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Preface

Since the middle of the twentieth century, and accelerating sharply around the
1980s, computer science developed an area in which it is tried to equip computers
with the capability to exhibit intelligent behavior, and thus to mimic the ability of
humans and other intelligent animals to deal with uncertainty and vagueness, to
learn from experience, and to adapt to changing environments. This area has aptly
been named “Computational Intelligence” and nowadays belongs to the most
actively researched areas not only in computer science, but even in the whole of
science, technology and engineering.

Rudolf Kruse, to whom this book is dedicated on the occasion of his retirement
from his post as a Professor at the Otto-von-Guericke-University of Magdeburg,
Germany, helped substantially in shaping this area, not only with his own signif-
icant contributions, which are manifold, but also, and possibly even more, by
promoting this area, by encouraging many others to enter it, and by supporting them
to advance its state of the art.

This book collects several contributions that honor the achievements of Rudolf
Kruse either directly or indirectly, by referring explicitly to his work or by showing
the state of the art in specific areas of Computational Intelligence on which he had
an influence. The main focus of these contributions lies on treating vague data as
well as uncertain and imprecise information with automated procedures, which use
techniques from statistics, control theory, clustering, neural networks, etc., to
extract useful and employable knowledge.

The contribution by Enric Trillas and Rudolf Seising considers a problem that
has been discussed in a sometimes heated fashion since fuzzy sets entered the stage
of science, namely the interpretation and proper mathematical modeling of fuzzy
sets. They remind us that despite a multitude of concepts with different names there
are not many different types of fuzzy sets, but rather merely different formalizations
of the linguistic phenomena of vagueness that one tries to model with fuzzy sets.

The contribution by Maria Ángeles Gil compares two definitions of fuzzy ran-
dom variables, one of which originated from a book Rudolf Kruse wrote together
with Klaus-Dieter Meyer (“Statistics with Vague Data”), which is contrasted to the
one by Puri and Ralescu. Again, we find an interpretation problem at the heart
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of the distinction: Are fuzzy phenomena aspects of the real world or are they merely
aspects of our observation of it? Depending on the answer, slightly different results
and procedures are obtained.

The contribution by Inés Couso and Eyke Hüllermeier considers the case of
statistically estimating ranking information from an incomplete observation of a
ranking. This setting can be modeled along the general lines of handling set-valued
information, similar to how set-valued information is treated in Dempster–Shafer
theory or possibility theory, the latter of which was developed out of fuzzy theory as
an alternative calculus to model uncertainty, orthogonal to probability theory and
with a different emphasis.

The contribution by Thomas Runkler et al. takes a look at the area of fuzzy
control, which has certainly been the most successful outcome of fuzzy theory w.r.t.
actual applications. Again, the connection to Rudolf Kruse is very direct, as he
played a decisive part in several applications of fuzzy control at Volkswagen (idle
speed control, automatic gear shift, etc.). Thomas Runkler et al. study how a type-2
fuzzy set can be defuzzified, which is the necessary last step in the processing of a
fuzzy controller based on type-2 fuzzy sets.

The contribution by Frank Klawonn enters the area of clustering, and especially
fuzzy clustering in its various forms, on which Rudolf Kruse coauthored an
influential book (“Fuzzy Cluster Analysis”) with Frank Höppner, Frank Klawonn,
and Thomas Runkler. Frank Klawonn considers dynamic data assigning assessment
clustering, which was developed out of noise clustering, a fuzzy clustering
approach to better deal with noise and outliers, to detect single clusters in an
iterative fashion, and applies this approach to improve cluster detection in
time-resolved data from the life sciences.

The contribution by Sara Mahallati et al. is also located in the area of clustering
and considers the task of interpreting the structure of a clustering result, especially
with the help of the well-known Dunn index, but also with visual assessment based
on properly reordered distance matrices. The authors explore the close connection
of both approaches to the time-tested single linkage hierarchical clustering method
and apply their theory to the specific task of clustering waveform data, which, due
to the time-dependent nature of the data, is closely connected to the preceding
contribution.

The contribution by Malte Oeljeklaus et al. deals with one of the currently
hottest topics in Computational Intelligence, namely deep learning neural networks
for image analysis. With the discovery that the reach of the universal approximation
theorem for neural networks is limited by the potentially needed huge size of a
single hidden layer and the development of new activation functions and new
training methods that allow, supported by advances in hardware, for efficient
training of neural networks with many hidden layers (“deep” neural networks), the
area of neural networks has seen unprecedented successes and consequently a surge
of interest in recent years. This contribution deals with an application of such deep
learning neural networks to traffic scene segmentation and recognition, which is a
decisive step toward enabling autonomously driving vehicles (“self-driving cars”).
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The contribution by Christer Carlsson looks at the wider context and application
potential of fuzzy methods and, more generally, soft computing technology in the
area of management science and operations research or, as it is more often referred
to today, business analytics. Here, fuzzy ontologies may be used for capturing
domain-specific semantics for information retrieval by using fuzzy concepts, rela-
tions, and instances, and by defining and processing degrees of inclusion and
coverage between concepts, which are then processed by a typical fuzzy min-max
approach. However, since using software tools built with such sophisticated
methodology requires high expertise of the operators, digital coaches are needed to
help domain experts to fully exploit the benefits of such systems, which Carlsson
also considers and advocates.

We are very grateful to all authors who accepted our invitation to contribute a
chapter to this volume and to all reviewers who helped to improve the contribu-
tions. Furthermore, we express our gratitude to Janusz Kacprzyk, who made it
possible to publish this book in the Springer series “Studies in Computational
Intelligence.” Last, but not least, we thank Springer-Verlag for the excellent col-
laboration that helped a lot to publish this book in time.

Magdeburg, Germany Sanaz Mostaghim
Magdeburg, Germany Andreas Nürnberger
Konstanz, Germany Christian Borgelt
June 2017
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What a Fuzzy Set Is and What It Is not?

Enric Trillas and Rudolf Seising

Abstract Although in the literature there appear ‘type-one’ fuzzy sets, ‘type-two’
fuzzy sets, ‘intuitionistic’ fuzzy sets, etc., this theoretically driven paper tries to
argue that only one type of fuzzy sets actually exists. This is due to the difference
between the concepts of a fuzzy set” and a “membership function”.

1 Introduction

Although in the literature there appear ‘type-one’ fuzzy sets, ‘type-two’ fuzzy sets,
‘intuitionistic’ fuzzy sets, etc., this theoretically driven paper tries to argue that only
one type of fuzzy sets actually exists. This is due to the difference between the
concepts of a fuzzy set” and a “membership function”. Both concepts deserve to be
clarified.

Fuzzy sets can, for instance, be contextually specified by a membership function
with values in the real unit interval but, nevertheless, membership functions with
values out of this interval can be, in some situations, significant, suitable and useful.
Situations in which either the range of their values cannot be presumed to be totally
ordered, or it is impossible to precisely determine the membership numerical val-
ues, or the linearly ordered real unit interval produces a drastic simplification of the
meaning of the fuzzy set’s linguistic label by enlarging it through its ‘working’
meaning.

Indeed, this paper negates the existence of ‘other fuzzy sets’ than fuzzy sets, but
it shows the possible suitability of designing their membership functions for

(*) To Professor Rudolf Kruse with the greatest esteem.
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sufficiently representing them, with as much as possible information available on
the contextual behavior of the linguistic label. If, as Zadeh likes to say, ‘fuzzy logic
is a matter of degree’, it is also a matter of design.

This paper starts with some historical notes on the development of the linguistic
approach to fuzzy sets and fuzzy logic in the second half of the 1960s and in the
first years of the 1970s. In the subsequent sections the paper presents a change of
perspective by placing fuzzy sets in their natural domain, plain language; by going
from ‘general definitions’ to ‘design’ in a given context, and depending on the
meaning of the corresponding linguistic label inasmuch as a fuzzy set membership
function should be carefully designed [19]. That is, they should be built up through
a typical process of design, in which the simplicity of representation is a not to be
forgotten practical value. Meaning is, indeed, only attributable to statements, and if
simplicity is always considered as beautiful in science, ‘design’ is an art.

The main problem, to put it roughly, is representing words in a formal frame-
work, similar to what Gottfried Wilhelm Leibniz had proposed more than 340 years
ago. With his famous ‘Calculemus!’ he intended to resolve any differences of
opinion: “The only way to rectify our reasonings is to make them as tangible as
those of the Mathematicians, so that we can find our error at a glance, and when
there are disputes among persons, we can simply say: Let us calculate [calculemus],
without further ado, to see who is right.” [6, p. 51].

We can find this idea of reducing reasoning to calculations already in the late
13th century in the work of the Catalonian, Ramon Llull. In his Art Abreujada
d’Atrobar Veritat (“The Abbreviated Art of Finding Truth”), later published under
the title Ars generalis ultima or Ars magna (“The Ultimate General Art” [Lull].
Leibniz had written his dissertation about Llull’s Art magna and he named it “ars
combinatoria” [7, p. 30].

Llull and Leibniz’s arts have been steps on the plan for computing with con-
cepts. All this deserves to be explained step-by-step; and in the first place, partic-
ularly the determination of words admitting of such a representation and where and
by means of what is actually possible.

Remark What will not be taken into account in this paper are cases like that of
the functions emerging from the aggregation of sets; that is, from aggregating their
Characteristic Functions. For instance, if in the universe X = {1, 2, 3, 4} the sets
A = {1, 3}, and B = {1, 3, 4} are aggregated by the mean M (a, b) = (2a + 3b)/5,
what is obtained is not a set but the function (2A + 3B)/
2 = 1/1 + 0/2 + 1/3 + 0.6/4, that is able to represent a fuzzy set provided a lin-
guistic label for it (induced from those of A and B) can be known.

2 What Is It a Fuzzy Set?

2.1. Fuzzy Sets were launched in 1964 in three seminal papers by Lotfi A. Zadeh, a
professor and chairman in the department of Electrical Engineering at the
University of California, Berkeley. Zadeh construed his fundamental term of a
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“fuzzy set” without any non-mathematical meaning or application-oriented
interpretation.

In the mid-summer of 1964 he was invited to a conference at Wright-Patterson
Air Force Base in Dayton, Ohio. In his talk there, Zadeh considered problems of
pattern classification, e.g. the process of representing the object patterns into a set of
real variables which represent these patterns correctly and which would also be
accepted by a computer.

Immediately after his travels he wrote on Fuzzy sets dealing with two problems:

• Abstraction—“the problem of identifying a decision function on the basis of a
randomly sampled set”, and

• Generalization—“referred to the use of the decision function identified during
the abstraction process in order to classify the pattern correctly”.

Zadeh first published this paper with his close friend Richard Bellman und
Robert Kalaba as co-authors as a RAND-memo, and two years later in a scientific
journal. Here he defined a “fuzzy set” as “a notion which extends the concept of
membership in a set to situations in which there are many, possibly a continuum of,
grades of membership.” [2, 3, p. 1].

As a historically interested system theorist he had written the article “From
Circuit Theory to System Theory” for the anniversary edition of the Proceedings of
the IRE to mark the 50th year of the Institute of Radio Engineers in May 1962. In
this article he stressed “the fundamental inadequacy of the conventional mathe-
matics—the mathematics of precisely-defined points, functions, sets, probability
measures, etc.—for coping with the analysis of biological systems, and that to deal
effectively with such systems, which are generally orders of magnitude more
complex than man-made systems, we need a radically different kind of mathe-
matics, the mathematics of fuzzy or cloudy quantities which are not describable in
terms of probability distributions” [22].

Two years later he had found this new mathematics and he explained its con-
cepts in his second seminal paper: “Essentially, these concepts relate to situations in
which the source of imprecision is not a random variable or a stochastic process but
rather a class or classes which do not possess sharply defined boundaries” [23,
p. 29].

In his third seminal paper, “Fuzzy Sets”, he motivated the need for his new
theory as follows: “More often than not, the classes of objects encountered in the
real physical world do not have precisely defined criteria of membership. For
example, the class of animals clearly includes dogs, horses, birds, etc. as its
members, and clearly excludes such objects as rocks, fluids, plants, etc. However,
such objects as starfish, bacteria, etc. have an ambiguous status with respect to the
class of animals. The same kind of ambiguity arises in the case of a number such as
10 in relation to the “class” of all real numbers which are much greater than 1.
Clearly, the “class of all real numbers which are much greater than 1,” or “the class
of beautiful women,” or “the class of tall men, do not constitute classes or sets in
the usual mathematical sense of these terms” [24].

What a Fuzzy Set Is and What It Is not? 3



2.2. After he had launched Fuzzy sets Zadeh proposed its use and applications to
various disciplines. Computers and Computer Science (CS) have become part of
Electrical Engineering (EE) Zadeh was very active to change his department’s name
from “EE” to “EECS”. In 1969 in a talk at the conference “Man and Computer” in
Bordeaux, France, he said: “As computers become more powerful and thus more
influential in human affairs, the philosophical aspects of this question become
increasingly overshadowed by the practical need to develop an operational
understanding of the limitations of the machine judgment and decision making
ability” [26, 27, p. 130]. He called it a paradox that the human brain is always
solving problems by manipulating “fuzzy concepts” and “multidimensional fuzzy
sensory inputs” whereas “the computing power of the most powerful, the most
sophisticated digital computer in existence” is not able to do this. Therefore, he
stated that “in many instances, the solution to a problem need not be exact”, so that
a considerable measure of fuzziness in its formulation and results may be tolerable.
The human brain is designed to take advantage of this tolerance for imprecision
whereas a digital computer, with its need for precise data and instructions, is not”
[26, 27, p. 132]. He intended to push his theory of fuzzy sets to model the imprecise
concepts and directives: “Although present-day computers are not designed to
accept fuzzy data or execute fuzzy instructions, they can be programmed to do so
indirectly by treating a fuzzy set as a data-type which can be encoded as an array
[…]” [26, 27, p. 132].

2.3. Already in 1968 Zadeh has presented “fuzzy algorithms” [25]. Usual
algorithms depend upon precision. Each constant and variable is precisely defined;
every function and procedure has a definition set and a value set. Each command
builds upon them. Successfully running a series of commands requires that each
result (output) of the execution of a command lies in the definition range of the
following command, that it is, in other words, an element of the input set for the
series. Not even the smallest inaccuracies may occur when defining these coordi-
nated definition and value ranges. Zadeh now saw “that in real life situations people
think […] like algorithms but not precisely defined algorithms”. Inspired by this
idea, he wrote: “The concept in question will be called fuzzy algorithm because it
may be viewed as a generalization, through the process of fuzzification, of the
conventional (nonfuzzy) conception of an algorithm. [25] To illustrate, fuzzy
algorithms may contain fuzzy instructions such as:

(a) “Set y approximately equal to 10 if x is approximately equal to 5,” or
(b) “If x is large, increase y by several units,” or
(c) “If x is large, increase y by several units; if x is small, decrease y by several

units; otherwise keep y unchanged.”

The sources of fuzziness in these instructions are fuzzy sets which are identified
by their names in italics.

To execute fuzzy algorithms by computers they have to receive an expression in
fuzzy programming languages. Consequently, the next step for Zadeh was to define
fuzzy languages. “All languages”, he wrote in a paper on Architecture and Design

4 E. Trillas and R. Seising



of Digital Computers, “whether natural or artificial, tend to evolve and rise in level
through the addition of new words to their vocabulary. These new words are, in
effect, names for ordered subsets of names in the vocabulary to which they are
added.” [28, p. 16] He argued explicitly for programming languages that are—
because of missing rigidness and preciseness and because of their fuzziness—more
like natural languages. He mentioned the concept of stochastic languages that was
published by the Finnish mathematician Paavo Turakainen in the foregoing year
[21], being such an approximation to our human languages using randomizations in
the productions, but however, he preferred fuzzy productions to achieve a formal
fuzzy language. With his Ph. D student Edward T.-Z. Lee he co-authored a short
sketch of a program to extend non-fuzzy formal languages to fuzzy languages in
“Note on Fuzzy Languages” [5].

2.4. On the other hand, in the first years of Fuzzy sets Zadeh believed in
successful applications of his new concepts in non-technical fields as he wrote in
1969: “What we still lack, and lack rather acutely, are methods for dealing with
systems which are too complex or too ill-defined to admit of precise analysis. Such
systems pervade life sciences, social sciences, philosophy, economics, psychology
and many other “soft” fields” [25].

His search for application fields led to a period of interdisciplinary scientific
exchange on the campus of his university between himself and the mathematician
Hans-Joachim Bremermann, the psychologist Eleanor Rosch (Heider) and the lin-
guist George Lakoff.

It was in these 1970s when psychologist Rosch developed her prototype theory
on the basis of empirical studies. This theory assumes that people perceive objects
in the real world by comparing them to prototypes and then subsequently ordering
them. In this way, according to Rosch, the meanings of words are formed from
prototypical details and scenes and then incorporated into lexical contexts
depending on the context or situation. It could therefore be assumed that different
societies process perceptions differently depending on how they go about solving
problems [12]. When Lakoff heard about Rosch’s experiments, he was working at
the Center for Advanced Study in Behavioral Sciences at Stanford. During a dis-
cussion about prototype theory, someone there mentioned Zadeh’s name and his
idea of linking English words to membership functions and establishing fuzzy
categories in this way. Lakoff and Zadeh met in 1971/72 at Stanford to discuss this
idea after which Lakoff wrote his paper “Hedges: A Study in Meaning Criteria and
the Logic of Fuzzy Concepts” [4]. In this work, Lakoff employed “hedges”
(meaning barriers) to categorize linguistic expressions, he used the term “fuzzy
logic” in his article and he therefore deserves credit for first introducing this
expression in scientific literature. Based on his later research, however, Lakoff came
to find that fuzzy logic was not an appropriate logic for linguistics: “It doesn’t work
for real natural languages, in traditional computer systems it works that way.” [4]

However, “Inspired and influenced by many discussions with Professor G. Lakoff
concerning the meaning of hedges and their interpretation in terms of fuzzy sets,”
Zadeh had also written an article in 1972 in which he contemplated “linguistic
operators”, which he called “hedges”: “A Fuzzy Set-Theoretic Interpretation of
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Hedges”. Here he wrote: “A basic idea suggested in this paper in that a linguistic
hedge such as very, more, more or less, much, essentially, slightly etc. may be
viewed as an operator which acts on the fuzzy set representing the meaning of its
operand [31].

2.5. Zadeh’s occupation with natural and artificial languages gave rise to his
studies in semantics. This intensive work let him to the question “Can the fuzziness of
meaning be treated quantitatively, at least in principle?” [29, p. 160]. His 1971 article
“Quantitative Fuzzy Semantics” [30] starts with a hint to these studies: “Few con-
cepts are as basic to human thinking and yet as elusive of precise definition as the
concept of »meaning«. Innumerable papers and books in the fields of philosophy,
psychology, and linguistics have dealt at length with the question of what is the
meaning of »meaning« without coming up with any definitive answers.” [29, p. 159]

Zadeh started a new field of research “to point to the possibility of treating the
fuzziness of meaning in a quantitative way and suggest a basis for what might be
called quantitative fuzzy semantics” combining his results on fuzzy languages and
fuzzy relations. In the section “Meaning” of this paper, he set up the basics:
“Consider two spaces: (a) a universe of discourse, U, and (b) a set of terms, T,
which play the roles of names of subsets of U. Let the generic elements of T and U
be denoted by x and y, respectively. Then he started to define the meaning M(x) of
a term x as a fuzzy subset of U characterized by a membership function μ(y|x)
which is conditioned on x. One of his examples was: “Let U be the universe of
objects which we can see. Let T be the set of terms white, grey, green, blue, yellow,
red, black. Then each of these terms, e.g., red, may be regarded as a name for a
fuzzy subset of elements of U which are red in color. Thus, the meaning of red, M
(red), is a specified fuzzy subset of U.”

In his “Outline of a new approach to the analysis of complex systems and decision
processes” [32] and in the three-part article “The concept of a Lingustic Variable and
its Application to Approximate Reasoning” [33], in “Fuzzy Logic and Approximate
Reasoning” [34] and finally in “PRUF—a meaning representation language for
natural languages” [35] Zadeh developed a linguistic approach to Fuzzy sets. He
defined linguistic variables as those variables whose values are words or terms from
natural or artificial languages. For instance, “not very large”, “very large” or “fat”,
“not fat” or “fast”, “very slow” are terms of the linguistic variables size, fatness and
speed. Zadeh represented linguistic variables as fuzzy sets whose membership
functions map the linguistic terms onto a numerical scale of values.

2.6. A fuzzy set is a concept associated by a linguistic label of which no mathe-
matical axiomatic theory is currently known. A fuzzy set is nothing other than
something just exhibited in plain languages, and through the usual forms of speaking;
it is a concept actually well anchored in language, and is useful for roughly, eco-
nomically, and quickly describing what once perceived by people is translated into
words. At each context, a fuzzy set is seen by the speakers as a unique entity associated
to its linguistic label’s use that, usually, is context-dependent and purpose-driven.

The usual confusion between fuzzy set and membership function in a given
universe of discourse is not sustainable, since there is not a one-to-one corre-
spondence, but a one-to-many between fuzzy sets and its membership functions that

6 E. Trillas and R. Seising



can be given by expressions of different functions, even sharing some common
properties among them. As it is well known, a linguistic label P in a universe of
discourse X does not admit of a single membership function, but several such
functions can be chosen, unless P is a precisely used label.

For instance, the use of the label ‘big’ in the closed interval [0, 10] and in plain
language, can be represented by several membership functions like, for instance,
x/10, x2/100, etc., depending on the available additional information on its shape. It
is commonly accepted that the use of ‘big’ in the universe [0, 10] can be described
by the four rules:

(1) x is less big than y ⟺ x ≤ y;
(2) 10 is totally big;
(3) 0 is not at all big;
(4) If x can be qualified as big, it exists ε (x) > 0, such that all the points in the

interval [x − ε (x), x] can also be qualified as big.

With them, the membership functions representing ‘big’ can be all those map-
pings mbig: [0, 10] → [0, 1], such that:

(1′) If x ≤ y, then mbig (x) ≤ mbig (y);
(2′) mbig (10) = 1;
(3′) mbig (0) = 0;
(4′) mbig is continuous.

There are an enormous amount of all the strictly non-decreasing functions [0,
10] → [0, 1] joining the points of coordinates (0, 0) and (1, 10). Anyway, the four
laws (1′)–(4′) cannot specify a single mbig; for specifying one of them, some
additional information is required. For instance, provided it can be presumed that
function mbig should be linear, then it only exists mbig (x) = x/10, but if what can be
supposed is that mbig is quadratic several of them exist, with mbig(x) = x2/100
among them. Notice that provided it were known that the curve defined by mbig

passes through the point (5, 0.6), then neither x/10, nor x2/100, are acceptable. Etc.
Clearly, fuzzy sets do not admit to being specified by a single membership

function, with the only exception corresponding to the case in which the linguistic
label is precise, that is, its use in X is describable by ‘if and only if’ rules. With this
exception, fuzzy sets cannot be confused with the measures of their meaning, or
membership functions. For instance, provided the use of ‘big’ in [0, 10] were
described by just the precise rule,

′x is big⇔ 8 ≤ x ≤ 10′,

then its only membership function will be,

mbig * xð Þ = 0, if 0 ≤ x < 8, and mbig * xð Þ = 1, if 8 ≤ x ≤ 10;

and, accordingly with the ‘specification axiom’ of set theory [4], ‘big’ is specified
by the set [8, 10] = (mbig*)

−1(1).

What a Fuzzy Set Is and What It Is not? 7



It should be pointed out that function mbig* verifies the former properties (1′),
(2′), and (3′), but not property (4′) as a consequence of the failing of rule (4), since
for instance, for any ε > 0, no point 8—ε can be qualified as big in the current use
of this label. Function mbig* is not a continuous one. It is rule (4) which distin-
guishes the imprecise from the precise uses of ‘big’ in [0, 10].

Notice that even defining the fuzzy set ‘big’ by each pair (big, mbig) instead of by
only a function mbig, as it is also usually done [11], it not only follows that the
linguistic label ‘big’ generates several fuzzy sets instead of a single one, but also a
partial externalization of the concept of fuzzy set from language. The meaning of
the imprecise word ‘big’, and what the functions mbig mean is hidden. For scien-
tifically domesticating fuzzy sets, meaning and its measuring should be analyzed.

2.7. A linguistic label P names a property p the elements of the universe of
discourse X enjoy, and which use is exhibited by the meaning attributed to the
elemental statements ‘x is P’, for all x in X. Notice that the elements x can be
physical or virtual, etc., but the new elements ‘x is P’ are just statements in the
intellect, and belong to the set X [P] = {x is P; x in X} that is different of X;
actually, meaning is attributed to statements, and it is usually context-dependent
and purpose-driven. Meaning depends on the context on which the statements ‘x is
P’ are used either in written form, or uttered, or gestured, etc., and depend on the
purpose for such use [16, 17]. For instance, the same word P = odd, when used in
the context of Arithmetic has a different meaning than when it is used in a social
context, and, if in the first case it can only be used with purposes limited by the
definition ‘the rest of its division by two is one’, in the second, it can be used with
several and open purposes such as the descriptive, the insulting, etc. In the first
case, its use is precise or rigid, but in the second it is imprecise or flexible.
Analogously, in different contexts the word ‘interesting’ can be used with non
coincidental purposes. Semantics is what really matters in language; without cap-
turing the meaning of words, language is unintelligible.

The meaning of a word P is privative of a given universe of discourse; for
instance, the same person can be tall in a population of pygmies, and short in one of
giants. The concept of the meaning requires the joint consideration of both a
universe of discourse X, and the word P, as it was formerly shown with the same
word ‘odd’ in the respective universes of integer numbers, and of people.

2.8. To capture what it means P in X, it is necessary to know the relationship ‘x
is less P than y’, expressing the recognition that x shows the property p named P
less than y shows it [17, 18]; how the application of P varies along X. Of course, if
P is precisely used in X, such a relationship just degenerates into ‘x is equally P
than y’, and ‘x is not equally P than y’. For instance, the numbers 3 and 21, 515 are
equally odd, and the numbers 3 and 20 are not equally odd; in the universe of
integer numbers there are only odd and not odd numbers.

Let’s symbolically represent such relationship by ‘x <P y’; it can be equivalently
said that ‘y is more P than x’. The symbol <P reflects a mathematical relation in X,
of which it only can be quietly asserted that is reflexive, x <P x, for all x in X; a
property assuring that the relation <P ⊆ X x X is not empty. The graph (X, <P)
specifies the ‘qualitative meaning’ of P in X, and when the use of P is precise, the
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relations <P and < − 1
P (whose intersection gives the relation =P, ‘equally P than’),

just collapses in =P. The qualitative meaning of a precisely used word P is the
graph (X, =P), between whose arcs are the loops at each element in X, and, of
course, if P is imprecise in X, the graph (X, <P) contains the graph (X, =P).

These graphs agree with the common view that when telling something people
introduce some organization, or rough order, in what is taken into account.

By another side, it should be observed that, in plain language, words do ‘col-
lectivize’ in the universe of discourse. For instance, if X is the set of London’s
inhabitants, P = young facilitates in X the linguistic-collective of the ‘Young
Londoners’. Linguistic-collectives, such as ‘ripe tomatoes’, ‘high mountains’,
‘comfortable chairs’, ‘tall people’, etc., are well anchored in plain languages since
its speakers not only easily use them, but immediately capture what they express.
Such ‘collectives’ are linguistically generated in X by the corresponding meaning
of P in X, and, by using an old philosophical expression, it allows us to say that the
linguistic label has some ‘extension’ in the corresponding universe of discourse.

Of course, linguistic-collectives are not always sets; they are only sets if P is
precise, as it is, for instance, in the collective of the ‘thirty five year old Londoners’,
as it is guaranteed by the ‘axiom of specification’ of the theory of sets [4]. Even if they
are a kind of cloudy entities, linguistic-collectives are empirically recognized, they
exist in language; they are ‘a reality’ in language like clouds are in the atmosphere.

A fuzzy set in X with linguistic label P, is nothing else than the linguistic-
collective generated by P in X; it can be specified by the graph (X, <P) if P is
imprecise, or the simpler graph (X, =P) if P is precise. There is no difference
between the concepts of linguistic-collective, fuzzy set, and qualitative-meaning;
they just denote the same concept.

2.9. Once a qualitative meaning of P in X is recognized, it should be pointed out
that its defining relation <P is not always a linear one; that is, there are often
elements x and y in X such that it is neither x <P y, nor y <P x; elements that are
‘not comparable’ under <P. Typical examples are obtained with P = interesting in a
universe of possible businesses, with P = beautiful in a universe of paintings, with
P = odd in a universe of people, with P = nice with houses, etc. In collections of
paintings for instance, there are often pairs of which it is impossible to state that any
one of them is less, or more beautiful than the other.

Once the qualitative meaning (X, <P) is captured, it can be said that P is
‘measurable’ in X, since measures mP of the extent up to which each x is P can be
defined analogously to the former case of P = big in X = [0, 10]. If no relation <P

can be even imagined, P is ‘meaningless’, or ‘metaphysical’ in X [17]. For instance,
if <big is recognized as the linear order ≤ of the interval [0, 10] when such a word
is used in it, there is no way of knowing <big seems to exist when ‘big’ is applied to
dreams; hence ‘big’ is measurable in [0, 10], but it is in principle meaningless
among dreams.

Although measurability is truly important for a scientific domestication of
concepts, the metaphysical ones cannot be fully contemptible since at least they can
have a true ‘suggestive power’. What can be measured belongs to reasoning, and
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what cannot belongs to thinking; reasoning is but an organization of thinking for
directing it towards a goal. A word that is currently metaphysical in X, can suggest
to be applied in Y (different of X) in a measurable way. Anyway, this topic belongs
to the kind of questions that are beyond what this paper is trying to consider.

3 How Fuzzy Sets Can Be Computationally Managed?

3.1. In the first place, it should be pointed out that a general definition of what is a
measure should be liberated from the typical additive law always presumed in
probability theory. It supposes that ‘things grow’ by superposition of
non-overlapping pieces, and that the total measure is the sum of the measures of
such pieces; something that cannot be always presumed, and less again with cloudy
entities resembling linguistic-collectives.

From the background of game theory and decision-making, the Japanese
physicist and engineer Michio Sugeno also had the idea that the property of
additivity seemed to be too strong and therefore he reduced the integral form to
monotonicity. In a later interview he recalled: “I put the adjective ‘fuzzy’ to this
monotone measure simply because max-min-operations were used in its integral
form as in fuzzy sets; this naming was later found to be not adequate. More
precisely, I should have called it monotone measure or even ‘non-additive mea-
sure’. I found that the monotonicity of the fuzzy measure well fits the calculations
of max-min.” Sugeno gave a mathematical foundation to this “fuzzy integral”, it
was later called the “Sugeno integral”, at first in a Japanese journal in 1972 and in
1974 published in his doctoral thesis “Theory of Fuzzy Integrals and its Applica-
tions” [13–15].

Adapting Sugeno’s concept of a ‘fuzzy measure’ [15] allows a general clear
enough definition of a measure of meaning as follows [17, 18, 20].

Given the qualitative meaning (X, <P), a measure of it is a mapping mP: X
[0, 1], such that:

(1) x <P y => mP (x) ≤ mP (y),
(2) If z is maximal relatively to <P, it is mP (z) = 1,
(3) If z is minimal relatively to <P, it is mP (z) = 0.

This definition deserves some comments. Concerning (1), it just reflects that the
growing variation of P along X, expressed by <P, is translated into the growing of
numbers in the unit interval given by its linear order ≤ ; what it does not reflect is
how this growing is produced, something that each type of problem would require a
particular form of decomposing elements in constitutive pieces.

Concerning (2), z is a maximal provided no other x ∈ X exists such that z <P x;
a maximal is a ‘prototype of P’ in X, and its existence cannot be taken for granted,
but if a single one exists it is called the maximum. Concerning (3), z is a minimal
provided no other y exists such that y <P z; a minimal is an ‘anti-prototype of P’ in
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X, and its existence is also unsure, but if a single one exists it is called the
minimum. When no maximal, or no minimal exist, then laws (2) or (3) cannot be
applied; anyway, it does not imply that elements in X with measure one or zero are
inexistent, such elements, if existing, can be respectively called ‘working proto-
types’, and ‘working anti-prototypes’. For instance, it is well known in probability
theory there can be elements in the sigma-algebra of events that, not being an empty
event, have a zero probability.

Nevertheless, the existence of prototypes and anti-prototypes seem to make
consistent the recognition of the qualitative meaning; they allow the comparison of
other elements in a form similar to the old Standard Meter Prototype for the
(decimal system’s) measuring of length. For instance concerning P = tall in a
population, once recognized that Ruth is the tallest among inhabitants (Ruth is a
prototype of tall), the tallness of the others is recognized by comparing them with
Ruth; moreover, a stick with the same height as Ruth can serve for attaching
relative and fractional measures of tallness. Of course, the same can be said once it
is recognized that John is a less taller inhabitant, that he is an anti-prototype of tall
in the population under consideration. For instance, in X = [0, 10], and respect to
the former toy-example with P = big, there is initially recognized a unique maximal
(the maximum 10), and a unique minimal (the minimum 0).

