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Abstract. In this work, we address the task of multi-label classification
(MLC). There are two main groups of methods addressing the task of
MLC: problem transformation and algorithm adaptation. Methods from
the former group transform the dataset to simpler local problems and
then use off-the-shelf methods to solve them. Methods from the latter
group change and adapt existing methods to directly address this task
and provide a global solution. There is no consensus on when to apply
a given method (local or global) to a given dataset. In this work, we
design a method that builds on the strengths of both groups of methods.
We propose an ensemble method that constructs global predictive mod-
els on randomly selected subsets of labels. More specifically, we extend
the random forests of predictive clustering trees (PCTs) to consider ran-
dom output subspaces. We evaluate the proposed ensemble extension
on 13 benchmark datasets. The results give parameter recommendations
for the proposed method and show that the method yields models with
competitive performance as compared to three competing methods.

Keywords: Multi-label classification - Structured outputs - Output
space decomposition * Predictive clustering trees -+ Ensemble methods

1 Introduction

Supervised learning is a very actively researched area of machine learning. Its
goal is to learn models able to provide predictions for previously unseen examples
of data. Single-target prediction scenarios are very common and applicable in
many domains. However, not all solutions to problems can be fitted into one
predicted variable. It is very possible that a more complex representation of the
data is needed. This is a challenge because it requires methods to predict more
than one variable of interest. In that sense, we move towards structured output
prediction (SOP) tasks. Examples of SOP tasks are MT regression (MTR), multi-
label classification (MLC), time series prediction etc.

This work focuses on solving the MLC task where a given example can be
annotated with one or more labels. For instance, a gene could have more than
one function, an image can contain different objects, a document can belong
to several categories, a disease can manifest with multiple symptoms, etc. This
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particular area of research attracts the attention of the community due to the
increasing number of possible applications in various domains (multimedia, biol-
ogy, medicine, semantic web, legislation,. .. ). Traditional MLC approaches con-
sider individual labels separately, i.e., they are local and transform the dataset
into multiple single-label datasets (a dataset for each label) and then solve the
multiple single-label tasks with off-the-shelf methods. The key observation here
is that such approaches assume that labels are not related: If label relations exist,
these approaches are not able to take advantage of their knowledge. Therefore,
MLC approaches should be global and exploit potential relations between labels
to produce more accurate models.

Notwithstanding, given a dataset, it is not clear which type of method one
should use: a local or a global. There is no consensus on this issue [6]. On some
datasets, it is preferable to use local, while on other global methods. Having
this in mind, we believe that the best method should combine the advantages
of both groups. We hence propose a method for MLC that randomly samples
the output/label space and learns global models for the sampled label space.
Furthermore, we combine the multiple models into an ensemble.

Output space selection and transformation methods already exist in the
scope of MLC. One of the most well-known methods is Random k-Labelsets
(RAKEL) [8]. It is a problem transformation method as it constructs an ensem-
ble of ST classification models to solve the task of MLC. It does so by selecting
random subset of labels (size is determined by the k parameter) for each base
model. RAKEL then builds a powerset of the selected subset of labels and trains
a ST classification model on it. This approach has been extended towards data-
driven partitioning of the label space, which is achieved by using community
detection algorithms from social networks [7]: These find better label subspaces
as opposed to randomly selecting them. Another data-driven approach uses label
hierarchies obtained by hierarchical clustering of flat label sets by using anno-
tations that appear in the training data [5]. Finally, a dimensionality reduction
method that uses random forests with Gaussian subspaces has been proposed [3].
This method also belongs to the algorithm adaptation group. It reduces the out-
put space by making random projections of the output space into a new space
which represents a highly compressed version of the original label space.

2 MLC Using Random Label Subset Selections

The proposed method is based on the predictive clustering (PC) framework.
More specifically, we use predictive clustering trees (PCTs) that can be seen as
a generalization of decision trees for the task of structured output prediction.
The standard top-down induction of decision tree (TDIDT) algorithm is used to
generate PCTs. The pseudo code for the randomized PCT induction algorithm
(RPCT) is shown on the left side of Table 1 and it takes the following inputs: (i)
a dataset S, (ii) a function d.(X) that randomly samples ¢ descriptive variables
from dataset X without replacements and (iii) a set of attributes Ry, that the
learning process should use for supervision.
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The RPCT algorithm first randomly samples from the pool of all available
descriptive attributes for the current dataset. The sampled descriptive attributes,
along with the target attributes R; provided as input, are used to calculate the
best possible split point (i.e., the best test) to use for partitioning the data
instances. After the best test is found the data are split according to it. This
process continues recursively until a stopping criterion is met and the prototype
function is invoked. We use a prototype function that returns a vector of prob-
abilities that an example belongs to the positive class for each target variable.

