On a New Competence Measure Applied
to the Dynamic Selection of Classifiers Ensemble

Marek Kurzynski®) and Pawel Trajdos

Department of Systems and Computer Networks,
Wroclaw University of Science and Technology,
Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

marek.kurzynski@pwr.edu.pl

Abstract. In this paper a new method for calculating the classifier com-
petence in the dynamic mode is developed. In the method, first decision
profile of the classified object is calculated using K nearest objects from
the validation set. Next, the decision profile is compared with the sup-
port vector produced by the classifier. The competence measure reflects
the outcome of this comparison and rates the classifier with respect to
the similarity of its support vector and decision profile of the test object
in a continuous manner. Three different procedures for calculating deci-
sion profile and three different measures for comparing decision profile
and support vector are proposed, which leads to nine methods of compe-
tence calculation. Two multiclassifier systems (MC) with homogeneous
and heterogeneous pool of base classifiers and with dynamic ensemble
selection scheme (DES) were constructed using the methods developed.
The performance of constructed MC systems was compared against seven
state-of-the-art MC systems using 15 benchmark data sets taken from
the UCI Machine Learning Repository. The experimental investigations
clearly show the effectiveness of the combined multiclassifier system in
dynamic fashion with the use of the proposed measures of competence
regardless of the ensemble type used.

Keywords: Multiclassifier system - Dynamic ensemble selection - Mea-
sure of competence

1 Introduction

In the last two decades, multiclassifier (MC) systems which combine responses
of set of classifiers have been intensively developed. The reason is that different
classifiers offer complementary information about the object to be classified and
therefore MC system can achieve better classification accuracy than any single
classifier in the ensemble.

MC system has three general phases [2]: (1) generation in which the training
set is used to generate a pool of classifiers; (2) selection in which a single clas-
sifier (or an ensemble of classifiers) is selected to perform the classification; (3)
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combination (or integration) in which the final decision is made based on the pre-
dictions of the classifiers. It must be noted that selection and integration phases
may be facultative, since for the classifier combination two main approaches used
are classifier fusion and classifier selection [13]. In the first method, all classifiers
in the ensemble contribute to the decision of the MC system, e.g. through sum
or majority voting [11]. In the second approach, a single classifier is selected
from the ensemble and its decision is treated as the decision of the MC system.
The selection of classifiers can be either static or dynamic. In the static selec-
tion scheme, classifier is selected for all test objects, whereas dynamic classifier
selection (DCS) approach explores the use of different classifiers for different test
objects [6].

Recently, dynamic ensemble selection (DES) methods have been developed
which first dynamically select an ensemble of classifiers from the entire set
(pool) and then combine the selected classifiers by majority voting [3,4,12,18].
In this way a DES based system takes advantage of both selection and fusion
approaches. In most methods, the base classifiers are selected from the pool on
the basis of their individual accuracy measure called competence in a local region
of the feature space. These methods differ in algorithms for determining classifier
competence and ways of defining the local regions.