It should be pointed out that in the original Sugeno’s definition of a ‘fuzzy
measure’, X is a power-set 2Ω, and the comparable relation (<) is the inclusion of
sets ⊆ with the maximum Ω, and the minimum Ø.

3.2. Let us recall that the three laws of a measure do not allow us to specify a
single one unless P is precisely used in X; for instance, in the case of ‘big’ it was
necessary to add some contextual information, or some reasonable hypothesis on
the shape of the curve y = mbig (x), as it could be, respectively, that it passes
through (5, 0.6), or that it is linear, or quadratic, etc. If P is imprecise there is not a
single measure for the meaning of P in X, but rather a set of them. It is similar to
what happens, for example, with the probabilities of getting ‘n points’ (1 ≤ n
6) by throwing a single die, or with Sugeno’s fuzzy measures containing many
types of them as they are the big family of additive, sub-additive, and super-additive
lambda-measures [15].

Only in the precise case is the measure unique. Since it is,

If x = Py⇔ x < Py & y < Px = > mP xð Þ ≤mP yð Þ&mP yð Þ≤mP xð Þ⇔
mP xð Þ=mP yð Þ,

the measure preserves the relation =P that, in addition to reflexive is also symmet-
rical; provided <P were transitive, then =P is also transitive and, thus, an equiva-
lence. Hence, because X is perfectly classified in the set specifying P (containing all
the prototypes), and its complement (containing all the anti-prototypes), it only
exists in the measure given by mP (x) = 1 for all the first, and mP (x) = 0 for all the
second.
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Notice that the only set with neither prototypes, nor anti-prototypes, is the empty
set; it is a very ‘odd set’ since it is self-contradictory, Ø ⊆ X = Øc; indeed, it is the
only self-contradictory set: A ⊆ Ac

⟺ A = Ø. Its acceptance as a set derives at
least, from two practical reasons; the first is for guaranteeing that the intersection of
sets is always a set, and the second for denoting the ‘extensionality’ of statements
that are non-applicable to a given universe, and as it is, for instance, ‘getting nine’
in the universe of the six elemental events {1, 2, 3, 4, 5, 6} obtainable when
throwing a single die.

Hence, it can be said that the linguistic-collective given by the graph (X, <P),
shows several contextual states (X, <P, mP); each time a measure is specified, a
‘contextual informational state’ (in short, ‘state’) of the fuzzy set is manifested.
Measures, or membership functions, represent known states of the fuzzy set; once
designed, a membership function is practically employed to ‘describe’ the corre-
sponding fuzzy set; they facilitate the management of fuzzy sets for computational
purposes.

3.3. Once a measure mP is specified, it defines the new relation in X,

x ≤ mPy⇔mP xð Þ ≤mP yð Þ,

that is a linear ordering in X, and is obviously greater than <P:

x< y= >mP xð Þ≤mP yð Þ⇔x≤ mPy; that is, < P⊆ ≤ mP.

If there can be elements x and y for which it is neither x <P y, nor y <P x,
nevertheless one of the two numbers mP (x), mP (y) will be greater than the other;
there are no incomparable elements under ≤mP. The difference set ≤mP − <P is
not always empty, even not necessarily if <P is linear.

Thus, the new and linear relation ≤mP enlarges the qualitative meaning, and
gives the linear ‘working’ meaning (X, ≤mP), only known after a measure mP is
specified, that is, a state of the fuzzy set is described; the working meaning is not
unique and comes before specifying a measure. The process of designing a measure
[19], can conduct (as it typically happens in the applications of fuzzy set theory) to
only considering P through the ‘membership function’ y = mP (x), and, then, to the
possibility of forgetting its qualitative meaning and just considering its working
meaning.

It should be clear by now, that membership functions are (ideally) measures of
words that are measurable in a universe of discourse; measures designed accord-
ingly with what at each case is available on the relation <P. It is said ‘ideally’, since
in the design process some deviation from a measure can appear. It is something
similar with stating that the probability of obtaining ‘five points’ in throwing a
single die is 1/6, by presuming the die is perfectly constructed, and that the landing
surface is perfectly smooth. Is an ‘ideal die’.

Membership functions should be seen as ‘designed approximations’ to measures,
a respect at which it lacks a definition that, for instance, can be the following: A
designed membership function μP can be seen as a ‘good enough’ one provided for
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each ε > 0 it exists a measure mP such that ImP (x − μP (x)I < ε, for all x in X.
Obviously, when μP is itself a measure this definition is immediately satisfied.

Measures/membership functions/states of the fuzzy set, are always designed on
the basis of the current knowledge of the relation ‘less P than’ available to the
designer, and only if the linguistic label is precise can it be potentially considered as
perfectly known. Nevertheless, it does not mean that the membership function’s
values of an either precise, or imprecise label can be easily computed; it suffices to
think in the membership function of the precise linguistic label ‘transcendental’ for
real numbers. It is very difficult to know if a somehow defined real number is, or is
not, expressible by an integer followed by a denumerable number of digits without
any pattern’s periodicity. It is the case for proving that the numbers π, e, eπ, the
Euler-Mascheroni constant γ, the Liouville constant Σ10−n!, the Dottie number x
(such that cos x = x), the Chaitin halting constant Ω, etc., are actually
non-algebraic, or transcendental. Proving that these numbers are transcendental
requires sophisticated mathematical methods; the set of transcendental numbers has
the power of continuum, is one-to-one and adjacent with all the real numbers of
which they are a particular case. As Mathematics demonstrates, there are extremely
complex precise concepts; precise is not a synonym of easy.

Notice that if relation <P is (artificially) identified with its sub-relation =P, it
means a forced ‘precisification’ of P in X, a change of its qualitative meaning that
will imply just considering a {0, 1}—valued membership function for P, and
avoiding the multiple measures that can exist for the graph (X, <P). It is a risky
change of the meaning of P in X, since it can imply an understanding of P in a
different form than that in current use. It can happen, for instance, if ‘x is big’ is
understood in [0, 10] and in plain language, as ‘x > 8’.

To summarize what has been said: Given a measurable linguistic label P in a
universe of discourse X, its qualitative meaning generates in X a unique
linguistic-collective, or fuzzy set, labeled P, that can be denoted by P. To consider
P in a form allowing for its scientific and practical management, a measure of its
qualitative meaning/linguistic-collective/fuzzy set, should be carefully designed to
represent its contextual informational state. Once anyone of such possible
states/membership functions mP is ‘designed’, thanks to the contextual information
furnished by <P plus the additional information (or the reasonable hypotheses) the
designer will be able to add (for example, that the measure is a linear function, a
triangular one, a bell shaped one, etc.), the particular use of P in X, or the
linguistic-collective/fuzzy set, is just ‘seen’ from such membership function mP,
that is, from the currently known state of the fuzzy set. There should be an
awareness of the danger that can exist when forcing an imprecise P up to be precise.

Hence, there will be cases in which the qualitative meaning <P will not fully
coincide with the corresponding state’s working meaning ≤mP; the second will
actually enlarge the first, and, in addition, the working meaning is not only linear but
can introduce into the graph (X, <P) new arcs, that depending on the character of what
is presumed for the design of themeasure, can be spurious.Moreover, there can appear
new working prototypes, or anti-prototypes than those that were initially recognized
as such; that is, elements with ameasure of one or zero that are not properly qualitative
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prototypes, or, respectively, qualitative anti-prototypes under <P. Only seeing the
meaning of P in X by a working meaning of it, implies some sort of risk.

It should still be pointed out that the usual identification of mP (x) with a truth
degree of the statement ‘x is P’, can result in identifying meaning with truth; that is,
to simplify the concept of meaning to that of truth. Truth (= T) is a concept that, in
its turn, has a meaning in the universe X [P] of the statements x is P, x ∈ X, and
that should be formerly recognized for specifying a measure mT for the meaning of
T in X [P]. Actually, such identification means accepting mP (x) = mT (x is P),
something very risky if no qualitative meaning of T is known, and that previously
requires proving that mT (x is P) is, for all x in X, a measure of the meaning of P in
X. Surely, it will require establishing some criterion of ‘compatibility’ [17] between
P in X, and T in X [P].

4 Towards Approaching Qualitative and Working
Meanings

4.1. When the working meaning coincides with the qualitative meaning, it can be
said that the graph (X, ≤mP) perfectly reproduces the initially ‘observed’ graph
(X, <P); the measure is not adding a, may be spurious, information on the use of P
in X. Because of the non-linear character of <P, and the linear of ≤mP, a perfect
reproduction of the previously observed qualitative meaning is not always reached;
the act of designing a measure valued in the unit interval can modify what was
formerly observed.

Fuzzy sets can be practically and computationally managed thanks to their states,
and seeing a fuzzy set through a current state can mean a true modification of the
linguistic-collective produced by changing (X, <P) by (X, ≤mP). To ‘observe’ a
fuzzy set is only possible under a ‘microscope’ showing its information’s states as
best as possible.

Measuring can modify the initial qualitative meaning, and, obviously, the same
can happen if [0, 1] were changed by whatsoever closed interval [a, b] in the real
line, with prototypes taking the measure b, and anti-prototypes the measure a, and
preserving property (1) of the measure.

Anyway, such a topic can be considered from two points of view. The first, is
due to the practical fact that there are actual cases in which it is very difficult, if not
impossible, to appreciate at each point that the measure is exactly some number in
[0, 1]; for instance, sometimes it can be only recognized that such number belongs
to some interval. The second, is that in plain language there are often proffered
statements as, for example, ‘It is highly possible that he is rich’, or ‘It is barely
possible that she is a gifted girl’, etc., whose (exact) numerical degree is surrounded
by such an amount of uncertainty that it seems to better correspond to a blurred,
approximate, number like ‘around 0.8’, ‘less than 0.5’, ‘between 0.4 and 0, 6’,
‘high’, etc.
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Thus, there are actual situations in which it can be more suitable to adopt a range
for the measure’s values different from the real line, and not being linearly ordered.
It is similar, for instance, to what happens when measuring the ‘electrical impe-
dance’ by a complex number whose real part is the ‘resistance’, and its imaginary
part is the ‘reactance’. Recall that complex numbers are not linearly, but partially
ordered, and that if its use was required by the two-fold physical phenomenon,
often enough linguistic phenomena are very complex. Hence, reconsidering the
range of values a measure can take cannot appear as something bizarre.

4.2. Instead of the unit interval for the values of the measure, it can be supposed
a partially ordered set (V, ≤ ), with maximum ω and minimum α. With it, the laws
of a measure m ranging in V (m: X → V) can be easily changed by preserving its
first property, but placing ω instead of 1 in the first, and α instead of 0 in the second.
With this change, the working meaning ≤mP is not more linear, but a partial order,
whose coincidence with <P cannot be guaranteed, but it can be expected that more
possibilities for it may appear. Preserved the inclusion <P ⊆ ≤ mP, the difference
set ≤mP − <P have more chances to be either empty, or, at least, reduced to
contain less arcs; in sum, to approach the first to the second relation. This depends
on the particular problem, but it seems clear that the chances for reaching a perfect
representation of the qualitative meaning by the working one will not decrease.

Two possibilities for V are the complex unit interval {a + ib; a, b ∈ [0, 1]}, and
the set of the closed sub-intervals [a, b] ⊆ [0, 1], that actually are not mathemati-
cally different sets since they can be seen as isomorphic [20, 33]. Anyway, the first
can have the advantage of admitting the writing of complex (Cartesian) numbers
a + ib by its Euler’s modulo-argument expression ρ. eiθ, with ρ = √(a2 + b2), and
θ = tan−1 (b/a) that eventually can allow geometrical considerations to be added in
a given problem.

Another candidate is the set of ‘fuzzy numbers’, those functions [0, 1] → [0, 1]
specifying linguistic labels like ‘high’, ‘around 0.6’, ‘bigger than 0.4’, ‘between 0.3
and 0.4’, etc. It is clear that the subintervals [a, b] of [0, 1] can be seen as a particular
type of fuzzy numbers; for instance, the interval [0.3, 0.4] is the same as the
membership function equal to 1 in it, and to zero in [0, 0.3) U (0.4, 1]. The label
‘high’, for example, can be represented by the identity function, or by its square, etc.

Membership functions, and in particular those of fuzzy numbers in [0, 1], are
almost always point-wise ordered by,

μ ≤ σ⇔ μ xð Þ ≤ σ xð Þ, for all x in 0, 1½ �,

a partial order that comprises the linear ordering of crisp numbers. Its minimum is
the function μ0 (x) = 0, and its maximum is μ1 (x) = 1, both for all x in X. Of
course, and even if it can go against simplicity, other orderings can be chosen for
the set [0, 1][0, 1] (containing, at least, all membership functions) and perhaps that
can be better related with a given problem. In any case, when restricted to precise
numbers, such orderings should coincide with the linear order of the unit interval,
and before deciding to change the unit interval by the set of ‘fuzzy numbers’, the
designer should try to refine and improve the design.
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In this way a fuzzy set P, labeled P, can be newly specified by the membership
function of a fuzzy number,

mP xð Þ=mfuzzy number;

this is, in essence, what was initially called a ‘type-two fuzzy set’ in the 3-part
article from 1975 “The concept of a linguistic variable and its application to
approximate reasoning” [33]. In the first part Zadeh introduced these type-2 fuzzy
sets as follows: “… suppose that A is a fuzzy subset of a universe of discourse U,
and the values of the membership function, µA, of A are allowed to be fuzzy subsets
of the interval [0, 1]. To differentiate such fuzzy sets from those considered pre-
viously, we shall refer to them as fuzzy subsets of type 2 with the fuzzy sets whose
membership functions are mappings from U to [0, 1] classified as type 1.”

That is, the measure does not take numerical values at each point, but mem-
bership function ones; it is another and wider representation of the information’s
state of the fuzzy set, and requires to previously fix a partial ordering for the
membership functions of fuzzy numbers for guaranteeing its measure’s character.
Since the fuzzy set is but a different name for the linguistic-collective, a ‘type-two
fuzzy set’ refers to nothing else than a new representation of the states of the fuzzy
set/linguistic-collective by means of functional values; that is, a particular type of
non exclusively numerical values able to take into account the uncertainty asso-
ciated to the difficulties for establishing a crisp number as a measure when it exists.
It is a way of ‘fuzzifying’ the membership idea of ‘being in’ a fuzzy set, and for
trying to approach the qualitative and the working meanings. More generally, in the
same paper Zadeh defined then “A fuzzy set is of type n, n = 2, 3, …, if its
membership function ranges over fuzzy sets of type n-1. The membership function
of a fuzzy set of type 1 ranges over the interval [0, 1]” [33].

4.3. It is still possible to take V as a set of pure words, defining the partial
ordering between them, in a form that can be associated with what they mean.

A particular and suggestive case is the following. If <P is a preorder (that is, a
transitive relation in addition to its presumed reflexivity), with a maximum r, and a
minimum t, then the relation =P is an equivalence generating the quotient set X/=P,
constituted by the equivalence classes [x] = {y ∈ X; y =P x⟺x <P y & y <P x}.
These classes inherit the order of X through the definition [x] <* [z] ⟺ x <P

z; <* is a partial order, and (X/=P, <*) is a partially ordered set with maximum
[r] = {r}, and minimum [t] = {t}.

Then, the mapping m*: X → X/=P, given by m* (x) = [x], verifies the three
laws of a measure valued in the partially ordered set (X/=P, <*), and, obvi-
ously, <*m* is isomorphic with <P, that is, the working meaning perfectly reflects
the qualitative meaning. Measure m* can be named the ‘natural measure’.

Provided each class [x] can be named by a word synthesizing what it represents,
(X/=P, <*) is isomorphic to the set of these words once it inherits the partial
order <*. Hence, and without going outside the problem’s data, an example is
obtained of a natural and perfect representation by words of the qualitative
meaning.
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4.4. There is again another view facilitated by the so-called ‘interval type-two
fuzzy sets’ [11], employed in some applications and consisting in not considering
the subintervals by their crisp membership functions, but by a kind of blurred
triangular membership function for them, and more or less inspired in [33]. In this
case, capturing the way of ordering these blurred functions, allowing to look at
them as meaning’s measures, is still difficult. It is not even clear enough what
happens with prototypes and anti-prototypes; that is, how their ‘measure values’ are
defined, what are the ‘subintervals’ null and unity, and if they are respectively the
minimum and the maximum among them; at the end, and when linguistically
describing some system, precise words can also appear in between the imprecise
ones, and the maximum and minimum values preserved for them.

Mendel’s ‘interval type-two fuzzy sets’ could be a different form of representing
words, but its relation with their meaning and its measuring needs to be clarified. At
least it should remain that the words considered for computing with words should
be, in some clear sense, measurable.

5 Conclusion

5.1. For what has been said, expressions like ‘type-two fuzzy set’ are not properly
appropriate since, after recognizing a qualitative meaning for the corresponding
linguistic label, the fuzzy set is, in a given context, a unique, although nebulous,
well anchored entity in language, or, if it is preferred, in thought. It is not to be
forgotten that sets are also entities of thought; comparatively few sets that are of
interest in science can be imagined like apples in a basket. As if somebody could
‘see’ the transcendental points between two of them in a straight line? Like sets,
fuzzy sets are a creation of thoughts; like sets, fuzzy sets need some representational
methodology for their practical management; for instance, that given for their
membership functions/states.

Without previously knowing a qualitative meaning, it does not seem possible to
follow a study allowing, in a form useful for computing with words, to practically
manage the big amount of imprecise words permeating plain languages; these
words should be measurable, not meaningless. Qualitative meaning, or fuzzy set, is
what can be measured.

Nevertheless, to change the values for measuring the meaning’s extent from the
real line into a different but partially ordered structure, is something that can
eventually even conduct to approaching the working and the qualitative meanings.
Anyway, the character of any kind of membership functions approaching ‘a mea-
sure of meaning’ should be preserved.

Such change, for instance, can be particularly made within the set of fuzzy
numbers in [0, 1], instead of employing the unit interval, and once fuzzy numbers
are represented by some functions in [0, 1][0. 1], previously endowed with a partial
ordering preserving the linear one formerly existing between the ‘crisp’ numbers
included in it. Provided such ordering is not the usual point-wise, its definition can
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constitute an added problem. When there is great uncertainty about the precise
values of the membership function, it can be a good option, provided the ordering is
defined and it has a minimum and a maximum. The problem is even more difficult if
intervals are considered through a blurred kind of a triangular membership func-
tions whose ordered structure is not well established; it waits to be clarified.

5.2. In the light of what has been presented, instead of expressions like ‘type-two
fuzzy set’, it can be better expressed as

‘fuzzy set with type-two membership function’,

or something similar. In any case, it can be suitable any name not introducing in the
darkness the unique, and previously existing, fuzzy set/linguistic-collective which is
to be managed by means of its states, this time given by the designed membership
functions of those particular fuzzy sets in [0, 1] whose linguistic label denotes either
an interval, or a blurred number, instead of a crisp number. There are neither
‘type-one’, nor ‘type-two’ fuzzy sets; there are only fuzzy sets that are a purely
linguistic concept.

Once X and P are given, and the graph (X, <P) is known, the linguistic-collective
P is commonly and empirically recognized to exist in X. Of course, for counting with
an axiomatic theory of fuzzy sets, it lacks a definition of what it can mean that two
linguistic-collectives P and Q coincide in X; something that, perhaps, could be
achieved by defining that their respective qualitative meanings (X, <P) and (X, <Q)
are isomorphic. A different topic is how the states should be represented for prac-
tically and computationally managing the fuzzy set in a form that can be suitable for
a given problem, and as it is the case, for example, when it only can be asserted that
mP (x) belongs to an interval [a (x), b (x)], depending on x, or that the difference
set ≤mP − <P is too wide.

What has been said should only be understood as a theoretical prevention against
using names like ‘type-two fuzzy sets’, or even ‘intuitionistic fuzzy sets’ [1]; names
that can conduct to presume the existence of different types of linguistic-collectives.
But, if such types actually existed, the differences among them arise from how its
qualitative meaning is expressed, but not from how the informational states can be
represented at each context in a given universe of discourse. In any case, and as
simplicity is of utmost importance, advising the designer: ‘Never change the unit
interval before trying to improve the membership function values’, does not seem to
be a bad advice.

In one way or another, those names could be scientifically accepted as a
shortening, but shortenings should be always explained!

References

1. Atanasov, KT (2012) On intuitionistic fuzzy sets. Springer
2. Bellman RE, Kalaba RE, Zadeh LA, Abstraction and pattern classification. Memorandum

RM-4307-PR. The RAND Corporation, Santa Monica, California, October 1964

18 E. Trillas and R. Seising



3. Bellman RE, Kalaba RE, Zadeh L (1966) Abstraction and pattern classification. J Math Anal
Appl 13:1–7

4. Halmos PR (1960) Naïve Set Theory. Van Nostrand, Princeton
5. Lakoff G (1973) Hedges: a study in meaning criteria and the logic of fuzzy concepts. J Philoso

Log 2:458–508
6. Lakoff G (2002) Interview (Rudolf Seising), University of California at Berkeley, Dwinell

Hall, 6 August 2002
7. Lee ET, Zadeh LA (1969) Note on fuzzy languages. Inf Sci 1:421–434
8. Leibniz GW (1951) Selections. Ed and trans Philip P. Wiener. Scribner’s, New York
9. Leibniz GW (1923) Dissertatio de arte combinatoria, 1666, Sämtliche Schriften und Briefe,

Akademie Verlag, Berlin, A VI 1, p 163; Philosophische Schriften (Gerhardt) Bd. IV
10. Ars generalis ultima. Base de dades Ramon Llull (en català). Barcelona: Centre de

documentació Ramon Llull. Universitat de Barcelona, 1305
11. Mendel JM (2007) Advances in type-2 fuzzy sets and systems. Inf Sci 177:84–110
12. Rosch (1973) Natural categories. Cogn Psychol, 4:328—350
13. Sugeno M (2012) Interview (Rudolf Seising). Philos Soft Comput Newsl, 4 (1):8–12. http://

docs.softcomputing.es/public/NewsletterPhilosophyAndSoftComputingNumber_6.pdf
14. Sugeno M (1972) Fuzzy measure and fuzzy integral. Trans Soc Instrum Control Eng 8

(2):218–226 (Japanese)
15. Sugeno M (1974) Theory of fuzzy integrals and its applications, PhD dissertation, Tokyo

Institute of Technology
16. Trillas E, Eciolaza L (2015) Fuzzy logic. Springer
17. Trillas E (2017) On the logos. A naïve view on ordinary reasoning and fuzzy logic.

Forthcoming. Springer
18. Trillas E (2006) On the use of words and fuzzy sets. Inf Sci 176(11):1463–1487
19. Trillas E, Guadarrama S (2010) Fuzzy representations need a careful design. Int J Gen Syst 39

(3):329–346
20. Trillas E, Moraga C, Termini S (2016) A naïve way of looking at fuzzy sets. Fuzzy Sets Syst

292:380–395
21. Turakainen P (1968) On Stochastic languages. Inf Control 304—313
22. Zadeh LA (1962) From circuit theory to system theory. Proc IRE 50:856–865
23. Zadeh LA (1965) Fuzzy sets and systems. In: Fox J (ed) System theory. Microwave Research

Institute symposium series, vol XV, Polytech. Pr. Brooklyn, New York, pp. 29–37
24. Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353
25. Lotfi A (1969) Toward a theory of fuzzy systems. Electronic research laboratory, College of

Engineering, University of California, Berkeley 94720, Report No. ERL-69–2, June 1969
26. Zadeh LA, Fuzzy Languages and Their Relation to Human and Machine Intelligence. In:

Proc. Of the Conference on Man and Computer, Bordeaux, France, 1970. Memorandum
M-302, 1971, Electronics Research Laboratory, University of California, Berkeley, Calif.
94720

27. Zadeh LA (1970) Fuzzy languages and their relation to human and machine intelligence. In:
Proceedings of the international conference on man and computer, Bordeaux 1970. Karger,
Basel, pp 13–165

28. Zadeh LA (1971) Toward fuzziness in computer systems. Fuzzy algorithms and languages.
In: Boulaye GG. (ed) Architecture and design of digital computers. Dunod, Paris, pp 9–18

29. Zadeh LA (1971) Similarity relations and fuzzy orderings. Inf Sci 3:177–200
30. Zadeh LA (1971) Quantitative fuzzy semantics. Inf Sci 3:159–176
31. Zadeh LA (1972) A fuzzy-set-theoretic interpretation of linguistic hedges. J Cybern 2:4–34
32. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision

processes. IEEE Trans Syst Man Cybern SMC-3(1), 28–44

What a Fuzzy Set Is and What It Is not? 19

http://docs.softcomputing.es/public/NewsletterPhilosophyAndSoftComputingNumber_6.pdf
http://docs.softcomputing.es/public/NewsletterPhilosophyAndSoftComputingNumber_6.pdf


33. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate
reasoning—I. Inf Sci 8, 199–249; II, Inf Sci 8, 301–357; III, Inf Sci 9, 43–80

34. Zadeh LA (1975) Fuzzy logic and approximate reasoning. Synthese 30:407–428
35. Zadeh LA (1978) PRUF—a meaning representation language for natural languages. Int J

Man-Mach Stud 10:395–460

20 E. Trillas and R. Seising



Fuzzy Random Variables à la Kruse
& Meyer and à la Puri & Ralescu: Key
Differences and Coincidences

María Ángeles Gil

Abstract The concept of the so-called fuzzy random variables has been introduced

in the literature aiming to model random mechanisms ‘producing’ fuzzy values.

However, the best known approaches (namely, the one by Kwakernaak-Kruse and

Meyer and the one by Féron-Puri and Ralescu) have been thought to deal with two

different situations and, to a great extent, with two different probabilistic and statis-

tical targets. This contribution highlights some of the most remarkable differences

and coincidences between the two approaches.

1 Introduction

Fuzzy sets were introduced by Zadeh in 1965 [18] to model classes of objects not

having a precisely defined criterion of membership. In other words, a fuzzy set is a

class for which elements from a referential classical set can be compatible to a lesser

or greater extent with the (not necessarily well-defined) property characterizing such

a class.

Since their introduction, fuzzy set and probability theories were connected, either

to emphasize distinctions between the two types of underlying uncertainties, fuzzi-

ness vs randomness (see Zadeh [18]) or to establish new settings and concepts involv-

ing/combining both (see, for instance, Zadeh [19]).
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In line with the second purpose, in 1976 Féron [6, 7] (see also [8]) introduced the

notion of fuzzy random set to model a random mechanism ‘producing’ fuzzy values

(more concretely, fuzzy sets of a metric space). Fuzzy random sets have been formal-

ized either as random elements taking on values on spaces of fuzzy sets endowed with

certain Borel 𝜎-fields (i.e., following Fréchet’s theory of random elements [9]) or,

alternatively, as extending levelwise the notion of random sets. Féron’s ideas were

deeply considered and strengthened by Puri and Ralescu [15, 16] who re-coined

fuzzy random sets as fuzzy random variables. Puri and Ralescu considered the spe-

cific metrics suggested by Fréchet and missing in Féron’s papers, and they introduced

key notions like expectation, conditional expectation, etc. In recent papers these ran-

dom elements have been referred to as random fuzzy sets.

In accordance with the distinction epistemic/ontic of fuzzy values (see Couso and

Dubois [4] for a recent review) Féron-Puri and Ralescu’s concept corresponds to the

ontic approach. Thus, fuzzy random variables in Féron-Puri and Ralescu’s sense

directly produce fuzzy-valued data. In fact, they are appropriate to model intrinsi-

cally imprecise-valued random attributes, like most of graded valuations associated

with human ratings.

Almost simultaneously, in 1978 Kwakernaak [13, 14] introduced the notion of

fuzzy random variable to formalize the fuzzy perception of an underlying real-

valued random variable (called the original). In accordance with the distinction epis-

temic/ontic of fuzzy values, Kwakernaak’s concept corresponds to the epistemic

approach. Therefore, although the random mechanism behind fuzzy random vari-

ables in Kwakernaak’s sense produce real-valued data, they cannot be/have not been

exactly perceived but only a fuzzy perception of these data is available. Kwaker-

naak’s ideas were formalized in a clearer mathematical way by Kruse [11] and Kruse

and Meyer [12]. In summary, fuzzy random variables in Kwakernaak-Kruse-Meyer’s

sense are appropriate to model real-valued random attributes from which the avail-

able information is imprecise or is imprecisely reported.

This paper aims to review the key differences and analogies between these two

approaches by recalling: their modelling, the way they address the formalization of

the distribution and independence of fuzzy random variables, their main location

and dispersion parameters, as well as a few comments about the statistical methods

to analyze data from them.

2 Two Approaches to Model Fuzzy Random Variables

In this section, the definitions for the two main approaches to random mechanisms

producing fuzzy values are recalled. Both definitions have been stated in a probabilis-

tic setting in which (𝛺,A ,P) is the probability space modelling a random experi-

ment, where 𝛺 is the set of all possible experimental outcomes, A is a 𝜎-field of

subsets of 𝛺 (the set of all possible events of interest), and P is a probability measure

associated with (𝛺,A ).
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Firstly, the revisitation of Kwakernaak’s conceptualization by Kruse [11] and

Kruse and Meyer [12] is given as follows:

Definition 1 Let (𝛺,A ,P) be a probability space modelling a random experiment.

Let Fc(ℝ) be the space of all fuzzy numbers (i.e., piecewise continuous, normal

and fuzzy convex sets of ℝ). A mapping X ∶ 𝛺 → Fc(ℝ) is said to be a fuzzy
random variable à la Kruse & Meyer associated with (𝛺,A ,P) if it satisfies for

each 𝛼 ∈ (0, 1] that both inf X
𝛼
∶ 𝛺 → ℝ and supX

𝛼
∶ 𝛺 → ℝ are real-valued ran-

dom variables, where X
𝛼

is the interval-valued 𝛼-level mapping, X
𝛼
(𝜔) = (X (𝜔))

𝛼

= {x ∈ ℝ ∶ X (𝜔)(x) ≥ 𝛼}, and inf X
𝛼
(𝜔), supX

𝛼
(𝜔) ∈ X

𝛼
(𝜔), for all 𝜔 ∈ 𝛺.

Remark 1 Although it is not explicitly specified in the definition, Kwakernaak and

Kruse and Meyer have clearly stated that a fuzzy random variable X ∶ 𝛺 → Fc(ℝ)
in their sense is assumed to come from the composition of a real-valued random

variable (the underlying one, referred to as the ‘original’, which is a mapping from

𝛺 to ℝ) and a fuzzy perception (a mapping from ℝ to Fc(ℝ)), that is,

𝛺

original random variable
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ℝ

fuzzy perception
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Fc(ℝ)

𝜔 ↦ [fuzzy perception ◦ original random variable](𝜔) = X (𝜔).

Secondly, the revisition of Féron’s conceptualization by Puri and Ralescu [15, 16]

is given as follows:

Definition 2 Let (𝛺,A ,P) be a probability space modelling a random experiment.

Let F (ℝp) be the class of fuzzy subsets ̃U ∶ ℝp → [0, 1] such that ̃U
𝛼
= {x ∈ ℝp ∶

̃U(x) ≥ 𝛼} is compact for each 𝛼 ∈ (0, 1] and ̃U1 ≠ ∅. A fuzzy random variable à
la Puri & Ralescu associated with (𝛺,A ,P) is a mapping X ∶ 𝛺 → F (ℝp) such

that for each 𝛼 ∈ (0, 1] the set-valued 𝛼-level mapping X
𝛼
, with X

𝛼
(𝜔) =

(
X (𝜔)

)
𝛼

for all 𝜔 ∈ 𝛺, is a random compact set (that is, a Borel-measurable mapping with

respect to the Borel 𝜎-field generated by the topology associated with the Haussdorf

metric on the space of nonempty compact subsets of ℝp
).

Remark 2 It should be emphasized that Colubi et al. [2, 3] have shown that fuzzy

random variables à la Puri & Ralescu are F (ℝp)-valued random elements in

Fréchet’s sense, that is, they are Borel-measurable mappings w.r.t. the Borel 𝜎-field

generated by the topology associated with the Skorohod metric on F (ℝp). This

Borel-measurability will be decisive for the ideas to be exposed in the next sections.

Remark 3 Although it is not explicitly specified in the definition, Féron and Puri

and Ralescu have clearly stated that a fuzzy random variable X ∶ 𝛺 → Fc(ℝ) in

their sense is assumed to come from the direct assessment of a fuzzy value to each

experimental outcome, that is,
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𝛺

fuzzy-valued random element
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Fc(ℝ)

𝜔 ↦ [fuzzy-valued random element](𝜔) = X (𝜔).

