Context-Based Abrupt Change Detection
and Adaptation for Categorical Data Streams

Sarah D’Ettorre’ ™), Herna L. Viktor', and Eric Paquet!-?

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa K1N 6N5, Canada
{sdett026,hviktor}C@uottawa.ca, eric.paquet@nrc-cnrc.gc.ca
2 National Research Council of Canada, Ottawa, ON K1A 0R6, Canada

Abstract. The identification of changes in data distributions associ-
ated with data streams is critical in understanding the mechanics of
data generating processes and ensuring that data models remain rep-
resentative through time. To this end, concept drift detection methods
often utilize statistical techniques that take numerical data as input.
However, many applications produce data streams containing categori-
cal attributes, where numerical statistical methods are not applicable.
In this setting, common solutions use error monitoring, assuming that
fluctuations in the error measures of a learning system correspond to
concept drift. Context-based concept drift detection techniques for cat-
egorical streams, which observe changes in the actual data distribution,
have received limited attention. Such context-based change detection is
arguably more informative as it is data-driven and directly applicable
in an unsupervised setting. This paper introduces a novel context-based
algorithm for categorical data, namely FG-CDCStream. In this unsu-
pervised method, multiple drift detection tracks are maintained and their
votes are combined in order to determine whether a real change has
occurred. In this way, change detections are rapid and accurate, while the
number of false alarms remains low. Our experimental evaluation against
synthetic data streams shows that FG-CDCStream outperforms the
state-of-the art. Our analysis further indicates that FG-CDCStream
produces highly accurate and representative post-change models.

Keywords: Data streams + Categorical data - Concept drift - Context-
based change detection + Unsupervised learning - Ensembles - Online
learning

1 Introduction

Data streams, that are characterized by a continuous flow of high speed data,
require learning methods that incrementally update models as new data become
available. Further, such algorithms should be able to adapt appropriately as
underlying concepts in the data evolve over time. Explicit detection of this evo-
lution, known as concept drift, is beneficial in ensuring that models remain
© Springer International Publishing AG 2017

A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 3-17, 2017.
DOI: 10.1007/978-3-319-67786-6_1

4 S. D’Ettorre et al.

accurate and provide insights into the mechanics of the data generating process
[6]. Thus, concept drift detection has been of continuous interest to machine
learning researchers.

The majority of concept drift detection algorithms utilize statistical meth-
ods requiring numerical input [5]. However, real world data attributes are often
categorical [9]. For example, point-of-sales streams include categorical attributes
such as colour {red, green, blue} or size {small, medium, large, x-large}. Environ-
mental data attributes might contain categorical attributes like predators {eagle,
owl, fox} or land cover {desert, forest, tundra}. This prevalence of categorical
data poses a challenge for change detection researchers. Currently, the majority
of research on change detection in categorical data streams utilize error changes
in the learning system as an indicator of concept drift [9]. While these tech-
niques have proven to be reasonably successful, it remains that fluctuations in
error measures cannot be definitively attributed to concept drift alone. Relatively
few studies in the literature have examined context-based change detection in
categorical data streams [9]. In this case, concept drift is detected when changes
in the actual data distribution are observed, providing more precise information
about particular changes. This opens the door to unsupervised change detection
[9], a non-trivial task [4]. Since class information is not always available, facili-
tating unsupervised change detection broadens the spectrum of categorical data
which may be analyzed.

To this end, this paper focuses on improving the quality of knowledge extrac-
tion from evolving streams of categorical data through the use of context-based
change detection and adaptation strategies. This paper introduced the FG-
CDCStream technique, which extends the CDCStream algorithm [9], in order
to rapidly detect abrupt changes, using a fine-grained drift detection technique.
The FG-CDCStream method employs a voting-based algorithm in order to
track the evolution of the data as the stream evolves. Adaptation is improved
by ensuring that a post-change classifier is trained on a reduced batch of highly
relevant data. This ensures that the evolving classification models are more rep-
resentative of the post-change concept. Our experimental evaluation confirms
that our algorithm is highly suitable for abrupt change detection.