The test selection is handled by the BestTest function: It begins by remov-
ing the target attributes which should not be considered (Table 1, right, line 2).
TI(S, R4, R:) is a projection function that reduces the original dataset S to Sg by
only considering descriptive and target attributes from sets Ry and R, respec-
tively. All possible tests on Sg are evaluated and the one that reduces the vari-
ance the most (w.r.t. Sgr) is selected (Tablel, right, lines 3-9). The variance
calculation function is also a parameter and can be instantiated based on the
type of machine learning task we want to solve. In this paper, we focus on MLC
so we calculate the variance as the sum of Gini indices over the individual target
variables from the set A = {A1, Ao, ..., A\g} as Var(S) = 30, Gini(S, \;).

Ensembles combine the predictions of multiple predictive models to achieve
better predictive performance. Predictions for new examples are made by query-
ing base models and combining their predictions. In this section, we describe the
process of generating ensembles, where the base models are not all learned from
all available target attributes, but rather each model is learned from a (differ-
ent) subset of them. For this, we will need the parameter R; defined above. We
named this ensemble method Random Output Selections (ROS).

Regular PCTs use the whole target space to calculate the heuristic score.
The proposed ensemble approach introduces random selections in the output

Table 1. The top-down induction of randomized predictive clustering trees

Function RPCT(S, 6., R¢) Function BestTest(S, Rq, R+)

Out: A predictive clustering tree Out: Selected test t*

1: Ry — 6.(5) Out: Heuristic score h™ of test t*

2 (t*,h*,P*) « BestTest(S, Ra, Ry) Out: Partitioning P* induced by t* on S

3: if t* # none then 1: (t*,h*,P*) « (none,0,0)

4: for each S; € P* do 2: Sgp «— II(S, Ra, Ry)

5: tree; «— RPCT(S;, 6¢, Ri) 3: for each possible test ¢t in Sg do

6: end for 4: P «— partitioning induced by ¢ on Sr

7 return node(t”, (J,{tree:}) 5: h — Var(R:, Sr)  —

8: else ds,ep % Var(Ry, S;)

9: return leaf(Prototype(S)) 6: if (h > h*) then

10: end if 7: (t*,h*, P*) — (t,h, P)
8: end if
9: end for
10: return (t*,h*,P*)
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space, i.e., individual PCTs do not consider the whole target space anymore.
Each base model (PCT) is consequently learned from only those targets that
were included in the randomly generated partition R; provided to it by the
function II. The output space partitions are generated before the induction of
base models and are independent of the base model learning algorithm. The
algorithm for construction of subspaces has the following parameters: (i) the
number of base models b, (ii) a function 6, (X) that samples uniformly at random
without replacement v items from the set X and (iii) a set of target attributes
(labels) T'. ROS first creates a subspace which considers all target attributes, to
make sure that every target attribute is considered by at least one base model.
We generate the remaining b — 1 subspaces with the 6, function. We build ROS
ensembles of PCTs by using the randomized PCT algorithm (RPCT). Each base
model is learnt from different bootstrap replicate. Such perturbations of the
learning set have been proven useful in cases, where unstable base models, such
as decision trees, are used. RPCT introduces additional randomization while
learning its individual base models by considering only a subset of descriptive
attributes at each step, i.e., when selecting the best test at a given node by calling
the function §.(X) just before. In addition, ROS randomly selects a subset of
targets for each PCT in the ensemble (we refer to the method as RF-ROS).

Ensembles combine predictions of their base models. In this study, we use two
different prediction-combining techniques, i.e., aggregation functions: (i) total
averaging (i.e., the most commonly used voting technique) and (ii) subspace
averaging. Total averaging combines votes of the individual base models using
probability per-target distribution voting for all targets [1]. Subspace averaging
does the same, but only the labels considered during learning of the respective
base model participate in the voting.

3 Experimental Design

This section presents the experimental questions posed, benchmark datasets, the
experimental setup and the evaluation measures used. We designed the experi-
mental evaluation having the following research questions in mind:

1. What is the recommended label subspace size for RF-ROS ensembles?

2. Does it make sense to change the aggregation function, i.e., can subspace
averaging improve the predictive performance of RF-ROS models?