As a conclusion from Remarks 1 and 3, the essential difference between the two
approaches in defining fuzzy random variables (appart from the dimension of the

Euclidean space fuzzy values are supposed to be defined on, and the fuzzy convex-

ity of these values) lies in the situations they model. So, fuzzy random variables

à la Kruse & Meyer assume the existence of a real-valued random process which

is fuzzily perceived (epistemic view), whereas fuzzy random variables à la Puri &

Ralescu assume the existence of an imprecisely-valued random process for which

imprecision is formalized in terms of fuzzy values (ontic view).

For some theoretical and most of practical developements, Definition 2 is par-

ticularized to the one-dimensional case (p = 1) and also to the fuzzy convex case

(i.e., 𝛼-levels are assumed to be convex sets). Under these particularizations the two

definitions match, so that the essential coincidence between the two approaches in
defining fuzzy random variables can be stated (see, for instance, Blanco-Fernández

et al. [1] for a recent review about) as follows:

Proposition 1 Let (𝛺,A ,P) be a probability space modelling a random experi-
ment and let Fc(ℝ) be the space of all fuzzy numbers. Then, a mapping X ∶ 𝛺

→ Fc(ℝ) is a fuzzy random variable à la Kruse & Meyer if, and only if, it is a fuzzy
random variable à la Puri & Ralescu.

3 Distribution and Independence of Fuzzy Random
Variables

As we have remarked in the preceding sections, the situations the two approaches

to fuzzy random variables have been motivated on are different. This fact is crucial

to support a key concept in dealing with probabilistic and statistical developments

involving fuzzy random variables: the distribution and the independence.

IfX is a fuzzy random variable à laKruse & Meyer, its distribution is considered

to be propagated from the distribution of the original through the fuzzy perception.

This propagation is carried out on the basis of Zadeh’s extension principle [20], so

that the (fuzzy-valued) distribution function of fuzzy random variable X asso-

ciated with (𝛺,A ,P) is defined as follows:
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̃FX ∶ ℝ → Fc(ℝ), x ↦ ̃FX (x) ∶ ℝ → [0, 1]

(
̃FX (x)

)
(p) =

{ sup
X0∈Orig(X ) ∶FX0

(x)=p
inf
𝜔∈𝛺

X (𝜔)(X0(𝜔)) if p ∈ [0, 1]

0 otherwise

where Orig(X ) is the set of potential originals of X and FX denotes the distribution

function of random variable X associated with (𝛺,A ,P).
As a consequence from this notion, two fuzzy random variables X and Y à

la Kruse & Meyer are defined to be identically distributed fuzzy random vari-
ables if their fuzzy distribution functions ̃FX and ̃FY coincide for all x ∈ ℝ. This

has been shown (see Kruse and Meyer [12]) to be equivalent to say that X and Y
are identically distributed fuzzy random variables if and only if for each 𝛼 ∈ (0, 1]
the random variables inf X

𝛼
and inf Y

𝛼
are identically distributed and supX

𝛼
and

supY
𝛼

are also identically distributed.

In a similar way, fuzzy random variables X1,… ,Xn à la Kruse & Meyer are

defined to be (either pairwise or completely) independent fuzzy random vari-
ables if their joint fuzzy distribution functions can be (pairwise or completely) fac-

torized in terms of the marginals. This has been shown (see Kruse and Meyer [12]) to

be equivalent to say that X1,… ,Xn are (pairwise or completely) independent fuzzy

random variables if and only if for each 𝛼 ∈ (0, 1] random variables inf(X1)𝛼,… ,

inf(Xn)𝛼 are (respectively, pairwise or completely) independent and sup(X1)𝛼,… ,

sup(Xn)𝛼 are also (respectively, pairwise or completely) independent.

On the other hand, if X is a fuzzy random variable à la Puri & Ralescu, its distri-

bution function cannot be directly extended, due to the lack of a universally accepted

total order on the space of fuzzy values. However, because of the Borel-measurability

of a fuzzy random variable à la Puri & Ralescu (Remark 2), one can immediately

induce the distribution of this random element from the probability measure P in

(𝛺,A ,P), so that for any Borel set 𝔅 of fuzzy values in F (ℝp), the (real-valued)

induced probability of 𝔅 by X is given (without need to be specifically defined)

by

P(X ∈ 𝔅) = P ({𝜔 ∈ 𝛺 ∶ X (𝜔) ∈ 𝔅}) .

Analogously, the notions of identity in distribution and independence can be

immediately derived on the basis of the Borel-measurability assumption for fuzzy

random variables à la Puri & Ralescu. Therefore, without need to be specifically

defined, so that two fuzzy random variables X and Y à la Puri & Ralescu are iden-
tically distributed fuzzy random variables if and only if for any Borel set 𝔅 of

fuzzy values P(X ∈ 𝔅) = P(Y ∈ 𝔅).
And, fuzzy random variables X1,… ,Xn à la Puri & Ralescu are (either pair-

wise or completely) independent fuzzy random variables if for Borel sets 𝔅1,… ,

𝔅n of fuzzy values

P(Xi ∈ 𝔅i,Xj ∈ 𝔅j) = P(Xi ∈ 𝔅i) ⋅ P(Xj ∈ 𝔅j) for i ≠ j,
P(X1 ∈ 𝔅1,… ,Xn ∈ 𝔅n) = P(X1 ∈ 𝔅1) ⋅… ⋅ P(Xn ∈ 𝔅n).
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Although the way to formalize the distribution of fuzzy random variables depends

on the considered approach, so there is an essential difference in managing the distri-

bution, the identity in distribution and independence in Puri & Ralescu’s approach

imply those in Kruse & Meyer’s one in case one deals with fuzzy number-valued

random variables.

4 Parameters of the Distribution of Fuzzy Random
Variables

In summarizing the distribution of fuzzy random variables, the most used summary

measures are location and dispersion ones. To extend them from the real-valued case

the way to proceed depends on the approach and also on the way the distribution has

been formalized.

In connection with the distribution of fuzzy random variables à laKruse & Meyer,

extension is based on Zadeh’s extension principle, so that a fuzzy parameter of a

fuzzy random variable X is viewed as a fuzzy perception of a real-valued parameter

of the original. Thus, if 𝜃(X) denotes the parameter of the original X the extended

fuzzy perception of 𝜃 for X is given by the fuzzy number 𝜗(X ) such that for each

t ∈ ℝ
𝜗(X )(t) = sup

X0∈Orig(X ) ∶ 𝜃(X0)=t
inf
𝜔∈𝛺

X (𝜔)(X0(𝜔)).

In accordance with this extension, if X is an à la Kruse & Meyer fuzzy random

variable the main location measures are given by

∙ the fuzzy perception of the mean corresponds to

̃E(X )(t) = sup
X0∈Orig(X ) ∶E(X0)=t

inf
𝜔∈𝛺

X (𝜔)(X0(𝜔)),

which satisfies for each 𝛼 ∈ (0, 1] (see Kruse [11]) that

(
̃E(X )

)
𝛼

=
[
E(inf X

𝛼
),E(supX

𝛼
)
]
;

∙ the fuzzy perception of the median corresponds to

Γ̃(X )(t) = sup
X0∈Orig(X ) ∶Me(X0)=t

inf
𝜔∈𝛺

X (𝜔)(X0(𝜔)),

which satisfies that for each 𝛼 ∈ (0, 1] (see Grzegorzewski [10])

(
Γ̃(X )

)
𝛼

= [Me(inf X
𝛼
),Me(supX

𝛼
)],
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where Me/Me denotes the median of the corresponding real-valued random vari-

able with the convention (if the median is not unique) of taking the smallest/largest

median.

In connection with the distribution of fuzzy random variables à la Puri & Ralescu,

extension is based on Fréchet’s ideas [9] for random elements over metric spaces, so

that if one considers the Lp metrics (p ∈ {1, 2}) by Diamond and Kloeden [5] on

Fc(ℝ)

𝜌p(̃U,
̃V) =

[
1
2 ∫(0,1]

(
| inf ̃U

𝛼
− inf ̃V

𝛼
|p + | sup ̃U

𝛼
− sup ̃V

𝛼
|p
)
d𝛼

]1∕p
.

In accordance with Fréchet’s ideas, if X is an à la Puri & Ralescu fuzzy random

variable

∙ the extended mean corresponds to

̃E(X ) = arg min
̃U∈F (ℝp)

E
([

𝜌2(X ,
̃U)
]2)

,

which satisfies for each 𝛼 ∈ (0, 1] (see Puri and Ralescu [16]) that
(
̃E(X )

)
𝛼

= Aumann integral ofX
𝛼
, and coincides with

[
E(inf X

𝛼
),E(supX

𝛼
)
]

if X is

Fc(ℝ)-valued;

∙ if X is Fc(ℝ)-valued, the extended (1-norm) median corresponds to

M̃e(X ) = arg min
̃U∈F (ℝp)

E
(
𝜌1(X ,

̃U)
)
,

for which a solution (see Sinova et al. [17]) is the one such that for each 𝛼 ∈ (0, 1] is

given by
(
M̃e(X )

)
𝛼

= [Me(inf X
𝛼
),Me(supX

𝛼
)],whereMe denotes the median

of the corresponding real-valued random variable with the convention (if the

median is not unique) of taking the middle median. Actually, some other conven-

tions could be considered to choose Me (like the one leading to Γ̃(X )), whenever

a fuzzy number is determined.

Regarding the variance, the policy for this approach is essentially different from

an approach to the other. If X is an à la Kruse & Meyer fuzzy random variable and

Zadeh’s extension principle is applied, the variance is conceived as a fuzzy percep-

tion of the variance of the original, so it is fuzzy-valued. If X is an à la Puri &

Ralescu fuzzy random variable and Fréchet’s ideas are applied, the variance is con-

ceived as a real-valued measure given by the mean squared L2 distance between the

fuzzy random variable and its mean value. Consequently, they stand for two different

types of measures.
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5 Statistical Data Analysis from Fuzzy Random Variables

The approach behind the two examined notions for fuzzy random variables influ-

ences the statistical data analysis one can develop. Since there is a wide class of

methods to estimation and testing hypothesis from fuzzy data, the topic cannot be

entered in this paper.

Anyway, it is interesting to highlight that analyses concerning fuzzy random vari-

ables à la Kruse & Meyer can refer either to parameters of the originals or to fuzzy

perceptions of them (see, for instance, Kruse and Meyer [12] for several examples).

In contrast to this, analyses concerning fuzzy random variables à la Puri & Ralescu

always refer to parameters of the distribution of the fuzzy random variables (see for

instance, Blanco-Fernández et al. [1]). Actually, in connection with the last ones, it

should be pointed out that, thanks to having modelled fuzzy random variables as ran-

dom elements, all the basic concepts from statistics with crisp data (e.g., unbiased

estimation, p-values, and do on, etc.) can be preserved without needing to expressly

define them.

Following Kruse, the analysis of fuzzy-valued data should be clearly distin-

guished from the analysis of data by using fuzzy logic-based methods.
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Statistical Inference for Incomplete
Ranking Data: A Comparison of Two
Likelihood-Based Estimators

Inés Couso and Eyke Hüllermeier

Abstract We consider the problem of statistical inference for ranking data, namely

the problem of estimating a probability distribution on the permutation space. Since

observed rankings could be incomplete in the sense of not comprising all choice

alternatives, we propose to tackle the problem as one of learning from imprecise or

coarse data. To this end, we associate an incomplete ranking with its set of consistent

completions. We instantiate and compare two likelihood-based approaches that have

been proposed in the literature for learning from set-valued data, the marginal and

the so-called face-value likelihood. Concretely, we analyze a setting in which the

underlying distribution is Plackett-Luce and observations are given in the form of

pairwise comparisons.

1 Introduction

The study of rank data and related probabilistic models on the permutation space

(symmetric group) has a long tradition in statistics, and corresponding methods

for parameter estimation have been used in various fields of application, such as

psychology and the social sciences [1]. More recently, applications in information

retrieval (search engines) and machine learning (personalization, preference learn-

ing) have caused a renewed interest in the analysis of rankings and topics such as

“learning-to-rank” [2]. Indeed, methods for learning and constructing preference

models from explicit or implicit preference information and feedback are among the

recent research trends in these disciplines [3].

In most applications, the rankings observed are incomplete or partial in the sense

of including only a subset of the underlying choice alternatives, whereas no prefer-

ences are revealed about the remaining ones—pairwise comparisons can be seen as
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an important special case. In this paper, we therefore approach the problem of learn-

ing from ranking data from the point of view of statistical inference with imprecise
data. The key idea is to consider an incomplete ranking as a set-valued observation,

namely the set of all complete rankings consistent with the incomplete observation

[4]. This approach is especially motivated by recent work on learning from impre-

cise, incomplete, or fuzzy data [5–9].

Thus, our paper can be seen as an application of general methods proposed in that

field to the specific case of ranking data. This is arguably interesting for both sides,

research on statistics with imprecise data and learning from ranking data: For the

former, ranking data is an interesting test bed that may help understand, analyze, and

compare methods for learning from imprecise data; for the latter, general approaches

for learning from imprecise data may turn into new statistical methods for ranking.

In this paper, we compare two likelihood-based approaches for learning from

imprecise data. More specifically, both approaches are used for inference about the

so-called Plackett-Luce model, a parametric family of probability distributions on

the permutation space.

2 Preliminaries and Notation

Let 𝕊K denote the collection of rankings (permutations) over a set U = {a1,… , aK}
of K items ak, k ∈ [K] = {1,… ,K}. A complete ranking (a generic element of 𝕊K)

is a bijection 𝜋 ∶ [K] ⟶ [K], where 𝜋(k) is the position of the kth item ak in the

ranking. We denote by 𝜋

−1
the ordering associated with a ranking, i.e., 𝜋

−1(j) is

the index of the item on position j. We write rankings in brackets and orderings

in parentheses; for example, 𝜋 = [2, 4, 3, 1] and 𝜋

−1 = (4, 1, 3, 2) both denote the

ranking a4 ≻ a1 ≻ a3 ≻ a2.
For a possibly incomplete ranking, which includes only some of the items, we

use the symbol 𝜏 (instead of 𝜋). If the kth item does not occur in a ranking, then

𝜏(k) = 0 by definition; otherwise, 𝜏(k) is the rank of the kth item. In the corre-

sponding ordering, the missing items do simply not occur. For example, the ranking

a4 ≻ a1 ≻ a2 would be encoded as 𝜏 = [2, 3, 0, 1] and 𝜏

−1 = (4, 1, 2), respectively.

We let I(𝜏) = {k ∶ 𝜏(k) > 0} ⊂ [K] and denote the set of all rankings (complete or

incomplete) by 𝕊K .

An incomplete ranking 𝜏 can be associated with its set of consistent extensions

E(𝜏) ⊂ 𝕊K , where

E(𝜏) =
{
𝜋 ∶ (𝜏(i) − 𝜏(j))(𝜋(i) − 𝜋(j)) ≥ 0 for all i, j ∈ I(𝜏)

}

An important special case is an incomplete ranking 𝜏i,j in the form of a pairwise com-

parison ai ≻ aj (i.e., 𝜏i,j(i) = 1, 𝜏i,j(j) = 2, 𝜏i,j(k) = 0 otherwise), which is associated

with the set of extensions



Statistical Inference for Incomplete Ranking Data . . . 33

E(𝜏i,j) = E(ai ≻ aj) = {𝜋 ∈ 𝕊K ∶ 𝜋(i) < 𝜋(j)} .

Modeling an incomplete observation 𝜏 by the set of linear extensions E(𝜏) reflects

the idea that 𝜏 has been produced from an underlying complete ranking 𝜋 by some

“coarsening” or “imprecisiation” process, which essentially consists of omitting

some of the items from the ranking. E(𝜏) then corresponds to the set of all possi-

ble candidates 𝜋, i.e., all complete rankings that are compatible with the observation

𝜏 if nothing is known about the coarsening, except that it does not change the relative

order of any items.

Sometimes, more knowledge about the coarsening is available, or reasonable

assumptions can be made. For example, it might be known that 𝜏 is a top-t rank-

ing, which means that it consists of the items that occupy the first t positions in 𝜋.

3 Probabilistic Models

Statistical inference requires a probabilistic model of the underlying data generat-

ing process, which, in our case, essentially comes down to specifying a probability

distribution on the permutation space. One of the most well-known probability dis-

tributions of that kind is the Plackett-Luce (PL) model [1].

3.1 The Plackett-Luce Model

The PL model is parametrized by a vector 𝜃 = (𝜃1, 𝜃2,… , 𝜃K) ∈ 𝛩 = ℝK
+ . Each 𝜃i

can be interpreted as the weight or “strength” of the option ai. The probability

assigned by the PL model to a ranking represented by a permutation 𝜋 ∈ 𝕊K is given

by

pl
𝜃

(𝜋) =
K∏
i=1

𝜃
𝜋
−1(i)

𝜃
𝜋
−1(i) + 𝜃

𝜋
−1(i+1) +⋯ + 𝜃

𝜋
−1(K)

(1)

Obviously, the PL model is invariant toward multiplication of 𝜃 with a constant c > 0,

i.e., pl
𝜃

(𝜋) = plc𝜃(𝜋) for all 𝜋 ∈ 𝕊K and c > 0. Consequently, 𝜃 can be normalized

without loss of generality (and the number of degrees of freedom is only K − 1
instead of K). Note that the most probable ranking, i.e., the mode of the PL dis-

tribution, is simply obtained by sorting the items in decreasing order of their weight:

𝜋

∗ = arg max
𝜋∈𝕊K

pl
𝜃

(𝜋) = arg sort
k∈[K]

{𝜃1,… , 𝜃K} . (2)

As a convenient property of PL, let us mention that it allows for a very easy computa-

tion of marginals, because the marginal probability on a subset U′ = {ai1 ,… , aiJ} ⊂
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U of J ≤ K items is again a PL model parametrized by (𝜃i1 ,… , 𝜃iJ ). Thus, for every

𝜏 ∈ 𝕊K with I(𝜏) = U′
,

pl
𝜃

(𝜏) =
∑

𝜋∈E(𝜏)
pl

𝜃

(𝜋) =
J∏
j=1

𝜃
𝜏
−1(j)

𝜃
𝜏
−1(j) + 𝜃

𝜏
−1(j+1) +… + 𝜃

𝜏
−1(J)

(3)

In particular, this yields pairwise probabilities

pl
𝜃

(𝜏i,j) = pl
𝜃

(ai ≻ aj) =
𝜃i

𝜃i + 𝜃j
.

This is the well-known Bradley-Terry model [1], a model for the pairwise compari-

son of alternatives. Obviously, the larger 𝜃i in comparison to 𝜃j, the higher the prob-

ability that ai is chosen. The PL model can be seen as an extension of this principle

to more than two items: the larger the parameter 𝜃i in (1) in comparison to the para-

meters 𝜃j, j ≠ i, the higher the probability that ai occupies a top rank.

3.2 A Stochastic Model of Coarsening

While (1) defines a probability for every complete ranking 𝜋, and hence a distribution

p ∶ 𝕊K ⟶ [0, 1], an extension of p from 𝕊K to𝕊K is in principle offered by (3). One

should note, however, that marginalization in the traditional sense is different from

coarsening. In fact, (3) assumes the subset of itemsU′
to be fixed beforehand, prior to

drawing a ranking at random. For example, focusing on two items ai and aj, one may

ask for the probability that ai will precede aj in the next ranking drawn at random

according to p.

Recalling our idea of a coarsening process, it is more natural to consider the data

generating process as a two step procedure:

p
𝜃,𝜆

(𝜏, 𝜋) = p
𝜃

(𝜋) ⋅ p
𝜆

(𝜏 |𝜋) (4)

According to this model, a complete ranking 𝜋 is generated first according to p
𝜃

(⋅),
and this ranking is then turned into an incomplete ranking 𝜏 according to p

𝜆

(⋅ |𝜋).
Thus, the coarsening process is specified by a family of conditional probability dis-

tributions {
p
𝜆

(⋅ |𝜋) ∶ 𝜋 ∈ 𝕊K , 𝜆 ∈ 𝛬

}
, (5)

where 𝜆 collects all parameters of these distributions; p
𝜃,𝜆

(𝜏, 𝜋) is the probability of

producing the data (𝜏, 𝜋) ∈ 𝕊K × 𝕊K . Note, however, that 𝜋 is actually not observed.
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4 Statistical Inference

As for the statistical inference about the process (4), our main interest concerns the

“precise part”, i.e., the parameter 𝜃, whereas the coarsening is rather considered as a

complication of the estimation. In other words, we are less interested in inference

about 𝜆 or, stated differently, we are interested in 𝜆 only in so far as it helps to

estimate 𝜃. In this regard, it should also be noted that inference about 𝜆 will gen-

erally be difficult: Due to the sheer size of the family of distributions (5), 𝜆 could be

very high-dimensional. Besides, concrete model assumptions about the coarsening

process may not be obvious.

Therefore, what we are mainly aiming for is an estimation technique that is effi-

cient in the sense of circumventing direct inference about 𝜆, and at the same time

robust in the sense that it yields reasonably good results for a wide range of coarsen-

ing procedures, i.e., under very weak assumptions about the coarsening (or perhaps

no assumptions at all). As a first step toward this goal, we look at two estimation

principles that have recently been proposed in the literature, both being based on the

principle of likelihood maximization.

In the following, the random variableX will denote the precise outcome of a single

random experiment, i.e., a complete ranking 𝜋, whereas Y denotes the coarsening 𝜏.

We assume to be given an i.i.d. sample of size N and let 𝜏 = (𝜏1,… , 𝜏N) ∈ (𝕊K)N
denote a sequence of N independent incomplete observations of Y .

4.1 The Marginal Likelihood

The perhaps most natural approach is to consider the marginal likelihood function

(also called “visible likelihood” in [10]), i.e., the probability of the observed data Y
given the parameters 𝜃 and 𝜆:

LV (𝜃, 𝜆) = p(𝝉 | 𝜃, 𝜆) =
N∏
i=1

p(Y = 𝜏i | 𝜃, 𝜆)

=
N∏
i=1

∑
𝜋∈𝕊K

p
𝜃

(𝜋)p
𝜆

(𝜏i |𝜋) (6)

The maximum likelihood estimate (MLE) would then be given by

(𝜃∗, 𝜆∗) = arg max

(𝜃,𝜆)∈𝛩×𝛬
LV (𝜃, 𝜆) ,

or, emphasizing inference about 𝜃, by

𝜃

∗ = arg max
𝜃∈𝛩

max
𝜆∈𝛬

LV (𝜃, 𝜆) .
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As can be seen, this approach requires assumptions about the parametrization of the

coarsening, i.e., the parameter space 𝛬. Of course, since both 𝕊K and 𝕊K are finite,

these assumptions can be “vacuous” in the sense of allowing all possible distribu-

tions. Thus, the family (5) would be specified in a tabular form by letting

p
𝜆

(𝜏 |𝜋) = 𝜆
𝜋,𝜏

(7)

for all 𝜏 ∈ 𝕊K and 𝜋 ∈ E(𝜏) (recall that p
𝜆

(𝜏 |𝜋) = 0 for 𝜋 ∉ E(𝜏)). In other words,

𝛬 is given by the set of all these parametrizations under the constraint that

∑
𝜏∈𝕊K

𝜆
𝜋,𝜏

=
∑

𝜏∈E(𝜏)
𝜆
𝜋,𝜏

= 1

for all 𝜋 ∈ 𝕊K . We denote this parametrization by 𝛬vac.

4.2 The Face-Value Likelihood

The face-value likelihood is expressed as follows [11, 12]:

LF(𝜃, 𝜆) =
N∏
i=1

P
(
X ∈ E(𝜏i) | 𝜃, 𝜆

)
(8)

=
N∏
i=1

∑
𝜋∈E(𝜏i)

p
𝜃

(𝜋)

Note that the face-value likelihood does actually not depend on 𝜆, which means that

we could in principle write LF(𝜃) instead of LF(𝜃, 𝜆). Indeed, this approach does

not explicitly account for the coarsening process, or at least does not consider the

coarsening as a stochastic process. The only way of incorporating knowledge about

this process is to replace the set of linear extensions, E(𝜏i), with a smaller set of

complete rankings associated with an incomplete observation 𝜏i. This can be done if

the coarsening is deterministic, like in the case of top-t selection.

5 Comparison of the Approaches

These two likelihood functions (6) and (8) coincide when the collection of possible

values for Y forms a partition of the collection of permutations 𝕊K , since the events

Y = 𝜏i and X ∈ E(𝜏i) are then the same. But they do not coincide in the general case,

where the event Y = 𝜏i implies but does not necessarily coincide with X ∈ E(𝜏i).
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In the following, we refer to the parameter estimation via maximization of (6) and

(8) as MLM (marginal likelihood maximization) and FLM (face-value likelihood

maximization), respectively.

5.1 Known Coarsening

A comparison between the marginal and face-value likelihood is arguable in the

case where the coarsening is assumed to be known, because, as already said, the

face-value likelihood is not able to exploit this knowledge (unless the coarsening

is deterministic and forms a partition). Obviously, ignorance of the coarsening may

lead to very poor estimates in general, as shown by the following example.

Let K = 3 and U = {a1, a2, a3}. To simplify notation, we denote a ranking ai ≻
aj ≻ ak inducing 𝜋

−1 = (i, j, k) by aiajak. We assume the PL model and suppose the

coarsening to be specified by the following (deterministic) relation between complete

rankings 𝜋 and incomplete observations 𝜏, which are all given in the form of pairwise

comparisons:

a1 ≻ a2 a2 ≻ a1 a1 ≻ a3 a3 ≻ a1 a2 ≻ a3 a3 ≻ a2
a1a2a3 0 0 0 0 1 0
a1a3a2 0 0 0 0 0 1
a2a1a3 0 1 0 0 0 0
a2a3a1 0 1 0 0 0 0
a3a1a2 0 0 0 1 0 0
a3a2a1 0 1 0 0 0 0

Denoting by ni,j the number of times ai ≻ aj has been observed, the face-value like-

lihood function reads as follows:

LF(𝝉; 𝜃) =
3∏
i=1

∏
j≠i

(
𝜃i

𝜃i + 𝜃j

)ni,j
.

Let now nijk denote the number of occurrences of the ranking aiajak in the sample.

According to the above relation, we have the following:

n1,2 = 0
n2,1 = n213 + n231 + n321
n1,2 = 0
n1,3 = n312
n2,3 = n123
n3,2 = n132
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Therefore,

LF(𝜃) =
(

𝜃2
𝜃1 + 𝜃2

)n213+n231+n321

×
(

𝜃3
𝜃1 + 𝜃3

)n312
×
(

𝜃2
𝜃2 + 𝜃3

)n123
×
(

𝜃3
𝜃2 + 𝜃3

)n132
.

For an arbitrary triplet 𝜃 = (𝜃1, 𝜃2, 𝜃2) with 𝜃1 + 𝜃2 + 𝜃3 = 1, we observe that

LF(𝜃1, 𝜃2, 𝜃3) ≤ LF
(
0, 𝜃′2, 𝜃

′
3
)
,

where 𝜃

′
2 =

𝜃2
𝜃2+𝜃3

and 𝜃

′
3 =

𝜃3
𝜃2+𝜃3

. In fact,

LF(0, 𝜃′2, 𝜃
′
3) = (𝜃′2)

n123 ⋅ (𝜃′3)
n132

,

and therefore

LF(𝜃) =
[(

𝜃2
𝜃1 + 𝜃2

)n213+n231+n321
⋅
(

𝜃3
𝜃1 + 𝜃3

)n312]
× LF(0, 𝜃′2, 𝜃

′
3) ,

which is clearly less than or equal to LF(0, 𝜃′2, 𝜃
′
3). Furthermore, according to Gibb’s

inequality, the above likelihood value, LF(0, 𝜃′2, 𝜃
′
3), is maximized for

( ̂𝜃′2, ̂𝜃
′
3) =

(
n123

n123 + n132
,

n132
n123 + n132

)
.

For instance, if we assume that the true distribution over 𝕊3 is PL with parameter

𝜃 = (𝜃1, 𝜃2, 𝜃3) = (0.99, 0.005, 0.005), then our estimation of 𝜃 based on the face-

value likelihood function will be

(
0,

n123
n123 + n132

,

n132
n123 + n132

)
,

which tends to (0, 0.5, 0.5) as n tends to infinity.

5.2 Unknown Coarsening

The comparison between the two approaches appears to be more reasonable when the

coarsening is assumed to be unknown. In that case, it might be fair to instantiate the

marginal likelihood with the parametrization 𝛬vac, because just like the face-value

likelihood, it is then essentially ignorant about the coarsening. However, the estima-

tion of the coarsening process under𝛬vac is in general not practicable, simply because
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the number of parameters (7) is too large: One parameter 𝜆
𝜋,𝜏

for each 𝜏 ∈ 𝕊K and

𝜋 ∈ E(𝜏) makes about 2KK! parameters in total. Besides, 𝛬vac may cause problems

of model identifiability. What we need, therefore, is a simplifying assumption on the

coarsening.

5.2.1 Rank-Dependent Coarsening

The assumption we make here is a property we call rank-dependent coarsening. A

coarsening procedure is rank-dependent if the incompletion is only acting on ranks
(positions) but not on items. That is, the procedure randomly selects a subset of ranks

and removes the items on these ranks, independently of the items themselves. In other

words, an incomplete observation 𝜏 is obtained by projecting a complete ranking 𝜋

on a random subset of positions A ∈ 2[K], i.e., the family (5) of distributions p
𝜆

(⋅ |𝜋)
is specified by a single measure on 2[K]. Or, stated more formally,

p
𝜆

(
𝜋

−1(A) |𝜋−1) = p
𝜆

(
𝜎

−1(A) | 𝜎−1)

for all 𝜋, 𝜎 ∈ 𝕊K
and A ⊂ [K], where 𝜋

−1(A) denotes the projection of the ordering

𝜋

−1
to the positions in A.

In the following, we make an even stronger assumption and assume observations

in the form of (rank-dependent) pairwise comparisons. In this case, the coarsening

is specified by probabilities

{
𝜆i,j | 1 ≤ i < j ≤ K, 𝜆i,j ≥ 0,

∑
1≤i<j≤K

𝜆i,j = 1
}
,

where 𝜆i,j denotes the probability that the ranks i and j are selected.

5.2.2 Likelihoods

Under the assumption of the PL model and rank-dependent pairwise comparisons as

observations, the marginal likelihood for an observed set of pairwise comparisons

ain ≻ ajn , n ∈ [N], is given by

LV (𝜃, 𝜆) =
N∏
n=1

∑
𝜋∈𝕊K ,𝜋(in)<𝜋(jn)

𝜆
𝜋(in),𝜋(jn) pl𝜃(𝜋) . (9)

The corresponding expression for the face-value likelihood is

LF(𝜃) =
N∏
n=1

𝜃in

𝜃in + 𝜃jn
=
∏
i≠j

(
𝜃i

𝜃i + 𝜃j

)ni,j
, (10)
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where ni,j denotes the number of times ai ≻ aj has been observed. This is the Bradely-

Terry-Luce (BTL) model, which has been studied quite extensively in the literature

[13].

Obviously, since the face-value likelihood is ignorant of the coarsening, we can-

not expect the maximizer ̂
𝜃 of (10) to coincide with the true parameter 𝜃. Interest-

ingly, however, in our experimental studies so far, these parameters have always been

asymptotically comonotonic, which is enough to recover the most probable ranking

(2). That is, the face-value likelihood seems to yield reasonably strong estimates

�̂� = arg sort
k∈[K]

{
̂
𝜃1,… ,

̂
𝜃K

}
, (11)

for sufficiently large samples, although the parameter ̂
𝜃 itself might be biased. The

question whether or not this comonotonicity holds in general is still open. Yet, we

could prove an affirmative answer at least under an additional assumption.

Theorem 1 Suppose complete rankings to be generated by the PL model with para-
meters 𝜃1 > 𝜃2 > ⋯ > 𝜃K. Moreover, let the coarsening procedure be given by a
rank-dependent selection of pairwise comparisons between items where 𝜆 satisfies
the following condition:

𝜆i,j ≥ 𝜆i′,j′ , if 1 ≤ i ≤ i′ < j′ ≤ j ≤ K.

Then, for an arbitrarily small 𝜖 > 0 there exists N
𝜖

∈ ℕ such that, for every N ≥ N
𝜖

the maximizer ̂
𝜃 of (10) satisfies

̂
𝜃1 > ̂

𝜃2 > ⋯ >
̂
𝜃K

with probability at least 1 − 𝜖.

The proof of Theorem 1 can be derived from Lemmas 1 to 6.