This paper is organized as follows. Section 2 introduces background work.
In Sect. 3, we detail the FG-CDCStream algorithm. Section4 discusses our
experimental evaluation and results. Finally, Sect. 5 presents our conclusion and
highlights future work.

2 Background

This section discusses related works in terms of measuring the similarity of cat-
egorical data and context-based drift detection.

2.1 DILCA Context-Based Similarity Measure

Categorical variables are abundant in real-world data and this fact has lead to
a large and diverse collection of proposed distance measures spanning various

Change Detection and Adaptation for Categorical Data Streams 5

fields of study, many of which arising in the context of categorical data clus-
tering. Similarity measures can be context-free or context-sensitive, supervised
or unsupervised. Context-free measures do not depend on relationships between
instances while context-sensitive measures do. Based on [4,5], distance measures
for categorical values may be classified into six groups that are not necessarily
mutually exclusive: simple matching approaches, frequency-based approaches,
learning approaches, co-occurrence approaches, probabilistic approaches, infor-
mation theoretic approaches and rough set theory approaches.

DILCA is a recent state-of-the-art similarity measure that is purely context-
based, that makes no assumptions about data distribution and that does not
depend on heuristics to determine inter-attribute relationships [8]. These prop-
erties make DILCA attractive as it minimizes bias and can be applied to a great
range of data sets with a wide range of characteristics. The DILCA similarity
measure is computed in two steps, namely context selection and distance com-
putation. Informative context selection is non-trivial, especially for data sets
with many attributes. Consider the following set of m categorical attributes:
F = {X1,X2,...,Xm}. The context of the target attribute Y is defined as a
subset of the remaining attributes: context(Y) C F/Y. DILCA uses the Sym-
metric Uncertainty (SU) feature selection method [10] to select a relevant, non-
redundant set of attributes which are correlated to the target concept in the
context.

IG(Y; X) (1)
H(Y)+ H(X)

DILCA selects a set of attributes with high SU with respect to the target Y.
A strength of the SU measure, as defined in Eq. 1, is that it is not biased towards
features of greater cardinality and is normalized on [0, 1]. Once the context has
been extracted, the distances between attribute values of the target attribute
are computed using Eq. 2:

SU(Y, X) =2

Yxceontenty) Zurex (Pyilzr) — Ply;|zr))?
dyios) = ¢ Xeconteat(v) Zarex (Pyiln) — Plyslex)) -

EXecontea:t(Y) |X|

For each value of each context attribute, the Euclidean distance between
the conditional probabilities for both values of Y is computed and summed.
This value is then normalized by the total number of values in X. The pairwise
distances computation between each of the values of Y results in a symmetric
and hollow (where diagonal entries are all equal to 0) matrix M; =|Y| x |[Y].

2.2 CDCStream Categorical Drift Detector

The CDCStream algorithm, as created by [9], utilizes the above-mentioned
DILCA method [9] in order to detect drift in categorical streams, as follows.
Consider an infinite data stream S where each attribute X is categorical.
A buffer is used to segment the stream into batches: S = {S1,Ss,..., Sn,...}.
(Note that, if the class information is present in the stream, it is removed during

6 S. D’Ettorre et al.

segmentation, thus creating an unsupervised change detection context.) The set
of distance matrices M = {My, Ms, ..., M} produced by DILCA is aggregated
to numerically summarize the data distribution of each batch in a single statistic
using Eq.3. The resulting statistic, in [0, 1], represents both intra- and inter-
attribute distributions of a batch.

2*\/2‘.fl‘2‘.’fl.' Mx, (i, §)2
Z]\/j eM =0]77.+17 1 b
extractSummary(M) = l IT}',F“XL‘) 3)

Data are analyzed in batches, by using a dynamic sliding window method.
The historical window L consists of all batch summaries, except the most recent
batch which constitutes the current window. The dynamic window grows and
shrinks appropriately based on the change status, by forgetting the historical
window and/or absorbing the most recent batch. In periods of stability, the
historical window continues to grow summary by summary. When a change is
detected, abrupt forgetting is employed and the historical window is dropped
and replaced with the current window.

