘type-two fuzzy set’ are not properly
appropriate since, after recognizing a qualitative meaning for the corresponding
linguistic label, the fuzzy set is, in a given context, a unique, although nebulous,
well anchored entity in language, or, if it is preferred, in thought. It is not to be
forgotten that sets are also entities of thought; comparatively few sets that are of
interest in science can be imagined like apples in a basket. As if somebody could
‘see’ the transcendental points between two of them in a straight line? Like sets,
fuzzy sets are a creation of thoughts; like sets, fuzzy sets need some representational
methodology for their practical management; for instance, that given for their
membership functions/states.

Without previously knowing a qualitative meaning, it does not seem possible to
follow a study allowing, in a form useful for computing with words, to practically
manage the big amount of imprecise words permeating plain languages; these
words should be measurable, not meaningless. Qualitative meaning, or fuzzy set, is
what can be measured.

Nevertheless, to change the values for measuring the meaning’s extent from the
real line into a different but partially ordered structure, is something that can
eventually even conduct to approaching the working and the qualitative meanings.
Anyway, the character of any kind of membership functions approaching ‘a mea-
sure of meaning’ should be preserved.

Such change, for instance, can be particularly made within the set of fuzzy
numbers in [0, 1], instead of employing the unit interval, and once fuzzy numbers
are represented by some functions in [0, 1][0. 1], previously endowed with a partial
ordering preserving the linear one formerly existing between the ‘crisp’ numbers
included in it. Provided such ordering is not the usual point-wise, its definition can
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constitute an added problem. When there is great uncertainty about the precise
values of the membership function, it can be a good option, provided the ordering is
defined and it has a minimum and a maximum. The problem is even more difficult if
intervals are considered through a blurred kind of a triangular membership func-
tions whose ordered structure is not well established; it waits to be clarified.

5.2. In the light of what has been presented, instead of expressions like ‘type-two
fuzzy set’, it can be better expressed as

‘fuzzy set with type-two membership function’,

or something similar. In any case, it can be suitable any name not introducing in the
darkness the unique, and previously existing, fuzzy set/linguistic-collective which is
to be managed by means of its states, this time given by the designed membership
functions of those particular fuzzy sets in [0, 1] whose linguistic label denotes either
an interval, or a blurred number, instead of a crisp number. There are neither
‘type-one’, nor ‘type-two’ fuzzy sets; there are only fuzzy sets that are a purely
linguistic concept.

Once X and P are given, and the graph (X, <P) is known, the linguistic-collective
P is commonly and empirically recognized to exist in X. Of course, for counting with
an axiomatic theory of fuzzy sets, it lacks a definition of what it can mean that two
linguistic-collectives P and Q coincide in X; something that, perhaps, could be
achieved by defining that their respective qualitative meanings (X, <P) and (X, <Q)
are isomorphic. A different topic is how the states should be represented for prac-
tically and computationally managing the fuzzy set in a form that can be suitable for
a given problem, and as it is the case, for example, when it only can be asserted that
mP (x) belongs to an interval [a (x), b (x)], depending on x, or that the difference
set ≤mP − <P is too wide.

What has been said should only be understood as a theoretical prevention against
using names like ‘type-two fuzzy sets’, or even ‘intuitionistic fuzzy sets’ [1]; names
that can conduct to presume the existence of different types of linguistic-collectives.
But, if such types actually existed, the differences among them arise from how its
qualitative meaning is expressed, but not from how the informational states can be
represented at each context in a given universe of discourse. In any case, and as
simplicity is of utmost importance, advising the designer: ‘Never change the unit
interval before trying to improve the membership function values’, does not seem to
be a bad advice.

In one way or another, those names could be scientifically accepted as a
shortening, but shortenings should be always explained!
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