Lemma 1 Suppose complete rankings to be generated by the PL model with para-
meters 𝜃i1 > 𝜃i2 > ⋯ > 𝜃iK . Given i ≠ j, let pik ,il = P(X ∈ E(aik ≻ ail )) =

𝜃ik

𝜃ik+𝜃il
denote the probability that aik is preferred to ail . Then, the following inequalities
hold:

pik ,il ≥ pik′ ,il′ , ∀ k ≤ k′, l ≥ l′.

Proof Straightforward, if we take into account that the mapping fc(x) =
x

x+c
is increas-

ing on ℝ+ for all c > 0 while gc ∶ (x) = c
c+x

is decreasing on ℝ+.

Definition 1 Consider a complete ranking 𝜋 ∈ 𝕊K , and let us consider two indices

i ≠ j. We define the (i, j)-swap ranking, 𝜋i,j ∶ [K] → [K], as follows: 𝜋i,j(k) = 𝜋(k),
∀ k ∈ [K] ⧵ {i, j}, 𝜋i,j(i) = 𝜋(j) and 𝜋i,j(j) = 𝜋(i).
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Lemma 2 Suppose complete rankings to be generated by the PL model pl
𝜃

. Take
i, j ∈ [K] such that 𝜃i > 𝜃j and 𝜋 ∈ 𝕊K . Then:

𝜋(i) < 𝜋(j) if and only if pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j).

Proof Let us take an arbitrary ranking 𝜋 ∈ 𝕊k satisfying the restriction 𝜋(i) < 𝜋(j)
We can write:

pl
𝜃

(𝜋) = Ci,j ⋅
𝜃
𝜋
−1(𝜋(i))∑

𝜋(K)
s=𝜋(i) 𝜃𝜋−1(s)

⋅
𝜃
𝜋
−1(𝜋(j))∑

𝜋(K)
s=𝜋(j) 𝜃𝜋−1(s)

pl
𝜃

(𝜋i,j) = Ci,j ⋅
𝜃
𝜋

−1
i,j (𝜋i,j(i))

∑𝜋i,j(K)
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

⋅
𝜃
𝜋

−1
i,j (𝜋i,j(j))

∑𝜋i,j(K)
s=𝜋i,j(j)

𝜃
𝜋

−1
i,j (s)

,

where

Ci,j =
∏

r∉{𝜋(i),𝜋(j)}

𝜃
𝜋
−1(r)

𝜃
𝜋
−1(r) + 𝜃

𝜋
−1(r+1) +… + 𝜃

𝜋
−1(K)

=
∏

r∉{𝜋i,j(i),𝜋i,j(j)}

𝜃
𝜋

−1
i,j (r)

𝜃
𝜋

−1
i,j (r)

+ 𝜃
𝜋

−1
i,j (r+1)

+… + 𝜃
𝜋

−1
i,j (K)

.

According to the relation between 𝜋 and 𝜋i,j, we can easily check the following

equality:

𝜋(K)∑
s=𝜋(i)

𝜃
𝜋
−1(s) =

𝜋i,j(K)∑
s=𝜋i,j(j)

𝜃
𝜋

−1
i,j (s)

(In fact, both 𝜃i and 𝜃j appear in both sums). Therefore, pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j) if and only

if
∑

𝜋(K)
s=𝜋(j) 𝜃𝜋−1(s) <

∑𝜋i,j(K)
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

. Furthermore, we observe that:

𝜋(K)∑
s=𝜋(j)

𝜃
𝜋
−1(s) −

𝜋i,j(K)∑
s=𝜋i,j(i)

𝜃
𝜋

−1
i,j (s)

= 𝜃j − 𝜃i,

and therefore pl
𝜃

(𝜋) > pl
𝜃

(𝜋i,j) if and only if 𝜃j < 𝜃i.

Lemma 3 If a > a′ and b > b′ then ab + a′b′ > ab′ + a′b.

Proof Straightforward.

Lemma 4 Suppose that 𝜆k,l ≥ 𝜆k′,l′ for all k, l, k′, l′ such that k ≤ k′, l ≥ l′, k < l k′ <
l′. Suppose complete rankings to be generated according to a distribution p satisfying
p(𝜋) > p(𝜋i,j) for every 𝜋 ∈ E(ai ≻ aj), for every pair i < j.
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Let qi,j =
∑

𝜋∈E(ai>aj) p(𝜋)𝜆𝜋(i),𝜋(j), for all i ≠ j denote the probability of observing
that ai is preferred to aj. Then

qi,j > qi′,j′ if i ≤ i′ and j ≥ j′.

Proof We will divide the proof into three cases.

∙ Let us first prove that qi,j > qj,i, for all i < j. By definition, we have:

qi,j =
∑

𝜋∈E(ai>aj)
p(𝜋)𝜆

𝜋(i),𝜋(j) and qj,i =
∑

𝜋∈E(aj>ai)
p(𝜋)𝜆

𝜋(j),𝜋(i).

Furthermore, E(aj ≻ ai) = {𝜋i,j ∶ 𝜋 ∈ E(ai ≻ aj)} and thus we can alternatively

write:

qj,i =
∑

𝜋∈E(ai>aj)
p(𝜋i,j)𝜆𝜋i,j(j),𝜋i,j(i) =

∑
𝜋∈E(ai>aj)

p(𝜋i,j)𝜆𝜋(i),𝜋(j).

We easily deduce that qi,j > qj,i, ∀ i < j from the above hypotheses.

∙ Let us now prove that qi,j > qi+1,j, for all (i, j)with i + 1 < j.By definition we have:

qi,j =
∑

𝜋∈E(ai>aj)
p(𝜋)𝜆

𝜋(i),𝜋(j) =
∑
𝜋∈𝕊k

p(𝜋)𝛼
𝜋(i),𝜋(j),

where 𝛼k,l = 𝜆k,l for k < l and 𝛼k,l = 0 otherwise. We can alternatively write:

qi,j =
∑

𝜋∈E(ai>ai+1)
p(𝜋)𝛼

𝜋(i),𝜋(j) +
∑

𝜋∈E(ai+1>ai)
p(𝜋)𝛼

𝜋(i),𝜋(j),

or, equivalently:

qi,j =
∑

𝜋∈E(ai>ai+1)
[p(𝜋)𝛼

𝜋(i),𝜋(j) + p(𝜋i,i+1)𝛼𝜋(i+1),𝜋(j)].

Analogously, we can write:

qi+1,j =
∑

𝜋∈E(ai>ai+1)
[p(𝜋)𝛼

𝜋(i+1),𝜋(j) + p(𝜋i,i+1)𝛼𝜋(i),𝜋(j)].

Now, according to the hypotheses, for every 𝜋 ∈ E(ai ≻ ai+1), p(𝜋) > p(𝜋i,i+1) and

𝛼
𝜋(i),𝜋(j) > 𝛼

𝜋(i+1),𝜋(j). Then, we can easily deduce from Lemma 3 that qi,j > qi+1,j.
∙ It remains to prove that qi,j > qi,j−1 for all (i, j) with i + 1 < j. The proof is analo-

gous to the previous one.

Lemma 5 For every i ≠ j let ni,j the number of times ai ≻ aj is observed in a sample
of size N. Given 𝜖 > 0 there exists N

𝜖

∈ ℕ such that for every N ≥ N
𝜖

, the following
equalities hold with probability at least 1 − 𝜖:
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ni,j ≥ ni′,j′ , ∀ 1 ≤ i ≤ i′ < j′ ≤ j ≤ K.

Proof This result is a direct consequence of the WLLN and Lemma 4.

Lemma 6 Consider the mapping g ∶ MK(ℝ+) ×MK(ℝ+) → ℝ+ defined over the
collections of pairs of K-square matrices of positive numbers as follows:

g(𝐫, 𝐬) = g((ri,j)i,j∈[K], (si,j)i,j∈[K]) =
∏
i≠j

rsi,ji,j .

Suppose that the matrix 𝐬 = (si,j)i,j∈[K] satisfies the following restriction:

si,j ≥ si′,j′ , if i ≤ i′, j ≥ j′.

Suppose that there exists i∗ ≠ j∗ such that ri,j ≤ ri′,i′ for all (i, j), (i′, j′) with:

i ≤ i′, j ≥ j′, {i, j} ∩ {i∗, j∗} ≠ ∅ and {i′, j′} ∩ {i∗, j∗} ≠ ∅.

Consider the matrix 𝐫′ = (r′i,j)i∈K,j∈[K] where: r
′
i,j = r

𝜎(i),𝜎(j), where 𝜎 ∈ 𝕊K swaps i∗

and j∗, i.e., 𝜎(i∗) = j∗, 𝜎(j∗) = i∗, 𝜎(k) = k, ∀ k ∈ [K] ⧵ {i∗, j∗}.
Then g(𝐫′, 𝐬) ≥ g(𝐫, 𝐬).

Proof It is easy to prove that, under the above conditions, the ratio
g(𝐫′,𝐬)
g(𝐫,𝐬) is greater

than 1.

5.2.3 Experiments

In order to compare the two approaches experimentally, synthetic data was produced

by fixing parameters 𝜃 and 𝜆 and drawing N samples at random according to (4).

Then, estimations ̂
𝜃 and �̂� were obtained for both likelihoods, i.e., by maximizing (9)

and (10). As a baseline, we also included estimates of 𝜃 assuming the coarsening 𝜆 to

be known; to this end, (9) is maximized as a function of 𝜃 only. The three approaches

are called MLM, FLM, and TLM, respectively.

The quality of estimates is measured both for the parameters and the induced

rankings (11), in terms of the Euclidean distance between 𝜃 and ̂
𝜃, and in terms of

the Kendall distance (relative number of pairwise inversions between items) between

𝜋 and �̂�. The expectations of the quality measures were approximated by averaging

over 100 simulation runs.

Here, we present results for a series of experiments with parameters K = 4, 𝜃 =
(0.4, 0.3, 0.2, 0.1), and different assumptions on the coarsening:
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Fig. 1 Euclidean distance of parameter estimate ̂
𝜃 (left column) and Kendall distance of predicted

ranking �̂� (right column) for three experimental settings: uniform selection of pairwise comparisons

(top), top-2 selection (middle), and rank-proportional selection (bottom). Curves are plotted in solid

lines for MLM, dashed for FLM, and dotted for TLM
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∙ In the first experiment, we set 𝜆1,2 = ⋯ = 𝜆3,4 = 1∕6. Thus, pairwise comparisons

are selected uniformly at random. In this case, the face-value likelihood coincides

with the likelihood of 𝜃 assuming the coarsening to be known, so this setting is

clearly in favor of FLM (which, as already said, also coincides with TLM). Indeed,

as can be seen in Fig. 1 (top), FLM yields very accurate estimates that improve with

an increasing sample size. Nevertheless, MLM is not much worse and performs

more or less on a par.

∙ In the second experiment, 𝜆1,2 = 1 and 𝜆1,3 = 𝜆1,4 = ⋯ = 𝜆3,4 = 0. This corre-

sponds to the top-2 setting, in which always the two items on the top of the ranking

are observed. As expected, FLM now performs worse than MLM. As can be seen

in Fig. 1 (middle, left), the parameter estimates of FLM are biased. Nevertheless,

the estimation �̂� is still decent (Fig. 1, middle, right) and continues to improve

with increasing sample size.

∙ In the last experiment, items are selected with a probability inversely proportional

their ranks: 𝜆i,j ∝ (8 − i − j). Thus, pairs on better ranks are selected with a higher

probability than pairs on lower ranks. The results are shown in Fig. 1 (bottom).

As can be seen, FLM is again biased and performs worse than MLM. However,

the bias and the difference in performance are much smaller than in the top-2

scenario. This is hardly surprising, given that the coarsening 𝜆 in this experiment

is less extreme than in the top-2 case. Instead, it is closer to the uniform coarsening

of the first experiment, for which, as already said, FLM is the right likelihood.

6 Conclusion

This paper is meant as a first step toward learning from incomplete ranking data based

on methods for learning from imprecise (set-valued) data. Needless to say, the scope

of the paper is very limited, both in terms of the methods considered (inference based

on the marginal and the face-value likelihood) and the setting analyzed (observation

of pairwise comparisons based on the PL model with rank-dependent coarsening)—

generalizations in both directions shall be considered in future work. Nevertheless,

our results clearly reveal some important points:

∙ The arguably “correct” way of tackling the problem is complete inference about

(𝜃, 𝜆), i.e., about the complete data generating process, as done by MLM. While

this approach will guarantee theoretically optimal results, it will not be practica-

ble in general, unless the number of items is small or the parametrization of the

coarsening process is simplified by very restrictive assumptions.

∙ Simplified estimation techniques such as FLM, which make incorrect assumptions

about the coarsening or even ignore this process altogether, will generally lead to

biased results.

∙ Yet, in the context of ranking data, one has to distinguish between the estimation

of the parameter 𝜃, i.e., the identification of the model, and the prediction of a

related ranking 𝜋 (typically the most probable ranking given 𝜃, i.e., the mode of
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the distribution). Indeed, the main interest often concerns 𝜋, while 𝜃 only serves

an auxiliary purpose. As shown by the case of FLM, a biased estimation of 𝜃 does

not exclude an accurate prediction of 𝜋, at least under certain assumptions on the

coarsening process.

These observations suggest a natural direction for future work, namely the search for

methods that achieve a reasonable compromise in the sense of being practicable and

robust at the same time, where we consider a method robust if it guarantees a strong

performance over a broad range of relevant coarsening procedures. Such methods

should improve on techniques that ignore the coarsening, albeit at an acceptable

increase in complexity.
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Interval Type–2 Defuzzification Using
Uncertainty Weights

Thomas A. Runkler, Simon Coupland, Robert John and Chao Chen

Abstract One of the most popular interval type–2 defuzzification methods is the

Karnik–Mendel (KM) algorithm. Nie and Tan (NT) have proposed an approxima-

tion of the KM method that converts the interval type–2 membership functions to a

single type–1 membership function by averaging the upper and lower memberships,

and then applies a type–1 centroid defuzzification. In this paper we propose a modifi-

cation of the NT algorithm which takes into account the uncertainty of the (interval

type–2) memberships. We call this method the uncertainty weight (UW) method.

Extensive numerical experiments motivated by typical fuzzy controller scenarios

compare the KM, NT, and UW methods. The experiments show that (i) in many

cases NT can be considered a good approximation of KM with much lower compu-

tational complexity, but not for highly unbalanced uncertainties, and (ii) UW yields

more reasonable results than KM and NT if more certain decision alternatives should

obtain a larger weight than more uncertain alternatives.
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1 Introduction

A type–1 fuzzy set A [1] is characterized by a membership function uA ∶ X → [0, 1]
which quantifies the degree of membership of each element of X in A. Here we

will always consider fuzzy sets over one–dimensional continuous intervals X =
[xmin, xmax]. Type–1 defuzzification is a function d that maps a type–1 fuzzy set to

one representative crisp value in X.

d(u(x)) ∈ X (1)

Numerous methods for type–1 defuzzification have been proposed in the literature.

For an overview see [2–4]. A set of desirable properties of type–1 defuzzification

operators has been proposed in [5]. A popular method for type–1 defuzzification is

the centroid function, which will be described in more detail in Sect. 2.

An interval type–2 fuzzy set [6–8] ̃A is characterized by two membership func-

tions: a lower membership function u
̃A ∶ X → [0, 1] and an upper membership func-

tion u
̃A ∶ X → [0, 1], where

u
̃A(x) ≤ u

̃A(x) (2)

for all x ∈ X. Interval type–2 fuzzy sets are known to be equivalent to interval–fuzzy

sets [9, 10]. It was recently shown that type–2 fuzzy sets can be used to model risk

in decision processes [11].

This paper deals with interval type–2 defuzzification, which is a function ̃d that

maps an interval type–2 fuzzy set to one representative crisp value in X.

̃d(u(x), u(x)) ∈ X (3)

A set of desirable properties of interval type–2 defuzzification operators has been

proposed in [12]. A popular method for interval type–2 defuzzification is the Karnik–

Mendel (KM) method [13], which will be described in more detail in Sect. 2.

Nie and Tan (NT) [14] have proposed an approximation of the KM method that

first converts the interval type–2 membership functions to a single type–1 member-

ship function by averaging the upper and lower memberships, and then applies the

standard type–1 centroid defuzzification. We will describe this method in more detail

in Sect. 3.

In this paper we propose a modification of the NT algorithm that takes into

account the uncertainty of the (interval type–2) memberships. We call this method

the uncertainty weight (UW) method. We compare the behavior of the KM, NT, and

UW methods in extensive experiments motivated by fuzzy controller scenarios with

different patterns of uncertainty.

This article is structured as follows: Sects. 2 and 3 briefly review the KM and

NT interval type–2 defuzzification methods. Section 4 introduces the UW interval

type–2 defuzzification method. Section 5 presents our experiments to evaluate and
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compare the KM, NT, and UW methods. Section 6 summarizes the conclusions of

this work and points out some future research questions.

2 Karnik–Mendel Interval Type–2 Defuzzification

One of the most popular methods for type–1 defuzzification [2–4] is the centroid.

dC(u(x)) =

xmax

∫

xmin

u(x) ⋅ x dx

xmax

∫

xmin

u(x) dx
(4)

The KM defuzzification [13] is an extension of the centroid defuzzification to inter-

val type–2 fuzzy sets. For any given interval type–2 fuzzy set with the lower and

upper membership functions u(x) and u(x), each embedded type–1 fuzzy set with

the membership function u(x) with

u(x) ≤ u(x) ≤ u(x) (5)

will yield a centroid according to (4). The smallest and largest possible centroids of

such embedded type–1 fuzzy sets are

c̃l = inf
u(x)∈[u(x),u(x)]

xmax

∫

xmin

u(x) ⋅ x dx

xmax

∫

xmin

u(x) dx
(6)

c̃r = sup
u(x)∈[u(x),u(x)]

xmax

∫

xmin

u(x) ⋅ x dx

xmax

∫

xmin

u(x) dx
(7)

These equations can be equivalently written as
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c̃l = inf
L∈[xmin,xmax]

L
∫

xmin

u(x) ⋅ x dx +
xmax

∫

L
u(x) ⋅ x dx

L
∫

xmin

u(x) dx +
xmax

∫

L
u(x) dx

(8)

c̃r = sup
R∈[xmin,xmax]

R
∫

xmin

u(x) ⋅ x dx +
xmax

∫

R
u(x) ⋅ x dx

R
∫

xmin

u(x) dx +
xmax

∫

R
u(x) dx

(9)

The optimal switch points L,R ∈ [xmin, xmax] can be found by the KM algorithm

[13]. The result of the KM defuzzification is defined as the average of the smallest

and largest possible centroids:

̃d(u(x), u(x)) =
c̃l + c̃r

2
(10)

The next section provides the details of the Nie–Tan approach to interval type–2

defuzzification.

3 Nie–Tan Interval Type–2 Defuzzification

Nie and Tan (NT) [14] proposed an approximation of the KM method. The NT

method first maps a given interval type–2 membership function to a type–1 mem-

bership function by averaging the upper and lower interval type–2 memberships.

u(x) = 1
2
(u(x) + u(x)) (11)

Then NT computes the conventional type–1 centroid (4) of this type–1 membership

function. Type–1 conversion (11) and computation of the type–1 centroid using (4)

is computationally much cheaper than iteratively minimizing c̃l (8) and maximizing

c̃r (9). Therefore, the NT method is a popular low effort approximation of the KM

method.

Though NT is quite simple and straightforward, it is found that it may lose the

information of uncertainty. Consider two data points x1 and x2 with the interval

type–2 memberships u(x1) = 0, u(x1) = 1, u(x2) = 0.5, u(x2) = 0.5. For both data

points the averaging function (11) will yield the same interval type–2 memberships

u(x1) = u(x2) = 0.5, so both data points will have the same impact on the defuzzifi-

cation result, although the membership of x1 has a very high uncertainty reflected by

the range of memberships from u(x1) = 0 to u(x1) = 1, and the membership of x2 has

a very low uncertainty reflected by the fact that the upper and lower memberships are
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equal, u(x2) = u(x2) = 0.5, so in this example the information about the uncertainty

is lost by averaging the upper and lower memberships.

4 The Uncertainty Weight Method

In the NT method information about the uncertainty of the type–2 memberships is

lost. To avoid this information loss we propose an uncertainty weight method. We

define the degree of certainty of the memberships u(x) and u(x) as

w(x) = (1 + u(x) − u(x))𝛼 (12)

with a suitable parameter 𝛼 > 0 that can be interpreted as a weight factor for the cer-

tainty. Smaller values of 𝛼 will lead to a higher weight for medium uncertainties, and

larger values of 𝛼 will lead to a lower weight for medium uncertainties. In this paper

we will always use 𝛼 = 1, which corresponds to a linear weight of the uncertainties.

For our example above, Eq. (12) yields the certainty values w(x1) = 1 + 0 − 1 = 0
and w(x2) = 1 − 0.5 + 0.5 = 1, so data point x1 is considered very uncertain, and

data point x2 is considered very certain. We want to reflect the (un)certainty of the

different data points in defuzzification by using the certainty as a weight for each

data point. This means that a relatively certain alternative has a large weight and that

a relatively uncertain alternative has a small weight. Including the weights (12) in

the averaging function (11) yields the weighted averaging function

u(x) = 1
2
(u(x) + u(x)) ⋅ (1 + u(x) − u(x))𝛼 (13)

Notice that for the NT method (11) we have for all x

u(x) ≤ u(x) ≤ u(x) (14)

i.e. the effective membership u(x) is bounded by the lower and upper type–2 mem-

berships u(x) and u(x). For our proposed method even in the most certain situation

u(x) = u(x)Eq. (13) yields u(x) = u(x), so the effective membership can never exceed

the upper type–2 membership. Consider however the example u(x) = 0.5, u(x) = 1,

and 𝛼 = 1. Here, Eq. (13) yields u(x) = 3∕8, so the effective membership can be

lower than the lower type–2 membership, if the uncertainty is high. Here, the u(x)
are not really meant as the membership values of a type–1 fuzzy set, but merely as a

defuzzification tool, and therefore we consider it acceptable that the type–1 fuzzy set

described by u(x) is not always part of the family of type–1 fuzzy sets that are com-

patible with the interval type–2 fuzzy set that is considered. We combine weighted

averaging (13) with type–1 centroid defuzzification (4) and call this the uncertainty
weight (UW) method. Just as NT, UW is computationally much cheaper than KM.
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The main motivation for UW, however, is not only the computational cost, but also

the explicit consideration of uncertainties.

5 Experiments

In this section we illustrate and compare the behavior of the KM, NT, and UW inter-

val type–2 defuzzification methods. The results of the KM method are shown as solid

lines, the results of the NT method are shown as dotted lines, and the results of the

UW method are shown as dashed lines.

The considered examples are motivated by a fuzzy controller [15] with (for sim-

plicity) two rules, Gaussian membership functions, and sum–product inference, so

the fuzzy controller output is a weighted sum of two Gaussian membership functions.

An application example for this setup is a controller of an autonomous vehicle avoid-

ing an obstacle, where one rule triggers the action turn left and the other rule triggers

turn right [16]. This scenario has received much attention in defuzzification because

it requires a decision between possibly contradicting action alternatives, which may

be viewed as an inconsistency in the rules base or may be considered as a chal-

lenge for the defuzzification process. We do not go into a deeper discussion of this

aspect here, but simply consider this as a typical fuzzy controller scenario to evalu-

ate and test our approach against the standard KM and NT methods. To mimic this

scenario we consider the unit range X = [0, 1] and construct interval type–2 mem-

bership functions by adding pairs of weighted Gaussian functions.

u(x) = y
1
⋅ e

(
− x−𝜇1

2𝜎21

)
+ y

2
⋅ e

(
− x−𝜇2

2𝜎22

)
(15)

u(x) = y1 ⋅ e

(
− x−𝜇1

2𝜎21

)
+ y2 ⋅ e

(
− x−𝜇2

2𝜎22

)
(16)

In our first set of experiments we investigate the effect of varying uncertainty on

the results of the considered defuzzification methods. We keep one Gaussian con-

stant and perform different variations of the uncertainty of the second Gaussian:

difference between upper and lower memberships, the lower memberships only, and

the upper memberships only.

In our first experiment we consider variations of the difference between the

upper and the lower memberships. To do so, we set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜇2 = 3∕4,

𝜎2 = 1∕8, y
1
= 0.5, y1 = 1, y

2
= 0.75 − Δ∕2, y2 = 0.75 + Δ∕2, where the parameter

Δ is varied in [0, 0.5]. The top left graph in Fig. 1 shows an example of this mem-

bership function(s) for Δ = 0.3. Here, the uncertainty of the right Gaussian is a little

smaller that the uncertainty of the left Gaussian. The different defuzzification results

are marked by vertical lines. In this case, KM (solid) and NT (dotted) yield almost

the same results, and UW (dashed) yields a slightly higher defuzzification result

which takes into account the fact that the certainty on the right is higher than the
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certainty on the left. The top right graph in Fig. 1 shows the defuzzification results

d for KM, NT, and UW as the uncertainty of the right Gaussian Δ is changed from

0 to 0.5. For Δ = 0.5 both Gaussians are equal, and so for reasons of symmetry all

three methods yield ̃d = 0.5. As pointed out above, NT (dotted) ignores the different

levels of uncertainty and therefore always yields the output ̃d = 0.5. KM (solid) is

only very slightly different from NT (dotted), so here NT is a good approximation of

KM with a much lower computational effort. Only UW (dashed) takes into account

the (un)certainty and yields a much higher output (closer to the right Gaussian) when

the uncertainty of the right Gaussian is lower (for smaller values of Δ).

In our second experiment we consider variations of the lower memberships only,

and set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜇2 = 3∕4, 𝜎2 = 1∕8, y
1
= 0.5, y1 = 1, y

2
= h, y2 = 1,

where the parameter h is varied in [0, 1]. The second row of Fig. 1 shows the results

of this experiment. On the left we see two Gaussians again, both with a maximum

upper membership of one. The left Gaussian has a maximum lower membership of

0.5, and the right Gaussian has a maximum lower membership of h, in this case

h = 0.3. Here, KM (solid vertical line) and NT (dotted vertical line) yield very sim-

ilar results, and UW (dashed vertical line) yields a slightly smaller result. The right

diagram in row 2 shows the results of the three methods for h ∈ [0, 1]. For h ≈ 0.5
all three methods produce (almost) the same result around ̃d ≈ 0.5, as expected for
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Fig. 1 Gaussians with different uncertainty patterns (solid: KM, dotted: NT, dashed: UW)
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symmetry reasons. As the upper limit of the lower membership function decreases

(lower h), UW (dashed) decreases the result most, then KM (solid), and NT (dotted)

decreases the result least. For lower values of h, i.e. for quite unbalanced uncertainty

patterns, KM (solid) and NT (dotted) yield significantly different results. This is an

example, where NT does not approximate KM well. As the upper limit of the lower

membership function increases (higher h), KM (solid) and NT (dotted) stay almost

the same, but UW (dashed) increases the result much more, which reflects the higher

certainty of the right Gaussian(s). For h ∈ [0.5, 1]NT can again be considered a good

low effort approximation of KM, but not for h ∈ [0, 0.5], and UW better takes into

account the varying uncertainty of the type–2 memberships.

In our third experiment we consider variations of the upper memberships only,

and set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜇2 = 3∕4, 𝜎2 = 1∕8, y
1
= 0.5, y1 = 1, y

2
= 0.5, y2 = h,

where the parameter h is varied in [0.5, 1], see the third row of Fig. 1. On the left we

see that the maximum upper membership of the right Gaussian is h, here h = 0.7.

Also in this case KM (solid vertical line) and NT (dotted vertical line) yield almost

the same results, but UW (dashed vertical line) yields a slightly higher result. The

right diagram shows the results for h ∈ [0.5, 1]. For h = 1 we obtain the symmet-

ric case again and all three methods yield ̃d = 0.5. For h < 1 UW (dashed) stays

almost constant at ̃d = 0.5, because the reduction of the memberships is approxi-

mately compensated by the increased certainty. In contrast to that, KM (solid) and

NT (dotted) are almost the same again and decrease with decreasing h. Again, NT

is a good approximator for KM, but UW handles the varying uncertainties in an

intuitively more reasonable way than KM and NT.

In our second set of experiments we investigate the effect of variations of horizon-

tal widths 𝜎2, horizontal positions 𝜇2, and vertical scales y2 = 2 ⋅ y
2
. In [5, 12] the

corresponding transformations are called x–scaling, x–translation, and u–scaling,

respectively.

The first row of Fig. 2 shows the effects of variations in the horizontal width

𝜎2 of the right Gaussian. We set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜇2 = 3∕4, y
1
= 0.5, y1 = 1,

y
2
= 0.5, y2 = 1 and vary the parameter 𝜎2 in [0, 0.5]. The left diagram shows the

case 𝜎2 = 1∕16, where all three methods (solid, dotted, and dashed vertical lines)

yield almost the same results. The right diagram shows the results of the three

defuzzification methods for 𝜎2 = [0, 0.5]. For 𝜎2 = 1∕8 we have the symmetric case

and all three methods yield ̃d = 0.5. For smaller 𝜎2 all three methods yield almost

the same results: As the width of the right Gaussian is decreased, the defuzzification

result decreases as well. For smaller 𝜎2 KM (solid) and NT (dotted) yield almost the

same results: As the width of the right Gaussian is increased, both Gaussians over-

lap and the left Gaussian gets larger memberships, so also here the defuzzification

result becomes lower. For UW (dashed) the results stays close to ̃d ≈ 0.5 because

the increasing memberships of the left Gaussian are approximately compensated by

an increasing uncertainty (difference between upper and lower memberships of the

left Gaussians). Also here, NT is a good approximator for KM, but UW better takes

into account the uncertainties.



Interval Type–2 Defuzzification Using Uncertainty Weights 55

The second row of Fig. 2 shows the effects of variations in the horizontal position

𝜇2 of the right Gaussian. We set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜎2 = 1∕8, y
1
= 0.5, y1 = 1,

y
2
= 0.5, y2 = 1 and vary the parameter 𝜇2 in [0.5, 1]. For 𝜇2 = 0.85 (left diagram)

all three methods (solid, dotted, and dashed vertical lines) yield almost the same

results. The right diagram shows the results for 𝜇2 = [0.5, 1]. For 𝜇2 = 3∕4 we have

the symmetric case and all three methods yield ̃d = 0.5. Also for all other values of

𝜇2 = [0.5, 1], all three methods yield almost the same results, so in this case both NT

and UW are good approximators for KM.

The third row of Fig. 2 shows the effects of variations in the vertical scale of the

right Gaussian. In contrast to the experiments in the third row of Fig. 1 we not only

scale the upper membership function of the right Gaussian, y2, but also the lower

membership function of the right Gaussian, y
2
, but keep the ratio between upper

and lower memberships equal to 2, so that y2 = 2 ⋅ y
2
. This simulates the situation

that the first rule fires with strength 1 (yielding the left Gaussian) and the second

rule fires with strength h ∈ [0, 1] (yielding the right Gaussian), so in our experi-

ments we can observe the behavior of the output when a rule fades out (or fades in).

We set 𝜇1 = 1∕4, 𝜎1 = 1∕8, 𝜇2 = 3∕4, 𝜎2 = 1∕8, y
1
= 0.5, y1 = 1, y

2
= h∕2, y2 = h
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KM, dotted: NT, dashed: UW)
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and vary the parameter h in [0, 1]. For h = 0.6 (left diagram) we have y
2
= 0.3 and

y2 = 0.6, and KM (solid vertical line) and NT (dotted vertical line) yield very sim-

ilar results, whereas UW (dashed vertical line) yields a slightly higher result. The

right diagram shows the results for h ∈ [0, 1]. For h = 1 we obtain the symmetric

case and all three methods yield ̃d = 0.5. For h = 0 the second Gaussian disappears

and all three methods yield the center of the first Gaussian ̃d = 0.25. The transi-

tion between the two extremes h = 0 (first rule completely active and second rule

completely inactive) and h = 1 (both rules completely active) simulates a gradual

increase of the firing strength of the second rule from zero to one. During this tran-

sition all three methods smoothly move from ̃d = 0.25 at h = 0 to ̃d = 0.5 at h = 1.

KM (solid) and NT (dotted) yield almost the same results, but UW (dashed) yields

slightly higher values, because the certainty of the right Gaussian is higher than the

certainty of the left Gaussian. Here again, NT is a good approximator for KM but

UW handles uncertainties in more plausible way.

We repeated the same experiments with triangular instead of Gaussian member-

ship functions, where for comparability we chose the triangle widths as 4𝜎1 and 4𝜎2.
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KM, dotted: NT, dashed: UW)

u(x) = y
1
⋅max

(
0, 1 −

||||
x − 𝜇1
2𝜎1

||||
)
+ y

2
⋅max

(
0, 1 −

||||
x − 𝜇2
2𝜎2

||||
)

(17)

u(x) = y1 ⋅max
(
0, 1 −

||||
x − 𝜇1
2𝜎1

||||
)
+ y2 ⋅max

(
0, 1 −

||||
x − 𝜇2
2𝜎2

||||
)

(18)

Figure 3 shows the results of the triangle experiments corresponding to the

Gaussian experiments shown in Fig. 1. The results of the triangular case are very

similar to the results of the Gaussian case. Figure 4 shows the results of the triangle

experiments corresponding to the Gaussian experiments shown in Fig. 2. Again, the

results of the triangular case are very similar to the results of the Gaussian case.