In [23] two methods were proposed where the local accuracy (competence) of
classifier is calculated as a simple percentage of correct classified samples from
the validation set. In the first method called OLA (overall local accuracy), local
accuracy is calculated in the region containing K-nearest validation objects of a
test object. Whereas in the LCA (local class accuracy) method, classifier compe-
tence is determined considering only these validation objects from the K-nearest
neighbors set which belong to the same class into which an unknown object is
assigned. In [20-22] two methods using probabilistic model were developed. The
idea of the first method is based on relating the response of the classifier with
the response obtained by random guessing. The measure of competence reflects
this relation and rates the classifier with respect to random guessing in a contin-
uous manner. In this way, it is possible to evaluate a group of classifiers against
a common reference point. Competent (incompetent) classifiers gain with such
approach meaningful interpretation, i.e. they are more (less) accurate than the
random classifier. In the second method, first a randomized reference classifier
(RRC) is constructed which, on average, acts like the classifier evaluated. Next
the competence of the classifier evaluated is calculated as the probability of cor-
rect classification of the respective RRC. T'wo interesting methods called A priori
and A posteriori selection scheme was presented in [9]. In the A priori method,
a classifier is selected based on its accuracy within the local region, without con-
sidering the class assigned to the unknown pattern. Similarly, in the A posteriori
method, local accuracies are estimated using the class posterior probabilities and
the distances of the samples in the defined local region. In [17] an interesting
ranking-based approach to determine competence measure was proposed. In the
method the ranking of base classifiers is done by estimating parameters related
to the correctness of the classifiers in the pool. An interesting method called
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MCB (Multiple Classifier Behavior) was proposed in [10]. In this method the
competence is defined as the classification accuracy calculated for a subset of a
validation set which is generated as follows. First, the MCB is calculated for a
test object and its K-nearest validation objects as a vector whose elements are
class labels assigned by all classifiers in the ensemble. Next, similarity between
the MCB'’s are calculated using the averaged Hamming distance. Finally, the
objects in the validation set that are the most similar to the test object are used
to generate the subset. The original KNORA-Eliminate (KE) method belonging
to the category of oracle-based methods was proposed in [12]. The oracles are
represented by the K-nearest neighbors of the unknown pattern in the validation
set and the KE method selects only those classifiers which are able to recognize
the entire K-neighborhood of the test pattern.

In this paper a new method for calculating the classifier competence in the
feature space is presented. In the proposed method, first the so-called decision
profile of the classified object is determined using K-nearest validation objects.
The decision profile provides the chance that the recognized object belongs to
the specified class. In the probabilistic model the natural concept of decision
profile is based on a posteriori probabilities of classes at the point x. Next, the
decision profile is compared with the response produced by the classifier (support
vector or values of discriminant functions) [7] and the competence is calculated
according to the similarity rule: the closer the response to the profile is, the more
competent the classifier is [14,15]. Three different procedures for calculating a
decision profile and three different measures for comparing the decision profile
and the support vector are proposed in this study.

In a nutshell, originality of the proposed approach consists in a different use of
the validation set. In the state-of-the-art-methods described above, the validation
set is directly used for calculating local accuracy of a classifier (i.e. its local com-
petence) via ranking-based, accuracy-based, probabilistic-based, behavior-based
and oracle-based measures. However, in the proposed method, validation set is
used for evaluating the classification profile of the test point and competence of
the classifier is determined by similarity of its response to this evaluation.

The paper is divided into four sections and organized as follows. In Sect. 2 the
measures of classifier competence are presented and two multiclassifier systems
using proposed measures of competence in a dynamic fashion are developed. The
performance of proposed MCS’s were compared with seven multiple classifier
systems using 15 datasets taken from the UCI Machine Learning Repository.
The results of computer experiments are described in Sects. 3, and 4 concludes
the paper.

2 Multiclassifier System

2.1 Preliminaries

In the multiclassifier (MC) system we assume that a set of trained classifiers
U = {11,va,...,19r} called base classifiers is given.
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A classifier ¥ is a function ¥; : X — M from a metric feature space
X C R¥™ to a set of class labels M = {1,2,..., M}. Classification is made
according to the maximum rule

Yi(z) =i & dy(x) = ]Hé%{ dj(z), (1)

where [dj1 (), di2(x), ..., diar(x)] is a vector of class supports (classifying func-
tion) produced by ;. Without loss of generality we assume that dj;(z) > 0 and
Zj dij(z) =1

In this paper, we propose MC systems which use a dynamic ensemble selec-
tion scheme and trainable combining methods based on a competence measure
c(¢y|x) of each base classifier (I = 1,2, ..., L) evaluating the competence of classi-
fier ¢; at a point z € X. Competence measure is normalized, i.e. 0 < ¢(¢y]x) < 1.
e(i]z) = 0(1) denotes the most incompetent (competent) classifier ;.

For the training methods of combining the base classifiers, it is assumed that
a validation set

V={(z1,1), (2, 42), ..., (N, jn)}; zk €X, jk €M (2)
containing pairs of feature vectors and their corresponding class labels is
available.