As noted in [9], a two-tailed statistical test, which does not assume a specific
data distribution is required for context-based, unsupervised change detection.
To this end, Chebychev’s inequality was adopted. Formally, Chebychev’s Inequal-
ity states that if X is a random variable with mean pux and standard deviation
ox, for any positive real number k:

Pr(X = x| 2 hox) < 7 (@
In this equation, % is the maximum number of the values that may be beyond
k standard deviations from the mean. CDCStream utilizes this property in
order to warn for, and subsequently detect, changes in the distributions. Values
of k representing warning and change thresholds, are denoted by k, and k.,
respectively. These values were empirically set to k,, = 2 and k. = 3. That is, in
order for a warning to be flagged, at least 75% of the values in the distribution
must be within two standard deviations of the mean. For a change to be flagged,
at least 88.89 % of the values must be within three standard deviations of the
mean. The CDCStream adaptation method employs global model replacement.
When a warning is detected (k,), a new background classifier is created and
updated alongside the current working model. Once a change is detected (k.),
the current model is entirely replaced with the background model.

Limitations of CDCStream for Abrupt Drift Detection. A recent study
showed that CDCStream performs competitively in terms of accuracy and
adaptability, when compared to two state-of-the art algorithms with similar goals
but different structures [9]. In this prior study, the main focus was on detect-
ing gradual drifts. CDCStream does, however, have a number of limitations,
notably when aiming to address abrupt drift. Firstly, Chebychev’s Inequality is
conservative, leading to high detection delay, due to the fact that the grain of

Change Detection and Adaptation for Categorical Data Streams 7

the bound must be quite coarse. Secondly, aggregation into a single summary
statistic may have a diluting effect, depending on factors such as change mag-
nitude, duration and location, which may result in increased missed detections
and detection delays. In an abrupt drift setting, a main goal is to offer a fast
response to change. Lastly, temporal bounds on the post-change replacement
classifier training data are unnecessarily broad, potentially leading to warnings
caused by noise or minor fluctuations. This broadness could severely effect any
post-change classifications. Collectively, these limitations have the greatest effect
on the detection of abrupt concept drifts. An increased detection delay due to
the coarseness of Chebychev’s inequality or aggregation dilution would be most
detrimental in the case of abrupt drift. Since the distributions change so rapidly,
predictions based on the previous distribution would be quite erroneous. This is
more so than in the gradual change case, where the stream still contains some
instances of the previous distribution. Aggregation dilution would also be more
likely to miss changes altogether if the transition period was shorter. Finally,
introducing a new classifier that remains partially representative of the previ-
ous distribution, is unlikely to be effective in classifying the data of an abrupt
change. In the next section, we present our FG-CDCStream algorithm that
extends CDCStream to address the abrupt drift scenario.

3 FG-CDCStream Algorithm

The aims of the FG-CDCStream approach, as depicted in Algorithm 1, are
to improve detection delay and reduce missed detections of the batch-based sce-
nario and its associated aggregation. Ergo, FG-CDCStream overlays a series of
batches, or tracks, each shifted by one instance from the previous track in order
to simulate an instance by instance analysis. A detailed technical explanation
follows.

Our FG-CDCStream technique uses a dynamic list L of ¢ contiguous
batches S of fixed size n to detect a change between the current batch and
the previous batches remaining in the sliding window. To solve the grain size
problem, we employ overlapped dynamic lists deemed tracks. More formally,
FG-CDCStream uses a series of n tracks, each overlapping the previous track’s
most recent n — 1 instances. This allows a change test to be performed as each
instance is received, while incorporating the use of batches. Note that there is a
single initial delay of 2n before the first two batches may be compared.

Figure 1 displays the batch and track construction process as instances arrive.
For simplicity, this example shows only the structure of batches and tracks and
does not include responses to concept drift. Let us assume a batch size of three
instances (a batch size much too small in reality, but sufficient to understand
track construction). Until the first three instances are collected, no batches exist.
Once the third instance arrives, the first batch, represented by the purple rec-
tangle, is complete. From this point on, a batch is completed upon the arrival of
a new instance. This is demonstrated with the creation of the blue and the green
batches. Upon the arrival of the sixth instance (2n), a second batch is added to