6 Conclusions

We have proposed UW, a modification of the NT interval type–2 defuzzification

method that takes into account the uncertainties of the (upper and lower) type–2

membership values. We performed extensive experiments comparing the standard
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KM method with NT and UW. All experiments were motivated by fuzzy controller

scenarios with (for simplicity) two rules, where we investigated the effect of differ-

ent uncertainty patterns and of different horizontal widths, horizontal positions, and

vertical scales of the membership functions on the defuzzification results.

To summarize, our experiments show the following: For the considered scenarios

KM and NT mostly yield very similar results, except when parts of the interval type–

2 membership function have very different levels of uncertainty. The computational

complexity of KM is much higher than NT. Therefore, NT can often be consid-

ered a good approximation of KM with low complexity but only for well balanced

uncertainties. UW also has a much lower computational complexity than KM, but

in addition explicitly takes into account the uncertainty of the interval type–2 mem-

berships, so it yields more reasonable results if more certain decision alternatives

should obtain a larger weight than more uncertain alternatives.

This work is a first step in the explicit consideration of uncertainty in type–2

defuzzification. We have to leave many points open for future research, for example:

∙ We used the weighting scheme in Eq. (13) to implement the uncertainty weight-

ing, with 𝛼 = 1. What are other equations or values of 𝛼 will lead to a intuitively

plausible treatment of the uncertainties in the type–2 memberships?

∙ We have applied the uncertainty weighting to the NT method. How could different

levels of uncertainty be considered in the KM method?

∙ How does the behavior of all three methods change if we replace the centroid by

other (type–1) defuzzification methods?
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Exploring Time-Resolved Data for Patterns
and Validating Single Clusters

Frank Klawonn

Abstract Cluster analysis is often described as the task to partition a data set into

subset—called clusters—so that similar data objects belong to the same cluster and

data objects from different clusters are not very similar. However, partitioning the

whole data set into clusters is often not the aim when clustering algorithms are

applied. Instead, the main goal is sometimes to find a few “good” clusters contain-

ing a limited amount of data objects, while even the majority of data objects might

not be assigned to any cluster, contradicting the principle of partitioning the data set

into clusters. In this paper, we revisit a method called dynamic data assigning assess-

ment clustering to discover and validate single clusters in a data set and extend the

dynamic data assigning assessment approach to the context of time-resolved data.

1 What Cluster Analysis is Meant for and What
it is used for

Cluster analysis is applied for different purposes. We extend the list given in [1] by

an additional item.

∙ Finding clusters inherent in the data set under the assumptions that these cluster

really exist. Most clustering algorithms are designed for this ideal purpose.

∙ Partitioning the data set into subset. Here it is not very important that the clusters

are more or less well-separated. The partition of the data set is needed to reduce the

complexity of the data set and handle the clusters separately. It is still important

that the homogeneity criterion of cluster analysis is satisfied, i.e. that data objects

in the same cluster are similar. But the heterogeneity criterion is dropped. Data

objects from different clusters are allowed to be similar.
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∙ Finding single clusters. Whereas standard clustering algorithms usually assume

that the data set consists of clusters and a limited amount of noise data, here it

is not important to cover a large fraction of the data by clusters. It is sufficient to

find one or a few well-separated clusters and the majority of the data might not be

assigned to any cluster.

∙ Data are already at least partly labelled by classes and one wants to verify whether

the classes correspond roughly to clusters. Data from genomics and proteomics

experiments [2] are a typical scenario for this clustering purpose. If data objects

from the same class are scattered over all clusters, this might be an indication that

something went wrong during the experiment and they data might be corrupted.

∙ Semi-supervised classification [3]. This situation is similar to the previous item,

data objects are partly labelled by classes. The aim is now to assign the unlabelled

data to classes. When the clusters corresponds well to the classes formed by the

labelled data, it is reasonable to assign the an unlabelled data object to the class

that has a (strong) majority in the corresponding cluster.

∙ Outlier detection. Here, the target is not the identification or separation of good

clusters but the identification of single data objects that are isolated from most of

the other data objects and are considered as outliers.

In this paper, we focus on time-resolved data as they are often generated in med-

ical and biological studies that use high-throughput technologies like next generation

sequencing, mass spectrometry or microarrays. Typically, so-called expression pro-

files over time of cellular molecular components like genes, proteins or metabolites

are considered. The number of time points at which the expression values are taken,

is usually very limit due to the costs and the lab and preparatory work required for

such experiments. Sometimes, only three or four time points are measured in which

case it is difficult to really talk about expression profiles over time. But with the

advancement of technologies, experiments with ten or more time points can be seen.

Time points need not be equidistant. The time points are usually chosen in such a

way that in those periods where strong changes are expected, more measurements are

taken whereas in periods where little is expected to change in the biological system,

measurements are scarce. In contrast to the limited number of time points, the num-

ber of measured molecular components is usually very large, often greater than 1000.

Usally, not all measured molecular components are involved in the observed biolog-

ical process, so that many of the molecular components show very little expression

over time and are then removed from further analysis, so that only molecular compo-

nents are left over that show a significant expression at least at one of the time points.

The aim is then to find groups (clusters) of molecular components that show similar

expression profiles over time. The focus is put more on finding a few single clusters

than assigning the expression profile of each molecular component to exactly one

cluster [4, 5].

To tackle this problem, we propose an approach that allows to interactively

explore the data set and identify and validate single clusters step by step.

We first briefly recall the idea of dynamic data assigning assessment clustering

(DDAA) [6–8] and its extension [1] in the context of fuzzy clustering in Sect. 2.
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Section 3 presents our ideas how DDAA can be applied to time-resolved expression

data. In Sect. 4 we discuss a realistic example and also show the limitations before

we conclude with a perspective on future work.

2 Short Revision of Dynamic Data Assigning Assessment
Clustering in the Context of Fuzzy Clustering

We first recall basic notions from fuzzy clustering. The main reason is that fuzzy

clustering provides interesting cluster validity measures that can be used in the con-

text of DDAA. Here, it is sufficient to consider the simplest version, i.e. the fuzzy

c-means algorithm (FCM) as it was introduced by Dunn and Bezdek [9, 10]. In

Sect. 3 this algorithm will be modified to apply it to time-resolved data.

FCM clusters a data set {x1,… , xn} ⊂ ℝq
by finding prototypes or cluster centres

vi for a given number of clusters c and assigning the data objects to clusters with

membership degrees uij. FCM tries to minimise the objective function

f =
c∑

i=1

n∑

j=1
uwij dij (1)

under the constraints

c∑

i=1
uij = 1 for all j = 1,… , n (2)

where uij ∈ {0, 1} indicates whether data vector xj is assigned to cluster i (uij = 1) or

not (uij = 0). dij =∥ xj − vi ∥2 is the squared Euclidean distance between data vector

xj and cluster prototype vi. The minimisation of this objective function is carried out

by an alternating optimisation schemes that alternatingly updates the prototypes vi
and the membership degree uij.

Davé [11] introduced an extension of FCM to cope with noise data. Noise clus-

tering uses an additional noise cluster that does not have a prototype but a fixed large

distance 𝛿 to all data objects. In this way, data objects that are far away from all

clusters are assigned to the noise cluster with high membership degree.

DDAA [6–8] was originally introduced to identify clusters step by step and to

remove noise data. DDAA is based on only one cluster and a noise cluster. It starts

with a sufficiently large noise distance 𝛿, so that all data objects are assigned to

the single cluster with membership degree close to 1. Then the noise distance is

decreased step by step, resulting in shifting more and more data from the single

cluster to the noise cluster until all but one data object belong to the noise cluster.

While data objects are shifted to the noise cluster, the prototype of the single cluster

also changes its position. Tracking values of suitable indices like cluster validity
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during the reduction of the noise distance, DDAA provides interesting visualisation

that can uncover the hidden cluster structure in the data. Original DDAA used the

sum of the membership values of all data objects to the single cluster and change of

this value to identify clusters and noise data. In [1], cluster validity measures were

also used in the visualisation for DDAA. The advantage of fuzzy clustering here is

that it provides good validity measures that are based on the membership degrees. An

example for such a validity measures is the partition coefficient [10] (PC), defined

by ∑c
i=1

∑n
j=1 u

2
ij

n
.

The higher the value of the partition coefficient the better the clustering result. The

highest value 1 is obtained, when the fuzzy partition is actually crisp, i.e. uij ∈ {0, 1}.

The lowest value 1∕c is reached, when all data are assigned to all clusters with the

same membership degree 1∕c.

Another example is the partition entropy [10] (PE)

∑c
i=1

∑n
j=1 uij ln(uij)
n

inspired by the Shannon entropy. The smaller the value of the partition entropy, the

better the clustering result. It should be noted that the first sum in PC and PE con-

sists only of two summands: one for the single cluster and one for the noise cluster.

Additional indices that are used for DDAA are the jumps, the ambiguity and the

displacement that will be explained in the following section.

3 DDAA for Exploring Time-Resolved Data

In order to apply DDAA to time-resolved data, we first need a suitable distance mea-

sure. One could in principle use the (squared) Euclidean distance. But this would

completely ignore the order of time points. If the time points were shuffled in all mea-

sured molecular components in the same way, the distance and therefore the result

of the clustering would not change. Time points would be considered as attributes

that have no connection. Here we propose to a modified distance measures that still

yields a small distance between two expression profiles when they slightly shifted

over time. In order to illustrate our concepts, we use a very small toy data sets shown

in Fig. 1, consisting of seven different expression profiles.

Three expression profiles tend to increase and then to decrease again afterwards,

forming one cluster. There is a second cluster of three other profiles that show an

opposite behaviour. And there is one profile remaining almost constant at 0 that can

be considered as noise. The three profiles in each cluster are slightly shifted in time.

In order to take such shifts into account, we modify the (squared) Euclidean distance



Exploring Time-Resolved Data for Patterns . . . 65

Fig. 1 A toy example data

set for illustration purposes
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in FCM between a data object and a cluster prototype. We allow for a maximum

shift–say no more than two time points—to the left or to the right of the expression

profile and compute also the distances of the shifted expression profiles to the cluster

prototype. We also introduce a penalty for shifts, i.e. we multiply the distance based

on the shifted profile with a factor a > 1. More generally, the distance of an expres-

sion profile shifted by k time points is multiplied by the factor ak. We then take the

smallest distance including penalty as the distance to the cluster. For updating the

prototype of the cluster, we need to know for which shift the distance of an expres-

sion profile including penalty was smallest. Instead of using the expression profile

directly, we use the shifted expression profile for updating the cluster prototype.

Figure 2 shows various indices how they evolve when the noise distance is

decreased. On the x-axis, the noise distance is indicated. On the y-axis, normalised

indices are indicated. These indices are always normalised in such a way that they

never exceed 1. The curves should be read from right to left because one starts with

a large noise distance that is decreased step by step.

The Sum curve shows the sum of the rounded membership degrees to the single

cluster. dSum is the change of the sum curve. PC and PE are the partition coefficient

and the partition entropy respectively. The Jumps curve shows the changes of the

position of the prototype of the single cluster, normalised by its highest value. The

Amb curve in Fig. 1—for ambiguity—shows the proportion of ambiguous member-

ship degrees. Here we have defined a membership degree to be ambiguous if it is

between 0.3 and 0.7. The Displ curve—for displacement—shows the displacement

of the prototype from its initial starting position, normalised by its highest value.

In the very left part of Fig. 1 where the noise distance is close to 0, one can observe

interesting changes in most of the indices at a noise distance of 𝛿 ≈ 0.25. With this

noise distance, all but one of the seven expression profiles are moved to the noise
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Fig. 2 DDAA visualisation

for the data set in Fig. 1
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cluster. This is not a very interesting point. This will always happen because the last

remaining profile in the cluster will then be (almost) identical to the prototype of the

cluster and will therefore have distance of (almost) 0 to the prototype.

The more interesting point in Fig. 2 can be observed at a noise distance of 𝛿 ≈
0.9. At this point, all expression profiles except one clusters are moved to the noise

cluster. This would be an interesting candidate to be a proper cluster in our data

set. Figure 3 where the course of the membership degrees
1

depending on the noise

distance are shown confirms this observation. For noise distances less than 0.9 the

three upper expression profiles in Fig. 1 are assigned to the actual DDAA cluster

with a membership degree greater than 0.5, whereas the other profiles are assigned

to the noise clusters. At a noise distance of roughly 0.9, the expression profiles still

belongs to the DDAA cluster and at a noise distance of roughly 1.1 and larger all

expression profiles form the DDAA cluster.

One would then remove this first cluster of expression profiles from the data set

and apply DDAA again to the remaining data set. One would then find the second

cluster in the lower part of Fig. 1 in a similar way.

1
We have added at small random constant to each membership curve in order to better separate

the curves in the graphic. The actual membership degrees without the constant in graphic never

exceed 1.
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Fig. 3 Course of the (slightly modified) membership degrees for DDAA applied to the data set in

Fig. 1

4 An Example

In this section, we discuss a more realistic artificial example data set that is similar

in terms of the clusters as the data set in Fig. 1. It consists of two clusters similar to

the ones in Fig. 1. There is one cluster with 100 expression profiles with noise that

tend to go up and then go down again. The second cluster consists of 50 expression

profiles with noise with the opposite behaviour. The two clusters are shown in Fig. 4.

The majority of the data set consists of 200 noise expression profiles in the form of

random walks normalised to an absolute peak of 2. The noise profiles are shown in

Fig. 5 on the left hand side, all expression profiles together including the two clusters

in Fig. 4 are plotted in Fig. 5 on the right hand side.

The result of the application of the DDAA algorithm is shown in Fig. 6 where the

indices show an interesting behaviour at a noise distance of slightly less than 0.5.

In very similar way as in the toy example in the previous section, this is the noise

distance where the cluster on the left of Fig. 4 belongs to the DDAA cluster and

most of the other expression profiles are assigned to the noise cluster. Taking at the

membership degrees to the cluster at a noise distance of 0.5, we find 109 expression

profiles with a membership degree larger than 0.5 consisting of the 100 expression

profiles from the cluster shown in Fig. 4 (left). The other nine expression profiles

come from the random walks that by chance have a similar profile as the other 100

expression profiles. The nine expression profiles originating from the random walks

are shown in Fig. 7.

If one suspects or expects certain expression profiles, on can also search directly

for them in the following way—a kind of reverse version of the DDAA algorithm.
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Fig. 4 Two clusters of expression profiles in a larger example data set
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Fig. 5 Noise profiles (left) in the form of random walks and all expression profiles including the

clusters shown in Fig. 4

Assume we take an expression profile that reflects the shape of the expression pro-

files in the cluster shown in Fig. 4 (right). Here the DDAA approach is used in a

reverse manner. It is started with noise distance of almost 0 and the ideal prototype

expression profile one is searching for. In this case, we would take an ideal expres-

sion profile that starts at 0 at the initial time point, decreases linearly to −2 until

the middle of the time course and increases back to 0 linearly until the end of the

time course. Increasing the noise distance step by step one obtains the profile of the

DDAA indices as illustrated in Fig. 8. Note that in this case the diagram should be

read from left to right because now the noise distance is increased step by step.

The interesting change seems to happen when the noise distance exceeds a value

of over 0.3. Until this point, the DDAA cluster seems to be quite stable. And indeed,

when we take a look at the membership degrees for a noise distance of 𝛿 = 0.3, we

obtain 49 profiles with a membership degree larger than 0.5 to the DDAA cluster. The
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Fig. 6 DDAA visualisation

for the data set shown in

Fig. 5 (right)
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Fig. 7 Random walk

expression profiles that are

“wrongly” assigned to the

expression profiles in Fig. 4

(left)
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cluster on the right hand side of Fig. 4 contributes 46 profiles and three profiles come

from the random walk profiles. Figure 9 the expression profiles that were missed from

the cluster in Fig. 4 (right) (full black lines) and those that were included from the

random walk profiles (red dotted lines).
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Fig. 8 “Reverse” DDAA

starting with the ideal

expression profile for the

cluster in Fig. 4 (right)
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black lines) or wrongly

included (red dotted lines,
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walk expression profiles) in

the cluster with the ideal

expression profile for the

cluster in Fig. 4 (right)
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5 Conclusions

We have proposed an approach to discover single clusters of profiles in time resolved

data as they are often found in expression measurements over time in genomics,

proteomics or metabolomics. It is an exploratory method that can point to single

“good” clusters step by step. When one cluster is found it should be removed from

the data set and the same procedure should be applied again the reduced data set.
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In the future, we will verify our approach with real data and also consider other

distance measures, for instance based on Spearman’s rank correlation coefficient 𝜌.

If 1 − 𝜌 is used as the distance for clustering, the prototype update equation needs

to be modified. Since 𝜌 only takes the order of the values into account, not their

magnitude, it is sufficient to replace all values by their order, i.e. an expression profile

like (0.2, 0.8, 0.7, 0.9, 0.5) would be replaced by (1, 5, 3, 2, 4) because the first value

is the smallest value, the fifth value is the second smallest value and so on. Then our

approach can be directly applied to this modified data set.
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Interpreting Cluster Structure in Waveform
Data with Visual Assessment and Dunn’s
Index

Sara Mahallati, James C. Bezdek, Dheeraj Kumar, Milos R. Popovic
and Taufik A. Valiante

Abstract Dunn’s index was introduced in 1974 as a way to define and identify a

“best” crisp partition on n objects represented by either unlabeled feature vectors or

dissimilarity matrix data. This article examines the intimate relationship that exists

between Dunn’s index, single linkage clustering, and a visual method called iVAT

for estimating the number of clusters in the input data. The relationship of Dunn’s

index to iVAT and single linkage in the labeled data case affords a means to bet-

ter understand the utility of these three companion methods when data are crisply

clustered in the unlabeled case (the real case). Numerical examples using simulated

waveform data drawn from the field of neuroscience illustrate the natural compati-

bility of Dunn’s index with iVAT and single linkage. A second aim of this note is to

study customizing the three methods by changing the distance measure from Euclid-

ean distance to one that may be more appropriate for assessing the validity of crisp

clusters of finite sets of waveform data. We present numerical examples that support

our assertion that when used collectively, the three methods afford a useful approach

to evaluation of crisp clusters in unlabeled waveform data.
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1 Introduction

Let O = {o1,… on} denote any set of n objects (hockey teams, airplanes, epilepsy

patients, etc.). Two kinds of numerical data are used to represent O. Numerical object

data (feature vector data) has the form X = {𝐱1,… 𝐱n} ⊂ ℜp
, where the coordinates

of xi are feature values or attributes (e.g., weight, length, intensity, etc.) describing

various properties of object oi, 1 ≤ i ≤ n. Regard the vectors as column vectors.

A second form of data is numerical relational data, which consists of pair-wise

dissimilarities represented by an n × nmatrixD = [dij] = [diss(oi, oj) ∶ 1 ≤ i, j ≤ n].
Following the terminology used in [1], we regard cluster analysis in X or D as a set

of three canonical problems: (P1) pre-clustering assessment of tendency (do the data

have clusters? If yes, at what value of c in {2, 3,… , n − 1}?), (P2) partitioning the

data (how to find the c clusters?), and (P3) post-clustering cluster validity (are the

c clusters found useful?). This study concerns itself with problems (P1) and (P3).

There is a very fine line between the distinctions made for these two problems.

The non-degenerate crisp c-partitions (i.e. no zero rows corresponding to empty

clusters) of n objects are matrices in the following set:

Mhcn ={U ⊂ ℜcn ∶ 1 ≤ i ≤ c, 1 ≤ k ≤ n ∶ uik ∈ {0, 1};
c∑

i=1
uik = 1∀k;

n∑

k=1
uik > 0∀i}

(1)

An equivalent way to represent the c clusters in a set X in terms of the c crisp subsets

of it (the clusters) is

U ∈ Mhcn ↔ X =
c⋃

i=1
Xi;Xi ∩ Xj = ∅|i≠j

Cluster validity (validation problem (P3)) comprises computational models and

algorithms that identify a “best” member amongst a set of candidate partitions CP =
{U ∈ Mhcn ∶ cm ≤ c ≤ cM} of O = {o1, o2,… on}. How do we identify a “best” par-

tition U (and concomitant value of c) in CP? One approach is through the use of

scalar measures of partition quality that attempt to select a best candidate. There are

many such measures (enough equations to last a lifetime!). We call these measures

cluster validity indices (CVIs).

There are two general approaches to validation: visual and non-visual. Perhaps

the most important distinction is whether the partition U is crisp or soft. A second

distinction is based on the type of data that is clustered: object data (X) and relational

data (R). A third characteristic will be whether the validation method is internal

(uses only the information available from the algorithmic outputs), or external (uses

“outside” information such as a reference or ground truth partition). This article is

confined to internal CVIs, but we will use crisp clusters corresponding to ground

truth partitions of simulated waveform data as the basis of our numerical examples.
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We will combine visual assessment of potential cluster structure in data (problem

P1) with cluster validity in crisp (ground truth) clusters of labeled data to develop

a facility for evaluation of potential structure in unlabeled waveform data. For this

study we will use only feature vector data that represent finite time series (wave-

forms) for the numerical experiments.

The outline of the paper is as follows. Section 2 discusses related work and appli-

cations. Dunn’s index(DI) is defined and discussed in Sect. 3. Section 4 describes

and illustrates the iVAT algorithm. Section 5 reviews single linkage clustering.

Section 6 focuses on the relationship between iVAT, single linkage, and Dunn’s

index. Section 7 introduces our computational protocols. In this section we define

and analyze a set of simulated waveform generators which are used to build test cases

of labeled data with c = 2 clusters of waveforms for study in subsequent sections. We

also explore customizing Dunn’s index for waveform data in Sect. 7. Section 8 revis-

its single linkage clustering and shows the relationship between Dunn’s index and a

measure of partition accuracy. Finally, Sect. 9 offers our conclusions, and some sug-

gestions for further research. Appendices 1–3 give pseudocode for three algorithms

used in the experiments.

2 Related Work

Cluster validity is a very large topic. Many books that cover cluster analysis con-

tain at least one chapter on cluster validity [1–4]. Surveys on crisp cluster validity

indices (CVIs) that compare various validation schemes in one way or another began

to appear in the 1980s [5]. Milligan and Cooper [6] compared 30 internal cluster

validity tests (which they called “stopping rules”) using partitions generated by four

hierarchical clustering methods, and their paper is considered the classic reference

on best-c studies of internal CVIs. Gurrutxaga et al. [7] present a very thorough

critique of the Milligan and Cooper’s “best c” methodology.

Dimitriadou et al. [8] made a highly specialized, nicely written survey of 15

internal CVIs in 2002. Vinh et al. [9] presented a best-c study of similarity mea-

sures and distance based external CVIs that compare pairs of crisp partitions using

information-theoretic measures. They identify a total of 26 measures that are sub-

divided into 10 similarity measures and 16 distance measures. Arbelaitz et al. [10]

published a very ambitious comparison of 30 internal min-optimal or max-optimal

CVIs for crisp c-partitions that channels the Milligan-Cooper style. Three crisp clus-

tering algorithms were used to populate CP: It would be misleading to assert that

the conclusions in this paper are right or wrong. Indeed, the terms “good CVIs”

and “bad CVIs” are oxymorons in the field of cluster validity. But this is a strong,

well thought out, comprehensive approach to the business of CVI comparisons that

should be studied by anyone with serious intentions to work in the field of cluster

validation.
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3 Dunn’s Index

Dunn’s index is an internal CVI for assessing cluster validity for crisp c-partitions

of a data set [11]. This index is based on the geometrical premise that “good” sets

of clusters are compact (dense about their means) and well separated (from each

other). To quantify this index Dunn let Xi and Xj be non empty subsets of ℜp
, and let

d ∶ ℜp ×ℜp ↦ ℜ+
be any metric on ℜp ×ℜp

. Dunn used the standard definitions

of the diameter △ of Xk and the set distance 𝛿 between Xi and Xj,

𝛥(Xk|d) = max
⏟⏟⏟

𝐱,𝐲∈Xk

{d(𝐱, 𝐲)}, (2)

𝛿(Xi,Xj|d) = min
⏟⏟⏟

𝐱 ∈ Xi
𝐲 ∈ Xj

{d(𝐱, 𝐲)} = 𝛿SL(Xi,Xj|d). (3)

The geometric meaning of these definitions is illustrated for the case that d is the

Euclidean distance (d = ED) in Fig. 1. The subscript “SL” attached to 𝛿 in the right

side of (3) signifies that this is the set distance used by the hierarchical single linkage

(SL) clustering algorithm [1–4]. This is an important point for our work, because this

distance binds Dunn’s index to the iVAT visualization method discussed in Sect. 4

and to single linkage clustering discussed in Sect. 8.

For any partitionU ↔ X = X1 ∪…Xi ∪…Xc, Dunn defined the separation index

of U as

𝛽D(U|d) =

min
⏟⏟⏟

1≤i≤c

{
min

⏟⏟⏟

1≤j≠i≤c

{𝛿(Xi,Xj|d)}
}

max
⏟⏟⏟

1≤k≤c

{𝛥(Xk|d)}
(4)

Fig. 1 Set distance (𝛿) and diameter (𝛥) of Xi and Xj with respect to metric d
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Dunn did not restrict the metric d used in (4), and hence, in (2) or (3) as well. This

function was specified as an arbitrary metric on any real vector space V(ℜ), having

the usual three properties for 𝐮, 𝐯,𝐰 ∈ V(ℜ):

∙ M1: d(𝐮, 𝐯) > 0 if 𝐮 ≠ 𝐯; otherwise d(𝐮, 𝐯) = 0 (positive-definiteness),

∙ M2: d(𝐮, 𝐯) = d(𝐯,𝐮) (symmetric),

∙ M3: d(𝐮,𝐰) ≤ d(𝐮, 𝐯) + d(𝐯,𝐰) (triangle inequality).

The notation |d for the arguments of the functions in (2), (3) and (4) is read “given

d”. This emphasizes the fact that the theory and application of Dunn’s index holds

for any metric (d) on the input space.

Following many subsequent authors, we refer to 𝛽D in (4) as Dunn’s index (DI).

The most common metric for d in the numerator and denominator of 𝛽D (i.e., in (2)

and (3) is the Euclidean distance (ED), but there are many other choices [12]. One

objective of the present work is to study the behavior of Dunn’s index when (d) is

replaced by dissimilarity measures such as the shape based distance (SBD) for wave-

forms [13] or dynamic time warping (DTW) [14] which are specifically designed for

waveform data. To distinguish them from the generalized Dunn’s indices (gDIs) dis-

cussed in [12], we will call this new group of measures customized Dunn’s indices
(cDIs).

The diameter 𝛥(Xk|d) in (2) which appears in the denominator of (4) is a measure

of scatter volume for cluster Xk. Compact clusters will have smaller diameters than

ones that are more dispersed about their mean vector, so a set of clusters is relatively

compact when the largest of its c diameters is small. So, for the denominator, the

smaller the better. That is, when the biggest diameter in the Xi is small, the clusters

in U are relatively compact.

The quantity 𝛿(Xi,Xj|d) which appears in the numerator of (4) is the SL distance

with respect to (d) at Eq. (3) between the crisp clusters Xi and Xj in U, and hence,

the larger this distance, the more well separated are Xi and Xj. Taking the double

minimum in the numerator identifies the pair of clusters that are least well separated.

So, the c clusters becomes more well separated as the numerator grows.

Thus, the geometric objective of Dunn’s index is to maximize intercluster dis-

tances (big numerators) whilst minimizing intracluster distances (small denomina-

tors). In other words, large values of 𝛽D intuitively correspond to good clusters.

Hence, the partition U∗
that maximizes 𝛽D over a set of candidate partitions in CP

is taken as the optimal set of clusters. Consequently, 𝛽D is called a “max-optimal”

internal CVI. The range of 𝛽D is (0,∞). Notice that 𝛽D is not defined when c = 1
on the 1 × n vector 1n (the unique partition of X which denotes that all n points are

in one cluster). And 𝛽D is also undefined for the case c = n, when the n members

of X are regarded as singleton clusters, whose unique partition is the n × n identity

matrix In.
Dunn called a partition U ∈ Mhcn compact and separated (CS) relative to d if

and only if the following property is satisfied: for all s, q and r with q ≠ r, any pair

of points 𝐱, 𝐲 ∈ Xs are closer together (with respect to d) than any pair (𝐮, 𝐯) with

𝐮 ∈ Xq and 𝐯 ∈ Xr. Dunn proved that X can be clustered into a CS c-partition with

respect to d if and only if there is a U ∈ Mhcn for which his index is greater than 1.
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Here is Dunn’s Theorem:

X ⊂ ℜp
has a CS partition with respect to metric d ⇔ max

⏟⏟⏟

U∈Mhcn

{𝛽D(U|d)} > 1 (5)

This is a nice theoretical result, but in practice, it is quite difficult (impossi-

ble, really) to verify that a given input data set can be partitioned into CS clus-

ters, because Mhcn is finite, but very very large. The exact cardinality of Mhcn is

|Mhcn| =
1
c!
∑c

j=1
(c
j

)
(−1)c−jjn. For c ≪ n, the last term dominates this sum, which

yields the approximation |Mhcn| =
cn

c!
.

Consequently, computing Dunn’s index over all of Mhcn is impractical for all but

trivial values of c and n. The DI for a given c-partition, however, is easily computed

with (4), and if it happens to be greater than 1, its clusters are said to be compact and

separated in the sense of Dunn.

4 Visualization of High Dimensional Data

Returning to the data set X = {𝐱1,… 𝐱n} ⊂ ℜp
, if p > 3 we cannot make a direct

visual assessment of it to determine whether it contains what humans might perceive

as cluster structure. In this case ℜp
is called the upspace. The data can be mapped to

a downspace Y ⊂ ℜq
by a feature extraction function 𝜙 ∶ ℜp ↦ ℜq

in any number

of ways. There are two reasons to do this: (i) dimensionality reduction improves time

complexity and efficiency for clustering and classification algorithms; (ii) when the

method results in 1D, 2D or 3D vectors, we can display and see them. It is important

to note that there is always a loss or distortion of structural information in such a

transformation. Any mapping from the upspace to a downspace becomes a trade-off

between computational benefits and performance goals. Visual analysis can give us

clues about structure in the upspace data, but this can be very misleading: we cannot

“see” the upspace data, and data structure can be very different in the upspace than

it seems to in a downspace (like Plato’s Allegory of the cave).

For example, Figs. 3, 4, 5, 6, 7, 8 and 9 in [15] show 2D representations of a

labeled data set in an upspace with p = 9601 dimensions made by eight different

extraction methods. The eight 2D scatter-plots of this data are so different from each

other that you would never guess they all purport to represent the same upspace

data. The takeaway lesson from this is that depending on any downspace projection

for visualization of upspace data can lead to serious misinterpretations of cluster

structure in it.

How can we reduce the possibility of misinterpreting possible cluster structure

in upspace data when viewing it in a 2D or 3D downspace? There are a number of

imaging techniques that can be applied directly to the upspace data before cluster-

ing it. Here we describe the VAT/iVAT method, which views the vectors in X as n
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vertices in a complete graph whose edge weights are the distances (or dissimilarities)

between the vertices, computed by any metric on the upspace.

The visual assessment of tendency (VAT) algorithm [16] reorders the rows and

columns of the input dissimilarity matrix, D ↦ D∗
, and displays a grayscale image

I(D*) whose ij-th element is a scaled dissimilarity value between 𝐱𝐢 and 𝐱𝐣, and hence,

objects oi and oj. Each element on the diagonal of the VAT image corresponds to zero

distance. The reordered dissimilarity image I(D*) is often called a cluster heat map,

very much in evidence in bioinformatics and neuroscience [17, 18]. Off the diagonal,

the values range from 0 to 1. If an object is a member of a cluster, then it also should

be part of a submatrix of “small” values, which appears as a darker block along

the diagonal of the image matrix I(D*). The heuristic used with VAT/iVAT images

is to estimate the number of clusters in the data by counting the number of dark

submatrices that may occur along the diagonal.

VAT works like this: after building D from X, find the longest edge in the

graph (the largest distance in D). Starting at either end, build a minimal spanning
tree(MST) by inserting the next shortest safe edge into the current tree. The con-

struction of the MST in VAT uses a slight variation of Prim’s algorithm [19]. When

the MST is completed, construct D* by reordering the rows and columns of D using

the order of insertion of edges into the MST.