2.2 Measure of Competence

K-neighborhood. Let first introduce the concept of K-neighborhood of object
x € X which is defined as the set of K nearest neighbors of the point = from
validation set V), viz.

Sk(@) ={Tn,, Tny, - Tny, EV:

< —
s o, —all < i [l — ]} ®)
where || - || denotes the distance in the feature space X. The neighborhood size

K is a parameter of the method — its value can be selected experimentally.

Decision Profile. Decision profile of object z € X

3(x) = [61(2), 8a(), ..., Sr(w)], b;(x) 20, Y 6;(x) =1 (4)

J

denotes the vector of normalized values where the jth value §;(z) is interpreted
as a measure of chance that object 2 belongs to the jth class (j € M). In the
probabilistic model the natural value of 0;(x) is a posteriori probability of jth
class at the point z.

We propose the following methods for calculating decision profile at the point
z using its K-neighborhood.
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The Fraction-based Method (FM)

In this approach, 6;(z) is calculated as the fraction of objects from the jth class

in the set Sk (). Let M;K)(x) be the number of validation objects from Sk (z)
belonging to the j-th class. Then

M) ()
0j(w) =~ jEM. (5)

The Ranking-based Method (RM)

In the RM method 0;(x) is equal to the normalized sum of ranks of objects
belonging to the jth class in the set Sk (). Let r(xy) be the rank of validation
object xp € Sk (x). The nearest neighbour has the rank equal to K, the rank of
the furthest neighbor is equal to 1. Then

rj(z) = > r(ak) (6)
25 €Sk (2):jr=J

is the sum of ranks of validation objects from the K neighborhood of x belonging
to the jth class. And next

5j(a) = 3T )

The Potential Function Method (PM)

Let H(z,x;) be a non-negative potential function [16] decreasing with the
increasing distance between x and x. In this study, a Gaussian potential func-
tion with the Euclidean distance is used:

H(z, ) = exp(—||z — zx]|?). (8)

Then, we can calculate J;(z) as a normalized sum of potential functions (8) for
objects belonging to the jth class from the set Sk (x), namely:

szGSK(z):jk:j exp(—||x - xk‘|2)
Zje/\/t Zxkes,{(g;);jk:j exp(—||z — zx|[?)

dj(x) = 9)

Distance Between Decision Profile and Vector of Supports. In order to
evaluate ¢, at x and determine its competence ¢(1);|x), we must compare decision
profile d(x) and vector of supports d;(x) and calculate distance dist[d(x), d;(x)].
Competence measure is a normalized function of this distance decreasing with
the increasing distance between 6(z) and d;(z). In particular, ¢(¢;|x) is equal to
1 (0) if distance is equal to 0 (is the greatest one).

We propose three different methods for calculating distance dist[d(z), d;(z)]
and the resulting measures of competence.
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Euclidean Distance (ED)
We adopt the Euclidean distance

dist[(6(x), di(x)] = ||6(x) — di()]| (10)
and hence we get

V3 - |15(z) - di(a)l|

0(1#1\35) = \/§

Maax-Mazx Distance (MD)

Let 7 be the class number for which classifier i; produced the greatest support
value at the point z (i.e. di;j(x) = maxge m(dix(2))). Similarly, let ¢ be the class
number with the greatest value in the decision profile §(z) at z. Then, the max—
max distance is defined as:

dist[(6(x), di(x)] = |dij(x) = 6;(x)] + |dui(x) = 6i(x)]. (12)
Hence we have the following formula for competence measure:

2 — |diy(2) — 6;(2)| + |dus(2) — 6i(2)|

c(hilz) = 5

(13)

Hamming Distance (HD)

N

Let h(y(x)) = [j1, s - - - dag) and h(x) = [, - -, jns) be the vectors of class
numbers ordered according to the decreasing values of supports produced by ;
at « and decision profile of z, respectively. Distance between d;(z) and §;(z) is
defined as the Hamming distance between vectors h(v¢;(z)) and h(x), namely

dist[(6(x), di(z)] = Du[h(¢i(x)), h(x)]. (14)
Hence we get the following form of competence measure

M — Dylh(ta(2)), h(=))

c(ilz) = i

(15)

Example. Consider a classification problem with three classes (M = 3).
Figure 1 presents 6-neighborhood of an object = in the two-dimensional feature
space. Additional unit grid will help to determine distances between objects.
Suppose that classifier ¢ produced supports dy(z) = 0.3, da(z) = 0.6 and
ds3(z) = 0.1. Our purpose is to determine the competence c(|z) of the clas-
sifier ¢ at the point = using presented methods.

