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Preface

The 20th International Conference on Discovery Science (DS 2017) was held in Kyoto,
Japan, during October 15–17, 2017. As in previous years, the conference was
co-located with the International Conference on Algorithmic Learning Theory (ALT
2017), which was already in its 28th year. First held in 2001, ALT/DS has been one
of the longest running series of co-located events in computer science. The unique
combination of recent advances in the development and analysis of methods for
automatic scientific knowledge discovery, machine learning, intelligent data analysis,
and their application to knowledge discovery on the one hand, and theoretical and
algorithmic advances in machine learning on the other hand, makes every instance of
this joint event unique and attractive.

This volume contains all the papers presented at the 20th International Conference
on Discovery Science, while the papers of the 28th International Conference on
Algorithmic Learning Theory are published as a volume in the JMLR Workshop and
Conference Proceedings series. The 20th Discovery Science conference received 42
international submissions. Each submission was reviewed by at least three Program
Committee members. The co-chairs eventually decided to accept 18 papers as regular
papers and 6 papers as short papers. A special issue on the topics of Discovery Science
has also been scheduled for the Springer journal Machine Learning, thus offering the
option of publishing in this prestigious journal an extended and reworked version of
papers presented at Discovery Science 2017.

The program included 4 invited talks. In the joint DS/ALT invited talk, Masashi
Sugiyama from RIKEN, the University of Tokyo, gave a presentation on “Machine
Learning from Weak Supervision – Towards Accurate Classification with Low
Labeling Costs.”The DS invited talk by Koji Tsuda from the University of Tokyo was
on “Automatic Design of Functional Molecules and Materials.” DS participants also
had the opportunity to attend the ALT invited talks, which were given by Adam Kalai
from Microsoft Reasearch New England and by Alexander Rakhlin from the University
of Pennsylvania. Abstracts of the joint invited talk and the DS invited talk are included
in this volume. The program also included one special session organized by Takeaki
Uno from National Institute of Informatics, Japan.

We would like to thank all the authors of submitted papers, the Program Committee
members, and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the invited speakers. We are grateful to Steve Hanneke and Lev
Reyzin for ensuring the smooth coordination with ALT. We are grateful to the people
behind EasyChair, too. It was an essential tool in the paper submission and evaluation
process, as well as in the preparation of the Springer proceedings. We are also grateful
to Springer for their continuing support of Discovery Science and for publishing the
conference proceedings.



We would like to thank the local arrangement chairs, Yasuaki Kobayashi and
Matthew de Brecht from Kyoto University, and all their team. Also, we wish to express
our thanks to Kaori Deguchi for helping us with various affairs. All of them worked
very hard to make both conferences a great success.

Finally, we gratefully appreciate the financial support of JST CREST (Data Parti-
clization for Next Generation Data Mining).

August 2017 Akihiro Yamamoto
Takuya Kida

Tetsuji Kuboyama
Takeaki Uno
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Machine Learning from Weak Supervision —
Towards Accurate Classification

with Low Labeling Costs

Masashi Sugiyama

1 RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
2 The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi,

Chiba 277-8561, Japan
sugi@k.u-tokyo.ac.jp

Abstract. Machine learning from big training data is achieving great success.
However, there are various application domains that prohibit the use of massive
labeled data. In this talk, I will introduce our recent advances in classification
from weak supervision, including classification from two sets of unlabeled data,
classification from positive and unlabeled data, a novel approach to
semi-supervised classification, and classification from complementary labels.
Finally, I will briefly introduce the activities of RIKEN Center for Advanced
Intelligence Project.



Automatic Design of Functional Molecules
and Materials

Koji Tsuda

Graduate School of Frontier Sciences, University of Tokyo, 5-1-5
Kashiwa-no-ha, Kashiwa-shi, Chiba-ken 277-8561, Japan

tsuda@k.u-tokyo.ac.jp

Abstract. The scientific process of discovering new knowledge is often char-
acterized as search from a space of candidates, and machine learning can
accelerate the search by properly modeling the data and suggesting which
candidates to apply experiments on. In many cases, experiments can be sub-
stituted by first principles calculation. I review two basic machine learning
techniques called Bayesian optimization and Monte Carlo tree search. I also
show successful case studies including Si-Ge nanostructure design, optimization
of grain boundary structures and discovery of low-thermal-conductivity com-
pounds from a database.
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Context-Based Abrupt Change Detection
and Adaptation for Categorical Data Streams

Sarah D’Ettorre1(B), Herna L. Viktor1, and Eric Paquet1,2

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa K1N 6N5, Canada

{sdett026,hviktor}@uottawa.ca, eric.paquet@nrc-cnrc.gc.ca
2 National Research Council of Canada, Ottawa, ON K1A 0R6, Canada

Abstract. The identification of changes in data distributions associ-
ated with data streams is critical in understanding the mechanics of
data generating processes and ensuring that data models remain rep-
resentative through time. To this end, concept drift detection methods
often utilize statistical techniques that take numerical data as input.
However, many applications produce data streams containing categori-
cal attributes, where numerical statistical methods are not applicable.
In this setting, common solutions use error monitoring, assuming that
fluctuations in the error measures of a learning system correspond to
concept drift. Context-based concept drift detection techniques for cat-
egorical streams, which observe changes in the actual data distribution,
have received limited attention. Such context-based change detection is
arguably more informative as it is data-driven and directly applicable
in an unsupervised setting. This paper introduces a novel context-based
algorithm for categorical data, namely FG-CDCStream. In this unsu-
pervised method, multiple drift detection tracks are maintained and their
votes are combined in order to determine whether a real change has
occurred. In this way, change detections are rapid and accurate, while the
number of false alarms remains low. Our experimental evaluation against
synthetic data streams shows that FG-CDCStream outperforms the
state-of-the art. Our analysis further indicates that FG-CDCStream
produces highly accurate and representative post-change models.

Keywords: Data streams · Categorical data · Concept drift · Context-
based change detection · Unsupervised learning · Ensembles · Online
learning

1 Introduction

Data streams, that are characterized by a continuous flow of high speed data,
require learning methods that incrementally update models as new data become
available. Further, such algorithms should be able to adapt appropriately as
underlying concepts in the data evolve over time. Explicit detection of this evo-
lution, known as concept drift, is beneficial in ensuring that models remain
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-67786-6 1



4 S. D’Ettorre et al.

accurate and provide insights into the mechanics of the data generating process
[6]. Thus, concept drift detection has been of continuous interest to machine
learning researchers.

The majority of concept drift detection algorithms utilize statistical meth-
ods requiring numerical input [5]. However, real world data attributes are often
categorical [9]. For example, point-of-sales streams include categorical attributes
such as colour {red, green, blue} or size {small, medium, large, x-large}. Environ-
mental data attributes might contain categorical attributes like predators {eagle,
owl, fox} or land cover {desert, forest, tundra}. This prevalence of categorical
data poses a challenge for change detection researchers. Currently, the majority
of research on change detection in categorical data streams utilize error changes
in the learning system as an indicator of concept drift [9]. While these tech-
niques have proven to be reasonably successful, it remains that fluctuations in
error measures cannot be definitively attributed to concept drift alone. Relatively
few studies in the literature have examined context-based change detection in
categorical data streams [9]. In this case, concept drift is detected when changes
in the actual data distribution are observed, providing more precise information
about particular changes. This opens the door to unsupervised change detection
[9], a non-trivial task [4]. Since class information is not always available, facili-
tating unsupervised change detection broadens the spectrum of categorical data
which may be analyzed.

To this end, this paper focuses on improving the quality of knowledge extrac-
tion from evolving streams of categorical data through the use of context-based
change detection and adaptation strategies. This paper introduced the FG-
CDCStream technique, which extends the CDCStream algorithm [9], in order
to rapidly detect abrupt changes, using a fine-grained drift detection technique.
The FG-CDCStream method employs a voting-based algorithm in order to
track the evolution of the data as the stream evolves. Adaptation is improved
by ensuring that a post-change classifier is trained on a reduced batch of highly
relevant data. This ensures that the evolving classification models are more rep-
resentative of the post-change concept. Our experimental evaluation confirms
that our algorithm is highly suitable for abrupt change detection.

This paper is organized as follows. Section 2 introduces background work.
In Sect. 3, we detail the FG-CDCStream algorithm. Section 4 discusses our
experimental evaluation and results. Finally, Sect. 5 presents our conclusion and
highlights future work.

2 Background

This section discusses related works in terms of measuring the similarity of cat-
egorical data and context-based drift detection.

2.1 DILCA Context-Based Similarity Measure

Categorical variables are abundant in real-world data and this fact has lead to
a large and diverse collection of proposed distance measures spanning various
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fields of study, many of which arising in the context of categorical data clus-
tering. Similarity measures can be context-free or context-sensitive, supervised
or unsupervised. Context-free measures do not depend on relationships between
instances while context-sensitive measures do. Based on [4,5], distance measures
for categorical values may be classified into six groups that are not necessarily
mutually exclusive: simple matching approaches, frequency-based approaches,
learning approaches, co-occurrence approaches, probabilistic approaches, infor-
mation theoretic approaches and rough set theory approaches.

DILCA is a recent state-of-the-art similarity measure that is purely context-
based, that makes no assumptions about data distribution and that does not
depend on heuristics to determine inter-attribute relationships [8]. These prop-
erties make DILCA attractive as it minimizes bias and can be applied to a great
range of data sets with a wide range of characteristics. The DILCA similarity
measure is computed in two steps, namely context selection and distance com-
putation. Informative context selection is non-trivial, especially for data sets
with many attributes. Consider the following set of m categorical attributes:
F = {X1,X2, ...,Xm}. The context of the target attribute Y is defined as a
subset of the remaining attributes: context(Y ) ⊆ F/Y . DILCA uses the Sym-
metric Uncertainty (SU) feature selection method [10] to select a relevant, non-
redundant set of attributes which are correlated to the target concept in the
context.

SU(Y,X) = 2
IG(Y ;X)

H(Y ) + H(X)
(1)

DILCA selects a set of attributes with high SU with respect to the target Y .
A strength of the SU measure, as defined in Eq. 1, is that it is not biased towards
features of greater cardinality and is normalized on [0, 1]. Once the context has
been extracted, the distances between attribute values of the target attribute
are computed using Eq. 2:

d(yi, yj) =

√
ΣX∈context(Y )Σxk∈X(P (yi|xk) − P (yj |xk))2

ΣX∈context(Y )|X| (2)

For each value of each context attribute, the Euclidean distance between
the conditional probabilities for both values of Y is computed and summed.
This value is then normalized by the total number of values in X. The pairwise
distances computation between each of the values of Y results in a symmetric
and hollow (where diagonal entries are all equal to 0) matrix Mi = |Y | x |Y |.

2.2 CDCStream Categorical Drift Detector

The CDCStream algorithm, as created by [9], utilizes the above-mentioned
DILCA method [9] in order to detect drift in categorical streams, as follows.

Consider an infinite data stream S where each attribute X is categorical.
A buffer is used to segment the stream into batches: S = {S1, S2, ..., Sn, ...}.
(Note that, if the class information is present in the stream, it is removed during
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segmentation, thus creating an unsupervised change detection context.) The set
of distance matrices M = {M1,M2, ...,Ms} produced by DILCA is aggregated
to numerically summarize the data distribution of each batch in a single statistic
using Eq. 3. The resulting statistic, in [0, 1], represents both intra- and inter-
attribute distributions of a batch.

extractSummary(M) =
ΣMl∈M

2 ∗
√

Σ
|Xl|
i=0 Σ

|Xl|
j=i+1MXl

(i, j)2

|Xl| ∗ (|Xl| − 1)

|F | (3)

Data are analyzed in batches, by using a dynamic sliding window method.
The historical window L consists of all batch summaries, except the most recent
batch which constitutes the current window. The dynamic window grows and
shrinks appropriately based on the change status, by forgetting the historical
window and/or absorbing the most recent batch. In periods of stability, the
historical window continues to grow summary by summary. When a change is
detected, abrupt forgetting is employed and the historical window is dropped
and replaced with the current window.

As noted in [9], a two-tailed statistical test, which does not assume a specific
data distribution is required for context-based, unsupervised change detection.
To this end, Chebychev’s inequality was adopted. Formally, Chebychev’s Inequal-
ity states that if X is a random variable with mean μX and standard deviation
σX , for any positive real number k:

Pr(|X − μX | ≥ kσX) ≤ 1
k2

(4)

In this equation, 1
k2 is the maximum number of the values that may be beyond

k standard deviations from the mean. CDCStream utilizes this property in
order to warn for, and subsequently detect, changes in the distributions. Values
of k representing warning and change thresholds, are denoted by kw and kc,
respectively. These values were empirically set to kw = 2 and kc = 3. That is, in
order for a warning to be flagged, at least 75% of the values in the distribution
must be within two standard deviations of the mean. For a change to be flagged,
at least 88.89 % of the values must be within three standard deviations of the
mean. The CDCStream adaptation method employs global model replacement.
When a warning is detected (kw), a new background classifier is created and
updated alongside the current working model. Once a change is detected (kc),
the current model is entirely replaced with the background model.

Limitations of CDCStream for Abrupt Drift Detection. A recent study
showed that CDCStream performs competitively in terms of accuracy and
adaptability, when compared to two state-of-the art algorithms with similar goals
but different structures [9]. In this prior study, the main focus was on detect-
ing gradual drifts. CDCStream does, however, have a number of limitations,
notably when aiming to address abrupt drift. Firstly, Chebychev’s Inequality is
conservative, leading to high detection delay, due to the fact that the grain of
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the bound must be quite coarse. Secondly, aggregation into a single summary
statistic may have a diluting effect, depending on factors such as change mag-
nitude, duration and location, which may result in increased missed detections
and detection delays. In an abrupt drift setting, a main goal is to offer a fast
response to change. Lastly, temporal bounds on the post-change replacement
classifier training data are unnecessarily broad, potentially leading to warnings
caused by noise or minor fluctuations. This broadness could severely effect any
post-change classifications. Collectively, these limitations have the greatest effect
on the detection of abrupt concept drifts. An increased detection delay due to
the coarseness of Chebychev’s inequality or aggregation dilution would be most
detrimental in the case of abrupt drift. Since the distributions change so rapidly,
predictions based on the previous distribution would be quite erroneous. This is
more so than in the gradual change case, where the stream still contains some
instances of the previous distribution. Aggregation dilution would also be more
likely to miss changes altogether if the transition period was shorter. Finally,
introducing a new classifier that remains partially representative of the previ-
ous distribution, is unlikely to be effective in classifying the data of an abrupt
change. In the next section, we present our FG-CDCStream algorithm that
extends CDCStream to address the abrupt drift scenario.

3 FG-CDCStream Algorithm

The aims of the FG-CDCStream approach, as depicted in Algorithm 1, are
to improve detection delay and reduce missed detections of the batch-based sce-
nario and its associated aggregation. Ergo, FG-CDCStream overlays a series of
batches, or tracks, each shifted by one instance from the previous track in order
to simulate an instance by instance analysis. A detailed technical explanation
follows.

Our FG-CDCStream technique uses a dynamic list L of i contiguous
batches S of fixed size n to detect a change between the current batch and
the previous batches remaining in the sliding window. To solve the grain size
problem, we employ overlapped dynamic lists deemed tracks. More formally,
FG-CDCStream uses a series of n tracks, each overlapping the previous track’s
most recent n − 1 instances. This allows a change test to be performed as each
instance is received, while incorporating the use of batches. Note that there is a
single initial delay of 2n before the first two batches may be compared.

Figure 1 displays the batch and track construction process as instances arrive.
For simplicity, this example shows only the structure of batches and tracks and
does not include responses to concept drift. Let us assume a batch size of three
instances (a batch size much too small in reality, but sufficient to understand
track construction). Until the first three instances are collected, no batches exist.
Once the third instance arrives, the first batch, represented by the purple rec-
tangle, is complete. From this point on, a batch is completed upon the arrival of
a new instance. This is demonstrated with the creation of the blue and the green
batches. Upon the arrival of the sixth instance (2n), a second batch is added to
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Algorithm 1. FG-CDCStream
Input: S: stream of instances, W: window size

1: Initialize trackPointer = 0, k = 0, kw = 2, kc = 3, votes = 0, votesw = 1,
votesc = 15, inst = null

2: for count = 0 → W do
3: tracks.add(new change detector)

4: while hasMoreInstances(S) do
5: inst = S.nextInstance
6: buffer.add(new batch container)
7: for count = 0 → buffer.size do
8: buffer.get(count).add(inst)

9: if buffer.size == W then
10: k = tracks.get(trackPointer).getKV alue(buffer.get(0))
11: if k ≥ kc then
12: votes + +
13: if votes == votesw then
14: warningPeriod = true; initiateBackgroundClassifier(buffer.get(0))

15: if votes == votesc then
16: changePeriod = true; warningPeriod = false
17: replace classifier with background classifier; nullify background classifier

18: else if k < kw then
19: votes = 0
20: if warningPeriod then
21: warningPeriod = false; nullify background classifier

22: if changePeriod then
23: changePeriod = false

24: updateClassifier(inst); updateBackgroundClassifier(inst)
25: if buffer.size == W then
26: buffer.remove(0) ;
27: update track pointer

the original purple track. Note that the track with the newest batch is shown at
the front and the least recently updated track in the rear. This process continues
until the end of the stream (or to infinity).

It should be noted that, in reality, instances are stored explicitly only until a
batch is complete. A buffer with a container for each track stores instances until
n have been collected. When a batch is complete, it is input to the corresponding
track’s change detector object, which maintains summary statistics, as described
in Eq. 3. That track’s buffer is then cleared and the main algorithm begins build-
ing its next batch upon the arrival of the next instance. The appearance of the
next instance fills a batch belonging to the next track and the process continues.

The algorithm requires a data stream and a user-defined window size para-
meter. An integer variable trackPointer keeps an account of which track the
current batch (the batch completed by the current instance) belongs to. The k
variable refers to the value calculated by Chebychev’s inequality, which is ini-
tially zero. The votes variable stores the accumulated votes of the tracks seen so
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Fig. 1. Track and batch building visualization

far. As each instance arrives, a buffer, which is a list of instance containers (or
batches), adds a new batch object to the list. A copy of the current instance is
then added to each of the existing batches. Note that upon the arrival of the first
instance, only one batch container exists. When the second instance arrives, a
new batch is added to the buffer and that instance is added to both batches. At
this point, the first batch contains the first and second instances, and the sec-
ond batch contains only the second instance. This produces contiguous batches
that contain data that are shifted by one instance. This process continues until
the buffer contains n batches. At this point the first batch is complete, i.e. it
contains n instances. The complete batch is processed, as described below. After
the batch is processed and summarized, it is removed from the buffer.

To process a completed batch, the batch is sent to the change detector asso-
ciated with the current track. The change detector returns the value of k for this
batch, as calculated using Chebychev’s Inequality. Recall that, in CDCStream,
if this value is equal to two (kw), a warning occurs. Similarly, a value of three
(kc) indicates that a change is detected by this track. Otherwise, a value of zero
is returned.

The FG-CDCStream algorithm differs from CDCStream in two aspects.
Firstly, it does not immediately flag a warning when a track encounters k = kw =
2, but only maintains this statistic. Secondly, a value of k = kc = 3 initiates
a warning period, rather than reporting a change, if this is the first change
detection in a series. This launches the creation of the background classifier
which is built from the current batch. Subsequent reports of kc in this warning
period increment the votes count. Reported values of kw are permitted within a
warning period, but do not terminate it nor increment the vote count. If a value
of less than kw is reported by a track during the warning period, the warning
period is terminated, the votes count is reset to zero and the background classifier
is removed. This initiates a static period, until the next warning occurs.

If at least votesc tracks confirm a value of kc, the system acknowledges the
change. (It follows that the value of the votesc parameter is domain-dependent
and determined through experimentation.) A confirmed change triggers adapta-
tion by replacing the current classifier with the background classifier. The change
period remains, whereby no new warnings or changes may occur, until a value
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of k < 2 is reported, initiating the next static period. A fall in the value of k sig-
nifies that the current change is fully integrated into the system, i.e. the change
detectors have forgotten the past distribution and the current model represents
the current distribution.

Whether or not adaptation occurs, a forgetting mechanism is applied to any
change detector that produces a value of kc. If change is not confirmed, the orig-
inal change detection was likely incorrect and thus forgetting the corresponding
information for that specific track is assumed to be reasonable. This effectively
resets change detectors that are not performing well and permits outlier infor-
mation to be discarded.

Fig. 2. Forgetting mechanism example

Figure 2 illustrates the system’s forgetting mechanics. Firstly, the green
track’s most recent batch detects a change (represented by the exclamation mark
in the red triangle). It then forgets all of its past batches retaining only the cur-
rent one. The next batch to arrive, belonging to the purple track, also detects
the change and forgets its past batches. The next batch, belonging to the blue
track does not detect the change so it forgets nothing. The next green batch also
does not detect change, so track building (or remembering) proceeds. The same
is true for the next purple batch. This process occurs regardless of the state
of the system: in-control, warning or out-of-control. In this example, the green
and purple tracks may have detected a change due to outlier interference. It is
beneficial for these two tracks to forget this information. On the other hand,
the blue track, whose summary statistics may not have been as affected by the
outlier(s) due the shifted sample, would retains this information.

4 Experimentation

Experimentation was conducted using the MOA framework for data stream
mining [1], an open source software closely related to its offline counterpart
WEKA [7]. We used both synthetic and real data streams in our evaluation.
Due to space restrictions, we are only reporting the results against the syn-
thetic data streams. Five of MOA’s synthetic data set generators, summarized
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in Table 1, were used in various configurations to produce the synthetic data.
Varying degrees of noise were tested using synthetic data in order to test and
compare the algorithms’ robustness to noise. Each synthetic data set was injected
with 0, 1, 2, 3, 4, 5, 10, 15, 20 and 25% noise using the WEKA “addNoise” filter.
This noise was applied to every attribute but the class attribute, since CDC-
Stream and FG-CDCStream are unsupervised change detectors. Experimen-
tation was performed on a machine with an Intel i7-4770 processor, 16GB of
memory, using the Windows 10 Pro x64 Operating System. The original CDC-
Stream study [9] tested its strategy using only the Näıve Bayes classifier. For a
more comprehensive understanding of the behaviour of both CDCStream and
FG-CDCStream, we employed the Näıve Bayes classifier, the Hoeffding tree
incremental learning, and the K-NN lazy learning strategy. Each of the classifiers
used for experimentation are available in MOA.

Four measures [2] were used to evaluate change detection strategies, as fol-
lows. The mean time between false alarms (MTFA) describes the average dis-
tance between changes detected by the detector that do not correspond to true
changes in the data. It follows that a high MTFA value is desirable. The mean
time to detection (MTD) describes how quickly the change detector detects
a true change and a low MTD value is sought. Further, the missed detection
rate (MDR) gives the probability that the change detector will not detect a
true change when it occurs and it follows that a low value is preferred. Finally,
the calculated mean time ratio (MTR) describes the compromise between fast
detection and false alarms, as shown in the equation, and a higher MTR value
is required.

MTR =
MTFA

MTD
(1 − MDR) (5)

These performance measures allow for a detailed examination of a change detec-
tor’s effectiveness in detecting true changes quickly while remaining robust to
noise and issuing few false alarms, thus providing researchers with a way to
directly assess a change detector’s performance [2].

A more indirect way of evaluating change detection methods, and the most
common in the literature, is the measuring of accuracy-type performance mea-
sures. We considered the classification accuracy, κ and κ+ accuracy-type mea-
sures focusing on the κ+ results due to their comprehensiveness. The κ statistic
considers chance agreements, and the κ+ statistic [3] considers the temporal
dependence often present in data streams.(Interested readers are referred to [3]
for a detailed discussion on the evaluation of data stream classification algo-
rithms.) We considered the progression of accuracy-type statistics throughout
the stream, not only the final values, in order to gain more insights into change
detector performance. For instance, the steepness of the drop in accuracy-type
performance at a change point, and the swiftness of recovery provides more
information than a single value representative of an overall accuracy.

Abrupt changes were injected and streams of one, four and seven changes
were studied in various orders. Different stream sample sizes, change widths, pat-
terns and distances between changes (as well as magnitudes and orderings) were
studied on account of comprehensiveness. For single change scenarios, changes
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Table 1. Synthetic data (basic characteristics)

Dataset Classes Features Categorical Numerical

LED 10 24 24 0

Stagger 2 3 3 0

Mixed 2 4 2 2

Agrawal 2 9 3 6

ConceptDriftStream Varies Varies Varies Varies

were injected half way through the stream in order to observe system behav-
iour well before and well after the change. For multiple abrupt changes, four
different distances between changes were studied, namely 500, 1000, 2500 and
5000 instances. This was done in order to assess the change detectors’ abilities
to detect changes in succession and to compare recovery times.

4.1 Results

Table 2 shows the average performance of the classifiers in abrupt drift sce-
narios. The table shows that the Hoeffding Tree incremental learner performs
the best, overall, in all cases. Further, the FG-CDCStream algorithm gener-
ally outperforms CDCStream. The greater gap between the performance in
Hoeffding Tree and Näıve Bayes change detectors in CDCStream compared
to FG-CDCStream, is likely a consequence of the Hoeffding Tree’s superior
ability to conform to streaming data naturally, through data acquisition and
without explicit concept drift detection.

Table 2. Average algorithm performance comparison by classifier

Change type Algorithm Classifier κ+ κ Accuracy (%)

Abrupt FG-CDC HT 93.74 93.67 95.72

NB 91.42 91.45 94.55

IbK 79.93 79.92 84.55

CDC HT 71.70 76.28 83.81

NB 57.58 60.05 71.65

IbK 60.33 69.34 80.72

Next, we focus on our experimental results against single abrupt change data
streams generated using the LED data set, as shown in Figs. 3 and 4. The value of
votesc was set to 15, by inspection. Note that the information for MTFA, MTD
and MTR performance measures are not available for CDCStream. This is
because CDCStream was unsuccessful in detecting changes in the case of the
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Fig. 3. A graphical comparison of performance statistics of FG-CDCStream and CDC-
Stream on 31 different data streams containing a single abrupt change each.

Fig. 4. System recovery following a single abrupt change. The long dashed line indicates
the true change, the medium dashed line the approximate change detection and the
short dashed line the full classifier recovery.

single abrupt drifting data streams. In contrast, FG-CDCStream produces
good change detection statistics in the single abrupt change scenario. These
measures remain consistent across all of the streams. Specifically, our algorithm
issues false alarms at a low rate (with MTFA values around 1400) and success-
fully detects the true change in every case.

Next, we consider the multiple change scenario. Recall that multiple changes
were injected into streams at varying distances from one another, namely 500,
1000, 2500 and 5000 instances. The averaged results and the corresponding
trends may be observed in Fig. 5. Similar to the single abrupt change scenario,
CDCStream failed to detect concept drift in the multiple abrupt change sce-
nario. (Note that our evaluation confirms that its accuracy-type statistics are
equivalent to those of a regular incremental Näıve Bayes classifier with no explicit
change detection functionality.) The κ+ graph in Fig. 5 shows that as distance
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Fig. 5. A graphical comparison of averaged performance statistics of FG-CDCStream
and CDCStream for multiple abrupt drifts and the associated trends as distance
between the changes increases.

between changes increases, the κ+ increases only slightly for CDCStream. This
slight increase is due entirely to the natural adaptation of the incremental clas-
sifier over time.

For the FG-CDCStream change detector, performance and distance
between changes generally correlate positively, as one would expect. If there is
a longer period between the changes, FG-CDCStream has more information
to detect and recover from change. This leads to a more streamlined representa-
tion of the current concept by growing its more accurate tracks’ windows of the
current concept and pruning the less accurate ones. A clear increase in MTFA
occurs with increasing distance between changes. This trend corresponds to the
systems’ ability to forget more of previous concepts (discard more of the less
accurate tracks) when more time is available between changes. When less time
is available, it is likely that more tracks still contain the information of previ-
ous concepts. Nevertheless, the FG-CDCStream is able to detect concept drift
fast, while maintaining a low false detection rate.

The effect of concept drift injection magnitudes on the κ+ performance mea-
sure throughout the stream is shown in Fig. 6. The particular stream represented
was injected with seven changes from low to high change magnitudes. At shorter
distances, change points are less defined and the system has a more difficulty
to recover, especially from higher magnitude change. This is due to less reliable
change detection, as discussed above and therefore less representative models.

Finally, we turn our attention to the case when increasing levels of noise
were injected into streams with multiple abrupt drifts. The averaged results and
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Fig. 6. FG-CDCStream κ+ performance on LED data stream with varying distances
between change injection points.

corresponding trends may be observed in Fig. 7. The results indicate that FG-
CDCStream is robust to noise, especially when multiple changes are present
and the distances between those changes are large. It follows that, the level of
acceptable noise would depend on the particular application. In general, though,
since a value greater than 15% noise in every attribute is a rather high noise ratio
to be occurring in real data, it is likely that FG-CDCStream would perform
satisfactorily on most streams containing abrupt drifts.

4.2 Discussion

The above-mentioned experimental results confirm that the FG-CDCStream
algorithm leads to improved abrupt change detection and adaptation.

Improving Abrupt Change Detection. FG-CDCStream was designed
with the intention of retaining the appealing qualities of CDCStream while
improving change detection elements where opportunities exist. It essentially
uses an ensemble of change detectors, each containing slightly shifted informa-
tion, that vote on whether or not a change has occurred. Only the change detec-
tors in close proximity in the forward direction to the detector that first flags
change submits a vote. This is appropriate, due to the temporal nature of the
data and the desire to detect a change quickly. The voting system decreases
the chances of completely losing information due to aggregation. This not only
increases the probability of detecting the change (reducing MDR) and detect-
ing it quickly (reducing MTD), but provides another advantage of decreasing
the probability of false detections (increasing MTFA). Since a vote is required
to confirm a change, slight variations in distribution that would flag a false
change in CDCStream would, in FG-CDCStream, be outvoted and there-
fore not flag a false change. This further increases the algorithm’s robustness.
In summary, FG-CDCStream overcomes the issues that CDCStream has
with regard to the batch scenario and dilution due to aggregation, improving its
change detection capabilities.
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Fig. 7. A graphical comparison of linear trends of the averaged performance statistics
of FG-CDCStream on six data sets containing a multiple abrupt changes at varying
distances from one another over increasing noise levels.

Improving Adaptation. A major limitation of CDCStream is its poten-
tial for a very unrepresentative replacement classifier during adaptation. This
is caused by the termination requirement of a warning period being only
a change period regardless of how closely or distantly that change period
occurs. This requirement potentially results in a background classifier that is
non-representative of the new distribution following a change detection. FG-
CDCStream reconciles this by permitting a warning period to terminate if
it is followed by either a static period or a change. In FG-CDCStream, if a
warning period is followed by a static period, the background classifier initiated
by the warning is ignored rather than continuing to build until the next change
occurs. The only background classifier that may be used as an actual replacement
classifier in FG-CDCStream is one that is initiated by a warning immediately
prior (i.e. there is no static period in between) a detected change. If, by chance, a
change occurs without a preceding warning, the replacement classifier is created
from the most recent batch only. This follows, since a change occurring absent
of any warning is likely to be abrupt, and therefore a short historical window is
appropriate.

5 Conclusion

This paper introduces the FG-CDCStream algorithm, an unsupervised and
context-based change detection algorithm for streaming categorical data. This
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algorithm provides users with more precise information than that of learning-
based methods about the changing distributions in categorical data streams
and provides context-based change detection capabilities for categorical data,
previously undocumented in machine learning research. The experimental results
show that FG-CDCStream method is able to detect abrupt drift fast, while
maintaining both lower false alarm rates and lower detection misses.

This research would benefit from further exploration of the effects of differ-
ent types of data streams on algorithm performance. For instance, a comprehen-
sive study on real data might provide further insight into algorithm behaviour.
Additional research on no-change data streams would also be beneficial. Further,
studying how attribute cardinality effects the algorithm would be useful as well.
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Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8188, pp. 465–479.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40988-2 30

4. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: a
comparative evaluation. In Proceedings of the 2008 SIAM International Conference
on Data Mining, pp. 243–254 (2008)

5. Cao, F., Zhexue Huang, J., Liang, J.: Trend analysis of categorical data streams
with a concept change method. Inf. Sci. 276, 160–173 (2014)

6. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. 11(1), 10–18
(2009)

8. Ienco, D., Pensa, R.G., Meo, R.L.: From context to distance: learning dissimilarity
for categorical data clustering. ACM Trans. Knowl. Discov. Data 6(1), 1–25 (2012)

9. Ienco, D., Bifet, A., Pfahringer, B., Poncelet, P.: Change detection in categorical
evolving data streams. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC 2014), pp. 274–279 (2014)

10. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: Proceedings of Twentieth International Conference on Machine
Learning, vol. 2, pp. 856–863 (2003)

http://dx.doi.org/10.1007/978-3-642-41398-8_9
http://dx.doi.org/10.1007/978-3-642-40988-2_30


A New Adaptive Learning Algorithm
and Its Application to Online Malware Detection

Ngoc Anh Huynh1,2(B), Wee Keong Ng1,2, and Kanishka Ariyapala1,2

1 Nanyang Technological University, Singapore, Singapore
hu0001nh@e.ntu.edu.sg, wkn@pmail.ntu.edu.sg,

kanishka.ariyapala@math.unifi.it
2 University of Padua, Padua, Italy

Abstract. Nowadays, the number of new malware samples discovered
every day is in millions, which undermines the effectiveness of the tradi-
tional signature-based approach towards malware detection. To address
this problem, machine learning methods have become an attractive and
almost imperative solution. In most of the previous work, the application
of machine learning to this problem is batch learning. Due to its fixed
setting during the learning phase, batch learning often results in low
detection accuracy when encountered zero-day samples with obfuscated
appearance or unseen behavior. Therefore, in this paper, we propose the
FTRL-DP online algorithm to address the problem of malware detection
under concept drift when the behavior of malware changes over time.
The experimental results show that online learning outperforms batch
learning in all settings, either with or without retrainings.

Keywords: Malware detection · Batch learning · Online learning

1 Introduction

VirusTotal.com is an online service which analyzes files and urls for malicious
content such as virus, worm and trojan by leveraging on an array of 52 com-
mercial antivirus solutions for the detection of malicious signatures. On record,
VirusTotal receives and analyzes nearly 2 million files every day. However, only
a fraction of this amount (15%) can be identified as malicious by at least one
antivirus solution. Given the fact that it is fairly easy nowadays to obfuscate a
malware executable [23], it is rather reasonable to believe that a sheer number
of the unknown files are actually obfuscated malware samples. In principle, the
rest of the unknown cases should be manually reverse engineered to invent new
signatures, but this is infeasible due to the large number of files to be analyzed.
Therefore, looking for an automated way to address this problem is imperative
and has attracted a lot of research effort, especially in the direction of using
machine learning which has gained a lot of successes in various domains of pat-
tern recognition such as face analysis [22] and sentiment analysis [4].

In a recent paper, Saxe et al. [20] train a 3-layer neural network to distin-
guish between malicious and benign executables. In the first experiment, the
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-67786-6 2
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author randomly splits the whole malware collection into train set and test set.
The trained network can achieve a relatively high detection accuracy of 95.2% at
0.1% false positive rate. It is noted that the first experiment disregards the release
time of the executables, which is an important dimension due to the adversarial
nature of malware detection practice since malware authors are known to regu-
larly change their tactics in order to stay ahead of the game [7]. In the second
experiment, the author uses a timestamp to divide the whole malware collection
into train set and test set. The results obtained show that the detection accuracy
drops to 67.7% at the same false positive rate. We hypothesize that the reasons
for this result are two-fold: the change in behavior of malware over time and
the poor adaptation of neural network trained under batch mode to the behav-
ioral changes of malware. In addition, another recent study also reports similar
findings [3].

The working mechanism of batch learning is the assumption that, the samples
are independently and identically drawn from the same distribution (iid assump-
tion). This assumption may be true in domains such as face recognition and
sentiment analysis where the underlying concept of interest hardly changes over
time. However, in various domains of computer security such as spam detection
and malware detection, this assumption may not hold [2] due to the inherently
adversarial nature of cyber attackers, who may constantly change their strategy
so as to maximize the gains. To address this problem of concept drift, we believe
online learning is a more appropriate solution than batch learning. The reason is
that, online algorithms are derived from a theoretical framework [11] which does
not impose the iid assumption on the data, and hence can work well under con-
cept drift or adversarial settings [5]. Motivated by this knowledge, we propose the
Follow-the-Regularized-Leader with Decaying Proximal (FTRL-DP) algorithm –
a variant of the proximal Follow-the-Regularized-Leader (FTRL-Proximal)
algorithm [12] – to address the problem of malware detection.

To be specific, the contributions of this paper are as follow:

• A new online algorithm (FTRL-DP) to address the problem of concept drift
in Windows malware detection. Our main claim is that online learning is
superior to batch learning in the task of malware detection. This claim is
substantiated in Sect. 7 by analyzing the accuracy as well as the running time
of FTRL-DP, FTRL-Proximal and Logistic Regression (LR). The choices of
the algorithms are clarified in Sect. 4.

• An extensive data collection of more than 100k malware samples using the
state-of-the-art open source malware analyzer, Cuckoo sandbox [6], for the
evaluation. The collected data comprises many types such as system calls, file
operations, and others, from which we were able to extract 482 features. The
experiment setup for data collection and the feature extraction process are
described in Sect. 5.

For LR, the samples in one month constitutes the test set and the samples
in a number of preceding months are used to form the train set; for FTRL-DP,
a sample is used for training right after it is tested. The detailed procedure
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is presented in Sect. 6. In Sect. 2, we review the previous works related to the
problem of malware detection using machine learning. We formulate the problem
of malware detection as a regression problem in Sect. 3. Lastly, in Sect. 8, we
conclude the paper and discuss the future work.

2 Related Work

2.1 Batch Learning in Malware Detection

The analysis of suspicious executables for extracting the features used for auto-
mated classification can be broadly divided into two types: static analysis and
dynamic analysis. In static analysis, the executables are executed and only fea-
tures extracted directly from the executables are used for classification such as
file size, readable strings, binary images, n-gram words, etc. [10,19].

On the other hand, dynamic analysis requires the execution of the executables
to collect generated artifacts for feature extraction. Dynamic features can be
extracted from host-based artifacts such as system call traces, dropped files and
modified registries [17]. Dynamic features can also be extracted from network
traffic such as the frequency of TCP packets or UDP packets [16,18]. While
static analysis is highly vulnerable to obfuscation attacks, dynamic analysis is
more robust to binary obscuration techniques.

To improve detection accuracy, the consideration of a variety of dynamic
features of different types is recently gaining attention due to the emergence of
highly effective automated malware analysis sandboxes. In their work, Mohaisen
et al. [14] studied the classification of malware samples into malware families
by leveraging on a wide set of features (network, file system, registry, etc.) pro-
vided by the proprietary AutoMal sandbox. In a similar spirit, Korkmaz et al. [9]
used the open-source Cuckoo sandbox to obtain a bigger set of features aiming
to classify between traditional malware and non-traditional (Advanced Persis-
tent Threat) malware. The general conclusion in these papers is that combining
dynamic features of different types tends to improve the detection accuracy.

In light of these considerations, we decided to use the Cuchoo sandbox to
execute and extract the behavioral data generated by a collection of more than
100k suspicious executables. Our feature set (Sect. 5.3) is similar to that of Kork-
maz et al. although we address a different problem: regressing the risk levels of
the executables. Furthermore, our work differs from previous work in the aspect
that we additionally approach this problem as an online learning problem rather
than just a batch learning one.

2.2 Online Learning in Malware Detection

The importance of malware’s release time has been extensively studied in the
domain of Android malware detection. In their paper [2], Allix et al. studied
the effect of history on the biased results of existing works on the application of
machine learning to the problem of malware detection. The author notes that
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most existing works evaluate their methodology by randomly picking the samples
for the train set and the test set. The conclusion is that, this procedure usually
leads to much higher accuracy than the cases when the train set and the test
set are historically coherent. The author argues that this result is misleading as
it is not useful for a detection approach to be able to identify randomly picked
samples but fail to identify zero-day or new ones.

To address this problem of history relevance, Narayanan et al. [15] have
developed an online detection system, called DroidOL, which is based on the
online Passive Aggressive (PA) algorithm. The novelty of this work is the use
of an online algorithm with the ability to adapt to the change in behavior of
malware in order to improve detection accuracy. The obtained result shows that,
the online PA algorithm results in a much higher accuracy (20%) compared to
the typical setting of batch learning and 3% improvement in the settings when
the batch model is frequently retrained.

3 Problem Statement

Given 52 antivirus solutions, we address the problem of predicting the percentage
of solutions that would flag an executable file as malicious. Formally, this is a
regression problem of predicting the output y ∈ [0, 1] based on the input x ∈ Rn

which is the set of 482 hand-crafted features extracted from the reports provided
by the Cuckoo sandbox (Sect. 5.3). The semantic of the output defined in this
way can be thought of as the risk level of an executable. We augment the input
with a constant feature which always has the value 1 to simulate the effect of a
bias. In total, we have 483 features for each malware sample.

In this case, we have framed the problem of malware detection as the regres-
sion problem of predicting the risk level of an executable. We rely on the labels
provided by all 52 antivirus solutions and do not follow the labels provided by
any single one as different antivirus solutions are known to report inconsistent
labels [8]. In addition, we also do not use two different thresholds to separate
the executables into two classes, malicious and benign, as in [20] since it would
discard the hard cases where it is difficult to determine the nature of the exe-
cutables, which may be of high value in practice.

4 Methodology

To allow a fair comparison between batch learning and online learning, we use the
models of the same linear form, represented by a weight vector w, in both cases.
The sigmoid function ( 1

1+e−z ) is then used to map the dot product (biased by
the introduction of a constant feature) between the weight vector and the input,
w�x, to the [0, 1] interval of possible risk levels. Additionally, in both cases, we
optimize the same objective function, which is the sum of logistic loss (log loss
– the summation term in Eq. 1). In the batch learning setting, the sum of log
loss is optimized in a batch manner in which each training example is visited
multiple times in minimizing the objective function. The resultant algorithm is
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usually referred to as Logistic Regression with log loss (Sect. 4.1). On the other
hand, in the online setting, we optimize the sum of log loss in an online manner,
in which each training sample is only seen once. The resultant algorithm is the
proposed FTRL-DP algorithm (Sect. 4.2).

4.1 Batch Learning – LR

Given a set of n training examples {(xi, yi)}n
i=1, Logistic Regression with log

loss corresponds to the following optimization problem:

argmin
w

{
−

n∑
i=1

(
yi log(pi) + (1 − yi) log(1 − pi)

)
+ λ1‖w‖1 +

1
2
λ2‖w‖22

}

in which pi = sigmoid(w�xi)

(1)

The objective function of Logistic Regression (Eq. 1) is a convex function
with respect to w as it is the sum of three convex terms. The first term is the
sum of log losses associated with all training samples (within a time window).
The last two terms are the L1–norm regularizer and the L2–norm regularizer.
The L1 regularizer is a non–smoothed function used to introduce sparsity into
the solution weight w. On the other hand, the L2 regularizer is a smooth function
used to favor low variance models that have small weight.

4.2 Online Learning – FTRL-DP

Online Convex Optimization. The general framework of online convex opti-
mization can be formulated as follows [21]. We need to design an algorithm that
can make a series of optimal predictions, each at one time step. At time step
t, the algorithm makes a prediction, which is a weight vector wt. A convex loss
function lt(w) is then exposed to the algorithm after the prediction. Finally, the
algorithm suffers a loss of lt(wt) at the end of time step t (Algorithm 1). The
algorithm should be able to learn from the losses in the past so as to make better
and better decisions over time.

Algorithm 1. Online Algorithm
1: for t = 1,2,... do
2: Make a prediction wt

3: Receive the lost function lt(w)
4: Suffer the lost lt(wt)

The objective of online convex optimization is to minimize the regret with
respect to the best classifier in hindsight (Eq. 2). The meaning of Eq. 2 is that
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we would like to minimize the total loss incurred up to time t with respect to
the supposed loss incurred by the best possible prediction in hindsight, w∗.

Regrett =
t∑

s=1

ls(ws) −
t∑

s=1

ls(w∗) (2)

Since the future loss functions are unknown, the best guess or the greedy
approach to achieve the objective of minimizing the regret is to use the predic-
tion that incurs the least total loss on all past rounds. This approach is called
Follow-the-Leader (FTL), in which the leader is the best prediction that incurs
the least total loss with respect to all the past loss functions. In some cases, this
simple formulation may result in algorithms with undesirable properties such as
rapid change in the prediction [21], which lead to overall high regret. To fix this
problem, some regularization function is usually added to regularize the pre-
diction. The second approach is called Follow-the-Regularized-Leader (FTRL),
which is formalized in Eq. 3.

wt+1 = argmin
w

{ t∑
s=1

ls(w) + r(w)
}

(3)

It is notable to see that the FTRL framework is formulated in a rather general
sense and performs learning without relying on the iid assumption. This property
makes it more suitable to adversarial settings or settings in which the concept
drift problem is present.

The Proposed FTRL-DP Algorithm. In the context of FTRL-DP, an online
classification or an online regression problem can be cast as an online convex
optimization problem as follows. At time t, the algorithm receives input xt and
makes prediction wt. The true value yt is then revealed to the algorithm after
the prediction. The loss function lt(w) associated with time t is defined in terms
of xt and yt (Eq. 4). Finally, the cost incurred at the end of time t is lt(wt). The
underlying optimization problem of FTRL-DP is shown in Eq. 5.

lt(w) = −yt log(p) − (1 − yt) log(1 − p)

in which p = sigmoid(w�xt)
(4)

Compared with Eq. 3, Eq. 5 has the actual loss function lt(w) replaced by its
linear approximation at wt, which is lt(wt)+∇lt(wt)�(w−wt) = g�

t w+ lt(wt)−
g�

t wt (in which gt = ∇lt). The constant term
(
lt(wt) − g�

t wt

)
is omitted in the

final equation without affecting the optimization problem. This approximation
is to allow the derivation of a closed–form solution to the optimization problem
at each time step, which is not possible with the original problem in Eq. 3.

wt+1 = argmin
w

{
g�
1:tw+λ1‖w‖1 +

1
2
λ2‖w‖22 +

1
2
λp

t∑
s=1

σt,s‖w − ws‖22
}

in which g�
1:t =

t∑
i=1

g�
t

(5)
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FTRL-DP utilizes 3 different regularizers to serve 3 different purposes. The
first two regularizers of L1–norm and L2–norm serve the same purpose as in
the case of Logistic Regression introduced in Sect. 4.1. The third regularization
function is the proximal term used to ensure that the current solution does not
deviate too much from past solutions with more influence given to most recent
ones by using an exponential decaying function

(
σt,s = γt−s with 1 > γ > 0

)
.

This is our main difference from the original FTRL-Proximal algorithm [12].
The replacement of the per coordinate learning rate schedule by the decaying
function proves to improve the prediction accuracy in the face of concept drift
(discussed in Sect. 7). The solution to the objective function of FTRL-DP is
stated in Theorem 1, whose proof is presented in AppendixA.

Theorem 1. The optimization problem in Eq. 5 can be solved in the following
closed form:

wt+1,i =

⎧⎨
⎩

0 if ‖zt,i‖1 ≤ λ1

− zt,i−λ1sign(zt,i)

λ2+λp
1−γt

1−γ

otherwise. (6)

in which zt = g1:t − λp

t∑
s=1

σt,sws

Regret Analysis of FTRL-DP. In Theorem 2, we prove a result that bounds
the regret of FTRL-DP. The bound is dependent on the decaying rate γ.

Theorem 2. Suppose that ‖wt‖2 ≤ R and ‖gt‖2 ≤ G. With λ1 = λ2 = 0 and
λp = 1, we have the following regret bound for FTRL-DP:

Regret(w∗) ≤ 2R2 1
1 − γ

+
G2

2
1 + lnT

γT
(7)

Due to space constraint, the proof of Theorem2 will be provided in an
extended version of the paper.

In summary, we aim to compare between the performance of batch learning
and online learning on the problem of malware detection. To make all things
equal, we use the models of the same linear form and optimize the same log
loss function, which lead to the LR algorithm in the batch learning case and the
FTRL-DP algorithm in the online learning case. For LR, only the samples within
a certain time window contribute to the objective function (Eq. 1). On the other
hand, the losses associated with all previous samples equally contribute to the
objective function of FTRL-DP (Eq. 5). This difference is critical as it leads to
the gains in the performance of FTRL-DP over LR, which is discussed in Sect. 7.

5 Data Collection

5.1 Malware Collection

We used more than 1 million files collected in the duration from March 2016
to Apr 2016 by VirusShare.com for the experiments. VirusShare is an online

http://VirusShare.com
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Fig. 1. Distribution of executables Fig. 2. Distribution of risk level.

malware analyzing service that allows Internet users to scan arbitrary files
against an array of 52 antivirus solutions (the scan results are actually pro-
vided by VirusTotal). In this study, we are only interested in executable files
and able to separate out more than 100k executables from the 1 million files
downloaded.

Figure 1 shows the distribution of the executables with respect to executa-
bles’ compile time. The horizontal axis of Fig. 1 shows the months during the
4 years from Nov/2010 until Jul/2014, which is the period of most concentra-
tion of executables and chosen for the study. The vertical axis of Fig. 1 indicates
the number of executables compiled during the corresponding month. Figure 2,
instead, shows the maliciousness distribution of the executables. The horizontal
axis indicates the maliciousness measure and the vertical axis the number of
corresponding executables.

5.2 Malware Execution

We make use of the facility provided by DeterLab [13] as the testbed for the
execution of the executables. DeterLab is a flexible online experimental lab for
computer security, which provides researchers with a host of physical machines
to carry out experiments. In our setup, we use 25 physical machines with each
physical machine running 5 virtual machines for executing the executables. Each
executable is allowed to run for 1 min. The experiment ran for more than 20 days
and collected the behavioral data of roughly 100k executables.

5.3 Feature Extraction

In this paper, we mostly consider dynamic features of the following 4 categories
for regression: file system category, registry category, system call category, and
the category of other miscellaneous features.

API Call Category. API (Application Programming Interface) calls are the
functions provided by the operating system to grant application programs the
access to basic functionality such as disk read and process control. Although
these calls may ease the process of manipulating the resources of the machine, it



26 N.A. Huynh et al.

also provides hackers with a lot of opportunities to obtain confidential informa-
tion. For this category, we consider the invoking frequencies of the API calls as
a set of features. In addition, we also extract as features the frequencies that the
API files are linked. The total number of features in this category is 353 and the
complete set of API calls as well as the set of API files are available at https://
git.io/vDywd.

Registry Category. In Windows environments, the registry is a hierarchical
database that holds the global configuration of operating system. Ordinary pro-
grams often use the registry to store information such as program location and
program settings. Therefore, the registry system is like a gold mine of infor-
mation for malicious programs, which may refer to it for information such as
the location of the local browsers or the version of the host operating system.
Malicious program may also add keys to the registry so as to be able to survive
multiple system restarts. We extract the following 4 registry related features:
the number of registries being written, opened, read and deleted.

File System Category. File system is the organization of the data that an
operating system manages. It includes two basic components: file and directory.
File system-related features are an important set of features to consider since
malware has to deal with the file system in one way or another in order to
cause harm to the system or to steal confidential information. We consider the
following file-related features: the number of files being opened, written, in exis-
tence, moved, read, deleted, failed and copied. In addition, we also consider the
following 3 directory related features: the number of directories being enumer-
ated, created and removed. In total, we were able to extract 11 features in this
category.

Miscellaneous Category. In addition to out-of-the-box functionalities,
Cuckoo sandbox is further enhanced by a collection of signatures contributed
by the public community. These signatures can identify certain characteristics
of the analyzed binary such as the execution delay time or the ability to detect
virtual environment. All these characteristics are good indicators for the high
risk level of an executable but may just be false positives. We consider the binary
features of whether the community signatures are triggered or not. In addition,
we also consider 3 other features that may be relevant to the behavior charac-
terization: the number of mutex created, the number of processes started and
the depth of the process tree. The total number of features in this category is
118.

In summary, we are able to extract 482 features that spans 4 different cate-
gories: API calls, registry system, file system and miscellaneous features.

https://git.io/vDywd
https://git.io/vDywd
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6 Evaluation

6.1 Experiment with LR

We evaluate LR in four different settings: once, multi-once, monthly, and multi-
monthly. In the once setting, the samples appeared in the first month of the
whole dataset are used to form the train set and the rest of the samples are used
to form the test set. The multi-once setting is similar to the once setting except
that the samples in the first 6 months are used to form the train set instead. It
should be noted that retraining is not involved in the first two settings.

On the other hand, the other two settings do involve retraining, which is a
crude mechanism to address the change in behavior of malware over time. Since
it is infeasible to carry out retraining upon the arrival of every new sample, we
perform retraining on a monthly basis. Due to the characteristic of our dataset,
we find that the monthly basis is a good balance to ensure that we have enough
samples for the train set and the training time is not too long (the monthly
average number of samples is 2.4k). In the monthly setting, we use the sam-
ples released in a month to form the test set and the samples released in the
immediately preceding month to form the train set. The multi-monthly setting
is similar to the monthly setting except that we use the samples in the preceding
6 months to form the train set instead.

For a quick evaluation, we make use of the LR implementation, provided by
the TensorFlow library [1] to train and test the LR regressors. TensorFlow is a
framework for training large scale neural network, but in our case, we only utilize
a single layer network with sigmoid activation, binary cross-entropy loss and two
regularizations of L1-norm and L2-norm. 20% of each train set is dedicated for
validation and the maximum number of epochs that we use is 100. We stop the
training early if the validation does not get improved in 3 consecutive epochs.

6.2 Experiment with FTRL Algorithms

We use the standard procedure to evaluate FTRL-DP and FTRL-Proximal
(jointly referred to as FTRL algorithms). Each new sample is tested on the
current model giving rise to an error, which is then used to make modification
to the current model right after. This evaluation is usually referred to as the
mistake-bound model.

Due to their simplicity, FTRL-DP and FTRL-Proximal can be implemented
in not more than 40 lines of python code. The implementation makes heavy use
of the numpy library, which is mostly written in C++. As TensorFlow also has
C++ code under the hood, we believe that the running time comparison between
the two cases is sensible. Evaluated on the same computer, it actually turns out
that the running time of FTRL algorithms is much lower than that of LR. We
use the same amounts of three regularizations for both FTRL-DP and FTRL-
Proximal. For FTRL-DP, we report the best possible setting for parameter γ.

The computer used for all the experiments has 16 GB RAM and operates
with a 1.2 GHz hexa-core CPU. The running times of all experiments are shown
in Table 1. The mean cumulative absolute errors are reported in Fig. 3.
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Fig. 3. Mean cumulative absolute errors of FTRL-DP, FTRL-Proximal and different
settings of LR.

7 Discussion

7.1 Prediction Accuracy

We use the mean cumulative absolute error (MCAE) to compare the performance
between FTRL-DP, FTRL-Proximal and different batch settings of LR, which
are reported in Fig. 3. The MCAE is defined in Eq. 8, in which yt is the actual
risk level of an executable and pt the risk level predicted by the algorithms.
In Fig. 3, the horizontal line shows the cumulative number of samples and the
vertical line the MCAE. There are four notable observations that we can see
from Fig. 3.

1
n

n∑
t=1

|yt − pt| (8)

Firstly, the more data that we train the LR model on, the better performance
we can achieve. This observation is evidenced by the fact that, in most of the
time, the error line of the multi-once setting stays below the error line of the
once setting, and the error line of the multi-monthly setting stays below the
error line of the monthly setting. A possible explanation for this observation is
that the further we go back in time to obtain more data to train the model on,
the less variance the model becomes, which results in the robustness to noise,
and consequently, higher prediction accuracy.

Secondly, the retraining procedure does help to improve prediction accuracy.
It is evidenced by the fact that the monthly setting outperforms the once setting,
and similarly the multi-monthly setting outperforms the multi-once setting. This
observation is a supporting evidence for the phenomenon of evolving malware
behavior. As a consequence, the most recent samples would be more relevant to
the current samples, and training on most recent samples would result in a more
accurate prediction model.

From the first two observations, we can conclude that the further we go back
in time to obtain more samples and the more recent the samples are, the better
the trained model would perform. This conclusion can be exploited to improve
prediction accuracy by going further and further back in time and retraining the
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model more often. However, this approach would become unpractical at some
point when the training time required to frequently update an accurate model
via periodic retrainings would become too long to be practical. It turns out that
this issue can be elegantly addressed by the FTRL algorithms, which produces
much higher prediction accuracy at considerable lower running time.

Thirdly, FTRL algorithms (worse MCAE of 0.123) are shown to outperform
the LR algorithm in all settings (best MCAE of 0.156). The error lines corre-
sponding to the performance of FTRL algorithms consistently stays below other
error lines. The gain in the prediction accuracy of FTRL algorithms over all
settings of LR can be explained by the contribution of all previous samples to
its objective function. In different batch settings of LR, only the losses associ-
ated with the samples within a certain time window contribute to the respective
objective functions.

Finally, the fourth observation is that FTRL-DP (MCAE of 0.116) outper-
forms FTRL-Proximal (MCAE of 0.123). The gain in performance of FTRL-DP
over FTRL-Proximal can be explained by the ability of FTRL-DP to cope with
concept drift via the use of a specially designed adaptive mechanism. This mech-
anism makes use of an exponential decaying function to favor the most recent
solutions over older ones. The effective result is that the most recent samples
would contribute more to the current solution thereby alleviating the problem
of concept drift.

7.2 Running Time

In terms of running time (training time and testing time combined), FTRL-DP
and FTRL-Proximal are clearly advantageous over LR. From Table 1, we can
see that the running times of FTRL algorithms are much lower than that of
LR, especially compared to the settings with retraining involved (monthly and
multi-monthly). The reason for this result is that FTRL algorithms only needs
to see each sample once to update the current weight vector whereas in the case
of LR, it requires multiple passes over each sample to ensure convergence to the
optimal solution.

Table 1. Running time of FTRL-DP, FTRL-Proximal and different LR settings.