An improved version of VAT called iVAT [20] transforms D ↦ D′
using a path-

based distance and then VAT is applied to D′
to get D′∗

, resulting in an iVAT image

I(D′∗). This is a feature extraction technique applied to D. The recursive computation

of D′∗
given in [20] is O(n2). Appendix 1 contains the pseudocode for both VAT and

iVAT. The Matlab code for them is readily available by contacting the authors.

VAT and iVAT are quite user-friendly in the sense that there are no parameters to

pick other than the dissimilarity function (d) used to convert X to D. This input matrix

can actually be a bit more general than a true distance because its only requirements

are metric properties M1 and M2:D = DT ; dij ≥ 0∀i, j; dii = 0∀i. The most important

point about this display technique is that it is applied directly to (the distance matrix

of) the upspace data, so there is no distortion of the structural information introduced

by a feature extraction function from the upspace to a chosen downspace.

To illustrate, the data in Fig. 2a appear to have c = 3 visually apparent clusters of

concentric points in the plane. These 2D vectors are converted to pairwise Euclidean

distances to obtain the dissimilarity data matrixD = [dij] = [(𝐱𝐢 − 𝐱𝐣)T (𝐱𝐢 − 𝐱𝐣)]. The

VAT image I(D*) of the VAT reordered data, D ↦ D ∗, appears in Fig. 2b. Do you

see any hint of the structure of the data in this view? No (Fig. 2).

This happens because there are in this data set a few inliers between the three

rings, and when VAT forms the MST of this data, it jumps back and forth from one

ring to another, instead of calmly collecting all of the edges in each ring before mov-

ing to the next one. So, even with rearrangement by MST ordering, the VAT image

is quite deceiving—it suggests that the input data has very little cluster structure,

when in fact it has quite a lot.

Applying iVAT to D results in the iVAT image I(D′∗) in Fig. 2c. The three dark

blocks along the diagonal of I(D′∗) strongly suggest that the input data may have c =

3 clusters. Another point: the size of the three diagonal blocks corresponds roughly
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(a) 3 Rings Data (b) VAT image I(D∗) (c) iVAT image I(D′∗)

Fig. 2 Visual assessment of clustering tendency with VAT and iVAT images

to the number of points in each ring. The smallest, uppermost diagonal block in

Fig. 2c represents the smallest inner cluster in Fig. 2a. The larger center diagonal

block represents the larger cluster surrounding the inner points. And the largest block

corresponds to the outer cluster in the data.

It is very important to understand that an iVAT image merely suggests that the

input data are structured this way: iVAT does not find any partition of the object data

in Fig. 2a. Since we can see the apparent cluster structure in this input data, this visual

assessment of clustering tendency seems unnecessary. But it’s quite simple to make a

data set just like this in, say, 4-dimensional space, and then we are out of luck because

no visual assessment by humans is possible. When this happens, however, VAT and

iVAT can often still “see” cluster structure in the high dimensional data. Since VAT

and iVAT can produce images such as these from data of arbitrary dimensions, we

can use them to make a visual estimate of possible cluster structure in the upspace.

They can also be wrong, but these images (especially the iVAT image) usually give us

at least some idea about what kind of cluster structure the input data might contain;

that is, they provide us with clues about potential starting points for Problem P2:

finding a useful partition of the input data. Next, we discuss the connection of VAT

and iVAT to Dunn’s index and single linkage clustering.

5 Single Linkage Clustering, iVAT and Dunn’s Index

Agglomerative single linkage clustering works like this: Begin with all n objects

(the n vectors in X) as singleton clusters. A function d that measures pairwise dis-

similarities on X × X is chosen, and used to build an n × n dissimilarity matrix

Dn = [d(𝐱𝐢, 𝐱𝐣)]. Assuming there are no distance ties (if there are, resolution can take

several forms), the closest pair of vectors, say 𝐱𝐢 and 𝐱𝐣, are merged to form the clus-

ter {𝐱𝐢, 𝐱𝐣} = 𝐱𝐢 ∪ 𝐱𝐣. Now the SL set distance (Eq. 3) between 𝐱𝐢 ∪ 𝐱𝐣 and the n − 2
remaining singleton clusters is computed, the ith and jth rows in Dn are deleted, and

a new row and column (the n − 1 set distances) is added, resulting in the reduces

dissimilarity matrix Dn−1 of size (n − 1) × (n − 1). This procedure continues until it
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terminates with all n vectors in the same cluster. The result is a hierarchical set of

nested clusters beginning at c = n and terminating at c = 1. In other words, if there

are no ties, SL generates a unique partition Uk of X for each c = k, k = n to 1.

Gower and Ross [21] were perhaps the first authors to point out that all the infor-

mation needed to build a SL hierarchy is contained in a minimal spanning tree of the

data. They showed how to recover the SL clusters produced by applying the above

procedure to Dn by instead constructing the MST of Dn (i.e., of the underlying graph

G), followed by making a backpass through the MST, cutting the tree at each mini-

mum weight edge during this pass, into subtrees.

After the MST is built, the backpass through the tree cuts the sequence of connect-

ing edges in descending order of magnitude. The first cut will occur at the maximum

SL merger distance, and thence to the second largest, third largest, and so on, until

the tree is cut into n leaves. The vertices in the subtrees at any level are the SL clus-

ters at that level. Appendix 2 contains pseudocode for SL which indicates the role of

the MST in the forward (building the MST) and backward (cutting the MST to get

the clusters) passes.

Recall that the order of edge insertion in this same MST is used by iVAT to reorder

the rows and columns ofDn to produce an iVAT image of the input data. Thus, there is

an intimate connection between SL clustering and iVAT. Moreover, both methods are

tied to Dunn’s index at (4) through the use of Eq. (3), which computes SL distances

with respect to a chosen dissimilarity function d. So, there is a natural connection

between the three algorithms: Dunn’s index, iVAT, and SL clustering. Figure 3a–d

excerpted from ([22], Fig. 2), illustrate this relationship.

The view in Fig. 3a is a scatterplot of X, 100 points in 2-space. It is not imme-

diately clear (to human observers) how many clusters this data set contains (have a

crack at it before looking at the remaining views). Euclidean distances are computed

on pairs of input data, resulting in the 100 × 100 Euclidean distance matrix DED.

Figure 3b is the iVAT image of DED. There are c = 10 darkest blocks in this image,

but there are also other attractive suggestions for this visual assessment. For exam-

ple, there are apparently c = 4 dominant blocks in this image that contain the c = 10
smaller and darker blocks along the diagonal. An attractive feature of iVAT images

is that they can suggest cluster structure at more than one value of c. Figure 3c shows

the MST of DED (the green edges that link the 10 subsets). And finally, Fig. 3d is the

SL partition of the 100 points obtained by the backpass through the MST that cuts

the 9 largest edges.

Dunn’s index with d = ED for the partition shown in Fig. 3d is 0.26, so this is not

a CS partition in the sense of Eq. (5). Havens et al. studied the relationship between

VAT (and hence iVAT) and single linkage in [23]. They presented an analytical com-

parison of the two algorithms in conjunction with numerical examples to show that

VAT reordering of dissimilarity data is directly related to the clusters produced by

single linkage hierarchical clustering. The preservation of VAT reordering passes to

iVAT, and this fact underlies the extension of SL and iVAT to the big data case [22,

24].

In [22] it was established that clusiVAT produces true SL clusters in data that are

CS in the sense of Dunn. This method was extended to the general case of clustering
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(a) X = 100 points in �2 (b) iVAT image of DED

(c) MST of DED (d) SL clusters of DED

Fig. 3 Single linkage clustering with the MST of 100 points in ℜ2

in big data that are not necessarily CS, and compared to three k-means based methods

as well as Cure in [22]. The relationship between Dunn’s index and contrast in VAT

images was discussed in [25], where an analytical comparison in conjunction with

numerical examples demonstrated that the effectiveness of VAT in showing cluster

tendency is directly related to Dunn’s index.

To summarize, we know that Dunn’s index is a natural companion to iVAT images

and that iVAT is explicitly linked to single linkage clustering via their use of the same

MST. In the next section we will explore the use of Dunn’s index in conjunction with

iVAT images of waveform data.

6 Experiments with Simulated Waveform Data

Recording of extracellular action potential (spike) waveforms generated by neuronal

activity is an important technique in neuroscientific research. However, distinguish-

ing the number of units present within recordings from a single electrode remains

a fundamental and important technical issue. The first step in identifying distinct

units begins by clustering unlabelled spike trains with any one of a number of unsu-

pervised learning algorithms such as hard c-means, fuzzy c-means, single linkage,

or Gaussian mixture decomposition. One aim of the present work is to improve the

reliability of single unit identification with the use of iVAT for visual assessment of
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Fig. 4 The set

WG = {𝐯𝟏,… 𝐯𝟏𝟓} ⊂ ℜ75
of

waveform generators

potential cluster structure in the data. This begins by showing the intrinsic relation-

ship between the quality of iVAT images and Dunn’s index. We will demonstrate

this using simulated waveforms that are surrogates for spike trains.

Figure 4 is a set of 15 graphs of (simulated) waveforms that we use as waveform

generators. Each generator is a vector of 75 voltage amplitudes that are sampled at

equal time intervals along the horizontal axis. We denote the set of 15 exemplars as

WG = {𝐯𝟏,… 𝐯𝟏𝟓} ⊂ ℜ75
. The waveform generators in Fig. 4 and their correspond-

ing set of waveforms are taken from dataset made available online by Regalia et al.

[26], which were built as follows. The waveform generators were built by averag-

ing the spontaneous neuronal spike activity from brain cultures which were clas-

sified and labeled by expert human operators. The waveform 𝐯𝐣 ∈ WG is used to

produce a crisp set of nj waveforms, Xj = {𝐱𝟏𝐣,… 𝐱𝐧𝐣𝐣} ⊂ ℜ75
, by first choosing an

integer nj randomly from the set {600,… , 1000}. Then the background noise, taken

from sections of the recorded signals that didn’t contain spikes, was normalized and

overlapped with the average waveform with selected signal to noise ratios to make

nj waveforms. The set of nj waveforms mimics the average in vivo firing rates of

between 3 and 8 Hz in a 60 s recording. Finally, recordings from a group of units were

simulated by appending waveforms of 2 or 3 of the sets. The order of waveforms was

uniformly randomized to mimic the random occurrence of spikes in recordings.

While these 15 waveforms share similar profiles, it is clear that there are differ-

ences across the set that have been shown to correlate with physiologically different

neurons [27]. If asked to choose the most anomalous waveforms in this set, most

observers would identify units 2 (red) and 4 (black) as being “outliers” to the gen-

eral trend of the other 13 graphs due to their larger amplitudes and displacement

to the right of the overall “centers” of the set of graphs. We will see that these two

waveforms are recognized as anomalous by iVAT and single linkage.

Figure 5a is the iVAT image of these 15 vectors made with an input distance

matrix with pairwise Euclidean distance values, denoted here as d = ED, in the 75

dimensional upspace. The integers aligned along the horizontal and vertical borders
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(a) iVAT image of the upspace data set WG with d=ED

(b) PC projection of WG into �2 visually
isolates units 2 and 4

(c) t-SNE projection of WG into �2 does
not visually isolate units 2 and 4

Fig. 5 iVAT image of WD in ℜ75
and two projections of WG in ℜ2

of the image are the indices of the 15 signals after reordering of the input data.

Waveforms 2 and 4 are isolated in Fig. 5a by the 2 × 2 darker block in the upper

left corner of the image. The other 13 waveforms are grouped together (by iVAT

reordering) and represented by the 13 × 13 block at the lower right. This highlights

the utility of iVAT imagery to detect anomalies in high dimensional data upspaces, a

fact that is well documented for trajectory data (which is a special type of waveform

data) in [28].

Figure 5b is a scatterplot of the first two principal components (PC, [2]) of the

set WG. This is a projection of the upspace data in ℜ75
into the PC downspace ℜ2

.
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Fig. 6 The three waveshape

generators 𝐯𝟐, 𝐯𝟖, 𝐯𝟏𝟑

The vectors labelled 2 and 4 which are circled in this view are somewhat isolated

from the other 13. This further supports our assertion that units 2 and 4 are visually

different with respect to the other 13 wave generators. However, note that the t-SNE

projection [29] of these 15 waveforms in Fig. 5c produces a scatter plot that does not
isolate units 2 and 4 (red arrows) at all. This exemplifies one of the vagaries of visual

assessment (Plato’s cave) based on downspace projections: they often present very

different interpretations of the upspace data.

We used the 15 vectors in WG to generate 15 clusters of waveforms in the manner

described above. These 15 sets become the basis for constructing (simulated) sets

of clusters for c = 2, 3, etc. For example, we can build 105 sets corresponding to

two clusters as Xc=2 = {Xij = Xi ∪ Xj ∶ 1 ≤ i ≤ 15; i + 1 ≤ j ≤ 15}. A union of any

three distinct sets gives a set Xijk of c = 3 clusters; and so on. Built this way, we have

labelled data with corresponding ground truth partitions that enable us to compute

the Dunn’s index for any juxtaposition of subsets of signals. For example, the ground

truth partition for the simulated clusters X2,13 = X2 ∪ X13 is a 2 × (n2 + n13) matrix

U ∈ Mh2(n2+n13) which looks like this:

U2,13 =
[ [

1 1 … 1
0 0 … 0

]

2×n2

[
0 0 … 0
1 1 … 1

]

2×n13

]
(6)

In the interest of brevity, we discuss just three of the cases for c = 2 clusters in

this article. Specifically, we will discuss experiments using units 2, 8 and 13, which

are shown in Fig. 6. We envision the outcome of this study as the basis for a much

more detailed extension of these experiments using other simulated sets of waveform

clusters in a future article.

You can see in Fig. 6 that the blue outlier signal (𝐯𝟐) is quite different from 𝐯𝟖 and

𝐯𝟏𝟑. On the other hand, wave generator units 8 and 13 appear to be very similar to

each other in both amplitude and shape, so our expectation is that the crisp clusters
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(c) iVAT:βED = 0.07

Fig. 7 Clusters generated by a 𝐯𝟖 b 𝐯𝟏𝟑, and c iVAT image of X8,13

comprising X8,13 may not be very separable (i.e., X8,13 is likely to be interpreted as

having a single cluster by iVAT. The Dunn’s index based on the c = 2 ground truth

partition of X8,13 should be quite small.). Our analysis will be confined to the three

2 cluster data sets X8,13, X2,8 and X2,13.

The two first graphs (a and b) in Figs. 7, 8 and 9 show all the waveforms of each

cluster (different clusters) with the generating prototype shown as the heavy black

waveform. These figures also show the iVAT and Dunn’s index outputs for these

three data sets noted as 𝛽ED since the distance used in all three figures is Euclidean

distance.

As expected, the clusters corresponding the sets of waveforms in Fig. 7 have a very

low 𝛽ED = 0.07 for data set X8,13, and the iVAT image of this data set suggests that

there is only one cluster in the data. Our supposition is that this happens because

the generators 𝐯𝟖 and 𝐯𝟏𝟑 are (visually) quite similar. Note that the waveforms in

cluster X8 include 6 or 7 that are wildly dissimilar from the generator of this cluster,

and these anomalies probably cause the MST built by iVAT to jump back and forth

between X8 and X13, so the MST of the data set X8,13 will not isolate two clusters,

and indeed, we feel that it should not. Instead, all of the vectors are joined in one

large cluster under iVAT reordering.

The blocks in the iVAT image for data set X2,8 in Fig. 8 are not sharply delineated,

but they are certainly visually apparent, suggesting that there are c = 2 clusters in

this data set. Dunn’s index for X2,8 is 𝛽ED = 0.25, a moderate increase from that for

X8,13.

The iVAT image for data set X2,13 in Fig. 9 is very clear and distinct. Notice how

clean and distinct the data set X2 is: all of the generated waveforms in this cluster

adhere closely to the shape of the generating prototype. Figure 9c clearly suggests

that X2,13 contains c = 2 clusters, and it’s Dunn’s index 𝛽ED = 1.13 tells us that this

data set is compact and separated in the sense of Eq. (5) with respect to d = ED. As

an aside, we computed Dunn’s index on this data set using the 1-norm (the city block

or Manhattan metric, d = D1) and the sup-norm (or Chebyshev d = Max) metrics:

𝛽D1 = 1.06 > 1 and 𝛽Max = 1.14 > 1 This shows that X2,13 is CS in the sense of Eq. 5
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Fig. 8 Clusters generated by a 𝐯𝟐 b 𝐯𝟖, and c iVAT image of X2,8
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Fig. 9 Clusters generated by a 𝐯𝟐 b 𝐯𝟏𝟑, and c iVAT image of X2,13

for any of these three choices of d, all of which are bona fide metrics on the input

space.

Another way to get some insight about the results in Figs. 7, 8 and 9 is to examine

the visual suggestions provided by projections into a 2D downspace. Figure 10 shows

the t-SNE [29] projections of the three data sets X8,13, X2,8 and X2,13 with (upper row)

and without (lower row) labels (the scatter plots with colors in the upper row indicate

the ground truth tags of each data point).

These scatter plots are consistent with the inferences drawn about the three data

sets made by visual inspection of upspace iVAT images. In particular, we draw your

attention to the lower view in Fig. 10 for the unlabeled t-SNE view of X8,13, which

agrees with the visual assessment of X8,13 provided by Fig. 7c which indicates that

there is only one cluster of waveforms in this data set. In our expanded study of

these experiments we will see several cases where there is disagreement between

the upspace iVAT and downspace t-SNE and PC visualizations.
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Fig. 10 Labeled (upper) and Unlabeled (Lower) t-SNE projections

7 Customizing Dunn’s Index for Waveform Data

Our notation for Dunn’s index at (4) was chosen to emphasize that it can be com-

puted using any metric d on a real vector space that satisfies the metric properties

M1-M3. The iVAT algorithm is even less demanding, as it only requires properties

M1 and M2. Both of these algorithms, and SL as well, are perfectly happy to operate

on any square dissimilarity matrix that satisfies M1 and M2. In most clustering prob-

lems involving feature vector data, the data do not dictate a particular choice for d.

However, the data we are interested in always comes to us in the form of finite time

series (waveforms) represented by vectors of amplitudes sampled at pre-specified

time intervals. The literature is replete with alternatives that claim to be superior to

the default choice of Euclidean distance 𝛽D(U|d = ED). In this section we explore

the possibility that choosing a “wave-specific” measure of dissimilarity to compute

the input matrix D from X leads to a different, possibly better, iVAT image coupled

with more robust values of Dunn’s index. The customized Dunn’s indices we will

study in this section are:
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𝛽D(U|d = ED) Euclidean distance (7a)

𝛽D(U|d = CC) One minus the normalized correlation (7b)

𝛽D(U|d = DTW) Dynamic Time Warping (7c)

𝛽D(U|d = SBD) The shape based distance (SBD) in Appendix 3 (7d)

𝛽D(U|d =
√
SBD) The square root of the SBD (7e)

Many authors refer to all of these functions as distances, a term that carries the impli-

cation that they are genuine metrics. Certainly, ED is a metric, the usual choice for

DI, as illustrated in Fig. 1 which has also been commonly employed as a distance

measure between neuronal spike waveforms [30]. DTW and cross-correlation are

not metrics [31, 32]. Nevertheless, both have been successfully used as “similar-

ity” measures for waveform data. DTW has long been used in speech recognition

applicaitons as well as recent applications in neuroscience [33]; cross-correlation is

widely used in template matching techniques in neuroscience [34]. It is worth dis-

playing the CC measure we use above in 7b; for two vectors 𝐱 and 𝐲:

CC(𝐱, 𝐲) = 1 −
(𝐱 − �̄�)T (𝐲 − �̄�)
‖𝐱 − �̄�‖‖𝐲 − �̄�‖ (8)

If 𝐱 and 𝐲 are standardized vectors (i.e. standardized to z-scores with zero mean

and standard deviation of 1), there is a direct relationship between the CC and the

Euclidean distance according to the cosine theorem: ED =
√
2(p − 1)CC when p is

the dimension of the vectors. Therefore, for the special case of standardized vectors,

the CC measure is a metric (or better said: it is the squared Euclidean distance with

a constant multiplier). In general, however, CC(𝐱, 𝐚𝐱) = 0 for any a > 0, but 𝐱 ≠ 𝐚𝐱,

so CC is not a metric on ℜp ×ℜp
. This scale-free property of cross-correlation,

desirable in some similarity evaluation scenarios, is what prevents it from being a

distance metric.

As mentioned above, cross-correlation has been employed as a matching index

between neural waveform data and a template waveform [34, 35]. Paparrizos et al.

[13] used one minus maximum normalized cross-correlation as the dissimilarity

measure between any two waveform time series and they introduce the name Shape

based distance (SBD) for it. We use their algorithm (cf. Appendix 3) and borrow

their nicely put name for it in this work. It is worth noting that SBD is essentially the

CC between one waveform and a shifted version of the other waveform. The shift

is calculated to produce the maximum correlation between the waveforms. The first

step of the algorithm is to standardize the waveforms. We also computed the square

root of the SBD values to see if the behaviour was different.

We call the argument (d) in the last four functions at (7) dissimilarity measures.

They can all be used to build an input dissimilarity matrix D for input to iVAT and

SL and they can all be substituted into Dunn’s index. We will call the indices shown

in (7b-7e) as customized Dunn’s indices (cDIs).
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Here is a summary of our experimental protocols:

1. Choose a data set Xij with ground truth partition Uij
2. Choose a dissimilarity measure d from the choices shown in Eq. 7

3. Compute the DI (d = ED) or cDI on Uij using d and Xij
4. Build an input matrix D = [d(x, y) ∶ x, y inXij]
5. Get iVAT(D)

6. Run SL(D)

7. Discuss results

Table 1 compares Dunn’s indices on the ground truth partitions of the three test

data sets X8,13, X2,8 and X2,13 as described in Sect. 6 based on building the input

matrix D for iVAT and SL with the five dissimilarity measures (d) in (7). We have

repeated the values shown for 𝛽D(U|d = ED) in Sect. 6 as the first row in Table 1 to

make comparisons easier. The most striking feature of this table, seen graphically in

Fig. 11, is that the first three of the five distances, ED, CC, and DTW all rank the

three cases in ascending order of Dunn’s index, while the two shape based distances

produced using Algorithm 1 in [13] listed as Appendix 3 show the maximum value

of Dunn’s index for the data set X8,13.

The graphs in Fig. 11 show that the trend of Dunn’s index for ED, DTW and CC

are very similar. The graphs for SBD and its square root are similar to each other, but

quite different from the other three. We can make a finer distinction by examining

the iVAT images for the five measures on all three of our test data sets.

Table 1 Values of customized Dunn’s indices (cDI) on X8,13, X2,8 and X2,13

Distance X8,13 X2,8 X2,13

d = ED 0.071 0.253 1.133

d = CC 0.036 0.053 0.331

d = DTW 0.049 0.119 0.793

d = SBD 0.076 0.035 0.050

d =
√
SBD 0.276 0.186 0.223
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Fig. 11 cDIs on X8,13, X2,8 and X2,13 using 5 dissimilarity functions

We discuss the iVAT images in Fig. 12 column by column. Data set X8,13: Recall

from Fig. 6 that graphs of the wave generators 𝐯𝟖 and 𝐯𝟏𝟑 are quite similar, and there-

fore, the clusters in X8 and X13 are not expected to be very well separated. The iVAT

images built with ED, CC and DTW are visually quite similar, and suggest that all

of the points in X8,13 are in a single cluster. This is consistent with our expectations.

Moreover, the values of Dunn’s indices for these three experiments are quite low,

roughly in the range 0.03–0.07. The two SBD based images for X8,13 in Fig. 12 are

visually similar to each other, but somewhat different than the upper three panels.

These two images have an indistinct but visible darker block in their upper left por-

tions, fading into a bland area of almost uniformly grey values over the remainder

of the image. The visual suggestion is that there is only one cluster, but it has a pri-

mary core that is tight enough to be seen embedded in the overall grey background.

Dunn’s index for SBD is very similar to the first three values: the square root of SBD

is much larger.

Data set X2,8: The center column of Fig. 6 is the intermediate case. Here the func-

tions d = ED and d = DTW produce iVAT images that show definite cluster structure

at c = 2, whereas d = CC continues to produce an image that supports a belief in

just one cluster. A closer look reveals a thin grey border at the top and right in all

three of these images. Our supposition is that these pixels correspond to the 5 or

6 spurious waveforms that are visually evident in Fig. 8b (or Fig. 7a); meaning that
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Fig. 12 iVAT images of X8,13, X2,8 and X2,13 based on input dissimilarity matrix D built with 5

different dissimilarity measures

they are really noise. The two SBD based images for this data set are surprisingly

similar to the ones for data set X8,13 in their left. A bit of a mystery; the implication

is that the SBD distances don’t make as sharp a distinction between clusters as the

other three dissimilarity measures. Table 1 values show a fairly sizeable change of

about 0.18 for d = ED, and a less dramatic change of about 0.07 for DTW. The CC

value, however, is only increases by 0.017, a really small jump, and its iVAT image

reflects this, basically, no change in the image or the Dunn’s index value. In contrast,

the two SBD indices in Table 1 decrease to their minimums in the three experiments.
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Data set X2,13: The right column of Fig. 6 is the most interesting and distinctive

case. Here the three functions d = ED, d = CC and d = DTW all produce nice crisp

visualizations that correspond to c = 2 clusters. And the Dunn’s index values for these

three cases in Table 1 show much sharper jumps: roughtly 0.88, 0.28 and 0.68 for

ED, CC and DTW. Consulting Eq. (5) shows that X2,13 is compact and separable with

respect to the Euclidean metric in the sense of Dunn’s theorem. On the other hand, the

images built with the two SBD distances continue to confound: the visually darker

sub-block in these two panels seems to have floated out into the middle, embedded

in a sea of noise. Table 1 shows little change in the cDIs for these two cases.

Finally, please correlate each row of customized Dunn’s indices in Table 1 to the

corresponding row in Fig. 12. The visual acuity of the images in each row is clearly

related to values of the cDIs: higher values of cDI indicate a clearer iVAT visual-

ization. And conversely, when the cDIs are relatively flat and low, as they are for

the two SBD measures, the images don’t change much and are not very informative

either.

8 Single Linkage Revisited

Experiments in this section explore the relationship between values of Dunn’s index

and single linkage clusters derived from the underlying metric in use. Let UGT ∈
Mhcn be a ground truth partition for any labelled data set (X or R), and let U ∈ Mhcn
be a c-partition of it found by processing the dataset with any clustering algorithm.

The partition accuracy of U with respect to UGT is

PA(U|UGT ) =
#matched

#tried
(9)

We ran the single linkage algorithm using the five different dissimilarity measures

in (7) on the three datasets X8,13, X2,8 and X2,13 and got the crisp partitions for c =

2. Table 2 exhibits the values of the partition accuracy for each of the 5 measures

on each of the three data sets. The first three rows of Table 2 confirm that the three

cases, X8,13, X2,8 and X2,13, have increasingly well separated clusters, manifested by

the values increasing from about 0.35 (≈ 1/3 correct) to 0.61 (≈ 2/3 correct) to 1.00

(exact). This is pretty good agreement with the left to right sequences of images in

Fig. 12, and the left to right values in Table 1 for the Dunn’s indices. The SL partitions

obtained using the first three dissimilarity measures (ED, CC, DTW) were all very

similar for all three data sets. The partitions obtained by using d = SBD and its

square root to define the SL distance at (3) were similar to each other, and produced

comparable partition accuracies to the first three measures for X8,13, X2,8, but oddly

these two measures produced very poor partition accuracy for X2,13, the (apparently)

most separable pair of clusters for the three data sets.
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Perhaps it is not so odd when you look at the results from this angle: for the first

two datasets X8,13 and X2,8, all the measures give relatively poor results. Analyz-

ing the results of the SL clustering by examining the actual partitions for these two

datasets, SL has clustered all but one or two points into one big cluster, i.e. We get

two clusters by SL but one only has one or two of the points and the rest are grouped

together as in a very large cluster. The result is a low match between the ground truth

and SL labels.

As mentioned above (cf. Table 2) the SBD measure didn’t facilitate a good

SL clustering for the X2,13 case either. Figure 13 shows the dissimilarity measure

between each of the two waveforms of the X2,13 by the two measures: SBD and CC.

Unit2 has 292 waveforms, and Unit13 has 343 waveforms, therefore the X2,13 set has

635 waveforms. The total number of distances between pairs is 201,295 seen along

the horizontal axis of Fig. 13. The y-axis represents the value of dissimilarity given

by each of the measures on the 201,295 pairs. You can see that the CC (red curve)

has two phases or steps below and above the value 0.3, but the SBD measure has a

Table 2 Partition accuracy for crisp SL partitions at c = 2

Partition accuracy X8,13 X2,8 X2,13

d = ED 0.352 0.610 1.000

d = CC 0.352 0.610 1.000

d = DTW 0.348 0.615 1.000

d = SBD 0.350 0.613 0.463

d =
√
SBD 0.350 0.613 0.463

Fig. 13 The dissimilarity measures CC (blue) and SBD (red) between each pair of waveforms in

X2,13
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gradual decrease. This shows why the CC values help iVAT form distinct blocks and

why SL is able to distinguish two clusters. Whereas this is not achievable using the

SBD measure. We believe this is caused by standardization (z normalization) of the

waveforms in the first step of the SBD algorithm. This normalization removes the

scale difference between the waveforms in X2 and X3 that contributes to differentia-

tion between them with the other measures. Whether standardization is appropriate

for neuronal spike waveforms recorded by an extracellular electrode is left an in

intriguing question that will be discussed in our future paper.

9 Conclusions

The values in Tables 1 and 2 show that the larger the cDI, the better will be the match

of the SL clusters to the ground truth. Correlating this with the iVAT images shown in

Fig. 12 establishes a clear link between the three tools: as the cDI increases, the iVAT

image of the upspace data exhibits better visual acuity, and the corresponding SL

partition of the upspace data secures better agreement with the ground truth labels.

While this small set of experiments hardly provides enough evidence to support

any statistically valid conclusions, it does suggest that Dunn’s index using Euclidean

distance is a fairly reliable indicator of how much faith we should place on interpre-

tations of cluster structure in upspace data based on iVAT images of that data. We

expect larger values of 𝛽D(U|d = ED) to correspond to clearer iVAT images, and

conversely, values of 𝛽D(U|d = ED) near zero will usually indicate that the corre-

sponding iVAT image will suggest there is only a single cluster in the upspace data,

even if downspace projections suggest otherwise. Somewhat surprisingly, we did

not find that customized versions of Dunn’s index using any of the four waveshape

specific measures of dissimilarity at (7b–7e) provided results that were superior to

simple Euclidean distance. If the datasets had waveforms whose peaks and valleys

occurred at different time intervals, perhaps one of these measures would be more

effective than Euclidean distance.

It is tempting, but probably overoptimistic, to think that we can identify a thresh-

old that reliably separates the good and bad cases based on values of Dunn’s index.

All of these methods can fail, and all of them do fail, so the best we can probably

hope for is a “rule of thumb” heuristic that ties good iVAT images to larger values of

Dunn’s index. This will be a major focus of our next foray into the world of waveform
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clustering. The failure of Dunn’s index in the presence of inliers and outliers is well

known, so we are also anxious to insert these alternative waveform-based measures

of dissimilarity into the generalized Dunn’s indices discussed in [12].

We know that CC(𝐱, 𝐲) and SBD(𝐱, 𝐲) fail property M1 and hence are not true

metrics onℜp
. Lacking this, we can be sure that Dunn’s theorem will not be verifiable

using d = SBD. Moreover, it is not clear whether a value emerging from Algorithm

1 should be regarded as a squared distance or not, although the authors state that

it replaces ‖𝐱 − 𝐯‖2 in the k-means problem. Finally, Eq. (13) in [13], and the text

describing it, is questionable. The authors don’t actually solve (13) directly, but use

the Rayleigh Quotient theorem. If (13) is solved directly, the cluster centers would

never change because the optimization is only over the previous set of cluster centers.

Also, when they convert to the Rayleigh Quotient, they change the vector meaning

of the input vectors from row to column format. More tests of the SBD model of [13]

are needed before it can be regarded as a useful alternative to simply using ED with

Dunn’s index and iVAT.

A provocative by-product of this article is that when a set of (crisp) candidate

partitions is produced by single linkage clustering of any data set, our experiments

show that Dunn’s index (in any form) should occupy a pre-eminent spot in the set of

crisp internal CVIs available to evaluate the candidates. Arbelaitz et al. [10] studied

the efficacy of 30 internal CVIs to evaluate candidates produced by three crisp clus-

tering algorithms: k-means, Ward’s MSE method, and average linkage. Generalized

versions of Dunn’s index introduced in [12] consistently scored in the top 5 of the

30 CVIs on a wide variety of synthetic and real data sets in [10]. Our study suggests

that when SL clustering is used to produce candidates, some form of Dunn’s index

should stand out amongst its competitors. We plan to make this the focus of a future

study.