From Fig. 1 we simply get the Euclidean distances between z and validation
objects:

||‘T - le =2, H.%‘ - $2H =5, ||‘T - xSH = 2.83,

||z — z4]| = 2.23, ||z — x5|| = 3, ||z — z6]| = 3,6.
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X6 X2 | s Validation objects
Y X! Y from the 1st class
A
o Validation objects
from the 2nd class
X X5
L © _— .
<> Validation objects
from the 3th class
X3 X4
o
7
@® Classified object

Fig. 1. Illustration of Example: 6-neighborhood of an object x.
First, we calculate decision profiles for the proposed methods.
FM method:

M® =2 M =3 M =1 and hence 6, (x) = 1/3,65(z) = 1/2, 53(x) = 1/6.

(16)
RM method:
7"1("17) - 107 7‘2(1’) = 93 7”‘3(IE) =2
and hence
81 (z) = 10/21, 8y(x) = 9/21, d3(z) = 2/21. (17)
PM method:
H(z,21) + H(x,23) = 0.1354 0.059 = 0.194, H(x,x6) = 0.027
H(z,z9) + H(z,23) + H(x,25) = 0.006 + 0.108 4 0.049 = 0.163
and hence
0.194 0.163 0.027
=——=0. = —— =0424, ¢ = =0.071 1
01(®) = G3gg = 0505, 02(z) = G=eg = 0424, 9s(x) = gy = 0071, (18)

Now, using formulas (10)—(15) and calculated decision profiles (16), (17) and
(18), we can calculate competence ¢(t|x) of classifier ¢ at the point . Results for
all combination of calculating decision profile methods and concept of distance
between decision profile and vector of supports are presented in Table 1.

2.3 DES Systems

The proposed measure of competence can be applied in any multiclassifier system
in selection/fusion algorithm provided that the feature space X is a metric space.
In this subsection we describe two multiclassifier systems based on the DES
strategy.
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Table 1. Results of example.

Distance dist[(d(x), di(x)] | Competence c(i|x)
FM |ED | 0.197 0.86
RM 0.245 0.826
PM 0.272 0.808
FM | MD | 0.2 0.9
RM 0.347 0.827
PM 0.381 0.809
FM HD |0 1
RM 2 0.333
PM 2 0.333

Multiclassifier System with Fusion at the Decision Level (MC1). In
this system, first a subset ¥*(x) of base classifiers with the competences greater
than the random guess is selected for a given x:

U (z) = {Yu, Y2, ..., thir}, where c(Yy|z) > 1/M. (19)

The selected classifiers are combined using the weighted majority voting rule
where the weights are equal to the competences. This fusion method leads to
the following class supports (j = 1,2,... M):

T
d(MCI) ZC Yielx) [P () = 71, (20)
t=1

where |-| denotes the Iverson bracket.
The MC1 system (M) classifies  using the maximum rule:

PN (@) = i e dMY (@) = maxdM (@), (21)

Multiclassifier System with Fusion at the Continuous-Value Level
(MC2). The MC2 system is identical to the MC1 system except that selected
classifiers (19) are combined at the continuous-value level (j = 1,2,... M):

T
dM (@) =3 e(dhuelw)die 5 (). (22)
t=1
Final decision — as previously — is made according to the maximum rule:
PMD(2) = i & dfM Y (2) = maxd M (). (23)
J

The MC2 system with competence measures developed will be applied in the
experimental investigations.
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3 Experiments

3.1 Experimental Setup

The performance of the developed MC systems was evaluated in experiments
using 15 benchmark data sets. In the first experiment, the MC2 system was
evaluated using different methods for calculating decision profile (FM, RM and
PM) and different distances between decision profile and support vector (ED,
MD and HD). The methods that showed the best performance were identified.
In the second experiment, the methods identified were compared with other
competence—based MC systems. The experiments were conducted in MATLAB
using PRTools 4.1 [8]. In both experiments, the value of K = 5 x M (M denotes
the number of classes) was used as the neighborhood size.