3. Considering predictive performance, how do RF-ROS ensembles compare to
other competing methods?

We use 13 publicly available benchmark datasets: Emotions, Scene, Yeast,
Birds, TMC 2007, Genbase, Medical, Enron, Mediamill, Bibtex, Bookmarks,
Corel 5k, and Delicious. The datasets vary in terms of number instances, descrip-
tive and target attributes. More details about the datasets are available at the
MULAN repository (http://mulan.sourceforge.net/datasets.html).

To evaluate the performance of the RF-ROS, we generated ensembles with

different output space sizes: v €(%, %, %, V@, 1og q) with ¢ the number of labels.
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We also experimented with two aggregation functions: total and subspace
averaging. We then compare the performance of RF-ROS with the perfor-
mance of: (i) Random forests of standard PCTs (RF-PCT) [4], (ii) Random
k-Labelsets (RAKEL) models [8] and (iii) Random forests with Gaussian sub-
spaces (RF-Gauss) [3].

RF-PCT and RF-ROS ensembles used 100 PCTs (ensembles are typically
saturated at that point) and descriptive space size v = [0.1 - ¢| + 1 [4]. The
trees in the ensembles were not pruned [1]. For RAKEL models, the k parameter
(size of labelset) was set to ¢/2 and the number of models to min(2q, 100). A
support vector machine (SVM) classifier was selected as a learning algorithm
within RAKEL, with a linear kernel and a complexity constant C' = 1. In RF-
Gauss, the number of Gaussian subspace components was set to log g. The other
RF-Gauss parameters were set to Ny, = 1 and k = /g [3]. The statistical
evaluation of the results was performed according to the guidelines of Demsar [2].
All statistical tests on the predictive performance values were conducted at the
significance level a = 0.05 (using three decimal places).

In order to determine the predictive performance of the induced models,
we empirically evaluate them according to 12 different measures that belong to
two groups: example and label based measures. The example based measures
considered are: hamming loss, accuracy, precision, recall, F1, subset accuracy.
The label based measures considered are: micro/macro precision, micro/macro
recall, micro/macro F1 [6]. Results in terms of different measures lead to the
same conclusions: In order to conserve space, we present only results for the
example based measures F1 (more is better) and Hamming loss (less is better)
in Table 2.

Table 2. The performance of the considered methods in terms of the example based
measures F1 and Hamming loss. DNF (did not finish) denotes algorithms that did not
produce results. The numbers in bold denote best performance on a dataset.

Example based F1 Hamming loss
RF-ROS RF-ROS
Z O] 7 V]
I I

[ % @) 1 o — % O 0 ]
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< < B3 3 < = y 3 2

Name ~ ~ ~ = n ~ ~ Jas = n

Emotions 0.637 0.534 0.574 0.582 0.588|| 0.205 0.2 0.197 0.196 0.198
Scene 0.681 0.413 0.574 0.558 0.591|| 0.098 0.111 0.09 0.093 0.088

Yeast 0.64 0.573 0.587 0.583 0.602 0.2 0.199 0.198 0.198 0.199
Birds 0.658 0.51 0.566 0.556 0.579 0.05 0.048 0.044 0.044 0.043

TMC 2007 0.81 0.992 0.908 0.902 0.926|| 0.033 0.001 0.015 0.016 0.012
Genbase 0.996 0.991 0.981 0.981 0.986(|0.001 0.001 0.002 0.002 0.001
Medical 0.789 0.515 0.673 0.669 0.683|| 0.01 0.016 0.013 0.013 0.012

Enron 0.562 0.508 0.527 0.518 0.559|| 0.049 0.047 0.046 0.046 0.045
Mediamill DNF 0.545 0.549 0.547 0.541|| DNF 0.03 0.03 0.03 0.032
Bibtex DNF 0.173 0.211 0.209 0.305|| DNF 0.014 0.013 0.013 0.013
Bookmarks DNF 0.2 0.206 0.203 0.175|| DNF 0.009 0.009 0.009 0.009
Corel DNF 0.018 0.007 0.009 0.089|| DNF 0.009 0.009 0.009 0.01

Delicious DNF 0.237 0.194 0.193 0.202|| DNF 0.018 0.018 0.018 0.021
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4 Results

The proposed method has two degrees of freedom: target subspace size and aggre-
gation function. Figurel shows the performance of RF-ROS on four datasets
with various label and example counts. The plots for each dataset also show
the point (total averaging, 100% target space, always the rightmost data point)
which represents the performance of the RF-PCT model on that dataset. The
results suggest that subspace averaging outperforms total averaging (especially
for subset sizes below 50%). Moreover, the two aggregation functions exhibit
inverse behavior w.r.t. the target subspace size. Total averaging performs better
with larger target subspaces while subset averaging is better for smaller ones.
When the target subspace size increases, both variants converge to a perfor-
mance similar to that of the original RF-PCT method. This behavior is expected
because larger subset size leads to larger overlap between the set of all target
variables and its subsets.