8 S. D’Ettorre et al.

Algorithm 1. FG-CDCStream

Input: S: stream of instances, W: window size

1: Initialize trackPointer = 0, k = 0, kw = 2, k. = 3, votes = 0, votes, = 1,
votes. = 15, inst = null

2: for count =0 — W do
3: tracks.add(new change detector)
4: while hasMorelInstances(S) do
5. inst = S.nextInstance
6: buffer.add(new batch container)
7 for count =0 — buf fer.size do
8: buf fer.get(count).add(inst)
9: if buffer.size == W then
10: k = tracks.get(track Pointer).get KV alue(bu f fer.get(0))
11: if kK > k. then
12: votes + +
13: if votes == votes,, then
14: warningPeriod = true; initiate BackgroundClassifier(buf fer.get(0))
15: if votes == votes. then
16: changePeriod = true; warningPeriod = false
17: replace classifier with background classifier; nullify background classifier
18: else if k£ < k,, then
19: votes = 0
20: if warningPeriod then
21: warningPeriod = false; nullify background classifier
22: if changePeriod then
23: changePeriod = false

24: updateClassifier(inst); update BackgroundClassifier(inst)
25: if buf fer.size == W then

26: buf fer.remove(0) ;

27: update track pointer

the original purple track. Note that the track with the newest batch is shown at
the front and the least recently updated track in the rear. This process continues
until the end of the stream (or to infinity).

It should be noted that, in reality, instances are stored explicitly only until a
batch is complete. A buffer with a container for each track stores instances until
n have been collected. When a batch is complete, it is input to the corresponding
track’s change detector object, which maintains summary statistics, as described
in Eq. 3. That track’s buffer is then cleared and the main algorithm begins build-
ing its next batch upon the arrival of the next instance. The appearance of the
next instance fills a batch belonging to the next track and the process continues.

The algorithm requires a data stream and a user-defined window size para-
meter. An integer variable trackPointer keeps an account of which track the
current batch (the batch completed by the current instance) belongs to. The k
variable refers to the value calculated by Chebychev’s inequality, which is ini-
tially zero. The votes variable stores the accumulated votes of the tracks seen so

Change Detection and Adaptation for Categorical Data Streams 9

\
\
I
\
[I
I
l
I

'O g g1 i i i g1

Fig. 1. Track and batch building visualization

far. As each instance arrives, a buffer, which is a list of instance containers (or
batches), adds a new batch object to the list. A copy of the current instance is
then added to each of the existing batches. Note that upon the arrival of the first
instance, only one batch container exists. When the second instance arrives, a
new batch is added to the buffer and that instance is added to both batches. At
this point, the first batch contains the first and second instances, and the sec-
ond batch contains only the second instance. This produces contiguous batches
that contain data that are shifted by one instance. This process continues until
the buffer contains n batches. At this point the first batch is complete, i.e. it
contains n instances. The complete batch is processed, as described below. After
the batch is processed and summarized, it is removed from the buffer.

To process a completed batch, the batch is sent to the change detector asso-
ciated with the current track. The change detector returns the value of k for this
batch, as calculated using Chebychev’s Inequality. Recall that, in CDCStream,
if this value is equal to two (k,,), a warning occurs. Similarly, a value of three
(k.) indicates that a change is detected by this track. Otherwise, a value of zero
is returned.

The FG-CDCStream algorithm differs from CDCStream in two aspects.
Firstly, it does not immediately flag a warning when a track encounters k = k,, =
2, but only maintains this statistic. Secondly, a value of k = k. = 3 initiates
a warning period, rather than reporting a change, if this is the first change
detection in a series. This launches the creation of the background classifier
which is built from the current batch. Subsequent reports of k. in this warning
period increment the votes count. Reported values of k,, are permitted within a
warning period, but do not terminate it nor increment the vote count. If a value
of less than k,, is reported by a track during the warning period, the warning
period is terminated, the votes count is reset to zero and the background classifier
is removed. This initiates a static period, until the next warning occurs.

If at least votes. tracks confirm a value of k., the system acknowledges the
change. (It follows that the value of the votes. parameter is domain-dependent
and determined through experimentation.) A confirmed change triggers adapta-
tion by replacing the current classifier with the background classifier. The change
period remains, whereby no new warnings or changes may occur, until a value

10 S. D’Ettorre et al.

of k < 2 is reported, initiating the next static period. A fall in the value of k sig-
nifies that the current change is fully integrated into the system, i.e. the change
detectors have forgotten the past distribution and the current model represents
the current distribution.