The 15 benchmark data sets were taken from the UCI Machine Learning
Repository [1]. We selected the same data sets which were used in experimental
investigations presented in [21]. A brief description of the data sets used is given
in Table 2.

Table 2. The data sets used in the experiments.

Data set #Objects | #Features | #Classes
Blood transfusion 748 4 2
Breast cancer Wisconsin | 699 9 2
Clouds 5000 2 2
Dermatology 366 34 6
EColi 336 8
Glass 214 6
Tonosphere 351 34 2
OptDigits 3823 64 10
Page blocks 5473 10 5
Pima Indians 768 8 2
Segmentation 2310 19

Spam 4601 57

Vowel 990 10 11
Wine 178 13 3
Yeast 1484 8 10

For each data set, feature vectors were normalized to zero mean and unit
standard deviation. Two-fold cross-validation was used to extract training and
test sets from each data set. For the calculation of the competences, a two-fold
stacked generalization method was used [24]. In the method, the training set is
split into two sets A and B of roughly equal sizes. Set A is first used for the
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training of the classifiers in the ensemble while set B is used for the calculation
of the competences. Then, set B is used for the training while the competences
are calculated using set A. Finally, the competences calculated for both sets are
stacked together and the classifiers in the ensemble are trained using the union
of sets A and B (i.e. the original training set). In this way, the competences of
the classifiers are calculated for all the feature vectors in the original training
set, but the data used for the calculation is unseen during the classifier training.
The experiments were conducted using two ensemble types: homogeneous and
heterogeneous. The homogeneous ensemble consisted of 50 feed-forward back-
propagation neural network classifiers with one hidden layer and the maximum
number of learning epochs set to 80. Each neural network classifier was trained
using randomly selected 70% of the objects from the training data set. The
heterogeneous ensemble consisted of the following 11 base classifiers [7]:

— (1) linear classifier based on normal distribution with the same covariance
matrix for each class;

— (2) quadratic classifier based on normal distribution with different covariance
matrix for each class;

— (3) nearest mean classifier;

— (4-6) k-nearest neighbors classifiers with k=1, 5, 10;

— (7, 8) Parzen density based classifier with the Gaussian kernel and the optimal
smoothing parameter hop: (and the smoothing parameter hope/2);

~ (9) pruned decision tree classifier with the Gini splitting criterion;

— (10-11) feed-forward backpropagation neural network classifier containing one
hidden layer with 10 neurons (two hidden layers with 5 neurons each) and
the maximum number of learning epochs set to 80;

The performance of the systems constructed was compared with the following
seven MC systems:

1. Overall local accuracy method (OLA1) [23]. In this method the compe-
tence at a test point x is calculated as the percentage of the correct recognition
of the K-nearest validation samples of x;

2. Local class accurracy method (LCA) [23]. In this method the compe-
tence is estimated for each base classifier as the percentage of correct classi-
fications within the local region (the K neighborhood), but considering only
examples from the class as classifier gives for the unknown pattern;

3. Overall local accuracy method (OLA2) [19]. In this method the com-
petence is calculated as in OLA1 approach but validation objects from the
K-neighborhood are additionally weighted by their Euclidean distances to
the unknown object x;

4. Multiple classifier behavior method (MCB) [10]. In this method the
competence is calculated using a similarity function to measure the degree of
similarity of the output profiles of all base classifiers;

5. Oracle KNORRA-eliminate method (ORE) [12]. In this method all
classifiers are selected that correctly classify all samples in the local region
(the K neighborhood). If no classifiers are selected, the local region is reduced
until at least one classifier is selected;
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6. Randomized reference classifier method (RRC) [21]. In this method
the competence of base classifier is calculated as the probability of correct
classification of randomized reference classifier (RRC) which - on average -
acts as a modeled base classifier;

7. Random guessing based method (RGM) [22]. In this method the com-
petence is calculated in relation to the random guessing method — the classifier
is considered as competent (incompetent) if it is more (less) accurate than
the random classifier.