Experiment Running time

LR Multi-monthly 44 m 31 s
LR Monthly 14 m 14 s
LR Multi-once 55 s
LR Once 42 s
FTRL-Proximal 28 s
FTRL-DP 26 s
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8 Conclusions and Future Work

The evolving nature of malware over time makes the malware detection problem
more difficult. According to previous studies, batch learning based methods often
perform poorly when encountered zero-days samples. Our research is motivated
to fill in this gap by proposing FTRL-DP – a variant of the FTRL-Proximal algo-
rithm – to address this problem. We evaluated two learning paradigms using an
extensive dataset generated by more than 100k malware samples executed on
Cuckoo sandbox. The experimental results show that FTRL algorithms (worse
MCAE of 0.123) outperforms LR in the typical setting of batch learning as well as
the settings with retrainings involved (best MCAE of 0.156). The gain in perfor-
mance of FTRL algorithms over different batch settings of LR can be accounted
for by its objective function taking into account the contribution of all previous
samples. Furthermore, the improvement of FTRL-DP over FTRL-Proximal can
be explained by the usage of an adaptive mechanism that regularizes the weight
by favoring recent samples over older ones. In addition, FTRL algorithms are
also more advantageous in terms of running time.

It can be noticed that all above methods are black-box solutions, which do
not gain domain experts any insights. An interesting development of this work
is to enable the direct interaction with a domain expert using a visualization.
The domain expert could prioritize or discard weight alterations suggested by
the learning algorithm via the interactive exploration of malware behavior. This
visual analytics approach would lead to a transparent solution where the domain
expert can benefit most of his knowledge in collaboration with black-box auto-
mated detection solutions.

A Proof of Theorem1

Proof. To remind the optimization objective of FTRL-DP:

wt+1 = argmin
w

g�
1:tw + λ1‖w‖1 +

1
2
λ2‖w‖22 +

1
2
λp

t∑
s=1

γt−s‖w − ws‖22

wt+1 = argmin
w

(
g�
1:t − λp

t∑
s=1

γt−sw�
s

)
w + λ1‖w‖1 +

1
2
(
λ2 + λp

1 − γt

1 − γ

)‖w‖22

+
1
2
λp

t∑
s=1

γt−s‖ws‖22

Omitting the constant term 1
2λp

∑t
s=1 γt−s‖ws‖22, we have:

wt+1 = argmin
w

z�
t w + λ1‖w‖1 +

1
2
(
λ2 + λprt

)‖w‖22 (9)

In Eq. 9, zt = g�
1:t − λp

∑t
s=1 γt−sw�

s and rt = 1−γt

1−γ . Each component of
w contribute independently to the objective function of 9 hence can be solve
separately:
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wt+1,i = argmin
wi

zt,iwi + λ1‖wi‖1 +
1
2
(
λ2 + λprt

)‖wi‖22 (10)

Note that wi in 10 refers to the ith component of w. Let f(wi) = zt,iwi +
λ1‖wi‖1 + 1

2

(
λ2 + λprt

)‖wi‖22. There are two cases:

– If ‖zt,i‖1 ≤ λ1, we have:

f(wi) ≥ −‖zt,iwi‖1 + λ1‖wi‖1 +
1
2
(
λ2 + λprt

)‖wi‖22

f(wi) ≥ −λ1‖wi‖1 + λ1‖wi‖1 +
1
2
(
λ2 + λprt

)‖wi‖22 =
1
2
(
λ2 + λprt

)‖wi‖22 ≥ 0

f(wi) achieves the minimum at wi = 0
– If ‖zt,i‖1 ≥ λ1, zt,i and wi must have opposite signs at the minimum of

f(wi) as otherwise wi can always have sign flipped to further reduce fi(wi).
Therefore, it is equivalent to solving:

wt+1,i = argmin
wi

zt,iwi − sign(zt,i)λ1‖wi‖1 +
1
2
(
λ2 + λprt

)‖wi‖22

which achieves minimum at zero gradient or wi = − zt,i−sign(zt,i)λ1
λ2+λprt

This concludes the proof.
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Abstract. We provide a method of validating current gasoline (petrol)
prices for a crowd-sourced app that primarily provides current gasoline
prices. To validate prices reported by users of the app, we propose an
approach that validates each price report in real time as it is entered by
a consumer by comparing it to the current prediction of what the price
is expected to be at the specified store at the present time. To do so, a
forecast model is used to predict, with high accuracy, a price range for
each store in real-time so that when a price is entered by a consumer
it can be flagged if it falls outside the predicted range. We present the
first experimental results concerning predicting the current price in real
time at all stores in a city. The results indicate that there is a significant
improvement in reducing the forecast error when using our Price Change
Rules model over the modified Most Common Action model.

Keywords: Price forecasting · Price prediction · Predictive accuracy ·
Forecasting gasoline prices · Data mining · Machine learning

1 Introduction

We provide a method of validating current gasoline (petrol) prices for a crowd-
sourced app that primarily provides current gasoline prices. For brevity, we refer
to any retail location that sells gasoline as a store. Prices are reported to a central
server by consumers who visit stores. This approach to obtaining data carries
the risk that consumers may enter incorrect prices either intentionally or acci-
dentally, resulting in inaccurate data. Based on these incorrect prices, consumers
may make faulty decisions about where to purchase their fuel, resulting in a neg-
ative experience with the app. Thus it is imperative to limit these occurrences.
One approach is to validate each price report in real time as it is entered by
a consumer by comparing it to the current prediction of what the price should
be at the present time. To do so, a forecast model is used to predict, with high
accuracy, a price range for each store in real-time so that when a price is entered
by a consumer it can be reported if it falls outside the predicted range.

Gasoline is a unique commodity because it commands the attention of con-
sumers on a weekly or daily basis. A small difference in the price of gasoline at
competing stores can determine which of them receives a customer’s business.
Given the importance of gasoline to consumers’ daily lives, many researchers
have studied the behavior of crude oil prices, wholesale gasoline prices, and
c© Springer International Publishing AG 2017
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retail gasoline prices. However, for the retail gasoline market, most of these
studies have mainly focused on identifying factors which generally affect gas
prices. This project aims to identify predictive factors that affect retail prices
at individual stores and use these factors to predict highly accurate prices on
demand for any store in real time. By real time, we mean that the price is vali-
dated before being shown to a waiting interactive user. Unless otherwise stated,
all gasoline prices mentioned in this article are United States (US) prices quoted
per gallon of gasoline and include all applicable taxes.

The remainder of this paper is organized as follows. Section 2 reviews the
relevant literature on the retail gasoline market and defines the Most Common
Action (MCA) model and algorithm. Section 3 outlines the Price Change Rules
(PCR) prediction model. Section 4 presents the results of an evaluation of the
MCA and PCR models on several years worth of data from five North American
cities. Section 5 presents conclusions and suggestions for future research.

2 Related Research

In this section, we present previous studies that describe the connection between
common factors such as crude oil and store location with respect to gasoline
prices. Then we describe the Most Common Action model and a modified version
of it for real-time forecasting.

2.1 Factors Affecting Gasoline Prices

Several research studies have examined factors that affect retail gasoline prices.
The US Federal Trade Commission issued a report that summarized the dynamic
factors such as supply, demand, competition, and regulations significantly affect-
ing gasoline prices, as collected from various research sources [4]. This study finds
that crude oil price is the most important factor affecting gasoline prices in the
United States. Specifically, changes in crude oil prices are responsible for 85% of
the changes seen in the US gasoline market. The report also suggests that dis-
ruptions to oil supply pipelines across the US have the ability to cause significant
price increases.

Another study of gasoline prices determined that the presence of indepen-
dent, unbranded stores drove prices down [5]. Specifically, the presence of an
independent store led to prices that were on average five cents lower than usual.
The lower prices were observed at other stores located in a circular neighborhood
with a radius of one mile (1.6 km) centered on the independent store. Conversely,
the replacement of an unbranded store by a branded store led to prices in the
same neighborhood that were on average five cents higher than previously. The
study concluded that little difference in prices could be attributed to the demo-
graphics of the area or the specific characteristics of the stores.

A separate study focused on the effect of competition density on the retail
gasoline market [1]. It examined two theories associated with the presence of
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price dispersion, namely the monopolistic competition theory and the search-
theoretical theory, in order to determine which one more closely described
the gasoline market. According to the monopolistic competition theory, when
consumers perceive differentiated products across sellers it creates imperfect
competition and when assuming diverse demand elasticity this results in price
dispersion. In contrast, according to the search-theoretic theory, it suggests price
dispersion is generated when consumers do not know the location of a low
price [1]. When gas price data were examined, price dispersion decreased as store
density increased. Self-serve gasoline prices also decreased as density increased.
These findings are more consistent with the monopolistic competition theory,
than the search-theoretic theory. However, they appear to contradict previous
findings, which found that the search-theoretical theory more accurately reflects
the search costs and consumer preferences of the gasoline market.

In a similar study, retail gas prices in three California cities were examined in
an effort to discover the effects of competition in the retail gasoline market [2].
The findings show that an increase in price by 2 cents led to a decrease in sales
volume that was different depending on the level of competition in the area. In
an area with a low density of competition, stores saw a 2.4% reduction in sales
volume while in areas with a high density of competition, stores experienced
an 8.4% decrease. This study concluded that competition between stores tends
to lower prices because consumers have a greater number of alternatives from
which to choose. These findings are consistent with two other studies [3,7].

Finally, another study examined the effects of spatial factors on competition
and the price of gasoline [8]. This study found that instead that spatial concen-
tration does not matter. In other words, the store location does not, in itself,
affect the retail gas price to an appreciable extent. These findings run contrary
to microeconomic theory that, suggests that business outlets located proximate
to one another should charge lower prices.

2.2 The Most Common Action Model

One pattern observed in another study [9] is that each store can be characterized
by a single price change category corresponding to the daily price change made
most frequently. This price change category is called the most common action.
The Most Common Action (MCA) model predicts the most common action as
the next price change category [9]. To limit the possible types of price changes
to be considered, this model uses z price change categories, where z is a small
integer. Table 1 shows the number of price changes made for each of z = 11 price
change categories for 334 price changes at a store. The most common action
observed is price change category 4.

The algorithm to determine the predicted price with the MCA model is
shown in Algorithm 1. The predicted price change category for a store on day d
is determined by finding the most common action over h earlier days, where h is
the history size, i.e. a number such as 365 or 730. The method counts the number
of days on which the change in price matches each of the price change categories
and then chooses the category with the largest count as the most common action.
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Table 1. Frequency of changes in price change categories

Price change category (a) Frequency of price changes (Fa)

0 2

1 7

2 12

3 60

4 121

5 80

6 5

7 4

8 3

9 6

10 34

Algorithm 1. The Most Common Action Algorithm
1: Input: P = price data, p = |P |, z = category count, h = history size
2: A = {0, ..., z − 1} // possible actions
3: ∀a ∈ A : Fa = 0, Ta = 0
4: m = 0, k = p − 1
5: while m < h and k > 0 do
6: if both Pk and Pk−1 are not null then
7: m + +
8: δ = (Pk − Pk−1)
9: a = Category(δ)

10: Fa = Fa + 1
11: Ta = Ta + δ
12: end if
13: k − −
14: end while
15: amax = argmax

a∈A
Fa

16: Predicted Action = amax

17: Predicted Price Change = Tamax/Famax

Ties are broken arbitrarily. The predicted price change is the average of all the
price changes in the predicted price change category that occurred during the
h days.

A detailed step-by-step description of the algorithm is as follows. The input
is a consecutive series of end-of-day prices P = {P0, . . . , Pp−1}, the number of
price change categories z, and the number of earlier days h (line 1). If the end-
of-day price for a day is not known, a special null value should be provided. The
algorithm initializes a frequency counter (Fa) for each price change category a to
zero; as well, it initializes the total of all price differences for each price change
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category to zero (line 3). The main loop (lines 5–14) goes back over the preceding
days one by one, from the most recent backwards (lines 4 and 13), attempting
to find h days where a price difference (delta) can be calculated. It continues as
long as h such days have not been found (i.e., m < h) and there are still days
to check (i.e., k > 0) (line 5). Given consecutive non-null prices, a delta can be
computed (line 6). The count of such deltas is incremented (line 7). The delta
δ is calculated by subtracting the preceding price from the current one (line 8).
The corresponding price change category (or action) a for a delta is determined
by the Category function which consults an external table (line 9). As well, the
frequency for the action (Fa) is incremented (line 10) and the total of the deltas
for the action Ta is updated (line 11). After all deltas in the window have been
examined, the action with the highest frequency (amax) is determined (line 15).
The argmax function is assumed to break ties arbitrarily and return one of the
actions with the maximum count. This action is the predicted action (line 16).
The predicted price change is calculated as the average of the deltas in window
where the action is the same as the predicted action (line 17). The predicted
price can be determined outside the algorithm as the sum of the most recent
non-null price and the predicted price change (not shown).

For our experiments, we modified the MCA model so that it predicted the
most common action for every price report received, instead of only one for the
end of each day.

3 The PCR Real-Time Prediction Model

In this section, we describe the PCR model for predicting prices in real time. We
explain the concept of Price Change Rules and then show how to predict prices
using these rules. Next, we describe the PCR algorithm, and then explain how
to evaluate the PCR model for the task of in forecasting prices in real-time.

3.1 Price Change Rules

The Price Change Rules (PCR) Model is premised on the observation that while
various stores make the same price changes on the same day, some specific stores
consistently make the price changes first and other stores consistently make
similar price changes later. We refer to the first type of store as a leader and the
second type as a follower. The model uses this observation to predict the price
change at a store. As with the MCA, this model uses z price change categories to
limit the possible types of price changes to be considered. For example, if z = 7,
the seven price change categories might be as shown in Table 2. We used these
price change categories for PCR in our experiments.

In Table 2, the second column shows the range for each price change category
shown in the first column. Here, the first three price change categories represent
decreases in price, the fourth represents no change in price, and the last three
represent increases in price. The range for each of these price change categories
includes the end point if “[” or “]” is shown and excludes it if “(” or “)” is shown.
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Table 2. Price changes

Price change category Range

0 [≤–10 cents]

1 [−5 to −10 cents)

2 (0 to −5 cents)

3 [0 cents]

4 (0 to 5 cents)

5 [5 to 10 cents)

6 [≥10 cents]

Two stores Si and Sj make a matched change if both make a price change
in the same price change category from exactly the same previous price on the
same day. A price change rule (or simply a rule) is a representation that is
created to describe matched changes that are observed between two stores. As
a simplification, we assume that if a store makes more than one price change in
the same category on the same day, only the first is analyzed. A price change
rule has three notable features: frequency, direction, and strength. The frequency
of the rule is the number of times (days) both stores make a matched change.
The direction of a rule indicates which store made the change at an earlier time
during the day. Although the matched change was made by both stores on the
same day, the specific times of the price reports are used to determine which
store was first. Ties are resolved arbitrarily.

As previously mentioned, the store that makes a matched change first is
called a leader, and the other store a follower. Every rule can be described
from the point of view of the leader or the follower. Therefore we define two
types of price change rules named leading and following rules. A leading rule
has the form “Si leads Sj (N1/N)” and indicates that stores Si and Sj made
matching changes on N separate days, and on N1 days, Si made the change
before Sj . The value N1/N as a percentage represents the strength of the rule.
The corresponding following rule has the form “Si follows Sj ((N1)/N)” and
indicates that store Si and Sj made matching changes on N days, and on N1

days, Si made the change after Sj . Any leading rule can be rewritten as a
following rule and vice versa. For simplicity, we will use only following rules for
the remainder of this paper. Table 3 shows the forms of two possible following
rules between two stores Si and Sj that describe the same situation (assuming
there are no ties in the update times).

Given a rule of the form “Si follows Sj (N1/N) × 100%”, for each of the
x times that Si changes its price after Sj , then the time difference between the
price reports received for Si and Sj is recorded. Thus a determination can be
made, for instance, of the average amount of time that Si changes its price after
Sj . Additional measures such as the median time or interquartile range of the
time can also be determined. This information can be used to decide if a future
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Table 3. Price change rule

Rule Store Direction Store Frequency Strength (%)

1 Si follows Sj N1 N1/N × 100%

2 Sj follows Si N − N1 (N − N1)/N × 100%

price report of Si falls in an expected time period after a price report of Sj . It
can also be used to decide if a price report for Sj is too old to be considered.

The Leading Set for a store Sk is a relatively permanent set of rules describing
cases where store Sk often leads another store. When a new price is reported for
store Sk, a rule is added to the Active Following Set for all stores listed in the
Leading Set. The Active Following Set is the highly variable set of all following
rules that are active for store Sk. When a price must be predicted for store Sk,
the set of rules in its Active Following Set are consulted, as explained in the next
subsection.

3.2 Prediction Using Price Change Rules

Price change rules are used to determine a predicted price for a store at a given
time. Two measures are also used to make this determination, namely the price
equality frequency and the inverse power distance. For two stores, Si and Sj , the
price equality frequency measures the number of days both stores had the same
end-of-day price. The spherical distance (d) between the locations of Si and Sj

is calculated using the Haversine formula as follows:

d = 2 × r × sin−1

√
sin2(

φi − φj

2
) + cos (φi) cos (φj)sin2(

λi − λj

2
) (1)

where φi and φj are the latitudes of store Si and store Sj , λi and λj are their
longitudes, and r is the radius of the earth (6372.8 km).

The inverse power distance (I) between stores is calculated such that smaller
distances get a higher weight. For power k, we use the following:

I =
1

(d + 1)k
(2)

where d is the spherical distance between a pair of stores. Denominator (d + 1)
is used to ensure that the formulation works even when the distance is 0. After
preliminary testing with a variety of values of k from 1 to 10, we obtained the
best results with k = 4, which we used in our experiments.

The potency of a following rule is modeled by an exponential function such
that higher frequencies have an exponentially higher weight. We calculate the
potency as follows:

C = b(N1/N) (3)

where b is a base for the exponent, N1 is the frequency of the following rule
for a price change category, and N is the maximum number of times a store is
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Table 4. Available price change rules for store Sk at time t

Rule Store ID Time received Actual price
change (A)

Inverse
distance (I)

Price change rule
frequency (C)

1 Sk1 t2 x2 y2 z2

2 Sk2 t3 x3 y3 z3

. . . . . . . . . . . . . . .

m Skm tm xm ym zm

followed in that price change category. After preliminary testing with a variety
of values of b from 1 to 20, we obtained the best results with b = 15, which we
used in our experiments.

Table 4 shows a set of m rules for store Sk. For instance, rule 1 shows that
Store Sk1 made the actual price change x2 at time t2.

To determine the contribution to the predicted price change at store Sk that
is due to a specific following rule from store Si at time ti, we consider three
factors: (1) the actual price change A made at store Si at time ti, (2) the inverse
distance I between stores Sk and Si, and (3) the potency C of the price change
rule. First, the inverse distance I and potency C are multiplied together to
give a weight E. Similarly, the product D of the actual price change A, the
inverse distance I, and the potency C of each rule is calculated. To determine
the predicted price, we consider all m rules that are available for store Sk at
the current time (in the Active Following Set and satisfied the time filter). The
predicted price is obtained by dividing the sum of the product D over all m rules
by the sum of the weights E over all m rules, which is calculated as follows:

prediction =
∑m

i=1 D∑m
i=1 E

(4)

The details of the calculation are shown in Table 5.

Table 5. Predicted price change for store Sk at time t

Rule Store ID Time

received

Actual

price

change (A)

Inverse

distance (I)

Price change

rule potency

(F )

Product (D) Weight (E)

1 Sk1 t2 x2 y2 z2 x2 × y2 × z2 y2 × z2

2 Sk2 t3 x3 y3 z3 x3 × y3 × z3 y3 × z3

. . . . . . . . . . . . . . . . . . . . .

m Skm tm xm ym zm xm × ym × zm ym × zm

Sums
∑m

i=1 D
∑m

i=1 E

Predicted price change

∑m
i=1 D

∑m
i=1 E
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Fig. 1. Overview of the PCR method
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3.3 Description of the Method

Figure 1 gives an overview of the Price Change Rules (PCR) method. From time
to time (say once a day), a set of price change rules is created. For a store Sk,
a distance filter is used to select only its close neighbors. The close neighbors
Sk,p ⊂ Sk of store Sk are the p% of the stores in the city that are closest to store
Sk. From these selected stores, two frequencies are obtained by simple counting.
First, the count of the number of end-of-day price changes in each price change
category is determined from data over n days. In other words, the count is the
number of days that Sk and each of its close neighbors make price changes that
fall in the same price change category. These counts are used to build the Leading
Set of price change rules for store Sk. Secondly, the price equality frequencies of
Sk with each of its close neighbors is also determined.

In real time, the PCR model responds to the receipt of price reports submit-
ted by customers for the various stores. At time ti, when a price report is received
for store Sk, two main steps are taken: the price is validated and updates are
made for the followers of store Sk.

To perform the validation, a prediction is made. First, a time filter is applied
to the rules. This filter discards any rule, Ri, in the Active Following Set that was
received at time ti, where the difference in time between ti and tj is greater than
a threshold value. Based on preliminary testing, we selected a threshold value
of 48 h. For the remaining rules in the Active Following Set, the price prediction
formulation described previously in Sect. 3.2 is applied to determine a predicted
price change. This predicted price change is compared to the actual price change
and validation is performed.

Updates are performed as well. For every price change rule in the Leading
Set for the price change category of the actual price change, the rule is added to
the Active Following Set for all the stores that Sk leads (as determined by the
rules).

3.4 Evaluation of the PCR Method

To evaluate the Price Change Rules method, we developed the Build and Test
model shown in Fig. 2. During the first phase, called the building phase, all price
reports from a sequence of days (e.g., w = 730 days) are used to generate the price
change rules based on the counts of matching changes for every pair of stores.
During the second phase, called the testing phase, for each price report from
an immediately subsequent sequence of days (e.g., the next n = 430 days), the
PCR model is used to predict the price change and the error in the predictions
is recorded. The predictions are generated using the formulation described in
Sect. 3.2. For each price report in the testing phase, the actual price change is
compared to the predicted price change and the forecast error determined. Each
actual price change is also fed back into the model at the end of the day during
the testing phase to update the price change rules.

The forecast error (e) is the difference between the actual and the forecast
(or predicted) value in a time series. Let yi denote the ith observation and ŷi
denote a forecast of yi. The forecast error is simply ei = yi − ŷi.
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Fig. 2. Build and Test model

The mean absolute error (MAE) is used to measure the forecast error over n
predictions. It is defined as follows:

MAE =
1
n

n∑
i=1

|ei|.

4 Experimental Evaluation

In this section, an evaluation of the Price Change Rules model is presented. We
first describe the data used in the experiments and then we present the experi-
mental results. We also compared the performance to that of the Most Common
Action (MCA) method, as described in Sect. 2. This method was already in use
by the makers of the app.

Data were available for five North American cities; for brevity, they are named
City1 to City5. The data for each city were treated as a separate data set when
evaluating the PCR and MCA models. In all cases, we considered only “regular”
gasoline (the most commonly purchased gasoline). For City1 and City2, retail
prices are available between 1 January 2011 and 8 March 2013 while for City3,
City4, and City5, prices are available between 1 January 2010 and 8 March 2013.
While many stores have at least one price report per day, over the given time
period, there are also many days where some stores have no price reports.
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Table 6 summarizes the data. The prices for City5 are converted from price
per litre to price per gallon. There is considerable variation in price not only
between cities but within cities. For example, the range between cheapest and
most expensive regular gasoline is at least 57.2%. Further, there is also great
variation in the number of stores in each city, with a minimum of 212 in City4
and a maximum of 1091 in City5. There is much less variation between the cities
in terms of the share of the largest brand with a minimum of 17% in City4 to a
maximum of 24.7% in City5.

Table 6. Summary statistics

City1 City2 City3 City4 City5

Number of price reports 443,310 679,610 674,480 663,941 1,663,489

Number of stores 316 849 380 212 1091

Number of brands 45 114 53 30 10

Share of largest brand 21.2% 24.6% 18.4% 17% 24.7%

Price Min 2.64 1.12 1.09 1.84 3.78

Max 4.15 4.19 6.42 4.3 6.05

Mean 3.50 3.38 3.84 3.52 4.61

Tables 7 to 8 show the evaluation results for the PCR model on the five
datasets from City1 to City5. Table 7 shows the number of price reports predicted
in each of the cities, and the number and percentage of these predictions that
matched the most frequent rule in the rule set, some other rule in the rule set,
or no rule in the rule set at that time. The most frequent rule predicts the price
change category with the highest frequency in the list of price change rules. For
instance, in City1, 291,237 price reports were predicted, 155,502 matched the
most frequent rule, 120,060 matched some other rule, and 15,675 did not match
any rule present at the time, and these values represent 53.39%, 41.22%, and
5.38% of the total price reports, respectively.

These results show that the highest percentage of predictions that matched
the most frequent rule was 85.64% in City5, while the lowest was in City1, with
53.39%. In all five cities, less than 7.5% of the predicted prices did not match
any of the rules, with City5 having the lowest percentage at 3.06% and City2,
having the highest at 7.23%. We also assessed the accuracy of the predicted
prices. Given that the most frequent rule suggested a prediction in category i,
we predicted the median price change of all price changes made in that category.
Thus, although the price category is [−5 to −10 cents], the median might be −6
cents.

Table 8 shows the results for the Build and Test evaluation method for the
PCR and Most Common Action (MCA) models. We calculated the MAE as
described in Sect. 3.4. The third column gives the percentage of price reports
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Table 7. Number of predictions

City # of Prices # of predictions % of predictions

Total Matches rule Matches rule

Most frequent Other None Most frequent Other None

City1 291,237 155,502 120,060 15,675 53.39 41.22 5.38

City2 413,092 309,100 74,120 29,872 74.83 17.94 7.23

City3 384,066 272,485 92,829 18,752 70.95 24.17 4.88

City4 343,646 191,867 138,259 13,520 55.83 40.23 3.93

City5 856,928 733,887 96,812 26,229 85.64 11.30 3.06

Table 8. Summary of results

City The PCR method The MCA model

MAE(¢) % < 5 cents MAE (¢) % < 5 cents

City1 2.092 85.80 3.971 75.87

City2 0.856 93.63 1.262 90.67

City3 1.134 90.29 1.703 85.81

City4 1.374 91.46 3.234 81.22

City5 0.393 99.52 0.919 98.69

for which the predicted error was less than 5 cents. For PCR, the highest fore-
cast error and lowest percentage within 5 cents was in City1 with 2.092 cents
and 85.80%, respectively, while the lowest forecast error and highest percentage
within 5 cents was in City5 with 0.393 cents and 99.52%, respectively.

The mean absolute error (MAE) for City1 with the PCR model is 2.092 cents
but 3.971 cents for the MCA model. This difference shows that the PCR model
improves the error by 1.879 cents over the MCA model. Improvements of 0.406,
0.569, 1.860, and 0.526 cents are also observed for City2, City3, City4, and City5,
respectively. All of these differences are statistically significant.

The PCR model predicts price changes at a store based entirely on price
changes made at other stores. Detailed examination of cases where the model
does poorly shows that if matching changes occur frequently, which they com-
monly do, the predictions are highly accurate, but in cases where they do not, the
predictions can be highly inaccurate. The main weakness of the PCR approach
may be that it only considers competitor actions in predicting the price.

5 Conclusion

This paper described a forecast model for forecasting real-time retail gas prices.
The Price Change Rules Model assumes that knowledge of a store’s competitors
price changes on the same day can be employed to predict the price change for
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that store. The model creates price change rules for each pair of stores based on
past price changes in the same category. Each real-time price report at a given
store triggers the addition of a price change rule to the rule set for every other
store that follows it. The predicted price is determined as a weighted average of
all the price change rules in the rule set. The evaluation results showed that the
model significantly reduced the forecast error for all five cities, compared to the
Most Common Action Model modified for real-time forecasting.

There are three main areas for continued research. The first area is the mod-
eling of the relationship between wholesale costs and competitive considerations.
As mentioned, the PCR model forecasts price changes at a store that are based
entirely on price changes made at other stores. Previous research on retail price
analysis has found that the changes in price are also significantly affected by
wholesale costs and competitive behavior. Wholesale gasoline is a commodity
that is traded on the open market. Thus, its price can change by the minute,
which may influence the cost framework for a retailer. Retailers purchase gaso-
line on different schedules based on volume of sales and storage capacity [6].
Considering the volatility of wholesale prices, the cost of each delivery can vary
significantly even in a short time period. Now while wholesale costs may be a sig-
nificant factor, retail prices on a day-to-day basis are also heavily influenced by
competition between retailers. How much of the changes in wholesale prices are
passed on to the consumer and how soon? Does competition outweigh wholesale
costs? The answers to these questions will assist in modeling the relationship
between wholesale costs and competitive considerations.

The second area is incorporating additional information about the stores. For
example, the brand of the store could be considered as well as the availability of
other services, such as a convenience store or carwash.

Finally, the third area is the modeling of longer-term trends in retail prices.
Predicting gas prices beyond one day ahead becomes increasingly difficult
because of the volatility of both crude oil and whole sale prices as well as competi-
tion considerations. However, it may be possible to identify trends in the changes
in price that would indicate prices are increasing, or decreasing, or remaining the
same. Determining this information at the store level, would provide additional
information to customers that can assist them in making decisions about when
and where to fuel their vehicles.
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1 University of Ljubljana, Ljubljana, Slovenia
ziga.luksic@live.com, ljupco.todorovski@fu.uni-lj.si
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Abstract. We present a novel, general framework for surrogate-based
numerical optimization. We introduce the concept of a modular meta
model that can be easily coupled with any optimization method. It incor-
porates a dynamically constructed surrogate that efficiently approximates
the objective function. We consider two surrogate management strategies
for deciding when to evaluate the surrogate and when to evaluate the true
objective. We address the task of estimating parameters of non-linear mod-
els of dynamical biological systems from observations. We show that the
meta model significantly improves the efficiency of optimization, achieving
up to 50% reduction of the time needed for optimization and substituting
up to 63% of the total number of evaluations of the objective function. The
improvement is a result of the use of an adaptive management strategy
learned from the history of objective evaluations.

1 Introduction

Numerical optimization is a task of finding the values of numerical parameters
that minimize or maximize a real-valued objective function. It is an omnipresent
task in various domains of engineering and science. The methods for numeri-
cal optimization rely on numerous evaluations of the objective function, which
presents a problem when the evaluation is non-trivial. This occurs when the eval-
uation involves either an expensive real-world experiment or a computationally
complex procedure. In the first case, the number of possible evaluations is limited
due to the cost of the experiment. In the second case, although the number of
possible evaluations is in principle unlimited, the time need to perform a com-
putationally complex evaluation practically limits its repeated execution. The
focus of our interest is on tasks that are problematic due to the latter limitation.

In this paper we address the task of estimating parameters of ordinary dif-
ferential equations [12], which is often approached as a numerical optimization
problem. The objective function involves computationally expensive methods for
simulation of differential equations. The task of parameter estimation is central
to the task of mathematical modeling, which is in turn an essential part of the
discovery of knowledge about the complex behavior and function of biological
systems [16]. Another example of such task is hyper-parameter tuning [11], i.e.,
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 51–66, 2017.
DOI: 10.1007/978-3-319-67786-6 4
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selecting a parameter setting for a machine learning algorithm that leads to its
optimal predictive performance on a given data set. In this case, the objective
function involves computationally expensive evaluation of the predictive perfor-
mance of the machine learning algorithm on a data set.

Surrogate-based approaches to numerical optimization address exactly the
case where the evaluation of the objective function is non-trivial. A surrogate
function is a close approximation of the objective function that is computation-
ally more efficient to evaluate [14]. The optimization task can be streamlined by
evaluating such surrogates instead of the true objective function. We can cluster
the surrogate-based approaches in two groups based on the surrogate manage-
ment strategy, i.e., the way they decide when to use the surrogate and when to
use the true objective function. During optimization, wrapper approaches eval-
uate only the surrogate, but validate the identified optimal points using the true
objective function [3,21]. The control over the use of surrogates is thus very
limited. In contrast, embedded approaches modify the optimization algorithm
by incorporating strategies that decide between evaluating the surrogate or the
true objective function within the optimization method [13]. While the embed-
ded approaches can deploy arbitrary strategy for surrogate management, they
require modifications of the core optimization method.

In this paper, we present an alternative framework for surrogate-based opti-
mization that allows for the use of arbitrary surrogate management strategies
without modifying the optimization method. As a consequence, a surrogate man-
agement strategy can be combined with any core optimization method with-
out additional efforts for re-implementing and/or modifying the optimization
method. The framework employs a meta model that incorporates a dynamically
constructed surrogate, the procedure for its construction and a decision function
that implements a surrogate management strategy.

We aim at showing that the proposed framework can solve complex numeri-
cal optimization problems with non-trivial objective functions while significantly
reducing the number of true objective evaluations. We test the utility of the
proposed framework on three task of estimating the parameters of models of
dynamical biological systems represented by ordinary differential equations. We
couple the meta model with Differential Evolution [22], as the core algorithm for
numerical optimization, and Random Forest regression as method for learning
surrogates. According to [8], Differential Evolution “due to its competitive per-
formance stands out as a good choice for the core optimizer” in surrogate-based
approaches. Random Forests [5] are known as a strong, robust and versatile
method reported to work well in a variety of contexts, domains and data sets.

Section 2 introduces the tasks of numerical optimization and estimating para-
meters of differential equations and overviews the related work on surrogate-
based optimization. We then introduce our general framework for surrogate-
based numerical optimization in Sect. 3. We next report on the empirical evalu-
ation of the proposed framework in Sect. 4. Finally, Sect. 5 concludes the paper
with a summary and an outline of directions for further research.
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2 Background and Related Work

Before overviewing the surrogate-based optimization methods and placing our
contribution in its context, we introduce two central tasks of interest: numerical
optimization and estimating parameters of differential equations.

2.1 Numerical Optimization

We consider the task of single-objective optimization of unconstrained, continu-
ous, nonlinear and deterministic problems. Numerical optimization is the task of
finding the solution x∗ ∈ R

k in a given k-dimensional continuous space of solu-
tions X that leads to the extremum of an objective function F : x ∈ X → R.
The objective function can be either minimized or maximized: in the former
case, the result of optimization is x∗ = argminx∈X F (x). If the analytic solution
for the minimum of F is intractable, numerical methods are applied. These can
be clustered into two groups of local and global optimization methods.

Local optimization methods [19] are commonly used due to their efficiency.
Such methods rely on the derivative of the objective function with respect to the
problem parameters. The derivative is estimated by sampling or by direct calcu-
lation. They quickly converge to the point with the minimal value of the objec-
tive function in the neighborhood of the initial point. Given a hard non-linear
problem, the local solution might not represent the global optimum. Therefore,
local methods are frequently restarted from multiple initial points to increase the
probability of finding the global solution, sacrificing the efficiency of the process.

Global optimization methods are concerned with finding the global optimum
of an objective function [20]. They can be deterministic or stochastic. While
the deterministic methods guarantee finding the global optimum, they do not
guarantee that it will be found in a finite amount of time. Stochastic methods
efficiently find the optimal regions of an objective function, but they do not
guarantee the global optimality of the solution. A good property of global sto-
chastic methods, in particular metaheuristics [25], is their ability to consider
black-box objective functions. As a result, they have gained popularity and have
been successfully applied to problems from various domains [4].

2.2 Estimating Parameters of Ordinary Differential Equations

The mathematical modeling of biological systems is an essential part of the
discovery of knowledge about the complex behavior and function of biological
systems [16]. The mathematical formalism that has been widely accepted as most
adequate for representing the interactions within a dynamical biological system
is the formalism of ordinary differential equations (ODEs) [18]. The estimation of
the parameters of a model of a dynamical system from observations, also known
as system identification, is central to the task of mathematical modeling [12].

A model of a dynamical system is described by a set of coupled ODEs
V̇ = G(V, x), where vi ∈ V denote state variables, v̇i = dvi/dt their time deriva-
tives, the functions gi ∈ G describe the structure of the model and x denotes the
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real-valued constant parameters of the model. Given an initial condition V0 (val-
ues of V at time t0), the model can be integrated to obtain trajectories of values
VT representing the simulated behavior of the dynamical system at time points
T . Analytic solution for a set of non-linear ODEs is rarely an option, so compu-
tationally expensive numerical approximation methods for ODE integration are
typically applied.

The problem of estimating the parameters of ODEs from observations can be
formulated as a numerical optimization problem. Given the observations OT of
variables V at time points T , the objective function is the likelihood of x to lead
to simulated behaviour VT , i.e., F (x) = −L(OT |VT ), where L is a likelihood func-
tion. In practice, due to the complexity of the models, the likelihood-based func-
tion is approximated by a least-squares function F (x) =

∑
v∈V‖O

(v)
T − V

(v)
T ‖2,

where O
(v)
T and V

(v)
T denote the observed and simulated values of variable v

at time points T . Recall however, that VT is obtained using computationally
intensive ODE integration method, which can be severely limiting.

Regarding the choice of a parameter estimation method for problems com-
ing from the domain of systems biology, global stochastic and hybrid methods
based on metaheuristics are considered as most promising in the literature [2,7].
Out of the many different metaheuristic methods, Evolutionary Strategies and
Differential Evolution have been identified as the most successful [24,26].

2.3 Surrogate-Based Numerical Optimization

Surrogate-based optimization approaches are used to solve numerical optimiza-
tion problems when the number of available evaluations of the objective function
is limited. This limited availability is often related to the limited resources for
performing the evaluation. The limited resources might involve physical equip-
ment when the evaluation of the objective function involves performing exper-
iments (in engineering domains) or computational time when evaluating com-
putationally complex objectives (in computational domains). Surrogate-based
approaches replace the true objective function F with a surrogate P , i.e., a
predictive model that approximates the true objective function. The numerical
optimization method then interchangeably employs F and P to obtain the eval-
uation of the objective function given a series of candidate solutions x ∈ X.
Thus, in addition to F and P the surrogate-based optimization employs a deci-
sion function D that decides when to use F and when P . It also involves decision
about when the approximation model is learned and updated from a training
set based on a sample of the available evaluations of the true objective function.

In the literature on surrogate-based optimization, the decision function D
is referred to as a surrogate management strategy [13]. Figure 1 depicts the
clustering of the state-of-the-art of surrogate-based methods into two groups of
wrapper (B) and embedded (C) approaches. To better understand the figure,
consider first the simple situation of a numerical optimization algorithms that
do not use surrogates (A). In such an environment, the optimization method
interacts only with the true objective function F by requesting numerous
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Fig. 1. Numerical optimization without surrogates (A), two state-of-the-art surrogate-
based approaches to numerical optimization, wrapper (B) and embedded (C) and the
framework based on meta models, proposed in this paper (D). In the four illustrations,
F denotes the objective function, S the surrogate, and D the decision function that
corresponds to the surrogate management strategy. The arrows denote the flow of
values between the different components of the optimization approach.

evaluations of candidate solutions x. At the end, the method reports the optimal
solution x∗ that minimizes the value of the objective function.

Wrapper approaches place the surrogate management strategy outside the
optimization method. Following this approach, the wrapper first initializes the
surrogate P using a sample of candidate solutions x and their respective objective
evaluations F (x). In consecutive iterations the wrapper runs the optimization
method using the surrogate P , obtaining a solution x∗

P , which is evaluated using
the true objective function. The solution x∗

P and its evaluation F (x∗
P ) are then

added to the surrogate training set and the surrogate is updated before running
the next iteration. Examples of wrapper-approach methods are the methods for
constrained numerical optimization COBRA [21] and SOCOBRA [3]. Both are
based on the earlier work on efficient global optimization (EGO) methods [14]
that also follow the wrapper approach.

Embedded approaches rely on encoding the management strategy within the
optimization method. Following this approach, the decision whether to use the
surrogate or the true objective function is based on the various artifacts of the
algorithm [13]. In particular, population-based evolutionary optimization meth-
ods use surrogates to evaluate the offspring candidates for the next generation of
individuals. On the other hand, the selection of the top candidates to be actually
included in the next generation, is based on the evaluation of the true objec-
tive function. A simpler, generation-based management strategy evaluates the
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surrogate function in some generations, and the true objective function in oth-
ers. The surrogate-based variants of Differential Evolution in general [8,17,23]
in particular, follow the embedded approach.

Wrapper approaches are inflexible when it comes to the surrogate manage-
ment strategy, since it forces the evaluation of the surrogate function within the
wrapped optimization method, while the true objective function can only be eval-
uated from outside the method. On the other hand, the embedded approaches
are more flexible, but the decision function relies directly on the current state of
the core optimization algorithm. Also, it requires re-implementation or modifi-
cation of an existing implementation of the core optimization method.

The general meta-model framework for surrogate-based optimization we pro-
pose combines the simplicity of the wrapper approaches with the flexibility of
the embedded approaches. On one hand, the meta model can be coupled with
any core optimization method since it is used as a black box (see Fig. 1(D)). The
surrogate and decision functions are coupled together with the true objective
function independently from the optimization algorithm. On the other hand,
within the meta model, different types of surrogate models and the appropriate
procedure for their construction can be seamlessly integrated. Subsequently, an
arbitrary complex surrogate management strategy can be applied to the dynam-
ically constructed surrogate model and the true objective function, generating
a single meta-model evaluation. The decision can be different for each request
for evaluation from the optimization method as it is based on the history of
meta-model evaluations.

3 Meta Model for Surrogate-Based Optimization

We first introduce the meta-model framework for surrogate-based optimization.
We next introduce two meta models that use two different surrogate management
strategies. The first one is a simple, “uninformed” meta model that uses only
the length of the evaluation history to decide whether to evaluate the surrogate
function or the true objective function. The second one is a more complex,
adaptive management strategy, called a relevator. The decision function for the
relevator uses a predictive model trained using the history of evaluations of the
true objective function.

3.1 Meta-Model Framework

The function MetaModel : Rk × (Rk+2)∗ → R is defined by the three functions
(F, S,D), corresponding to the components of the meta model :

– objective function F : Rk → R,
– surrogate function S : Rk × (Rk+2)∗ → R,
– decision function D : Rk × (Rk+2)∗ → {0, 1}.
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In our meta-model framework the function MetaModel is defined as:

MetaModel(x, h) =

{
F (x); D(x, h) = 1
S(x, h); D(x, h) = 0

(1)

Note the difference between the values of D in Fig. 1 and its role in the meta
model in Eq. 1. In the latter case, the value of D determines whether the meta
model returns the value of the true objective function F or the value of the
surrogate P . In Fig. 1, the inputs and outputs of D correspond to the flow of
values between the components.

The surrogate function S takes care of learning and updating the sur-
rogate predictive model P : R

k → R from the training set sampled from
the history of evaluations h of the true objective function. In particular, S
takes care of collecting the history of meta-model evaluations, i.e., the finite
sequence of past evaluations h ∈ (Rk+2)∗. Each past evaluation is recorded as
(x1, · · · , xk,MetaModel(x), δ), where x = (x1, · · · , xk) is a point of evaluation,
while δ = 1, if the objective function was used for evaluation, and δ = 0, oth-
erwise. The history of evaluations is updated after each evaluation of the meta
model. The surrogate training set is the sample of the history of evaluations with
δ = 1.

There are three important properties to be considered when constructing a
good surrogate function: the type of the prediction model, the size of the train-
ing set used for its construction and the frequency of model updates. We aim at
selecting a surrogate that closely approximates the true objective function and
can be evaluated efficiently. Moreover, the efficiency of the surrogate function
depends upon the trade-off between the frequency of surrogate learning and the
size of the training set. Having a high update frequency is desirable since the sur-
rogate then always takes into account the most recent history of evaluations. On
the other hand, frequent surrogate updates are unproductive unless the learning
time is fairly low compared to the evaluation time of the true objective function.
To this end, we introduce a user-defined parameter that determines the number
of true object evaluations between the consecutive surrogate updates.

When it comes to the size of the training set, the issue of filtration of the
history of evaluations arises. For example, when using the meta model in conjunc-
tion with a population-based method, the population slowly converges towards
the minimum of the true objective function. After a number of evaluations, we
can focus to the recent evaluations that correspond to the lower values of the
objective. Therefore, older history can be safely removed from the training set.
In our implementation, the training set includes a user-defined number of the
recent points from the history of evaluations as well as a user-defined number of
points with the lowest values of the true objective.

3.2 Uninformed Meta Model

The simplest surrogate management strategy (decision function) for a meta
model is the one based only on the current index of the evaluation. For instance,
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meta model can use the surrogate for every third evaluation. Such decision func-
tions do not use any kind of information about the point being evaluated other
than the length of the evaluation history. Thus this management strategy is
considered to be “uninformed”.

A decision function D is uninformed, if it can be represented as a composite
of the length function L : (Rk+2)∗ → N and a function D̃ : R → {0, 1} such that
the meta model (F, S,D) is defined as:

MetaModel(x, h) =

{
F (x); D̃(L(h)) = 1
S(x, h); D̃(L(h)) = 0

(2)

A meta model with an uninformed decision function is an uninformed meta
model.

3.3 Relevator Meta Model

An alternative approach is to identify points which are of high “relevance” for
the optimization algorithm and decide whether to use the true objective function
or the surrogate function to evaluate it. The evaluation of the most relevant
points should be performed using the true objective function in order to properly
estimate the current state of the optimization. We want to avoid misleading the
algorithm into false optima that may appear as artifacts of the evaluation of the
surrogate function.

The strategy for making a decision based on the relevance of a point brings
up two issues. How is the relevance of a point formally defined and how can
the relevance of a point be estimated before evaluating it. During the task of
optimization, the points with values that are closest to the lowest seen value are
considered as most relevant. In our approach, we calculate the relevance of a
point as follows. Let f = (f1 · · · , fm) represent the vector of values of previously
evaluated points in the history of evaluations. We define the relevance of the
point x ∈ R

k relative to these values f as

relevance(x, f) = (1 + (F (x) − min
i

fi)/(avgi fi − min
i

fi))−1 (3)

As long as F (x) > mini fi the relevance is bound to the interval [0, 1] where
the value of 0 corresponds to a point of low relevance and 1 to a point of high
relevance.

The relevator meta model employs machine learning models for predicting the
point relevance. From the history of evaluations and the same training set as the
one used to learn the surrogate, we learn another model that predicts the point
relevance. We refer to this model as the relevator. In addition to the relevator,
the decision function also includes a decision threshold that distinguishes the
points with high relevance, which should be evaluated using the true objective,
from points with low relevance, which should be evaluated with the surrogate.
To allow for the definition of a dynamical threshold, we define the threshold Θ
as a function of the history of evaluations.
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Thus, the decision function of a relevator meta model is the indicator function
1[R(x, h) > Θ(h)], where R : Rk × (Rk+2)∗ → [0, 1] is the relevance of point
x given the history of evaluations h and Θ : (Rk+2)∗ → [0, 1] is a dynamical
relevance threshold function. The relevator meta model is then defined as:

MetaModel(x, h) =

{
F (x); R(x, h) > Θ(h)
S(x, h); R(x, h) ≤ Θ(h)

(4)

We implement the dynamical relevance threshold using an iterative updating
procedure with the goal to control for and locally bound the rate of surrogate
evaluations. By considering the user-defined number of most recent evaluations,
we can either raise or lower the threshold after every meta model evaluation in
order to increase or decrease the rate of surrogate evaluations to achieve (locally)
the user-defined substitution rate.

4 Empirical Evaluation of the Meta-Model Variants

We empirically compare the performance of the two meta-model variants against
the Differential Evolution method without using surrogates on three parameter
estimation problems from the domain of systems biology1. After introducing the
problems, we present the experimental setup and results.

4.1 Parameter Estimation Problems

For the empirical evaluation of the proposed framework we have selected three
dynamical biological systems with varying degrees of complexity shown in Fig. 2.
The three systems have been well studied in terms of their dynamical properties
and identifiability [6,10].

The first system is a synthetic oscillatory network of three protein-coding
genes interacting in an inhibitory loop, known as the Repressilator, modeled by
Elowitz and Leibler [9]. The system is represented by a set of six ODEs with
four constant parameters that are subject to estimation. Each gene (rectangle
in Fig. 2 (A)) is modeled by two observable variable properties: the amount of
mRNA transcribed by the gene and the amount of protein translated from the
mRNA. Each of the three proteins inhibits the transcription of a target mRNA.
The inhibition is modeled by a Hill type kinetics, the translation of mRNA to
protein and the degradation of both mRNA and protein are modeled by linear
kinetics. The transcription is assumed to have an additional constant component
due to “leakiness” of the promoter.

The second system is a metabolic pathway representing a biological NAND
gate modeled by Arkin and Ross [1]. The model is represented by a set of five
ODEs with 15 constant parameters that are subject to estimation. The ODEs
correspond to the five observed variables S3-S7 represented by rectangles in
1 The implementation of the framework, the two meta-model variants, the models and

data are available at http://source.ijs.si/zluksic/metamodel/.

http://source.ijs.si/zluksic/metamodel/
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Fig. 2. Diagrams of the three models of dynamical biological systems used for the
empirical evaluation: (A) A synthetic oscillatory network - repressilator; (B) Metabolic
NAND gate; and (C) S-system model of a genetic network. The rectangles represent
observed and modeled variables. The arcs ending with an arrow (→) represent interac-
tions with positive regulation while the arcs ending with a bar (�) represent interactions
with negative regulation.

Fig. 2 (B). The metabolites X1-X6 (circles) are assumed to be in steady-state
(i.e. Ẋi = 0). The system has two inputs I1 and I2, modeled as step functions.
The dynamics of the interactions, represented by the arcs in the figure, are
modeled by Michaelis-Menten kinetics with non-competitive inhibition.

The third system is a genetic network modeled by Kikuchi et al. [15]. The
system is represented as a five variable S-system model with 23 constant para-
meters. S-system model is a set of ODEs in which the interactions in the
system are approximated by a multivariate power-law functions of the form
Ẋi =

∑
j sij · kj

∏
k X

ojk
k , where sij are stoichiometric coefficients, kj are reac-

tion rates and ojk are kinetic orders. In the system represented in Fig. 2 (C) the
observed variables are represented by rectangles. The stoichiometric coefficients
for the reactions are −1 for reactants and +1 for products, the reaction rates
and the kinetic orders are subject to estimation. The amounts of nucleic acid
(NA), amino acid (AA) and substrate are assumed to be constant.

4.2 Experimental Setup

The uninformed meta model was set to use the true objective function every
third meta-model evaluation (66% substitution rate). For the relevator meta
model the surrogate function and the relevator are trained using the Weka
implementation of Random Forest [5] with default parameters (100 trees with
int(log2(#parameters)+1) parameters per split) using 8 threads to reduce build
time. The local substitution rate of the relevator was kept between 60% and
70%. We used a step size of 0.001 to adjust the threshold, with the starting
value of the threshold set to 0.7. Based on the dimension of the problems, the
training set for the repressilator was filtrated so it contains the 2000 most recent
evaluations of the true objective function with additional 500 points with the
lowest seen values. For the other two problems the training set was increased by
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factor of 2. Both prediction models were rebuilt after every 500 (repressilator)
or 1000 (metabolic, s-system) evaluations of the meta model.

The meta models were coupled with the Differential Evolution optimization
method [22] with fixed parameter settings. Based on the dimensionality of the
problems, the population size was set to 100 (repressilator) or 200 (metabolic, s-
system). The crossover probability was set to 0.8 and the differential weight was
set to 0.9. For all experiments the same random seed (42) was used. The models
were simulated using the classical explicit fourth order Runge-Kutta integrator
with a step size of 10−2. The observation data for the repressilator was obtained
by simulating the model in the time interval [0, 30]. Samples for all variables
were taken at each integer time point. The objective function used was the sum
of the root of squared errors — F (x) =

∑
t∈T ‖Ot − Vt‖, where Ot and Vt are

the vectors of observed and simulated values of all variables V at time t.
The observation data for the metabolic pathway model was obtained from

Gennemark and Wedelin [10]. It consists of 12 sets of observations obtained by
simulating the model using 12 different pairs of input step functions (I1, I2)
in the time interval [0, 150] sampled uniformly at 7 time points. The objec-
tive function used was the negative log-likelihood calculated as F (x) = L(x) =
− 1

2

∑
v∈V

∑
t∈T (O(v)

t − V
(v)
t )2/σ

(v)
t , where O

(v)
t and V

(v)
t are the observed and

simulated values of variable v at time point t and σ
(v)
t = 10−1 · O

(v)
t . To obtain

the objective function the estimated likelihood was summed across all datasets.
The observation data for the s-system model was also obtained from Gen-

nemark and Wedelin [10]. It consists of 10 sets of observations obtained by
simulating the model using 10 different sets of initial conditions for all variables
in the time interval [0, 0.5]. Each dataset contains 11 data points for each vari-
able sampled uniformly from the simulations. As in the experiment with the
metabolic pathway, to compare the observations to the simulated values we use
the negative log-likelihood. The standard deviation of observations at each time
point was set to σ

(v)
t = 10−2. Due to the wide ranges of values that can occur

during the evaluation of the highly nonlinear system, we transform the likelihood
function to obtain the objective function F (x) = log(1 + L(x)). The transfor-
mation preserves the order and maps 0 to 0. As in the previous experiment, the
objective function was summed across all datasets.

4.3 Results

Figure 3 depicts the convergence curves for the three parameter estimation prob-
lems (rows) obtained using no surrogate, the uninformative, and the relevator
meta model (columns). The convergence rate and the obtained optima indicate
a superior performance of the relevator meta model.

Even for a relatively simple repressilator problem, it can be observed that
using a meta model significantly improves the rate of convergence relative to
the number of evaluations of the true objective function. While slight improve-
ments are obtained with the uninformed meta model, the relevator meta
model achieves a nearly perfect fit of the observations in less than 30,000 true
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Fig. 3. Dependence of the quality of the best solution found so far on the number of
evaluations of the true objective function. Convergence curves for the three parameter
estimation problems: (A) Repressilator; (B) Metabolic pathway; and (C) S-System
model of a genetic network. The three curves correspond to the no-surrogate method
(left), the uninformed meta model (middle), and the relevator meta model (right).

objective evaluations. For the other two problems, the uninformed meta model
slows down the convergence of DE without surrogates. In contrast, the releva-
tor meta model outperforms the other two methods by factor of over 2.5 on
the metabolic problem and by factor of 1.6 on the s-system problem. In all the
experiments that we have conducted, the global rate of substitution was close to
the local one.

Figure 4 confirms the superiority of the relevator meta model to the two
alternative methods both in rate of convergence and the achieved optimal values.
In the case of the repressilator, the relevator reaches the objective value of 10−4

after less than 30,000 true function evaluations, whereas the uninformed meta
model and DE without surrogates are not able to reach that value in 50,000
evaluations. Similarly, for the other two problems, the number of true objective
evaluations that the relevator needs to reach an objective threshold is at least
twice lower then the number of evaluations needed by the other two methods.
The uninformed model has never reached the lowest objective thresholds, while
the DE without surrogates has reached it only for the metabolic problem.

In Table 1, we compare the three methods by observing the time and the num-
ber of evaluations needed to achieve the minimal objective value obtained using
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Fig. 4. Transposed convergence curves for the three parameter estimation problems
((A) Repressilator, (B) Metabolic pathway and (C) S-System model of genetic network)
show the number of true objective evaluations needed to reach a certain objective value
threshold. Points are missing from the end of some of the curves if that method did
not reach the threshold in the allocated total number of evaluations.

Table 1. Time (minutes), number of evaluations of the true objective function (F) and
of the meta model (MM) needed to achieve the minimal value of the objective obtained
using DE without surrogates.

no-surrogate s-uninformed s-relevator

Repressilator Time 2.66 3.83 1.83

#evals(F) 50,000 50,179 22,351

#evals(MM) 50,000 148,533 59,929

Metabolic Time 283.33 >283.33 135.5

#evals(F) 300,000 >300,000 137,620

#evals(MM) 300,000 >1,000,000 363,702

S-system Time 145.66 95.17 97.00

#evals(F) 300,000 178,984 181,464

#evals(MM) 300,000 517,936 498,335

DE without surrogates. Again, the uninformed meta model does not improve
the optimization performance for two reasons: it requires more time and more
true objective evaluations. For the s-system, it reduces both time and number of
evaluations, just like the relevator meta model, which outperforms no-surrogate
optimization for all three problems. The results show the time reduction of 30%
on the repressilator problem, 50% on metabolic and 33% on s-system. The rates
of substitution of the true objective with the surrogate evaluations are 62.7%,
62.2% and 63.6%, respectively.

5 Conclusion

We presented a novel, general meta-model framework for surrogate-based
numerical optimization. The framework is modular, easily configurable and
independent from the core optimization method. We focused on the basic,
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defining feature of the meta model, the management strategy. We demonstrated
the efficiency of the strategy that supports decisions based on the relevance of
the evaluated point in contrast to uninformed substitution of the true objective
function with a surrogate function. We approached the prevalent and computa-
tionally expensive task of estimating the parameters of models of dynamical bio-
logical systems. On three examples with increasing complexity, we showed that
the use of meta model improves the efficiency of optimization. In particular, the
use of the relevator meta model for surrogate-based optimization significantly
and efficiently improves the convergence rate and the final result of the opti-
mization when considering a limited number of evaluations of the true objective
function.

Other than that, the components of the meta model and the core optimization
method can be easily adapted to a specific problem, such that the efficiency of
optimization is maximized. The adaptation introduces problems that can be
approach both from the aspect of numerical optimization and machine learning.
Such optimization of the framework is a direction for further work.

Particularly, in order to empirically evaluate the generality of the framework,
it can be instantiated using different core optimization methods. The evaluation
of the improvement in efficiency can then be established with regards to differ-
ent strategies or to the parameters of the presented general strategies. Other
issues concern more specifically the construction of the surrogate model and the
decision function. Such is the issue of learning models that can predict the val-
ues of the true objective function and the relevance of prediction at the same
time. The decision function may use information from the learned surrogate to
derive the relevance of prediction. For example by analysis of the variance of the
prediction of ensemble components or by considering the learning of other types
models that contain information about the certainty of the prediction (Bayesian
models, Gaussian process models, etc.). The problem of simultaneous prediction
of the value of the objective function and the relevance of the evaluated point
can be alternatively posed as a multi-target problem and approached by suitable
learning methods. In the direction of multi-target learning, the framework can
also be generalized towards the optimization of multi-objective problems. Fur-
thermore, the task of optimization has a temporal dimension. The evolution of
the population generates streams of information with increasing relevance. Such
information can be efficiently exploited by iterative and online learning methods.
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Abstract. Most machine learning methods used for regression explicitly
or implicitly assume a symmetric loss function. However, recently an
increasing number of problem domains require loss functions that are
asymmetric in the sense that the costs for over- or under-predicting the
target value may differ. This paper discusses theoretical foundations of
handling asymmetric loss functions, and describes and evaluates simple
methods which might be used to offset the effects of asymmetric losses.
While these methods are applicable to any problem where an asymmetric
loss is used, our work derives its motivation from the area of predictive
maintenance, which is often characterized by a small number of training
samples (in case of failure prediction) or monetary cost-based, mostly
non-convex, loss functions.