And finally, all of the ideas put forward in this article need to be tested in the“real”

case: upspace clustering of real unlabeled electrical recordings from brain tissue, in-

vitro, aimed at sorting neuronal spike trains into clusters of different functional types

of neurons. We will devote a future study to ascertaining whether the use of iVAT,

Dunn’s index, and SL clustering is a useful combination of tools for this problem in

the neuroscience community.
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Appendix 1. The VAT and IVAT Reordering Algorithms

A.1 The input matrix D for VAT in line 1 is positive definite and symmetric.

Any distance matrix will be of this type, but there are a number of cases that don’t

satisfy these constraints. And the size of D can be an issue. This basic version is only

useful for fairly small values of n (say, n 10,000 or so). Extensions to rectangular,

asymmetric and big data inputs are covered in the notes and remarks for this chapter.

A.2 Prim’s MST algorithm usually starts at either end (i.e., vertex) of a smallest

weight edge. Initialization at line 3 starts at the opposite extreme - either end of a

largest weight edge. This prevents VAT from a certain type of off-course deviation

that is discussed in Bezdek and Hathaway (2002).

A.3 The argmax and argmin function calls in lines 3, 7 and 15 produce sets, not

single values. For example, in A4.1 is the set of all ordered pairs (i, j) that have a

maximum distance. In case of ties, use a vertex from either end of any one edge in

the set.
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Appendix 2. Basic Single Linkage Clustering Algorithm



Interpreting Cluster Structure in Waveform Data with Visual Assessment . . . 99

Appendix 3. Shape Based Distance
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A Shared Encoder DNN for Integrated
Recognition and Segmentation of Traffic
Scenes

Malte Oeljeklaus, Frank Hoffmann and Torsten Bertram

Abstract Detection of traffic related objects in the vehicles surroundings is an

important task for future automated cars. Visual object recognition and scene label-

ing from onboard cameras provides valuable information for the driving task. In

computer vision, the task of generating meaningful image regions representing spe-

cific object categories such as cars or road area, is denoted as semantic segmenta-

tion. In contrast, scene recognition computes a global label that reflects the overall

category of the scene. This contribution presents an efficient deep neural network

(DNN) capable of solving both problems. The network topology avoids redundant

computations, by employing a shared feature encoder stage combined with desig-

nated decoders for the two specific tasks. Additionally, element-wise weights in a

novel Hadamard layer efficiently exploit spatial priors for the segmentation task.

Traffic scene segmentation is examined in conjunction with road topology recog-

nition based on the cityscapes dataset [2] augmented with manually labeled road

topology data.

1 Introduction

Fast and reliable environment representations deduced from the perception of the

vehicles environment are a fundamental requirement for future automated driving.

Camera-based methods extract the traffic related information solely from the visual

appearance of a scene. In this context, scene segmentation denotes the task of

computing semantically meaningful image regions corresponding to traffic related

objects, such as cars or road area. In contrast, the task of traffic scene recognition

infers a single global category that characterizes the essence of the entire scene.

Together, these complementary representations facilitate a comprehensive interpre-

tation of the traffic scene. This paper presents an efficient method capable of solving

both problems in an integrated manner. Segmentation classifies each pixel into nine-
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DNN

pixel-dense segmentation road topology recognition

Fig. 1 Overview of the examined method

teen different object categories according to [2]. Traffic scene recognition is investi-

gated w.r.t. to seven alternative road topologies as illustrated in the bottom right part

of Fig. 1.

Deep neural networks (DNN) recently advanced the state of the art in multiple

machine learning tasks, including computer vision. However, increased performance

often goes hand in hand with an increase in model complexity, see for example [7,

31]. Complexity causes a substantial computational effort during training and to a

lesser extend at runtime. This trend conflicts with the limited resources available in

electronic control units for driver assistance systems and autonomous driving.

In order to improve the overall efficiency, a structure comprised of a shared

encoder stage and task specific decoders is introduced. The function of the encoder

stage is to generate joint feature maps, that allow simultaneous inference of traffic

scene segmentation and recognition. In contrast to two separate task specific models,

the integrated architecture avoids redundant computations of feature maps.

To achieve computational efficiency, the feature encoder relies upon the inception-

v1 (GoogLeNet) architecture [26] due to its compactness. The decoder for the seg-

mentation task employs a fully convolutional skip architecture [15], whereas the

decoder for the task of road topology recognition is comprised of a conventional

fully connected classifier. This architecture thus supports simultaneous segmenta-

tion and recognition predictions in a single forward pass.

Furthermore, the segmentation decoder is adapted to exploit specific properties

present in traffic scene images. More precisely, it exploits spatial priors present in

traffic scenes when observed from the perspective of the vehicles onboard camera, as

for example the area in front of the car almost always depicts the road, whereas side-

walks and buildings occur mostly on the perimeter of the scene. The Hadamard prod-

uct in conjunction with element-wise weight matrices efficiently takes advantage
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of these spatial priors and improves the segmentation performance. The method is

evaluated on both tasks w.r.t. the cityscapes benchmark dataset [2]. A subset of the

original data is augmented with manually labeled ground truth of road topology.

2 Related Work

Traffic scene recognition has been dominantly studied for traditional computer vision

methods, based on feature engineering. [3] analyses a two-step approach, in which

a superpixel representation defines characteristic scene features. The classification

is carried out w.r.t. distinct road topology classes. [22] examines traffic scene recog-

nition for a vehicle fleet management application. They focus on compact feature

descriptors to enable computation in remote back-end systems.

For the general task of image recognition, DNNs recently became state of the art

after the seminal paper by [11] in 2012. Other influential publications include [13],

which proposes 1 × 1 convolutions, and [23], which emphasizes the importance of

network depth. Building upon these methods, [26] propose the inception-v1 architec-

ture for DNNs, which won the ImageNet Large-Scale Visual Recognition Challenge

in 2014 [20]. It is build around submodules dubbed “inception modules”. One of its

striking features is its efficiency in terms of computational resources. This architec-

ture is later refined in various ways, see [7, 25] introduces the ResNet architecture

as a technique to feasibly train very deep DNNs. Herein, residual connections are

utilized, to additively merge input and output signals of intermediate layers. The

authors provide theoretical foundations, as well as experimental results to justify

their approach, presenting a variant of their architecture that consists of 152 layers

and 60 million parameters.

Generally, DNNs for image recognition are constructed from stacked process-

ing layers, in which the spatial resolution associated with these layers is succes-

sively reduced with increasing depth until a scalar class label is finally predicted.

[15] present an end-to-end trainable DNN architecture designed for the task of seg-

mentation, named the “fully convolutional network” (FCN). A recognition DNN is

adapted for the task of segmentation, by branching the network at intermediate lay-

ers, and combining these branches to form a pixel-dense new output path with pre-

served spatial resolution. This adaptation approach allows for small size datasets, by

employing the technique of “fine-tuning” [29]. Thus, a recognition model provides

an initialization for a segmentation model. This is beneficial, as available segmenta-

tion datasets are comparatively small, due to the tedious manual segmentation and

labeling effort. Building on this, a popular approach consists of combining DNNs

and “conditional random field” models (CRFs) to perform semantic segmentation,

see [1, 12]. It is generally argued, that DNNs perform especially well for feature

representations while CRFs better capture contextual relation modeling.

Recent methods for semantic segmentation rely on the FCN architecture, in con-

junction with very deep residual models. [28] refine the ResNet architecture by

inserting additional residual units in a parallel manner and dub their approach as
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wide ResNet. [31] also build upon the ResNet architecture, adding parallel compu-

tation of multiple pooling layers of different dimensions. Both approaches achieve

state of the art results on the cityscapes benchmark.

An alternative approach is proposed by [8]. The classification and segmentation

tasks are decoupled, and independently performed by two DNN models. Both mod-

els are trained separately such that a scalar class label is determined first, and the

object contours are computed afterwards.[6] introduces an approach, termed “hyper-

column”, similar to [15] information from coarsely resolved “deeper" layers and

information from finer resolved “early” layers is combined, in order to form pixel

descriptors in terms of feature vectors. These descriptors constitute the input for the

final classification step to obtain a dense segmentation output.

The joint reasoning about complementary representations with DNNs is exam-

ined in [27] for classification problems with small amounts of classes. Environment

perception based on a combined recognition and segmentation approach is examined

by [19] and employed in [18] for indoor mobile robot control. The approach relies on

traditional features, and a superpixel representation is used to solve the segmentation

task.

3 Deep Neural Networks

DNN consist of multiple processing layers that typically are connected in a hier-

archical structure, such that every layer processes the previous layers output data.

The outputs of the nth layer are composed into a three dimensional matrix Xn of

dimensions h × w × d, where h and w define the two dimensional image coordinates

and d represents an image channel dimension. For the input data d denotes the color

channels and thus d = 3. One important aspect of DNN architectures motivated from

biology is the concept of receptive fields with limited connections between adjacent

layers to a local pixel neighborhood. Figure 2 illustrates the connectivity of recep-

tive fields across multiple layers. The processing layers implement one of several

different mathematical operations. Those types of processing layers relevant for the

present work are described in the following.

3.1 Processing Layers

Convolutional layer: The normalized weighted sum over all pixels within the input

of a receptive field is equivalent to a linear two-dimensional convolution, if the recep-

tive fields share common weight factors. The convolution kernel is denoted as 𝛩n.

Its reuse across receptive fields leads to a substantial reduction in the number of free

parameters, which in turn simplifies the parameter identification w.r.t. memory con-

sumption and required computation time. The outputs of the convolutional layer are

defined by the discrete linear convolution according to Eq. 2:
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Fig. 2 Concept of receptive fields: connections between adjacent layers are limited to a local neigh-

borhood

Xn(h′,w′
, d′) = (Xn−1 ∗ 𝛩n)(h′,w′

, d′) (1)

=
h∑

i=1

w∑

j=1

d∑

k=1
Xn−1(i, j, k)𝛩(h′ − i,w′ − j, d′ − k) (2)

Since input data consists of multiple image channels, the convolution kernel like-

wise exhibits three dimensional structure. Generally, the filter responses stemming

from multiple different convolution kernels are computed, such that the output is

comprised of multiple feature map channels. In addition, a transposed convolutional

layer is defined by multiplying single pixels with a convolution kernel and combin-

ing the resulting values in an output image. In our approach this feature implements

an oversampling operation.

RELU-activation layer: In the context of DNN, a separate processing layer is

defined for computing non-linear activation functions. For traditional sigmoid func-

tions, the gradient decreases for increasing activations, which is problematic for

efficient optimization. For this reason, so called rectified linear units (RELU) are

employed as non-linear activation functions:

Xn(h′,w′
, d′)

= max(0,Xn−1(h′,w′
, d′)) + 𝜈 ⋅ min(0,Xn−1(h′,w′

, d′))

RELUS display non-vanishing gradients for the entire range of inputs Xn−1. For neg-

ative Xn−1, the gradient is determined by the parameter 𝜈 which is set manually.

Compared to traditional activation functions, RELU units allow for a more effi-

cient training and also more closely reflect biological processes inspired from neuro-

science [5].

Pooling layer: Image pixels are obtained from subsampling within each receptive

field, a technique known as “pooling”. In our case, subsampling operates with max

pooling layers. LetRn(h′,w′
, d′,Xn) be the subset of image pixels within the receptive

field centered around (h′,w′
, d′). The pooling layer is formally defined by:
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Xn(h′,w′
, d′) = max(Rn−1(h′,w′

, d′,Xn−1))

Other variants of the pooling layer might be implemented based on averaging or

stochastic subsampling.

Fully connected layer: the structure of fully connected layers corresponds to con-

ventional artificial neural networks, since every neuron processes all outputs from

the previous layer. Therefore, receptive fields do not apply in this type of layer. Math-

ematically, the fully connected layer is a multiplication of the vectorized input data

with a weight matrix 𝛩n, which contains the learnable parameters of this layer. The

vectorized matrices are denoted by vec(Xn), the fully connected layer is defined as:

vec(Xn) = vec(Xn−1) ⋅ 𝛩n

The number of learnable parameters of the fully connected layer is equivalent to the

product of its input and output dimensions. In order to maintain a feasible model

complexity, fully connected layers are only applied to significantly sub-sampled

image data in deep hierarchical levels.

Hadamard layer: The Hadamard product ◦ performs element-wise multiplica-

tion of input feature maps Xn−1 with a weight matrix 𝛩n of equal dimensions. These

Hadamard layers can be thought of as 1 × 1 convolution with position dependent fil-

ter kernels. Consequently, they have no effect on the overall receptive field size, as

illustrated in Fig. 3. Mathematically, they are given by:

Xn = Xn−1◦ 𝛩n

Hadamard layers encode spatial priors by the means of position dependent weights.

Fig. 3 Connectivity

patterns imposed by different

layers

fully connected Hadamardconvolution
(dim=3)
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3.2 Parameter Optimization

Mathematically, the training of neural networks constitutes a nonlinear optimization

problem. The outputs of the last layer are interpreted as confidence scores for the

respective class labels, thus the dimension of image channels d equals the number

of categories. The well-known softmax function 𝜌 is applied to the arbitrarily scaled

confidence scores to compute class probabilities:

𝜌(h′,w′
, d′) = e

Xn−1(h′,w′
,d′)

∑d
k=1 eXn−1(h′,w′,k)

In order to train the network architecture for both, the recognition and the segmen-

tation task, two different training losses are defined for the two separate output paths.

Since both outputs depict a classifier, the optimization minimizes the multinomial

logistic loss function. In order not to prioritize one task over the other the segmen-

tation loss is normalized with respect to its spatial resolution, see Eq. 4. Thus, both

losses produce an error loss in the same range.

The statistics of the cityscapes dataset [2] show, that the class distribution is sig-

nificantly unbalanced, as few classes account for a large number of examples in the

dataset. An easy way to account for unbalanced data, is to perform oversampling of

rare classes. However, this is inefficient as in effect it leads to an artificially enlarged

training dataset, and an increased computation time per epoch. Instead, each train-

ing sample is weighted within the loss function according to its frequency in the

dataset. This is straight forward for the recognition loss, in case of the segmentation

loss a pixel-dense weight mask enters the loss computation. [21] observe perfor-

mance deterioration, if class weights are merely adjusted according to their inverse

frequencies, and thus propose the “85–15%-rule” introduced in [16] to define class

weights. Following [21] the weight 𝛾c of class c is defined as:

𝛾c = 2⌈log10

(
𝜂

fc

)
⌉

(3)

where fc is the frequency of occurence and 𝜂 is the count of the most frequent classes,

that account for at least 85% of the dataset (thus the “85–15%-rule”). With these

definitions, the optimization of model parameters 𝛩 for a segmentation-only model

with a multinomial logistic loss function is given by:

𝛩 = argmin
𝛩

(
− 1
h ⋅ w

h∑

i=1

w∑

j=1
𝛾l(i,j) ⋅ ln ( 𝜌(i, j, l(i, j) ) )

)
(4)

where i, j are pixel coordinates, 𝜌 represents the class probabilities computed by

the softmax function and l defines the ground truth labels. This loss function is

minimized by a high confidence for the ground truth class. For the special case of
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h = w = 1 the scalar loss for recognition-only models is obtained. For the combined

model, the unweighted sum of both loss functions is used.

The training of the DNNs is carried out following the well-known backprogaga-

tion algorithm based on the gradient decent on the loss function. In practice, a variant

dubbed stochastic gradient descent (SGD) with momentum is employed. This vari-

ant differs from the ordinary gradient descent in two aspects. First of all, the output

error is computed only on a subset of the overall training dataset. The size of this

subset is named batch size and the processing of the complete dataset is dubbed an

epoch. Secondly, the gradient decent update rule is extended by a weighted momen-

tum term, such that the weight update is computed according to a combination of

the current gradient and previous updates. In effect, this leads to suppression of high

frequency fluctuations in the loss function (smoothing). Using the step size 𝜂 and the

momentum 𝛼, the update rule for iteration 𝜏 is given by:

𝛥𝛩n,𝜏+1 = −𝜂 𝜕E
𝜕𝛩n

+ 𝛼𝛥𝛩n,𝜏

4 Architecture for Integrated Recognition
and Segmentation

Embedded applications, such as driver assistance systems and automated driving,

are subject to rigid constraints regarding computation time, energy consumption and

memory capacity. It is therefore advantageous to share computations between the

separate tasks of recognition and segmentation. For this, the DNN incorporates a

joint feature representation, which simultaneously maps those visual cues relevant

for the two tasks. The approach is comprised of an encoder-decoder architecture,

which employs a shared encoder stage to generate the joint feature maps, and sep-

arate decoders compute predictions for their specific tasks. Figure 4 illustrates the

architecture.

4.1 Feature Encoder

In the outlined structure, the computational burden is assumed to mostly lie with

the computation of the shared feature maps. Therefroe, the feature encoder consists

of the two-dimensional layers of the inception-v1 architecture.
1

Without its final

classifier stage, this architecture holds less than 6 million parameters. Due to its

compactness, it is well suited to enable fast processing in ADAS control units. For the

sake of clarity, repeating sub-structures are shown only once, feature map dimensions

1
This work employs a variant of the architecture published at

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet. Accessed: 18.01.2017.

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
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Fig. 4 Scheme of the proposed network architecture. The underlying inception-v1 feature encoder

is condensed into subparts of equal spatial resolution. The right branch represents the FCN-based

decoder for the segmentation task. The bottom branch depicts the fully connected classification

decoder for the recognition task. The given dimensions represent the respective output feature maps
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are given only at the output of intermediate pooling operations and RELU layers

following convolution operations are not included in Fig. 4. For further details on

the inception-v1 architecture, we refer the reader to [26].

4.2 Segmentation Decoder

Our segmentation decoder rests upon the FCN method [15] particular designed for

image segmentation. Herein, a recognition DNN is adapted for the task of segmen-

tation, by branching the network at intermediate layers, and fusing these branches to

form a pixel-dense new output path with preserved resolution. Hence, the interme-

diate layers of the encoder stage generate the feature maps for the segmentation task.

The right part of Fig. 4 shows the segmentation decoder.

In contrast to the original FCN method [15], in which the processing paths branch

directly after generating the pooling outputs, our network only branches after the fol-

lowing block. Furthermore, [15] proposes to sum the outputs of the added parallel

paths to form a pixel-dense segmentation. Instead, our approach employs vector con-

catenation for the same purpose. Our analysis reveals, that this modification leads to

a slightly improved segmentation performance. To improve the overall efficiency,

1 × 1 convolutions adjust the channel dimensions prior to fusion of feature maps.

Obviously, traffic scenes recorded with the onboard camera exhibit spatial priors,

as for example the road and other vehicles appear mostly in the image center, whereas

sidewalks and buildings are located at the periphery. Therefore, the segmentation

decoder includes a Hadamard layer, with the objective to efficiently exploit those

spatial priors. The following section discusses the advantages of the Hadamard layer

for the segmentation task in detail.

4.3 Spatial Priors for Scene Segmentation

Typical DNNs employ mappings with limited receptive field sizes. Thus, activa-

tions depend on a limited set of inputs within their direct neighborhood. In theory,

the stacking of such mappings increases the overall receptive field of the whole

model, see Fig. 2. However, typical global receptive field sizes are still far below

the image resolution of modern automotive cameras. This holds especially, since

receptive fields observed in practice are even smaller than their theoretical sizes. For

example, [32] reports global receptive fields with less than 100 pixels in diameter

for a typical DNN, similiar observations are reported by [14]. Furthermore, convo-

lutional layers replicate identical filter kernels at every spatial position of an image,

due to the weight sharing regularization. This prevents the efficient utilization of

spatial priors, as they are neither captured in limited receptive fields nor encoded in

position dependent weights.
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As outlined before, the utilization of spatial priors is either achieved by increasing

the receptive field sizes or by explicitly encoding mean class distributions in position

dependent weights. Maximal sized convolution kernels are equal to fully connected

layers, their number of parameters is the product of the input and output dimen-

sions. Thus, they cannot be used to compute spatially resolved outputs in practice.

[30] proposes dilated filter kernels, which alleviate this problem but instead lead to

increased feature map dimensions that are computationally expensive. In addition,

the introduced sparse mappings might not be suited to capture class distributions at

high spatial resolution. As our objective is to explicitly model mean class distribu-

tions, a Hadamard layer is added before the final transposed convolution step in the

segmentation decoder stage.

4.4 Recognition Decoder

The recognition decoder predicts the road topology from the feature maps of the

encoder stage. Following the original inception-v1 architecture, prediction is based

on the final feature map of the encoder stage. After implementing a dimensionality

reduction by means of 1 × 1 convolution, the final road topology predictions are

inferred by a fully connected classifier. The recognition decoder is shown in the

bottom part of Fig. 4.

5 Experiments

The experimental evaluation is based in the cityscapes dataset [2], which is com-

prised of urban street scenes and ground truth labels for semantic segmentation. The

benchmark includes coarse and fine annotated samples, that are both used for train-

ing. In order to analyze the recognition task, 1199 images of the training partition and

400 images of the test partition, corresponding to nine different cities, are manually

augmented with road topology ground truth annotations. Since typical data augmen-

tation techniques alter the road topology as well as the mean class distributions in the

dataset, no data augmentation techniques are employed. All images are processed at

their original resolution. The DNN training is done with the caffe [9] deep learning

framework, using the stochastic gradient descent solver with momentum [24]. Train-

ing operates with a momentum of 0.9, a fixed learning rate of 5 × 10−4, a weight

decay factor of 5 × 10−4 and a batchsize of 1.

Using the method of fine-tuning [29], all DNN parameters belonging to the orig-

inal inception-v1 structure are initialized from a model pre-trained on ILSVRC12

[20], and published alongside the works of [9]. During the analysis, the combined

model with both outputs is compared against models trained for either only seg-

mentation or only recognition. In the latter case, the obsolete parts of the structure

in Fig. 4 are omitted. In addition, models with and without the Hadamard layer are
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examined in order to analyze its effect on the segmentation performance. Therefore,

a total of four models are evaluated hereafter.

During experimentation, it turned out that the best performance for segmentation-

only models is achieved after 100000 iterations. Hypothetically caused by the smaller

dataset, recognition-only models tend to overfit after about 10000 iterations, thus

training is stopped afterwards. The combined task implements the full architecture

illustrated in Fig. 4. Best results are obtained by initializing all parameters from the

segmentation-only model, and fine-tuning the combined model for 10000 iterations.

The combined model is trained w.r.t. the sum of both loss functions.

5.1 Recognition

To examine the recognition task, the recognition-only model and the combined

model is analyzed w.r.t. the test partition of the road-topology dataset. The preci-

sion, recall and F1-score according to the definition of [4], and averaged over all

road topology classes, are reported in Fig. 5.

It is evident, that the recognition-only model generally achieves better results than

the combined model. This decrease in performance is explained by the stronger con-

straints imposed on the feature maps due to the twofold optimization target. Intu-

itively, a harder problem needs to be solved with a feature encoder of the same capac-

ity. Further comparison with similar works reveals, that both models are able to out-

perform traditional methods based on feature engineering. For example [3] observes

a precision of 0.45 for a similar 8-class recognition task. Additionally, Fig. 5 indi-

cates that the resulting classifier does not overly focus on frequent classes, as no

substantial divergence of the error across categories is observed. Presumably, this is

attributed to the loss weighting used during parameter optimization.

Furthermore, Table 1 reports the full confusion matrices. The highest accuracy,

as well as the highest false-positive rates, are observed for straight streets (a.)

and full intersections (g.), which also occur most frequently in the dataset. The

biggest decrease in performance for the combined model emerges for curves without

branches (b. and c.).

Fig. 5 Average per-class

results for the recognition

task
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Table 1 Confusion matrices for the recognition task

recognition-only combined

Fig. 6 Average per-class results for the segmentation task, measures marked with * are calculated

on the validation dataset

5.2 Segmentation

For the segmentation task the effect of the Hadamard layer is examined, as well as

differences between the combined model and segmentation-only models. Following

[4, 10], Fig. 6 reports the average IoU-score, the average accuracy and the average

F1-score for the three resulting models.

Similar to the recognition task, a decrease in performance for the combined

model is evident for the same reasons. Notably, the segmentation-only model with

Hadamard layer outperforms the one without Hadamard layer. This observation con-

firms the significance of spatial priors supporting the segmentation of traffic scenes

and demonstrates that FCN networks benefit from element-wise weights.

Additionally, the per-class IoU metric is reported in Table 2. Less frequent classes

belonging to objects, that typically cover small areas in traffic scenes, account for the
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I. II.

III. IV.

Fig. 7 Exemplary segmentations, I. input with ground truth, II. segmentation-only without

Hadamard, III. segmentation-only with Hadamard, IV. combined

majority of the decrease in performance. This is consistent with the relatively small

difference in the per-pixel average of the IoU metric. Figure 7 shows exemplary seg-

mentation results from the validation data for all three models. Again, the subjec-

tively noisier segmentation of the combined model is notable, however dominant

classes such as the road are still represented fairly accurate.

In general it is noticeable, that larger models further improve the segmentation

performance. However when comparing the average runtime as well as the overall

number of parameters in Table 2, it is apparent that the present work achieves signif-

icantly faster computation times and is thus better suited to enable fast processing in

ADAS. Furthermore, the relatively small increase in runtime for the combined model

proves the advantage of the shared feature encoder design, enabling predictions on

complementary tasks at low additional costs.

Figure 8 shows a heatmap illustration of the learned Hadamard weights from the

segmentation-only model, for exemplary classes. Distinctive spatial priors are evi-

dent for the road area, as well as for sidewalks. As intuitively expected both cover

opposite areas of traffic scenes. The results are less conclusive for cars, strong spa-

tial priors on the outer image parts presumably stem from parking spaces. Trains

or trams in urban environments mostly occur in the left area. Since only right-hand

traffic is captured in the dataset, this is supposedly due to trams driving in the center

lanes in most cities.
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I. II.

III. IV.

Fig. 8 Heatmap visualization of the Hadamard weights for exemplary classes, I. road, II. sidewalk,

III. car, IV. train

6 Summary and Outlook

This work presents an approach for traffic scene recognition in terms of the road

topology and scene segmentation with respect to common traffic objects. An inte-

grated DNN architecture with two separate output paths is proposed. The model

simultaneously predicts the road topology as well as a pixel-dense image segmenta-

tion. The final architecture accounts for limited computational resources in automo-

tive applications.

While strong constraints imposed on the DNN feature maps due to the twofold

loss function constitute a complex optimization problem, experimental results on the

cityscapes dataset demonstrate, that a meaningful representation of traffic scenes is

obtained. This applies in particular to applications, that rely mostly on the segmen-

tation of large traffic objects such as the road area.

Future work is concerned with the comparative analysis of the presented method

with very deep architectures such as [7], in terms of both performance and compu-

tational effort.
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Fuzzy Ontology Support for Knowledge
Mobilisation

Christer Carlsson

Abstract Classical management science is making the transition to analytics,
which has the same agenda to support managerial planning, problem solving and
decision making in industrial and business contexts but is combining the classical
models and algorithms with modern, advanced technology for handling data,
information and knowledge. We run a knowledge mobilisation project as a joint
effort by Institute for Advanced Management Systems Research, and VTT Tech-
nical Research Centre of Finland. The goal was to mobilise knowledge stored in
heterogeneous databases for users with various backgrounds, geographical loca-
tions and situations. The working hypothesis of the project was that fuzzy math-
ematics combined with domain-specific data models, in other words, fuzzy
ontologies, would help manage the uncertainty in finding information that matches
the users’ needs. In this paper, we describe an industrial application of fuzzy
ontologies in information retrieval for a paper machine where problem-solving
reports are annotated with keywords and then stored in a database for later use. One
of the key insights turned out to be that using the Bellmann-Zadeh principles for
fuzzy decision-making are useful for identifying keyword dependencies in a key-
word taxonomic tree.

1 Introduction

In this paper, we will deal with a classical problem in industrial management—to
effectively solve problems in industrial processes by using experience and docu-
mented insight on successful problem-solving procedures. The insight comes from
experts and experienced engineers who have found good ways to deal with often
complex (and costly) problems, the documents they have written are quite often
cryptic and hard to follow for outsiders or less experienced process operators. Then
there is the further challenge, in the era of “big data” the documents reside in

C. Carlsson (✉)
Institute for Advanced Management Systems Research, Turku, Finland
e-mail: christer.carlsson@abo.fi

© Springer International Publishing AG 2018
S. Mostaghim et al. (eds.), Frontiers in Computational Intelligence, Studies
in Computational Intelligence 739, https://doi.org/10.1007/978-3-319-67789-7_8

121



databases of 10,000 documents, sometimes hundreds of thousand documents,
which makes it challenging to retrieve them, especially when problems are real and
urgent. If and when the documents are retrieved the accuracy and effectiveness of
the problem-solving processes reported needs to be verified and validated, i.e. the
problem solvers should not be guided to follow processes that are inappropriate or
incomplete for the tasks at hand.

In industrial management, we have a tradition of following management science
methodology—we aim to find the best or optimal solutions. When faced with
problems of the kind we have sketched above (something is going (very) wrong in
an industrial process) the process is straightforward (cf. [8]):

(i) work out a relevant and focused description and definition of the problem at
hand;

(ii) build mathematical models to capture the essence of the problem;
(iii) work out algorithms that can be used as problem solvers in the framework of

the models;
(iv) simulate and try alternative solutions with the algorithms;
(v) find an optimal solution;
(vi) implement the optimal solution for the original problem and find out if it

actually works; if not, go back to (i) and restart the process.

This process has served us very well for more than six decades and it has
generated thousands of models and algorithms that have helped work out solutions
to complex and difficult problems in industry. Digitalisation, which brought the
“big data” and “fast data (streaming big data)” challenges, combined with advances
in information systems technology has initiated discussions about the relevance of
management science and its methodology. The use of mathematical models and
algorithms appears to be too burdensome for modern managers—they believe in
on-line and real time information support for fast decision-making. We have
worked out some principles for knowledge mobilisation (cf. [11]) that we propose
to be useful as a combination of the good and useful principles of management
science with the fast knowledge retrieval that modern managers expect.

This paper is structured as follows: in Sects. 1.1 and 1.2 a summary sketch
outlines management science and analytics; in Sect. 2 we work out fuzzy ontology
for industrial applications; in Sect. 3 we show how digital coaching could assist
users of fuzzy ontology; Sect. 4 is a summary and conclusions.

1.1 Management Science

Management science (MS) methodology—and especially operations research
(OR) that applied the same methodology for engineering problems and theory
development—was first attacked in the early 1970s (cf. [8]) for failing to deal with
the real world problems managers have to tackle, for oversimplifying problems and
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for spending too much time with mathematically interesting but practically irrele-
vant problems and solutions. The message was simply that management science
methodology produced theory and methods that were irrelevant for handling actual
management problems. In a paper in 1984 (cf. [8]) I argued that fuzzy sets—when
properly worked into management science methodology—would make the models,
the algorithms and the theory more relevant and better suited to deal with man-
agement problems in practice.

Now, more than thirty years later, I have to admit that we were not successful in
bringing it about, that fuzzy sets remained a marginal development in management
science. Management scientists working with fuzzy sets theory and methods
managed to get fuzzy sets based methods accepted only for some limited appli-
cations, such as multiple criteria optimisation, real options valuation, logistics
optimisation, etc. The main reasons for acceptance were the algorithmic benefits of
allowing the use of fuzzy numbers, the logic and core of fuzzy sets has not been
widely accepted in management literature.

Management science and operations research have also changed over the dec-
ades. Two major organisations in the field—TIMS and ORSA—merged and
became INFORMS to combine the applications oriented research (TIMS) with the
algorithms and theory oriented research (ORSA). The 2010s now sees a renaissance
of the MS/OR methods—the annual INFORMS conferences collect 2-3000 par-
ticipants; in Europe the EURO Association (a sister organisation) also has 2-3000
participants at the annual EURO conferences. Both organisations run major,
well-established journals with high impact factors and there are dozens of journals
publishing material produced under guidance of management science methodology.
The field is alive and well and promotes lively research that activates thousands of
researchers. In order to achieve this the field only had to change name—analytics—
and to be promoted by Harvard Business School scholars and publications (cf.
[17]). Of course, more than the name changed, also the settings in information
systems and technology, the digital context for modern business, the “big data”
challenges that created an urgent need for mathematical and statistical tools, and the
skills and knowledge level of the users are key reasons for the surge in analytics
modelling and implementations. There is a role for fuzzy sets theory and methods in
analytics even if most of the people who work with and promote analytics do not
know much (if anything) about the possibilities with fuzzy algebra and algorithms
based on that algebra.