We also observe that the performance of models with different aggregation
functions converges at different rates. Although we observe convergence towards
RF-PCT on all datasets, we speculate that the convergence rate is dataset depen-
dent. For instance, on the Delicious dataset, both variants already converge with
a target subspace size of 25%. On the Bibtex dataset, this number is a bit higher
(50%) and on the Yeast and Scene datasets even higher (75%).

Delicious (983T) Bibtex (159T) Yeast (14T) Scene (6T)
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Fig. 1. Example based F1 results for Delicious, Bibtex, Yeast and Scene datasets.

Figure2 shows average rank diagrams that confirm our speculations.
Figures2a and ¢ show some statistically significant differences, so we recom-
mend a larger subspace size (v = %) with total averaging. Figures2b and d do
not show any statistically significant differences between the considered RF-ROS
variants. Nevertheless, we recommend using the smallest evaluated subspace size
(v =log q) to be used with subspace averaging, as this is most efficient.

We compared the model performances of RF-ROS variants using these rec-
ommended parameters to the performance of RF-PCT, RAKEL and RF-Gauss
(Fig. 3). The diagrams do not show any statistical significance in terms of F1.
It is immediately visible that RAKEL performs very well. Although it did not
finish on five datasets, it can still be considered a serious competitor on datasets
with smaller label spaces. However, its predictive performance comes at a high
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Fig. 2. Average rank diagrams of the RF-ROS variants (F1 and Hamming loss).

computational cost. This method is hindered by the fact that it uses label pow-
ersets and SVMs to generate models which makes the running times of RAKEL
substantially longer. RAKEL is not a clear winner w.r.t. the average rank dia-
grams because the method was penalized for not finishing. If we take RAKEL out
of consideration, the average rank diagrams in Fig. 3 suggest that the proposed
method performs at least as well as the competition.

RF-ROS-Sub-LOG is ranked better than RF-PCT in terms of F1 and equally
ranked in terms of Hamming loss. RF-ROS-Tot-75 also performs well in terms
of Hamming loss measure but is ranked last w.r.t F1. Moreover, we observe that
RF-ROS-Sub-LOG is ranked better than RF-Gauss and RAKEL.

Here, we summarize the answers to our experimental questions. Regard-
ing the recommended label subspace size, RF-ROS should be instantiated with
v = log q. It could be beneficial to use a slightly larger subspace size on datasets
with larger label spaces (i.e., v € (/q, %)). Next, subspace averaging should be
preferred, because total averaging seems to degrade the predictive performance
of the models and (with larger label subspace sizes) converges to the performance
of the original method (RF-PCT). Note that even if we do not use the optimal
value for the subspace size, the performance of RF-ROS is lower-bounded by

Critical Distance = 1.69183 Critical Distance = 1.69183

3 b 3 2 ! 3 4 3 2 !
‘ —
RF-ROS-Sub-LOG RF-PCT
RAKEL RF-ROS-Sub-LOG
RF-Gaussian-Subspace RE-PCT RAKEL RF-ROS-Tot-75
RF-ROS-Tot-75 RF-Gaussian-Subspaces

(a) Example based F1 (b) Hamming loss

Fig. 3. Average rank diagrams for RF-ROS and its competitors.
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RF-PCT. Finally, RF-ROS ensembles perform well compared to the competi-
tion, which especially holds for the RF-ROS-Sub-LOG variant.

5 Conclusions and Future Work

We have proposed and evaluated a novel ensemble method for ML.C, namedRF-
ROS, that uses subsets of the label space to induce base models. We have exper-
imented with different subspace sizes and two voting mechanisms, and found
that the proposed method improves random forest models with PCTs as base
learners. We have also shown that the proposed method generates models that
performs equally well or better than the competition.

Future work is planned that will include evaluation against models gener-
ated by additional MLC methods. We will also add experiments on additional
datasets. Next, we would like to try a new aggregation function where we would
include predictions of the default model (i.e., predictions on the whole training
set). We would also like to include out-of-bag errors to estimate the quality of
individual base models and use this in conjunction with the mentioned aggre-
gation function. Finally, a possible direction for future work is the extension of
label subspace generation process that would work for hierarchies.
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