1 Introduction

Recently an increasing number of regression problems require that different
emphasis is placed on over- and under-estimation. For example, consider one
of the most important parameters for predictive maintenance, the remaining
useful lifetime (RUL) of a given component. Given a reliable RUL estimation,
specific maintenance or repair actions can be planned as to minimize the overall
cost of using a particular piece of equipment. Usually, regression methods try to
predict the target value as accurately as possible, and do not distinguish between
over- and under-estimation errors. However, for the case of RUL, since the cost
of replacement of a component after a failure is usually higher than before a
failure, we would prefer to estimate the remaining lifetime pessimistically. Infor-
mally, we can say that we want to predict the target value as closely as possible
without over-estimation.

One approach to solving such problems with asymmetric loss functions is to
try to find closed-form solutions that minimize the given loss. We will briefly
discuss this approach in Sect. 3. However, such solutions typically have to make
assumptions about the model class. Moreover, for some popular model classes,
such as regression trees, closed-form solutions cannot be derived. Therefore, we
attempt a different, more general approach in this work: We will explore the
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 67–81, 2017.
DOI: 10.1007/978-3-319-67786-6 5
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suitability of generic machine learning methods for regression under asymmetric
loss. The aim is to find simple and generally applicable methods that perform
better than basic regression methods for symmetric loss functions. We tested
several simple heuristics, which aim at offsetting the effects of asymmetric loss.

In this paper, we focus the discussion on predictive maintenance (PM),
although the problem has also been investigated in other areas, such as com-
putational finance. The specifics of predictive maintenance in this case are that
the loss function may be explicitly defined based on the monetary cost involved
when a certain failure happens or a maintenance procedure is performed. On
the other hand, the difficulty in predictive maintenance often lies in the lack of
data describing the failure, since failures might be quite rare and costly. Yet,
the total amount of data can be quite high, because data describing normal
operation without failures are usually abundant.

We will start with a formal definition of the problem (Sect. 2) and a reca-
pitulation of previous work in this area (Sect. 3). The core contribution of the
paper is a comparison of various methods which address this problem empiri-
cally, via a static or dynamic shift of the target value. These are discussed in
Sect. 4, and experimentally compared in Sect. 5. From the obtained results, we
draw our conclusions in Sect. 6.

2 Problem Formulation

The regression task is that given a set of training examples (xi, yi) with xi ∈ R
n

and y ∈ R, find a function g(xi), which minimizes an expected loss C(g(x), y) for
new pairs (x, y). The input variables x = (x1, x2, . . . , xn) are called regressors,
the target value y is also known as the regressand. The function C(y′, y) specifies
the penalty assigned to a sample used in the model training, when the prediction
is not perfect. The learning stage finds for a given type of regression function
y′ = g(β,x) such a set of parameters β, that the overall cost of mis-prediction
for all samples i is minimized, i.e.,

β = arg min
∑

i

C(y′ =g(β,xi), yi) (1)

Additional constraints may be included to ensure that no over-fitting occurs.
This formulation fits into a wider context of cost-sensitive learning, where

various costs pertaining the data and predicted results are considered. However,
in machine learning, the problem has typically been considered in the context of
classification, where different costs are associated with different ways of mistak-
ing one class for the other [4]. Instead, we are dealing with regression problems
and continuously changing loss functions.

In most cases, the loss function is such that C(y′, y) = C(y′ − y), that is
the loss function depends only on the error value. Moreover, the penalty is zero
only for perfect prediction (C(y′ = y, y) = 0) and every error is penalized, i.e.,
C(y′ �= y, y) > 0. In terms of RUL prediction, if we want to reduce the number of
over-estimations, we should assign a higher loss to the training instances which
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Fig. 1. Examples of asymmetric loss functions. Step loss (a) is used when we want to
completely avoid over-predicting, linex loss (b) when only the costs for large positive
and negative errors are significantly different, and asymmetric linear loss with step (c)
offers the opportunity to model actual monetary cost.

over-estimate the target value, whereas an under-estimating by the same error
should result in a smaller penalty. Thus, in this case, the loss function becomes
asymmetric, i.e., C(δ) > C(−δ) ∀δ > 0.

Examples of asymmetric loss function include step loss, which describes a
situation where we would like to equally penalize all cases of over- or under-
estimation (Fig. 1 (a)), or the linex function, which consists of a linear form in
the negative range, an exponential function in the positive reange, connected by
a symmetric quadratic function for small positive or negative values (Fig. 1 (b)).
For a predictive maintenance domain, it would be of particular interest to use
a loss function that reflects the actual gain or cost of equipment operation or
failure. In many cases, such functions can be quite easy to define, e.g., via piece-
wise linear functions. However, this also means that these function most likely
will not be smooth or convex, which restricts the use of gradient-based numerical
methods (cf. Fig. 1 (c)).

3 Related Work

The first analytical work exploring the effect of asymmetric loss functions on
regression was by Granger [6]. The author showed that in some simple cases of
asymmetric cost functions and a Gaussian distribution of the estimation error,
one can obtain an optimal solution by first solving the problem with a conven-
tional method using symmetric quadratic loss, and then shifting its predictions
by a certain value, which depends on the loss function and standard deviation
of error.

Christoffersen and Diepold [2] extended this work and showed that for every
loss function which depends only on the estimation error C(y′ − y), the optimal
estimation under asymmetric loss also can be obtained by adding to a mean a
certain value depending on the loss function and conditional moments of error
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distribution of order two and higher. Specifically, we can view regression as a
method, which, for each set of regressor variables (x1, x2, . . . , xn), tries to esti-
mate a probability distribution of regressand Q(y,x) = Pr(y | x1, x2, . . . , xn),
and then provides a solution ŷ which minimizes a specific loss function for a given
distribution. For a symmetric quadratic loss function, the solution ŷ approxi-
mates the expected value E(y | x1, x2, . . . , xn) and is therefore an appropriate
starting point for an adjustment [2].

Thus, if we have a basic regression model y′ = R(x), which uses a symmetric
loss function, then the solution to a problem with asymmetric loss is in the form:

ŷ = g(x) = R(x) − B(R,x) + S(λk(Q(y,x)), C) (2)

where B(R,x) is a bias of regression R, and the adjustment shift S(.) depends
on moments of variance λk with respect to y of probability distribution Q(y,x)
and the loss function C(.). The importance of this result is that it shows
that a solution of form (2) can give an optimal solution. However, it is still
not a trivial problem, as we still need to find the probability distribution
Q(y,x) = Pr(y | x1, x2, . . . , xn). Attempts to address this problem include, for
example [11], which extends [2] by proposing a method for estimating a con-
ditional probability distribution for a given combination of regressors using the
bootstrap [9]. However, it assumes that there is a sufficient number of data points
for each combination of regressors (x1, x2, . . . , xn), which may not be the case
for many real-life problems.

One important implication of these theoretical results with respect to appli-
cations in predictive maintenance is that in order to have an optimal adjustment,
we need to estimate the error probability distribution conditional on the regres-
sors. Probability distribution estimation requires a large volume of data for each
point, and thus might be infeasible for predictive maintenance applications. The
reason for this is that datasets for fault prediction consist of points collected
after actual failures, which implies that the cost of getting each point can be
quite high. Thus, we have to find methods that allow to correct the basic model
using only a small number of available training points.

The scope of our paper is close to [8], which compares multiple heuristics for
the case of asymmetric loss functions. There is a difference in focus, however. In
[8] the author targets systems with possibly varying loss functions, and suggests
to create a model of variance first, and later derive corrections from local or
global variances for specific loss functions. This approach is more flexible but
may increase error due to assumption of Gaussian distribution of residuals. Some
of the methods we are testing are based on the KNC method proposed in [8].

Another related work is [12], where authors propose to compute polynomial
adjustments based only on a predicted value. Taking into account the application
domain of the paper (positive values such as housing prices) and restating the
underlying assumption about the data (variability of house prices does depend
on the house price), it is reasonable to assume that this approach might work
for similar datasets. However, we do not include this method in our comparison,
since it requires a convex loss function.
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In the following, we explore several simpler approaches which try to estimate
a good prediction shift empirically from the given dataset.

4 Empirical Approaches Based on Prediction Shift

Machine learning offers a wealth of methods which can be used for regression.
Each of them offers unique capabilities, which may be helpful for addressing a
specific estimation problem. Most of them explicitly or implicitly assume sym-
metric cost functions. We would like to preserve this breadth of capabilities,
but add to it the ability to handle the case of asymmetric loss. One approach
could be to adapt individual techniques so that they can compute a direct solu-
tion to the global optimization given by (1). However, in many cases this may
be impractical, since both assumed model and loss function might not be con-
vex and differentiable, which would make finding the global minimum extremely
difficult.

Thus, we would like to adopt a two-step approach. At the first step a known
and proven machine learning method is used to estimate the required value,
providing a regression function R(x). At the second step, a shift function S(x)
is used to correct the original regression model. The computation of this function
is based on the recognition results and achieved errors from the first model. Thus
the complete solution to Eq. 1 is in the form:

g(x) = R(x) + S(x) (3)

This is a reasonable approach, since this is a simplified version of (2), which
estimates the regression method bias and optimal shift terms of (2) together.

Formally, we would like to solve a problem of minimizing either the average
or combined loss, given a solution of a basic black-box machine learning method
y′ = R(x) and its prediction errors on the training samples (δi ≡ y′

i − yi,xi).
From this, we need to obtain a shift function S(x) from a class of functions
S(γ,x), which minimizes the asymmetric loss given the errors of the basic model.
Formally, we want to find the parametrization γ such that

γ = arg min

(
∑

i

C(δi + S(γ,x))

)
. (4)

There are several straight-forward approaches for finding a suitable shift for
compensating an asymmetric loss. We later compare variants of the following
basic methods, which are described in more detail in the following sections and
summarized in Table 1:

– Constant shift: Given the results of a basic machine learning method, find
a constant (the same for every instance) correction shift, which reduces the
expected loss. This constant shift is then applied to the estimation given by
the basic model.



72 A. Tolstikov et al.

– Pointwise shift: Having the results of a model with a (presumably) symmetric
loss, transform the training data by adding a specific shift to each training
point, and then re-train the model. Two cases can be considered: First, the
shift may correct a significant prediction failure, or, second, the shift for each
point may reflect the difference between the loss accrued with an asymmetric
function compared to the loss accrued in the symmetric case.

– Learned model-based shift: Having a first-cut result of how well the regression
approximates the data, learn a meta model which, for a given basic model,
attempts to find the value or at least the sign of the error for each instance,
and then compensate according to the loss function.

– Assumed error model-based shift: This is based on the analytical results men-
tioned in the Sect. 3. Since the optimal shift for a given loss function depends
on the moments of error distribution, we can obtain a model of moments
under certain assumptions. In this paper, we assume that at each point of the
state space the error distribution is Gaussian, and that the standard deviation
for each point linearly depends on the regressor values.

– KNC Methods: Direct (i.e. using direct distribution instead of variance) vari-
ations of the methods introduced in [8], which attempt to estimate the con-
ditional probability distribution based on nearest-neighbour errors.

Being most obvious, the constant shift method serves as a baseline heuristic
for the comparison of the other methods. Another possible baseline is the direct
computation of optimum solution g(β,x) of Eq. 1, using for example, a gradient
descent method. However, the direct optimum is difficult to find for complex
forms of regression and loss functions, and the comparison is only applicable
within the same type of regression functions.

Fig. 2. Examples of computing constant shift for different loss functions. In green
color is the probability density of errors produced by a given primary machine learning
method. The probability distribution is shifted with respect to the loss function, and for
each shift the average loss is computed. Since this is a simple uni-dimensional function,
the optimum shift can be easily found even for inconvenient loss functions. The dotted
lines show the zero shift (red) and the shift achieving minimum average cost (blue).
(Color figure online)



Accomodating Asymmetric Loss in Regression 73

4.1 Constant Shift

Assume that we have a loss function C(δ) and for a given regression method and
training dataset we have an approximation function y′ = R(x). The total loss
for a dataset can then be computed by summing up the loss for all instances as∑

i C(y′
i − yi).

Figure 2 shows two examples of computing a dependency of the average loss
on the shift value using the CPU dataset from the UCI collection [10]. Here,
linear regression was used as a primary model and the error density displayed is
for the training set.

4.2 Pointwise Shift

The approach in the previous section applies the same constant shift to all pre-
dictions. In this section, we discuss two approaches for making the magnitude
of the shift depend on the instance that is shifted.

Shift of Over-Predicted Instances of Training Set. This method, referred
to later as shift to zero, is ignorant of the loss function. Instead, it aims at
reducing the number of over- (or under-) predicted instances.

Suppose the basic regression model y′ = R(x) was trained using the set
of pairs (xi, yi). The subsequent model ŷ = R̂(x) is trained using the same
algorithm as R, but using set of pairs (xi, ŷi), where, for the case of avoiding
over-prediction

ŷi =

{
yi if R(xi) ≥ yi

R(xi) if R(xi) < yi.

Non-linear Shift of Individual Instances of Training Set. The idea of this
approach is to externally emulate the effects asymmetric loss function without
considering the details of the chosen regression method. We assume that we know
both the loss function optimized by the method, which we denote as M(δ), as
well as the required asymmetric loss function C(δ). Typically, we can just assume
that M(δ) is symmetric and quadratic. Another assumption is that both loss
functions have the same loss value at the zero point. Furthermore, we denote the
parts of loss functions for positive and negative δ as M+(δ), C+(δ) and M−(δ),
C−(δ), respectively.

First, we use the training set to create a regression model and then obtain the
error values Δyi = y′

i − yi for each of the training instances. The total accrued
loss for the training set under the method loss function is LM =

∑
i M(Δyi),

and assumed to be optimal for the method and the dataset. Then we modify the
label values y of the training set so that the total cost stays the same under the
required loss function

LR =
∑

i

M(Δŷi) = LM
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The labels are modified by substituting each yi with ŷi so that

ŷi = yi +

{
δ : C−(δ) = M−(Δyi) if Δyi < 0
δ : C+(δ) = M+(Δyi) if Δyi > 0

Then, we obtain a new regression model from this modified training set, and use
this newly learned model for prediction.

4.3 Learned Model-Based Shift

This is another generic machine learning approach, where we want to learn
how much offset is needed for every point to compensate the difference between
whatever loss function used by a basic regression method and the required loss
function C(δ).

Here, we train the basic model on a training set of pairs (xi, yi), then use
an adjustment set of different pairs (xj , yj) for obtaining the errors δj = y′

j − yj

and the corresponding losses lj = Casc(δj). We use an ascending version of the
loss function C(x) defined as

Casc(δ) =

{
C(δ) if δ ≥ 0
−C(δ) if δ < 0

Then we use pairs (lj ,xj) to train a regression function L(x) based on these
observed losses. For the final regression, we can use the loss to off-set the pre-
diction either in all cases (method L2), or only when we predict that an over- or
under-prediction occurs (method L1).

4.4 Assumed Error Model-Based Shift

As mentioned before, this approach makes use of the analytical results described
in Sect. 3. The general idea is as follows: since the optimal shift at a point depends
on two functions, the moments of error probability distribution and the loss
function, we can separate the computation of the shift from the modelling of
the error distribution. However, there must be an assumed model of probability
distribution, which connects these two stages. Formally, we assume point error
distribution can be represented by a function E

Pr(δ | x) = E(δ, P (l,x))

where δ is the error value, x is a vector of regressors, P is a function of parameters
p of a probability distribution, and l are parameters describing the dependency of
p on x. We need to assume both the type of the distribution E and the function
type of P , and then fit a maximum likelihood model so that

l = arg min

(
−

∑

i

log(E(δi, P (l,xi)))

)
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Then, having fixed the parameters l and the function p = P (l,x), we can
substitute the general E(δ, P (l,x)) with a specific Ê(δ,x), and then find for
specific loss and error functions C(δ) and Ê(δ,x), a dependency of the local
shift on the distribution parameters S(x), which minimizes expected loss

S(x) = arg min
∫ ∞

−∞
C(δ)Ê(δ − S,x) dδ (5)

In the simplest scenario, which we explore here, E is a normal distribution,
and P models standard deviation as linear function σ = a · x + b. Then the
combination error function will be either (method AM)

E(δ,x) =
1

(a · x + b)
√

2π
e
− (δ−μ)2

2(a·x+b)2 (6)

or, if we enforce an assumption of unbiased basic regression (method AZ)

E(δ,x) =
1

(a · x + b)
√

2π
e
− δ2

2(a·x+b)2 (7)

The shift value from Eq. 5 becomes a function of standard deviation S(x) =
Ŝ(a · x + b) = Ŝ(σ), obtained from a single dimension optimization. Figure 3
shows examples of loss functions and dependency Ŝ(σ) of optimal shift on σ
under assumption of Gaussian noise.

The benefit of this approach is that error data modelling is performed inde-
pendently of the loss function, and, once the error model is found, any loss func-
tion can be used. Moreover, since finding an optimal shift for a given parameter of
the error probability distribution involves only a single dimension optimization,
it can be easily done for various types of loss functions, including non-convex,
discontinuous or non-differentiable functions.

Correction for Non-Gaussian Noise. The assumption of Gaussian noise may
mean that the shifts computed for specific values of the standard deviation would
be either too big or too small for a particular error distribution. We can try to
offset the effect of this assumption by correcting the shift using the information
obtained while computing the constant shift model from the Sect. 4.1. Constant
shift computation does not assume a specific model for the error distribution and
is optimal for a given distribution. That is, for the complete prediction set, with
error standard deviation σtotal, the computed optimal shift for Gaussian noise
should be Ŝ(σtotal), whereas the constant shift method provides value SCS . We
therefore can adjust the shift computation by a factor of SCS/Ŝ(σtotal) (methods
AMC and AZC)

S(x) =
SCS

Ŝ(σtotal)
Ŝ(a · x + b)
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Fig. 3. Examples of asymmetric loss functions and corresponding computed optimal
shift Ŝ(σ) under the assumption of Gaussian noise. Red is an example with quadratic
loss on the left side and piece-wise linear on the right. It is an example of a difficult
loss function, as it is both non-differentiable and non-convex. Blue has quadratic on
the left and x4 on the right. Green is the asymmetric quadratic. Notice, that for some
loss functions the direction of the shift may change. (Color figure online)

4.5 k-Nearest Neighbors Based Methods

KNC [8] uses estimation errors δ1, . . . , δk of k nearest neighbours of each sample
i of the training or adjustment set as a sample of the conditional distribution. In
[8] this sample is used to compute the variance. We suggest to use it to directly
estimate the required shift as (methods Ka and Kt)

Si = arg min

(
∑

j

C(δj − Si)

)
(8)

Since k is small and this is only single dimensional optimization, it can be done
for a wide class of loss functions.

Other versions tested here include:

– Univariate direct KNC - version of uKNC from [8], which uses only predicted
value to find nearest neighbours (methods uKa and uKt).

– Using only features which are useful for primary regression method (methods
Kfa and Kft).

– The last variation is a combination an attempt to combine a constant shift
(which is essentially a simplest linear model) method with KNC. It uses linear
regression on values Si (methods Kla and Klt).

5 Experimental Comparison of Methods

We implemented the heuristics described above, and tested them on thirteen,
mostly small-sized (as common in predictive maintenance applications) datasets
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from the UCI [10] and WEKA [7] repositories.1 Each loss function was adapted
to each dataset so that a significant cost difference was observed between over-
and under-predicted instances. Specifically, the cost of over-prediction was on
average 10 times higher for training instances of linear regression. Since some
of the heuristics require an additional dataset for parameter adjustment, each
dataset was randomly divided into three roughly equal parts, one of them used for
model training, one for adjustment and one for testing. In case the adjustment set
was not needed, it was used as additional training data. All possible assignments
of dataset parts were used and results averaged with the geometrical mean of
improvement ratios.

5.1 Regression Methods Used

As base learners, we used the following basic regression methods from the Weka
library [7]:

– Linear regression: Loss function – quadratic.
– M5 prime [5]: Loss function – quadratic (model tree of linear regressions).
– k-Nearest Neighbor: No explicit loss function. However, since mean value

of nearest neighbors are used, it is essentially equivalent to quadratic loss
function.

5.2 Loss Functions Used

We used the following types of asymmetric loss functions:

– Asymmetric quadratic function
in the form, for a ∈ (0,+∞) C(δ, a) =

{
1
aδ2 if δ < 0
aδ2 if δ ≥ 0

– Asymmetric polynomial
in the form, for a ∈ (0,+∞) C(δ, a) =

{
δ2 if δ < 0
δ2+a if δ ≥ 0

– Asymmetric linear
in the form, for a ∈ (0,+∞) C(δ, a) =

{
δ
a if δ < 0
aδ if δ ≥ 0

– Asymmetric linex
in the form, for a �= 0 C(δ, a) = eaδ − aδ − 1

– Asymmetric linear function
with a step (linstep) C(δ, a, b, s) =

{
−aδ if δ < 0
bδ + s if δ ≥ 0

For a > 0, the linex function behaves as a linear function for large negative
δ, as exponential for large positive δ, and as (aδ)2/2 for δ → 0. For negative
a, linear and exponential parts are exchanged. This loss function is appropriate
for the cases when for small errors there is no cost difference, but there is a
significant difference between large positive and negative errors.
1 The datasets used are auto93.arff, autoMpg.arff, autoPrice.arff, cloud.arff, cpu.arff,

echoMonths.arff, elevators.arff, housing.arff, meta.arff, pyrim.arff, strike.arff, tri-
azines.arff, and veteran.arff.
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The asymmetric linear function with a step is especially relevant for real-life
predictive maintenance scenarios as it reflects actual monetary costs. Specifically,
different slopes on both sides reflect the difference between the lost utility from
yet functional part, if the said part is replaced before the failure, versus the cost
of loss of use of the whole piece of equipment, when it cannot be used due to
a failure. The step reflects the cost of repair after the failure versus the cost of
replacement of yet functional part. For many optimization methods this function
is rather inconvenient to work with, as it is discontinuous and not differentiable
at certain points, and not convex.

5.3 Results

The results of experiments are summarized in Fig. 4, which shows the average
performance over all loss functions and Fig. 5, which shows the results for the
individual loss functions. The type of diagram used for these figures is proposed
by Demšar [3], and drawn by R scmamp package [1]. It is useful for performance
comparison of multiple methods on multiple datasets. It shows the average rank

Table 1. Abbreviations of method names used in diagrams.

Abbr Method Described in

CSA Constant shift computed using adjustment set Sect. 4.1

CST Constant shift computed using training set Sect. 4.1

PZA Point-wise shift computed using adjustment set Sect. 4.2

PZT Point-wise shift computed using training set Sect. 4.2

PZa Nonlinear point-wise shift using adjustment set Sect. 4.2

PZt Nonlinear point-wise shift using training set Sect. 4.2

L1 Learned shift with one-sided correction Sect. 4.3

L2 Learned shift with two-sided correction Sect. 4.3

AM Assumed model Sect. 4.4

AMC Assumed model, with correction Sect. 4.4

AZ Assumed model, zero mean Sect. 4.4

AZC Assumed model, zero mean, with correction Sect. 4.4

Ka Direct KNC computed using adjustment set Sect. 4.5

Kt Direct KNC computed using training set Sect. 4.5

uKa Univariate direct KNC computed using adjustment set Sect. 4.5

uKt Univariate direct KNC computed using training set Sect. 4.5

Kfa Direct KNC with feature selection, using adjustment set Sect. 4.5

Kft Direct KNC with feature selection, using training set Sect. 4.5

Kla Linear model of direct KNC, using adjustment set Sect. 4.5

Klt Linear model of direct KNC, using training set Sect. 4.5
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Fig. 4. Demšar [3] diagram, showing the critical distance of a Friedman test for the
average ranking of methods. The scale on top is the average rank of a method. Better
methods are on the left. The rank differences between methods connected with a thick
line are not significant. The abbreviations for methods are explained in Table 1.

of each method (in our case each adjustment heuristic) and uses this as the basis
for an estimate of the significance of the observed performance difference. A lower
average rank (left side of the diagram) means better performing method. The
thick lines connecting some of the results which are within the critical difference
(CD at the left top corner) bounds. Thus, for methods that are connected in
this way, the rank differences are not significant (significance level α = 0.05).

For space efficiency, the diagrams show only abbreviated names of the meth-
ods; tthe abbreviations are explained in Table 1.

Somewhat surprisingly, the constant shift method proved to be the most
consistent method of adjustment. Apparently, the case of similar moments of
variance across the entire space is quite common. The KNC-based methods pro-
vided also good results, which can be expected, taking into account that they
essentially try to estimate local error distributions. Non-linear point correction
and meta-model adjustment of expected over-prediction performed better in
some cases, but often also provided extremely poor solutions, and therefore had
a poor average improvement results. It is, however, possible that for some known
scenarios such methods might be beneficial. For example, the overall performance
of the non-linear shift for asymmetric quadratic shift was the best.
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Fig. 5. Demšar [3] diagrams for different basic regression methods and loss function
types. M5P, lm, and kNN are basic regression methods, linear, quadratic, polynomial,
linex, and linstep are asymmetric loss functions described in Sect. 5.2
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6 Conclusion

In this paper, we made a first step towards analyzing the problem of predicting
with asymmetric continuous loss functions. This prediction problem commonly
occurs in predictive maintenance applications, where the task is to estimate
the remaining useful lifetime of a system component. The prediction should
approximate the real lifetime as closely as possible, but should never overpredict
the real value because that would mean that the component breaks before it is
repaired or replaced.

We reviewed theoretical results that show that under some common assump-
tions, the problem can be viewed as finding an optimal shift value for the predic-
tions of a model that has been trained with a conventional regression learner. In
the following, we investigated and empirically compared a few simple heuristics
for shift estimation, namely the use of a constant shift, a pointwise shift, learned
and assumed shift models.
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Abstract. We propose a novel framework for the differentially private
ERM, input perturbation. Existing differentially private ERM implicitly
assumed that the data contributors submit their private data to a data-
base expecting that the database invokes a differentially private mech-
anism for publication of the learned model. In input perturbation, each
data contributor independently randomizes her/his data by itself and
submits the perturbed data to the database. We show that the input
perturbation framework theoretically guarantees that the model learned
with the randomized data eventually satisfies differential privacy with
the prescribed privacy parameters. At the same time, input perturbation
guarantees that local differential privacy is guaranteed to the server. We
also show that the excess risk bound of the model learned with input
perturbation is O(1/n) under a certain condition, where n is the sample
size. This is the same as the excess risk bound of the state-of-the-art.

Keywords: Differential privacy · Empirical risk minimization · Local
privacy · Linear regression · Logistic regression

1 Introduction

In recent years, differential privacy has become widely recognized as a theoretical
definition for output privacy [5]. Let us suppose a database collects private infor-
mation from data contributors. Analysts can submit queries to learn knowledge
from the database. Query-answering algorithms that satisfy differential privacy
return responses such that the distribution of outputs does not change signifi-
cantly and is independent of whether the database contains particular private
information submitted by any single data contributor. Based on this idea, a great
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deal of effort has been devoted to guaranteeing differential privacy for various
problems. For example, there are algorithms for privacy-preserving classifica-
tion [8], regression [12], etc.

Differentially private empirical risk minimization (ERM), or more generally,
differentially private convex optimization, has attracted a great deal of research
interest in machine learning, for example, [1,2,8,11]. These works basically follow
the standard setting of differentially private mechanisms; the database collects
examples and builds a model with the collected examples so that the released
model satisfies differential privacy.

Recently, the data collection process is also recognized as an important step
in privacy preservation. With this motivation, a local privacy was introduced as
a privacy notion in the data collection process [3,9,13]. However, the existing
methods of differentially private ERM are specifically derived for satisfying dif-
ferential privacy of the released model, and thus there is no guarantee for the
local privacy.

In this work, we aim to preserve the local privacy of the data and the differ-
ential privacy of the released model simultaneously in the setting of releasing the
model constructed by ERM. The goal of this paper is to derive a differentially
private mechanism with an utility guarantee, at the same time, the mechanism
satisfies the local privacy in the data collection process.

Table 1. Comparison of differentially private ERM. All methods assume that �2 norm
of the parameters is bounded by η, the loss function is ζ-Lipschitz continuous. n and
d denote the number of examples and the dimension of the parameter, respectively.

Method Perturbation Privacy Utility Additional

requirements

Objective [2,11] obj. func. (ε, δ)-DP for model O

(
ηζ

√
d log(1/δ)

εn

)
λ-smooth

Gradient Descent [1] grad. (ε, δ)-DP for model O

(
ηζ

√
d log2(n/δ)

εn

)

Input (proposal) example (αε,δ)-DP for model

(β
√

ε,δ)-DLP for data

s.t. O(
√

nα) = β

O

(
ηζ

√
d log(1/δ)
εαn

)
λ-smooth

quadratic

loss

Related Work. Chaudhuri et al. [2] formulated the problem of differentially pri-
vate empirical risk minimization (ERM) and presented two different approaches:
output perturbation and objective perturbation. Kifer et al. [11] improved the
utility of objective perturbation by adding an extra �2 regularizer into the objec-
tive function. Moreover, they introduced a variant of objective perturbation
that employs Gaussian distribution for the random linear term, which improves
dimensional dependency from O(d) to O(

√
d) whereas the satisfying privacy

is relaxed from (ε, 0)-differential privacy to (ε, δ)-differential privacy (Table 1,
line 1). Objective perturbation is work well for smooth losses, whereas Bassily
et al. [1] proved that it is suboptimal for non-smooth losses. They developed
the optimal algorithm of (ε, δ)-differentially private ERM, named differentially
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private gradient descent. It conducts the stochastic gradient decent where the
gradient is perturbed by adding a Gaussian noise. They showed that the expected
empirical excess risk of the differentially private gradient descent is optimal up to
multiplicative factor of log n and log(1/δ) even for non-smooth losses (Table 1,
line 2). They also provides the optimal mechanisms that satisfy (ε, 0)-differential
privacy for strong and non-strong convex losses. Jain et al. [8] showed that for
the specific applications, the dimensional dependency of the excess risk can be
improved from polynomic to constant or logarithmic. These studies assume that
the database collects raw data from the data contributors, and so no attention
has been paid to the data collection phase.

Recently, a new privacy notion referred to as local privacy [3,9,13] has been
presented. In these studies, data are drawn from a distribution by each contrib-
utor independently and communicated to the data collector via a noisy channel;
local privacy is a privacy notion that ensures that data cannot be accurately
estimated from individual privatized data. [3] has introduced a private convex
optimization mechanism that satisfies the local privacy. Their method has guar-
antee of differential privacy for the model, whereas its privacy level is same as
the differential local privacy.

Our Contribution. In this study, we propose a novel framework for the dif-
ferentially private ERM, input perturbation (Table 1, line 3). In contrast to the
existing methods, input perturbation allows data contributors to take part in
the process of privacy preservation of model learning. The mechanism of input
perturbation is quite simple: each data contributor independently randomizes
her/his data with a Gaussian distribution, in which the noise variance is deter-
mined by a function of privacy parameters (ε, δ), sample size n, and some con-
stants related to the loss function.

In this paper, we prove that models learned with randomized examples
following our input perturbation scheme are guaranteed to satisfy (αε, δ)-
differential privacy under some conditions, especially, (ε, δ)-differential privacy
if α = 1 (Table 1, line 3, column 3). The guarantee of differential privacy is
proved using the fact that the difference between the objective function of input
perturbation and that of objective perturbation is probabilistically bounded. To
achieve this approximation with randomization by independent data contribu-
tors, input perturbation requires that the loss function be quadratic with respect
to the model parameter, w (Table 1, line 3, column 5).

From the perspective of data contributors, data collection with input per-
turbation satisfies the local privacy with the privacy parameter (βε, δ) where
β = O(

√
nα) (Table 1, line 3, column 3). In the input perturbation framework,

not only differential privacy of the learned models, but also privacy protection
of data against the database is attained. From this perspective, we theoretically
investigate the influence of input perturbation on the excess risk.

We compared the utility analysis of input perturbation with those of the
output and objective perturbation methods in terms of the expectation of the
excess empirical risk. We show that the excess risk of the model learned with
input perturbation is O(1/αn) (Table 1, line 3, column 4). If α = 1, the util-
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ity and the privacy guarantee of the model are equivalent to that of objective
perturbation.

All proofs defer to the full version of this paper due to space limitation.

2 Problem Definition and Preliminary

Let Z = X ×Y be the domain of examples. The objective of supervised prediction
is to learn a parameter w on a closed convex domain W ⊆ R

d from a collection
of given examples D = {(xi, yi)}n

i=1, where w parametrizes a predictor that
outputs y ∈ Y from x ∈ X . Let � : W × Z → R be a loss function. Learning
algorithms following the empirical risk minimization principle choose the model
that minimizes the empirical risk:

J(w;D) =
1
n

n∑

i=1

�(w, (xi, yi)) +
1
n

Ω(w), (1)

where Ω(w) is a convex regularizer. We suppose that the following assumptions
hold throughout this paper: (1) W is bounded, i.e., there is η s.t. ‖w‖2 ≤ η for all
w ∈ W, (2) � is doubly continuously differentiable w.r.t. w, (3) � is ζ-Lipschitz,
i.e., ‖∇�(w, (x, y))‖2 ≤ ζ for any w ∈ W and (x, y) ∈ Z, and (4) � is λ-smooth,
i.e., ‖∇2�(w, (x, y))‖2 ≤ λ for any w ∈ W and (x, y) ∈ Z where ‖ · ‖ is the �2
matrix norm.

Three stakeholders appear in the problem we consider: data contributors,
database, and model user. Each data contributor owns a single example (xi, yi).
The goal is that the model user obtains the model w learned by ERM, at the
same time, privacy of the data contributors is ensured against the database and
the model user. Let us consider the following process of data collection and model
learning.

1. All the stakeholders reach an agreement on the privacy parameters (ε, δ)
before data collection

2. Each data contributor independently perturbs its own example and sends it
to the database

3. The database conducts model learning at the request of the model user with
the collected perturbed examples and publishes the model

Note that once a data contributor sends her perturbed example to the database,
she can no longer interact with the database. This setting is suitable for real
use, for example, if the data contributors sends their own data to the database
via their smartphones, the database is difficult to always interact with the data
contributors due to instability of internet connection. In this process, the privacy
concerns arise at two occasions; when the data contributors release their own
data to the database (data privacy), and when the database publishes the learned
model to the model user (model privacy).

Model privacy. The model privacy is preserved by guaranteeing the (ε, δ)-
differential privacy. It is a privacy definition of a randomization mechanism M
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which is a stochastic mapping from a set of examples D to an output on an
arbitrary domain O. Given two databases D and D′, we say D and D′ are
neighbor databases, or D ∼ D′, if two databases differ in at most one element.
Then, differential privacy is defined as follows:

Definition 1 ((ε, δ)-differential privacy [4]). A randomization mechanism M
is (ε, δ)-differential privacy, if, for all pairs (D,D′) s.t. D ∼ D′ and for any subset
of ranges S ⊆ O,

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ. (2)

Data privacy. For the definition of the data privacy, we introduce the differ-
ential local privacy [3,9,13]. Because of the data collection and model learn-
ing process, the non-interactive case of the local privacy should be considered,
where in this case, individuals release his/her private data without seeing the
other individuals’ private data. Under the non-interactive setting, the differential
local privacy is defined as follows.

Definition 2 ((ε, δ)-differential local privacy [7,10,13]). A randomization
mechanism M is (ε, δ)-differentially locally private, if, for all pairs (z, z′) s.t.
z 
= z′ and for any subset of ranges S ⊆ O,

Pr[M(z) ∈ S] ≤ exp(ε)Pr[M(z′) ∈ S] + δ. (3)

Utility. To assess utility, we use the empirical excess risk. Let ŵ =
arg minw∈WJ(w;D). Given a randomization mechanism M that (randomly)
outputs w over W, the empirical excess risk of M is defined as J(M(D);D) −
J(ŵ;D).

3 Input Perturbation

In this section, we introduce a novel framework for differentially private ERM.
The objective of the input perturbation framework is three-fold:

– (data privacy) The released data from the data contributors to the database
satisfies (O(

√
nε), δ)-differentially locally private,

– (model privacy) The model resulted from the process eventually meets (ε, δ)-
differentially private,

– (utility) The expectation of the excess empirical risk of the resulting models
is O(1/n), which is equivalent to that obtained with non-privacy-preserving
model learning.

By adjusting ε, the input perturbation satisfies (αε, δ)-differential privacy and
(βε, δ)-differential local privacy with the O(1/αn) excess empirical risk where
β = O(

√
nα).
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3.1 Loss Function for Input Perturbation

The strategy of input perturbation is to minimize a function that is close to
the objective function of the objective perturbation method. The requirements
on the loss and objective function thus basically follow the objective perturba-
tion method with the Gaussian noise [11]. Input perturbation allows any (possi-
bly non-differential) convex regularizer as supported by objective perturbation.
However, for simplicity, we consider the non-regularized case where Ω(w) = 0.

In addition to the requirements from the objective perturbation, input per-
turbation requires a restriction; the loss function is quadratic in w. Let q(xi, yi)
and p(xi, yi) be d dimensional vectors and s(xi, yi) be a scalar. Then, our
quadratic loss function has a form:

�(w, (x, y)) =
1
2
wTq(x, y)q(x, y)Tw − p(x, y)Tw + s(x, y).

3.2 Input Perturbation Method

In this subsection, we introduce the input perturbation method. Algorithm 1
describes the detail of input perturbation; Algorithm 2 describes model learn-
ing with examples randomized with input perturbation. In Algorithm 1, each
data contributor transforms owing example (xi, yi) into (qi,pi), where qi =
q(xi, yi),pi = p(xi, yi). Then, she adds perturbation to (qi,pi) in Step 3. We
denote the example after perturbation by (q̃i, p̃i), which is submitted to the
database independently by each data contributors.

In Algorithm 2, the database collects the perturbed examples D̃ = {q̃i, p̃i}n
i=1

from the n data contributors. Then, the database learns a model with these
randomized examples by minimizing

J in(w; D̃) =
1
n

n∑

i=1

(
1
2
wT q̃iq̃

T
i w − p̃T

i w + si

)
+

Δin

2n
‖w‖22. (4)

In the following subsections, we show the privacy guarantee of the input
perturbation in the sense of the differential local privacy and the differential
privacy. The utility analysis of models obtained following the input perturbation
framework is also shown.

3.3 Privacy of Input Perturbation

In this subsection, we analyze the privacy of the input perturbation in the sense
of the data privacy and the model privacy.

Data privacy of input perturbation. In Algorithm 1, each data contributor
of the input perturbation adds a Gaussian noise into the released data. Adding
a Gaussian noise into the released data satisfies (ε, δ)-differential local privacy as
well as the Gaussian mechanism [6]. As a result, we get the following corollary
that shows the level of the differential local privacy of Algorithm 1.
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Algorithm 1. Input Perturbation
Public Input: ε, δ, d, n, η, ζ and λ
Input of data contributor i: xi, yi

Output of data contributor i: q̃i, p̃i

1: γ, δ′ ← δ
2
, a =

√
log(2/γ)

n
, σ2

b ← ζ2(8 log 2/δ′+4ε)

ε2
, σ2

u >

(√
2daλ+

√
2da2λ2+ 2λ

ε
(1−2a)

(1−2a)

)2

2: Sampling of noise vectors: ri ∼ N (0,
σ2

b
n
I), ui ∼ N (0,

σ2
u

n
I)

3: q̃i ← qi + ui, p̃i ← pi − ri where qi = q(xi, yi) and pi = p(xi, yi)
4: Submission: Send q̃i, p̃i to the database

Algorithm 2. Model Learning on Input Perturbation
Require: ε, δ, d, n, η, ζ and λ
1: All stakeholders agree with (ε, δ) and share parameters d, n, η, ζ and λ.
2: The database collects (q̃i, p̃i) from the data contributors with Algorithm 1.
3: The database learns win = arg minw∈WJ in(w; D̃) with Δin = Δ − 2λ

ε
.

4: Return win.

Corollary 1. Suppose that q and p in Algorithm 1 are in the bounded domain
with the size parameter B. Then, Algorithm 1 satisfies (2c

√
n(λ/σu +ζ/σb), 2δ)-

differential local privacy, where c >
√

2 ln(1.25/δ).

Since we have λ/σu + ζ/σb → (
√

λ
2 +

√
ε

8 log(2/δ′)+4ε )
√

ε as n → ∞, Algorithm 1

is (O(
√

nε), δ)-differentially locally private.
Model privacy of input perturbation. The following theorem states the
guarantee of differential privacy of models that the database learns from exam-
ples randomized by the input perturbation scheme.

Theorem 1. Let D̃ be examples perturbed by Algorithm 1 with privacy parame-
ters ε and δ. Then, if Δ > 2λ

ε and γ = δ
2 , the output of Algorithm 2 satisfies

(ε, δ)-differential privacy.

3.4 Utility Analysis

The following theorem shows the excess empirical error bound of the model
learned by input perturbation:

Lemma 1. Let win be the output of Algorithm 2. If Δ > 2λ
ε and examples

are randomized by Algorithm 1, w.p. at least 1 − γ − β the bound of the excess
empirical risk is

J(win;D) − J(ŵ;D) ≤
4dζ2(8 log 4

δ + 4ε) log 1
β

nε2Δ
+

Δ

2n
‖ŵ‖22 +

σ2
u − 2λ

ε

2n
‖ŵ‖22

+
σ2

u

√
log 4

γ + σ2
u

log 4
γ√

n
+ σuλ

√
2d log 2

γ

n
√

n
‖ŵ‖22
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In the right side of the bound, the first two terms of O(1/n) are the same as the
excess empirical risk of objective perturbation [11]. The third term of O(1/n)
and the last term of O(1/n3/2) are introduced by input perturbation. The same
holds with expectation of the excess risk, as stated in the following theorem.

Theorem 2. If the assumptions from Lemma 1 hold, and n ≥ 16 log 8
δ ,

the expectation of the excess empirical risk E
[
J(win;D) − J(ŵ;D)

]
=

O

(
ζ‖ŵ‖2

√
d log(1/δ)

εn

)
by setting Δ = Θ

(√
ζ2d log(1/δ)

ε‖ŵ‖2

)
and σu as the lowest

value specified in Algorithm 1.

4 Conclusion

In this study, we propose a novel framework for differentially private ERM, input
perturbation. In contrast to objective perturbation, input perturbation allows
data contributors to take part in the process of privacy preservation of model
learning. From the privacy analysis of the data releasing of the data contribu-
tors, the data collection process in the input perturbation satisfies (O(

√
nε, δ)-

differential local privacy. Thus, from the perspective of data contributors, data
collection with input perturbation can be preferable.
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Abstract. In this paper a new method for calculating the classifier com-
petence in the dynamic mode is developed. In the method, first decision
profile of the classified object is calculated using K nearest objects from
the validation set. Next, the decision profile is compared with the sup-
port vector produced by the classifier. The competence measure reflects
the outcome of this comparison and rates the classifier with respect to
the similarity of its support vector and decision profile of the test object
in a continuous manner. Three different procedures for calculating deci-
sion profile and three different measures for comparing decision profile
and support vector are proposed, which leads to nine methods of compe-
tence calculation. Two multiclassifier systems (MC) with homogeneous
and heterogeneous pool of base classifiers and with dynamic ensemble
selection scheme (DES) were constructed using the methods developed.
The performance of constructed MC systems was compared against seven
state-of-the-art MC systems using 15 benchmark data sets taken from
the UCI Machine Learning Repository. The experimental investigations
clearly show the effectiveness of the combined multiclassifier system in
dynamic fashion with the use of the proposed measures of competence
regardless of the ensemble type used.

Keywords: Multiclassifier system · Dynamic ensemble selection · Mea-
sure of competence

1 Introduction

In the last two decades, multiclassifier (MC) systems which combine responses
of set of classifiers have been intensively developed. The reason is that different
classifiers offer complementary information about the object to be classified and
therefore MC system can achieve better classification accuracy than any single
classifier in the ensemble.

MC system has three general phases [2]: (1) generation in which the training
set is used to generate a pool of classifiers; (2) selection in which a single clas-
sifier (or an ensemble of classifiers) is selected to perform the classification; (3)
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combination (or integration) in which the final decision is made based on the pre-
dictions of the classifiers. It must be noted that selection and integration phases
may be facultative, since for the classifier combination two main approaches used
are classifier fusion and classifier selection [13]. In the first method, all classifiers
in the ensemble contribute to the decision of the MC system, e.g. through sum
or majority voting [11]. In the second approach, a single classifier is selected
from the ensemble and its decision is treated as the decision of the MC system.
The selection of classifiers can be either static or dynamic. In the static selec-
tion scheme, classifier is selected for all test objects, whereas dynamic classifier
selection (DCS) approach explores the use of different classifiers for different test
objects [6].

Recently, dynamic ensemble selection (DES) methods have been developed
which first dynamically select an ensemble of classifiers from the entire set
(pool) and then combine the selected classifiers by majority voting [3,4,12,18].
In this way a DES based system takes advantage of both selection and fusion
approaches. In most methods, the base classifiers are selected from the pool on
the basis of their individual accuracy measure called competence in a local region
of the feature space. These methods differ in algorithms for determining classifier
competence and ways of defining the local regions.

In [23] two methods were proposed where the local accuracy (competence) of
classifier is calculated as a simple percentage of correct classified samples from
the validation set. In the first method called OLA (overall local accuracy), local
accuracy is calculated in the region containing K-nearest validation objects of a
test object. Whereas in the LCA (local class accuracy) method, classifier compe-
tence is determined considering only these validation objects from the K-nearest
neighbors set which belong to the same class into which an unknown object is
assigned. In [20–22] two methods using probabilistic model were developed. The
idea of the first method is based on relating the response of the classifier with
the response obtained by random guessing. The measure of competence reflects
this relation and rates the classifier with respect to random guessing in a contin-
uous manner. In this way, it is possible to evaluate a group of classifiers against
a common reference point. Competent (incompetent) classifiers gain with such
approach meaningful interpretation, i.e. they are more (less) accurate than the
random classifier. In the second method, first a randomized reference classifier
(RRC) is constructed which, on average, acts like the classifier evaluated. Next
the competence of the classifier evaluated is calculated as the probability of cor-
rect classification of the respective RRC. Two interesting methods called A priori
and A posteriori selection scheme was presented in [9]. In the A priori method,
a classifier is selected based on its accuracy within the local region, without con-
sidering the class assigned to the unknown pattern. Similarly, in the A posteriori
method, local accuracies are estimated using the class posterior probabilities and
the distances of the samples in the defined local region. In [17] an interesting
ranking-based approach to determine competence measure was proposed. In the
method the ranking of base classifiers is done by estimating parameters related
to the correctness of the classifiers in the pool. An interesting method called
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MCB (Multiple Classifier Behavior) was proposed in [10]. In this method the
competence is defined as the classification accuracy calculated for a subset of a
validation set which is generated as follows. First, the MCB is calculated for a
test object and its K-nearest validation objects as a vector whose elements are
class labels assigned by all classifiers in the ensemble. Next, similarity between
the MCB’s are calculated using the averaged Hamming distance. Finally, the
objects in the validation set that are the most similar to the test object are used
to generate the subset. The original KNORA-Eliminate (KE) method belonging
to the category of oracle-based methods was proposed in [12]. The oracles are
represented by the K-nearest neighbors of the unknown pattern in the validation
set and the KE method selects only those classifiers which are able to recognize
the entire K-neighborhood of the test pattern.

In this paper a new method for calculating the classifier competence in the
feature space is presented. In the proposed method, first the so-called decision
profile of the classified object is determined using K-nearest validation objects.
The decision profile provides the chance that the recognized object belongs to
the specified class. In the probabilistic model the natural concept of decision
profile is based on a posteriori probabilities of classes at the point x. Next, the
decision profile is compared with the response produced by the classifier (support
vector or values of discriminant functions) [7] and the competence is calculated
according to the similarity rule: the closer the response to the profile is, the more
competent the classifier is [14,15]. Three different procedures for calculating a
decision profile and three different measures for comparing the decision profile
and the support vector are proposed in this study.

In a nutshell, originality of the proposed approach consists in a different use of
the validation set. In the state-of-the-art-methods described above, the validation
set is directly used for calculating local accuracy of a classifier (i.e. its local com-
petence) via ranking-based, accuracy-based, probabilistic-based, behavior-based
and oracle-based measures. However, in the proposed method, validation set is
used for evaluating the classification profile of the test point and competence of
the classifier is determined by similarity of its response to this evaluation.

The paper is divided into four sections and organized as follows. In Sect. 2 the
measures of classifier competence are presented and two multiclassifier systems
using proposed measures of competence in a dynamic fashion are developed. The
performance of proposed MCS’s were compared with seven multiple classifier
systems using 15 datasets taken from the UCI Machine Learning Repository.
The results of computer experiments are described in Sects. 3, and 4 concludes
the paper.

2 Multiclassifier System

2.1 Preliminaries

In the multiclassifier (MC) system we assume that a set of trained classifiers
Ψ = {ψ1, ψ2, . . . , ψL} called base classifiers is given.
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A classifier ψl is a function ψl : X → M from a metric feature space
X ⊆ R

dim to a set of class labels M = {1, 2, . . . ,M}. Classification is made
according to the maximum rule

ψl(x) = i ⇔ dli(x) = max
j∈M

dlj(x), (1)

where [dl1(x), dl2(x), . . . , dlM (x)] is a vector of class supports (classifying func-
tion) produced by ψl. Without loss of generality we assume that dlj(x) ≥ 0 and∑

j dlj(x) = 1.
In this paper, we propose MC systems which use a dynamic ensemble selec-

tion scheme and trainable combining methods based on a competence measure
c(ψl|x) of each base classifier (l = 1, 2, ..., L) evaluating the competence of classi-
fier ψl at a point x ∈ X . Competence measure is normalized, i.e. 0 ≤ c(ψl|x) ≤ 1.
c(ψl|x) = 0(1) denotes the most incompetent (competent) classifier ψl.

For the training methods of combining the base classifiers, it is assumed that
a validation set

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M (2)

containing pairs of feature vectors and their corresponding class labels is
available.

2.2 Measure of Competence

K -neighborhood. Let first introduce the concept of K-neighborhood of object
x ∈ X which is defined as the set of K nearest neighbors of the point x from
validation set V, viz.

SK(x) = {xn1 , xn2 , . . . xnK
∈ V :

max
k=1,2,...,K

||xnk
− x|| ≤ min

xl /∈SK(x)
||xl − x||}, (3)

where || · || denotes the distance in the feature space X . The neighborhood size
K is a parameter of the method – its value can be selected experimentally.

Decision Profile. Decision profile of object x ∈ X

δ(x) = [δ1(x), δ2(x), . . . , δM (x)], δj(x) ≥ 0,
∑

j

δj(x) = 1 (4)

denotes the vector of normalized values where the jth value δj(x) is interpreted
as a measure of chance that object x belongs to the jth class (j ∈ M). In the
probabilistic model the natural value of δj(x) is a posteriori probability of jth
class at the point x.

We propose the following methods for calculating decision profile at the point
x using its K-neighborhood.
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The Fraction-based Method (FM)

In this approach, δj(x) is calculated as the fraction of objects from the jth class
in the set SK(x). Let M

(K)
j (x) be the number of validation objects from SK(x)

belonging to the j-th class. Then

δj(x) =
M

(K)
j (x)
K

, j ∈ M. (5)

The Ranking-based Method (RM)

In the RM method δj(x) is equal to the normalized sum of ranks of objects
belonging to the jth class in the set SK(x). Let r(xk) be the rank of validation
object xk ∈ SK(x). The nearest neighbour has the rank equal to K, the rank of
the furthest neighbor is equal to 1. Then

rj(x) =
∑

xk∈SK(x):jk=j

r(xk) (6)

is the sum of ranks of validation objects from the K neighborhood of x belonging
to the jth class. And next

δj(x) =
rj(x)

∑K
k=1 k

. (7)

The Potential Function Method (PM)

Let H(x, xk) be a non-negative potential function [16] decreasing with the
increasing distance between x and xk. In this study, a Gaussian potential func-
tion with the Euclidean distance is used:

H(x, xk) = exp(−||x − xk||2). (8)

Then, we can calculate δj(x) as a normalized sum of potential functions (8) for
objects belonging to the jth class from the set SK(x), namely:

δj(x) =

∑
xk∈SK(x):jk=j exp(−||x − xk||2)

∑
j∈M

∑
xk∈SK(x):jk=j exp(−||x − xk||2) . (9)

Distance Between Decision Profile and Vector of Supports. In order to
evaluate ψl at x and determine its competence c(ψl|x), we must compare decision
profile δ(x) and vector of supports dl(x) and calculate distance dist[δ(x), dl(x)].
Competence measure is a normalized function of this distance decreasing with
the increasing distance between δ(x) and dl(x). In particular, c(ψl|x) is equal to
1 (0) if distance is equal to 0 (is the greatest one).

We propose three different methods for calculating distance dist[δ(x), dl(x)]
and the resulting measures of competence.
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Euclidean Distance (ED)

We adopt the Euclidean distance

dist[(δ(x), dl(x)] = ||δ(x) − dl(x)|| (10)

and hence we get

c(ψl|x) =
√

2 − ||δ(x) − dl(x)||√
2

. (11)

Max-Max Distance (MD)

Let j be the class number for which classifier ψl produced the greatest support
value at the point x (i.e. dlj(x) = maxk∈M(dlk(x))). Similarly, let i be the class
number with the greatest value in the decision profile δ(x) at x. Then, the max–
max distance is defined as:

dist[(δ(x), dl(x)] = |dlj(x) − δj(x)| + |dli(x) − δi(x)|. (12)

Hence we have the following formula for competence measure:

c(ψl|x) =
2 − |dlj(x) − δj(x)| + |dli(x) − δi(x)|

2
. (13)

Hamming Distance (HD)

Let h(ψl(x)) = [j
′
1, j

′
2, . . . , j

′
M ] and h(x) = [j

′′
1 , j

′′
2 , . . . , j

′′
M ] be the vectors of class

numbers ordered according to the decreasing values of supports produced by ψl

at x and decision profile of x, respectively. Distance between dl(x) and δj(x) is
defined as the Hamming distance between vectors h(ψl(x)) and h(x), namely

dist[(δ(x), dl(x)] = DH [h(ψl(x)), h(x)]. (14)

Hence we get the following form of competence measure

c(ψl|x) =
M − DH [h(ψl(x)), h(x)]

M
. (15)

Example. Consider a classification problem with three classes (M = 3).
Figure 1 presents 6-neighborhood of an object x in the two-dimensional feature
space. Additional unit grid will help to determine distances between objects.
Suppose that classifier ψ produced supports d1(x) = 0.3, d2(x) = 0.6 and
d3(x) = 0.1. Our purpose is to determine the competence c(ψ|x) of the clas-
sifier ψ at the point x using presented methods.

From Fig. 1 we simply get the Euclidean distances between x and validation
objects:

||x − x1|| = 2, ||x − x2|| = 5, ||x − x3|| = 2.83,

||x − x4|| = 2.23, ||x − x5|| = 3, ||x − x6|| = 3, 6.
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Fig. 1. Illustration of Example: 6-neighborhood of an object x.

First, we calculate decision profiles for the proposed methods.
FM method:

M
(5)
1 = 2,M

(5)
2 = 3,M

(5)
3 = 1 and hence δ1(x) = 1/3, δ2(x) = 1/2, δ3(x) = 1/6.

(16)
RM method:

r1(x) = 10, r2(x) = 9, r3(x) = 2

and hence
δ1(x) = 10/21, δ2(x) = 9/21, δ3(x) = 2/21. (17)

PM method:

H(x, x1) + H(x, x3) = 0.135 + 0.059 = 0.194, H(x, x6) = 0.027

H(x, x2) + H(x, x3) + H(x, x5) = 0.006 + 0.108 + 0.049 = 0.163

and hence

δ1(x) =
0.194
0.384

= 0.505, δ2(x) =
0.163
0.384

= 0.424, δ3(x) =
0.027
0.384

= 0.071, (18)

Now, using formulas (10)–(15) and calculated decision profiles (16), (17) and
(18), we can calculate competence c(ψ|x) of classifier ψ at the point x. Results for
all combination of calculating decision profile methods and concept of distance
between decision profile and vector of supports are presented in Table 1.

2.3 DES Systems

The proposed measure of competence can be applied in any multiclassifier system
in selection/fusion algorithm provided that the feature space X is a metric space.
In this subsection we describe two multiclassifier systems based on the DES
strategy.
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Table 1. Results of example.

Distance dist[(δ(x), dl(x)] Competence c(ψ|x)

FM ED 0.197 0.86

RM 0.245 0.826

PM 0.272 0.808

FM MD 0.2 0.9

RM 0.347 0.827

PM 0.381 0.809

FM HD 0 1

RM 2 0.333

PM 2 0.333

Multiclassifier System with Fusion at the Decision Level (MC1). In
this system, first a subset Ψ∗(x) of base classifiers with the competences greater
than the random guess is selected for a given x:

Ψ∗(x) = {ψl1, ψl2, . . . , ψlT }, where c(ψlt|x) > 1/M. (19)

The selected classifiers are combined using the weighted majority voting rule
where the weights are equal to the competences. This fusion method leads to
the following class supports (j = 1, 2, . . . M):

d
(MC1)
j (x) =

T∑

t=1

c(ψlt|x) 	ψlt(x) = j
 , (20)

where 	·
 denotes the Iverson bracket.
The MC1 system ψ(MC1) classifies x using the maximum rule:

ψ(MC1)(x) = i ⇔ d
(MC1)
i (x) = max

j∈M
d
(MC1)
j (x). (21)

Multiclassifier System with Fusion at the Continuous-Value Level
(MC2). The MC2 system is identical to the MC1 system except that selected
classifiers (19) are combined at the continuous-value level (j = 1, 2, . . . M):

d
(MC2)
j (x) =

T∑

t=1

c(ψlt|x)dlt,j(x). (22)

Final decision – as previously – is made according to the maximum rule:

ψ(MC2)(x) = i ⇔ d
(MC2)
i (x) = max

j∈M
d
(MC2)
j (x). (23)

The MC2 system with competence measures developed will be applied in the
experimental investigations.
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3 Experiments

3.1 Experimental Setup

The performance of the developed MC systems was evaluated in experiments
using 15 benchmark data sets. In the first experiment, the MC2 system was
evaluated using different methods for calculating decision profile (FM, RM and
PM) and different distances between decision profile and support vector (ED,
MD and HD). The methods that showed the best performance were identified.
In the second experiment, the methods identified were compared with other
competence–based MC systems. The experiments were conducted in MATLAB
using PRTools 4.1 [8]. In both experiments, the value of K = 5×M (M denotes
the number of classes) was used as the neighborhood size.