Whether or not adaptation occurs, a forgetting mechanism is applied to any
change detector that produces a value of k.. If change is not confirmed, the orig-
inal change detection was likely incorrect and thus forgetting the corresponding
information for that specific track is assumed to be reasonable. This effectively
resets change detectors that are not performing well and permits outlier infor-
mation to be discarded.

Forset

Formet

Fig. 2. Forgetting mechanism example

Figure2 illustrates the system’s forgetting mechanics. Firstly, the green
track’s most recent batch detects a change (represented by the exclamation mark
in the red triangle). It then forgets all of its past batches retaining only the cur-
rent one. The next batch to arrive, belonging to the purple track, also detects
the change and forgets its past batches. The next batch, belonging to the blue
track does not detect the change so it forgets nothing. The next green batch also
does not detect change, so track building (or remembering) proceeds. The same
is true for the next purple batch. This process occurs regardless of the state
of the system: in-control, warning or out-of-control. In this example, the green
and purple tracks may have detected a change due to outlier interference. It is
beneficial for these two tracks to forget this information. On the other hand,
the blue track, whose summary statistics may not have been as affected by the
outlier(s) due the shifted sample, would retains this information.

4 Experimentation

Experimentation was conducted using the MOA framework for data stream
mining [1], an open source software closely related to its offline counterpart
WEKA [7]. We used both synthetic and real data streams in our evaluation.
Due to space restrictions, we are only reporting the results against the syn-
thetic data streams. Five of MOA’s synthetic data set generators, summarized

Change Detection and Adaptation for Categorical Data Streams 11

in Table 1, were used in various configurations to produce the synthetic data.
Varying degrees of noise were tested using synthetic data in order to test and
compare the algorithms’ robustness to noise. Each synthetic data set was injected
with 0, 1, 2, 3, 4, 5, 10, 15, 20 and 25% noise using the WEKA “addNoise” filter.
This noise was applied to every attribute but the class attribute, since CDC-
Stream and FG-CDCStream are unsupervised change detectors. Experimen-
tation was performed on a machine with an Intel i7-4770 processor, 16GB of
memory, using the Windows 10 Pro x64 Operating System. The original CDC-
Stream study [9] tested its strategy using only the Naive Bayes classifier. For a
more comprehensive understanding of the behaviour of both CDCStream and
FG-CDCStream, we employed the Naive Bayes classifier, the Hoeffding tree
incremental learning, and the K-NN lazy learning strategy. Each of the classifiers
used for experimentation are available in MIOA..

Four measures [2] were used to evaluate change detection strategies, as fol-
lows. The mean time between false alarms (MTFA) describes the average dis-
tance between changes detected by the detector that do not correspond to true
changes in the data. It follows that a high MTFA value is desirable. The mean
time to detection (MTD) describes how quickly the change detector detects
a true change and a low MTD value is sought. Further, the missed detection
rate (MDR) gives the probability that the change detector will not detect a
true change when it occurs and it follows that a low value is preferred. Finally,
the calculated mean time ratio (MTR) describes the compromise between fast
detection and false alarms, as shown in the equation, and a higher MTR value
is required.

MTFA

MTD
These performance measures allow for a detailed examination of a change detec-
tor’s effectiveness in detecting true changes quickly while remaining robust to
noise and issuing few false alarms, thus providing researchers with a way to
directly assess a change detector’s performance [2].

A more indirect way of evaluating change detection methods, and the most
common in the literature, is the measuring of accuracy-type performance mea-
sures. We considered the classification accuracy, x and k™ accuracy-type mea-
sures focusing on the k™ results due to their comprehensiveness. The x statistic
considers chance agreements, and the 1 statistic [3] considers the temporal
dependence often present in data streams.(Interested readers are referred to [3]
for a detailed discussion on the evaluation of data stream classification algo-
rithms.) We considered the progression of accuracy-type statistics throughout
the stream, not only the final values, in order to gain more insights into change
detector performance. For instance, the steepness of the drop in accuracy-type
performance at a change point, and the swiftness of recovery provides more
information than a single value representative of an overall accuracy.