1.2 Analytics

Operations Research and Management Science are now in the process of trans-
formation by (Business) Analytics, which is getting the attention of major corpo-
rations and senior management. On our part, in our work with complex, difficult
problems for large industrial corporations, we have for a number of years been
promoting Soft Computing to the same audience instead of trying to explain fuzzy
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sets theory and fuzzy logic in the way it was originally done. The experience we
have—summarized in a few words—is that analytics methods, which implement
soft computing theory and algorithms are turning out to be very effective and useful
for planning, problem solving and decision making in “big data” environments (cf.
[15]). Analytics adds value to management; it promotes data-driven and analytical
decision making, which was somehow “reinvented” as being important and useful
for management that had relied on other schools of thought for a couple of decades.
Analytics builds on recent software improvements in information systems that has
made data, information and knowledge available in real time in ways that were not
possible for managers only a few years ago (Davenport and Harris [17]).
INFORMS gradually found out that the new movement represents both “potential
opportunities” and “challenges” to management science and operations research
professionals (Liberatore and Luo [27]). The methods and the application cases
worked out in the Davenport-Harris book are very close to traditional management
science methodology, actually so close that a manager probably fails to see any
differences, which is why INFORMS finds “challenges”.

Soft Computing (introduced by Lotfi Zadeh in 1991) builds on fuzzy sets theory
[34], fuzzy logic, optimisation, neural nets, evolutionary algorithms, macro
heuristics and approximate reasoning. Soft Computing is focused on the design of
intelligent systems to process uncertain, imprecise and incomplete information; soft
computing methods applied to real-world problems offer more robust, tractable and
less costly solutions than those obtained by more conventional mathematical
techniques.

Liberatore and Luo [27] list four factors that drive the analytics movement:
(i) availability of data, (ii) improved analytical software, (iii) the adoption of a
process orientation by organisations, and (iv) managers and executives who are
skilled users of information and communication technology. If we compare these
factors to the experience of the 1980s the last factor is probably the most important
driver—there is a new generation of managers and executives in charge of the
corporations that are using information technology as part of their daily routines.
They work with data, information and knowledge on a real time basis and they
continuously hunt for improved analytical tools to help give them competitive
advantages. They do not necessarily recognize the analytical tools as classical
management science algorithms. Analytical software (cf. (ii)) has become
user-friendly with graphical user interfaces and visualisation of results; users typ-
ically do not have the mathematical background to get into details with the algo-
rithms. Information technology has made data available on a real time basis, which
allows online planning, problem solving and decision-making. Maybe “allow” is
not the right verb as online management work in real time is more of a necessity to
keep up with the competition. The same driver also explains the adoption of a
process orientation (cf. (iii)) as management work typically is group- and teamwork
online and in real time. Davenport and Harris [17] describe analytics as “the
extensive use of data, statistical and quantitative analysis, explanatory and pre-
dictive models and fact-based management to drive decisions and actions”. Lib-
eratore and Luo [27] identify three levels of modeling—descriptive, predictive and
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prescriptive—and state that Management Science and Operational Research typi-
cally would focus on advanced analytics, i.e. prescriptive modelling. They also
point out that analytics would focus on the transformation of data into actions
through analysis and insight, which in their discussion contributes to the application
cases of management science.

The modern movement of analytics appears to offer interesting possibilities and
opportunities for soft computing. The movement is data-driven, which will require
tools for handling imprecision; the movement focuses on managers, who need to
deal with real world problems, for which available data, information and knowledge
are incomplete, imprecise and uncertain but should allow for fast, often intuitive
conclusions. The movement builds on improved analytical software that offers
platforms for a multitude of algorithms, intelligent technologies, soft computing,
computational intelligence, etc. Modern analytics offers platforms and environments
for digital coaching of managers in planning, problem solving and decision-making.

There are benefits of having worked with management science for a few decades
(like the present author and my contemporaries)—there has been hundreds of
innovative ideas and some successful solutions, from which it has been possible to
extract working principles and a growing understanding of how good science can
guide and contribute to successful planning, problem solving and decision-making.
In the context of the digital economy these processes—not surprisingly—offer new
challenges: real-time management challenged by “big data” and relying on fast
processing by advanced analytics methods would best be carried out by
postdoc-qualified managers—these are rather scarce and would most often be fil-
tered out by corporate career qualifying processes much before they reach senior
management positions. Thus there will be a need to reinstate “coaching” functions
with the advanced analytics methods to tell/explain to the users what can/should be
done, how it should be carried out, what the results are and what they mean, and
how they should be applied (with explanations of what could/should not be done).

I have worked out my storyline in the context of analytics and soft computing
and the history that has formed that context over the last few decades. I will work
with fuzzy ontology modelling, one of the more advanced analytics methods with a
theory that managerial decision makers cannot easily apply, but which shows
results that will be useful for the knowledge mobilisation we have in mind.

2 Fuzzy Ontology in Industrial Applications

Fuzzy ontology offers solutions for addressing semantic meaning in an uncertain
and inconsistent world. Since many concepts that are needed for intelligent systems
lack well defined boundaries, or precisely defined criteria of membership, we need
fuzzy logic to deal with notions of vagueness and imprecision. As with fuzzy logic,
reasoning is approximate rather than precise. The aim is to avoid the theoretic
pitfalls of monolithic ontologies, to facilitate interoperability between different and
independent ontologies [16], and to provide flexible information retrieval
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capabilities [1, 2, 25, 26]. We have developed concepts for a tool that will be useful
for searching for paper machine knowledge with a search engine based on a fuzzy
ontology. The usage scenario for the tool is that a process expert or an experienced
engineer, who is handling a problem in the process chemistry of a paper machine,
wishes to find past problem solving cases of a similar setting in order to find
possible solutions to a current issue. This setting is universal: pieces of knowledge,
called “nuggets”, are written and stored by companies on different domains in the
form of incident reports.

In the industrial project it turned out that the paper machine represents a large
domain (cf. Fig. 2) and we decided to select one part of the domain in order to work
out some good principles and then to find ways to reuse the principles and scale up
to other parts of the paper machine. For the application worked out here we have
focused on the chemistry of the “wet end” in order to limit the work effort needed
for the domain ontology and to concentrate on a subject on which domain expertise
and actual data were available. “Nuggets” are documents that can contain all kinds
of raw data or multimedia output extracted from different information systems. An
expert author annotates the nuggets with suitable keywords, and then we base the
search for documents on these keywords. In addition to providing exact results to
queries, the tool uses a fuzzy domain ontology to extend the query to related
keywords (cf. Fig. 1). As a result, the search results include nuggets that may not
necessarily deal with exactly the same process equipment, variable, function or
chemical, but nuggets that may still provide valuable insight to solving the problem
at hand. The terms defined in the ontology should be familiar to the users of the
system, e.g. to plant operators, process developers and chemical suppliers. The
concepts and terminology that experts develop may not be understandable to out-
siders, which became an issue with novice users; another problem is the imprecision
and shortcuts that experts thrive on as “real experts can figure it out”. Nevertheless,

Fig. 1 System concept—a knowledge base of event reports
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during the process of building the ontology we found out that the terminology
should build on sound principles of conceptual modelling and ontology
development.

Furthermore, the goal should be to have common concepts and plant models
with equipment manufacturers and engineering contractors for paper machines that
provide the initial information and often participate in modifications and upgrade
projects. This creates a link to the ongoing development of engineering data models
for various industrial areas. Fuzzy keyword ontologies should thus make use of
relevant product and plant modelling standards and more general, higher level
ontologies. The case with the paper machine contributes to a more general research
objective: to find out if fuzzy ontology can contribute to and enhance knowledge
retrieval in the process industry domain.

2.1 Fuzzy Ontology for Process Industry

Problems with and around the paper machine generate event reports that describe
what happened, how the problem was tackled, what materials, components, func-
tions etc. were involved, and what solutions were tried and tested, what solutions
worked and what the results were. The events (and event reports) are identified with
keywords and the task is to build an ontology of keywords that can identify (and
help locate) both the relevant event report and similar reports. The ontology con-
struct worked with both engineering and operational knowledge of a paper machine
and used the following taxonomic system,

• Top layer: general concepts (based on international standards).
• Middle layer: vocabulary defined and shared by business partners to share

knowledge of, (e.g.), the type and structure of process equipment. This layer
extends the top layer with domain-specific keywords.

• Bottom layer: custom, company-specific concepts, e.g. specific products and
component types, or even individual process plants.

The system of keywords represents concepts, properties, relationships, axioms,
and reasoning schemes relevant for the application area. Based on various upper
ontologies and industrial data models we identified the following keyword cate-
gories as needed to characterize event reports:

• Systems: types of real-world components of a process plant, e.g. machines,
buildings, software and people (cf. Fig. 2).

• Functions: phenomena and activities carried out at an industrial plant.
• Variables: properties and state variables of various entities, e.g. temperature.
• Events: types of interesting periods of plant life described in event reports e.g.

test runs or equipment failures.
• Materials: raw materials, products, consumables, etc. handled in a process plant.
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The basic approach to conceptualize the application is an informal Unified
Modelling Language (UML) class diagram above (cf. Fig. 3).

Event reports describe events that are related to various entities of the paper
machine, e.g. to equipment, processing functions and materials. There are no
assumptions about the internal structure of event reports; an expert characterizes
them with keywords selected from a fuzzy ontology. The expert can select the
keywords from five categories: event, system, function, material and variable. All
keywords represent an entity type and can have subtypes and smaller parts; key-
words are used to characterize event reports and other nuggets stored in a database.

Classification (is-a) and decomposition (part-of) can be found in most ontologies
and data models. They are important in the industrial context as well. The keywords
in each category are linked by is-a and part-of relationships as illustrated in Fig. 4.

Fig. 2 System example—a fuzzy decomposition of a paper making line

Fig. 3 Overall domain concepts
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Furthermore, the ontology should model functional and other kinds of dependencies
between keywords in various keyword categories. As an example, systems work for
some purposes, i.e. they play various roles in carrying out one or more functions.
This creates a link between the keywords “wire section (a part of a paper machine)”
and “formation (a quality measure of the produced paper)”. Modelling classifica-
tions, decompositions and various dependencies leads to a situation where we have
a taxonomy tree for each keyword category and a set of part-of relationships trees
describing the decomposition to various domain entities (Fig. 5). In addition, there
are dependency relationships linking keywords to each other.

2.2 The Keyword Ontology

In order to develop a software tool the ontology should be expressed and stored in a
more formal way. The basic approach for representing a fuzzy ontology is a

Fig. 4 Simplified event classification matrix
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combination of UML class and instance diagrams (cf. Fig. 6). From all kinds of
nuggets, the demonstration only looks at event reports that usually describe prob-
lematic situations. Each report, like the specific instance “Report #1” in the dia-
gram, is related to types of systems, plant functions, events, etc. Only the reference
“Report #1” to the keyword “Holes” is shown in Fig. 6. As indicated by the
“instance of” associations, all keywords seen by the users are individuals, i.e.
instances of a subclass of “Keyword category”. Fuzzy dependencies between
keyword instances are described by a few fundamental relationship types like is-
a (specialization), part-of and, as an option, instantiation. In the first version we
focus on”specializations”, i.e. fuzzy classifications of keywords. The degree of
overlapping (or inclusion) of the sets represented by the keywords is described by
linguistic labels like “moderate” or“significant”. The instance named “Specializa-
tion #1” in Fig. 6 tells us that “Holes” is “to a large extent” understood as a
subclass of “Quality problem” but only represents a minor part of its scope. In
addition, the keyword “Holes” may also specialize other problem types. Here we
have modelled dependencies with one single dependency relationship; for sim-
plicity it is symmetric and has a strength value between zero (independence) and
one (full dependence).

Fig. 5 The fuzzy ontology defines classification, decomposition and miscellaneous dependency
relationships between keywords
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2.3 A Minimax Approach to Assess Keyword Dependencies

We worked out a method for approximating keyword dependencies in the keyword
ontology. This method uses Bellman-Zadeh’s principles for fuzzy decision-making
[3]. Figure 7 shows an event type fuzzy taxonomy. For example, consider the
second column of the event classification matrix “Problem”. All “Technical
problems” are “Problems” and they represent around 80% of all possible problems.
That is, “Technical problem” covers “Problem” with the grade 0.8. Similarly,
“Human errors” are “Problems” and they represent around 30% of all possible
problems. That is, “Human error” covers “Problem” with the grade 0.3. Following
Bordogna and Pasi [5] we will assume that if A and B are two keywords in the
keyword taxonomic tree, then

coverage A, Bð Þ= fuzzy inclusion A, Bð Þ ð1Þ

For example, “System fault = {Device fault, Design flaw}” that is, “System
fault” is a union of these two events. Furthermore, “Function failure = {Design
flaw, Drift, Oscillation}” that is, “Function failure” is the union of these three
events. “Design flaw” covers “System fault” with the grade 0.6 and at the same time
“Design flaw” covers “Function failure” with the grade 0.4 (cf. Fig. 7). Moreover,
“System fault” and “Function failure” do not have any more component in com-
mon. We compute the degree of dependency between”System fault” (SF) and
“Function failure” (FF) as their joint coverage by “Design flaw” (DF)

Fig. 6 Representing fuzzy keyword ontology with object classes and their instances
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dependency SF,FFð Þ=min coverage DF, SFð Þ, coverage DF,FFð Þf g,

that is,

dependency SF,FFð Þ=min 0.6, 0.4f gg=0.4 ð2Þ

It is easy to see in Fig. 7 that keywords “Function failure” and “Fire” are
independent since they do not have any component in common. In this case, we
have,

dependency ``Function failure'', ``Fire''ð Þ=0 ð3Þ

Zero means independence, one means full dependence, and values between zero
and one denote intermediate degrees of dependency between keywords. It can
happen that two keywords have more than one joint component. Then we apply the
Bellman-Zadeh principle (a max-min approach) to measure their dependency. For
example, suppose that “System fault” and “Function failure” were to have two joint
components, where the first one is “Design flaw” and the second one “Fluctuation”
that has coverage values 0.7 and 0.5, respectively. Then we measure the grade of
dependency between “System fault” and “Function failure” as,

dependency SF,FFf g=max min 0.6, 0.4f g, min 0.7, 0.5f gf g=max 0.4, 0: 5f g=0.5

Fig. 7 A fragment of the event type fuzzy taxonomy
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Assume that experts have given all the coverage degrees. Then we can summarize
our algorithm as follows: Compute the degrees of dependency between keywords on
the immediate upper level using the max-min approach. Then repeat this procedure
until the top layer.

For example, consider keywords “Technical problem” (TP) and “Operational
problem” (OP).

Then we find (cf. Fig. 7),

dependency TP,OPf g=min coverage FF, TPð Þ, coverage FF,OPð Þf g=0.5

One can further improve this model by introducing degrees of inclusion and
coverage between concepts as suggested by Holi and Hyvönen [21], and Holi [22].

2.4 Demo Architecture and Implementation

The VTT Technical Research Centre of Finland implemented the component-based
architecture using the Protégé ontology editor to maintain the fuzzy ontology in
OWL format (cf. Fig. 8). The GUI (Graphical User Interface) component guides the
user in specifying the information query, and presents the results. There are tools
for browsing and evaluating the fuzzy reasoner component directly. A database
adapter is used to access report data, which in this case was stored locally in XML
files. Similarly, an ontology adapter provides access to the fuzzy ontology, in this
case stored in OWL files.

Fig. 8 Component-based demo application architecture [33]
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The adapters help hide the different interfaces and protocols of different data
sources (e.g. SQL, HTTP) and provide transparent access via an agreed interface.
The fuzzy ontology reasoner component is used to process ontology-based infor-
mation. Its main function is to extend a list of query keywords to a list of their
closest neighbours in terms of fuzzy ontology relationships. The component
interface also provides methods for directly accessing the ontology concepts and
relationships for maintenance and evaluation purposes.

Finally, the application logic component binds all the functionality together by
taking the query, using the reasoner component to extend it, passing the extended
query to the report database and then combining and ordering the results for the
GUI. The fuzzy ontology with fuzzy concepts, relations, and instances was defined
using Protégé. The developed ontology moved to the reasoning software as a
standard OWL file. Protégé is a widely used tool for developing ontologies and
offers some advantages such as a forms-based interface for editing the basic classes
and adding the individual keywords, reports, as well as their relationships. Protégé
does not have a built-in support for modelling uncertainties, but Straccia [32]
introduced a new plug-in called SoftFacts, which is an ontology mediated top-k
information retrieval system over relational databases.

Then, in summary, we have examined the possible use of fuzzy ontologies in the
retrieval of stored reports that contain knowledge about a paper machine. Since no
well-established definitions or mature tools exist, we adopted a practical approach
—defining those constructs that we deemed necessary for adequately capturing
domain semantics, and implementing an application to test the constructs against
actual industrial data. We tested and evaluated the application with the help of
industry experts. Although the extended query tool seems to be promising, there has
been a great deal of worry about the amount of work needed for maintaining the
fuzzy ontology relationship weights.

The builders of models, algorithms and ontologies normally find the function-
ality and the use of the constructs intuitively clear and self-evident. We found out
that this is not the case for the actual users of the knowledge mobilisation tools.
Nothing is self-evident, the GUI (cf. Fig. 8) is relatively easy to explain and notes
can be added to it to guide the user; after a few iterations with the GUI it becomes
routine. The fuzzy keyword ontology is a different matter, like the application logic
and the fuzzy ontology reasoner. The users normally want to experiment with and
get an intuitive understanding of the tools they are using; in the present case, they
need guidance from the system itself. It appears that digital coaching is a possible
answer and we will explore its possibilities in the next section.

3 Digital Coaching

We tested the knowledge mobilisation potential with the fuzzy keyword ontology
using the tools described in Fig. 8. It soon turned out that we had expected too
much from the operators in the paper machine monitoring and control room—our
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perceptions of how the search for and retrieval of event reports (and reports similar
to them) could be carried out did not match with the real world handling of inci-
dents and problems. It is now apparent that we should have introduced support tools
with the system, what we now call digital coaches. The kind of support needed is
different for different parts of the system (cf. Fig. 8):

• the GUI needs operating instructions and explanations of functions: {Coachi};
• the Application logic needs advice on similarities of keywords: {Coachj};
• the Fuzzy ontology reasoner needs support on composition of search logic:

{Coachk}.

The digital coaching systems got started a few years ago as an answer to the
demand on human operators to master advanced automated systems needed to
monitor and control often complex and very large industrial process systems.
Digital coaching will work on and with data, information and knowledge that is
collected from digital devices, instruments, tools, monitoring systems, sensor sys-
tems, software systems, data and knowledge bases, data warehouses, etc. and then
processed to be usable for the digital systems that will guide and support users.
Digital fusion is key to the processing and operates in three phases (cf. [11, 13–15]:
data, information and knowledge fusion.

Data fusion is the first step; a function that combines multiple tuples is called a
fusion function and the standard, rather simple operation is a fusion of data attri-
butes. The traditional way is to define some ordering relation a priori and then to
keep it updated for continuous use; maintenance is challenging for big, fast data,
which is why we want automatic support in modern industrial applications. A better
than the traditional way is to construct order relations automatically when the data
attributes to be fused are inspected.

Data fusion builds data sets (or families of data sets). The next step is to extract
process information from the (often big) data sets with analytics methods such as
data mining, statistical analysis, machine learning, computational intelligence,
visualization, etc. The process is continued with analytical techniques to fuse sets of
information to more meaningful summary information—information fusion (cf.
Carlsson et al. [13–15]). Some early research results show that information fusion
reduces the uncertainty in (social) big data by extracting key (valid, relevant)
factors, cleaning out outliers, high-lighting illogical assumptions, etc. (cf.
Morente-Molinera et al. [30, 31]).

Knowledge fusion builds on first data fusion, then information fusion. Knowl-
edge fusion applies taxonomies or ontologies—in the D2I industry/university
research program (Tekes 340/12) fuzzy ontology was developed and used to detect,
identify and deal with recurring problems in pump valve packages (Carlsson et al.
[13–15]). Automated knowledge builds on natural (or near-natural) language pro-
cessing, information extraction with analytics tools, information integration (or
federation), computational intelligence (soft computing, evolutionary computation,
swarm intelligence, intelligent agents, etc.) (cf. Morente-Molinera et al. [30, 31]).
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With the proposed basis in digital fusion, we can then look for theory and
technology constructs that could be used for the digital coaches.

One of the approaches to virtual coaches builds on the emerging technology of
embodied conversational agents (ECA’s). ECA’s are animated virtual characters,
displayed on a computer or a mobile device screen. ECA’s play the roles of
teachers, mentors, advisors, social companions, and, increasingly, of virtual coaches
(cf. Hudlicka [23]). The ECA’s engage in natural interaction with humans through
dialogue and non-verbal expression which requires minimal or no training; we will
probably not be aided by animated virtual characters but the core agent constructs
may be useful for the digital coaching when working on data and information
fusion material. With some quick sketching we could work with the following setup
and functionality: the {Coachi} family will guide users in menu hierarchies and
functions of the GUI.

The virtual trainer systems are becoming popular as supporting services to
fitness and wellness applications; they are typically identified as three classes
(i) smart phone applications, (ii) sensor devices, and (iii) image processing devices.
Sensor data and images are collected and processed through data fusion, which can
be a low level implementation that builds on fast, efficient process monitoring. In
our present context, this could be used for working out the parameters needed for
the Markov processes (cf. Sect. 3.1). The “trainer” gives feedback on the progress
of the exercise and offers summary post exercise data for learning and for moti-
vation to keep up the exercises; thus the virtual trainer type of coaching would be
useful also for the GUI support.

3.1 Coaching with Markov Decision Processes

Fern et al. [18] work out a theory base for personalised AI systems that work as
personal assistants to support human users with tasks they do not fully know how to
carry out. This type of technology has gained much attention in the last 10 years
because of the growing use of automated systems with intelligent functions. Fern
et al. [18] work out a model where the assistant (an AI system) observes the user
(represented as a goal-oriented agent) and must select assistive actions from a
closed set of actions in order to help the user achieve his goals.

The interesting thing is that this functionality builds on a decision-theoretic
model, which is worked out with partially observable Markov decision processes
(POMDPs). Fern et al. [18] work out variations of these Markov processes to get a
formal basis for designing intelligent assistants. A specific case is the hidden goal
Markov decision processes (HGMDP) that are designed to cover the application
environment and the user’s policy and hidden goals. The HGMDP is a tuple < S,
G, A, A’, T, R, π, IS, IG > , where S is a set of states, G is a finite set of possible
user goals, A is a set of user actions, A’ is a the corresponding set of assistant
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actions, T is a transition function that decides the transition from s to s' (element of
S) after the user takes action a (element of A) towards a goal g (element of G); R is
a reward function for both the user and the assistant, π is the user’s (optimal) policy
mapping to the context, and IS the initial and IG the goal states. Markov processes
are generic constructs that can be used to describe complex processes in a fairly
compact form. The digital coaching, we want to build, appears not to be neither an
POMDP nor an HGMDP because (A, A’) are not stochastic but decided by the
application logic and the fuzzy ontology reasoned; the R could be a (fuzzy) distance
function.

Some useful constructs build on the Fern et al. [18] theoretical framework. The
first is a special case where the assistant’s policy is deterministic for each specific
goal. This opens up for the use of an optimal trajectory tree (OTT) where the nodes
represent the states of the MDP reached by the prefixes of optimal action sequences
for different goals starting from the initial state. Each node in the tree represents a
state and a set of goals for which it is on the optimal path from the initial state. The
size of the optimal trajectory tree, which needs to be reasonably compact for
computational purposes, is bounded by the number of goals times the maximum
length of any trajectory, which is at most the size of the state space in deterministic
domains. This gives some hints at what constructs to look for when trying to work
out the {Coachj} and {Coachk} families.

Another interesting result is the approach to solve the problem of selecting an
assistive action. For an HGMDP Fern et al. [18] work out a combination of
bounded look-ahead search and myopic heuristic computations (selecting an action
that has the highest probability of being accepted). By increasing the amount of
look-ahead search, the actions returned will be closer to optimal at the cost of more
computation; for many HGMDPs the useful assistant actions can be computed with
relatively little or no search.

We will need some constructs to learn (e.g.) an HGMDP while interacting with
the context, i.e. the assistant (when implemented as {Coachj} and {Coachk}) should
follow how the user interacts with the context and learn the user’s policy and goal
distributions. These constructs would be useful when the assistant is called upon
many times for the same construct (quite often at irregular intervals) by the same
user; a further extension would be for the assistant to start from basic constructs
obtained with one user and then to learn another user’s policy and goal distribu-
tions. The classical approach is to use Maximum Likelihood estimates of the user’s
policy distributions from continuous follow-ups and combine that with estimates of
the goal attainment (e.g. as fuzzy distances). Another approach that Fern et al. [18]
propose is to use an MDP model of the context and bootstrap the learning of the
user policy. This would be useful if the user is near optimal in his policy choices
and will likely select actions that are near optimal for a selected goal and an actual
context.
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3.2 Coaching with Virtual Environments

Fricoteaux et al. [19] work out the use of virtual environments for fluvial naviga-
tion; these environments offer training in easily modifiable environmental condi-
tions (wind, current, etc.), which have impacts on the behaviour of a ship; fluvial
navigation would in our context be applied to quickly occurring and changing
problem situations. The main difficulty in fluvial navigation is to anticipate
manoeuvres and the variability of the conditions of the environment. It is interesting
to note that the formal framework to represent and support the decision-making
system builds on classical Dempster-Shafer theory in order to take account of
uncertainty. Unlike the theory of probability, the DS-theory allows for explicit
modelling of ignorance. This can be combined with directed graphs to represent
influences between variables; if the inference is probabilistic, Bayesian networks
can be used; with belief functions there are evidential networks with conditional
belief functions (ENCs). Then in turn, ENCs have been generalised by evidential
networks with conditional belief functions (DEVNs), etc.—thus there appears to be
constructs available to apply to the building of digital coaches. The remaining
challenge appears to get it done.

Bloksmal and Struik [4] work out a program for coaching farmers using human
health as a metaphor for farm health, which helps both them and the farmers to gain
an understanding of the issues that are crucial for improving the processes and the
productivity of a farm (which may be far from our context of paper machines). The
coach and the farmer together work out the course of life of the farm, they learn
from what has happened in the history of the farm and translate images of possible
futures into the current state of the farm (not unlike tracing possible consequences
of incidents or problems in parts of the paper machine). The coach operates like a
physician—“alternatingly observing the diseased part and the whole being of an ill
person”—and by referring to this metaphor, opens up similar mechanisms for what
may be wrong with the farm (cf. parts of a paper machine). If done skilfully, it will
show to what extent the farm resembles a living and healthy entity and the farmer
will get new ideas on how to improve “the living farm organism” (cf. the interaction
of parts and the operational characteristics of the paper machine). The use of
metaphors takes out the blame from the narrative; the farmer (cf. the paper machine
operator) will not feel that the coach blames him for having done something wrong.

Bloksmal and Struik [4] show that the process to find and describe the identity
and key processes of a farm is not easy; they use a narrative method—the coach
listens to discover the drama behind the facts. This approach could work for our
digital coaching of knowledge mobilization—i.e. the event reports search and
retrieval tools could be good representations of the “drama behind the facts” and
help to get difficult problems resolved.

The digital coaching is an obvious response to the introduction of advanced and
complex analytical tools, which will be needed to cope with the complexities of
large, automated industrial processes. The state-of-the-art seems to show that there
are fruitful issues for effective research.
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4 Summary and Future, Next Scenarios

The theory framework built by and for the classical Operations Research and
Management Science since the early 1950s is now in a process of transformation by
(Business) Analytics, which is getting the attention of major corporations and senior
management. The research groups working on fuzzy multiple criteria optimisation
have been part of this process and have specialised in working out and using
analytics methods, which implement soft computing theory and algorithms. This
has turned out to be very effective and useful for planning, problem solving and
decision making in “big data” environments; the “big data” is one of the challenges
of the modern digital economy and for which we propose that fuzzy sets would
offer instruments for breakthrough research.

Analytics adds value to management; it promotes data-driven and analytical
decision-making and “reinvented” fact-driven management. Analytics builds on
recent software improvements in information systems that has made data, infor-
mation and knowledge available in real time in ways that were not possible for
managers only a few years ago (Davenport and Harris [17]).

In the context of the digital economy, common wisdom finds that real-time
management is a necessity as operations should be planned and carried out in a fast
changing and complex environment where careful and thoughtful management will
be bypassed by fast, innovative approaches (which may turn out to be of inferior
quality, but have then already established sustainable competitive positions). On the
other hand, as we have shown with our paper machine example, when there is a
problem in a major production process fast reaction and action are priorities; the
costs of the damage rises very quickly and can grow very large.

Real-time management is challenged by “big data” and the necessity for fast
processing using advanced analytics methods. The advanced analytics would
require postdoc-qualified managers—these are rather scarce in senior management
positions. Thus there will be a need to reinstate “coaching” functions with the
advanced analytics methods to tell/explain to the users what can/should be done,
how it should be carried out, what the results are and what they mean, and how they
should be applied (with explanations of what could/should not be done).

We have worked out a context and a scenario for digital coaching with the help
of a case description of how problems with a paper machine could be handled with
a knowledge mobilisation process. The knowledge mobilisation works on event
reports about how previous problems were solved and what the best approaches
were to finding solutions. The event reports are numerous (tens or hundreds of
thousand) and are classified with systems of keywords. The keywords are some-
times overlapping, incomplete or imprecise (“real experts will identify them”)
which made classical retrieval methods impractical and not very productive. We
developed a fuzzy ontology for keyword identification and retrieval and found out
that this approach is more productive than the classical methods. Then it turned out
that using the fuzzy ontology tools was challenging for the operators in the mon-
itoring and control room for the paper machine.
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We discussed the need for coaching in the industrial setting, but quickly found
out that it would be both expensive and impractical to try to find and use experi-
enced human coaches. The alternative is online digital coaching and we only need
to find some effective methods to build and implement digital coaches. We found
out that there are not many useful approaches offered in the literature, the closest we
could get was an elaborate framework built around Markov decision processes,
which was not actually up to the task. We will work out some possible theoretical
frameworks for the digital coaches in a coming series of papers.

We will conclude with a case story of why it will make sense to work with
analytical models even in a context, which is not recognized as a domain for
analytics. Kahneman [24] relates the case of Orley Ashenfelter, a Princeton econ-
omist and wine lover, who wanted to find a way to predict the future value of fine
Bordeaux wines from information available in the year they are made (cf. [24]). He
was of course well aware that he was stepping on the sensitive toes of
world-renowned experts who claimed that they could predict the value development
for individual wines over years to come and also in which year the wines will reach
their peak quality and highest price. The experts built their judgement on tasting the
wines and decades of experience of and insight in the wine markets; Ashenfelter
built his predictions on regression analysis and an effective use of statistics tools—
he had no possibility to actually taste the wines. Ashenfelter collected statistics on
London auction prices for select mature red Bordeaux wines 1990–1991 (sold in
lots of a dozen bottles); mature red Bordeaux were defined as vintages 1960–1969
and the wines selected came from six Bordeaux chateaux which are large producers
with a reputation to have produced high quality wine for decades—or centuries in
some cases. He thus made certain to have a large enough, consistent data set.
Ashenfelter found out that the quality of the Bourdeaux wines is decided by (i) the
age of the vintage, (ii) the average temperature over the growing season
(April-September), (iii) the amount of rain in September and August (less rain gives
better wine), and (iv) the amount of rain preceding the vintage (October-March).
These factors are well known and often repeated; they have the benefit that they are
all measurable and built on published and easily verifiable facts; Aschenfelter
collected data on the vintages 1952–1980 and built a regression model with the four
factors which turned out to explain about 80% of the variation in the average price
of Bordeaux wine vintages. His point is, that the future quality of Bordeaux wines
can be worked out without tasting the wines or introducing any kind of subjective
judgements. He used his models to predict the price development for new vintages
of Bordeaux (the correlation between prediction and actual prices is above 0.90)
which he has shared with a crowd of followers that are investing in promising, good
vintages. Through his models, he has found a few very good vintages that are
under-priced in the market. He and his friends have invested in these wines and
much enjoyed them.

First, we can notice that Aschenfelter made sure that he had observations on
large selections of wine over 10 years from six large chateaux—but only in Bor-
deaux in order to reduce the number of external factors that influence the wine
production but are not relevant for the key issues of his study. Second, his models
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forecast future prices (years, and even decades into the future) more accurately than
the current market prices of young wines do that build on expert estimates; this
challenges economics theory that claims that market prices (in effective markets)
will reflect all information on the products. Third, experts make judgements that are
inferior to algorithms; Kahneman (cf. [24]) argues that some reasons for this is that
experts try to be clever, to think outside the box and to work with (too) complex
combinations of features to make their predictions. Complexity may work in
specific cases but will reduce validity in most cases. There is a second point to be
made—analytics, when the proper methods are developed and used, will give
insight that intuition and experience will not be able to produce. This is a lesson
learned for the handling of problems (and sometimes disasters) in large industrial
production processes when it is claimed that the need to make (almost) real time
decisions makes it necessary to forego analytics and rely on the intuition and
experience of seasoned operators and engineers rushing to the rescue.
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