The 15 benchmark data sets were taken from the UCI Machine Learning
Repository [1]. We selected the same data sets which were used in experimental
investigations presented in [21]. A brief description of the data sets used is given
in Table 2.

Table 2. The data sets used in the experiments.

Data set #Objects #Features #Classes

Blood transfusion 748 4 2

Breast cancer Wisconsin 699 9 2

Clouds 5000 2 2

Dermatology 366 34 6

EColi 336 7 8

Glass 214 9 6

Ionosphere 351 34 2

OptDigits 3823 64 10

Page blocks 5473 10 5

Pima Indians 768 8 2

Segmentation 2310 19 7

Spam 4601 57 2

Vowel 990 10 11

Wine 178 13 3

Yeast 1484 8 10

For each data set, feature vectors were normalized to zero mean and unit
standard deviation. Two-fold cross-validation was used to extract training and
test sets from each data set. For the calculation of the competences, a two-fold
stacked generalization method was used [24]. In the method, the training set is
split into two sets A and B of roughly equal sizes. Set A is first used for the
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training of the classifiers in the ensemble while set B is used for the calculation
of the competences. Then, set B is used for the training while the competences
are calculated using set A. Finally, the competences calculated for both sets are
stacked together and the classifiers in the ensemble are trained using the union
of sets A and B (i.e. the original training set). In this way, the competences of
the classifiers are calculated for all the feature vectors in the original training
set, but the data used for the calculation is unseen during the classifier training.

The experiments were conducted using two ensemble types: homogeneous and
heterogeneous. The homogeneous ensemble consisted of 50 feed-forward back-
propagation neural network classifiers with one hidden layer and the maximum
number of learning epochs set to 80. Each neural network classifier was trained
using randomly selected 70% of the objects from the training data set. The
heterogeneous ensemble consisted of the following 11 base classifiers [7]:

– (1) linear classifier based on normal distribution with the same covariance
matrix for each class;

– (2) quadratic classifier based on normal distribution with different covariance
matrix for each class;

– (3) nearest mean classifier;
– (4–6) k-nearest neighbors classifiers with k= 1, 5, 10;
– (7, 8) Parzen density based classifier with the Gaussian kernel and the optimal

smoothing parameter hopt (and the smoothing parameter hopt/2);
– (9) pruned decision tree classifier with the Gini splitting criterion;
– (10–11) feed-forward backpropagation neural network classifier containing one

hidden layer with 10 neurons (two hidden layers with 5 neurons each) and
the maximum number of learning epochs set to 80;

The performance of the systems constructed was compared with the following
seven MC systems:

1. Overall local accuracy method (OLA1) [23]. In this method the compe-
tence at a test point x is calculated as the percentage of the correct recognition
of the K-nearest validation samples of x;

2. Local class accurracy method (LCA) [23]. In this method the compe-
tence is estimated for each base classifier as the percentage of correct classi-
fications within the local region (the K neighborhood), but considering only
examples from the class as classifier gives for the unknown pattern;

3. Overall local accuracy method (OLA2) [19]. In this method the com-
petence is calculated as in OLA1 approach but validation objects from the
K-neighborhood are additionally weighted by their Euclidean distances to
the unknown object x;

4. Multiple classifier behavior method (MCB) [10]. In this method the
competence is calculated using a similarity function to measure the degree of
similarity of the output profiles of all base classifiers;

5. Oracle KNORRA-eliminate method (ORE) [12]. In this method all
classifiers are selected that correctly classify all samples in the local region
(the K neighborhood). If no classifiers are selected, the local region is reduced
until at least one classifier is selected;
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6. Randomized reference classifier method (RRC) [21]. In this method
the competence of base classifier is calculated as the probability of correct
classification of randomized reference classifier (RRC) which - on average -
acts as a modeled base classifier;

7. Random guessing based method (RGM) [22]. In this method the com-
petence is calculated in relation to the random guessing method – the classifier
is considered as competent (incompetent) if it is more (less) accurate than
the random classifier.

3.2 Results and Discussion

Classification accuracies were averaged over 5 repetitions of two-fold cross-
validation. Statistical differences in rank between the systems were obtained
using the Friedman test with Iman and Davenport correction combined with the
post hoc Holm’s stepdown procedure [5]. The average ranks of the systems and a
critical rank difference calculated using the Bonferroni-Dunn test are visualised.
The level of p < 0.05 is considered as statistically significant.

The average ranks obtained from the first experiment for the nine methods
proposed and for the homogeneous and heterogeneous ensembles are presented
in Figs. 2A and B, respectively. The use of the potential function method for
calculating decision profile and max-max distance between decision profile and
support vector (PM-MD) resulted in the best average rank regardless of the
ensemble type used. The average rank of PM-MD method is significantly better
than average ranks for FM-MD, RM-MD, PM-HD, FM-HD and RM-HD meth-
ods. Methods with the Hamming distance achieved the worst average ranks
regardless of the method for calculating decision profile and the ensemble type
used. Thus, for the second experiment the PM-MD method was selected.

Fig. 2. Average ranks of the MC2 systems for different methods of calculating decision
profile and different distances between decision profile and support vector for homo-
geneous (A) and heterogeneous (B) ensemble of base classifiers. The interval (thick
line) is the critical rank difference (2.991) calculated using the Bonferroni-Dunn test
(p < 0.05).
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Fig. 3. Average ranks of MC systems compared for homogeneous (A) and heteroge-
neous (B) ensemble of base classifiers. The interval (thick line) is the critical rank
difference (2.394) calculated using the Bonferroni-Dunn test (p < 0.05).

Table 3. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the homogeneous ensemble. The best result for each data set
is in bold.

Dataset OLA1 LCA OLA2 MCB ORE RRC RGM PM-MD

Blood 76.18 75.29 76.44 77.15 76.28 76.44 76.32 77.02

Breast 94.21 93.88 94.92 97.25 95.29 97.88 95.94 97.12

Clouds 62.92 63.15 64.22 65.80 64.00 63.64 63.82 65.27

Dermat 68.88 70.44 69.35 75.28 72.61 73.91 71.45 74.82

EColi 67.62 69.48 70.35 76.44 71.43 78.01 76.22 77.25

Glass 50.72 54.22 52.83 69.95 57.86 67.22 60.28 67.38

Iono 83.95 84.25 84.15 88.57 85.47 87.62 86.15 86.47

OptDig 81.28 86.55 87.12 88.32 86.48 88.21 87.35 89.42

Page 94.92 95.12 95.23 96.21 95.80 96.35 95.05 95.92

Pima 65.23 65.55 64.92 67.48 65.49 66.30 65.78 68.52

Segment 87.88 86.54 88.75 96.23 91.32 95.72 91.44 94.96

Spam 81.84 83.57 84.21 89.12 85.29 88.85 87.17 88.24

Vowel 49.92 53.22 50.5 60.25 55.86 59.45 57.73 61.15

Wine 91.28 93.15 91.22 94.47 89.52 95.84 92.78 96.03

Yeast 49.85 53.22 50.81 56.28 52.28 56.36 55.42 57.27

Av.Rank 7.26 5.68 6.83 1.98 3.79 3.06 5.05 2.35

The results obtained in the second experiment for the PM-MD method and
seven MC systems and for the homogeneous and heterogeneous ensembles are
presented in Tables 3 and 4 and in Figs. 3A and B, respectively. The system
constructed achieved the second best average ranks for both types of classifier
ensemble. The average rank of PM-MD method is significantly better than aver-
age ranks for LCA, RGM, OLA1 and OLA2 methods regardless of the ensemble
type used.
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Table 4. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the heterogeneous ensemble. The best result for each data set
is in bold.

Data base OLA1 LCA OLA2 MCB ORE RRC RGM PM-MD

Blood 75.70 77.23 75.93 77.43 76.48 78.26 77.58 78.12

Breast 95.12 95.84 95.48 95.17 96.42 96.28 94.87 95.54

Clouds 74.50 75.13 74.21 79.27 77.12 79.07 75.12 80.02

Dermat 93.18 93.28 93.42 96.31 94.82 96.27 93.88 95.92

EColi 82.13 84.55 82.86 84.18 86.12 86.24 83.15 84.88

Glass 64.18 65.28 64.05 67.40 67.15 67.35 64.88 67.48

Iono 82.98 83.17 82.75 86.12 85.94 86.95 83.15 86.92

OptDig 87.92 91.15 88.24 95.31 95.15 97.43 90.65 97.48

Page 89.24 92.38 90.82 95.84 95.21 96.24 91.13 96.18

Pima 67.21 68.89 67.15 69.12 68.73 69.45 67.45 69.32

Segment 84.02 87.55 86.58 96.41 95.11 95.32 89.55 97.12

Spam 88.21 89.45 88.85 92.17 90.32 91.91 90.05 91.72

Vowel 82.24 85.92 84.72 88.32 83.51 90.18 85.77 89.71

Wine 95.42 96.41 96.15 97.05 96.84 97.17 96.32 98.03

Yeast 55.66 57.05 55.51 56.94 56.83 57.79 57.12 57.11

Av.Rank 6.96 4.98 6.24 2.98 4.16 2.30 5.87 2.48

4 Conclusion

Nowadays, many researches have been focused on MC systems and consequently,
many new solutions have been dedicated to each of the two main approaches:
classifiers fusion and classifiers selection. In the proposed solutions the funda-
mental role plays the assessment of competence of base classifiers which is crucial
in the DES scheme and in the combining of base classifiers. In the paper a new
method for calculating the competence of a classifier in the feature space was
presented. In the proposed method, first the K-neighborhood is used to deter-
mine the so-called decision profile of a test object. The decision profile is an
evaluation of the chance that the recognized object belongs to particular classes.
Next, the decision profile is compared with the response produced by the classi-
fier and the competence is calculated according to the similarity rule. The MC
systems with DES scheme using the proposed competence measure were devel-
oped and experimentally evaluated using 15 benchmark datasets. Experimental
results showed that the idea of calculating the competence of a classifier by com-
paring its response with the decision profile of the classified object is a correct
method and leads to the accurate and efficient multiclassifier systems.

Acknowledgment. This work was supported by the statutory funds of the Depart-
ment of Systems and Computer Networks, Wroclaw University of Technology.
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Abstract. In this work, we address the task of multi-label classification
(MLC). There are two main groups of methods addressing the task of
MLC: problem transformation and algorithm adaptation. Methods from
the former group transform the dataset to simpler local problems and
then use off-the-shelf methods to solve them. Methods from the latter
group change and adapt existing methods to directly address this task
and provide a global solution. There is no consensus on when to apply
a given method (local or global) to a given dataset. In this work, we
design a method that builds on the strengths of both groups of methods.
We propose an ensemble method that constructs global predictive mod-
els on randomly selected subsets of labels. More specifically, we extend
the random forests of predictive clustering trees (PCTs) to consider ran-
dom output subspaces. We evaluate the proposed ensemble extension
on 13 benchmark datasets. The results give parameter recommendations
for the proposed method and show that the method yields models with
competitive performance as compared to three competing methods.

Keywords: Multi-label classification · Structured outputs · Output
space decomposition · Predictive clustering trees · Ensemble methods

1 Introduction

Supervised learning is a very actively researched area of machine learning. Its
goal is to learn models able to provide predictions for previously unseen examples
of data. Single-target prediction scenarios are very common and applicable in
many domains. However, not all solutions to problems can be fitted into one
predicted variable. It is very possible that a more complex representation of the
data is needed. This is a challenge because it requires methods to predict more
than one variable of interest. In that sense, we move towards structured output
prediction (SOP) tasks. Examples of SOP tasks are MT regression (MTR), multi-
label classification (MLC), time series prediction etc.

This work focuses on solving the MLC task where a given example can be
annotated with one or more labels. For instance, a gene could have more than
one function, an image can contain different objects, a document can belong
to several categories, a disease can manifest with multiple symptoms, etc. This
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 108–115, 2017.
DOI: 10.1007/978-3-319-67786-6 8
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particular area of research attracts the attention of the community due to the
increasing number of possible applications in various domains (multimedia, biol-
ogy, medicine, semantic web, legislation,. . . ). Traditional MLC approaches con-
sider individual labels separately, i.e., they are local and transform the dataset
into multiple single-label datasets (a dataset for each label) and then solve the
multiple single-label tasks with off-the-shelf methods. The key observation here
is that such approaches assume that labels are not related: If label relations exist,
these approaches are not able to take advantage of their knowledge. Therefore,
MLC approaches should be global and exploit potential relations between labels
to produce more accurate models.

Notwithstanding, given a dataset, it is not clear which type of method one
should use: a local or a global. There is no consensus on this issue [6]. On some
datasets, it is preferable to use local, while on other global methods. Having
this in mind, we believe that the best method should combine the advantages
of both groups. We hence propose a method for MLC that randomly samples
the output/label space and learns global models for the sampled label space.
Furthermore, we combine the multiple models into an ensemble.

Output space selection and transformation methods already exist in the
scope of MLC. One of the most well-known methods is Random k-Labelsets
(RAkEL) [8]. It is a problem transformation method as it constructs an ensem-
ble of ST classification models to solve the task of MLC. It does so by selecting
random subset of labels (size is determined by the k parameter) for each base
model. RAkEL then builds a powerset of the selected subset of labels and trains
a ST classification model on it. This approach has been extended towards data-
driven partitioning of the label space, which is achieved by using community
detection algorithms from social networks [7]: These find better label subspaces
as opposed to randomly selecting them. Another data-driven approach uses label
hierarchies obtained by hierarchical clustering of flat label sets by using anno-
tations that appear in the training data [5]. Finally, a dimensionality reduction
method that uses random forests with Gaussian subspaces has been proposed [3].
This method also belongs to the algorithm adaptation group. It reduces the out-
put space by making random projections of the output space into a new space
which represents a highly compressed version of the original label space.

2 MLC Using Random Label Subset Selections

The proposed method is based on the predictive clustering (PC) framework.
More specifically, we use predictive clustering trees (PCTs) that can be seen as
a generalization of decision trees for the task of structured output prediction.
The standard top-down induction of decision tree (TDIDT) algorithm is used to
generate PCTs. The pseudo code for the randomized PCT induction algorithm
(RPCT) is shown on the left side of Table 1 and it takes the following inputs: (i)
a dataset S, (ii) a function δc(X) that randomly samples c descriptive variables
from dataset X without replacements and (iii) a set of attributes Rt, that the
learning process should use for supervision.
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The RPCT algorithm first randomly samples from the pool of all available
descriptive attributes for the current dataset. The sampled descriptive attributes,
along with the target attributes Rt provided as input, are used to calculate the
best possible split point (i.e., the best test) to use for partitioning the data
instances. After the best test is found the data are split according to it. This
process continues recursively until a stopping criterion is met and the prototype
function is invoked. We use a prototype function that returns a vector of prob-
abilities that an example belongs to the positive class for each target variable.

The test selection is handled by the BestTest function: It begins by remov-
ing the target attributes which should not be considered (Table 1, right, line 2).
Π(S,Rd, Rt) is a projection function that reduces the original dataset S to SR by
only considering descriptive and target attributes from sets Rd and Rt respec-
tively. All possible tests on SR are evaluated and the one that reduces the vari-
ance the most (w.r.t. SR) is selected (Table 1, right, lines 3–9). The variance
calculation function is also a parameter and can be instantiated based on the
type of machine learning task we want to solve. In this paper, we focus on MLC
so we calculate the variance as the sum of Gini indices over the individual target
variables from the set Λ = {λ1, λ2, ..., λq} as V ar(S) =

∑q
i=1 Gini(S, λi).

Ensembles combine the predictions of multiple predictive models to achieve
better predictive performance. Predictions for new examples are made by query-
ing base models and combining their predictions. In this section, we describe the
process of generating ensembles, where the base models are not all learned from
all available target attributes, but rather each model is learned from a (differ-
ent) subset of them. For this, we will need the parameter Rt defined above. We
named this ensemble method Random Output Selections (ROS).

Regular PCTs use the whole target space to calculate the heuristic score.
The proposed ensemble approach introduces random selections in the output

Table 1. The top-down induction of randomized predictive clustering trees

Function RPCT (S, δc, Rt)
Out: A predictive clustering tree

1: Rd ← δc(S)
2: (t∗, h∗, P∗) ← BestTest(S, Rd, Rt)
3: if t∗ �= none then
4: for each Si ∈ P∗ do
5: treei ← RPCT(Si, δc, Rt)
6: end for
7: return node(t∗,

⋃
i{treei})

8: else
9: return leaf(Prototype(S))

10: end if

Function BestTest(S, Rd, Rt)
Out: Selected test t∗

Out: Heuristic score h∗ of test t∗

Out: Partitioning P∗ induced by t∗ on S

1: (t∗, h∗, P∗) ← (none, 0, ∅)
2: SR ← Π(S, Rd, Rt)
3: for each possible test t in SR do
4: P ← partitioning induced by t on SR

5: h ← Var(Rt, SR) −
∑

Si∈P
|Si|
|SR|Var(Rt, Si)

6: if (h > h∗) then
7: (t∗, h∗, P∗) ← (t, h, P)
8: end if
9: end for

10: return (t∗, h∗, P∗)



Multi-label Classification Using Random Label Subset Selections 111

space, i.e., individual PCTs do not consider the whole target space anymore.
Each base model (PCT) is consequently learned from only those targets that
were included in the randomly generated partition Rt provided to it by the
function Π. The output space partitions are generated before the induction of
base models and are independent of the base model learning algorithm. The
algorithm for construction of subspaces has the following parameters: (i) the
number of base models b, (ii) a function θv(X) that samples uniformly at random
without replacement v items from the set X and (iii) a set of target attributes
(labels) T . ROS first creates a subspace which considers all target attributes, to
make sure that every target attribute is considered by at least one base model.
We generate the remaining b − 1 subspaces with the θv function. We build ROS
ensembles of PCTs by using the randomized PCT algorithm (RPCT). Each base
model is learnt from different bootstrap replicate. Such perturbations of the
learning set have been proven useful in cases, where unstable base models, such
as decision trees, are used. RPCT introduces additional randomization while
learning its individual base models by considering only a subset of descriptive
attributes at each step, i.e., when selecting the best test at a given node by calling
the function δc(X) just before. In addition, ROS randomly selects a subset of
targets for each PCT in the ensemble (we refer to the method as RF-ROS).

Ensembles combine predictions of their base models. In this study, we use two
different prediction-combining techniques, i.e., aggregation functions: (i) total
averaging (i.e., the most commonly used voting technique) and (ii) subspace
averaging. Total averaging combines votes of the individual base models using
probability per-target distribution voting for all targets [1]. Subspace averaging
does the same, but only the labels considered during learning of the respective
base model participate in the voting.

3 Experimental Design

This section presents the experimental questions posed, benchmark datasets, the
experimental setup and the evaluation measures used. We designed the experi-
mental evaluation having the following research questions in mind:

1. What is the recommended label subspace size for RF-ROS ensembles?
2. Does it make sense to change the aggregation function, i.e., can subspace

averaging improve the predictive performance of RF-ROS models?
3. Considering predictive performance, how do RF-ROS ensembles compare to

other competing methods?

We use 13 publicly available benchmark datasets: Emotions, Scene, Yeast,
Birds, TMC 2007, Genbase, Medical, Enron, Mediamill, Bibtex, Bookmarks,
Corel 5k, and Delicious. The datasets vary in terms of number instances, descrip-
tive and target attributes. More details about the datasets are available at the
MULAN repository (http://mulan.sourceforge.net/datasets.html).

To evaluate the performance of the RF-ROS, we generated ensembles with
different output space sizes: v ∈( q4 , q

2 , 3q
4 ,

√
q, log q) with q the number of labels.

http://mulan.sourceforge.net/datasets.html
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We also experimented with two aggregation functions: total and subspace
averaging. We then compare the performance of RF-ROS with the perfor-
mance of: (i) Random forests of standard PCTs (RF-PCT) [4], (ii) Random
k-Labelsets (RAkEL) models [8] and (iii) Random forests with Gaussian sub-
spaces (RF-Gauss) [3].

RF-PCT and RF-ROS ensembles used 100 PCTs (ensembles are typically
saturated at that point) and descriptive space size v = �0.1 · q� + 1 [4]. The
trees in the ensembles were not pruned [1]. For RAkEL models, the k parameter
(size of labelset) was set to q/2 and the number of models to min(2q, 100). A
support vector machine (SVM) classifier was selected as a learning algorithm
within RAkEL, with a linear kernel and a complexity constant C = 1. In RF-
Gauss, the number of Gaussian subspace components was set to log q. The other
RF-Gauss parameters were set to nmin = 1 and k =

√
q [3]. The statistical

evaluation of the results was performed according to the guidelines of Demšar [2].
All statistical tests on the predictive performance values were conducted at the
significance level α = 0.05 (using three decimal places).

In order to determine the predictive performance of the induced models,
we empirically evaluate them according to 12 different measures that belong to
two groups: example and label based measures. The example based measures
considered are: hamming loss, accuracy, precision, recall, F1, subset accuracy.
The label based measures considered are: micro/macro precision, micro/macro
recall, micro/macro F1 [6]. Results in terms of different measures lead to the
same conclusions: In order to conserve space, we present only results for the
example based measures F1 (more is better) and Hamming loss (less is better)
in Table 2.

Table 2. The performance of the considered methods in terms of the example based
measures F1 and Hamming loss. DNF (did not finish) denotes algorithms that did not
produce results. The numbers in bold denote best performance on a dataset.

Example based F1 Hamming loss
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Emotions 0.637 0.534 0.574 0.582 0.588 0.205 0.2 0.197 0.196 0.198
Scene 0.681 0.413 0.574 0.558 0.591 0.098 0.111 0.09 0.093 0.088
Yeast 0.64 0.573 0.587 0.583 0.602 0.2 0.199 0.198 0.198 0.199
Birds 0.658 0.51 0.566 0.556 0.579 0.05 0.048 0.044 0.044 0.043
TMC 2007 0.81 0.992 0.908 0.902 0.926 0.033 0.001 0.015 0.016 0.012
Genbase 0.996 0.991 0.981 0.981 0.986 0.001 0.001 0.002 0.002 0.001
Medical 0.789 0.515 0.673 0.669 0.683 0.01 0.016 0.013 0.013 0.012
Enron 0.562 0.508 0.527 0.518 0.559 0.049 0.047 0.046 0.046 0.045
Mediamill DNF 0.545 0.549 0.547 0.541 DNF 0.03 0.03 0.03 0.032
Bibtex DNF 0.173 0.211 0.209 0.305 DNF 0.014 0.013 0.013 0.013
Bookmarks DNF 0.2 0.206 0.203 0.175 DNF 0.009 0.009 0.009 0.009
Corel DNF 0.018 0.007 0.009 0.089 DNF 0.009 0.009 0.009 0.01
Delicious DNF 0.237 0.194 0.193 0.202 DNF 0.018 0.018 0.018 0.021
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4 Results

The proposed method has two degrees of freedom: target subspace size and aggre-
gation function. Figure 1 shows the performance of RF-ROS on four datasets
with various label and example counts. The plots for each dataset also show
the point (total averaging, 100% target space, always the rightmost data point)
which represents the performance of the RF-PCT model on that dataset. The
results suggest that subspace averaging outperforms total averaging (especially
for subset sizes below 50%). Moreover, the two aggregation functions exhibit
inverse behavior w.r.t. the target subspace size. Total averaging performs better
with larger target subspaces while subset averaging is better for smaller ones.
When the target subspace size increases, both variants converge to a perfor-
mance similar to that of the original RF-PCT method. This behavior is expected
because larger subset size leads to larger overlap between the set of all target
variables and its subsets.

We also observe that the performance of models with different aggregation
functions converges at different rates. Although we observe convergence towards
RF-PCT on all datasets, we speculate that the convergence rate is dataset depen-
dent. For instance, on the Delicious dataset, both variants already converge with
a target subspace size of 25%. On the Bibtex dataset, this number is a bit higher
(50%) and on the Yeast and Scene datasets even higher (75%).

Fig. 1. Example based F1 results for Delicious, Bibtex, Yeast and Scene datasets.

Figure 2 shows average rank diagrams that confirm our speculations.
Figures 2a and c show some statistically significant differences, so we recom-
mend a larger subspace size (v = 3q

4 ) with total averaging. Figures 2b and d do
not show any statistically significant differences between the considered RF-ROS
variants. Nevertheless, we recommend using the smallest evaluated subspace size
(v = log q) to be used with subspace averaging, as this is most efficient.

We compared the model performances of RF-ROS variants using these rec-
ommended parameters to the performance of RF-PCT, RAkEL and RF-Gauss
(Fig. 3). The diagrams do not show any statistical significance in terms of F1.
It is immediately visible that RAkEL performs very well. Although it did not
finish on five datasets, it can still be considered a serious competitor on datasets
with smaller label spaces. However, its predictive performance comes at a high
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Fig. 2. Average rank diagrams of the RF-ROS variants (F1 and Hamming loss).

computational cost. This method is hindered by the fact that it uses label pow-
ersets and SVMs to generate models which makes the running times of RAkEL
substantially longer. RAkEL is not a clear winner w.r.t. the average rank dia-
grams because the method was penalized for not finishing. If we take RAkEL out
of consideration, the average rank diagrams in Fig. 3 suggest that the proposed
method performs at least as well as the competition.

RF-ROS-Sub-LOG is ranked better than RF-PCT in terms of F1 and equally
ranked in terms of Hamming loss. RF-ROS-Tot-75 also performs well in terms
of Hamming loss measure but is ranked last w.r.t F1. Moreover, we observe that
RF-ROS-Sub-LOG is ranked better than RF-Gauss and RAkEL.

Here, we summarize the answers to our experimental questions. Regard-
ing the recommended label subspace size, RF-ROS should be instantiated with
v = log q. It could be beneficial to use a slightly larger subspace size on datasets
with larger label spaces (i.e., v ∈ (

√
q, q

2 )). Next, subspace averaging should be
preferred, because total averaging seems to degrade the predictive performance
of the models and (with larger label subspace sizes) converges to the performance
of the original method (RF-PCT). Note that even if we do not use the optimal
value for the subspace size, the performance of RF-ROS is lower-bounded by

Fig. 3. Average rank diagrams for RF-ROS and its competitors.
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RF-PCT. Finally, RF-ROS ensembles perform well compared to the competi-
tion, which especially holds for the RF-ROS-Sub-LOG variant.

5 Conclusions and Future Work

We have proposed and evaluated a novel ensemble method for MLC, namedRF-
ROS, that uses subsets of the label space to induce base models. We have exper-
imented with different subspace sizes and two voting mechanisms, and found
that the proposed method improves random forest models with PCTs as base
learners. We have also shown that the proposed method generates models that
performs equally well or better than the competition.

Future work is planned that will include evaluation against models gener-
ated by additional MLC methods. We will also add experiments on additional
datasets. Next, we would like to try a new aggregation function where we would
include predictions of the default model (i.e., predictions on the whole training
set). We would also like to include out-of-bag errors to estimate the quality of
individual base models and use this in conjunction with the mentioned aggre-
gation function. Finally, a possible direction for future work is the extension of
label subspace generation process that would work for hierarchies.
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Abstract. In this work, we address the task of hierarchical multi-label
classification (HMLC). HMLC is a variant of classification, where a single
example may belong to multiple classes at the same time and the classes
are organized in the form of a hierarchy. Many practically relevant prob-
lems can be presented as a HMLC task, such as predicting gene function,
habitat modelling, annotation of images and videos, etc. We propose to
extend the predictive clustering trees for HMLC – a generalization of
decision trees for HMLC – toward learning option predictive clustering
trees (OPCTs) for HMLC. OPCTs address the myopia of the standard
tree induction by considering alternative splits in the internal nodes of
the tree. An option tree can also be regarded as a condensed represen-
tation of an ensemble. We evaluate OPCTs on 12 benchmark HMLC
datasets from various domains. With the least restrictive parameter val-
ues, OPCTs are comparable to the state-of-the-art ensemble methods
of bagging and random forest of PCTs. Moreover, OPCTs statistically
significantly outperform PCTs.

1 Introduction

Supervised learning is one of the most widely researched areas of machine learn-
ing, where the goal is to learn, from a set of examples with known class, a function
that outputs a prediction for the class of a previously unseen example. The most
widely studied machine learning task is binary classification where the goal is to
classify the examples into two groups. The task where the examples can belong
to a single class from a given set of m classes (m ≥ 3) is known as multi-class
classification. The case where the output is a real value is called regression.

In many real life problems of predictive modelling the target is structured
(e.g., the target is a vector of values with dependencies between them, or a time
series). In this work, we focus on the task of hierarchical multi-label classification
(HMLC). HMLC is a variant of classification, where a single example may belong
to multiple classes at the same time and the classes are organized in the form of
a hierarchy. An example that belongs to some class c automatically belongs to all
super-classes of c: This is called the hierarchical constraint. Problems of this kind
can be found in many domains including text classification, functional genomics,
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 116–123, 2017.
DOI: 10.1007/978-3-319-67786-6 9
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and object/scene classification. Silla and Freitas [19] give a detailed overview of
the possible application areas and the different approaches to HMLC.

Decision tree based methods take a very notable place among approaches to
HMLC. When used as base predictive models in an ensemble, they can yield a
state-of-the-art performance [13,18]. A prominent global tree method for HMLC
is a predictive clustering tree (PCT) for HMLC [20]. PCTs for HMLC inherit
the properties of decision trees: they are interpretable models, but learning them
is greedy. The performance of the trees is significantly improved when they are
used in an ensemble setting [13]. However, the greediness of the tree construction
process can lead to learning sub-optimal models. One way to alleviate this is to
use a beam-search algorithm for tree induction [12], while another approach is
to introduce option splits in the nodes [5,14].

In this work, we propose to extend predictive clustering trees (PCTs) for
HMLC towards option trees, hence we propose to learn option predictive clus-
tering trees (OPCTs). An option tree can be seen as a condensed representation
of an ensemble of trees which share a common substructure. More specifically,
the heuristic function for split selection can return multiple values that are close
to each other within a predefined range. These splits are then used to construct
an option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for HMLC. Next, Sect. 3 outlines the design
of the experimental evaluation. Section 4 continues with a discussion of the
results. Finally, Sect. 5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [1], which is available at
http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT framework,
by introducing option nodes into the tree building procedure. Option decision
trees were first introduced as classification trees by Buntine [5] and then ana-
lyzed in more detail by Kohavi and Kunz [14]. Ikonomovska et al. [10] analyzed
regression option trees in the context of data streams. We also evaluated OPCTs
for the multi-target regression task [16].

The major motivation for the introduction of option trees is to address
the myopia of the top-down induction of decision trees (TDIDT) algorithm [4].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering of a subspace and prediction functions are placed
in the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows
the construction of an overlapping hierarchical clustering. This means that, at
each node of the tree several alternative hierarchical clusterings of the subspace

http://clus.sourceforge.net
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can appear instead of a single one. When using TDIDT to construct a predic-
tive clustering tree, and in particular when partitioning the data, all possible
splits are evaluated by using a heuristic and the best one is selected. However,
other splits may have very similar heuristic values. The best partition could be
obtained with another split as a consequence of noise or of the sampling that
generated the data. In this case, selecting a different split could be optimal. To
address this concern, the use of option nodes was proposed [14].

The procedure of PCT learning for the HMLC task is presented in [13]. We
modify it by introducing an option node into the tree when the best splits have
similar heuristic values. Instead of selecting only the best split, we select several
of them. Specifically, we select splits s, that satisfy the condition:

Heur(s)
Heur(sbest)

≥ 1 − e · dl, (1)

where sbest is the best split, e determines how similar the heuristics must be,
d ∈ [0, 1] is a decay factor and l is the depth of the node we are attempting to
split. E.g., when e = 0.1, we are selecting only splits whose heuristics are within
10% of the best split at the top level. We define the depth of a node to be the
number of its ancestor nodes, excluding option nodes, as they do not split the
data. The use of a decay factor makes the selection criterion more stringent in
the lower nodes of the tree, where the impact of the split selection is also lower.
After we have determined the candidate splits, we introduce an option node
whose children are split nodes obtained by using the selected splits.

Introducing an option node with a large number of options is not advised [14]
as it can lead to the explosion of model sizes. Therefore, we limit the maximum
number of options for a single option node to 5 and also prohibit the induction
of option nodes on depth 3 and greater.

Fig. 1. An option tree (left) and the ensemble of its embedded trees (right). Oi are
option nodes, Sj split nodes and Lk leaf nodes.
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Once an OPCT is learned, we use it for prediction. In a regular PCT an
example is sorted into a leaf (reached according to the tests in the nodes of
the tree) where a prediction is made using a prototype function. Traversing an
example through an OPCT is the same for split nodes and leaves. When we
encounter an option node, however, we traverse the example down each of the
options. This means that in an option node an example is sorted to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in
an option node, we aggregate the obtained predictions.

An option tree is usually observed as a single tree, however, it can also be
interpreted as a compact representation of an ensemble. We can extract embedded
trees out of an option tree by replacing every option node with one of its options
(Fig. 1). A given OPCT is also an extension of the PCT learned on the same
data. By definition, whenever we introduce an option node, we include the best
split. Consequently, the PCT is an embedded tree in the OPCT, resulting from
replacing all option nodes with the best option.

3 Experimental Design

We evaluated the performance and efficiency of the proposed OPCT method with
different parameter values and compared it to the standard PCTs and ensembles
of PCTs. Evaluation was done on 12 datasets from biology, text classification and
image annotation domains. They are described in Table 1. The datasets came
pre-divided into training and testing sets and we used them in their original
format, for easier comparison of the results.

OPCTs are evaluated for various values of parameters e and d. For e we
consider values 0.1, 0.2, 0.5 and 1.0, while d takes values 0.5, 0.9 and 1.0. Notably,
different selections of parameters can produce the same OPCT, if for a given
dataset the same splits satisfy both criteria. Hereafter, the OPCT method with
specific parameter values is denoted OPCT eX dY (e.g., for e = 0.5, d = 0.9,
OPCT e0.5 d0.9). The border case OPCT e1 d1 always selects the 5 best options
regardless of their heuristic score, making this setting similar to ensembles.

For PCTs and OPCTs we use the F-test as a pruning mechanism. Specifically,
we check if a split results in a statistically significant improvement over the single
node. If no split satisfies the F-test, the learning in the node stops. The signifi-
cance level for the test was selected from the set of values {0.125, 0.1, 0.05, 0.01,
0.005, 0.001} using internal 3-fold cross validation on the training set.

For ensembles, we considered bagging [2] and random forests [3]. For both
methods we used 100 trees in the ensemble. Random forests algorithm also takes
as input the size of the feature subset randomly selected at each node. For this
we used the square root of the number of descriptive variables (�√|D| + |C|�).

Performance was measured using Area Under the Average Precision-Recall
Curve (AUPRC) [20]. For efficiency, we looked at the model size (number of
leaves in a tree/ensemble). For statistical comparison of the methods we adopted
the recommendations by Demšar [7]. Specifically, we used the Friedman test for
statistical significance and Nemenyi post-hoc test to detect between which algo-
rithms the significant differences occur. For both tests we selected confidence
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Table 1. Descriptions of datasets used for the evaluation. The table shows the number
of examples in the training and testing sets (Ntr/Nte), number of descriptive attributes
(discrete/continuous, D/C), number of labels in the hierarchy (|H|), maximal depth of
the labels in the hierarchy (Hd) and average number of labels per example (L).

Ntr/Nte |D|/|C| |H| Hd L
Diatoms [9] 2065/1054 0/371 377 3.0 1.95

Enron [11] 988/660 0/1001 54 3.0 5.30

Expression–FunCat [6] 2494/1291 4/547 475 4.0 8.87

Exprindiv–FunCat [6] 2314/1182 1252 261 4.0 3.36

ImCLEF07A [8] 10000/1006 0/80 96 3.0 3.0

ImCLEF07D [8] 10000/1006 0/80 46 3.0 3.0

Interpro–FunCat [6] 2455/1264 2816 263 4.0 3.34

Reuters [15] 3000/3000 0/47236 100 4.0 3.20

SCOP-GO [6] 6507/3336 0/2003 523 5.5 6.26

Sequence-FunCat [6] 2455/1264 2/4448 244 4.0 3.35

WIPO [17] 1352/358 0/74435 183 4.0 4.0

Yeast-GO [6] 2310/1155 5588/342 133 6.3 5.74

level 0.05. The results of the statistical analysis are presented with average rank-
ing diagrams. They plot the average ranks of the algorithms and connect those
whose average ranks differ by less than the critical distance. The performance of
the algorithms connected with a line is not statistically significantly different.

4 Results and Discussion

We present our experimental results as graphs with size on the horizontal axis
and performance on the vertical axis. Figure 2 shows the results on four datasets.
The remaining graphs are very similar and are omitted for brevity. Notably, the
figures are on separate scales and on some figures the differences in performance
between the different models are very small, e.g., on the SCOP-GO dataset.

Observing the points representing the results of OPCTs, the trade-off
between size and performance is clearly visible. This trade-off is achieved as
a consequence of different choices of the parameter values. The models’ pre-
dictive performance generally rises with increasing model size, indicating that
even the largest OPCTs do not overfit the training set, or possibly, different
options overfit different parts of the input space. The increase in predictive per-
formance in terms of increasing size also appears to saturate at the higher val-
ues of the observed parameter settings. This indicates that learning even larger
less-restrictive OPCTs is not likely to provide a significant boost to predictive
performance.

Compared to a PCT, OPCTs generally produce more accurate models that
are mostly much larger. However, the increase in predictive performance is often
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Fig. 2. Performances and sizes of models produced by different methods

noticeable even for the lowest parameter values when the difference in size is
relatively small. The comparison between OPCTs and ensembles of PCTs is more
varied. Bagging of PCTs is usually better than OPCTs (SCOP-GO), though
often very slightly (Enron) and sometimes worse (IMCLEF07D). However, the
size of a bagging ensemble can considerably surpass the size of even the largest
OPCTs. On the Enron dataset, random forests of PCTs outperform all other
methods by a solid margin. They also provide good performance on the SCOP-
GO dataset with relatively small trees, however, on the WIPO dataset they
produce the largest model which only outperforms a PCT.

We selected 3 parameter configurations as trade-off points between predic-
tive performance and model size: OPCT e1 d1, as it offers the best performance,
OPCT e1 d0.5, as its performance was similar to that of OPCT e1 d1 but it
often produced noticeably smaller models, and OPCT e0.5 d0.5, as it consis-
tently produced much smaller models than other two selected configurations,
albeit at the cost of some performance.

We compared the performance and size of these three configurations to that of
a PCT and their ensembles, using Friedman test to check if there is a significant
difference between the algorithms and the Nemenyi post-hoc test to show where
the differences occur. Results are presented in Fig. 3. The performance of a PCT
and its size is significantly lower than that of ensembles of PCTs, OPCT e1 d1
and OPCT e1 d0.5. Additionally, the size of OPCT e0.5 d0.5 is significantly
lower than that of the four aforementioned methods, but its performance is not.
We also observe that the average rank of OPCT e1 d0.5 in performance is on
par with ensembles of PCTs (it placed between bagging and random forests),
while its average rank in size is noticeably better. As expected, a PCT always
produced the smallest model with the worst performance.
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Fig. 3. Average ranking diagrams of the performance and size of selected methods

5 Conclusions

In this work, we proposed an algorithm for learning option predictive clustering
trees (OPCTs) for the hierarchical multi-label classification task. The purpose
of OPCTs is to address the greediness of the standard algorithm for PCT learn-
ing. We experimentally evaluated the proposed method with various parameter
values and compared it to PCTs and ensembles of PCTs (bagging and random
forests). The results show that increasing the values of e and d increases the
model performance and size compared to PCTs. At the highest parameter val-
ues of e = 1, d = 1, OPCTs are comparable to the state-of-the-art ensemble
methods of bagging and random forest of PCTs.

We identified three interesting parameter selections for OPCTs and per-
formed statistical comparison of these three methods and regular PCTs and
their ensembles. The results show that regular PCTs have significantly lower
performance and size than other methods with the exception of OPCT e0.5 d0.5.
Additionally, OPCT e0.5 d0.5 produces significantly smaller models than bag-
ging of PCTs, random forests of PCTs and OPCT e1 d1. Average performance
ranks of bagging, random forests, OPCT e1 d1 and OPCT e1 d0.5 are very sim-
ilar, while average size rank of OPCT e1 d0.5 is noticeably lower than that of
the other three methods. Based on these results, we suggest the parameter values
of e ∈ {0.5, 1} and d ∈ {0.5, 1} for future analyses.

There are several avenues for further work. Notably, the OPCT method-
ology described in this paper can be easily applied to the task of multi-label
classification. In the future, we also plan to use the OPCT methodology as a
part of a guided process to produce regular PCTs though either input from a
domain expert, or through the use of additional validation data. Finally, we will
investigate the use of OPCTs for performing feature ranking and selection for
HMLC.
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Abstract. Deep neural networks are accurate predictors, but their deci-
sions are difficult to interpret, which limits their applicability in various
fields. Symbolic representations in the form of rule sets are one way to
illustrate their behavior as a whole, as well as the hidden concepts they
model in the intermediate layers. The main contribution of the paper is to
demonstrate how to facilitate rule extraction from a deep neural network
by retraining it in order to encourage sparseness in the weight matrices
and make the hidden units be either maximally or minimally active.
Instead of using datasets which combine the attributes in an unclear
manner, we show the effectiveness of the methods on the task of recon-
structing predefined Boolean concepts so it can later be assessed to what
degree the patterns were captured in the rule sets. The evaluation shows
that reducing the connectivity of the network in such a way significantly
assists later rule extraction, and that when the neurons are either mini-
mally or maximally active it suffices to consider one threshold per hidden
unit.

Keywords: Deep neural networks · Inductive rule learning · Knowledge
distillation

1 Introduction

Deep neural networks [10] achieve state of the art performance in a variety of
different fields, like computer vision, speech recognition and machine translation.
They can be leveraged both in supervised and unsupervised problem formula-
tions, as they automatically learn insightful features out of unprocessed data. In
the last few years, they have considerably risen in popularity as advancements
in the training practices and availability of user friendly frameworks have made
it much simpler to train accurate models, as long as sufficient data is available.

However, the fact that the models are governed by a high number of parame-
ters makes tracing the path that led to a classification an arduous process, which
is why they are often regarded as black boxes. This is a significant shortcoming,
as it makes them unsuitable for safety critical applications and domains where
there are juridical barriers which either explicitly forbid their use or implicitly
discourage it by making the user liable for the model’s decisions. Amongst the
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legislation that aims for more comprehensible prediction models is the General
Data Protection Regulation (GDPR)1 planned to take effect in 2018. There is
also an ongoing European legislative initiative on Civil law rules on robotics2.

In fields such as health care and criminal sentencing, comprehensible models
like decision lists or trees are favored because they provide understandable evi-
dence to support their predictions [16,17]. Decision support systems (DSS) aim
at integrating machine learning models into a human-centered decision process.
Here, interpretability is of particular advantage because a justified decision is
more likely to convince the human to support or disregard the machine’s recom-
mendation. Besides, the extent to which the model is used in practice depends
heavily on how easily interpretable it is, as this is a relevant criteria for eliciting
trust [14].

Compared to neural networks, if-then rule sets are a representation with a
good trade-off between human and machine interpretability [9]. This is partly
because they provide a symbolic representation which more closely resembles the
way humans model logic. Also, each rule can be observed individually, so only a
limited amount of information must be considered at any time. This advantage,
together with the fact that they can be more flexibly pruned, sometimes makes
them preferable over decision trees [7].

Consequently, researchers have looked into converting neural networks into
a rule-based representation. One problem with such approaches is that much
information is lost when the continuous range of activation levels of the internal
neurons is mapped to a two-valued logical representation. In this paper, we
investigate ways for retraining deep neural networks with the goal of encouraging
sparse connectivity and minimally or maximally active hidden units, with the
idea of facilitating a later extraction of rules from the network. We study the
problem on the task of reconstructing Boolean functions, because there we can
see whether the use of the network’s structure really helps to recover the logical
structure in the target function.

We will start our discussion with a brief general overview of prior work on
rule extraction from neural networks (Sect. 2), with a particular focus on the
DeepRED algorithm, upon which forms the basis of our work (Sect. 3). The
core contribution of this paper, an algorithm for retraining DNNs to extract
better representations, is described in Sect. 4, and experimentally evaluated on
the problem of reconstructing Boolean functions in Sect. 5.

2 Knowledge Distillation from Neural Networks

Much of the predictive strength of deep neural networks originates from their
ability to form latent concepts in the hidden layers, and the high connectivity
between these layers makes it difficult to distill the meaning of these concepts.
1 EU Regulation 2016/679: http://eur-lex.europa.eu/eli/reg/2016/679/oj, http://

www.eugdpr.org.
2 http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/

2103(INL).

http://eur-lex.europa.eu/eli/reg/2016/679/oj
http://www.eugdpr.org
http://www.eugdpr.org
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/2103(INL)
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/2103(INL)
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One approach is to rely on visualization in order to analyze the behavior of the
learned network (see, e.g., [29]). However, another line of research concentrates
on ways of making the knowledge that is implicitly captured in these nodes
explicit and amenable to human inspection. Typically this is done by trans-
forming the neural network into more interpretable knowledge representations
such as rules or decision trees. A prerequisite for such work is often to simplify
the network by pruning unnecessary connections and neurons. We will briefly
recapitulate work in these areas in Sects. 2.1 and 2.2, respectively.

2.1 Rule Extraction

Many approaches have been developed to extract symbolic representations from
neural networks. However, most either do not consider the network’s internal
structure or are only applicable to shallow architectures. A distinction can be
made between pedagogical methods, which regard the network as a black box
and map relationships between the outputs and the inputs, decompositional ones
that observe the contribution of individual parameters or neurons and eclectic
methods which fall between the other two [4]. Other categorizations refer to the
computational complexity of the approach, what data is used to build the model
and whether a particular training regime is performed [2].

A first group is made up of subset approaches [8,27,28]. These are decom-
positional and typically assume a polarization of the activations and the use of
exclusively binary inputs. They search the entire feature space and construct
one expression per neuron of interest. Typically, a threshold is applied to the
neuron’s output to define an active and an inactive state. Rules are then learnt
for the active state by finding combinations of the incoming weights that cause
the bias of the hidden unit to be exceeded.

A shortcoming of these methods is that considering all subset combinations
grows at an exponential rate with the number of incoming connections, which
limits their applicability to larger networks. It also cannot be assumed that any
network can be converted to one with only maximally or minimally active neu-
rons while maintaining the initial accuracy. An even more difficult requirement
to fulfill is that inputs should be discrete so they can be binarized without infor-
mation loss.

Another problem that arises when sampling all possible inputs is that the way
the network reacts to implausible instances may not be meaningful, so capturing
this logic may result in an overly complicated rule model which is not better
at classifying unseen, naturally occurring examples. Some methods thus focus
primarily on the instances used to train the network when building the symbolic
model.

Such is the case for the pedagogical TREPAN algorithm [5], which explains
the outputs of the network with respect to the inputs by building decision trees
directly between these layers. The tree building process makes use of queried
instances, generated from the marginal distribution of each attribute, to avoid
low amounts of data as the tree branches. However, in a comparison of different
variants [18], that which did not generate new examples performed best.
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CRED [20] also builds decision trees between network layers using the train
data, but it works in a decompositional manner. First, a target condition is
specified to discretize the class values, and decision trees are built to explain
this output pattern with the hidden units as attributes, using the corresponding
activation values of the training instances. The range of each hidden unit is
partitioned in an online manner, so several thresholds may be considered per
unit, and some units may be ignored. The trees are then converted into sets of
decision rules. Redundant and unsatisfiable rules and terms are deleted, and rules
are merged by forming their least general generalization (lgg) by selecting the
most general condition of the attributes they share, and dropping all conditions
of attributes they do not share. For instance, a ≤ 0.3 ∧ b > 4 ∧ c > 2 → C1 and
a ≤ 0.2 ∧ b > 3 ∧ d > 2 → C1 would become a ≤ 0.3 ∧ b > 3 → C1. Afterwards,
analogous rule sets are built which explain each split value considered for a the
hidden units with respect to the inputs, which now make up the attributes.
Finally, the total rules are formed by substituting the hidden split values with
these new rule sets.

2.2 Connection Pruning

Pruning connections or whole neurons of trained neural networks is a common
way to adapt the topology of the network to the effective size of the problem,
thus discouraging overfitting and increasing the generalization capabilities. It can
also be leveraged to require less time and resources when making classifications
[12,15,26].

A connection w l
j,k between two neurons hl−1,k and hl,j can be pruned by

equaling the weight entry to zero. This is similar to applying dropout [25]
but whereas dropout temporarily removes randomly chosen connections for one
epoch at a time, pruning permanently removes selected connections from the
network. Connections can be pruned iteratively by retraining the network after
each pruning step, which allows to discard a considerably higher number [11].
Note that pruning connections can result in indirectly pruning whole inputs or
hidden units, as a neuron without output connections is disconnected from the
network.

In [23] a method is introduced to prune connections from shallow neural net-
works. First, the networks are trained with a weight-decay penalty. Connections
w2

p,j between the hidden and output layers are then pruned if
∣
∣w2

p,j

∣
∣ ≤ η, (1)

and connections w1
j,k between the inputs and hidden units are pruned if

maxp

∣
∣w2

p,j .w
1
j,k

∣
∣ ≤ η. (2)

If no connection fulfills one of those conditions, then the entry w1
j,k for which the

minimum of the maximum products is lowest is pruned. Afterwards, the network
is retrained. If the final error falls below an acceptable level, the pruning step is
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repeated; otherwise the last acceptable parameters are restored and the process
is stopped.

The author uses this approach extensively as a preprocessing step before
applying rule extraction algorithms [21,24]. The pruning phase is usually fol-
lowed by a discretization of the hidden unit activations. In [22], the connectivity
of the hidden units is further reduced by ‘splitting’ those with many input con-
nections. Each new unit is treated as an output and a hidden layer is inserted
in the middle between the inputs and the new output layer. The network is
retrained and the new subnetwork pruned, and the process is repeated until
each neuron only has a small number of inputs.

3 The DEEPRED Algorithm

In order to extract representations from deep neural networks which not only
explain the network’s predictive behavior but also uncover hidden features, we
make use of the DeepRED algorithm [30], which extends CRED (Sect. 2.1) to
deep neural networks. It is scalable to large architectures, works in a decomposi-
tional manner and has been shown to be capable of extracting accurate models
from deep neural networks. We extended DeepRED with a post-pruning step
(Sect. 3.3) meant to contain error propagation and reduce the complexity. This
is carried out each time a rule set is generated from a decision tree, and between
substitution steps when building the expression of the target with regards to the
inputs.

3.1 Overview

The DeepRED algorithm extracts rules between any two layers by building
decision trees for layer hl using the activations from layer hl−1 as attributes.
The trees are then transformed to rule sets, and a merging step converts the
intermediate representations into a single rule set connecting the inputs with
the outputs. Redundant and unsatisfiable rules and conditions are deleted, but
unlike in CRED no further pruning takes place. There is a version of the algo-
rithm that performs a feature selection prior to rule extraction by considering the
contribution of each input for correctly classifying the training data and remov-
ing inputs that do have a great impact. This proves to be very advantageous
when the network is used for high-dimensional data.

Figure 1 exemplifies how DeepRED would extract rule representations from
a shallow neural network which emulates a Boolean function. The model is sam-
pled to obtain activation values for each training instance. A first tree is built to
predict under what activation settings of layer h1 the target concept is fulfilled,
namely that class C1 has a higher probability than C0. The tree is converted
into a DNF representation and the expression is simplified. A tree is then built
for each literal which appears in the simplified expression, using the input values
as attribute data. Each of these expressions is extracted and simplified, and a
last step substitutes the literals with regards to the hidden layer so that the
expression which predicts class C1 is in terms of the inputs.
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Fig. 1. The general workflow of DeepRED.

3.2 Extraction of DNF Formulas from Trees

A rule can be regarded as a conjunction of terms, where a term is a condition
indicating whether the activation state of a neuron falls or not above some
threshold, and a rule set as an expression in disjunctive normal form (DNF).
Each tree built by DeepRED determines whether an input or the activation
of a hidden unit fulfills one such term, using terms with respect of the adjacent
shallower layer. For instance, a tree could determine if the value 0.5 is exceeded by
the second neuron in the first hidden layer. Such a tree would have two possible
classes, h1,2 > 0.5 and h1,2 ≤ 0.5. A DNF for each of them can be obtained by
joining the respective terms on all paths from the root to the corresponding leafs
of the tree.

A separate DNF formula is maintained for each class, so there are two DNFs
per split value, each of which fires as soon as one of its rules fires. A DNF
formula for the event of neuron h2,2 exceeding the threshold 0.5 may look like
(h1,1 > 0.5 ∧ h1,2 ≤ 0.3) ∨ (h1,2 > 0.3 ∧ h1,3 > 0.7) → h2,2 > 0.5.

The expressions for opposite class conditions, as would be those for h2,2 > 0.5
and h2,2 ≤ 0.5, are complementary after being extracted for the tree, but this
may no longer hold once pruning is applied. Thus, both may fire for a given
example, or neither may do so. Usually, additional criteria such as a priority
list for tie-breaking between multiple predictions or a default rule for the latter
case are employed. However, in our case only one expression is maintained for
the selected class, so the inconsistencies within intermediate expressions do not
translate to ambiguities in the final class prediction.



Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 133

3.3 Simplification and Post-pruning of Expressions

Transforming a decision tree into a rule set, as well as the process of building
the expression of the target with regards to the inputs by sequentially substitut-
ing terms by DNFs, can result in expressions with redundant and unsatisfiable
rules and redundant conditions. These are removed each time an expression is
extracted from a decision tree and between substitution steps.

Very similar rules may still remain which do not provide more information
than a simpler rule would. This affects the comprehensibility and can promote
error propagation between layers. Yet, a too strong generalization of the inter-
mediate concepts should be avoided as its repercussions on the final expres-
sion cannot be observed until the end. CRED (cf. Sect. 2.1) employs a pruning
approach which is advantageous in shallow networks but proved in preliminary
experiments to be too aggressive for deep networks. Instead, we use a method
of reduced error pruning that only makes a change if this positively affects the
accuracy with respect to the head of the rule.

Rules are ordered in terms of increasing precision. For each rule, the change
in accuracy is calculated in case the rule is deleted, a term is removed from
the rule (calculated for all terms) and the rule being merged with another one
from the set (calculated for all remaining rules). The modification which leads
to the highest accuracy is performed if it improves the accuracy over the current
rule set. Unless the modification consists on removing the rule completely, the
precision is calculated for the new rule, which is regarded as unseen. This is
repeated until there are no unseen rules left.

4 Retraining DNNs to Extract Better Representations

One problem with rule extraction from neural networks is that the activations
assume continuous values within some range, whereas a mapping to a decision
tree or rule set reduces them to a discrete setting. The key idea of our work is
that the transformation process may be supported by forcing the network weights
to assume more extreme values. In this section, we therefore present methods
for retraining a deep neural network in order to encourage sparseness in the
weight matrices and make the hidden units be either maximally or minimally
active. For this work, we consider the accuracy on the entire dataset for guiding
the retraining, because our goal is to train the networks to exactly emulate
predefined concepts. However, in a different setting it might be advisable to use
a separate validation set, which is not used to optimize the parameters.

4.1 Weight Sparseness Pruning

We employ a connection pruning technique that is quite similar to that described
in Sect. 2.2. In contrast to that method, ours can be applied to deep networks,
and its aim is to sparsify all weight matrices so that the total number of connec-
tions between any two layers is reduced. This has the effect that single neurons



134 C. González et al.

are neither connected to a majority of the neurons of the following layer nor to
a majority of those from the previous layer. The expectation is that, as observed
by [22], rules extracted from minimally connected neurons will be simpler and
more accurate.

The motivation for targeting such connections also comes from the perfor-
mance of DeepRED when applied to a network manually constructed to emu-
late the parity function with eight inputs [30]. The network constructed for this
experiment has a recursive structure from the eight inputs to the output layer
and is minimally connected. DeepRED is not only able to extract the modeled
DNF representation using a significantly lower number of instances than a ped-
agogical approach, but its intermediate rules also exactly replicate the recursive
features.

In preliminary experiments, we could not repeat this effect on fully connected
networks of the same topology trained with backpropagation, even if all combina-
tions were used for training. When rules are extracted from such networks using
a reduced set of instances, the majority of the logic is concentrated between the
inputs and the first hidden layer. The rule sets extracted between these layers
overfit the train data, and each depends on the majority of the inputs. Therefore,
the accuracy on the unseen instances never exceeds fifty percent and actually
decreases with increasing amounts of training data (a phenomenon that also
affects C4.5). If, on the other hand, the number of connections is reduced, the
network may be encouraged to learn a reduced amount of hidden features that
are more abstract and apply to a greater percentage of examples.

General Methodology. A connection wl
j,k is represented by the index of the

weight matrix l and the row and column indices j and k. The number of entries
that have already been pruned in each row or column of each weight matrix is
maintained in order to calculate the neighborhood sparseness of the remaining
entries. This value is determined by the sum of entries that have been pruned in
row j of matrix W l plus those that have been pruned in column k of the same
matrix.