Abrupt changes were injected and streams of one, four and seven changes
were studied in various orders. Different stream sample sizes, change widths, pat-
terns and distances between changes (as well as magnitudes and orderings) were
studied on account of comprehensiveness. For single change scenarios, changes

MTR = (1— MDR) (5)

12 S. D’Ettorre et al.

Table 1. Synthetic data (basic characteristics)

Dataset Classes | Features | Categorical | Numerical
LED 10 24 24 0

Stagger 2 3 3 0

Mixed 2 4 2 2

Agrawal 2 9 3 6
ConceptDriftStream | Varies | Varies | Varies Varies

were injected half way through the stream in order to observe system behav-
iour well before and well after the change. For multiple abrupt changes, four
different distances between changes were studied, namely 500, 1000, 2500 and
5000 instances. This was done in order to assess the change detectors’ abilities
to detect changes in succession and to compare recovery times.

4.1 Results

Table 2 shows the average performance of the classifiers in abrupt drift sce-
narios. The table shows that the Hoeffding Tree incremental learner performs
the best, overall, in all cases. Further, the FG-CDCStream algorithm gener-
ally outperforms CDCStream. The greater gap between the performance in
Hoeffding Tree and Naive Bayes change detectors in CDCStream compared
to FG-CDCStream, is likely a consequence of the Hoeffding Tree’s superior
ability to conform to streaming data naturally, through data acquisition and
without explicit concept drift detection.

Table 2. Average algorithm performance comparison by classifier

Change type | Algorithm | Classifier | kT K Accuracy (%)
Abrupt FG-CDC |HT 93.74 | 93.67 | 95.72
NB 91.42 |91.45|94.55
IbK 79.93 | 79.92 | 84.55
CDC HT 71.70 | 76.28 | 83.81
NB 57.58 160.05|71.65
IbK 60.33 | 69.34 | 80.72

Next, we focus on our experimental results against single abrupt change data
streams generated using the LED data set, as shown in Figs. 3 and 4. The value of
votes. was set to 15, by inspection. Note that the information for MTFA, MTD
and MTR performance measures are not available for CDCStream. This is
because CDCStream was unsuccessful in detecting changes in the case of the

Change Detection and Adaptation for Categorical Data Streams 13

MTFA MTD

mrGCoCsuesm
Cocsueam

350 sEEsEssEsssEEsSssEsEEESEEsSEEEEEESS

0123456789 10111213181516 1718 1920 21 22 23 24 25 26 27 28 29 3031 01234567 851011121316 151617 181920 21 2223 2425 26 27 28 29 30 31
Data set

MDR MTR
1 6460000000000 000000000000000 0000 3
SEEEEESEEEEEEEEEEEEEEEEEEEEEEEE

04 miGCocsueam mFGCOGSen

scocsieam + cocsirean

012345678 91011121314151617 1819202122 23 24 2526 27 28 29 30 31
Dataset oataset

Kt

R L S ey
* - *e o, tes*
‘e

012345672 9101112131015161718192021 2223225252728 2930 31
Data set

Fig. 3. A graphical comparison of performance statistics of FG-CDCStream and CDC-
Stream on 31 different data streams containing a single abrupt change each.

System Recovery Following Change of Various

Magnitudes
"
100 S
——1drifting attribute
20 |
| U ——2drifting attributes
x 0 RS —— 3 drifting attributes
40 I —— 4 drifting attributes
20 - ——Sarifting attributes
° L : ——6 drifting attributes
o 2000 4000 6000 8000 10000 7 drifting attributes

Number of Instances

Fig. 4. System recovery following a single abrupt change. The long dashed line indicates
the true change, the medium dashed line the approximate change detection and the
short dashed line the full classifier recovery.

single abrupt drifting data streams. In contrast, FG-CDCStream produces
good change detection statistics in the single abrupt change scenario. These
measures remain consistent across all of the streams. Specifically, our algorithm
issues false alarms at a low rate (with MTFA values around 1400) and success-
fully detects the true change in every case.