3.2 Results and Discussion

Classification accuracies were averaged over 5 repetitions of two-fold cross-
validation. Statistical differences in rank between the systems were obtained
using the Friedman test with Iman and Davenport correction combined with the
post hoc Holm’s stepdown procedure [5]. The average ranks of the systems and a
critical rank difference calculated using the Bonferroni-Dunn test are visualised.
The level of p < 0.05 is considered as statistically significant.

The average ranks obtained from the first experiment for the nine methods
proposed and for the homogeneous and heterogeneous ensembles are presented
in Figs.2A and B, respectively. The use of the potential function method for
calculating decision profile and max-max distance between decision profile and
support vector (PM-MD) resulted in the best average rank regardless of the
ensemble type used. The average rank of PM-MD method is significantly better
than average ranks for FM-MD, RM-MD, PM-HD, FM-HD and RM-HD meth-
ods. Methods with the Hamming distance achieved the worst average ranks
regardless of the method for calculating decision profile and the ensemble type
used. Thus, for the second experiment the PM-MD method was selected.

A
PM-ED RM-MD PM-HD RM-HD
PM-MD | FM-ED | FM-MD RM-ED | FM-HD
| I |
I T 1 T I 1 1 1
1 2 3 4 5 6 7 8
B FM-ED  FM-MD RM-MD  PM-HD
PM-MD| PM-ED | RM-ED | FM-HD | RM-HD
| | |
I I 1 1 1 1 1 1
1 p 3 4 5 6 7 8

Fig. 2. Average ranks of the MC2 systems for different methods of calculating decision
profile and different distances between decision profile and support vector for homo-
geneous (A) and heterogeneous (B) ensemble of base classifiers. The interval (thick
line) is the critical rank difference (2.991) calculated using the Bonferroni-Dunn test
(p < 0.05).
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A
PM-MD ORE RGM OLA2
MCB RRC | LCA | OLAl
I II T T 1 I 1 1 I 1
1 2 3 4 5 6 7 8
B
PM-MD ORE RGM
RRC MCB LCA OLA2 OLAl
1 1 l l| 1 ll I l ll I
1 2 3 4 5 6 7 8

Fig. 3. Average ranks of MC systems compared for homogeneous (A) and heteroge-
neous (B) ensemble of base classifiers. The interval (thick line) is the critical rank
difference (2.394) calculated using the Bonferroni-Dunn test (p < 0.05).

Table 3. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the homogeneous ensemble. The best result for each data set

is in bold.

Dataset | OLA1 |LCA | OLA2 | MCB |ORE | RRC | RGM | PM-MD
Blood 76.18 | 75.29|76.44 | 77.15|76.28 | 76.44 | 76.32 | 77.02
Breast 94.21 |93.88/94.92 |97.25 |95.29 | 97.88 | 95.94 | 97.12
Clouds 62.92 |63.15|64.22 | 65.80 | 64.00 | 63.64 | 63.82 | 65.27
Dermat | 68.88 |70.44 |69.35 | 75.28 | 72.61 | 73.91 | 71.45 | 74.82
EColi 67.62 |69.48 70.35 | 76.44 |71.43|78.01 76.22 | 77.25
Glass 50.72 | 54.22|52.83 | 69.95 | 57.86 | 67.22 | 60.28 | 67.38
Tono 83.95 |84.25|84.15 | 88.57 | 85.47 | 87.62 | 86.15 | 86.47
OptDig |81.28 | 86.55|87.12 |88.32 | 86.48 | 88.21 | 87.35 | 89.42
Page 94.92 |95.12/95.23 | 96.21 |95.80 | 96.35 | 95.05 | 95.92
Pima 65.23 | 65.55 | 64.92 | 67.48 | 65.49 | 66.30 | 65.78 | 68.52
Segment | 87.88 | 86.54 | 88.75 | 96.23 | 91.32 | 95.72 | 91.44 | 94.96
Spam 81.84 |83.57|84.21 |89.12|85.29 | 88.85 | 87.17 | 88.24
Vowel 49.92 |53.22 | 50.5 60.25 | 55.86 | 59.45 | 57.73 | 61.15
Wine 91.28 193.15/91.22 1 94.47 |89.52|95.84 | 92.78 | 96.03
Yeast 49.85 |53.22|50.81 |56.28 | 52.28 | 56.36 |55.42 | 57.27
Av.Rank | 7.26 5.68 | 6.83 1.98 3.79 | 3.06 5.05 | 2.35