On each step, a list of all existing connections is sorted in terms of increasing
neighborhood sparseness, and it is attempted to prune the next head element,
which is likely to be surrounded by unpruned entries. The target training accu-
racy that must be reached after retraining for the connection to remain pruned
is the original train accuracy minus an allowed decrease. If the accuracy is satis-
factory, the connection is pruned, the counts for column and row pruned entries
are updated, and the list is re-sorted. Otherwise, the last accepted parameters
are restored, and the next connection is removed from the list.

Iterations Used for Retraining. Preliminary experiments showed that often
a small number of iterations suffice to determine whether a connection can be
pruned, because the network gets stuck in a local minimum. On the other hand,
some connections cause a steep decrease in accuracy when they are first removed,
but the network later adapts. To allow the latter connections to be eliminated
while not considerably increasing the retraining time, the retraining epochs are
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divided into smaller sets. If after a set the accuracy is equal or greater than
the target accuracy, the connection is pruned, otherwise the retraining continues
until either n retraining steps were performed from the time a connection was
pruned or there were no improvements in the last m steps, with n ≥ m.

Re-exploration of a Connection. It was also observed that if a connection
could not be pruned at some stage, it was unlikely that it could be pruned
later on, even if other connections had been pruned which affected the neurons
it joined. Therefore, in the experiments outlined in Sect. 5 there was only one
attempt of pruning per connection.

4.2 Activation Polarization

The activation range of the hidden units being continuous has several negative
repercussions, such as making it more costly to classify new instances, so tech-
niques have been developed for binarizing the parameters and activation values
[1,3]. Yet, most networks are trained in such a way that the hidden units can
take any value within the range.

As representing each neuron with only one expression is a more compre-
hensible way to illustrate that neuron’s purpose in the network than if different
expressions have to be regarded for an array of activation intervals, many decom-
positional rule extraction approaches reduce the possible states each neuron takes
to being either at the bottom or the top of the activation range (cf. Sect. 2.1).

In order to extract rules which are true to the network while making this
assumption, the networks must be trained in a way that the activations are
polarized. There are several ways to achieve this. We propose a retraining step
similar to that used in [19] to encourage sparse activations. The key idea is to
penalize the loss function with a term based on the KL divergence between the
mean absolute value of each activation

ρ̂l,n =
1

|D|
∑

i

∣
∣ai

l,n

∣
∣ (3)

and a ρ close to one, which results from the use of a hyperbolic tangent function.
These terms are summed up over all hidden units, yielding

∑

l,n

KL(ρ ‖ ρ̂l,n) =
∑

l,n

ρ log
ρ

ρ̂l,n
+ (1 − ρ) log

1 − ρ

1 − ρ̂l,n
. (4)

This term introduces the additional parameters ρ for the optimal activation
average and β for the weighting of the penalty term. Instead of having to define
β, the retraining method as implemented for this work starts by setting β = 0,
and increases this value iteratively. Between each increment, a number of epochs
are conducted, for as long as there is no decrease in accuracy, and the divergence
stays above some threshold. The last weight and bias parameters are stored
before each increase of β. If the process stops because the accuracy falls, the
parameters which were saved last are restored.
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5 Experiments

In order to show that we can derive meaningful conceptual descriptions from deep
neural networks, we performed experiments on artificial datasets. Our goal was to
demonstrate that our algorithms can reconstruct Boolean input functions from
networks trained to model them. For this, we first made a quality assessment of
the concepts extracted when the entire dataset is available. After exploring the
limits of each approach, we compared the generalization abilities of the different
variants by utilizing a subset of the combinations as training data and analyzing
the accuracy on the remaining instances.

5.1 Experimental Setup

Data. We used twenty datasets constructed from Boolean functions with six to
fourteen literals. Nineteen were generated by joining groups of randomly selected
literals with alternating OR and AND operators and choosing to apply negation
over each group with a 0.2 probability, and one was the parity function with
eight inputs. The expressions were simplified with the Espresso heuristic logic
minimizer [13]. Each dataset was made up of all combinations of literals in the
simplified expression.

Network Architecture and Training. The networks had three hidden layers,
the first with twice as many neurons as inputs, the second with the average
of that number and two and the third and output layers with two neurons.
The hyperbolic tangent was used as activation function, and a softmax function
was applied on the last layer. The networks were trained using the TensorFlow
framework and cross-entropy as the loss function. They were trained with all
input combinations until achieving a perfect accuracy. In this way, it was certain
that they mimicked the logic of the predefined formulas.

Compared Algorithms. We compared several variants of our approach where
(i) no retraining took place, (ii) weights sparseness pruning was performed, and
(iii) a polarization of the activations was followed by weight sparseness pruning.
Also, as observing one expression per hidden neuron of interest, which predicts
when that unit is in an active state, is more comprehensible than having to
consider an array of expressions, it was analyzed how the models would be
affected if instead of allowing the online discretization of C4.5 to select thresholds
of the activation range, only the midpoint of this range was considered.

Hyperparameter Setting. C4.5 was set to stop growing a tree when the
percentage of the majority class exceeded 99% or only less than 1% of the original
instances remained in a node. Only binary splits were allowed and the trees
had a maximum depth of twenty nodes. For activation polarization, ρ was set
to 0.99 and β was increased by 0.1 at a time. For weight sparseness pruning,
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a 1% decrease in accuracy was allowed. In both cases, each epoch set consisted
of 1000 epochs. For the networks which were retrained in both manners, the
penalty term from the activation polarization was added to the loss function
used during connection pruning, multiplied by the last accepted value of β.

Evaluation Measures. The comprehensibility of the intermediate logic – which
is to say that between subsequent layers – was assessed with the number of
expressions and the total number of terms. The semantic quality was measured
using the accuracy, which is to say the proportion of correctly classified instances
among all classifications. Note that as the networks used perfectly replicate the
Boolean functions, this corresponds to the fidelity of the extracted rules mim-
icking the network’s behavior.

For determining whether observed performance differences between two clas-
sifiers were statistically significant, the sign and Wilcoxon signed ranks tests
were used for a significance level of p = 0.05. Following [6], ties were distributed,
and in the event of an uneven number of ties, the number N of datasets was
reduced by one. Also subtracted from this number were comparisons which could
not be performed because of uncompleted experiments. This occurred when the
time or memory constraints for the extraction – set respectively at 24 h and
5000 MegaBytes – were surpassed or when no model could be built using one
threshold per hidden unit. At least one experiment could not be completed for
a total of three datasets, including that of the parity function.

5.2 Characteristics of the Trained Networks

After retraining the networks it was observed how many weights had been
pruned, and how well the neurons could be polarized by calculating the devia-
tion of the activations from zero averaged over all hidden units and examples.
The results suggest that a trade-off takes place between the divergence from the
range center and the number of pruned connections, as can be observed in Fig. 2.
The pruning approach eliminated a great percentage of the connections, but at
the cost of distributing the activation values more evenly across the range. When
the networks were first polarized and the penalty term was maintained during
the latter connection pruning, the activation values gathered even closer to the
range boundaries, but considerably less connections were eliminated.

5.3 Reconstruction Using the Entire Dataset

There was a noticeable change in the number of intermediate expressions which
were extracted – as well as in their complexity measured with the number of
terms – when the networks were retrained under weight sparseness pruning. As
can be observed in Fig. 3, models taken from less connected networks were much
more compact.

How this reflects in the extracted models is exemplified in Fig. 4 for the
expression (x3 ∧ x1 ∧ x5) ∨ (x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5). The model extracted from
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Fig. 2. Trade-off between deviation of the activations from the center of the range
and weight entries that were pruned. Each point represents the result on one of the
20 datasets, either with no retraining, retraining after weight sparseness pruning or
retraining after polarization and posterior weight sparseness pruning.

Fig. 3. Change in the complexity of the intermediate concepts when preceding extrac-
tion with weight sparseness pruning or polarization of the activations followed by
pruning.

the original network finds an adequate representation for the second conjunction
in h1,6 > 0.32, as well as for the first part of the first conjunction in h1,0 ≤ −0.26,
but fails to do so for x5. The model extracted from the polarized and pruned
network includes instead only expressions with only a couple of literals each and
it therefore much simpler to trace.

Applying the different retraining methods on the networks did not cause a
substantial change in accuracy when any threshold could be considered. Nei-
ther was a significant difference found when only zero was used to partition the
activation ranges of the hidden units, except for when the networks had been
subjected to weight sparseness pruning but no activation polarization. This effect
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Fig. 4. Effect of preceding DeepRED with activation polarization and weight
sparseness pruning in the model that reconstructs the expression (x3 ∧ x1 ∧ x5) ∨
(x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5).

is shown in Fig. 5. The black circles, which refer to the models extracted from
unpolarized and pruned networks which only include conditions of the hidden
units with zero as threshold, illustrate a clear fall in accuracy when compared
to the rest of the models.

These results reinforce the hypothesis that, when a high number of network
connections are pruned and a retraining phase is performed between pruning
steps, the logic modeled by the network is more heavily concentrated in the
remaining neurons, thus needing to subdivide the neuron range into more inter-
vals to describe it.

Fig. 5. Extent to which the concepts modeled by the neural networks were recon-
structed when using all input combinations. Different configurations are compared to
that where the network is not retrained and the term thresholds are selected by C4.5
in an online manner.
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5.4 Reconstruction Using Part of the Dataset

For these experiments, the data was split into ten, four or two stratified folds
and a cross-validation was performed. Also, the folds were inverted to observe
the situation where lower data percentages were available. This resulted in ten
experiments where 10% and 90% of the data was used, four with 25% and 75%
being available, and two for the 50% case. The evaluation measure was averaged
over all folds.

Again, the analysis focused on the effect of the different retraining methodolo-
gies. As models extracted from networks that had been pruned but not polarized
using the range midpoint as sole threshold had a very low train accuracy, the
effect of enforcing this constraint was only analyzed for the variant including
both activation polarization and weight sparseness pruning.

Generally, the best performing models were those for which weight sparse-
ness pruning had been performed, but significant differences were only found
when less data was available. When more data was used to build the models,
the predictive accuracy approached the accuracy on the train data. A special
case was the parity function, for which none of the approaches extracted a well
generalizing model, with the accuracies laying at 0.5 or below. Though the mod-
els extracted from pruned networks displayed slightly higher accuracies, we were
eventually not able to resolve the issue for this very special case, which was our
initial motivation for the pruning and re-training approaches (cf. Sect. 4.1), and
leave further investigation for future work.

The results when using 50% of the data or less are illustrated in Fig. 6. The
performances are shown in direct comparison to using plain C4.5 between the
input and output data. Compared to C4.5, the variant which did not perform net-
work pruning did not show any significant difference. That which only included
weight sparseness pruning outperformed C4.5 when 50% and 10% of the data
was present according to the Wilcoxon test (with Z = 2.22 and Z = 2.63) and
for both tests when 25% was used (16 wins out of N = 20, Z = 3.06). The
same held for the polarized and pruned variant (with, respectively, Z = 2.31,

Fig. 6. Test accuracy of the models when using 10%, 25% and 50% of the dataset
as train data and the remaining instances as test data. Different configurations are
compared to the C4.5 algorithm, which disregards the internal structure.



Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 141

Z = 2.52, 14 wins out of N = 19 and Z = 2.75). This variant also outperformed
C4.5 using only one threshold per neuron according to both tests when 25% of
the data was used (with 16 wins from N = 19 and Z = 3.40).

The unpolarized pruned variant outperformed that with no retraining accord-
ing to both significance tests when 25% of the data was used (with 16 from
N = 19 wins, Z = 3.11). The variant for which both retraining methods had
been applied was deemed better by the Wilcoxon test when using 10% of the
data (Z = 2.07).

6 Conclusion

Reducing the connectivity of the network proved to be a robust way for extract-
ing simpler intermediate concepts, which were also better at classifying unseen
instances. Yet it seems that encouraging low connectivity not only identifies irrel-
evant logic created from training too large architectures, but also concentrates
the hidden features which are in fact relevant for the classification into fewer
neurons. Thus a finer-grained partitioning of the activation ranges is required to
regain the hidden patterns.

This was partly shown by an analysis of the characteristics of the network,
which exposed a trade-off between the extent to which the activation values
could be polarized and the percentage of connections that could be pruned. The
negative consequences of this effect for rule extraction were confirmed by the
dismal performance of models which combined connection pruning with only
considering the center of the activation range as threshold.

However, when polarization of the activations was done jointly with con-
nection pruning, the benefits of the latter could be leveraged while avoiding
the undesired effect of concentrating more logic into less neurons. Although the
number of connections which could be pruned in these networks was substan-
tially lower, the intermediate models were not significantly more complex, and
in terms of accuracy these approaches consistently performed within the highest.
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Abstract. The goal of modeling sentences is to accurately represent
their meaning for different tasks. A variety of deep learning architectures
have been proposed to model sentences, however, little is known about
their comparative performance on a common ground, across a variety
of datasets, and on the same level of optimization. In this paper, we
provide such a novel comparison for two popular architectures, Recursive
Neural Tensor Networks (RNTNs) and Convolutional Neural Networks
(CNNs). Although RNTNs have been shown to work well in many cases,
they require intensive manual labeling due to the vanishing gradient
problem. To enable an extensive comparison of the two architectures, this
paper employs two methods to automatically label the internal nodes:
a rule-based method and (this time as part of the RNTN method) a
convolutional neural network. This enables us to compare these RNTN
models to a relatively simple CNN architecture. Experiments conducted
on a set of benchmark datasets demonstrate that the CNN outperforms
the RNTNs based on automatic phrase labeling, whereas the RNTN
based on manual labeling outperforms the CNN. The results corroborate
that CNNs already offer good predictive performance and, at the same
time, more research on RNTNs is needed to further exploit sentence
structure.

1 Introduction

One aim of modeling sentences is to analyze and represent their semantic content
for classification purposes. Neural network-based sentence modeling approaches
have been increasingly considered for their significant advantages of removed
requirements for feature engineering, and preservation of the order of words and
syntactic structures, in contrast to the traditional bag-of-words model, where
sentences are encoded as unordered collections of words. These neural network
approaches range from basic Neural Bag-of-Words (NBoW), which ignores word
ordering, to more representative compositional approaches such as Recursive
Neural Networks (RecNNs) (e.g. [4]), Convolutional Neural Networks (CNNs)
(e.g. [6]), Recurrent Neural Network (RNN) models (e.g. [9]), or LSTMs (which
are outside the scope of this paper).
c© Springer International Publishing AG 2017
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RecNNs work by feeding an external parse tree to the network. They are
a generalization of classic sequence modeling networks to tree structures and
have shown excellent abilities to model word combinations in a sentence. How-
ever, they depend on well-performing parsers to provide the topological struc-
ture, which are not available for many languages or do not perform well in noisy
domains. Further, they often require labeling of all phrases in sentences to reduce
the vanishing gradient problem [5]. Yet RecNNs implicitly model the interac-
tion among input words, whereas Recursive Neural Tensor Networks (RNTNs)
have been proposed to allow more explicit interactions [11]. On the other hand,
CNNs are alternative models which apply one-dimensional convolution kernels
in sequential order to extract local features. Each sentence is treated individually
as a bag of n-grams, and long-range dependency information spanning multiple
sliding windows is therefore lost. Another limitation of CNN models is their
requirement for the exact specification of their architecture and hyperparame-
ters [12].

We conducted extensive experiments over a range of benchmark datasets
to compare the two network architectures: RNTNs and CNNs. Our goal is to
provide an in-depth analysis of how these models perform across different set-
tings. Such a comparison is missing in the peer-reviewed literature, likely because
recursive networks often require labor-intensive manual labeling of phrases. Such
annotations are unavailable for many benchmark datasets. In the next section,
we propose two methods to label the internal phrases automatically. Later, we
investigate whether there is an effect of using constituency parsing instead of
dependency parsing in the RNTN model. In this way, we aim to contribute to a
better understanding of the limitations of the two network models and provide
a foundation for their further improvement.

2 Method

Recursive Neural Tensor Network Architecture. RNTNs [11] are a generalization
of RecNNs where the interactions among input vectors are encoded in a single
composition function (Fig. 1a). Here, we propose two methods for the automatic
labeling of the phrases for RNTNs:

– Rule-based method: The RNTN model was first proposed for sentiment
analysis purposes. Hence, our first approach uses a rule-based method to
determine the valence of a phrase. We use four types of dictionaries: A dic-
tionary of sentiments carrying terms (from unigrams to phrases consisting of
n-gram words) with a corresponding sentiment score in the range of [−k,+k],
a negation dictionary, a dictionary of intensifier terms with a weight range
of [1,+k], and a dictionary of diminishers with a weight range of [−k,−1].
The analysis of a phrase is conducted from the end, backward to the begin-
ning: If any sentiment term is found, we update the sentiment of the phrase
from neutral to the value of the sentiment term in the dictionary. Then
we search backwards for an intensifier or diminisher term. We increase or
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decrease the absolute value of the sentiment based on the weight of the inten-
sifier/diminisher term and if required we adjust the score to a pre-defined
range. In the next step, we adjust the score for a negation term. If one is
found and there is no intensifier/diminisher before the sentiment term, the
sentiment is reversed; otherwise if the phrase includes both the negation term
and an intensifier/diminisher, the sentiment is set to weak negative. As an
example, consider the terms “not very good” and “not very bad”, where both
sentiments are weakly negative.

– CNN-based method: An alternative approach to labeling the phrases is
to use a pre-trained CNN model. We use the architecture proposed here (see
below for the description) to train a model on the sentence level, and use the
resulting model to label the internal phrases for the RNTN. In this way, the
RNTN can be applied to domains other than sentiment classification as well.
The CNN model receives the complete sentences and their label as training
data and will label the internal phrases in the test phase.

Convolutional Neural Network Architecture. Deep convolutional neural networks
have led to a series of breakthrough results in image classification. Although
recent evidence shows that network depth is of crucial importance to obtain
better results [2,3], most of the models in the sentiment analysis and sentence
modeling literature use a simple architecture, e.g. [6] uses a one-layer CNN.
Inspired by the success of CNNs in image classification, our goal is to expand the
convolution and Max-Pooling layers in order to achieve better performance by
deepening the models and adding higher non-linearity to the structure. However,
deeper models are also more difficult to train [3]. To reduce the computational
complexity, we choose small filter sizes. In our experiments, we use a simple CNN
model that consists of six layers (Fig. 1b): The first layer applies 1×d filters on the
word vectors, where d is the word vector dimension. The essence of adding such
a layer to the network is to derive more meaningful features from word vectors
for every single word before feeding them to the rest of the network. This helps
us achieving better performance since the original word vectors capture only
sparse information about the words’ labels. In contrast to our proposed layer,
Kim uses a so-called non-static approach to modify the word vectors during the
training phase [6].

The second layer of our CNN model is again a convolution layer with the
filters of size 2× d. The output of this layer is fed into a Max-Pooling layer with
pooling size and stride 2. The reason for applying such a Max-Pooling layer in
the middle layers of the network is to reduce the dimensionality and to speed
up the training phase. This layer does not have notable effect on the accuracy
of the resulting model. Next, on the fourth layer, convolving filters of size 2× d
with a padding size 1 are again applied to the output of the previous layer.
Padding preserves the original input size. The next layer applies Max-Pooling to
the whole input at once. Using bigger pooling sizes leads to better results [12].
Finally, the last layer is a fully connected SoftMax layer which outputs the
probability distribution over the labels.
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Fig. 1. (a) An example of an RNTN architecture with word vector dimension of size 4
for sentiment classification of a given input sequence, which is parsed by a constituency
parser. V and W are the tensor matrix and the recursive weight matrix, respectively.
(b) Our proposed 6-layered CNN architecture. d is the dimension of the word vector.

3 Experiments

3.1 Experimental Settings

In our experiments, we use the pre-trained Glove [10] word vector models1:
On the SemEval-2016 dataset, we use Twitter specific word vectors. On other
datasets, we use the model trained on the web data from Common Crawl, which
contains a case-sensitive vocabulary of size 2.2 million. Experiments show that
RNTNs work best when the word vector dimension is set between 25 and 35 [11].
Hence, in all the experiments, the size of the word vector, the minibatch and the
epochs were set to 25, 20 and 100, respectively. We use f = tanh and a learning
rate of 0.01 in all the RNTN models. In CNN models, the number of filters
in the convolutional layers are set to 100, 200 and 300, respectively; and the
maximum length of the sentences is 32. For shorter sentences, they are padded
with zero vectors. In RNTN models which use constituency parsers, we use the
Stanford parser [7]. For those models which use dependency parsers, we use
the Tweebo parser [8] – a dependency parser specifically developed for Twitter
data – for the SemEval-2016 dataset and on the rest of the datasets, we use the
Stanford neural network dependency parser [1]. In rule-based methods, we use a
dictionary of sentiments consisting of 6, 360 entries with maximum 2-gram words
and a sentiment range of [−3,+3], a negation dictionary consisting of 28 entries,
a dictionary of intensifier terms consisting of 47 words with a weight range of

1 http://nlp.stanford.edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/
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Table 1. Performance comparison on all datasets. Accuracy and F-measure are aver-
aged over all the classes. n/a indicates non-defined cases as one of the classes was
misclassified completely resulting in an undefined value. If an experiment was not
applicable, the cell is left with a dash.

Dataset RNTN CNN CNN (Kim model) Rule-based

Constituency parser Dependency parser

Rule CNN Manual Rule CNN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

MR 0.63 0.63 0.70 0.70 - - 0.50 0.50 0.49 0.49 0.71 0.71 0.71 0.71 0.64 0.64

SemEval-2016 0.53 0.45 0.52 0.51 - - 0.52 0.45 0.50 0.49 0.56 0.56 0.60 0.57 0.53 0.52

SST-5 0.30 0.28 0.34 0.21 0.41 0.32 0.30 0.29 0.30 n/a 0.37 0.26 0.39 0.32 0.31 0.29

TREC - - 0.72 n/a - - - - 0.33 n/a 0.86 0.86 0.54 0.57 - -

Subj - - 0.76 0.76 - - - - 0.42 0.42 0.89 0.89 0.88 0.88 - -

[1, 3], and a dictionary of diminishers consisting of 26 entries with a weight range
of [−3,−1].

3.2 Task 1: Sentiment Analysis

In the first task, we compare the models on a set of commonly used sentiment
analysis benchmark datasets: The Movie Review (MR) dataset2 that has pos-
itive or negative class, each contains 5331 instances. As the MR dataset does
not have a separate test set, we use 10-fold cross-validation in the experiments.
An extended version of the MR dataset relabeled by Socher et al. [11] in the
Stanford Sentiment Treebank (SST-5)3 has five fine-grained labels: negative,
somewhat negative, neutral, somewhat positive and positive. SST-5 contains
8544 training sentences, 1101 validation sentences and 2210 test sentences. The
SemEval-20164 dataset is a set of tweets labeled as either of the three negative,
neutral and positive labels. It has 12, 644 training tweets, 3001 validation tweets
and 20, 632 test instances.

– Comparison of automatic labeling methods: We first use the manually
labeled SST-5 dataset to test the effectiveness of our automatic labeling meth-
ods. We extract all the possible phrases of the whole dataset with respect to
their parse trees and use our rule-based method to label them. In the next
step we train the CNN model on the set of training instances and use the
resulting model to label the phrases. The accuracy of the rule-based and the
CNN labeling methods are 69% and 40%, respectively. As we see, the overall
accuracy of the CNN-based model is significantly lower than that of the rule-
based method. To have a better understanding of the classification perfor-
mance, we look into their confusion matrices. We subtract the corresponding
elements of the CNN-based confusion matrix from that of the rule-based vari-
ant and normalize them by dividing by the total number of phrases for each

2 https://www.cs.cornell.edu/people/pabo/movie-review-data/.
3 http://nlp.stanford.edu/sentiment/Data.
4 http://alt.qcri.org/semeval2016/task4/.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/Data
http://alt.qcri.org/semeval2016/task4/
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Fig. 2. (a) Heatmap of difference of rule-based RNTN and CNN-based RNTN confu-
sion matrices on the SST-5 phrase set. The numbers are the percentage of normalized
differences based on the total number of phrases for each label. (b) Heatmap of dif-
ference of the manually labeled RNTN and the CNN model confusion matrices on
the SST-5 test set. The numbers in each cell indicate the percentage of normalized
differences based on the total number of sentences for each label.

label (i.e. confi,j
rule−confi,j

cnn

totali
where i and j are the actual and predicted labels,

respectively). Figure 2a illustrates the resulting heatmap. Red color indicates
cases where more phrases are predicted by the rule-based method than by
the CNN-based method while the blue color indicates the opposite case. We
observe that the CNN is a better model to correctly classify somewhat posi-
tive (1) and somewhat negative (−1) classes than the rule-based method. In
turn, the rule-based method is superior in the classification of the neutral (0)
and negative (−2) classes. To have a better interpretation of the numbers in
the heatmap, it is beneficial to look at the distribution of labels in the whole
population: 2.6%, 11.3%, 67.7%, 14.3% and 4.1% for −2 to +2 labels.

– Constituency parser Vs. dependency parser: The output of a depen-
dency parser is a Directed Acyclic Graph (DAG). However, RNTNs accept
a binary-branching parse tree as an input. Therefore, we have binarized the
output of the dependency parser by starting from the word which does not
point to any other word as its parent, and recursively binarize its children list
by adding empty nodes when necessary. While analyzing the effect of using
a dependency parser instead of a constituency parser in RNTNs (Table 1), a
significant loss of performance is visible in some datasets (e.g. MR). This is
particularly noticeable when the labeling method is CNN (e.g. 70% to 49% in
MR). The reason for this could be the difference of the word order resulting
from a dependency parser compared to the n-gram features extracted by the
CNN.

– RNTN Vs. CNN: Table 1 shows a detailed comparison of the RNTN auto-
matically labeled variants to the CNN model and the rule-based method. We
have reported the average accuracy and F-measure over all classes. With the
same settings of parameters, we see a better performance of the CNN model
on the MR and SemEval-2016 datasets. The largest performance (in terms of
F-measure) improvement can be observed on the SemEval-2016 dataset, 0.51
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to 0.56, for the best performing RNTN and CNN approaches. The possible
reasons may be related to the enormously large number of parameters that
have to be optimized in the tensor and the effects of the applied automatic
labeling of phrases used on the RNTN. Therefore, a future research direction
could try to reduce this space and find a better initialization.

– Effect of automatic labeling on RNTN performance: Table 1 also
presents the performance of the manually labeled RNTN on the SST-5
dataset. As we can see, automatic labeling results in a significant degrada-
tion of performance on SST-5. Comparing the results with the CNN model
shows that the manually labeled RNTN outperforms the CNN architecture
in terms of overall accuracy and F-measure. To have a closer look into the
confusion matrix of both methods, we generate a heatmap similar to Fig. 2a,
this time subtracting the CNN confusion matrix elements from that of the
RNTN method (i.e. confi,j

rntn−confi,j
cnn

totali
). Blue color indicates more prediction

of sentences by the CNN model than by the RNTN while the red color indi-
cates the reverse case. Figure 2b indicates that the RNTN has a tendency
to classify more instances into neutral (0) and positive (2) labels and it is
better at correct prediction of somewhat negative (−1), neutral and positive
labels while the CNN is better at classifying negative (−2) and somewhat
positive (1) labels. Here, the distribution of sentences over labels is closer to
the uniform distribution: 12.6%, 28.6%, 17.6%, 23.1% and 18.1% for −2 to
+2 labels. Unfortunately, currently there is no other dataset that is manually
labeled at the phrase level. A future direction includes further evaluation of
the impact of the phrase labeling accuracy on various datasets.

3.3 Task 2: Sentence Categorization

We test this task on two datasets: The TREC5 question dataset, where the
goal is to classify a question into six coarse-grained question types (whether a
question is about an entity, a person, a location, numeric information, abstract
concepts or an abbreviation), and the Subj6 dataset, where the goal is to classify
a sentence as being objective or subjective. The TREC dataset has 5452 training
instances and 500 test sentences. The Subj dataset contains 10, 000 sentences
in total but it does not have a separate test set, therefore we use 10-fold cross-
validation. The results are reported in the bottom section of Table 1. In these
experiments only CNN-based methods are applicable. We observe that the CNN
model outperforms RNTN versions, and dependecy parsing drastically reduces
the performance of the RNTN.

3.4 Comparison of CNN Architectures

In the next experiment, we compare our proposed deep CNN architecture to a
one layer CNN to find out the cases where the deep structure is beneficial. The
5 http://cogcomp.cs.illinois.edu/Data/QA/QC/.
6 https://www.cs.cornell.edu/people/pabo/movie-review-data/.

http://cogcomp.cs.illinois.edu/Data/QA/QC/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
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one layer CNN architecture [6] has several parallel filters of different sizes and a
max-pooling layer. In our experiments, we have used 100 filters of size 3, 4, and
5. Classification results (see next to last column of Table 1) indicate that the
performance of the one layer architecture is comparable to the proposed deep
architecture on the MR dataset and that it performs better on the rest of the
sentiment datasets. The performance of Kim’s architecture on the SST-5 dataset
is comparable to the RNTN based on manual labeling. These results highlight the
importance of keyphrase recognition in sentiment tasks, where applying larger
filters is more beneficial than having several layers of small filters. However, on
the other sentence categorization datasets, i.e. TREC and Subj, the proposed
deep CNN outperforms the flat architecture.

4 Conclusions

In this paper we studied two well-known deep architectures, CNNs and enhanced
versions of RNTNs, in the context of sentence modeling. In order to avoid the
labor-intensive task of manually labeling the internal phrases for recursive net-
works, we proposed two methods to automatically label them for training and
tuning phases: a rule-based method which is specifically used for sentiment pre-
diction and a CNN based method for general purposes. Considering this part of
study, the evaluation results on the SST-5 dataset indicate that the CNN method
has a tendency to assign a positive or negative polarity to the phrases while the
rule-based method classifies many of them as neutral. Based on the presented
automatic labeling methods of internal nodes, we conducted an in-depth study
of the RNTN model and compared the model to a relatively simple deep CNN
architecture. Experimental results conducted on an extensive set of standard
benchmark datasets demonstrate that the proposed CNN model outperforms
the RNTN variants with automatic phrase labeling, whereas the RNTN with
manual labeling (if available) outperforms the CNN. However, in that case, a
one layer CNN with several filters of different sizes is comparable to the manually
labeled RNTN. These results demonstrate that the syntactic structure of a sen-
tence will help in the classification performance when it is possible to accurately
label the internal nodes of a parse tree, otherwise CNNs can be more successful
at representing the meaning of the sentence with respect to the task. The find-
ings also show that there is still room for improvement of RNTN variants by
determining tensor functions in a more informed manner.
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Abstract. In the digital era, collecting relevant information of a tech-
nological process has become increasingly cheaper and easier. However,
due to the huge available amount of data, supervised classification is
one of the most challenging tasks within the artificial intelligence field.
Feature selection solves this problem by removing irrelevant and redun-
dant features from data. In this paper we propose a new feature selection
algorithm called Swcfs, which works well in high-dimensional and noisy
data. Swcfs can detect noisy features by leveraging the sliding window
method over the set of consecutive features ranked according to their
non-linear correlation with the class feature. The metric Swcfs uses to
evaluate sets of features, with respect to their relevance to the class label,
is the bayesian risk, which represents the theoretical upper error bound of
deterministic classification. Experiments reveal Swcfs is more accurate
than most of the state-of-the-art feature selection algorithms.

1 Introduction

Big data has been one of the most hottest trends for the last ten years. Super-
vised classification as a sub-field of machine learning, is increasingly gaining pop-
ularity among researchers due to its versatility and power of application at any
field where data is available. Among the most common examples of supervised
learning we can find: microarray problem classification [2], cancer diagnosis [3]
and network intruder detection [1]. Supervised classification in incredibly pow-
erful to make predictions and suggestions by means of inferring a function from
labelled training data. The most basic structured data corresponds to a single
data matrix

D =

⎡
⎢⎣

x1
1 · · · xn

1 c1
...

. . .
...

...
x1

m · · · xn
m cm

⎤
⎥⎦ ,

where every instance xj is described by a row vector [x1
j , . . . , x

n
j , cj ]: xi

j is a value
for the feature fi; and cj is a class label, which is a value for the class variable
C. The collected data have no utility unless useful information is discovered
from them. Supervised classification is a central issue in machine learning and
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consists on finding a classification function � : D → v(c) that is able to classify
an arbitrary instance with unknown class from v(c) ∈ C. � is built from analysing
the relation between instances in D. The performance of supervised classifiers
is often measured in three directions: efficiency, representation complexity and
accuracy. The efficiency refers to the time required to learn the classification
function �; while the representation complexity often refers to the number of bits
used to represent the classification function. One of the most common metrics
to measure the accuracy of a supervised classifier is the error rate defined as:

Err(�,D) =
1
m

m∑
j=1

δ(�(xj), cj),

where m is the number of instances in D and δ is the complement of the Kro-
necker’s delta function, which returns 0 if both arguments are equal and 1 oth-
erwise. All these three factors can be strongly affected when there exist features
in D that do not contain useful information to predict the class variable. Feature
selection plays an essential role in supervised classification since its main goal is
to identify and remove irrelevant and redundant features that do not contribute
to minimize the error of a given classifier [4]. Basically, the advantages of feature
selection include selecting a set of features F̃ = {fi1 , . . . , fik} � F with:

Err(�,DF̃ ) ≤ Err(�,D),

where DF̃ is the result of projecting F̃ over D. The process of selecting features
is composed of two basic components: an evaluation function and a search engine
[5]. The evaluation function is a metric that evaluates quantitatively how good
are a set of features to discriminate among class labels. On the other hand, the
search engine is in charge of generating all the potential sets to be evaluated.

Feature selection algorithms can be divided into three broad categories: wrap-
per, filter and embedded methods. To evaluate a feature set F̃ , wrapper methods
use some accuracy score of a classifier after being trained in the dataset projected
by F̃ . Wrapper methods are very low in efficiency since training and testing the
inferred function is required for each evaluation. Conversely, filters make use
of explanatory analysis on data to assign a score to each feature set. Filters are
usually less computationally expensive than wrappers, but they output a feature
set that is not tuned to a specific type of predictive model. Embedded meth-
ods learn which features best contribute to the accuracy of the model while the
model is being created. The most common type of embedded feature selection
methods are regularization or penalization methods [6].

Many of filter algorithms evaluate relevance of individual features using sta-
tistical measures, and some of them also incorporate evaluation of mutual rela-
tionship among features into the result of feature selection. In particular, two
sorts of inter-feature relation are known to harm the performance of feature
selection, that is, redundancy and interaction. Two features are said to interact
with each other if both individually can be considered irrelevant based on their
correlation with the class; but when combined, they can become very relevant.
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The ideal feature selection algorithm should be able to evaluate interacting
features, if present, and could incorporate the results of evaluation into fea-
ture selection results. However, since detecting all of the interacting features is
computationally expensive in high-dimensional environments, feature selection
algorithms only focus on searching for: (i) relevant features, (ii) relevant features
and non-redundant features, or (iii) interacting features.

To the best of our knowledge, Super-Lcc [8] is one of the best feature
selection algorithms proposed by Shin et al. [8], which better can find accurate
sets. Super-Lcc uses the backward search and the bayesian risk measure to
detect interacting features with an extreme high-performance. (We will discuss
in more detail this algorithm in Sect. 2.3). However, we have found that under
some conditions, Super-Lcc can not find features with high relevance score.

Assuming that there are several interacting set of features in the dataset
that can equally predict the class, Super-Lcc is not designed to select the one
composed by features with the highest relevance. Pino and Shin [9] partially solve
this problem by proposing the algorithm Asdcc [9] that uses a measure, which
judge features according to their individual relevance score and their interaction
rate. However, since Asdcc is based on the Steepest Descent Search [10], which
needs (|F | + |F̃ |)(|F | + |F̃ |)/2 evaluations to output F̃ , is not practical for high-
dimensional data.

The main motivation of this paper is to improve both of the Super-Lcc
and Asdcc algorithms. Our approach is simple and is composed by two new
gears. First, we use the Steepest Descent Search, but make it faster by using
a sliding window method over F to only judge irrelevant features in the first
iterations. Second, we use the Binary Search to detect and remove the non-
interacting features with lower individual relevance before starting the search.
We have found that this considerably reduce the search space. In the remaining
of this paper we further analyse the most popular feature selection algorithms by
giving concrete examples. Creating the ideal feature selection algorithm is a hard
task. However in Sect. 3 we propose our new consistency-based algorithm namely
Sliding Window for Consistency-based Feature Selection (Swcfs) that can find
a feature set to approximately solve the optimization problem of maximizing
interaction among relevant features and minimizing redundancy. In Sect. 4 we
compare our algorithm with several state-of-the-art algorithms in 20 benchmark
datasets.

2 Feature Selection Methods

Feature selection can be accomplished in a variety of ways depending on the
characteristics of the data. In this section, we review most popular algorithms
in the feature selection field and analyze their advantages and drawbacks.

2.1 Feature Ranking Methods

The individual relevance score r(fi;C) of a feature fi is a common term
that refers to the power of a single feature to predict the class feature C.
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The individual relevance score can be used as a metric to select the features that
better predicts the class under certain threshold. That is, features are ranked
using their individual relevance score and then the top features are selected.
These algorithms are called feature ranking methods and often use correlation,
distance and information measures between a single feature and the class feature
to find a set full of high-relevant features.

As an example, Relief [11] computes the relevance score of a feature fi

based on the capability of fi to discriminate among instances of different classes.
Assuming instance xk with class c+ is randomly sampled from the data, and Hk

and Mk are two sets of instances (in the neighborhood of xk) with class c+
and c− respectively, then a feature has high separability power if it has similar
values in instances from Hk and different values in instances from Mk. ReliefF
is an extension of Relief that handle multiple classes by splitting the data
into series of two-class data [12]. The individual relevance of each feature fi in
F is assessed by computing the average of its separability power in l instances
randomly sampled. That is,

RF (fi;C) =
1

|C|
l∑

k=1

(− 1

|Mk|
∑

xj∈Mk

d(xi
k, x

i
j) +

∑

c�=c(xk)

p(c)

|Hk|(1− p(c))

∑

xj∈Hk

d(xi
k, x

i
j)),

where p(c) is the probability that an instance is labeled with class c and
d(xi

k, xi
j) = (xi

k − xi
j)/(max(fi) − min(fi)), with max(fi) and min(fi) being

the maximum and minimum value of feature fi.
While RF requires numeric features, the Mutual Information measure accepts

categorical features and can be used to measure correlation between a feature
and the class:

MI(fi; C) =
∑

xi∈V (fi),
c∈V (C)

Pr[fi = xi,C = c] log
Pr[fi = xi,C = c]

Pr[fi = xi]Pr[C = c]

Mutual Information is biased in favour of features with greater number of values
and this is a problem when used for feature selection [16]. The Symmetrical
Uncertainty measure deals with this problem by a normalizing function:

SU(fi;C) = 2
MI(fi;C)

H(fi) + H(C)

The Symmetrical Uncertainty is the harmonic mean between MI(fi, C)/H(fi)
and MI(fi, C)/H(C). Therefore it is symmetrical and in the range of [0, 1].

Although the ranking feature algorithms are usually simple and fast, they
have two serious drawbacks that may affect the performance of supervised clas-
sifiers. First, redundant features are likely to be selected. Second, they usually
can not detect interacting features.

2.2 Pairwise Evaluation Methods

Oppositely to the feature ranking algorithms, pairwise evaluation methods can
detect and eliminate relevant features, but also are able to remove redundant
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features. Most of these algorithms use one of the measures mentioned in the
section above. The way most of these algorithms operates is as follows. First,
the relevance score r(fi, C) of each feature in fi ∈ F is computed and second,
pairwise evaluations r(fi, fj) between features are performed to detect features
that are highly correlated to others.

As an example, the algorithm Fcbf (Fast Corelator based-Filter) [16] first
ranks all features {f1, . . . , fn} in the descending order of the Symmetrical
Uncertainty scores. Then, starting from the best/first feature in the ranking
f1, it applies a redundancy filter to all of features fj with j > i, and, if
SU(fi; fj) > SU(fj ;C) holds then it removes fj . Since the overall complex-
ity of algorithm Fcbf is O(mn log n) where m is the number of instances in the
data, this algorithm is scalable to large data.

Although feature ranking and pair-wise evaluation methods are quite fast
and easy to implement, they are not able to detect interacting features. That’s
why in high-dimensional domains they may output low-quality sets.

Fig. 1. Example of how non-
relevant features can interact with
each other to accurately discrimi-
nate between two classes.

To illustrate, consider the class target
function c = f1⊕f2 where {f1, f2, . . . , fn} ∈
F are binary features and ⊕ denotes the xor
operator. Beforehand, we know {f1, f2} won’t
be selected because both features by them-
selves are uncorrelated with c. If we consider
that features in F\{f1, f2} can not accurately
describe the class then we can not expect a
good performance of the classifier after reduc-
ing F by any of the feature ranking or pair-
wise evaluation algorithms. Figure 1 depicts
a numerical version of the aforementioned
example.

Consistency-based measures are a suc-
cessful choice to face this problem because
they can detect high-order interacting features [20].

2.3 Consistency-Based Algorithms

Consistency-based algorithms can detect interacting features by collectively eval-
uating relevance (correlation) of a feature set to the class. Although exhaustive
search of all possible feature sets is computationally too expensive, the result
can be expected to be accurate.

We first introduce the Bayesian risk as a consistency measure example and
then we define the consistency measure concept. To illustrate, for a dataset D,
we view a feature of D as a random variable and a feature set F̃ as a joint
variable. Then, we let ΩF̃ denote the sample space of F̃ , C denotes a variable
that describes classes and PrD denotes the empirical probability distribution of
D. With these notations, the Bayesian risk is defined by

Br(F̃ ) = 1 −
∑

x∈ΩF̃

max{ Pr
D

[F̃ = x, C = y] | y ∈ ΩC}.
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This function is also referred to as the inconsistency rate in [20]. The Bayesian
risk has two important properties, that is, determinacy and monotonicity, and
we first introduce the notion of consistent feature sets to explain the properties.

Definition 1. For a dataset D described by F , a feature set F̃ � F is consistent,
iff, PrD[C = y | F̃ = x] = 0 or 1 for all x ∈ ΩF̃ and y ∈ ΩC .

Then, the determinacy and monotonicity properties are described as follows.

Determinacy. Br(F̃ ) = 0, if, and only if, F̃ is consistent in D.
Monotonicity. Br(F̃ ) ≥ Br(G), if F̃ � G � F .

Formally, a consistency measure is defined as a function that returns real
numbers on input of feature sets that has the determinacy and monotonicity
properties. The consistency-based feature selection, on the other hand, is char-
acterized by use of consistency measures as the evaluation function.

Interact [20] is the first instance of consistency-based feature selection
algorithms that have practical performance in both time efficiency and prediction
accuracy. It selects an answer from a small number of candidates, to be specific,
|F| feature subsets. In the first step, Interact sorts the features in F into
(f1, . . . , f|F|) in the increasing order of the symmetric uncertainty SU(fi,C) and
then sets F̃ to F . Initially, F̃ is equal F and then, Starting from i = 1, Interact
lets F̃ = F̃ \ {fi} and computes Br(F̃ \ {fi})−Br(F̃ ), which is non-negative by
the monotonicity property; If Br(F̃ ) \ {fi} −Br(F̃ ) ≤ δ, Interact judges that
the feature fi is not important and eliminates it from F̃ ; Interact repeats this
procedure until all features are tested.

Although Interact presented good balance between accuracy and efficiency,
Shin and Xu [21] have found that Br(F̃ ) \ {fi} − Br(F̃ ) can accumulate, and
consequently, Interact may output feature sets whose Bayesian risks are high.
They also proposed a new algorithm, namely, Linear Consistency Constrained
algorithm (Lcc), that solves this problem [21]. The difference of Lcc from
Interact is slight: The criteria to eliminate fi is on Br(F̃ ) \ {fi} instead of on
Br(F̃ ) \ {fi} − Br(F̃ ). Therefore, an output F̃ of Lcc is minimal in the sense
that both of Br(F̃ ) ≤ δ and G � F̃ ⇒ Br(G) > δ hold.

Recently, the efficiency of Lcc has been improved by conducting binary
search instead of linear search [8]. This idea was materialized under the name
of Super-Lcc and works under the assumption that high-dimensional datasets
are abundant in irrelevant features that can be removed in mass. By the first to
the (i − 1)-th iterations of the algorithm, the algorithm determines a sequence
of indices of features l1 < l2 < · · · < li−1, and defines F̃ = F \ {f1, . . . , fli−1} ∪
{fl1 , . . . , fli−1}. In the i-th iteration, the algorithm finds li such that

li = argmax
j=li−1+1,...,n

{Br(F̃ \ {fli−1+1, . . . , fj}) ≤ δ}.

by Binary Search due to the monotonicity property of the bayesian risk. Super-
Lcc outputs the same set as Lcc but on average has a computational complexity
of O(nm(log n + log m)) where n is the number of features that describes the m
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instances in D. To the best of our knowledge, Super-Lcc is the algorithm with
better practical performance in both of efficiency and accuracy. According to
their authors, for data with more than hundred thousand features, Super-Lcc
needs some seconds to give a response in an ordinary personal computer [8].

On the other hand, Steepest Descent Consistency Constrained algorithm
(Sdcc) [10] is further stemmed from Lcc and aims to improve the prediction
performance of Lcc by expanding the search range of Lcc by leveraging a
steepest descent search instead of a linear search. That is, when F̃ is the current
best feature subset, Sdcc asks the evaluation function to calculate the Bayesian
risk scores of all of the subsets that are obtained by eliminating a single feature
from F̃ . If the minimum of the Bayesian risks computed is no greater than δ,
Sdcc updates F̃ with one of the subsets that yield the minimum. The outputs
of Sdcc are minimal in the same sense as stated above. Hence, if F̃ is the final
output, Sdcc evaluates (|F | + |F̃ |)(|F | − |F̃ | + 1)/2 feature subsets. Since Sdcc
is not practical for high-dimensional domains Pino and Shin developed a new
version of the Sdcc algorithm namely, Accurate Steepest-Descent-Consistency-
Constrained (Asdcc) [9]. Asdcc introduces two rules to early detect and remove
non-interacting features and scores the features according to their individual rel-
evance and their bayesian risks.

In the remaining of this paper, we further analyse Asdcc and also the intrin-
sic characteristics and drawbacks of Sdcc and Super-Lcc to achieve the goal
of creating a novel feature selection algorithm as fast as Super-Lcc and at least
as accurate as Sdcc.

3 Our Proposal

Steepest-descent is a first-order optimization algorithm that finds a local min-
imum of a given function by stepping the solution in the direction where the
function decreases most quickly [10]. The main advantage of Sdcc over Lcc
can be justified as follows. Lcc eliminates the first feature fi that satisfies
Br(F̃ \ {fi};C) ≤ δ from F̃ , while Sdcc tests all fi ∈ F̃ and eliminates fi

that minimizes Br(F̃ \ {fi};C) such that Br(F̃ \ {fi};C) ≤ δ. We consider F̃ as
a point in the space of subsets of the entire features of D. The neighbours of F̃
are determined by F̃ \ {fi} for fi ∈ F̃ ; and the distance between F̃ and F̃ \ {fi}
is given by Br(F̃{fi};C) −Br(F̃ ;C). When a function f over feature subsets is
f(F̃ ) = |Ft|, the gradient from F̃ to F̃ \ {fi} is 1/(Br(F̃ \ {fi};C) −Br(F̃ ;C)).
Therefore, an increase of the inconsistency score by eliminating a single feature
for Sdcc is at least equal than by eliminating a single feature for Lcc. This also
means that Sdcc can eliminate more features than Lcc.

Although it is known that Sdcc significantly beats Lcc in terms of the
inconsistency score, Sdcc performs (|F | + |F̃ |)(|F | − |F̃ | + 1)/2 evaluations to
output F̃ . Furthermore, we have detected that Sdcc removes a lot of features
highly-correlated with the class variable, which may affect the performance of
classifiers. In the remainder of this section we discuss some efficiency and effec-
tiveness issues of Sdcc. Moreover, we propose a new algorithm to solve these
issues.
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3.1 Defieciencies of steepest-descent Search

To set the scene of this section, consider two performance-related issues in the
Sdcc algorithm that are revealed in the following example. Note that Problem
1 and Problem 2 are solved by Asdcc algorithm. Therefore, the contribution
of this paper is related to solving Problem 3.

{f1, f2, f3, f4}

{f2, f3, f4} {f1, f3, f4} {f1, f2, f4} {f1, f2, f3}

{f3, f4} {f2, f4} {f2, f3} {f1, f4} {f1, f3} {f1, f2}

{f4} {f3} {f2} {F1} r = 0.4r = 0.3r = 0.2r = 0.1

∅

Fig. 2. An example of search paths by steepest-descent. r stands for the individual
relevance of a feature.

Figure 2 is the Hasse diagram of F = {f1, f2, f3, f4}, and the gray nodes
represent the feature subsets whose inconsistency is zero. With δ = 0, the solid
lines represent an example of the paths that Sdcc can track. In the first iteration,
Sdcc investigates the four feature subsets of {f2, f3, f4}, {f1, f3, f4}, {f1, f2, f4}
and {f1, f2, f3}. The inconsistency of three of them are zero, and Sdcc chooses
{f2, f3, f4}. In the same way, in the second iteration, Sdcc investigates {f3, f4},
{f2, f4} and {f2, f3} and chooses {f2, f4}. In the last iteration, Sdcc investigates
{f4} and {f2} and then terminates.

Problem 1: Small Total Relevance Score: In Fig. 2, {f2, f4} and {f1, f4}
are the two candidates that Sdcc can select, because they are minimal in the
inclusion relation among the feature subsets in F with Br(F ;C) ≤ 0. Although
the Sdcc selects one of {f2, f4} and {f1, f4} arbitrarily, {f1, f4} is likely to be
a better answer than {f2, f4}, because r(f1,C) + r(f4,C) = 0.5 > r(f2,C) +
r(f4,C) = 0.4. In general, provided all the minimal sets G in F with Br(G;C) ≤
δ, Sdcc arbitrary selects any set G regardless any other information.

Solution to Problem 1. The Individual relevance insensitivity problem occurs
because the individual relevance of features has no meaning in the steepest-
descent algorithm. That is, the steepest-descent arbitrarily removes any feature
f− such that f− ∈ argminfi∈F̃ {Br(F̃ \ {fi};C) | Br(F̃ \ {fi};C) ≤ δ}.

A straightforward way to deal with this problem is by removing the feature
f− with the smallest individual relevance. That is, in each iteration remove
feature f−, such that

f− ∈ argmin{r(f ;C) | f ∈ argmin{Br(F̃ \ {fi})|fi ∈ F̃ ,Br(F̃ \ {fi}) ≤ δ}}.
(1)
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Fig. 3. Comparison between the original Sdcc [10] and its corrected version that
searches features based on Eq. (1) in terms of the bayesian risk, the Auc-Roc by
C4.5 classifier and, the number of features selected.

To validate the effect of this solution, we have compared Sdcc and the corrected
that searches features by Eq. 1 version using 50 datasets chosen from the UCI
machine learning repository [22]. As we expected the corrected version signifi-
cantly outperforms the original version in terms of the Auc-Roc, the bayesian
risk and the number of features selected. Figure 3 depicts the averages of the
bayesian risk, Auc-Roc when C4.5 is used as a classifier and the number of
features selected across the 50 datasets. The threshold parameter δ varies in the
interval [0, 0.1] with an increment of 0.01.

Although these results are quite good, maximization of the average of the
individual features (collective relevance) can not be guaranteed because the indi-
vidual relevance of features is measured back stage. This means that until now
the process of removing a feature is composed by two sequential steps and the
individual relevance score is only used in the second one. In many cases, this
unbalanced trade-off between the bayesian risk and the collective relevance of
a set, may lead to undesirable results as stated in Sect. 2.3. We now consider
the individual relevance of features as a crucial factor to judge the quality of a
feature set, by proposing the interelevance score measure defined as follows.

IR(F̃ ; fi;C) = (1 − α)A(F̃ ; fi;C) + αB(fi;C)

with A(F̃ ; fi;C) =

{
Br(F̃\{fi};C)−Br(F ;C)

δ−Br(F ;C) , if Br(F ;C) ≤ δ

Br(F̃ \ {fi};C) − Br(F ;C), if Br(F ;C) = δ

B =

{
r(fi;C)−r−

r+−r− if r+ > r−

0 if r+ = r−

where r+ = maxfi∈F r(fi;C), r− = minfi∈F r(fi;C) and α satisfies 0 ≤ α ≤ 1.
The interelevance score Ir is normalization function that evaluates how good is
a given feature fi for the current feature set F̃ . Ir measures: (i) how relevant is
fi and (ii) the effect of removing fi from F̃ from the consistency point of view.
Function A normalize the bayesian risk obtained by removing feature fi from F̃ .
Br(F ;C) and δ are taken as the minimum and maximum value respectively in
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the normalization function. We expect that Ir metric allows to select interacting
feature sets composed by features with high relevance score. Thus, to select f−,
we do not use Eq. 1 as a criterion, but use f− ∈ argmin{Ir(F̃ ; fi;C) | fi ∈
F̃ ,Br(F̃ \ {fi};C) ≤ δ}.

Problem 2: Unnecessary evaluations: Although in the second iteration
Sdcc computes Br({f2, f3};C) > 0, this operation is unnecessary because
the result can be inferred by the monotonicity property of consistency mea-
sures. Since Br({f1, f2, f3};C) > 0 has been computed in the first iteration,
Br({f2, f3}) > 0 is inferred by monotonicity.

Solution to Problem 2. In order to avoid unnecessary evaluations, if Br(F̃ ;C\
{fi}) > δ holds with fi ∈ F̃ then feature fi is not evaluated anymore and never
removed. Furthermore, the interelevance score has a property that allows saving
evaluations when steepest-descent is run over a ranked feature set.

Proposition 1. Let F̃ = {f1, . . . , fk−1, fk} be in a increasing order of r(fi;C)
where r is a relevant measure. If Br(F̃ \ {fp};C) = Br(F̃ ;C) holds then, there
does not exist a feature fj ∈ F̃ with j < p such that IR(F̃ ; fj ;C) < IR(F̃ ; fp;C)
holds.

Proof. This is easy to see because Br(F̃ \ {fp};C) is the minimum by the
monotonicity property and r(fp;C) ≤ r(fj ;C) always holds. 	


Fig. 4. Percentage of the first consecutive
features {f1, . . . , fl} such that Br(F ;C) =
Br(F \ {f1, . . . , fl};C) to the entire feature
set F .

Proposition 1 is essential to turn
our steepest-descent algorithm faster
since when fp is found, it can be
immediately removed without affect-
ing the final solution and p − 1 eval-
uations of B are saved in each iter-
ation. In the ideal scenario, where
p = k holds in each iteration, the
number of evaluations performed by
our steepest-descent algorithm is lin-
ear respect to the number of fea-
tures in F . Oppositely, in the worst
case scenario where p = 1 holds in
each iteration, the number of evalu-
ation performed by the new version
of Sdcc is the same as the Sdcc.

Problem 3: Low scalability to
high-dimensional data: Our new version of Sdcc may be still slow in datasets
with large number of interacting features. Although it is well known high-
dimensional datasets are rich in non-interacting features, we do not assume their
class variable can be described by a small number of features. Therefore, we now
describe two mechanism to reduce even more the number of evaluation of our
proposal.
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Solution 1 to Problem 3: Eliminating the big mass of irrelevant fea-
tures by Super-Lcc. High-dimensional datasets are likely to be abundant in
irrelevant and non-interacting features. Assuming |F | is very large, we can expect
Br(F \ F ′;C) = Br(F ;C) with F ′ = {f1, . . . , fl} for a large value of l. To make
sure this expectation is true, we randomly picked 44 datasets from the UCI
machine learning repository and determine l.

The experiments were conducted in small (|F | ≤ 100), medium (100 < |F | ≤
10000) and high-dimensional data (10000 < |F |) using δ = Br(F ;C). Figure 4
depicts the results, and we see that values of l are very close to the numbers of
the entire features |F |, when the dataset is high-dimensional. This means that
for these high-dimensional datasets our steepest-descent algorithm will remove
a huge number of consecutive features one by one, which is not so efficient.
However, recently Shin et al. in [8] have found that l can be determined efficiently
by means of binary search. In fact, {f1, . . . , fl} are removed by the first iteration
of Super-Lcc. This finding broke the premise that consistency-based algorithms
were computationally too expensive to apply to high-dimensional data. We use
their finding to efficiently remove F ′ with only a few iterations (see Eq. 1). We
use the first iteration of Super-Lcc to eliminate the largest {f1, . . . , fl} such
that Br(F \ {f1, . . . , fl};C) ≤ Br(F ;C) + δ and then apply steepest descent to
the remainder of the features, that is, {fl+1, . . . , fn}.