Next, we consider the multiple change scenario. Recall that multiple changes
were injected into streams at varying distances from one another, namely 500,
1000, 2500 and 5000 instances. The averaged results and the corresponding
trends may be observed in Fig. 5. Similar to the single abrupt change scenario,
CDCStream failed to detect concept drift in the multiple abrupt change sce-
nario. (Note that our evaluation confirms that its accuracy-type statistics are
equivalent to those of a regular incremental Naive Bayes classifier with no explicit
change detection functionality.) The xT graph in Fig.5 shows that as distance

14 S. D’Ettorre et al.

MTFA MTD

nnnnnnnn

...............

nnnnnnn

Fig.5. A graphical comparison of averaged performance statistics of FG-CDCStream
and CDCStream for multiple abrupt drifts and the associated trends as distance
between the changes increases.

between changes increases, the kT increases only slightly for CDCStream. This
slight increase is due entirely to the natural adaptation of the incremental clas-
sifier over time.

For the FG-CDCStream change detector, performance and distance
between changes generally correlate positively, as one would expect. If there is
a longer period between the changes, FG-CDCStream has more information
to detect and recover from change. This leads to a more streamlined representa-
tion of the current concept by growing its more accurate tracks’ windows of the
current concept and pruning the less accurate ones. A clear increase in MTFA
occurs with increasing distance between changes. This trend corresponds to the
systems’ ability to forget more of previous concepts (discard more of the less
accurate tracks) when more time is available between changes. When less time
is available, it is likely that more tracks still contain the information of previ-
ous concepts. Nevertheless, the FG-CDCStream is able to detect concept drift
fast, while maintaining a low false detection rate.

The effect of concept drift injection magnitudes on the T performance mea-
sure throughout the stream is shown in Fig. 6. The particular stream represented
was injected with seven changes from low to high change magnitudes. At shorter
distances, change points are less defined and the system has a more difficulty
to recover, especially from higher magnitude change. This is due to less reliable
change detection, as discussed above and therefore less representative models.

Finally, we turn our attention to the case when increasing levels of noise
were injected into streams with multiple abrupt drifts. The averaged results and

Change Detection and Adaptation for Categorical Data Streams 15

Low to High Magnitude Injections at Low to High Magnitude Injections at
Distances of 500 Instances Distances of 1000 Instances

w/ ||

Number of Instances Number of Instances

Low to High Magnitude Injections at Low to High Magnitude Injections at
Distances of 2500 Instances Distances of 5000 Instances

100 100
& &

L Lo
4 4

o 5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
Numberof Instances Number of Instances

Fig. 6. FG-CDCStream ™ performance on LED data stream with varying distances
between change injection points.

corresponding trends may be observed in Fig. 7. The results indicate that FG-
CDCStream is robust to noise, especially when multiple changes are present
and the distances between those changes are large. It follows that, the level of
acceptable noise would depend on the particular application. In general, though,
since a value greater than 15% noise in every attribute is a rather high noise ratio
to be occurring in real data, it is likely that FG-CDCStream would perform
satisfactorily on most streams containing abrupt drifts.

4.2 Discussion

The above-mentioned experimental results confirm that the FG-CDCStream
algorithm leads to improved abrupt change detection and adaptation.

Improving Abrupt Change Detection. FG-CDCStream was designed
with the intention of retaining the appealing qualities of CDCStream while
improving change detection elements where opportunities exist. It essentially
uses an ensemble of change detectors, each containing slightly shifted informa-
tion, that vote on whether or not a change has occurred. Only the change detec-
tors in close proximity in the forward direction to the detector that first flags
change submits a vote. This is appropriate, due to the temporal nature of the
data and the desire to detect a change quickly. The voting system decreases
the chances of completely losing information due to aggregation. This not only
increases the probability of detecting the change (reducing MDR) and detect-
ing it quickly (reducing MTD), but provides another advantage of decreasing
the probability of false detections (increasing MTFA). Since a vote is required
to confirm a change, slight variations in distribution that would flag a false
change in CDCStream would, in FG-CDCStream, be outvoted and there-
fore not flag a false change. This further increases the algorithm’s robustness.
In summary, FG-CDCStream overcomes the issues that CDCStream has
with regard to the batch scenario and dilution due to aggregation, improving its
change detection capabilities.