The results obtained in the second experiment for the PM-MD method and
seven MC systems and for the homogeneous and heterogeneous ensembles are
presented in Tables3 and 4 and in Figs.3A and B, respectively. The system
constructed achieved the second best average ranks for both types of classifier
ensemble. The average rank of PM-MD method is significantly better than aver-
age ranks for LCA, RGM, OLA1 and OLA2 methods regardless of the ensemble

type used.
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Table 4. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the heterogeneous ensemble. The best result for each data set
is in bold.

Data base | OLA1 |LCA |OLA2 | MCB |ORE |RRC |RGM |PM-MD
Blood 75.70 |77.23|75.93 |77.43 |76.48 |78.26 | 77.58 | 78.12
Breast 95.12 195.8495.48 | 95.17 | 96.42|96.28 | 94.87 | 95.54
Clouds 74.50 |75.13|74.21 |79.27 |77.12 |79.07 |75.12 | 80.02
Dermat 93.18 193.28193.42 |96.31 | 94.82 | 96.27 | 93.88 1 95.92
EColi 82.13 | 84.55|82.86 | 84.18 | 86.12 |86.24 | 83.15 | 84.88

Glass 64.18 | 65.28 64.05 | 67.40 | 67.15 |67.35 |64.88 |67.48
Tono 82.98 |83.17[82.75 |86.12 | 85.94 | 86.95 | 83.15 86.92
OptDig 87.92 191.15|88.24 | 95.31 1 95.15 |97.43 |90.65 |97.48
Page 89.24 192.38/90.82 | 95.84 | 95.21 [96.24 |91.13 |96.18
Pima 67.21 168.8967.15 | 69.12 | 68.73 |69.45 |67.45 | 69.32

Segment | 84.02 |87.55|86.58 |96.41 |95.11 |95.32 |89.55 |97.12
Spam 88.21 |89.45|88.85 [92.1790.32 | 91.91 |90.05 91.72
Vowel 82.24 185.92|84.72 | 88.32 |83.51 |90.18 |85.77 | 89.71
Wine 95.42 196.4196.15 | 97.05 1 96.84 |97.17 |96.32 | 98.03
Yeast 55.66 | 57.05|55.51 | 56.94 |56.83 |57.79|57.12 | 57.11
Av.Rank | 6.96 | 498 6.24 | 298 | 4.16 | 2.30 | 5.87| 2.48

4 Conclusion

Nowadays, many researches have been focused on MC systems and consequently,
many new solutions have been dedicated to each of the two main approaches:
classifiers fusion and classifiers selection. In the proposed solutions the funda-
mental role plays the assessment of competence of base classifiers which is crucial
in the DES scheme and in the combining of base classifiers. In the paper a new
method for calculating the competence of a classifier in the feature space was
presented. In the proposed method, first the K-neighborhood is used to deter-
mine the so-called decision profile of a test object. The decision profile is an
evaluation of the chance that the recognized object belongs to particular classes.
Next, the decision profile is compared with the response produced by the classi-
fier and the competence is calculated according to the similarity rule. The MC
systems with DES scheme using the proposed competence measure were devel-
oped and experimentally evaluated using 15 benchmark datasets. Experimental
results showed that the idea of calculating the competence of a classifier by com-
paring its response with the decision profile of the classified object is a correct
method and leads to the accurate and efficient multiclassifier systems.
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