Solution 2 to Problem 3: Windowing the search. When feature selection
is performed using consistency measures, in each iteration of the search we can
categorize features as: indispensable, useless and potential features. Being F̃ the
current feature set, indispensable features must remain in F̃ in order to keep
the bayesian risk under the threshold. That is, a feature fx ∈ F̃ is indispensable
if Br(F̃ \ {fx};C) > δ holds. On the contrary, useless features can be safely
removed without degrading the bayesian score of F̃ . A feature fy is said to be
useless when Br(F̃ \ {fy};C) = Br(F̃ ;C) holds. On the other hand, if a feature
is neither of indispensable nor useless then it is a potential feature. That is, for
potential feature f , Br(F̃ \ {f};C) ≤ Br(F̃ ;C) + δ holds. Potential features
are the most interesting type of features: they necessarily become indispensable
or useless at any moment of the search and must be evaluated in the next
iteration. Speaking about efficiency, the worst case scenario, in a given iteration,
is that all features are potential. This means that our version of the steepest-
descent algorithm needs |F̃ | evaluations to remove the one that minimize Ir. To
overcome this drawback we propose to limit the search in each iteration to a
portion of the features in the current set. This can be done by applying a mobile
window search. Let d be the average of the differences of the individual relevance
of consecutive features in F

d =
1

n − 1

n−1∑
i=1

(
r(fi+1;C) − r(fi;C)

)
=

1
n − 1

(r+ − r−), (2)
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we define the window search wk in the k-th iteration as:

w1 = r− + ω(r+ − r−) (3)

wk = wk−1 + λd, with k > 1, (4)

Algorithm 1: Swcfs Algorithm
Input: D: the dataset
δ: inconsistency score threshold
ω: initial size of the window search
λ: windows size coefficient
Output: F̃ suboptimal set

1 Rank features in F in incremental
order according to SU

2 Fix F̃ = F
3 Find the maximum l such that

Br(F̃ \ {f1, . . . , fl}; C) = Br(F̃ ; C)
4 Update F̃ = F̃ \ {f1, . . . , fl}
5 Compute r+ = maxfi∈F̃ r(fi; C) and

w1 = ωr+

6 Let d be the average of the
difference between SU(fi; C) and
SU(fi−1; C) for fi ∈ F̃ , k = 1 and
IR− = inf

7 repeat
8 f− = Null

9 foreach fi ∈ F̃ do
10 if SU(fi; C) ≤ wk then
11 δ[fi] = Br(F̃ \ {fi}; C)
12 if δ[fi] > δ then

continue;
13 if δ[fi] = Br(F̃ ; C) then

f− = fi, break;
14 if IR(F̃ ; fi; C) ≤ IR−

then f− = fi, IR− =
IR(F̃ ; fi; C);

15 end
16 end
17 if f− = Null then break;
18 F̃ = F̃ \ {f−}
19 k = k + 1
20 wk = wk−1 + λd

21 until True;

Fig. 5. The algorithm of Swcfs

where ω = (0, 1] and λ ∈ R+

are predefined parameters that
influence the initial size of the
window search w1 and the accel-
eration of the expansion of the
window search wk in the k-th
iteration respectively. If the rel-
evance score of a feature falls
into the region of the window
[r−, wk) then will be evaluated
in the k-th iteration. The num-
ber of features evaluated in each
iteration is not only determined
by the position of useless fea-
tures but also by the size of the
window search. This may sig-
nificantly improve the efficiency
of our steepest-descent version in
datasets abundant in potential
features.

Let F be the entire feature set
and δ be the upper bound of the
permissible bayesian risk of the
output sets. We combine all the
solutions given above as follows.

1. The relevance r(fi;C) of each
feature fi ∈ F is com-
puted using the Symmetrical
Uncertainty measure, and F is
mapped to F̃ by sorting the
features in incremental order
of SU(fi;C).

2. The maximum set of con-
secutive useless features
{f1, . . . , fl} is identified and
removed by using the binary
search (see Eq. 1)

3. The window size is computed
in each iteration.
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The steepest-descent algorithm is performed using the interelevance score Ir
by evaluating only the features included in the current window and taking into
account the following rules with fi ∈ F̃ :

Rule 1. If fi is an useless feature then it is immediately removed from F̃ (line 13).

Rule 2. Else if fi is indispensable then fi is not evaluated anymore and never
will be removed from F̃ (line 12).

Rule 3. Otherwise the feature fi that minimize Ir is removed from F̃ if
IR(F̃ ; f ;C) > IR(F̃ ; ∅;C) holds. The algorithm stops when all features have
been tested and none of the features can be removed. Figure 5 depicts the entire
algorithm.

4 Experiments

We empirically evaluate the performance of the proposed algorithm and make
comparisons with some state-of-the-art feature selection algorithms: ReliefF
(RF) [11], Cfs [18], Fcbf [16] and Super-Lcc [8] and ASdcc [9]. We exclude
from comparison algorithms Super-Cwc [8] and FSdcc [9] because we verify
they output similar results to Super-Lcc and ASdcc respectively.

Fig. 6. Nemenyi test with α = 0.05

The configuration of the
experiments is as follows. First,
we run the feature selection algo-
rithms over the datasets and
obtain selected feature subsets
for respective algorithms. To
evaluate the classification capa-
bility of the selected feature sets,
we run ten-fold cross validation
on the reduced data using two
classifiers: Naive Bayes and
C4.5. The bayesian risk parameter δ of Super-Lcc and Swcfs algorithms
was fixed to 0.01. We report results about the Auc-Roc values of both clas-
sifiers and the number of features selected by each algorithm. Before running
experiments we run Swcfs across many datasets with different values of α and
verified that α = 0.5 works well. Table 1 shows the Auc-Roc values after run-
ning the classifiers on the reduced data and the number of features selected by
each algorithm.

4.1 Numbers of Features Selected and Auc-Roc Scores

Speaking about the size of the output, Swcfs outputs smaller or equal when
compared with Slcc. Furthermore, when compared with all the algorithms it
turns out that Swcfs is ranked top for a half of the datasets. Speaking about
Auc-Roc scores, Swcfs is ranked top for more than the 68% and 62% of the
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Table 1. Results of Auc-Roc values for the reduced data and number of features
selected by each algorithm

NB-AUC values C4.5-AUC values size

data RF Cfs Fcbf SLcc ASdcc Swcfs RF Cfs Fcbf SLcc Asdcc Swcfs RF Cfs Fcbf SLcc Asdcc Swcfs
OPT. .945 .967 .966 .966 .967 .968 .858 .924 .929 .933 .928 .935 30 38 21 9 10 8
ARR. .468 .850 .854 .848 .850 .848 .464 .738 .737 .733 .733 .733 1 25 12 21 28 21
MAD. .523 .644 .646 .647 .646 .647 .500 .770 .613 .811 .814 .811 1 6 4 15 12 15
MFE .966 .973 .985 .986 .970 .991 .972 .968 .961 .952 .954 .964 360 85 136 7 8 6
SEM .983 .956 .952 .955 .958 .956 .877 .881 .876 .865 .879 .885 175 74 30 31 45 27
AUD .946 .939 .905 .962 .923 .952 .907 .905 .924 .921 .905 .924 10 6 16 12 9 12
KRV .969 .930 .968 .972 .970 .983 .972 .930 .959 .997 .995 .997 5 3 7 21 18 15
MF1 .922 .948 .947 .977 .981 .981 .923 .908 .925 .916 .914 .911 90 67 38 8 9 7
MF2 .961 .969 .968 .969 .968 .970 .903 .905 .899 .906 .905 .910 15 12 37 11 13 11
MF3 .979 .986 .986 .981 .984 .984 .907 .915 .907 .920 .907 .924 7 26 57 7 7 7
MF4 .949 .950 .945 .950 .949 .950 .918 .919 .918 .922 .918 .922 3 4 2 5 4 5
MF5 .964 .965 .969 .967 .937 .969 .903 .904 .911 .901 .904 .906 196 103 27 21 17 17
MF6 .925 .955 .955 .957 .955 .957 .859 .880 .884 .871 .871 .871 7 25 14 12 14 12
PEN .977 .963 .963 .963 .964 .964 .973 .973 .974 .975 .970 .974 16 11 11 7 10 7
SPL .981 .984 .993 .990 .984 .989 .967 .969 .970 .969 .969 .970 19 6 22 9 8 9
WAV .510 .945 .932 .938 .945 .946 .500 .858 .882 .877 .876 .884 1 15 6 10 8 9

AVG. .873 .933 .933 .939 .934 .941 .838 .897 .892 .904 .903 .908 58.5 31.6 .27.5 12.9 13.8 11.8

datasets for Naive Bayes and C4.5 classifiers respectively. To statistically com-
pare the algorithms, we run Friedman test and statistical differences were found.
Figure 6 shows the Nemenyi’s chart for each classifier. Group of algorithms that
are not significantly different are connected with a thick line.

4.2 Efficiency

It is apparent that SLcc and Swcfs are compatible in terms of efficiency in high-
dimensional data since Swcfs takes advantage of the first iteration of SLcc to
remove the less relevant features that are not necessary to create consistency
sets. In the case where only small number of features are eliminated in the first
step of Swcfs, the numbers of evaluations depends on the size of the sliding
window. However, if the sliding window is reasonably small then the number of
evaluation can be comparable with the number of evaluations of Lcc algorithm.
Nevertheless, as Fig. 4 shows, it turns out that high-dimensional data are prone
to be rich in irrelevant features that can be removed in the first iteration of
Swcfs.

5 Conclusion and Future Works

In this paper we propose a new feature selection algorithm based on consistency
measures and individual feature scoring functions. The search strategy used by
the algorithm is the Sdcc, which has quadratic order. However, we modify Sdcc
by leveraging the binary search that allows to remove, in many cases, more than
95% of non-relevant features with small number of evaluations. In addition,
a sliding window was added to Sdcc to avoid unnecessary evaluations. Experi-
ments reveal that the new proposal is very accurate when compared with several
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state-of-the-art algorithm. In the future we will evaluate the new algorithm in
high-dimensional data and make a further analysis about the optimal values for
its parameters.
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Abstract. In this work, we address the task of feature ranking for multi-
target regression (MTR). The task of MTR concerns problems where
there are multiple continuous dependent variables and the goal is to
learn a model for predicting all of the targets simultaneously. This task is
receiving an increasing attention from the research community. However,
performing feature ranking in the context of MTR has not been studied.
Here, we propose three feature ranking methods for MTR: Symbolic,
Genie3 and Random Forest. These methods are then coupled with three
types of ensemble methods: Bagging, Random Forest, and Extremely
Randomized Trees. All of the ensemble methods use predictive cluster-
ing trees (PCTs) as base predictive models. PCTs are a generalization
of decision trees capable of MTR. In total, we consider eight different
ensemble-ranking pairs. We extensively evaluate these pairs on 26 bench-
mark MTR datasets. The results reveal that all of the methods produce
relevant feature rankings and that the best performing method is Genie3
ranking used with Random Forests of PCTs.

Keywords: Multi-target Regression · Feature ranking · Feature impor-
tance · Ensembles · Predictive Clustering Trees

1 Introduction

Single target regression (STR) is a subfield of predictive modelling, where the
goal is to learn a model able to predict the values of a single numeric target
variable. STR can be generalized to multi-target regression (MTR), where the
goal is to learn a model that predicts T ≥ 2 targets. The STR and MTR tasks
can be formalized as described below.

We are given a set of examples x from the input domain X ⊆ X1 × · · ·×XD,
D ≥ 1 being the number of descriptive attributes (features). We assume that
the domain Xi of the i-th descriptive attribute xi is either a subset of R or
an arbitrary finite set, i.e., xi is either numeric or nominal. Each example x is
associated with a target value y(x) from the target domain Y ⊆ Y1 ×· · ·×YT ⊆
R

T , T being the number of target attributes (targets). STR considers domains
where T = 1, while MTR considers domains with T ≥ 2. In the latter case,
the j-th component of the target vector y(x) is denoted by yj(x). The true
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 171–185, 2017.
DOI: 10.1007/978-3-319-67786-6 13
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mapping y : x �→ y(x) (STR) or y : x �→ y(x) (MTR) is unknown and the goal
of regression is to find its approximation, given a dataset D ⊆ X × Y.

STR is a well established research topic, while MTR is recently attracting
interest in the research community [22,23]. MTR is a structured output predic-
tion task with applications in a wide range of real life problems where we are
interested in simultaneously predicting multiple continuous variables. Prominent
examples come from ecology and include predicting the abundance of different
species living in the same habitat [12] and predicting properties of forests [21].

A possible way to approach a MTR problem is problem transformation, which
transforms one MTR problem to several STR problems and build one predictive
model for each target separately. Another way to approach the problem is by
algorithm adaptation, i.e., to change STR methods in such a way they are able
to exploit the potential relatedness between the multiple targets. For example,
regression trees can be generalized so that the heuristic function considers the
multiple targets and the leaves make predictions for all targets. For an overview
of the different MTR, we refer the reader to Borchani et al. [5].

Another important task in machine learning is feature ranking, which is typ-
ically seen as a data preprocessing step. Here, the importances of descriptive
attributes (features) are estimated and an ordering (or ranking) of the features
is made, based on the estimated importances. There are two main reasons for
doing this. First, we may want to reduce the dimensionality of the input space, so
that only the features that contain the most information about target(s) are kept
in the dataset. By doing this, we decrease the amount of memory/time needed
to build a predictive model, while the performance of the model is not degraded.
Second, dimensionality reduction typically results in models that are easier to
understand, which comes in handy when a machine learning expert works in
collaboration with a domain expert. Predictive models, such as decision trees,
are easier to interpret when a small number of the most relevant features are
used to learn them.

There is a plethora of feature ranking methods for the machine learning tasks
of single target regression and classification. For an overview, see Stanczyk and
Jain [24]. However, in the case of MTR, the task of feature ranking has not been
studied to a great extent. To the best of our knowledge, there is no previous
work from the machine learning community.

In the field of statistics, a few such methods can be found. Their main draw-
back is that they allow only for numeric features, since they typically assume
a (generalized) linear model y = Ax + e, where A is a T × D matrix and e is
a random noise vector. One such method is forward selection. It starts with a
constant model y(x) = c ∈ R, and repeatedly adds the most significant feature
that improves the model. The sooner the feature is included in the model, the
greater the importance. For on overview of these methods, see Brobbey [9].

In this work, we propose three feature ranking methods based on ensembles
of predictive clustering trees (PCTs) [4,22]. PCTs are generalization of decision
trees able to handle various types of structured output prediction tasks, including
MTR. The proposed feature ranking methods can handle both numeric and
nominal features.
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The proposed methods exploit different properties of the ensemble learning
mechanism to estimate feature importances. More specifically, two of the meth-
ods are adaptations of the feature importance measures already known from the
single target regression task: Genie3 [18] and Random Forest ranking [7]. Genie3
uses the variance reduction at each tree node as a proxy for the importance of
the feature that is used in the test at a given node. Random Forest ranking
permutes the values of a feature on the out-of-bag set of data to estimate how
much worse performance this will yield as compared to the original data. This
decrease of predictive performance is then taken as a proxy for the feature’s
importance. Finally, the third method named Symbolic counts how often a fea-
ture appears in the nodes of the trees from an ensemble. These appearances can
be also weighted with the nodes’ depth at which a given feature appears. This
is a general method that is applicable to an arbitrary machine learning task for
which tree-based models can be learned.

Furthermore, these three ranking methods can be coupled with three ensem-
ble learning methods: Bagging [6], Random Forests [7] and Extremely random-
ized trees [14]. Note that Random Forests ranking cannot be coupled with
Extremely randomized trees because the latter do not perform bootstrapping
of the examples. This yields in total 8 pairs of ensemble learning method and
feature ranking method.

We extensively evaluate the proposed methods on 26 benchmark MTR
datasets. The evaluation is performed by comparing the performance of the
standard 5NN (5 nearest neighbors) prediction method with a 5NN prediction
method that uses the obtained feature importances as weights during distance
calculation. The experiments investigate the relevance of the obtained feature
rankings and look for the optimal combination of ensemble learning and feature
ranking method.

The remainder of this paper is organized as follows. Section 2 presents the
PCT approach to MTR. Ensembles of PCTs for MTR and feature ranking meth-
ods based on these are described in Sect. 3. Section 4 outlines the experimental
design, while Sect. 5 discusses the results of the experimental evaluation. Finally,
the conclusions and a summary are given in Sect. 6.

2 Predictive Clustering Trees for Multi-target Regression

PCTs generalize decision trees and can be used for a variety of learning tasks,
including clustering and different types of prediction. The PCT framework views
a decision tree as a hierarchy of clusters: The root of a PCT corresponds to one
cluster containing all data, which is recursively partitioned into smaller clusters
while moving down the tree. The leaves represent the clusters at the lowest level
of the hierarchy and each leaf is labeled with its cluster’s prototype (prediction).

PCTs are induced with the standard top-down induction of decision trees
algorithm presented in Table 1 [8]. It takes as input a set of examples E and
outputs a tree. The heuristic h that is used for selecting the tests is the reduc-
tion of variance caused by partitioning the instances (see line 4 of the BestTest
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Table 1. The top-down induction algorithm for PCTs.

procedure in Table 1). By maximizing the variance reduction, the cluster homo-
geneity is maximized: The algorithm is thus guided towards small trees with
good predictive performance. If no acceptable test can be found (line 6 of the
PCT procedure), i.e., no test reduces the variance significantly, then a leaf is
created and the prototype of the instances belonging to that leaf is computed.

The main difference between the algorithm for learning PCTs and other
algorithms for learning decision trees is that the former considers the variance
function and the prototype function (that computes predictions in leaves) as
parameters that can be instantiated for a given learning task. In this work, we
focus on the task of MTR and define the variance function as follows. First, we
define the average yj and variance of the target yj over subset E ⊆ DTRAIN as

yj(E) =
1

|E|
∑

x∈E

yj(x) and Varj(E) =
1

|E|
∑

x∈E

(yj(x) − yj(E))2. (1)

We then compute the weights wj = Varj(DTRAIN) and use them as normaliza-
tion factors in the definition of variance function:

Var(E) =
1
T

T∑

j=1

1
wj

Varj(E).

In a leaf L, the prototype function returns a vector (y1(EL), . . . , yT (EL)),
where EL denotes the set of all examples that fall into the leaf L. For a detailed
description of PCTs for MTR, we refer the reader to Blockeel [4] and Kocev [22].
The PCT framework is implemented in the CLUS system (available at http://
clus.sourceforge.net).

3 Feature Ranking via Ensembles of PCTs

We use PCTs as the base models in three types of ensembles [22] that are
constructed to calculate the variable importance, i.e., the feature ranking. In the
following, we first present the ensemble methods and then describe the feature
ranking methods.

http://clus.sourceforge.net
http://clus.sourceforge.net
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3.1 Ensembles of PCTs

An ensemble is a set of base predictive models constructed with a given algo-
rithm. The prediction for each new example is made by combining the predictions
of every model from the ensemble. This can be done by taking the average in
regression tasks, and the majority or probability distribution vote in classifica-
tion tasks [6]. For the task of MTR, we consider ensembles of PCTs [22], where
the predictions are the average values for each target.

A necessary condition for an ensemble to be more accurate than any of its
individual members, is that the members are accurate and diverse models [16].
This means that they perform better than random guessing. On the other hand,
it means that they make different errors on new examples.

There are several ways to introduce diversity among the base predictive mod-
els in an ensemble. We describe how this is done in Random Forests [7], Bagging
[6] and Extra Trees ensembles [14].

Random Forest (RF) and Bagging. A Random Forest is an ensemble of
trees where diversity among the predictive models is obtained in two ways. First,
instead of being learned from the original dataset DTRAIN, each tree is built from
a different bootstrap replicate B. The chosen examples from such a replicate form
a so called bag B, while the rest are called out-of-bag examples (OOB). Hence,
we perform a call PCT(B) rather than PCT(DTRAIN) as we would do in the case
when a single PCT is to be grown.

Additionally, we modify the line 2 of the BestTest procedure (see Table 1), to
change the feature set during learning. More precisely, at each node in a decision
tree, a random subset of the input attributes is taken, and the best test is selected
from the splits defined on these. The number of attributes that are retained is
given as a function of the total number of descriptive attributes D, e.g., �

√
D	,

�log2(D)	, D/4, etc. In the special case when we keep all attributes, we obtain
the Bagging procedure, where the only source of diversity is the difference in the
bootstrap replicates of the data.

Extra trees ensemble (ET). The source of diversity in ET comes from the
extreme randomization of the tree learning procedure. Here, at each node all
attributes are considered (as in Bagging), but we do not evaluate all tests that
the attributes yield. Rather, we choose randomly only one per attribute. Among
these D tests, we choose the best one, hence the only difference compared to
standard top-down PCT induction, is that a modified line 2 of the BestTest
procedure is used. Note that ET uses the initial dataset DTRAIN for learning the
base predictive models and does not make bootstrap replicates.

3.2 Ensemble Feature Ranking Methods

Feature ranking of the descriptive variables can be obtained either by exploiting
the ensemble structure of the learning algorithm or the mechanism of Random
Forests. For its simplicity, we first describe symbolic ranking. Then, we discuss
Genie3 and Random Forest ranking.



176 M. Petković et al.

In the following, we denote a tree by T , whereas N ∈ T denotes a node.
Trees form a forest F . Its size (the number of trees in the forest) is denoted by
|F|. The set of all internal nodes of a tree T in which the attribute xi appears
as part of the test, is denoted by T (xi).

Symbolic ranking (Symb). Let d(N ) denote the depth of N ∈ T . The
depth is defined recursively: if N is the root of T , then d(N ) = 0. Otherwise,
d(N ) = 1 + d(parent(N )). In the basic version of symbolic ranking, we simply
count how many times a given attribute occurs in the tests in the internal nodes
of the trees in the forest. Since the attributes that appear at lower depths (i.e.,
closer to the root) are intuitively more important than those that appear deeper
in the trees, we introduce the parameter w ∈ (0, 1] and define the importance of
the attribute xi as

importanceSYMB(xi) =
1

|F|
∑

T ∈F

∑

N ∈T (xi)

wd(N ). (2)

Note that symbolic ranking is applicable to all three ensemble methods that we
use, and that the basic version of the ranking corresponds to the choice w = 1.

Genie3. The main motivation for Genie3 ranking is that splitting the current
subset E ⊆ DTRAIN, according to a test where an important attribute appears,
should result in high variance reduction. As in the symbolic ranking case, greater
emphasis is put on the attributes higher in the tree, i.e., on the splits where |E|
is larger. The Genie3 importance of the attribute xi is defined as

importanceGENIE3(xi) =
1

|F|
∑

T ∈F

∑

N ∈T (xi)

|E(N )|h∗(N ),

where E(N ) is the set of examples that come to the node N , and h∗(N ) is the
value of the variance reduction function described in the BestTest procedure.
Genie3 ranking is applicable to all three ensemble methods that we use.

Random Forest (RF). This feature ranking method tests how much does noise
in a given descriptive attribute decrease the predictive performance of the trees
in the forest. The greater the performance degradation, the more important the
attribute. This feature ranking algorithm uses the internal out-of-bag estimates
of the error, therefore it cannot be used with ensembles of extra trees.

Once a tree T is grown, the algorithm evaluates the performance of the tree
by using the corresponding OOBT examples. This results in the predictive error
Err(OOBT ) ≥ 0. Here, we assume that lower error value corresponds to better
predictions. To assess the importance of the attribute xi for the tree T , we
randomly permute the values of this attribute in the set OOBT and obtain the
set OOBi

T . Then, the error Err(OOBi
T ) is computed and the importance of the

attribute xi for the tree T is defined as the relative increase of error after noising
the attribute. The Random Forest importance of the attribute is the average of
these values across all trees in the forest, namely

importanceRF(xi) =
1

|F|
∑

T ∈F

Err(OOBi
T ) − Err(OOBT )

Err(OOBT )
.
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Note that Err(OOBi
T ) = Err(OOBT ) if the attribute xi does not appear in T .

This can speed up the computation of importanceRF, but this feature ranking
method is still the most time consuming. While the time complexity of the first
two is negligible as compared to the one of growing the forest, this one has an
additional linear factor: the number of examples in the dataset.

4 Experimental Design

In this section, we present the experimental design used to evaluate the perfor-
mance of the proposed feature ranking methods. We begin by stating the main
experimental questions and then briefly summarize the MTR datasets used in
this study. We next describe the evaluation procedure and give the specific para-
meter instantiations of the methods.

4.1 Experimental Questions

The main focus of this study is to answer the following questions:

1. Can additional knowledge from feature importances lead to better predictive
performance of a regressor, i.e., are the obtained feature rankings relevant?

2. Which ranking method is the most appropriate for a given ensemble method?
3. Which ensemble method is the most appropriate for a given ranking algo-

rithm?
4. Which ensemble-ranking pair is the best overall?

For answering these questions, we design several experiments and compar-
isons of performance. We learn different feature rankings by considering combi-
nations of ensemble learning methods and feature ranking methods. More specif-
ically, we construct 8 different feature rankings: Random Forest Symb, Random
Forest Genie3, Random Forest RF, Bagging Symb, Bagging Genie3, Bagging
RF, Extra trees Symb, and Extra trees Genie3. We then use the obtained feature
importances as weights in k nearest neighbor predictor (kNN) and compare the
different rankings to address the questions outlined above. Finally, based on the
obtained results, we identify the method that yields the best feature ranking.

4.2 Data Description

We use 26 MTR benchmark problems. Table 2 presents the basic statistics of the
datasets: The number of features per dataset ranges from 6 to 576 and features
are mainly numeric. The number of targets ranges from 2 to 16, while the number
of examples takes values between 42 and 60607.

The datasets come from different domains: andro, ENB and water quality
originate from studies of water quality; the ATP datasets concern the prediction
of airline tickets prices; collembola, the Forestry datasets, soil quality and vegeta-
tion condition describe soil and vegetation conditions; EDM stands for electrical
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discharge machining; jura contains measurements of heavy metals concentra-
tions; metal-data is about meta learning; OES stands for occupational employ-
ment survey; osales (online product sales) and scpf (see-click-predict fix) origi-
nate from two Kaggle competitions; RF1 and RF2 describe river flows; SCM1d
and SCM20d were derived from a competition in supply chain management;
sigmeareal and sigmeasim deal with cross-pollination between conventional and
GM crops, and slump concerns the prediction of concrete slump.

Table 2. Description of the benchmark problems in terms of the number of nominal
and numeric descriptive attributes, the number of targets, and the number of examples.

Dataset Nominal Numeric Targets Examples

andro [17] 0 30 6 49

ATP1d [23] 0 411 6 337

ATP7d [23] 0 411 6 296

collembola [19] 8 39 3 393

EDM [20] 0 16 2 154

ENB [28] 0 8 2 768

Forestry Kras [26] 0 160 11 60607

Forestry LIDAR IRS [25] 0 29 2 2730

Forestry LIDAR Landsat [25] 0 150 2 6218

Forestry LIDAR Spot [25] 0 49 2 2730

jura [15] 0 15 3 359

metal-data [27] 0 53 10 42

OES10 [23] 0 298 16 403

OES97 [23] 0 263 16 334

osales [1] 0 401 12 639

RF1 [23] 0 64 8 9125

RF2 [23] 0 576 8 9125

SCM1d [23] 0 280 16 9803

SCM20d [23] 0 61 16 8966

scpf [2] 0 23 3 1137

sigmeareal [11] 0 6 2 817

sigmeasim [11] 2 9 2 10368

slump [29] 0 7 3 103

soil quality [12] 0 156 3 1944

vegetation condition [21] 1 39 7 16967

water quality [13] 0 16 14 1060
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4.3 Evaluation Methodology

We adopted the following evaluation methodology to properly assess the per-
formance of the proposed methods. First, we randomly divide each dataset D
into 2/3 for the training part DTRAIN and 1/3 for the testing part DTEST. A
ranking is computed from an ensemble that is built on the training part only.
This procedure is repeated 10 times and the performance measures are averaged.

The quality of the ranking is assessed by using the kNN algorithm. Instead
of the standard Euclidean distance, its weighted version was used in kNN. For
two input vectors x1 in x2, the distance d between them is defined as

d(x1,x2) =

√√√√
D∑

i=1

wid2i (x
1
i ,x

2
i ), (3)

where the distance di : Xi × Xi → [0, 1] is defined as

di(x1,x2) =

⎧
⎨

⎩
1[x1

i 
= x2
i ] : Xi nominal

|x1
i −x2

i |
max

x
xi−min

x
xi

: Xi ⊆ R
,

where max and min go over the known examples x. The weights are set to wi =
max{importance(xi), 0} and are equal to the feature importances obtained by
Symb and Genie3 ranking. They need to be made non-negative for RF ranking.
In this way, we ensure that d is well defined and ignore the attributes that are
of lower importance than a randomly generated attribute.

The evaluation through a kNN predictive model was chosen for two main rea-
sons. First, this is a distance based model, which can easily use the information
contained in the feature importances in the learning phase. The second reason
is kNN’s simplicity: its only parameter is the number of neighbors k, which we
set to 5. In the prediction stage, the neighbors’ contributions to the predicted
value are equally weighted, so we do not introduce additional parameters that
would influence the performance.

The rationale for using kNN as an evaluation model is as follows. If a fea-
ture ranking is meaningful, then the feature importances used as weights in the
calculation of distances should yield better predictive power as compared to not
using these weights [10].

We assess the predictive performance with the average relative root mean
squared error RRMSE. If we denote the predicted value of the target yj by
ŷj(x), the RRMSE for this target is defined as

RRMSE(yj) =

√
1

|DTEST|
∑

x∈DTEST
(yj(x) − ŷj(x))2

Varj(DTRAIN)
,

and RRMSE can be expressed as RRMSE =
√

1
T

∑T
j =1 RRMSE2(yj).
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4.4 Statistical Analysis of the Results

For comparing two algorithms, we use the Wilcoxon’s test, and for comparing
more than two algorithms, we use the Friedman’s test [12]. In both cases, the
null hypothesis H0 is that all considered algorithms have the same performance.
If H0 is rejected by the Friedman’s test, we additionally apply Nemenyi’s post-
hoc test [12] to investigate where the statistically significant differences occur.
Finally, to control the false discovery rate, the Benjamini-Hochberg procedure
[3] was applied: let pi be the i-th smallest among the obtained p-values, and m
the number of tests. Let i0 be the largest i, such that pi ≤ i

mα =: α̂i. Then, we
can reject the hypotheses that correspond to p-values pi, for 1 ≤ i ≤ i0.

The results of the Nemenyi’s tests are presented by average ranks diagrams.
Each diagram shows the average rank of each algorithm over the considered
datasets, and the critical distance, i.e., the distance by which the average ranks
of two algorithms must differ to be considered statistically significantly different.
Additionally, the groups of algorithms among which no statistically significant
differences occur are connected with a red line. In the analysis, the significance
level was set to α = 0.05.

4.5 Parameter Instantiation

The algorithm for inducing an ensemble of PCTs for MTR takes as input the
following parameters: the number of base predictive models in the forest (all
ensemble types), minimal number of examples in a leaf of a tree (all ensemble
types), and the feature subset size (Random Forest only). In all cases, we grow
100 trees, whose leaves must contain at least two examples each. Additionally,
the feature subset size in the case of Random Forests is set to �

√
D	.

Next, recall that the symbolic ranking requires selecting a value for w. In
a preliminary study, we investigate the influence of several values of w, i.e.,
w ∈ {0.25, 0.5, 0.75, 1}, on the performance of feature ranking. We perform Fried-
man’s test with the null hypothesis H0 that the four symbolic rankings perform
equally well. It turns out that the differences among the rankings are not sta-
tistically significant in the case of Bagging (p-value is 0.418) and ET (p-value is
0.230), whereas in the case of RF, they are (p-value is 0.000697). In the RF case,
we can proceed to Nemenyi’s test, whose results are shown in Fig. 1.

The diagram reveals that only the symbolic ranking with weight w = 1.0
is statistically significantly worse than the rankings with weights w = 0.5 and
w = 0.25. This can be explained by Eq. 2: this value for the weight is the only
one where the depth of the node where an attribute appears is not taken into
account when computing the relevance.

Since the average ranks of the ranking methods with w = 0.25, w = 0.5,
w = 0.75 and w = 1.0 are respectively 2.38, 2.25, 2.54 and 2.83 for Bagging, and
2.42, 2.38, 2.25 and 2.94 for ET, the ranking Symb50 is a reasonable choice for
all three ensembles, since it is always ranked at least second. The reason for this
is less obvious but we hypothesize that it could be an artifact of the algorithm
for inducing ensembles (see Table 1). Namely, splits in the ensemble trees are
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Fig. 1. The average ranks diagram for Nemenyi’s test, performed for the symbolic
ranking methods with the Random Forest ensemble at significance level of α = 0.05.

binary. If we assume that the best test in an internal node N ∈ T partitions
E(N ) ⊆ D approximately in half, then the attribute in N ’s test influences one
half of the instances that arrive to its parent; hence, the parent should receive
twice as large a reward as each of its two children.

5 Results and Discussion

In this section, we present the results from the experimental evaluation, respond-
ing to the experimental questions posed above. The baseline kNN is denoted as
5NN, while the weighted 5NN is denoted by the combination of ensemble and
ranking method (ensemble-ranking).

5.1 Are the Obtained Feature Rankings Relevant?

The investigation of whether a given feature ranking is relevant has a pivotal role
in this work. More specifically, we investigate whether 5NN prediction can benefit
from using the additional information from the feature importances. To this end,
we compare the performance of 5NN without and with feature importances. We
use the Wilcoxon’s test to assess the statistical significance of the differences in
performance between the two 5NN methods.

Table 3 gives the results of the statistical evaluation. It shows that all
hypotheses are rejected, since we have pi < α̂i for all i. Therefore, we can con-
clude that using feature ranking is clearly beneficial, i.e., the obtained feature
rankings (more precisely, feature importances) are relevant and meaningful. Con-
sidering that the answer to the first question is positive, we now proceed with
discussing the remaining experimental questions.

5.2 Comparison of the Different Ranking Methods

We compare the performance of the different ranking methods when coupled with
a given ensemble learning method. In other words, we perform three analyses,
where the ensemble method is fixed in each analysis. The results of this analysis
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Table 3. The results of the Wilcoxon’s tests that compare the performance of standard
5NN to its weighted-distance version. The i-th row contains the name of the ensemble-
ranking pair that provided the feature importances and was tested against standard
5NN; the p-value pi; and the corrected value α̂i.

ensemble-ranking pi α̂i

RF-Genie3 0.000146 0.006250

RF-Symb50 0.001938 0.012500

ET-Symb50 0.009776 0.018750

Bagging-RF 0.017592 0.025000

ET-Genie3 0.020120 0.031250

Bagging-Genie3 0.028920 0.037500

Bagging-Symb50 0.031316 0.043750

RF-RF 0.035411 0.050000

for Random Forests and Bagging are given in Fig. 2. For Random Forests, the
Friedman test found that there are statistically significant differences among the
three ranking methods with p = 0.00316. The follow-up Nemenyi test reveals
that the performance of a feature ranking obtained with Genie3 is statistically
significantly better than the Random Forest ranking.

The differences between the different rankings for the Bagging ensemble
method are not statistically significant (p = 0.347) and we can note that the
three ranking methods have close average ranks. Furthermore, the Wilcoxon test
for the Extra Trees ensemble revealed that there is no statistically significant dif-
ference (p = 0.191) between the two rankings, but Genie3 has a better sum of
ranks than Symb50. Finally, the Random Forest ranking should be avoided: it
has the worst computational complexity and it is consistently the worst perform-
ing ranking method (both for the Bagging and RF ensemble method).

(a) Random Forest (b) Bagging

Fig. 2. The average ranks diagrams for Nemenyi’s post-hoc test at a significance level
of α = 0.05, performed for the rankings RF, Genie3 and Symb50, for (a) RF ensemble
method and (b) Bagging ensemble.
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5.3 Comparison of the Different Ensemble Methods

We also compare the performance of the different ensemble methods when used
together with a given ranking method. In other words, we perform three analyses
where the ranking method is fixed in each analysis. The Friedman test for Genie3
and Symb50 and the Wilcoxon test for Random Forest ranking did not rejected
the null hypotheses with p-values 0.403, 0.346 and 0.176, respectively. Neverthe-
less, top ranked ensemble methods for the given ranking methods are: Random
Forests for Genie3, and Bagging for Symb50 and Random Forests ranking.

5.4 Selecting the Best Ensemble-Ranking Pair

Finally, one of the goals of this paper is to select the best ensemble-ranking pair
of methods. For this purpose, we evaluate the performance of the 8 ensemble-
ranking pairs by performing a Friedman test. It reveals that there are statistically
significant differences in performance among the methods and the results of the
post hoc Nemenyi test are shown in Fig. 3. The average ranks diagram shows
that the best performing pair is the Random Forest ensemble method coupled
with the Genie3 ranking method. Moreover, the best performing method pair is
statistically significantly better than the worst performing method pair (Random
Forest ensembles coupled with Random Forest ranking).

Fig. 3. The average ranks diagram from the Nemenyi’s post-hoc test, performed for
all ensemble-ranking pairs, at a significance level of α = 0.05.

6 Conclusions

In this work, we proposed three base feature ranking methods that can be cou-
pled with three ensemble learning methods. We investigated and evaluated eight
ensemble-ranking options. These are the first methods that can address the task
of feature ranking in the case of MTR with numeric and nominal attributes. More
specifically, we extend Genie3, Random Forest and Symbolic ranking towards
the task of MTR. We then coupled these rankings with the following ensemble
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learning methods: Bagging, Random Forests and Extra trees – all of which use
predictive clustering trees as base predictive models.

We perform an extensive experimental evaluation of the proposed feature
ranking methods using 26 benchmark MTR datasets. The evaluation is based
on a 5NN predictive model that uses the obtained feature importances as weights.

The results show that all of the proposed eight methods yield a relevant
feature ranking, i.e., the 5NN predictive models that use the feature importances
as weights statistically significantly outperform the standard 5NN. Next, the best
values for the weight parameter of the Symbolic ranking is 0.5. Furthermore, the
best performing method is the one that uses Random Forests for learning the
ensemble and Genie3 for calculating the feature importances. Moreover, this
method is also computationally efficient: Random Forests are among the most
efficient ensemble learning methods and Genie3 adds just a small computational
cost of a single traversal of each tree in the ensemble.

We plan to extend this work along three major directions. First, we will
compare the proposed methods to methods that use the data transformation
approach, i.e., transform a MTR problem to a set of STR problems, coupled
with a feature ranking algorithm for STR. Second, we will extend the proposed
method to other structured output prediction tasks, such as multi-label classifi-
cation, and hierarchical multi-label classification. Finally, we will investigate the
influence of the ensemble size on the produced feature rankings.
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Abstract. Recommender Systems have become increasingly popular,
propelling the emergence of several algorithms. As the number of algo-
rithms grows, the selection of the most suitable algorithm for a new task
becomes more complex. The development of new Recommender Sys-
tems would benefit from tools to support the selection of the most suit-
able algorithm. Metalearning has been used for similar purposes in other
tasks, such as classification and regression. It learns predictive models to
map characteristics of a dataset with the predictive performance obtained
by a set of algorithms. For such, different types of characteristics have
been proposed: statistical and/or information-theoretical, model-based
and landmarkers. Recent studies argue that landmarkers are successful
in selecting algorithms for different tasks. We propose a set of landmark-
ers for a Metalearning approach to the selection of Collaborative Fil-
tering algorithms. The performance is compared with a state of the art
systematic metafeatures approach using statistical and/or information-
theoretical metafeatures. The results show that the metalevel accuracy
performance using landmarkers is not statistically significantly better
than the metafeatures obtained with a more traditional approach. Fur-
thermore, the baselevel results obtained with the algorithms recom-
mended using landmarkers are worse than the ones obtained with the
other metafeatures. In summary, our results show that, contrary to the
results obtained in other tasks, these landmarkers are not necessarily the
best metafeatures for algorithm selection in Collaborative Filtering.

Keywords: Metalearning · Subsampling landmarkers · Collaborative
filtering

1 Introduction

Recommender Systems (RSs) recommend potentially interesting items to users in
order to deal with the information overload problem [1]. Collaborative Filtering
(CF) is the most popular of the available recommendation strategies. Despite the
large amount of research dedicated to this topic, there are still several challenges
that need to be addressed. One of them is how to choose the best CF algorithm
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 189–203, 2017.
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for a given dataset. Since training and evaluating all algorithms for the new
dataset requires a prohibitive amount of time and resources, automatic solutions
based on prior knowledge are of the utmost importance. Metalearning (MtL) is
an approach useful for that purpose [7].

MtL is concerned with discovering patterns in data and understanding the
effect on the behavior of algorithms [30]. It has been extensively used for algo-
rithm selection [6,27,28]. MtL casts the algorithm selection problem as a learning
task. For such, it uses a metadataset, where each meta-example corresponds to
a problem. For each meta-example, the predictive features are characteristics
(metafeatures) extracted from the corresponding problem and the target rep-
resents the performance of algorithms when applied to the problem (metatar-
get) [5].

Metafeatures are regarded as the most important element in a MtL task [5].
It is essential for them to be representative of the problem at hand. The metafea-
tures used must contain information that discriminates the performance of dif-
ferent algorithms in such a way that the patterns found are useful for future
applications. However, this is not a trivial task. The research in this topic
has originated several different types of metafeatures, such as statistical and/or
information-theoretical, model-based and landmarkers, which are related to the
dataset, model and performance properties, respectively [29,30].

The algorithm selection task for CF has received considerable attention
recently [2,7,10,14,23]. Related work has investigated the effect of different
statistical and information-theoretical metafeatures with positive performances.
However, none has investigated the merits of landmarkers as metafeatures.
Since these metafeatures use simple estimates of performance to predict the
actual performance of algorithms, its efficacy in solving the algorithm selec-
tion problem is not only expected but has been demonstrated in various other
tasks [3,11,17,18,20,21,25]. Therefore, it is important to understand if their
effect is similarly positive in selecting CF algorithms.

Hence, the main contribution of this paper is the proposal of several sub-
sampling landmarkers and their experimental validation in terms of their merits
to select CF algorithms. To do so, this paper provides an extensive collection
of baselevel datasets, algorithms and evaluation measures similarly to the ones
found in the state of the art [7]. The subsampling landmarkers are proposed and
analyzed as relative landmarkers. Such landmarkers look not only towards the
absolute performance estimations, but also to the relative performance between
landmarkers. Our motivation lies in ensuring a proper exploration of the land-
markers concept for the CF scope. All different metafeatures are compared to
the state of the art approach in statistical and information-theoretical metafea-
tures [7] in terms of metalevel accuracy and impact on the baselevel performance.
The results show that landmarkers are not statistical significantly better than
the statistical and/or information-theoretical metafeatures.

This document is organized as follows: Sect. 2 presents related work on CF,
MtL and algorithm selection for CF; Sect. 3 presents the approach used for sub-
sampling landmarkers and relative landmarkers and explains the experimental
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setup. In Sect. 4, several aspects of the proposed approach are evaluated and
discussed. Section 5 presents the conclusions and directions for future work.

2 Related Work

2.1 Collaborative Filtering

RSs were proposed to complement Information Retrieval systems, providing an
alternative to solve the problem of information overload and recommend poten-
tially interesting items to users [4]. RSs are inspired by human social behavior,
where it is common to take into account the tastes, opinions and experiences
of acquaintances when making decisions [4]. Several strategies are used in such
systems, such as: (1) recommend items that similar users find relevant, (2) rec-
ommend items with similar characteristics, (3) recommend items depending on
the user’s context, (4) recommend items based on social relationships and (5)
recommend items using knowledge about the user’s behavior. From the several
strategies available, Collaborative Filtering (CF) is the most popular.

CF recommendations are based on the premise that a user will probably like
the items favored by a similar user. CF employs the feedback from each individual
user to recommend items to similar users [33]. The feedback is a numeric value,
proportional to the user’s appreciation of an item. Most feedback is based on a
rating scale, although other variants such as like/dislike actions and clickstream
are also suitable. The data structure used in CF is named rating matrix R. It is
usually described as RU×I , representing a set of users U, where u ∈ {1, ..., N}
and a set of items I, where i ∈ {1, ...,M}. Each element of this matrix (Rui) is
the feedback provided by user u for item i. Figure 1 presents such matrix.

Fig. 1. Rating matrix.

CF algorithms can be organized in two major groups: memory-based and
model-based [4]. Memory-based algorithms apply heuristics to a rating matrix
to compute recommendations, whereas model-based algorithms induce a model
from this matrix. Most memory-based algorithms adopt Nearest Neighbor strate-
gies, while the model-based ones are mostly based on Matrix Factorization [33].
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The evaluation of RSs is usually performed by procedures that split the
dataset into training and testing subsets (using sampling strategies, such as k-
fold cross-validation [16]) and assesses the performance of the trained model on
the testing dataset. Different evaluation metrics exist [22]: for rating accuracy,
error measures such as Mean Absolute Error (MAE) or Root Mean Squared
Error (RMSE); for classification accuracy, one uses Precision/Recall or Area
Under the Curve (AUC); for ranking accuracy, common measures are Normalized
Discounted Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR).

2.2 Metalearning

MtL addresses the algorithm selection problem similarly to a traditional learning
process (see Fig. 2). First, the problems are characterized by a set of measur-
able characteristics (i.e., metafeatures) and the compared algorithms are evalu-
ated according to their performance in the learning task. This creates a meta-
dataset, where each meta-example has as predictive attributes the characteristics
extracted for the problem and the target attribute is usually the algorithm that
obtained the best performance in the specific dataset. Next, a learning algorithm
is trained using the metadataset. The trained model represents patterns in the
data that relate the metafeatures with the best performing algorithms. Hence,
it can be used to predict the best algorithm for a new problem [29].

Fig. 2. Metalearning process [5].

As in any other learning problem, the success of a MtL approach depends
on the information contained in the independent variables, i.e. the metafeatures.
The MtL literature divides metafeatures into three main groups [5,29,30]: sta-
tistical and/or information-theoretical, model-based and landmarkers.

Statistical and/or information-theoretical metafeatures describe the dataset
characteristics using a set of measures from statistics and information theory.
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These metafeatures assume that there are patterns in the data which can be
related to the best algorithms. Examples include simple measures such as the
number of examples and features in the dataset to more advanced measures such
as entropy and kurtosis of features and even correlation between features [5].

Model-based characteristics are properties extracted from models induced
from the dataset. They refer, for instance, to the number of leaf nodes in a deci-
sion tree [5]. The rationale is that there is a relationship between model charac-
teristics and algorithm performance which are dataset-independent. Then, it is
expected that these characteristics are able to discriminate among algorithms.

Finally, landmarkers are fast estimates of the algorithm performance on the
dataset. There are two different types of landmarkers: those obtained from the
application of fast and simple algorithms on complete datasets and those which
are achieved by using complete models for samples of datasets, also known as
subsampling landmarkers [5]. Such metafeatures rely on the assumption that by
estimating the performance of fast and simple models or by using samples of
the data, the performance estimates will correlate well with the best algorithms,
hence enabling future predictions. In fact, these metafeatures have proven suc-
cessful on the selection of algorithms for various tasks [3,11,17,18,20,21,25].

2.3 Algorithm Selection for CF

Related work in algorithm selection for CF has studied the problem using only
statistical and/or information-theoretical metafeatures. These have focused on
different aspects of the data distributions [2,10,14,23], the matrix structure [23]
and neighborhood statistics [14]. A more recent work has combined the majority
of the metafeatures used previously in a single framework [7]. This extensive set
of metafeatures (referred to here as Systematic) are used in our experimental
study in order to properly compare statistical and/or information-theoretical
metafeatures with the set of subsampling landmarkers proposed here.

In order to understand the systematic metafeatures, one must consider first
the framework used to generate them. It requires three main elements: object
o, function f and a post-function pf . The framework applies the function f to
the object o and, afterwards the post-function pf to the outcome of the function
f in order to derive the final metafeature. Thus, any metafeature can be repre-
sented using the following notation: {o.f.pf} [26]. For instance, the metafeature
column.maximum.mean refers to the mean value of all the maximum values in
all columns in the dataset.

Consider now a rating matrix R, with rows (i.e., users) U and columns
(i.e., items) I. The objects to be used in the framework are R, U and I.
The functions f considered to characterize these objects are: original rat-
ings (ratings), count the number of elements (count), mean value (mean)
and sum of values (sum). The post-functions pf are maximum, minimum,
mean, standard deviation (sd), median, mode, entropy, Gini index, skew-
ness and kurtosis. Additionally, we consider 4 simple metafeatures: number
of users, items, ratings and matrix sparsity. This results in 74 metafeatures
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which were reduced by correlation feature selection, ending up with the fol-
lowing set: D.ratings.kurtosis, D.ratings.sd, I.count.kurtosis, I.count.minimum,
I.mean.entropy, I.sum.skewness, nusers, sparsity, U.mean.minimum, U.sum.
kurtosis, U.mean.skewness and U.sum.entropy.

3 Subsampling Landmarkers for Collaborative Filtering

This section presents our proposal of subsampling landmarkers for the selection
of CF algorithms and the experimental procedure used to validate them. Our
motivation for using landmarkers is that, although they have been successfully
applied to the algorithm selection problem in other learning tasks [3,11,17,18,
20,21,25], they were never adapted for selecting CF algorithms. Since there are
no fast/simple CF algorithms, which can be used as traditional landmarkers, we
have followed the alternative approach of developing subsampling landmarkers,
i.e. applying the complete CF algorithms on samples of the data.

3.1 Subsampling Landmarkers

Subsampling landmarkers are based on the estimation of the performance of algo-
rithms on random samples from the original datasets. This means that for each
CF dataset, random samples are extracted. Then, CF algorithms are trained on
these samples and their performance assessed using different metrics. The out-
come is a subsampling landmarker for each pair algorithm/evaluation measure.
In order to properly validate the impact of subsampling landmarkers, we recur
to different ways to take advantage of these metafeatures, also known as relative
landmarkers [11]:

– Absolute: this is the most straightforward approach since it does not operate
any transformation on the subsampling landmarkers. It uses the estimated
performance values as the metafeature.

– Ranking: this approach is based on the ranking of the landmarkers L =
{l1, l2, ..., ln}. Therefore, the metafeatures are now the rank of the landmarker,
where 1 indicates the best landmarker and n the worst.

– Pairwise: this approach performs pairwise comparison for all pairs of land-
markers. Consider two landmarkers li and lj . If the performance of li is
greater, equal or worse than lj , then the final metafeature values are 1, 0
or −1, respectively. Such comparisons are performed for all pairs of land-
markers. Thus n × (n − 1) new metafeatures are added for each evaluation
measure.

– Ratio: this approach also performs pairwise comparisons. However, it does so
by using the ratios of the performances instead of assigning 1, 0 or −1 values.
Given two landmarkers li and lj , a metafeature with the value li/lj is created.

As an example, let us consider two CF algorithms, A and B, and the NMAE
performance measure. Given a data sample, they are applied to it and the cor-
responding NMAE score is computed. Table 1 illustrates such values and all the
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Table 1. Example of relative landmarkers.

Algorithm NMAE Absolute Ranking Pairwise Ratio

A 0.73 0.73 1 1 0.839
B 0.87 0.87 2 −1 1.192

corresponding subsampling landmarkers. Notice Absolute is equal to the original
NMAE, Ranking assigns the ranking of the algorithms, Pairwise assigns 1 to the
best algorithm and −1 to the worst and Ratio presents the ratios of NMAE. It
should be noted that the process is repeated for each evaluation measure.

3.2 Experimental Procedure

The experimental setup used in this work is divided into baselevel and metalevel,
referring, respectively, to the CF and classification stages of the process.

Baselevel. The baselevel setup is concerned with the CF datasets, algorithms
and measures used to evaluate the performance of CF algorithms on those
datasets. The 38 datasets used come from different domains, namely Amazon
Reviews [24], BookCrossing [36], Flixter [35], Jester [13], MovieLens [15], Movi-
eTweetings [9], Tripadvisor [31], Yahoo! [32] and Yelp [34]. It is important to
observe that each domain can contain more than one dataset.

The experiments were carried out with MyMediaLite, a software library for
recommender systems [12]. Two CF tasks were addressed: Rating Prediction
(RP) and Item Recommendation (IR). While RP aims to predict the rating an
user would assign to a new instance, in IR the goal is to recommend a ranked
list of items in terms of user preference. Since the tasks are different, so are the
algorithms and evaluation measures. The following CF algorithms were used for
RP: Matrix Factorization (MF), Biased MF (BMF), Latent Feature Log Lin-
ear Model (LFLLM), SVD++, 3 variants of Sigmoid Asymmetric Factor Model
(SIAFM, SUAFM and SCAFM), User Item Baseline (UIB) and Global Aver-
age (GA). Regarding IR, the algorithms used are BPRMF, Weighted BPRMF
(WBPRMF), Soft Margin Ranking MF (SMRMF), WRMF and Most Popular
(MP). In IR, the algorithms are evaluated using NDCG, while in RP the algo-
rithms are evaluated using NMAE. All experiments use 10-fold cross-validation.

Metalevel. The metalevel is first characterized by the construction of the
metafeatures. This work applies the statistical and/or information-theoretical
metafeatures (described in Sect. 2.2) to all 38 CF datasets to extract the metafea-
tures for the Systematic approach. In order to extract the subsampling landmark-
ers (see Sect. 3.1), random samples of 10% for each of the original 38 CF datasets
are extracted. Next, all algorithms are trained on said samples and their per-
formance assessed via suitable evaluation metrics. This allows the extraction of
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what are referred as the Original relative landmarkers. Afterwards, the remaining
relative landmarkers (Ranking, Pairwise and Ratio) are computed based on the
values for the Original relative landmarker, as explained previously in Sect. 3.1.
The entire process creates 5 different sets of metafeatures.

Two baselevel measures (NMAE and NDCG) are used to create two separate
metatargets. The best algorithm, and consequently the target variable for each
dataset, depends on the evaluation measures. For each pair dataset/evaluation
measure, the best algorithm is chosen as the target variable. Hence, we study the
algorithm selection problem for 2 different metatargets. The final metadatabases,
consisting of combinations of all different metafeatures and metatargets, are the
experimental basis for the algorithm selection problem addressed here.

Since the model selection problem is approached here as a classification task,
11 classification algorithms from the caret package [19] representing several
biases were chosen to address it: ctree, C4.5, C5.0, kNN, LDA, Naive Bayes, SVM
(linear, polynomial and radial kernels), random forest and a baseline algorithm:
Majority Vote. The Majority Vote does not take into account any metafeatures
and always predicts the class which appears more often. Since the metadatasets
have a reduced number of examples, the accuracy of the metalevel algorithms
was estimated using a leave one out strategy.

Meta-level performance is measured in two ways. First, the accuracy of the
meta-level prediction is assessed, i.e. whether the best algorithm is selected or
not. However, in MtL it is also important to understand the impact on the
baselevel performance of the meta-level prediction. It assesses how the algorithms
recommended by the metamodels actually affect the baselevel performance. It is
based on the comparison of baselevel performance between the algorithm selected
by the metamodel and the best possible algorithm. The goal is to understand
what is the actual cost of failing in the prediction of the best algorithm in terms
of baselevel performance.

Consider a dataset D and the performance of n algorithms on D, PD =
{p1, p2, ..., pn}, according to a specific evaluation measure. It is possible to create
a ranking RD = {a1, a2, ..., an} in decreasing order of those performance values.
This means that a1 is the best algorithm on D, with a performance of p1. Con-
sider now that â = aq is the algorithm predicted by a metamodel for dataset D,
q ∈ {1, . . . , n}. The impact at the baselevel of using the metamodel for algorithm
selection is assessed by comparing pq, the performance of the selected algorithm,
with p1, the performance of the best algorithm. In this work, this comparison is
done in three ways: performance (PE), error (ER) and ranking (RK), which are
given by: PE(â, D) = pq, ER(â, D) = p1 − pq and RK(â, D) = q.

The three measures are computed for all datasets and averaged. The com-
parisons average performance (AP), average error (AE) and average rankings
(AR) for a set of M datasets are defined as follows:
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AP (âi) =
∑M

i=1 PE(âi,Di)
M

AE(âi) =
∑M

i=1 ER(âi,Di)
M

AR(âi) =
∑M

i=1 RK(âi,Di)
M

(1)

where âi is the algorithm selected for dataset Di.

4 Results and Discussion

4.1 Metalevel Evaluation

The metalevel accuracy performance for all strategies evaluated in this exper-
imental study can be seen in Fig. 3. For readability purposes, only the perfor-
mance of the best metamodel is presented. After manual inspection, the choice
fell on SVM with polynomial kernel. Two baseline methods are included for fair
comparison. The Majority Vote baseline assesses if the MtL approach is finding
any useful patterns. The Systematic metafeatures baseline assesses if there is any
advantage in using the proposed subsampling landmarkers in the CF scenario.

NDCG metatarget NMAE metatarget
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Fig. 3. Metalevel accuracy for all relative landmarkers and baselines.

Several observations can be made:

– Most landmarkers outperform the Majority Vote baseline. The exceptions are
the Original and Ratio relative landmarkers in the NMAE metatarget.

– Landmarkers are better than the Systematic metafeatures in the NDCG
metatarget.

– Landmarkers have slightly better performance than the Systematic metafea-
tures in the NMAE metatarget: this happens for the Ranking and Pairwise
relative landmarkers.
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Fig. 4. CD diagram for the comparison of metafeature strategies.

The observations seem to indicate that (1) the metafeatures proposed are
better than the baseline in terms of metalevel accuracy and (2) they seem to
have slightly better performances than the Systematic metafeatures. To validate
this assessment, we employ statistical significance tests using Critical Difference
(CD) diagrams [8]. CD diagrams plot the average rank for each strategy and
calculate the CD interval. Strategies connected by a CD line cannot be considered
to perform differently. On the other hand, if two strategies are not connected by
a CD line, they obtain, in fact, different performance, i.e. one strategy is ranked
higher than the other. To apply this framework, we combine the performances
of all relative landmarkers and compare it with the baselines. The statistical
validation confirms the observations made here (see Fig. 4).

4.2 Baselevel Performance Analysis

Figure 5 presents the baselevel performance analysis with regards to the Average
Performance (discussed in Sect. 3.2). The oracle represents an ideal system that
always predicts the best algorithm, and, thus, achieves the best possible perfor-
mance. The performance of the methods were scaled such that it is represented
as a percentage, where the oracle corresponds to 100%. As before, the Majority
Vote and MtL with Systematic metafeatures are used as reference baselines.

The results show that the MtL approach using landmarkers:

– outperforms the Majority Voting baseline on the NDCG metatarget, but not
on the NMAE metatarget.

– never beats the Systematic approach on either metatarget.

The results on the baselevel performance show that, although the landmark-
ers perform better in terms of metalevel accuracy, the same is not true for the
baselevel performance analysis in terms of Average Performance. This shows that
in spite of correctly predicting the best algorithm more often, the performance
of the selected algorithms in terms of the baselevel evaluation measure is worse,
on average. Thus, when the landmarkers fail to predict the correct best algo-
rithm, they usually choose an algorithm with worse performance than when the
systematic metafeatures fail to predict the best algorithm.
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Fig. 5. Baselevel performance analysis regarding Average Performance.
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Fig. 6. Baselevel performance analysis regarding Average Error.

To validate this analysis, we performed the baselevel performance analysis,
based on the Average Error (discussed in Sect. 3.2). The results are presented in
Fig. 6. It shows that the error obtained by the Systematic approach has a smaller
difference to the best error on both metatargets, hence confirming our previous
observation.