16 S. D’Ettorre et al.

MTFA MTD

Fig. 7. A graphical comparison of linear trends of the averaged performance statistics
of FG-CDCStream on six data sets containing a multiple abrupt changes at varying
distances from one another over increasing noise levels.

Improving Adaptation. A major limitation of CDCStream is its poten-
tial for a very unrepresentative replacement classifier during adaptation. This
is caused by the termination requirement of a warning period being only
a change period regardless of how closely or distantly that change period
occurs. This requirement potentially results in a background classifier that is
non-representative of the new distribution following a change detection. FG-
CDCStream reconciles this by permitting a warning period to terminate if
it is followed by either a static period or a change. In FG-CDCStream, if a
warning period is followed by a static period, the background classifier initiated
by the warning is ignored rather than continuing to build until the next change
occurs. The only background classifier that may be used as an actual replacement
classifier in FG-CDCStream is one that is initiated by a warning immediately
prior (i.e. there is no static period in between) a detected change. If, by chance, a
change occurs without a preceding warning, the replacement classifier is created
from the most recent batch only. This follows, since a change occurring absent
of any warning is likely to be abrupt, and therefore a short historical window is
appropriate.

5 Conclusion

This paper introduces the FG-CDCStream algorithm, an unsupervised and
context-based change detection algorithm for streaming categorical data. This

Change Detection and Adaptation for Categorical Data Streams 17

algorithm provides users with more precise information than that of learning-
based methods about the changing distributions in categorical data streams
and provides context-based change detection capabilities for categorical data,
previously undocumented in machine learning research. The experimental results
show that FG-CDCStream method is able to detect abrupt drift fast, while
maintaining both lower false alarm rates and lower detection misses.

This research would benefit from further exploration of the effects of differ-
ent types of data streams on algorithm performance. For instance, a comprehen-
sive study on real data might provide further insight into algorithm behaviour.
Additional research on no-change data streams would also be beneficial. Further,
studying how attribute cardinality effects the algorithm would be useful as well.

References

1. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601-1604 (2010)

2. Bifet, A., Read, J., Pfahringer, B., Holmes, G., Zliobaité, I.: CD-MOA: change
detection framework for massive online analysis. In: Tucker, A., Hoppner, F.,
Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 92-103. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41398-8_9

3. Bifet, A., Read, J., Zliobaité, I., Pfahringer, B., Holmes, G.: Pitfalls in benchmark-
ing data stream classification and how to avoid them. In: Blockeel, H., Kersting, K.,
Nijssen, S., Zelezny, F. (eds.) ECML PKDD 2013. LNCS, vol. 8188, pp. 465-479.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40988-2_30

4. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: a
comparative evaluation. In Proceedings of the 2008 STAM International Conference
on Data Mining, pp. 243-254 (2008)

5. Cao, F., Zhexue Huang, J., Liang, J.: Trend analysis of categorical data streams
with a concept change method. Inf. Sci. 276, 160-173 (2014)

6. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 1-37 (2014)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. 11(1), 10-18
(2009)

8. lenco, D., Pensa, R.G., Meo, R.L.: From context to distance: learning dissimilarity
for categorical data clustering. ACM Trans. Knowl. Discov. Data 6(1), 1-25 (2012)

9. Ienco, D., Bifet, A., Pfahringer, B., Poncelet, P.: Change detection in categorical
evolving data streams. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC 2014), pp. 274-279 (2014)

10. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: Proceedings of Twentieth International Conference on Machine
Learning, vol. 2, pp. 856-863 (2003)

http://dx.doi.org/10.1007/978-3-642-41398-8_9
http://dx.doi.org/10.1007/978-3-642-40988-2_30

	Context-Based Abrupt Change Detection and Adaptation for Categorical Data Streams
	1 Introduction
	2 Background
	2.1 DILCA Context-Based Similarity Measure
	2.2 CDCStream Categorical Drift Detector

	3 FG-CDCStream Algorithm
	4 Experimentation
	4.1 Results
	4.2 Discussion

	5 Conclusion
	References