In another analysis, we looked towards the Average Ranking (discussed in
Sect. 3.2). The results are presented in Fig. 7. The baselines Majority Vote and
Systematic are included for comparison with the landmarkers. The following
observations regarding the landmarkers can be made:

– They rarely outperform the baseline Majority Voting: this only happens in 3
relative landmarkers in the NMAE metatarget.

– They are always worse than the Systematic metafeatures.

This analysis confirms the reason for the poor performance of landmark-
ers in terms of baselevel performance: the average ranking for the predicted
CF algorithms is always higher than the Systematic approach. This means that
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Fig. 7. Baselevel performance analysis regarding Average Ranking.

the metamodels trained with landmarkers tend to recommend on average the
second best CF algorithm. When we consider the difference in terms of base-
level performance presented in Fig. 6, one understands how costly these mis-
classifications are. These are surprising results, as they contradict the results
in other tasks, where landmarkers are typically better than statistical and/or
information-theoretical measures [3,11,17,18,20,21,25].

4.3 Metaknowledge

Metaknowledge is the knowledge about learning processes acquired through
experience with past learning episodes [30]. It explains how specific metafea-
tures influence which one is the best algorithm. Such knowledge is typically
embedded in the metamodels built and sometimes it is difficult to access and/or
interpret. Furthermore, considering the vast amount of metamodels built and
analyzed so far, it is difficult to discuss all the knowledge potentially obtained
with this study. Here, we address this problem simply by analyzing metafeature
importance.

We analyze all different strategies in terms of feature importance across all
metatargets studied. To do so, we build Random Forest models and take advan-
tage of its inbuilt mechanism for feature importance. We use the implementation
available in the caret package [19], which computes an importance score for each
feature. We average the importance percentages across all models which share
the same metafeatures and present the results in Fig. 8. Features with average
importance below 10% were discarded.

The results show that the Systematic strategy contains the most influen-
tial metafeatures throughout. Special attention goes to the number of users and
the skewness of the distribution of the sum of ratings per item. The remaining
metafeatures focus on the kurtosis and entropy of the distribution of the sum of
ratings of users. In terms of landmarkers, the Original relative landmarker high-
lights the importance of NMAE for SCAFM and LFLLM, while in the Ranking
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relative landmarker, the NDCG for MP is essential. In terms of relative land-
markers which focus on the comparison of landmarkers, the results show that
the comparison of NMAE performances of LFLLM and SUAFM algorithms are
quite important among the Pairwise relative landmarkers. In the Ratio relative
landmarkers, the ratios in terms of NDCG performance between SMRMF and
both WRMF and WBPRMF and the ratio of NMAE between SIAFM and UIB
are the most important ones. Although this analysis lacks some depth in terms
of patterns found in the metamodels, it highlights two very important issues:
(1) which are the most influential metafeatures and (2) since we are using land-
markers, which algorithms and evaluation measures are essential for the problem.
Both are essential for future CF algorithm selection works.

5 Conclusions and Future Work

Landmarkers have been reported as a successful way to characterize problems
in Metalearning approaches to algorithm selection in several tasks. In this work,
we propose a set of subsampling landmarkers for Collaborative Filtering (CF)
methods. The landmarkers were compared with the state of the art systematic
metafeatures, based on statistical and/or information-theoretical measures, both
in terms of metalevel accuracy and baselevel performance analysis. Somewhat
surprisingly, in our experiments, their performance was not statistical signifi-
cantly better than the systematic approach, in terms of metalevel accuracy. Fur-
thermore, the impact on the baselevel performance produces worse results when
using landmarkers in terms of average performance, average error and average
rankings. Thus, the major contributions of this work are: (1) to propose subsam-
pling landmarkers for CF tasks and (2) showing that the widely accepted assump-
tion that landmarkers are better than statistical and/or information-theoretical
metafeatures may not be true in CF. Future work includes the adaptation of
other types of landmarkers for CF, using for instance different sampling strate-
gies and the extension of the experimental procedures in order to allow more
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generic conclusions regarding the impact of metafeatures of different natures on
the CF algorithm selection problem.
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Abstract. Deep neural networks have made a substantial contribution
to the recognition and prediction of complex data in various fields, such
as image processing, speech recognition and bioinformatics. However, it
is very difficult to discover knowledge from the inference provided by a
neural network, since its internal representation consists of many non-
linear and hierarchical parameters. To solve this problem, an approach
has been proposed that extracts a global and simplified structure for a
neural network. Although it can successfully detect such a hidden mod-
ular structure, its convergence is not sufficiently stable and is vulnerable
to the initial parameters. In this paper, we propose a new deep learning
algorithm that consists of recursive back propagation, community detec-
tion using a variational Bayes, and pruning unnecessary connections. We
show that the proposed method can appropriately detect a hidden infer-
ence structure and compress a neural network without increasing the
generalization error.

Keywords: Layered neural networks · Network analysis · Community
detection · Pruning · Variational Bayes method

1 Introduction

Layered neural networks have greatly improved the performance of tasks in var-
ious fields [1,9], including image processing [4,8], speech recognition [2,6] and
bioinformatics [3,5]. Their deeply layered structures with many nonlinear para-
meters have made it possible to successfully perceive and recognize many com-
plex real world data.

An open problem is that it is very difficult to understand or translate the
inference provided by a layered neural network, since it consists of many nonlin-
ear and complex parameters. Despite its powerful ability to represent or predict
data, it is almost impossible to extract knowledge from the internal represen-
tation of a trained neural network in an interpretable way. This becomes an
obstacle when introducing a neural network into applications that require guar-
anteed security and safety, such as driverless vehicles and medical use. In the
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 207–222, 2017.
DOI: 10.1007/978-3-319-67786-6 15
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Fig. 1. The proposed deep learning algorithm, which consists of recursive (A) back
propagation, (B) community and (C) modular structure detection using a variational
Bayes, and (D) the pruning of unnecessary connections.

engineering sense, this causes a difficulty as regards optimizing the hyperpara-
meters or initial parameters, since it requires experimental trials by hand.

Recently, to solve this problem, we proposed a method for extracting a mod-
ular representation, or a global and simplified structure for a layered neural net-
work based on network analysis [14]. It detects communities of units that have
similar patterns of connections, and then defines bundled connections between
the communities. Although it can successfully detect the hidden modular struc-
ture of a neural network, its convergence is not sufficiently stable and is vul-
nerable to the initial parameters. This is partly because it employs an EM
algorithm to find the optimal parameters and community assignments, with
the result that an improved community detection method is required for more
robust optimization.

In this paper, we propose a new algorithm for recursively detecting the com-
munities of a layered neural network with a variational Bayes (or VB) method
(Fig. 1). It is generally known that optimal parameters can be obtained with
a VB method more robustly than with an EM algorithm. We also employed a
method for compressing a neural network by pruning unimportant connections
based on the resulting modular structure. By using this method, we can repre-
sent a trained neural network with essential parameters, without increasing the
generalization error. The preciseness of the modular structure extraction can
also be increased by pruning unnecessary connections.

We show that the proposed method can appropriately reveal the hidden
modular structure of a trained neural network by applying it to both synthetic
and real data in the experiment. By using synthetic data with a hidden embedded
modular structure, we show that the generalization error remains low through
the recursive modular structure extraction. In other words, the proposed method
can properly select and maintain the important connections. The detection of
the modular structure of real data provided various types of information about
the inference given by the neural network. We discuss the details in Sect. 5.
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2 Layered Neural Networks

The function and the training method used here are the same as those in [14].
Let x ∈ R

M and y ∈ R
N be input and output data, respectively. The probability

density q(x, y) is a function of x and y on R
M ×R

N . We assume that a training
data set {(Xi, Yi)}n

i=1 with sample size n is generated independently from q(x, y).
In a layered neural network, a function f(x,w) from x ∈ R

M , w ∈ R
L to R

N is
used to estimate the output y from input x and parameter w.

A layered neural network has two kinds of parameters, w = {ωd
ij , θ

d
i }, where

ωd
ij is the weight of the connection between the i-th unit in the depth d layer

and the j-th unit in the depth d + 1 layer, and θd
i is the bias of the i-th unit

in the depth d layer. Here, input and output layers correspond to the depth 1
and D layer, respectively. If a neural network consists of D layers, its function
is given by

fj(x,w) = σ(
∑

i

ωD−1
ij oD−1

i + θD−1
j ),

oD−1
j = σ(

∑

i

ωD−2
ij oD−2

i + θD−2
j ), · · · , o2j = σ(

∑

i

ω1
ijxi + θ1j ),

where σ(x) = 1/(1 + exp(−x)) is a sigmoid function.
The training error E(w) and the generalization error G(w) are respectively

defined by

E(w) =
1
n

n∑

i=1

‖Yi − f(Xi, w)‖2, G(w) =
∫

‖y − f(x,w)‖2q(x, y)dxdy,

where ‖·‖ is the Euclidean norm of RN . The generalization error is approximated
by

G(w) ≈ 1
m

m∑

j=1

‖Yj
′ − f(Xj

′, w)‖2,

where {(Xj
′, Yj

′)}m
j=1 is a test data set that is independent of the training data

set taken from q(x, y).
By adopting the LASSO method [7,13], in which the minimized function is

defined by H(w) as given below, we can obtain a sparse neural network.

H(w) =
n

2
E(w) + λ

∑

d,i,j

|ωd
ij |,

where λ is a hyperparameter. The parameters are trained by the stochastic
steepest descent method. Let Hi(w) be the training error computed from only
the i-th sample (Xi, Yi). The parameter update is given by

Δw = −η∇Hi(w) = −η
(1

2
∇{‖Yi − f(Xi, w)‖2} + λ sgn(w)

)
. (1)
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Here, η is defined for training time t such that η(t) ∝ 1
t , which is sufficient for

the convergence of the stochastic steepest descent. Equation (1) is calculated
numerically by the procedure shown in Algorithm 1 of [14], which is called error
back propagation [12,15]. In this paper, we set the number of iterations per data
a1 in [14] at 2000. By using this algorithm with the LASSO method, we obtain
a neural network whose redundant weight parameters are close to zero.

3 Recursive Extraction of Modular Structure
from Layered Neural Networks Using Variational
Bayes Method

3.1 Community Detection Using Variational Bayes Method

We propose a new algorithm for detecting communities from a layered neural
network using the VB method. This method is an extension of the conventional
method that detects communities using the EM algorithm [14], whose community
detection method is based on the one proposed in [10].

Let πc be the probability that a unit in the depth d layer belongs to the
community c. The conditional probabilities of incoming and outgoing connec-
tion of the depth d layer are represented by the two parameters τc,i and τ ′

c,j ,
respectively. Here the parameter τc,i represents the conditional probability that
a connection to a unit in the community c of the depth d layer comes from the
i-th unit in the depth d − 1 layer. The parameter τ ′

c,j represents the conditional
probability that a connection goes to the j-th unit in the depth d + 1 layer.
From the definition, the parameters π = {πc}, τ = {τc,i}, τ ′ = {τ ′

c,j} satisfy
the following normalization condition.

∑

c

πc = 1.
∑

i

τc,i = 1.
∑

j

τ ′
c,j = 1.

Let gk be the community of the k-th unit in the depth d layer. We assume
that the probability of a community assignment g = {gk} is defined as a function
of the adjacency matrices A and B. Here, the adjacency matrix A = {Ai,k}
represents the connections between two layers of depths d−1 and d. The element
Ai,k is one if the absolute value of the connection weight between the i-th unit
in the depth d − 1 layer and the k-th unit in the depth d layer is larger than
ξ, otherwise it is zero, where ξ is a weight removing hyperparameter. Similarly,
each element Bk,j of the adjacency matrix B is defined by the hyperparameter
ξ and the connection weight between the k-th unit in the depth d layer and the
j-th unit in the depth d + 1 layer. The probability of the adjacency matrices
A,B and the community assignment g for given parameters π, τ, τ ′ is given by

Pr(A,B, g|π, τ, τ ′) = Pr(A,B|g, π, τ, τ ′) Pr(g|π, τ, τ ′),

where

Pr(A,B|g, π, τ, τ ′) =
∏

k

{∏

i

(
τgk,i

)Ai,k
}{∏

j

(
τ ′
gk,j

)Bk,j
}

, (2)
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and

Pr(g|π, τ, τ ′) =
∏

k

πgk
. (3)

Let yk,c ≡ δ(c, gk). The variable yk,c takes a value of one if the k-th unit
belongs to the community c, and it is zero otherwise. From Eqs. (2) and (3), the
probabilities of A,B and y for given parameters are given by

Pr(A,B|y, π, τ, τ ′) =
∏

c

∏

k

{∏

i

(τc,i)Ai,kyk,c

}{∏

j

(τ ′
c,j)

Bk,jyk,c

}

=
∏

c

{∏

i

exp
(∑

k

Ai,kyk,c log τc,i

)}{∏

j

exp
(∑

k

Bk,jyk,c log τ ′
c,j

)}
, (4)

and

Pr(y|π, τ, τ ′) =
∏

k

∏

c

(πc)yk,c =
∏

c

exp(
∑

k

yk,c log πc). (5)

From Eqs. (4) and (5), we obtain the following equation.

Pr(A,B, y|π, τ, τ ′) =
∏

c

[
exp

(∑

k

yk,c log πc

)

{∏

i

exp
(∑

k

Ai,kyk,c log τc,i

)}{∏

j

exp
(∑

k

Bk,jyk,c log τ ′
c,j

)}]
. (6)

Let the Dirichlet distributions φ1(π|α), φ2(τ |β) and φ3(τ ′|γ) be the prior
probability distributions of the parameters π, τ and τ ′, respectively, where α =
{αc}, β = {βc,i} and γ = {γc,j} are the hyperparameters. The probability
distributions φ1(π|α), φ2(τ |β) and φ3(τ ′|γ) are given by

φ1(π|α) =
1

Z1(α)

∏

c

(πc)αc−1 =
1

Z1(α)

∏

c

exp
(
(αc − 1) log πc

)
,

φ2(τ |β) =
1

Z2(β)

∏

c

∏

i

(τc,i)βc,i−1 =
1

Z2(β)

∏

c

∏

i

exp
(
(βc,i − 1) log τc,i

)
,

φ3(τ ′|γ) =
1

Z3(γ)

∏

c

∏

j

(τ ′
c,j)

γc,j−1 =
1

Z3(γ)

∏

c

∏

j

exp
(
(γc,j − 1) log τ ′

c,j

)
,(7)

where

log Z1(α) =
∑

c

log Γ (αc) − log Γ (
∑

c

αc),

log Z2(β) =
∑

c

{∑

i

log Γ (βc,i) − log Γ (
∑

i

βc,i)
}

,

log Z3(γ) =
∑

c

{∑

j

log Γ (γc,j) − log Γ (
∑

j

γc,j)
}

.
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Here, Γ (x) is a gamma function. From Eq. (7), the joint probability of the adja-
cency matrices, the community assignment and the parameters is given by

Pr(A,B, y, π, τ, τ ′) = Pr(A,B, y|π, τ, τ ′) φ1(π|α) φ2(τ |β) φ3(τ ′|γ)

∝ exp
(∑

c

{
(
∑

k

yk,c + αc − 1) log πc

}
+

∑

c

{∑

i

((
∑

k

Ai,kyk,c + βc,i − 1)

log τc,i)
}

+
∑

c

{∑

j

((
∑

k

Bk,jyk,c + γc,j − 1) log τ ′
c,j)

})
. (8)

Let Pr(y, π, τ, τ ′) = Pr(y, π, τ, τ ′|A,B, α, β, γ) be the posterior distribution
of (y, π, τ, τ ′) for a given (A,B, α, β, γ). From Eq. (8), it is given by

Pr(y, π, τ, τ ′) ∝ exp
(∑

c

{
(
∑

k

yk,c + αc − 1) log πc

}

+
∑

c

{∑

i

((
∑

k

Ai,kyk,c + βc,i − 1) log τc,i)
}

+
∑

c

{∑

j

((
∑

k

Bk,jyk,c + γc,j − 1) log τ ′
c,j)

})
. (9)

We approximate the above posterior distribution with the product of two
independent functions: q(y)r(π, τ, τ ′). The self-consistent condition that min-
imizes the Kullback-Leibler divergence from q(y)r(π, τ, τ ′) to Pr(y, π, τ, τ ′) is
given by

q(y) = Er(π,τ,τ ′)[Pr(y, π, τ, τ ′)], r(π, τ, τ ′) = Eq(y)[Pr(y, π, τ, τ ′)], (10)

which are equivalent to

q(y) ∝ exp
(∫∫∫

r(π, τ, τ ′) log Pr(y, π, τ, τ ′)dπdτdτ ′
)
,

r(π, τ, τ ′) ∝ exp
(∫

q(y) log Pr(y, π, τ, τ ′)dy
)
. (11)

Here, variables ŷk,c, α̂c, β̂c,i, γ̂c,j exist such that Eq. (11) is rewritten as follows.

q(y) ∝ exp
(∑

c

∑

k

yk,c(log ŷk,c − C0)
)
,

r(π, τ, τ ′) ∝ exp
(∑

c

(α̂c − 1) log πc +
∑

c

∑

i

(β̂c,i − 1) log τc,i

+
∑

c

∑

j

(γ̂c,j − 1) log τ ′
c,j

)
, (12)

where C0 is a constant and
∑

c ŷk,c = 1. The optimal variables ŷk,c, α̂c, β̂c,i, γ̂c,j

are found with a VB algorithm. The variables α̂c, β̂c,i, γ̂c,j with a given ŷk,c are
recursively optimized.
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Theorem 1. If variables ŷk,c, α̂c, β̂c,i, γ̂c,j minimize the Kullback-Leibler diver-
gence from q(y)r(π, τ, τ ′) to Pr(y, π, τ, τ ′), then they satisfy

α̂c = αc +
∑

k

ŷk,c, β̂c,i = βc,i +
∑

k

Ai,kŷk,c, γ̂c,j = γc,j +
∑

k

Bk,j ŷk,c, (13)

and

log ŷk,c = ψ(α̂c) − ψ(
∑

c

α̂c) +
∑

i

Ai,k(ψ(β̂c,i) − ψ(
∑

i

β̂c,i))

+
∑

j

Bk,j(ψ(γ̂c,j) − ψ(
∑

j

γ̂c,j)) + C0, (14)

where ψ(x) is a digamma function, and the free energy F is given by

F = − log Z1(α̂) + log Z1(α) − log Z2(β̂) + log Z2(β) − log Z3(γ̂) + log Z3(γ)

−
∑

k

∑

c

ŷk,c log ŷk,c. (15)

Proof. Equation (12) is equivalent to the following equations.

q(y) ∝
∏

c

∏

k

(ŷk,c)yk,c ,

r(π, τ, τ ′) ∝
∏

c

(πc)α̂c−1 ×
∏

c

∏

i

(τc,i)β̂c,i−1 ×
∏

c

∏

j

(τ ′
c,j)

γ̂c,j−1. (16)

Equation (16) shows that q(y) is a multinomial distribution and r(π, τ, τ ′) is a
Dirichlet distribution, so the expected value of each variable is given by

Eq(y)[yk,c] ∝ ŷk,c, Er(π,τ,τ ′)[log πc] = ψ(α̂c) − ψ(
∑

c

α̂c),

Er(π,τ,τ ′)[log τc,i] = ψ(β̂c,i) − ψ(
∑

i

β̂c,i),

Er(π,τ,τ ′)[log τ ′
c,j ] = ψ(γ̂c,j) − ψ(

∑

j

γ̂c,j). (17)

From Eqs. (9) and (17), the following equations hold.

Eq(y)[log Pr(y, π, τ, τ ′)] =
∑

c

{
(
∑

k

ŷk,c + αc − 1) log πc

}
+

∑

c

{∑

i

((
∑

k

Ai,k

ŷk,c + βc,i − 1) log τc,i)
}

+
∑

c

{∑

j

((
∑

k

Bk,j ŷk,c + γc,j − 1) log τ ′
c,j)

}
+ C1,

Er(π,τ,τ ′)[log Pr(y, π, τ, τ ′)] =
∑

c

{
(
∑

k

yk,c + αc − 1)(ψ(α̂c) − ψ(
∑

c

α̂c))
}

+
∑

c

{∑

i

((
∑

k

Ai,kyk,c + βc,i − 1)(ψ(β̂c,i) − ψ(
∑

i

β̂c,i)))
}

+
∑

c

{∑

j

((
∑

k

Bk,jyk,c + γc,j − 1)(ψ(γ̂c,j) − ψ(
∑

j

γ̂c,j))
}

+ C2, (18)
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Algorithm 1. Community detection algorithm based on VB method
Input: αc = α, βc,i = β, γc,j = γ, where in this paper α = β = γ = 1.
Output: probability of community assignment {ŷk,c}.

for each layer, do
Randomly choose variables {ŷk,c}. In this paper, we defined ŷk,c = (10 +

dyk,c)/
∑

c

(
10 + dyk,c

)
, where dyk,c was independently generated from a uniform

distribution on (0, 1).
for t = 1 to 100 do

Update α̂c, β̂c,i, γ̂c,j with Eq. (13).
Update ŷk,c with ŷk,c = exp(Lk,c − Maxk)/

∑
c exp(Lk,c − Maxk),

where Lk,c = ψ(α̂c) − ψ(
∑

c α̂c) +
∑

i Ai,k{ψ(β̂c,i) − ψ(
∑

i β̂c,i)} +∑
j Bk,j{ψ(γ̂c,j) − ψ(

∑
j γ̂c,j)}, and Maxk = maxc Lk,c.

end for
end for

where C1 and C2 are constants.
From Eqs. (10) and (12), the following equations hold.

∑

c

(α̂c − 1) log πc +
∑

c

∑

i

(β̂c,i − 1) log τc,i +
∑

c

∑

j

(γ̂c,j − 1) log τ ′
c,j + C3

=
∑

c

{
(
∑

k

ŷk,c + αc − 1) log πc

}
+

∑

c

{∑

i

((
∑

k

Ai,kŷk,c + βc,i − 1) log τc,i)
}

+
∑

c

{∑

j

((
∑

k

Bk,j ŷk,c + γc,j − 1) log τ ′
c,j)

}
+ C1, (19)

and
∑

c

∑

k

yk,c log ŷk,c + C4 =
∑

c

{
(
∑

k

yk,c + αc − 1)(ψ(α̂c) − ψ(
∑

c

α̂c))
}

+
∑

c

{∑

i

((
∑

k

Ai,kyk,c + βc,i − 1)(ψ(β̂c,i) − ψ(
∑

i

β̂c,i)))
}

+
∑

c

{∑

j

((
∑

k

Bk,jyk,c + γc,j − 1)(ψ(γ̂c,j) − ψ(
∑

j

γ̂c,j))
}

+ C2, (20)

where C3 and C4 are constants. From Eq. (19), C1 = C3 and Eq. (13) hold, and
from Eq. (20), Eq. (14) holds, where C0 is a constant. �	
In this paper, we define the constant C0 so that

∑
c ŷk,c = 1. The whole algorithm

of community detection based on the VB method is shown in Algorithm 1.

3.2 Modular Representation of Layered Neural Networks

With the previous method [14], we determined bundled connections that summa-
rize multiple connections between pairs of communities, thus defining the mod-
ular representation of a layered neural network. In this paper, we used Method 2
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Algorithm 2. A recursive algorithm of modular structure extraction and pruning
Input: a set of variables κ = {κd

ij} is initially defined by κd
ij = 0 for all d, i and j.

Output: a set of parameters of a neural network {ωd
ij , θ

d
i }.

for u = 1 to 5 do
(1) Train a layered neural network based on the steepest descent method (Sect. 2).
Here, do not update the connection weight ωd

ij iff κd
ij = 1 holds.

(2) Define the adjacency matrices A and B from the connection weights ω.
(3) Extract the modular structure of the trained neural network based on the
adjacency matrices A and B (Algorithm 1).
(4) Any connection weight ωd

ij is set at zero iff the two communities that it connects
do not have a bundled connection.
(5) Define the variables {κd

ij} by κd
ij = δ(ωd

ij , 0).
end for

and 3 in [14]. We used these methods to define bundled connections based on
the connection ratio between pairs of communities. In the experiment, we set
the threshold ζ for defining bundled connections at 0.2.

3.3 Recursive Extraction of Modular Structure and Pruning

The modular structure obtained by the method shown in Sects. 3.1 and 3.2
serves as a clue for selecting important connections in a layered neural network.
Here, we propose a new algorithm for compressing a layered neural network by
recursively performing back propagation learning, modular structure extraction,
and pruning redundant connections (Fig. 1). The modular structure of a layered
neural network reveals the strength of connections between communities by bun-
dled connections (Sect. 3.2). Therefore, we assume that the connections between
two communities that have no bundled connection are relatively unimportant in
terms of inference. Pruning, or setting the weight values at zero, of all of such
unimportant connections would enable us to compress a neural network struc-
ture and thus make it simpler without any increase in the generalization error.
After pruning the unimportant connections, only the weights of the remaining
connections are trained again, using the current weights as the initial values
for the second training. Thus, the connection weights and modular structure
of a layered neural network can be optimized by recursively applying training,
community detection and pruning (Algorithm 2).

4 Experiment

We applied the proposed method to synthetic (Sect. 4.1) and real (Sect. 4.2)
data to discover the hidden modular structure of layered neural networks. In
both experiments, the following process was performed:

1. The data normalization, the initial parameter settings and the visualization
of the result were undertaken as in the experiment described in [14] (1), (2),
(3), (6), and (7).
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2. The connection matrix Ad
ij = a × 0.99 if the absolute value of the connection

weight between the i-th unit in the depth d − 1 layer and the j-th unit
in the depth d layer is larger than a certain threshold ξ, otherwise Ad

ij =
a×0.01. Note that a×0.99 and a×0.01 are used instead of a and 0 for stable
computation. Similarly, Bd

ij is defined from the connection weight between the
i-th unit in the depth d layer and the j-th unit in the depth d+1 layer. All units
are removed that have no connections to other units. The hyperparameter
a is used to increase the apparent number of data or connections in the
neural network. By using this, the units are more likely to be decomposed
into multiple different communities. We set ξ at 0.1, and a at one for Exp.1
(Sect. 4.1) and at five for Exp.2 (Sect. 4.2).

3. For each layer in a trained neural network, 100 community detection tri-
als were performed. We defined the community detection result as one that
achieved the largest expected log likelihood for an EM algorithm or the lowest
free energy for a VB algorithm in the last of 100 iterations of the algorithm.

4. The hyperparameters were set as follows:
– Number of training data sets n: 3000 (Exp.1) and 1044 (Exp.2).
– Number of test data sets m: 3000 (Exp.1) and 0 (Exp.2).
– Number of units in the input, hidden and output layers: {45, 45, 45}

(Exp.1) and {31, 20, 16} (Exp.2).
– Number of hidden layers: 1 (Exp.1) and 2 (Exp.2).
– Hyperparameter of LASSO λ: 1.0×10−7 (Exp.1) and 3.0×10−7 (Exp.2).
– Number of communities per layer: 5 (Exp.1) and 10 (Exp.2).
– Method for defining bundled connections: Method 2 in [14] (Exp.1) and

3 (Exp.2).
– Minimum and maximum values of normalized input data {xmin, xmax}:

{−3, 3} (Exp.1) and {−1, 1} (Exp.2).

4.1 Discovery of a Hidden Structure in a Layered Neural Network

We show that the proposed method can properly discover the hidden modular
structure of a neural network. We made synthetic data sets using a layered neural
network with the underlying modular structure shown in Fig. 2, trained another
layered neural network using such data, and applied the proposed method.

First, we defined a layered neural network based on Fig. 2. For a pair of
communities with a bundled connection shown in Fig. 2, each connection weight
followed ωd

i,j
i.i.d.∼ N (0, 2), and for one without a bundled connection, no connec-

tions existed. For the pairs of communities connected with dotted line, a con-
nection exists with a probability of 0.5. The connection weights with absolute
values of one or smaller were replaced by 0. The biases of each layer followed
θd

j
i.i.d.∼ N (0, 0.5). Then, input data with 45 dimensions were generated, and their

values followed: xn
j

i.i.d.∼ N (0, 3). The output data were generated by inputting
these data into the above neural network, and then adding independent noise fol-
lowing N (0, 0.05). Finally, we used this data set to train another neural network,
and applied the proposed method to the trained neural network.
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Fig. 2. Ground truth modular structure of a layered neural network trained by syn-
thetic data. Each community contains 15 units.

Input

Output

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Input

Output

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Input

Output

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 3. Community and modular structure extracted from a neural network trained
with synthetic data, by a VB method. The top, middle and bottom figures show the
results of the first, second and third iterations of recursive extraction, respectively.
Solid lines represent connections with positive weights, while dotted lines represent
connections with negative weights.

The results of the community and modular structure of the trained neural
network are shown in Figs. 3 and 4. For comparison, we also performed recur-
sive modular structure detection based on the EM algorithm method [14], whose
results are shown in the bottom three sets of figures. The top, middle and bot-
tom figures show the results of the first, second and third iterations of recur-
sive modular structure detection, respectively. The numbers above the input
layer and below the output layer are the indices of the ground truth commu-
nities of the units. These results show that the proposed method can properly
extract the modular structure underlying the trained neural network defined as in
Fig. 2. The figures second from the top in Fig. 3 show that recursive compression
enabled us to decompose two communities that were initially combined into one.
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Fig. 4. Community and modular structure extracted from the neural network trained
with synthetic data, by the EM algorithm proposed in [14].

This is probably due to the effect of pruning unnecessary connections between
the independent communities. By using a VB method, the proposed technique
can successfully summarize the units with similar connection patterns, while the
previous method based on the EM algorithm tends to decompose the units into
more than the ground truth number of communities.

Figure 5 shows the relationship between the training, generalization error and
connection ratio of the neural network. Through recursive pruning, the number
of connections decrease, thus performing an inference with fewer parameters. As
shown by the gray lines in Fig. 5, an inappropriate community detection result
causes inappropriate pruning, and leads to an increase in the generalization error
in the subsequent training. It is shown that the proposed method can keep the
generalization error low through five iterations, while compressing the number
of connections to about 24% of total connections.

4.2 Analysis of STUDENT ALCOHOL CONSUMPTION Data Set

We analyzed the layered neural network trained with the STUDENT ALCO-
HOL CONSUMPTION Data Set [11], using our proposed method. This dataset
contains the characteristics of secondary school students, including basic infor-
mation such as their sex and age, studying time, grade, and alcohol consumption.
We set the input and output data as Table 1 (Inputs are I1 to 31 and outputs
are O1 to 16). The data of I1 to 3, I5 to 7, I10 to 22, I24 to 29, O1 to 4, O7, and
O8 are defined from the original data as shown in Table 1.
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Fig. 5. Training and generalization errors (four lines) and connection ratio in a neural
network (black and white circles) when using a VB algorithm and an EM algorithm.

The extracted modular structures are shown in Fig. 6. From these results,
we can derive various types of information regarding the inference provided by
a neural network.

1. Community A1 includes student’s age, home address type, student’s guardian
and so on. This community A1 appears to provide most of the basic infor-
mation about a student, and therefore most outputs were inferred using the
inputs in A1.

2. Community A2 consists of three outputs: whether or not the students choose
their school by school reputation (02), weekly study time (O5), and whether
or not they do extra-curricular activities (O7), and this community seems to
indicate whether or not they are diligent students.

3. With recursive modular structure detection, the resulting communities are
different each time. However, there are some communities that always
appeared in the resulting modular structure. For instance, community B1
contains family size, mother’s education, and whether or not the parent’s job
is at home, and this community appeared in all three iterations. Therefore, it
can be inferred that the inputs in B1 are closely related. Similarly, workday
alcohol consumption and number of school absences seem to have a strong
relationship (B2).

4. The bundled connections between communities also provide information
about the relationship between the input, hidden and output units. For exam-
ple, the communities C2 and C3 are used only in inferring the frequency of
going out with friends (C4) from whether or not the father’s job is healthcare
related (C1) in the third iteration, and these four communities compose an
independent neural network with units in other communities.
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Table 1. Notations of the STUDENT ALCOHOL CONSUMPTION Data Set [11].

I1 Course (0: math, 1: Portuguese
language)

I25 Family educational support (0: no, 1:
yes)

I2 School (0: Mousinho da Silveira, 1:
Gabriel Pereira)

I26 Extra paid classes within the course
subject (math or Portuguese) (0: no,
1: yes)

I3 Sex (0: male, 1: female) I27 Attended nursery school (0: no, 1: yes)

I4 Age (from 15 to 22) I28 Internet access at home (0: no, 1: yes)

I5 Home address type (0: rural, 1: urban) I29 With a romantic relationship (0: no, 1:
yes)

I6 Family size (0: ≤3, 1: >3) I30 Quality of family relationships (from 1
- very bad to 5 - excellent)

I7 Parent’s cohabitation status (0: living
together, 1: apart)

I31 Current health status (from 1 - very
bad to 5 - very good)

I8 Mother’s educationa O1 Reason for choosing this school (1:
close to home, 0: otherwise)

I9 Father’s educationa O2 Reason for choosing this school (1:
school reputation, 0: otherwise)

I10 Mother’s job (1: teacher, 0: otherwise) O3 Reason for choosing this school (1:
course preference, 0: otherwise)

I11 Mother’s job (1: healthcare related, 0:
otherwise)

O4 Reason for choosing this school (1:
other, 0: otherwise)

I12 Mother’s job (1: civil services (e.g.
administrative or police), 0: otherwise)

O5 Weekly study time (1: <2 h, 2: 2 to
5 h, 3: 5 to 10 h, or 4: >10 h)

I13 Mother’s job (1: at home, 0: otherwise) O6 Number of past class failures (n if
1≤ n< 3, else 4)

I14 Mother’s job (1: other, 0: otherwise) O7 Extra-curricular activities (0: no, 1:
yes)

I15 Father’s job (1: teacher, 0: otherwise) O8 Wants to take higher education (0: no,
1: yes)

I16 Father’s job (1: healthcare related, 0:
otherwise)

O9 Free time after schoolb

I17 Father’s job (1: civil services (e.g.
administrative or police), 0: otherwise)

O10 Going out with friendsb

I18 Father’s job (1: at home, 0: otherwise) O11 Workday alcohol consumptionb

I19 Father’s job (1: other, 0: otherwise) O12 Weekend alcohol consumptionb

I20 Guardian (1: mother, 0: otherwise) O13 Number of school absences (from 0 to
93)

I21 Guardian (1: father, 0: otherwise) O14 First period grade (from 0 to 20)

I22 Guardian (1: other, 0: otherwise) O15 Second period grade (from 0 to 20)

I23 Home to school travel time (1:
<15min., 2: 15 to 30min., 3: 30min.
to 1 h, or 4: >1 h)

O16 Final grade (from 0 to 20)

I24 Extra educational support (0: no, 1:
yes)

a 0: none, 1: primary education (4th grade), 2: 5th to 9th grade, 3: secondary education or
4: higher education.
b from 1 - very low to 5 - very high.
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Fig. 6. Community and modular structure extracted from a neural network trained
with the STUDENT ALCOHOL CONSUMPTION Data Set [11] by the proposed
method.

5 Discussion

Here, we discuss the proposed method from two viewpoints: the understandabil-
ity of modular structure detection and the appropriateness of neural network
compression.

When using real data, the proposed VB algorithm tends to classify units
into a small number of communities, without the constant multiplication of the
adjacency matrix values. This is because the number of data or connections is
insufficient to determine that there are multiple communities in a layer. This
is undesirable in terms of understanding the inference provided by a neural
network, so a method is needed to alleviate such ‘over-summarization’.

From the perspective of generalization error through neural network com-
pression, in the future we replace the pruning method with a more sophisticated
approach. For example, jump of generalization error might be abated by employ-
ing a method to gradually make the connection weights close to zero between
the communities without a bundled connection, instead of completely forgetting
them.
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6 Conclusion

Layered neural networks have greatly improved the performance when recogniz-
ing and predicting complex data in various fields. Despite its powerful ability to
represent data in the real world, it has been very difficult to discover or inter-
pret knowledge from the inference provided by a neural network, since it con-
sists of many nonlinear parameters. In this paper, we proposed a new algorithm
for recursively detecting the modular structure of a neural network with a VB
method, and compressing it by pruning unnecessary connections. The proposed
method can properly detect the hidden modular structure of a neural network,
and retain important connections while maintaining a low generalization error.
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Abstract. In this paper, we construct the first human carbon emis-
sions network which connects more than a thousand geographical loca-
tions based on their daily carbon emissions. We use this network to
enable a data-driven analysis for a myriad of scientific knowledge discov-
ery tasks. Specifically, we demonstrate that our carbon emissions net-
work is strongly correlated with oil prices and socio-economic events like
regional wars and financial crises. Further, we propose the first multilayer
network approach that couples carbon emissions with climate (temper-
ature) anomalies and identifies climate anomaly outlier locations across
60 years of documented carbon emissions data; these outlier locations,
despite having different emission trends, experience similar temperature
anomalies. Overall, we demonstrate how using network science as a key
data analysis technique can reveal a treasure trove of knowledge hidden
beneath the carbon emissions data.

Keywords: Scientific knowledge discovery · Multilayer networks · Car-
bon emissions networks · Network science · Community detection

1 Introduction

Network science has emerged as an important data mining tool for knowledge
discovery in many scientific and engineering domains [27]. Applications of net-
work science range from social networks [20,29], World Wide Web, biological
networks [12], all the way to urban systems [19] and climate networks [16]. Such
single layer networks reveal an enormous amount of knowledge hidden behind
these complex systems. However, as no system can evolve in isolation, a multi-
layer network approach coupling several systems is often more desirable [10,14].
For instance, to accurately capture the climate change dynamics, studying cli-
mate networks alone is not sufficient. Since climate change is mainly driven by
human-made carbon emissions, the study of climate networks must be coupled
with carbon emissions in a multilayer network framework.

To discover latent knowledge in climate systems, prior work uses massive
timeseries meteorological data to construct climate anomaly networks1 (e.g.,
1 In this work, we restrict the climate anomalies to temperature anomalies (i.e., devi-

ation of observed temperature data from long-term means).
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temperature anomaly networks [2,6,11,16,30].) Further, few papers have also
constructed climate networks based on multiple climate variables such as pres-
sure, humidity, wind, precipitation, etc. [23]. This prior art can help discover
a large number of long-range links (or teleconnections) between distant loca-
tions in the climate system; these teleconnections also represent the transport
of energy across the planet and, therefore, are very important to understand the
underlying climate dynamics. This prior climate networks research, however,
does not address one of the main driving forces behind climate change, i.e., the
anthropogenic carbon emissions. Hence, coupling climate networks with carbon
emissions is imperative for capturing the climate change more accurately.

In this paper, therefore, we are concerned with scientific knowledge discovery
using complex networks in a completely new problem space, namely, the anthro-
pogenic carbon emissions. Specifically, we answer the following key questions:

– Can we use principles of network science to construct a global carbon emis-
sions network? Further, can we construct multilayer networks coupling global
climate system with human-made carbon emissions?

– Can we uncover the key socio-economic and political drivers behind the
anthropogenic carbon emissions using network science?

To address these questions, we first construct a global carbon emissions net-
work using daily timeseries carbon emissions data. Then, we use the properties
of this network to infer various socio-economic factors that drive the carbon
emissions across the world. We also couple carbon emissions with temperature
anomalies in a multilayer network framework. We then analyze the resulting net-
work using multilayer community detection tool to reveal its latent multiscale
community structure [17]. Overall, we make the following key contributions:

1. We construct the first global carbon emissions networks connecting more than
1500 locations using 60 years of daily carbon emissions data.

2. We discover that our carbon emissions network demonstrates strong correla-
tions with many socio-economic factors such as regional wars, financial crises,
oil prices, trade, rate of development, GDP growth, etc.

3. We propose the first Carbon Emissions - Temperature Anomaly Multilayer
Network (CETA-MLN) to understand the coupled human-climate dynamics.

4. We analyze our proposed CETA-MLN for about 60 years using multilayer
community detection and identify communities at multiple scales, from within
counties to beyond countries and even across continents. These communities
reveal certain climate anomaly outlier locations which have different carbon
emission trends while experiencing similar temperature anomalies.

Taken together, our contributions demonstrate how our data-driven approach
can reveal a treasure trove of knowledge hidden behind the carbon emissions
data. Such latent insights can be used to understand the impact of political and
socio-economic events on the global carbon emissions.
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2 Data Collection and Preparation

We primarily use two sources of data: (i) Daily temperature anomalies from
HadGHCND dataset [4], and (ii) Monthly carbon emissions from Carbon Diox-
ide Information Analysis Center (CDIAC) [1], for the years 1951–2010. Both
temperature anomaly and carbon emissions span all land-surface areas at dif-
ferent spatial grids − 2.5◦ × 3.75◦ (1◦ × 1◦) latitude-longitude resolution for
temperature anomaly (carbon emissions) data. Next, we convert the temporal
scale of carbon emissions data from monthly to daily using weekly scale fac-
tors [18] which have been created specifically to improve the temporal resolutions
of CDIAC datasets. We further preprocess the carbon emissions data to make
the resolution of spatial grids comparable for both variables. Therefore, both
carbon emissions and temperature anomaly data are now at the same spatial
and temporal scales.

Temperature anomaly data in HadGHCND dataset is missing for some parts
of Australia and most of Southern Africa and South America. Therefore, after
taking missing data into account, we have temperature anomaly data for 932
locations, and carbon emissions data for 1533 locations around the world.
Figure 1(a) shows locations for which either temperature anomaly or carbon
emissions data is available. Of note, these locations serve as network nodes in
our approach.

3 Proposed Multilayer Network

In this section, we first describe our multilayer network construction approach in
detail. We then explain the multilayer community detection used in the paper.

3.1 Building a Multilayer Network

Single-layer networks are represented by an adjacency matrix A, where Aij = W ,
and W is the link weight between nodes i and j. Multilayer networks consist of
two or more single layer networks in which same set of nodes have different
connectivity patterns in different layers. Figure 1(b) shows a multilayer net-
work with layers r ({Aijr}) and s ({Aijs}), coupled by a coefficient, ω. Sim-
ilarly, Fig. 1(c) illustrates our Carbon Emissions-Temperature Anomaly Multi-
layer Network (CETA-MLN). Next, we construct this multilayer network.

We start with 60 years (1951–2010) of daily timeseries data for temperature
anomaly and carbon emissions. Let {T1, T2, T3, . . . , Tp} denote the temperature
anomaly network nodes (i.e., the locations) for which temperature anomaly data
is available. Similarly, let {C1, C2, C3, . . . , Cq} denote the carbon emissions net-
work nodes (i.e., the locations) at which carbon emissions data is available.
Here, p = 932 and q = 1533 are the number of temperature anomaly and carbon
emissions nodes, respectively. Each layer of CETA-MLN is generated using a
cross-covariance based approach [11]. This prior approach constructs a network
from timeseries data, as summarized below for the temperature anomaly layer:
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Fig. 1. (a) Locations for which either temperature anomaly or carbon emissions data is
available. (b) Schematic of a multilayer network where same set of nodes have different
connectivity patterns in different layers. For instance, nodes i and j in layers r and s
are coupled by a coupling coefficient, ω. (c) Example of CETA-MLN for the year 2008.
(Color figure online)

1. For a given year y and each temperature anomaly node Ti, i = 1, 2, 3, . . . , p,
compute the link weight between nodes Ti and Tj (W y

Ti,Tj
) as follows:

W y
Ti,Tj

=
MAX Cy

Ti,Tj
− MEAN Cy

Ti,Tj

STD Cy
Ti,Tj

, (1)

where, Cy
Ti,Tj

is a cross-covariance function between nodes Ti and Tj .
This cross-covariance function is computed using daily data for the years
y, y + 1, y + 2 and the lag parameter (τ) used by cross-covariance is ±72
days [11]. We use this lag since Guez et al. have demonstrated in [11] that
the lag of ±72 days is sufficient to capture interesting climate phenomena
and is long enough so that the weight values (W y

Ti,Tj
) are not sensitive to the

choice of lag. Moreover, −72 to +72 days is equivalent to almost 5 months
which is sufficient to capture the seasonal behavior of temperature and car-
bon emission timeseries. We further conduct an experiment to verify that
doubling this lag does not have a significant impact on the most significant
links of the network. Finally, since W y

Ti,Tj
= W y

Tj ,Ti
, this approach results in

an undirected network. Repeating this process for all possible combinations
of Ti and Tj , we get a fully connected network. We call this network the real
network of temperature anomalies as it is based on real (observed) data. We
obtain such networks for every year y ∈ {1951, 1952, . . . , 2008}.

2. Next, links that are present only due to statistical properties of the data (e.g.,
distribution of values, autocorrelation, etc.) must be removed. Such links do
not represent physical (real) dependencies among nodes. Towards this, we
construct a surrogate dataset [11] by preserving the order of data within each
year, while randomly shuffling the order of years for each node.
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3. We now construct a surrogate network by repeating step 1 for this new shuf-
fled dataset. Surrogate network links occur only due to statistical properties.
Figure 2(a) shows the probability density of the link weights obtained for all
years 1951–2008, both for real and surrogate temperature anomaly networks.
Clearly, the link weights in the surrogate network (green) do not take values
more than W = 4. Hence, links with weights ≤ 4 in the real network occur
purely due to statistical properties and not due to physical dependencies; we
remove these spurious links by setting a threshold of 4.

4. Removing spurious links yields a set of adjacency matrices {Ay
T }, y ∈

{1951, . . . , 2008} which represent the final temperature anomaly networks.
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Fig. 2. Link weight histograms for (a) temperature anomaly, and (b) carbon emissions
real and surrogate networks. Link weight threshold for temperature anomaly (carbon
emissions) networks is 4 (3). Two sample Kolmogorov-Smirnov (KS) Test for tempera-
ture anomaly and carbon emissions link weight distributions resulted in KS statistics,
k = 0.1286 and k = 0.6187 (Asymptotic p-value, p = 0 for both cases), respectively.
Surrogate and the real link weights, hence, come from different distributions. (Color
figure online)

Next, we repeat the above steps to generate the Carbon Emissions (CE)
network. Figure 2(b) shows the probability density of link weights for real (blue)
and surrogate (green) carbon emissions network. The threshold in this case is
W = 3. A sequence of adjacency matrices {Ay

C}, y ∈ {1951, 1952, . . . , 2008}
representing the final carbon emissions networks is thus obtained.

Intuitively, temperature anomaly networks represent a network of co-
occurring temperature anomalies across the world, thereby indicating how differ-
ent regions are impacted by similar climate change. In contrast, carbon emissions
networks represent a proxy for the rate of development in different parts of the
world and how trends for carbon emissions are similar in different regions.

Both temperature anomaly and carbon emissions networks have many com-
mon nodes as they both cover land-surface areas. Therefore, for each year, we can
represent this system as a multilayer network [10] containing the temperature
anomaly layer and the carbon emissions layer for that year. We will call this Car-
bon Emissions and Temperature Anomaly Multilayer Network as CETA-MLN
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throughout the paper. Earlier, we visualized the CETA-MLN for the year 2008
in Fig. 1(c) using MuxViz software [5]. It is evident that both network layers are
very dense in terms of number of links and are characterized by the teleconnec-
tions (i.e., the long-range links) that exist even across continents (e.g., see the
links connecting Canada and Australia in the temperature anomaly layer).

3.2 Community Detection on Multilayer Networks

Community structure on a multilayer network can be detected by maximizing
a multislice modularity quality function. A completely general framework for
multilayer community detection is derived in [17]. For the problem at hand, we
have only two network layers and both layers are changing every year. Therefore,
we adopt the multislice modularity quality function given in [17] as follows:

Qy
multislice =

1
2μ

∑

ijsr

{(
Ay

ijs − γ
kiskjs
2ms

)
δsr + δijω

}
δ(gis, gjr) (2)

where, as shown in Fig. 1(b), i, j are network nodes, s, r ∈ {T,C} refer to network
layers belonging to one of Temperature, T or Carbon Emissions, C layers, and
Ay

ijs is ijth element of adjacency matrix for layer s and year y. Then, kis =∑
j Ay

ijs is the strength of node i in layer s, ms is the total number of links in
layer s, γ is the resolution parameter which controls the size of communities and
all the δ’s are Kronecker Delta (see [17] for more details). Essentially, the terms
associated with δsr and δij account for intra-layer and inter-layer contribution
to community structure, respectively. The last Kronecker Delta ensures that the
summation takes place only if the nodes i in layer s and j in layer r are in the
same group in the multilayer community structure.

The modularity (Eq. 2) measures the stability of communities in the multi-
layer network [15]. Consequently, maximizing the modularity gives the optimal
community structure of the network. We run this multilayer community detec-
tion on CETA-MLN for different values of resolution, γ and coupling, ω para-
meters. Intuitively, increasing the γ, increases the number of communities in the
network (i.e., the resolution of communities increases). Moreover, increasing the
ω makes communities in both layers more and more similar (since the layers get
more tightly coupled). Of note, we have used Generalized Louvain algorithm [13]
in MATLAB which essentially detects the community structure using the app-
roach explained in [17]. Also, we have implemented all of our codes in MATLAB
and visualized the global maps using MATLAB’s mapping toolbox.

4 Results and Discussion

In this section, we present the main results and an in-depth analysis of our
proposed carbon emissions network and CETA-MLN.
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4.1 Knowledge Discovery in Carbon Emissions Networks

We analyze the characteristics of our carbon emissions network in Fig. 3.
Specifically, we plot the crude oil prices in Fig. 3(a), while Fig. 3(b) shows the
dynamics of total number of links in the carbon emissions network with time.
As evident, the number of links in carbon emissions network closely follows the
trends for crude oil prices. For instance, around the year 1980, the oil prices as
well as number of links see a sharp hike, followed by a gradual decrease and
an increase around 2008 again. As with the oil prices, these trends correlate to
socio-political-economic factors like Iran-Iraq war that led to oil crisis in 1980, or
the global financial crisis in 2007–2008, both of which increased the oil prices. In
fact, it has been explicitly documented that a sharp rise in carbon emissions was
observed after the 2007–2008 global financial crisis [22]. Since our carbon emis-
sions network captures such events, it can, therefore, improve our understanding
of latent factors behind rising emissions due to financial issues.

In Fig. 3(c), we demonstrate that there is a strong correlation (=0.65)
between oil prices (blue) and number of links in carbon emissions network (red)
lagged by 5 years (p < 0.05). We show results only for lag = 5 years since the
correlation gets maximized at this lag. This shows that there is indeed a statis-
tically significant correlation between oil prices and carbon emissions network
links. Furthermore, our carbon emissions network captures the same global phys-
ical processes such as wars and financial crises that govern the oil prices. There-
fore, the carbon emissions network properties such as teleconnections, number
of links, etc., can improve our understanding of how fossil fuels are being used
globally and how their usage is affected by such socio-economic factors.

Next, we identify the most significant links in our network by finding the top
0.1% links with highest weights or the top 0.1% links that cover longest distances
(i.e., the longest teleconnections). Of note, these most significant links dynami-
cally change across the years as the network structure changes. In Fig. 3(d), we
show top 0.1% highest weighted links for the year 1974. We observe that a set
of strong links (shown in red) connect two countries which do not seem to have
anything in common − Sweden in Europe and Suriname in South America. In
fact, analyzing the raw Gross Domestic Product (GDP) data for both countries
does not yield any direct relationship between Sweden and Suriname.

We next analyze the normalized GDP for Sweden and Suriname for the 1960–
1980 period (see Fig. 3(e)). Note that, we used this period since we observed the
Sweden-Suriname strong links for the year 1974 which lies within 1960–1980
(and, hence, we did not choose, say, the 1981–2010 period). Moreover, since
GDP data is at yearly timescale, 20 years of data yields 20 data points which
allows a more reliable calculation of statistics such as correlations than, say,
5 years of data. Figure 3(e) clearly demonstrates that there was indeed a very
strong correlation of 0.985 (p < 0.05) between the GDP of Sweden and Suriname
during the 1960–1980 period [24]. This shows that our carbon emissions network
can capture strong economic correlations among different regions, which can
possibly be explained by their rate of development (GDP). Furthermore, this
demonstrates that our Carbon Emissions network can reveal hidden insights



230 K. Bhardwaj et al.

Fig. 3. Characteristics of carbon emissions network. (a) Crude Oil prices from 1968–
2008 (Data Source: [8]). (b) Number of links in the carbon emissions network with
time. (c) Carbon emissions network shows strong correlation with Crude Oil Prices.
(d) The top 0.1% weighted links reveal strong links (shown in red) between Suriname
and Sweden for the year 1974. (e) Normalized Gross Domestic Product (GDP) of
Suriname closely follows that of Sweden, which shows that the two countries exhibit
a very high correlation of 0.98 (p < 0.05) during 1960–1980 (Data Source: [24]). (f)
Top 0.1% longest links of carbon emissions network persistently connect New Zealand
with Europe and U.K. for all the years which could represent their long-term trade
relations. (g) Finally, doubling the lag τ does not impact the most significant links
(e.g., Sweden-Suriname links shown in red). Carbon emissions network, hence, spans
several dimensions from fossil fuel usage, oil prices, wars, GDP, to international trade.
(Color figure online)



Multilayer Networks for Discovering Hidden Carbon Emissions Knowledge 231

which are not so obvious initially (e.g., we can answer questions like why two
very different countries − Sweden and Suriname − could be connected in Carbon
Emissions network).

Let us now examine the top 0.1% longest teleconnection links (i.e.. the links
with longest distances) in our carbon emissions network. As shown in Fig. 3(f),
there are links (shown in red) connecting New Zealand with U.K. and the rest of
Europe. Although, Fig. 3(f) shows these links only for 2003, we found that such
links exist persistently throughout all years. The presence of these links can be
explained by long-term trade relations between New Zealand, U.K. and Europe.
In fact, Europe is the second largest trading partner of New Zealand, only after
Australia2 [9]. Moreover, previous literature also shows that carbon emissions
can get transferred across countries as a result of international trade [21]. Of
note, even though Europe is the second largest trading partner of New Zealand,
New Zealand is not one of the largest trading partners of Europe. Yet, these links
show up in the undirected network because directionality cannot be accounted
for in the current cross covariance-based method (since link weights are derived
using Eq. 1). Nonetheless, directionality is an important issue and will make an
excellent future research work (e.g., similar to recent work reported in [30]).

Finally, we explore the sensitivity of cross-covariance-based link weights to lag
parameter τ by doubling it from ±72 days to ±144 days. The lag of −72 to +72
days almost amounts to 5 months which should take care of the seasonality in
carbon emissions. For instance, in the Sweden-Suriname case (Fig. 3(d)), Sweden
is expected to have more emissions during the winter. Since the timeseries is
lagged by up to 5 months, our approach should automatically account for this
seasonality in emission timeseries data. However, even if we were to consider
that 5 months is not fully sufficient to capture this seasonality, a total lag of
±144 days (which amounts to almost 10 months) will definitely account for this
seasonality. Figure 3(g) shows that for the ±144 days lag, the Sweden-Suriname
links are still strong (occurring within the top 0.75% weights); in fact, we were
able to reproduce other results (e.g., Figs. 2 and 3(f)) for the ±144 days lag.
Therefore, we conclude that the lag, τ = ±72 days is sufficient, and is also long
enough such that the link weights are not sensitive to our choice of lag.

All these latent insights (Fig. 3(a)–(g)) show that our proposed carbon emis-
sions network spans several dimensions from global fossil fuel usage to oil prices
and wars, to GDP and financial crises, all the way to international trade. As a
result, our carbon emissions network can play a fundamental role in the scientific
discovery of how global fossil fuel usage and their resulting carbon emissions get
affected by different political and socio-economic factors.

Correlation vs. Causation. In many scientific problems, correlations are often
important prerequisites for a detailed physics, economics and/or machine learn-
ing based research which can confirm those correlations and in turn improve
the overall understanding of the phenomena. In the present work, therefore, our
results yield correlations and not causation. Much like the existing literature
2 Since we are plotting the 0.1% longest links (distance-wise), the links between

Australia and New Zealand do not appear due to their close proximity.
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on climate networks which establishes correlations among climate anomalies in
distant parts of world and attempts to explain them using relevant physical
phenomena, we identify the presence of the latent correlations in the carbon
emissions network and give possible explanations as to why those links might be
present. To this end, we demonstrate that these links can be possibly explained
by underlying socio-economic drivers of emissions such as wars, trade, financial
crises, rates of development in different regions, etc. These correlations can then
be used to guide research in more specialized domains to improve the under-
standing of latent factors that drive the global anthropogenic emissions and to
establish causal mechanisms between these factors and their resulting emissions.

Indeed, many important studies use correlations to establish a necessary first
step in a new direction. For example, in a completely different domain of can-
cer etiology, correlations have recently been used to hypothesize a new source of
cancer − random mutations during DNA replication which yield a strong corre-
lation of 0.81 between cancer risk and number of stem cell divisions in a given tis-
sue [25,26]. Another, much more relevant example is [7], where the authors estab-
lish correlation between phone call communication networks and socio-economic
well-being of communities. The authors of that work clearly acknowledge that
their work cannot establish causality and yet “social network diversity seems to
be at the very least a strong structural signature for the economic development of
a community”. Similar in spirit, our work establishes such correlations between
the aforementioned socio-economic drivers and anthropogenic carbon emissions
or vice versa. Clearly, understanding how these underlying hidden factors affect
global emissions can have important implications for climate change.

4.2 Community Detection on CETA-MLN

Figure 4 shows the results of multilayer community detection on the CETA-
MLN for three years between 1951 and 2008. Each color represents a community
and locations with same color belong to the same community (for simplicity and
better visualization, we have plotted only the top 20 communities in MATLAB).
Further, we observe that the communities for carbon emissions and temperature
anomaly layers are identical for most of South America and Africa. This is due
to the missing temperature anomaly data for these locations which makes them
disconnected in the temperature anomaly layer, while still being connected in
the carbon emissions layer. Therefore, the multilayer community structure is
entirely governed by the links in the carbon emissions layer for these locations.
As a result, we do not draw any conclusions about South America and Africa.

To emphasize the community structure details, we zoomed the indicated
portions of Fig. 4(a) as shown in Fig. 4(b, c), where the top panel shows the
carbon emission communities, while the bottom panel shows the temperature
anomaly communities. Figure 4(a) shows that certain communities extend across
continents, e.g., the yellow carbon emissions community shown in Fig. 4(a)–(c)
is spread across Alaska, contiguous USA, France, India etc., thereby connecting
North America, Europe and Asia; many other similar examples exist across
the years. Recall that links in our CETA-MLN use cross-covariance between
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Fig. 4. Multilayer community detection on CETA-MLN reveals climate anomaly out-
liers. Each color represents a community and locations with same color belong to the
same community. The colorbar on extreme right represents community labels. For
instance, in the top panel of (a) and (b), USA (Canada) is shown in yellow (blue) color
which means that its community label is 12 (6). Community structure for the year
(a) 1951. Zoomed community structure of (a) is shown in (b) for North America, and
(c) for Europe (top-panel: carbon emissions communities, and bottom panel: temper-
ature anomaly communities). (b, c) clearly show the climate anomaly outliers: USA
and France have similar emissions (yellow emissions community). Germany, France
and Spain contributed unequally to climate change, and yet the entire Europe still
experienced very similar anomalies (cyan anomaly community). Other smaller outliers
include central Italy which has emission trends similar to Germany (blue) but anomaly
trends similar to the entire Europe (cyan). Similar outliers are shown in (d) Green
region north of India in 1971, and (e) Eastern Russia in 2007. (Color figure online)
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timeseries, and basically represent the degree of similarity between the trends of
carbon emissions (or temperature anomalies) at these locations. Also, community
detection intuitively means locations (i.e., nodes) within the communities are
more tightly connected than they are connected across communities. Therefore,
our approach reveals groups of locations, whether nearby or distant, whose daily
carbon emissions or temperature anomaly trends are more similar than those
of other locations. Finally, the communities are spread more across continents
for the carbon emissions layer than the temperature anomaly layer. Locations
in temperature anomaly communities tend to be spatially closer together due to
existence of huge spatial correlations between the nearby regions.

Using the above arguments, we note that the multilayer community struc-
ture also reveals certain groups of locations which have different trends for car-
bon emissions and yet experience similar temperature anomalies. We call such
groups the climate anomaly outliers. Hence, our multilayer network approach
can be used to automatically find, at high spatial resolution, the locations across
the globe which contribute unequally to climate change while facing similar
climate anomalies. Intuitively, these locations have different trends for carbon
emissions and yet face very similar temperature anomalies. To find such outliers,
we carefully examine Fig. 4 for locations which are in different carbon emis-
sions communities, but belong to the same temperature anomaly community.
For instance, in 1951, Spain and Germany have carbon emission trends similar
to those of Canada and Australia (blue carbon emissions community shown in
Fig. 4(a)–(c)). Also, France has carbon emission trends similar to USA (yellow
carbon emissions community shown in Fig. 4(b, c)). Yet, the entire Europe expe-
riences very similar temperature anomalies (cyan temperature anomaly commu-
nity in Fig. 4(c)), even though their contribution to climate change in the form
of carbon emissions was different. More outliers are shown for 1971 and 2007 in
Fig. 4(d, e).

Note that, our approach can also detect these outliers at very high spatial
resolution. For instance, central Italy (near Rome) has emission trends similar to
Germany and Spain (small blue carbon emissions community in Fig. 4(c)), and
yet it faces anomalies similar to the rest of Europe (cyan community in Fig. 4(c)).
This makes our approach truly multiscale since the community structure thus
revealed, ranges from small counties to beyond countries and even across con-
tinents. Therefore, our approach precisely reveals the locations or groups of
countries which experience same degree of climate change despite not equally
contributing to the climate change. Of note, the teleconnection links and out-
liers detected using multilayer community structure are latent insights which
obviously cannot be obtained without using network science.

4.3 Impact of Varying Coupling and Resolution Parameters

In Fig. 5, we show the impact of increasing the resolution parameter, γ on mul-
tilayer community structure. As expected, by increasing γ, we are able to detect
communities and, hence, the climate anomaly outliers at higher spatial resolu-
tions. For instance, we can clearly see that for Australia in Fig. 5(c) and for
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Fig. 5. Impact of varying resolution parameter γ on multilayer community structure:
(a) γ = 0.5, (b) γ = 1, (c) γ = 3, and (d) γ = 5. We have plotted log2(community id) for
better visualization since, as expected, number of communities increases as γ increases.
Using higher values of γ, it is possible to detect community structure and, hence, the
climate anomaly outliers, at higher spatial resolutions. For instance, we can clearly see
that for Australia in (c) and for USA, Canada in (d), many regions belong to different
communities in CE and TA network layers. Similar considerations hold for Europe and
rest of the world. (Color figure online)
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USA, Canada in Fig. 5(d), many regions belong to different communities in car-
bon emissions and temperature anomaly layers. We further see that in Fig. 5(d),
Western USA is in different temperature anomaly community than other regions
in USA. Intuitively, this makes sense since western USA is at a much higher alti-
tude than the rest of USA and, therefore, should face different temperature
anomalies. Finally, as expected, we observed that increasing the coupling para-
meter, ω makes communities more and more similar in both carbon emissions
and temperature anomaly network layers. For a large ω value (e.g., for ω = 10),
the community structure in both layers becomes exactly the same.

5 Conclusion and Future Work

In this paper, we have constructed the first global carbon emissions network
which connects more than a thousand locations across the world based on their
daily carbon emissions. We have quantitatively shown that our carbon emissions
network is strongly correlated with oil prices and socio-economic events such as
regional wars and financial crises. We also discover that our carbon emissions
network spans several dimensions from global fossil fuel usage to GDP, all the
way to international trade. Our carbon emissions network can, therefore, play a
fundamental role in understanding how fossil fuels are being used across the globe
and how they can be affected by the aforementioned socio-economic factors.

Next, we have argued that since climate system cannot evolve in isola-
tion, coupling it to human activities is very important for understanding cli-
mate change. Therefore, we have constructed the first multilayer network which
couples human carbon emissions and climate (temperature) anomalies (CETA-
MLN). We have further conducted community detection on our CETA-MLN
to reveal the multiscale community structure ranging from small counties, to
beyond countries, and even across continents. Finally, these communities are
used to identify climate anomaly outlier locations which have different carbon
emission trends while experiencing similar temperature anomalies. Our analysis
revealed such climate anomaly outliers all over the world by using global data
for carbon emissions and temperature anomalies for about 60 years.

As a future work, we plan to use advanced machine learning models such as
multiview [3], multirelational clustering [28], and factorization over these massive
spatiotemporal datasets for more effective scientific knowledge discovery.
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Abstract. This paper proposes a quality topic extraction on Twitter
based on author’s role on bipartite networks. We suppose that author’s
role which means who were in what group, affects the quality of extracted
topics. Our proposed method expresses relations between authors and
words as bipartite networks, explores author’s role by forming clusters
using our original community detection technique, and finds quality top-
ics considering the semantic accuracy of words and author’s role.

Keywords: Topic extraction · Social media analysis · Twitter analysis ·
Bipartite network · Data mining · Community detection

1 Introduction

This paper proposes a quality topic extraction on Twitter based on author’s
role on bipartite networks. Basically, topic structures on Twitter are not clear
and same words sometimes belong to different topics. Therefore, quality topic
extraction tends to be difficult. We suppose that considering author’s role which
means who were in what group, makes the quality of extracted topics higher.
If there are two topics that have similar words but have different authors, they
may sometimes be considered different topics. We already proposed topic extrac-
tion method by community detection on bipartite networks [1,2]. Our proposed
method expresses relations between authors and words as bipartite networks
and form clusters by a random walk technique. In addition to that, this paper
explores author’s role by forming clusters using our original technique, and finds
quality topics considering the semantic accuracy of words and author’s role.
The paper identifies topics from millions of tweets after the Great East Japan
Earthquake as well. We compute the coherence value [3] that can evaluate the
semantic accuracy, and jaccard coefficient [4] that shows author groups’ similar-
ity, and present that topics with high coherence value and low jaccard coefficient
could be considered as quality topics.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67786-6 17



240 T. Hashimoto et al.

2 Related Work

Most conventional social media analysis methods follow this basic template.

1. Creation of Author-Word Count Matrices: Form high dimensional matrices
(or bipartite graphs) of connections between authors and words over time

2. Clustering: For each matrix, adopt a topic model technique such as LSA [5]
and LDA [6] to form clusters as topics

3. Feature Selection: For each cluster, define important keywords to explain the
contents (LDA also produces keyword importance scores)

4. Topic Detection: Analyze each cluster contents by extracted keywords (fea-
ture words) to identify topics and compute time series similarity between
neighboring clusters to detect changes over time

This conventional methods have problems. Existing data mining techniques
such as graph based methods, LSA and LDA basically can not form quality
clusters. To extract important keywords from clusters, existing techniques gen-
erally use word scoring methods such as TF-IDF [7] or term-score [8]. However,
such scoring methods are based on word occurrence, and high-frequency words
tend to be extracted. Word scoring methods cannot always explain each cluster
with high precision. Sometimes these methods identify false similarities between
clusters over time.

Bhattacharya et al. [9] tried to improve the topic quality of LDA by improved
Query Classifier. However, for their classifier, the corpus based on topics should
be prepared in advance. Endoh et al. [10] proposed emerging topic extraction
method based on Non-negative Matrix Factorization (NMF). They tried to effi-
ciently extract quality topics related to a specific theme, however user should
input specified query words in advance. Fujino et al. [11] and Wang et al. [12]
analyzed tweets over time based on LDA. Zhao et al. [13] analyzed twitter and
news article using LDA. These conventional topic extraction methods are based
on LDA and require topic categories or corpus in advance to improve topic
extraction quality. They are still facing the accuracy problem.

3 Community Detection Technique from Bipartite
Networks

This section briefly introduces the community detection technique from bipartite
networks that was proposed by [1,2].

In network science, a “communities” refers to a group of nodes that are
densely connected each other and are more sparsely connected with nodes outside
the group [14]. Detecting communities in networks is of essential importance
for finding functional modules of complex systems described by networks. To
achieve soft clustering of words appearing in tweets, therefore, the present study
has conducted community detection on bipartite networks of users and words.
Community detection in the present study has adopted a technique which allows
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for defining overlapping between communities. This technique exploits a random
walk in the network from which we wish to detect communities, and is also
applicable to bipartite networks such as those examined in the present study.

The following briefly surveys this technique. Let pt(n) be the probability that
a random walker (say, Mr. X) moving in the network is observed at node n. The
p(n) is given as the steady-state solution of the recursive equation.

pt(n) = ΣN
m=1Tnmpt−1(m) (1)

where Tmn ≡ Anm/Σn′=1An′m is the transition probability from node to node n;
N is the total number of nodes comprising the network, and Anm denotes the
weight of the link from node m to node n. Suppose that p(n) is decomposed as

p(n) = ΣK
k=1πkp(n | k) (2)

where p(n | k) is the conditional probability that Mr. X is observed at node n
provided that he is staying in community k ; πk is the probability of community
k and satisfies.

ΣK
k=1πk = 1 (3)

Individual communities are characterized by the conditional probabilities
because p(n | k) can be viewed as the relative importance of node n in
community k. Therefore, community detection is accomplished once p(n | k) and
πk in decomposition (2) are known. Indeed, this decomposition can be solved
by EM algorithm. The p(n | k) is generally positive for different k’s; this means
that node n belongs to more than one community. One can thus define over-
lapping between communities. The algorithm has only one parameter, α. The
magnitude of this parameter controls the resolution of community detection;
the smaller its magnitude, the larger the number of detected communities. In
addition, the number of communities k that should be detected is provided by
users.

4 Proposed Method

4.1 Step 1: Creation of Author-Word Count Matrices

First, following conventional methods, we group the tweets by a certain period
(e.g. hour) during which they were sent. We then create the sequence of author-
word count matrices, 〈A0, A1 . . . , At, . . . , AT 〉 that summarizes the words used
in tweets by each author during each time slot. These time series matrices,
A0, . . . , AT , are obviously sparse. We assume that any significant event does not
happen in the first time period t = 0, and let A0 be the initial matrix representing
an ordinary state.
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4.2 Step 2: Clustering and Step 3: Feature Selection

We leverage our technique that is explained in Sect. 3, because Author-Word
Count Matrices can be considered as bipartite networks that consist of authors
and words (See Fig. 1). From these bipartite networks, our method forms clusters
and selects feature words. Based on the number of communities (clusters) that we
want to form, our method does soft-clustering and makes clusters Ckt. Where
k is the number of clusters and t identifies the corresponding time slot. Each
cluster has the set of words Wkt and the set of authors Akt. For each word and
for each author id, fuzzy belongingness are calculated respectively. Words and
authors with high fuzzy belongingness should be recognized as feature words
and feature authors in each cluster.

Fig. 1. Bipartite networks by authors and words

4.3 Step 4: Topic Detection

To analyze the semantic accuracy of topics, we utilize the topic coherence mea-
sure [3] that shows the meaning semantic coherence. The coherence is a human
judged quality that depends on the semantics of the words. Mimno et al. [3]
proposed an automated evaluation metric for identifying topics that does not
rely on human annotators or reference collections outside the training data. We
also compute jaccard coefficient J of authors in every topic to evaluate author’s
group similarity between topics. In our experiment, J is computed for every pair
of topics and the average jaccard coefficient should be calculated for each topics.
If J is small, that means the topic is not similar with other topics. Basically
our method extracted number of topics (according to the number of topics k),
but it is not easy to detect actual quality topics from them. Therefore we pro-
pose the way to detect quality topics by coherence value and jaccard coefficient.
We propose that topics with high coherence value and low jaccard coefficient is
quality. We use the scattering diagram with the coherence value and the jaccard
coefficient to evaluate topic quality.

5 Experimental Result

5.1 Target Data

Our target data is over 200 million tweets sent around the time of the Great East
Japan Earthquake that happened at 14:47 on March 11, 2011. The social media
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monitoring company Hottolink [15] tracked users who used one of 43 hashtags
(for example, #jishin, #nhk, and #prayforjapan) or one of 21 keywords related
to the disaster. Later, they captured all tweets sent by all of these users between
March 9th (2 days prior to the earthquake) and March 29th. This resulted in an
archive of around 200 million tweets, sent by around 1 million users. An average
of about 8 million tweets were posted by around 200 thousand authors per day.
The average data size per day was around 8 GB, and the total data size was over
150 GB. This dataset offers a significant document of users’ responses to a crisis,
but its size presents a challenge.

5.2 Step 1: Creation of Author-Word Count Matrices

We began by creating author-word count matrices for our dataset. To segment
tweets that may not have used spaces to delineate word boundaries, we employed
the fast and customizable Japanese morphological analyzer, MeCab [16]. Then
we created author-word count matrices for every 30 min.

5.3 Step 2: Clustering and Step 3: Feature Selection

We set α = 0.001 and k = 100 and run the program developed based on our
technique that was explained in Sect. 3. We also set the number of EM iteration
as 600. Our method formed clusters (≤100) until they converges. As Step 3,
feature authors and words were also extracted by our method.

5.4 Step 4: Topic Detection

We made the scattering diagram with the coherence value and the jaccard
coefficient. Figure 2(a), (b) and (c) show the scatter diagrams for Mar. 11 15:00–
15:30, 15:30–16:00 and 16:00–16:30 topics. Each dot shows one topic.

Generally, topics with high coherence values are considered as quality topics.
On the other hand, the topics shown in Table 1 do not have high coherence
values, but have low jaccard coefficient values. Actually topic #29 shows the
topic about Disneyland situation. There was an unique topic about the Disney
area on Twitter after the earthquake, because the Disney area was very affected
by the quake and guests were stranded there. It was quite unique topic. Topic
#11 is about the Hanshin earthquake that happened in 1995. The Hansihn
earthquake was another big earthquake and people talked about the shortage of
water, body warmer and so on and the bath problem as our previous experiment.
It was also unique topic. Topic #64 is about the play cancellation at the Imperial
Theater due to the earthquake. It was also very specific topic discussed by specific
people.

In Table 2, Topic #22 shows the topic about Disney area situation too. There
was still the specific situation there after the earthquake, and people posted
tweets continuously. Topic #6 is about how to treat injured people with towel
and so on. We suppose this kind of topics happened, because people were aware
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Fig. 2. Coherence Value vs Jaccard Coefficient for topics in Mar. 11 15:00–16:30

Table 1. Topics with low Jaccard Coefficient value in Mar. 11 15:00–15:30

Topic id Coherence Jaccard Feature words (top 30)

29 -1688.53 0.00056 Room, Bookshelf, Condition, Panic, Danger, Ariel, Catastrophe,

Sho, Smiling, Disney, Audience, Wire, Performance, Hard,

Leaving, Generation, Applause, Mermaid LagoonTheater, Seat,

Chaos, Shower, Contents, earthquake, stand, mistake, total

destruction, lazy metal, peeling, changing clothes, e-mail

magazine

11 -1421.55 0.00132 place, securing, gas, Hanshin earthquake, door, main plug, bath,

confirmation, evacuation, experience, food, wasteful, collecting,

case, family, evacuation route, escape path, blanket, route,

bathtub, secondary disaster, body warmer, Earthquake,

Telephone, Water Supply, Okay, Escape Route, Drinking Water,

Aftershock, Pipe

64 -1707.03 0.00095 Canceled, DOCOMO, Today, Performance, Graduation, Sorry,

Imperial theater, Lobby, After, Stage, Opposition, Cotton,

Laughter, Range, Imperial Palace, Ticket, Interluption, Works,

Dance, Earthquake, Points, Courage, Cancer, Metropolitan

Police Department, last year, announcement, huge earthquake,

okay

of injured people surrounding them. Topic #5 is about family, communication
tools. Most of public transportations stopped and people could not return home.
Some people started a discussion to communicate with their family. In Table 3,
Topic #75 shows the topic about the liquefaction phenomenon in Minato-ku
area. The liquefaction phenomenon happened in some places, especially in Tokyo.
Besides the earthquake damage, some people discussed the special status in
Tokyo. Topic #47 is still the topic about Disney area situation. Topic #76 is
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Table 2. Topics with low Jaccard Coefficient value in Mar. 11 15:30–16:00

Topic id Coherence Jaccard Feature words (top 30)

22 -1633.70 0 occurrence, panic, ariel, state, DisneySea, smile, danger, show,

audience, performance, wire, hard, bean idling theater, shake,

exit, audience, applause, clapping, place, earthquake, Miyagi oki

earthquake, leakage, evacuation direction, within, not possible,

Rokkasho village, nice, various places

6 -1732.08 0.00055 Account, Hemostasis, Heart, Bleeding, Compression, Radio,

Person, Injury, Direct, Towel, Consciousness, Self-Standing,

Location Information, Partial, Floor, Address, Handkerchief,

Massage, Earthquake, Allowance, Antenna, Part, one hand, cut,

congestion, close, backwards

5 -1426.32 0.00109 family, communication, means, report, service, entrance, load,

condition, emergency, via, clothing, distance, search, easy, guard,

operation, utilization, head, excess, entrance, preparation,

answering machine, food, Bulletin board, backpack, message,

loud voice, preparation, exchange, carrying

Table 3. Topics with low Jaccard Coefficient value in Mar. 11 16:00–16:30

Topic id Coherence Jaccard Feature words (top 30)

75 -1739.20 0.00089 moving, outing, feet, liquefaction phenomenon, Minato-ku,

chome, metropolitan, sufficient, you, posting, happy, applicable,

point, welcome, list, Tokyo Tower, crisis management, house,

case, Chang, Qiwad, Concrete, Nice, then, fashion, squid,

earthquake, part, tomorrow, also spread

47 -1321.52 0.00071 shake, danger, state, panic, Ariel, DisneySea, smile, outbreak,

show, audience, hard, performance, wire, beim idagun Theater,

cluster, exit, audience, applause, Himeji, Uno, Yuki, Chugoku,

Tempozan, Shodoshima, Kansai, Kobe, earthquake, Wakayama,

Ariel, Shuya

76 -1909.79 0.00107 Abandoned, Impact, Today, Schedule, Shinjuku, Bus, Future,

Live, Announcement, Sorry, Sure, Opening, Performance, Street,

Customer, University, Nuisance, Immediately, Event, Camera,

Postponement, Display, station front, acknowledgment,

intention, paralysis, wait

about a specific event cancellation. The organizer announced their event can-
cellation. Some specific people discussed the topic. We basically evaluate topics
with high coherence values. But, some topics that don’t have high coherence val-
ues but have low jaccard values of author groups that show low similarity with
other author groups can be considered as quality topics as well. We propose to
consider the low similarity of author groups to evaluate the quality of topics.

6 Conclusion

This paper proposed the method considering author’s role to extract accurate
topics from tweets. By our method, quality topics can be extracted from tweets.
For our future work, we intend to improve our methods considering forming the
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general model on topic life cycle and apply the method to time series data. We
plan to compare our method with conventional methods, too.
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Abstract. We consider the problem of mining strongly closed item-
sets from transactional data streams. Compactness and stability against
changes in the input are two characteristic features of this kind of item-
sets that make them appealing for different applications. Utilizing their
algebraic and algorithmic properties, we propose an algorithm based on
reservoir sampling for approximating this type of itemsets in the land-
mark streaming setting, prove its correctness, and show empirically that
it yields a considerable speed-up over a straightforward naive algorithm
without any significant loss in precision and recall. As a motivating appli-
cation, we experimentally demonstrate the suitability of strongly closed
itemsets to concept drift detection in transactional data streams.

1 Introduction

It is a well-known fact that closed frequent itemsets provide a compact represen-
tation of frequent itemsets [11]. The concept of closedness has been generalized
in [2]: An itemset is strongly or more precisely, Δ-closed for some Δ > 0 integer,
if all of its extensions result in a drop of at least Δ transactions in its sup-
port set. Clearly, Δ-closed itemsets are ordinary closed (i.e., 1-closed) for any
Δ ≥ 1. With increasing Δ, the number of Δ-closed itemsets becomes usually
much smaller than that of ordinary closed itemsets [2]. Despite the fact that
strongly closed itemsets provide only lossy representations of frequent itemsets,
this typically tiny subset of ordinary closed itemsets is still able to capture some
essential information about the data at hand that is stable against changes [2].

Compactness and stability make strongly closed itemsets attractive, among
others, for streaming applications. As a motivating example, we consider the
transactional data stream scenario in which the objects arriving continuously
are subsets of some ground set (set of all items) and are generated by some
unknown distribution that may change over time. Such changes are referred to
as concept drifts. Concept drift detection is essential for most algorithms building
some model from data streams with changing distributions. We experimentally
demonstrate that changes in the family of strongly closed itemsets are good indi-
cators for detecting concept drifts in transactional data streams. For example,
we could reliably detect concept drifts by monitoring the changes in around 250
Δ-closed itemsets out of more than 45,000 ordinary closed itemsets.
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 251–266, 2017.
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Motivated by this and other practical applications, we present an efficient
algorithm for mining strongly closed itemsets from transactional data streams
in the landmark model.1 To make the algorithm practically feasible for massive
transactional data streams, we consider a random subset of the data stream
generated by reservoir sampling [13] and approximate the family of strongly
closed itemsets in the data stream by that in the sample. The size of the sample is
chosen in a way that with high probability, it preserves the relative frequencies of
itemsets within some small error. Our algorithm calculates the family of strongly
closed itemsets from this sample upon request or after a certain number of new
transactions have arrived since the last update.

Reservoir sampling allows us to record the changes from the last update not in
the sample, but in two separate databases. As the replacement of a transaction
in the sample is equivalent to removing the old transaction and inserting the
new one, the two databases correspond to the sets of transactions to be deleted
from and those to be added to the sample. The motivation behind splitting
replacement into deletion and insertion is that in contrast to the method in [2],
strong closedness of an itemset can be decided much faster when the support
set of the itemset is empty in at least one of the two databases. With increasing
stream length this situation becomes more and more typical as the number of
changes in the sample and accordingly, the size of the two databases decreases.

Our algorithm is based on the fact that strongly closed itemsets of the sam-
ple form a closure system [2]. We make use of this property and calculate the
update by traversing the old strongly closed itemsets with a divide and conquer
algorithm. It is based on a folklore algorithm (see, e.g., [4]) that lists all closed
sets of a set system. This algorithm has a number of advantageous algorithmic
properties [1,4] utilized by our algorithm as well.

We empirically evaluated the speed-up and quality (in terms of precision and
recall) of our algorithm on artificial and real-world benchmark datasets. To mea-
sure the speed-up, we compared the batch algorithm generating strongly closed
itemsets from the new sample from scratch with our incremental algorithm for
different number of changes in the sample. For small changes, which is the case
for long data streams, we obtained a speed-up of up to two orders of magnitude.
Regarding the quality, in most cases we achieved very high precision and recall
values (close to 1). Thus, as the empirical results demonstrate, our algorithm
is much faster than the algorithm computing from scratch and still calculates a
close approximation of the family of strongly closed itemsets.

Outline. The rest of the paper is organized as follows. We briefly discuss related
work in Sect. 2, define the necessary concepts and the problem setting in Sect. 3,
and describe our algorithm in Sect. 4. In Sect. 5 we first present some experimen-
tal results demonstrating the suitability of strongly closed itemsets for concept
drift detection and then empirically evaluate the speed and approximation qual-
ity of our algorithm on benchmark and real-world datasets. For space limitations,
we focus on the speed and quality results only in this short version. We finally
mention some interesting directions for future work in Sect. 6.
1 Due to space limitations we omit frequency constraints in this short version.
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2 Related Work

Mining ordinary closed itemsets is the special case of mining Δ-closed itemsets
for Δ = 1. Out of the different streaming models (e.g., sliding window, time-
fading, landmark) studied for mining closed frequent itemsets in data streams,
we discuss only the landmark model, corresponding to our problem setting. It
considers all transactions from a landmark starting time in the past to the cur-
rent time point. For space limitations, we only discuss the two most relevant
algorithms FP-CDS [9] and LC-CloStream [6], which mine ordinary closed fre-
quent itemsets under the landmark model. We note that we consider a more
general problem that has not been studied before to the best of our knowledge.

FP-CDS [9] processes the transactions in batches. It first constructs a local
tree structure for the current batch of transactions and then merges this tree with
a global one built for the entire data stream from the landmark starting time
up to the previous batch. Closed patterns are generated from this global tree from
scratch. Using the idea in [10], the algorithm considers all patterns of frequency
at least ε for some appropriately chosen ε < θ, where θ is the frequency threshold.
Our approach is, however, fundamentally different, as we process the transactions
with reservoir sampling. Furthermore, while our algorithm incrementally updates
the family of closed itemsets, FP-CDS computes it from scratch.

LC-CloStream [6] combines the main features of the algorithms LossyCount-
ing [10] mining frequent itemsets and CloStream [14] mining closed frequent
itemsets from data streams in the sliding window model. Similarly to Lossy-
Counting, LC-CloStream computes an ε-approximation of ordinary closed fre-
quent itemsets and similarly to CloStream, it calculates ordinary closed item-
sets from intersections of transactions. LC-CloStream returns all closed itemsets
which are estimated to be frequent. Its output is incomplete, in contrast to ours,
which is complete with respect to the transactions in the reservoir.

Finally we note that there is a vast literature on concept drift detection in
data streams (see, e.g., [3] for a survey). We omit the discussion of the related lit-
erature, as concept drift detection is only one of the potential applications of our
general-purpose algorithm mining Δ-closed itemsets in transactional databases.

3 The Problem Setting

In this section we define the problem setting for this work. We first provide
the necessary notions and fix the notation. For all m ∈ N, [m] denotes the set
{1, . . . , m}. Given some finite ground set E (items), the concepts of itemsets and
transactions (i.e., subsets of E), and transaction databases over E (i.e., multisets
of transactions) are used in the standard way. A transactional data stream over E
(in what follows, simply a data stream) is a sequence St = 〈T1, T2, . . . , Tt〉, where
the Ti’s are non-empty transactions, i.e., ∅ �= Ti ⊆ E for all i ∈ [t]. To calculate
the family of strongly closed itemsets for St, the order of the transactions in St

does not matter. For this operation St can therefore be regarded as a transaction
database (i.e., multi-set) Dt over E. We make use of this property and formulate
most definitions below for transaction databases.
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Let D be a transaction database over E. The support set of an itemset X ⊆ E
in D, denoted D[X], is defined by the multi-set {T ∈ D : X ⊆ T}; the support
count of X by the cardinality |D[X]| of D[X]. For a threshold Δ̃ ∈ [0, 1], an
itemset X ⊆ E is relatively Δ̃-closed in D if |D[X]|/|D| − |D[Y ]|/|D| ≥ Δ̃ holds
for all Y with X � Y ⊆ E. That is, any proper extension of X decreases its
relative frequency by at least Δ̃. Thus, Δ̃ indicates the strength of the closure.
If it is clear from the context, we omit the adverb “relatively”. Motivated by
different real-world applications (e.g., concept drift detection, computer aided
product configuration), we consider the following mining problem:

Δ̃-Closed Set Listing Problem: Given a single pass over a data stream St =
〈T1, T2, . . . , Tt〉 over a set E of items, a threshold Δ̃ ∈ [0, 1], and an integer
t′ ∈ [t], list all itemsets X ⊆ E that are Δ̃-closed in St′ = 〈T1, T2, . . . , Tt′〉.
Note that the definition of relative Δ̃-closedness for St above can equivalently

be reformulated by that of absolute Δ-closedness [2] as follows: X is relatively
Δ̃-closed in St if and only if it is absolutely Δ-closed in St for Δ = 	tΔ̃
, that is,
|St[X]| − |St[Y ]| ≥ Δ for all Y with X � Y ⊆ E. The adverb “absolutely” will
be omitted when it is clear from the context. Clearly, ordinary closed itemsets
are 1-closed itemsets. For this reason, Δ-closed itemsets will also be referred to
as strongly closed itemsets [2] when there is no emphasis on Δ. In general, the
family of Δ-closed itemsets in a transaction database D is denoted by CΔ,D. In
particular, the family of Δ-closed itemsets in St above is denoted by CΔ,St

. The
relevance of absolute Δ-closed itemsets to our work is that we approximate the
family of relative Δ̃-closed itemsets in St by that in a random sample of St for
some fixed size s. In this way, we can make use of some advantageous algebraic
and algorithmic properties of absolute Δ-closed itemsets [2] and work with them
for Δ = 	sΔ̃
.

We recall some basic algebraic and algorithmic properties of Δ-closed item-
sets from [2]. We start with the definition of closure operators. Let E be some
finite set and σ : 2E → 2E be a function, where 2E denotes the power set of E.
Then σ is extensive if X ⊆ σ(X), monotone if X ⊆ Y implies σ(X) ⊆ σ(Y ), and
idempotent if σ(X) = σ(σ(X)) for all X,Y ⊆ E. If σ is extensive and monotone
then it is a preclosure; if, in addition, it is idempotent then it is a closure operator
on E. A set X ⊆ E is closed if it is a fixed point of σ (i.e., X = σ(X)).

For a transaction database D over E and integer Δ > 0, let σ̂Δ,D : 2E → 2E

be defined by σ̂Δ,D(X) = X ∪ {e ∈ E \ X : |D[X]| − |D[X ∪ {e}]| < Δ} for
all X ⊆ E. It holds that σ̂Δ,D is a preclosure on E that is not idempotent [2].
For an itemset X ⊆ E, consider the sequence σ̂0

Δ,D(X), σ̂1
Δ,D(X), σ̂2

Δ,D(X), . . .
with σ̂0

Δ,D(X) = X, σ̂1
Δ,D(X) = σ̂Δ,D(X), and σ̂l+1

Δ,D(X) = σ̂Δ,D(σ̂l
Δ,D(X)) for

all l ≥ 1. This sequence has a smallest fixed point, giving rise to the following
definition: For all X ⊆ E, let σΔ,D : 2E → 2E be defined by σΔ,D(X) = σ̂k

Δ,D(X)
with k = min{l ∈ N : σ̂l

Δ,D(X) = σ̂l+1
Δ,D(X)}. The proof of the claims in the

theorem below can be found in [2].

Theorem 1. Let D be a transaction database over some finite ground set E and
Δ > 0 an integer. Then (i) for all X ⊆ E, X is Δ-closed in D if and only if
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Algorithm 1. Closure [2]

input: X ⊆ E and integer Δ > 0
require: dataset D over E and D′ = D[X]
output: σΔ,D(X)

1: C ← X
2: repeat
3: for all e ∈ E \ C do
4: if |D′| − |D′[e]| < Δ then C ← C ∪ {e}; D′ ← D′[e]

5: until D′ has not been changed in Loop 3–4
6: return C

X = σΔ,D(X), (ii) σΔ,D is a closure operator over E, and (iii) for all X ⊆ E,
the closure σΔ,D(X) of X can be computed by Algorithm 1.

Using the fact that σΔ,D is a closure operator, the family of all Δ-closed
itemsets of a dataset D can be enumerated by the following divide and conquer
folklore algorithm (see, e.g., [4]): Generate first recursively all Δ-closed supersets
of a set that contain a certain item e ∈ E, and then all that do not. This
algorithm lists all Δ-closed itemsets non-redundantly, with polynomial delay
and in polynomial space (see [1] for some further properties of this algorithm).

4 The Mining Algorithm

In this section we present our algorithm for the Δ̃-Closed Set Listing problem
defined in Sect. 3. To tackle massive data streams in feasible time, we approx-
imate the Δ̃-closed sets for a data stream St = 〈T1, . . . , Tt〉 at time t from a
random sample Dt generated from St without replacement. Since the order of
the elements in the sample does not matter, Dt is regarded as a transaction
database. The size s of Dt is chosen in a way that for all X ⊆ E, the discrep-
ancy between the relative frequency of X in St and that in Dt is at most ε with
probability at least 1 − δ. The parameters ε (error) and δ (confidence) are spec-
ified by the user. Our extensive experiments in Sect. 5.2 show that a very close
approximation of the true family of Δ̃-closed itemsets can be obtained in this
way.

Our algorithm recalculates the family of Δ̃-closed itemsets not after each
new transaction, but either upon request or after b new transactions have been
received since the last update, where b, the buffer size, is specified by the user.
Given St = 〈T1, . . . , Tt〉 and St′ = 〈T1, . . . , Tt, Tt+1, . . . , Tt′〉 with t′ − t ≤ b,
the new sample Dt′ of St′ is computed from the old sample Dt by Dt′ = Dt �
Ddel ⊕Dins, where Ddel (resp. Dins) is the multiset of transactions to be removed
from (resp. added to) Dt, and � and ⊕ denote the set difference and the union
operations on multisets.

We sketch the sampling algorithm in Sect. 4.1 and describe the algorithm
updating the family of Δ̃-closed itemsets from Dt to Dt′ in Sect. 4.2.
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4.1 Sampling

We use reservoir sampling [7,13] for generating a random sample Dt of size s
for a data stream St = 〈T1, . . . , Tt〉, as this method does not require the stream
length to be known in advance. The general scheme of reservoir algorithms is
that they first add T1, . . . , Ts to a “reservoir” and then throw a biased coin with
probability s/k of head for all k = s + 1, . . . , t. If the outcome is head they
replace one of the elements selected from the reservoir uniformly at random
with Tk. This naive version of reservoir sampling, attributed to A.G. Waterman
by D. Knuth in [7], generates a random sample Dt of St without replacement
uniformly at random. That is, all elements of St have probability s/t of being
part of the sample after St has been processed. We have implemented Vitter’s
more sophisticated version, called Algorithm Z in [13].

Given a sample Dt of a data stream St = 〈T1, . . . , Tt〉, the sample Dt′ for
St′ = 〈T1, . . . , Tt, Tt+1, . . . , Tt′〉 is computed from Dt by repeatedly applying
Algorithm Z to Dt and the elements in 〈Tt+1, . . . , Tt′〉. Recall that t′ − t ≤ b,
where b is the buffer size. If a transaction in the sample is replaced by a new
transaction T ∈ {Tt+1, . . . , Tt′}, we appropriately update a database Ddel con-
taining the transactions to be removed from Dt and a database Dins containing
the transactions to be added to Dt. Clearly, |Ddel| = |Dins|. Furthermore

E[|Ddel|] = E[|Dins|] ≤ bs

t′
. (1)

This follows directly from the linearity of the expectation and from E[Xk] = s/t′,
where Xk is the indicator random variable for the event that Tk is selected for
St′ . The RHS of (1) approaches 0 as t′ approaches infinity. For example, it is only
15 for b = 10 k, t′ = 100 M, ε = 0.005, δ = 0.001, and s = 150 k, where the sample
size s = s(ε, δ) is calculated by Hoeffding’s inequality2, i.e., s =

⌈
1

2ε2 ln 2
δ

⌉
.

4.2 Incremental Update

For any transaction database D of size s and Δ̃ ∈ [0, 1], the family of relatively
Δ̃-closed itemsets of D is equal to the family CΔ,D of absolutely Δ-closed itemsets
for Δ = 	sΔ̃
. Thus, we consider the following equivalent mining problem:

Δ-Closed Set Listing Problem: Given Dt, Ddel, Dins for St and St′ as
defined in Section 4.1, an integer Δ > 0, and the family CΔ,Dt

of Δ-closed
itemsets of Dt, generate all elements of CΔ,Dt′ for Dt′ = Dt � Ddel ⊕ Dins.

Instead of generating CΔ,Dt′ from scratch, our goal is to minimize the number of
evaluations of the closure operator σΔ,Dt′ for the new sample Dt′ , as this step
is the most expensive part of the algorithm. We make use of the fact that the
expected number of changes in Dt′ w.r.t. Dt becomes smaller and smaller as
t′ increases (cf. Eq. (1)). Accordingly, our focus in the design of the updating

2 We note that Hoeffding’s inequality applies to samples without replacement as
well [5]. A tighter bound can be derived from Serfling’s inequality [12]. The improve-
ment becomes however marginal with increasing data stream length.
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Algorithm 2. Update CΔ,Dt

input: datasets Ddel, Dins over E and Δ ∈ N

require: totally ordered set (E, ≤), dataset Dt over E, and CΔ,Dt

output: CΔ,Dt′ for Dt′ = Dt � Ddel ⊕ Dins

Main:

1: CΔ,Dt′ ← {∅}
2: ListClosed(∅, ∅, min E)

ListClosed(C, N, i):

1: X ← {k ∈ E \ C : k ≥ i}
2: if X �= ∅ then
3: e ← min X; Ce ← C ∪ {e}
4: if Ddel[Ce] = ∅ ∧ Dins[Ce] = ∅ then C′ ← Closure α(C, e, CΔ,Dt) � Case (α)
5: else if Dins[Ce] = ∅ then C′ ← Closure β(C, e, Ddel[Ce], CΔ,Dt) � Case (β)
6: else if Ddel[Ce] = ∅ then C′ ← Closure γ(C, e, Dins[Ce], CΔ,Dt) � Case (γ)
7: else C′ ← σΔ,Dt′ (Ce) � Case (δ)

8: if C′ ∩ N = ∅ then
9: add (C, e, N, C′, ↑) to CΔ,Dt′

10: ListClosed(C′, N, e + 1)
11: else
12: add (C, e, N, C′, ↓) to CΔ,Dt′

13: Y ← {k ∈ E \ C : k > e}
14: if Y �= ∅ then
15: e′ ← min Y
16: ListClosed(C, N ∪ {e}, e′)

algorithm is on quickly deciding whether an element C ′ ∈ CΔ,Dt
remains Δ-closed

in Dt′ , where C ′ is obtained by C ′ = σΔ,Dt
(C ∪ {e}) for some C ∈ CΔ,Dt

and
e ∈ E. Below we show that in all of the cases when at least one of the support
sets Ddel[C ∪ {e}], Dins[C ∪ {e}] is empty, the problem above can be decided
much faster than with the naive way of using Algorithm1. As we empirically
demonstrate in Sect. 5, a considerable speed-up over the naive algorithm can be
achieved in this way.

We first briefly sketch the algorithm computing CΔ,Dt′ (see Algorithm 2). It is
a divide and conquer algorithm that recursively calls ListClosed with some Δ-
closed set C ∈ CΔ,Dt′ , forbidden set N ⊆ E, and minimum candidate generator
element i. It first determines the next smallest generator element e (Line 3) and
calculates the closure C ′ = σΔ,Dt′ (C∪{e}) in Lines 4–7; these steps are discussed
in detail below. We store C ′, together with some auxiliary information (Lines 8
and 12) and the algorithm calls ListClosed recursively for generating further
Δ-closed supersets of C ′. In particular, if C ′ does not contain any forbidden
item from N then the last element of the quintuple stored for C ′ is ↑ (Line 9);
o/w it is ↓ (Line 12). After all elements of CΔ,Dt′ have been generated that are
supersets of C, contain {e}, but do not contain any element in N , the algorithm
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Algorithm 3. Closure α

input: C ∈ CΔ,Dt′ with Dt′ = Dt � Ddel ⊕ Dins, e ∈ E, and CΔ,Dt

require: Dt

output: σΔ,Dt′ (C ∪ {e})

1: if ∃(C, e, N, C′, q) ∈ CΔ,Dt for some N , C′, and q then return C′

2: else return σΔ,Dt(C ∪ {e}) � σΔ,Dt(C ∪ {e}) = σΔ,Dt′ (C ∪ {e}) for this case

generates all closed sets in CΔ,Dt′ that are supersets of C and do not contain
any element from N ∪ {e} (Lines 13–16).

Theorem 2. Algorithm2 generates all elements of CΔ,Dt′ correctly, irredun-
dantly, with polynomial delay, and in polynomial space.

Proof. The proof of all of the four properties are given in [1,4]; we only need to
show that C ′ computed in Lines 4–7 satisfies C ′ = σΔ,Dt′ (C ∪{e}). The correct-
ness of Closure α (Algorithm 3), Closure β (Algorithm 4), and Closure γ
(Algorithm 5) are shown below in Lemmas 1, 2, and 3, respectively. ��

In the rest of this section we give the algorithms for the cases distinguished
in Lines 4–6 (case (δ) is trivial) and prove their correctness.

Case (α). We first consider the case that the set C ∪ {e} with C ∈ CΔ,Dt′ and
e ∈ E to be extended for further Δ-closed sets satisfies

Ddel[C ∪ {e}] = ∅ and Dins[C ∪ {e}] = ∅ (2)

(Line 4 of Algorithm 2). The closure σΔ,Dt′ (C∪{e}) for this case can be computed
by Algorithm 3; the correctness of Algorithm 3 is stated in Lemma 1 below.

Lemma 1. Algorithm3 is correct, i.e., for all C ∈ CΔ,Dt′ and for all e ∈ E, the
output of the algorithm is σΔ,Dt′ (C ∪ {e}).

Proof. Condition (2) implies that Dt[C ∪ {e}] = Dt′ [C ∪ {e}], where Dt′ = Dt �
Ddel⊕Dins. Hence, σΔ,Dt′ (C∪{e}) = σΔ,Dt

(C∪{e}) and σΔ,Dt′ (C∪{e}) ∈ CΔ,Dt
,

from which the proof is immediate for both cases considered in Lines 1–2. ��
Case (β). We now turn to the case that C ∈ CΔ,Dt′ and e ∈ E fulfill

Ddel[C ∪ {e}] �= ∅ and Dins[C ∪ {e}] = ∅ (3)

(Line 5 of Algorithm 2). In Proposition 1 below we first prove some monotonicity
results that will be used also for case (γ).

Proposition 1. Let D1 and D2 be transaction databases over E. If D1 ⊆ D2

then for all Δ ∈ N,
CΔ,D1 ⊆ CΔ,D2 . (4)

Furthermore, for all Δ ∈ N and for all X ⊆ E,

σΔ,D1(X) ⊇ σΔ,D2(X). (5)
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Algorithm 4. Closure β

input: C ∈ CΔ,Dt′ with Dt′ = Dt � Ddel ⊕ Dins, e ∈ E, Ddel[C ∪ {e}], and CΔ,Dt

require: Dt

output: σΔ,Dt′ (C ∪ {e})

1: b ← False
2: if there exists (C, e, N, C′, q) in CΔ,Dt for some N , C′, and q then
3: C′.count ← C′.count − |Ddel[C

′]|
4: for all i ∈ E \ C′ do
5: if C′.count − C′.Δi + |Ddel[C

′ ∪ {i}]| < Δ then
6: b ← True; break
7: else C′.Δi ← C′.Δi − |Ddel[C

′ ∪ {i}]|
8: else b ← True
9: if b = True then

10: C′ ← σΔ,Dt′ (C ∪ {e}); C′.count ← |Dt′ [C′]|
11: for all i ∈ E \ C′ do C′.Δi ← |Dt′ [C′ ∪ {i}]|
12: return C′

Proof. Let C ∈ CΔ,D1 for some Δ ∈ N and let D′ = D2 � D1. Then, for any
e ∈ E \ C, we have

|D2[C ∪ {e}]| = |D1[C ∪ {e}]| + |D′[C ∪ {e}]|
≤ |D1[C]| − Δ + |D′[C]|
= |D2[C]| − Δ ,

where the inequality follows from C ∈ CΔ,D1 and from the anti-monotonicity of
support sets. Hence C ∈ CΔ,D2 completing the proof of (4).

To show (5), suppose that during the calculation of σΔ,D2(X), the items in
σΔ,D2(X) \ X have been added to X in the order e1, . . . , ek. Let X0 = X and
Xi = X ∪ {e1, . . . , ei−1, ei} for all i ∈ [k]. Then |D2[Xi−1]| − |D2[Xi]| < Δ for
all i ∈ [k] (see Algorithm 1). Since D2[Xi−1] ⊇ D2[Xi] and D1 ⊆ D2, we have
|D1[Xi−1]| − |D1[Xi]| < Δ for all i. Thus, as Algorithm 1 is Church-Rosser, all
ei will be added to σΔ,D1(X) as well, implying (5). ��
Using Proposition 1, we have the following result for Algorithm4 concerning
case (β):

Lemma 2. Algorithm4 is correct, i.e., for all C ∈ CΔ,Dt′ and for all e ∈ E, the
output of the algorithm is σΔ,Dt′ (C ∪ {e}).

Proof. By Condition (3), Dt′ [C ∪ {e}] ⊆ Dt[C ∪ {e}] and hence Proposition 1
implies that there is no Y ∈ CΔ,Dt′ with C ∪ {e} � Y � σΔ,Dt

(C ∪ {e}).
Furthermore, if σΔ,Dt

(C ∪{e}) �∈ CΔ,Dt′ then σΔ,Dt
(C ∪{e}) � σΔ,Dt′ (C ∪{e}).

Thus, to check whether C ′ = σΔ,Dt
(C ∪ {e}) remains closed in Dt′ , it suffices to

test whether
|Dt′ [C ′]| − |Dt′ [C ′ ∪ {i}]| ≥ Δ (6)
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Algorithm 5. Closure γ

input: C ∈ CΔ,Dt′ with Dt′ = Dt � Ddel ⊕ Dins, e ∈ E, Dins[C ∪ {e}], and CΔ,Dt

require: Dt

output: σΔ,Dt′ (C ∪ {e})

1: if there exists (C, e, N, C′, q) in CΔ,Dt for some N , C′, and q then
2: C′′ ← C ∪ {e}; D′ ← (Dt ⊕ Dins)[C

′′]
3: repeat
4: for all i ∈ C′ \ C′′ do
5: if |D′| − |D′[i]| < Δ then
6: C′′ ← C′′ ∪ {i}; D′ ← D′[i]

7: until D′ has not been changed in Loop 4–6
8: return C′′

9: else
10: return σΔ,Dt′ (C ∪ {e})

further holds for all items i ∈ E \ C ′ (Lines 3–7 of Algorithm 4). By storing
|Dt[C ′ ∪ {i}] in C ′.Δi for all i ∈ E \ C ′, (6) can be decided from Ddel without
any access to Dt (Line 5), implying the correctness of Algorithm 4 for the case
that C ′ ∈ CΔ,Dt′ (i.e., b = False after loop 4–7); the claim is trivial for the
other case (Lines 9–11). ��
The values of C ′.Δi for further updates (i ∈ E \ C ′) are (re)calculated in Line 7
if C ′ remains Δ-closed; o/w in Line 11. We note that with increasing stream
length, the number of elements to be deleted from CΔ,Dt

becomes smaller and
typically, most of the elements of CΔ,Dt′ are calculated by avoiding Lines 10–11.

Case (γ). Finally we discuss the case that C ∈ CΔ,Dt′ and e ∈ E satisfy the
condition

Ddel[C ∪ {e}] = ∅ and Dins[C ∪ {e}] �= ∅ (7)

(see Line 6 of Algorithm 2). The proof for this case is shown also by using
Proposition 1.

Lemma 3. Algorithm5 is correct, i.e., for all C ∈ CΔ,Dt′ and for all e ∈ E, the
output of the algorithm is σΔ,Dt′ (C ∪ {e}).

Proof. The proof is automatic for the case that the condition in Line 1 of
Algorithm 5 is false. Consider the case that it is true. Proposition 1 with Con-
dition (7) implies that CΔ,Dt

⊆ CΔ,Dt′ (i.e., all Δ-closed itemsets in CΔ,Dt
are

preserved) and that σΔ,Dt′ (C ∪ {e}) ⊆ σΔ,Dt
(C ∪ {e}). Thus, when calculat-

ing σΔ,Dt′ (C ∪ {e}) in Loop 3–7, it suffices to consider only the elements in
σΔ,Dt

(C ∪ {e}) \ (C ∪ {e}), from which the claim is immediate for this case. ��
Compared to case (β), we need to calculate support counts in the entire sam-
ple Dt′ for this case. However, the inner loop (Lines 4–6) iterates over a typ-
ically much smaller set than the general closure algorithm (cf. Lines 2–5 of
Algorithm 1). Analogously to case (β), the number of new Δ-closed itemsets to
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be added to CΔ,Dt′ becomes smaller with increasing stream length, and hence,
most of the elements of CΔ,Dt′ are calculated in the “then” part (Line 2–8) of
the “if” statement.

5 Empirical Evaluation

In this section we empirically evaluate our algorithm on artificial and real-world
datasets. In particular, we experimentally demonstrate that it results in a consid-
erable speed-up (Sect. 5.1) and has high approximation quality (Sect. 5.2). The
data streams, all consisting of 5 M transactions, were generated from benchmark
datasets from the UCI Machine Learning [8] and from the Frequent Itemset Min-
ing Dataset3 repositories (see Table 1). For each dataset D, Table 1 contains the
cardinality of the ground set (|E|), the number of transactions (|D|), and the
density defined by

∑
T∈D |T |/(|E||D|).

Table 1. Benchmark datasets used in the experiments

Name Kosarak Mushroom Poker-hand Retail T10I4D100K T40I10D100K

|E| 41,270 119 95 16,470 870 942

|D| 990,002 8,124 1,025,010 88,162 100,000 100,000

Density 0.000196 0.193277 0.115789 0.000626 0.011612 0.042044

Before presenting our results, we first motivate our work by demonstrating
the suitability of strongly closed itemsets for concept drift detection in transac-
tional data streams.4 The data streams with concept drifts were generated from
the datasets in Table 1 by repeatedly drawing transactions from the dataset. We
investigate the dimensions (i) pace, i.e., the time required to completely replace
the old distribution by the new one, and (ii) commonality, i.e., the overlap of
the two distributions. For (i) we consider both swift and gradual replacements
of distributions. Gradual replacements are generated as follows: We insert 

transactions between two data streams S1 and S2, where transaction i is taken
from S1 at random with probability 1 − i/
 and from S2 with probability i/
.
For (ii) we consider separated and intersected distributions. To obtain separated
distributions, each item was replaced by a new symbol. For intersected distribu-
tions, items were removed from the transactions independently and uniformly at
random. Combining (i) and (ii), we thus have four cases (swift–separated, swift–
intersected, gradual–separated, gradual–intersected). For each data stream, we
generated three concept drifts after 2 M, 4 M, and 6 M transactions respectively.

To detect concept drifts in the data streams generated, we started a new
instance of our mining algorithm every 100k transactions, with parameter values
3 http://fimi.ua.ac.be/data/.
4 We are going to present further practical applications (e.g., computer aided product

configuration) in the long version of this paper.

http://fimi.ua.ac.be/data/
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Fig. 1. Concept drift detection results for Poker-hand with swift–intersected concept
drifts for Δ̃ ∈ {0.001, 0.011, 0.021, 0.031} comparing current with two ago.

Fig. 2. Concept drift detection results for Poker-hand with swift–intersected concept
drifts for varying detection delay at Δ̃ = 0.001.

ε = 0.01, δ = 0.02, and b = 25 k. As indicator for concept drifts, we used the
Jaccard distance between the families of strongly closed sets returned by the
algorithms started after each other. In Figs. 1 and 2 we present our results, for
space limitations for Poker-hand and for swift–intersected concept drifts only,
using probability 0.5 for the intersected distribution.

In particular, in Fig. 1 we investigate the influence of Δ̃ ranging from 0.001 to
0.031, corresponding to Δ = 23 and Δ = 714, respectively. The upper limit 0.031
is chosen based on the values in Table 2. In case of Poker-hand for instance, it
gives around 250 strongly closed itemsets out of 46,000 ordinary closed itemsets
(i.e., around 0.5%). For all values of Δ̃ ∈ {0.001, 0.011, 0.021, 0.031} the drifts
are clearly visible. While they are smoother and more indicative for lower values
of Δ̃ (i.e., for larger subsets of ordinary closed itemsets), even as few as 250
strongly closed itemsets (Δ̃ = 0.031) suffice to detect the drifts.

Figure 2 shows the influence of the delay between two miners for which we
calculate the Jaccard distance. On the left we compare the current miner with
the previously started one, in the middle the current one with the one started
two intervals before, and on the right the current one with the one started three
intervals before. The three drifts are clearly visible in all graphs in both figures.

Finally we note that we obtained consistently very similar results for all other
three cases (i.e., swift–separated, gradual–intersected and gradual–separated)
and for all other datasets as well, indicating the suitability of strongly closed
itemsets for concept drift detection in data streams.
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5.1 Speedup

In this section we empirically study the speed-up obtained by our algorithm.
To do so, we first sample 100 k random transactions, replace then 10 k, 1 k, 100,
10, and 1 transaction in the sample, and (i) run our algorithm as well as (ii)
update the sample and run the algorithm that corresponds to Algorithm 2 with
CΔ,Dt

= ∅. Henceforth we refer to the algorithm for (ii) as the batch algorithm.
Figure 3 shows the average runtime fraction of our algorithm in comparison to
the batch algorithm as a function of the number of changed transactions for
all datasets from Table 1. The runtime results are reported in detail for space
limitations only for one dataset in Fig. 4 by noting that we observed a similar
speedup for all other datasets. As the number of changes decreases, our streaming
algorithm needs to evaluate considerably less database queries, implying that the
smaller the change in the sample is, the more the runtime of the two settings
differs. In Table 2 we present the number of strongly closed itemsets (|CΔ,Dt

|) and
the speed-up (S) of our algorithm for various values of Δ̃ for experiments when
only a single transaction has been changed. In most of the cases our algorithm
is faster by at least one order of magnitude. Interestingly, the more Δ̃-closed
itemsets are calculated, the higher the speed-up.

Fig. 3. Fraction of the runtime of our
streaming and the batch algorithm as a
function of the number of changes (log
scale): black: mean, gray: SD.

#Changes Stream time Batch time

10,000 6.0 6.0
1,000 4.7 6.0

100 4.2 6.0
10 1.1 6.0
1 0.3 6.0

Fig. 4. Runtime in seconds of our
streaming and the batch algorithm
obtained for T10I4D100k for dif-
ferent number of changes and for
Δ̃ = 0.006.

5.2 Approximation Quality

In this section we present empirical results demonstrating the high approxima-
tion quality of our algorithm measured in terms of precision and recall. For these
experiments, we use data streams of length 5 M obtained by random enlargement
of the benchmark datasets listed in Table 1, as well as two artificial data streams
(T10I4D5M and T40I10D5M), each of length 5 M, generated with the IBM Quest
data generator. For the two artificial data streams we used the same parameters
(except for the size) as for T10I4D100K and T40I10D100K. We run the exper-
iments for the values Δ̃ = 0.001 + 0.005i for i = 0, 1, . . . , 9 and b = 25 k. For
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Table 2. Number of Δ̃-closed sets and speed-up (S) for changing a single transaction.

Δ̃ Kosarak Mushroom Poker-hand Retail T10I4D100K T40I10D100K

|CΔ,Dt | S |CΔ,Dt | S |CΔ,Dt | S |CΔ,Dt | S |CΔ,Dt | S |CΔ,Dt | S

0.046 8 3.09 154 10.90 62 8.26 8 5.69 6 7.69 191 16.57

0.041 8 5.81 186 13.74 62 11.55 10 2.89 11 8.00 222 16.52

0.036 9 5.48 245 5.89 127 11.33 11 8.05 19 11.48 267 18.73

0.031 10 7.20 385 7.24 247 14.74 12 3.67 29 9.89 330 14.37

0.026 14 7.36 547 18.04 353 13.17 13 7.69 44 26.15 433 22.79

0.021 15 7.31 1105 19.44 578 19.45 13 9.28 83 24.57 649 23.40

0.016 24 11.13 2012 23.44 738 36.43 18 11.00 138 16.77 1146 43.30

0.011 38 14.87 4367 34.73 739 26.43 26 12.58 219 21.77 2780 96.39

0.006 86 23.61 11 k 33.96 4238 39.35 67 24.63 391 50.05 11 k 235.86

0.001 1148 99.79 82 k 37.41 46 k 59.66 1638 106.19 2574 148.09 346 k 1893

all datasets, we use Δ = 	Δ̃t
 for the batch and Δ = 	Δ̃s
 for our streaming
algorithm, where s is the sample size. In particular, for ε = 0.005 and δ = 0.001
we have s = 150 k (see Sect. 4.1), corresponding to around 3% of the 5 M stream
length. The output of the batch algorithm serves as a gold standard and will
be compared to the results obtained by our algorithm. The results are reported
in Table 3 in terms of precision (P) and recall (R), together with the number
of Δ̃-closed sets (|CΔ,Dt

|). We note that for T40I10D5M, the batch algorithm
was unable to compute the result for Δ̃ = 0.001 in 24 h. One can see that the
precision and recall values are never below 0.80; in most of the cases they are
actually close or equal to 1. The results on the data streams obtained from the
benchmark datasets might be favorable for our algorithm due to the repetition of
transactions. The two artificial data streams T10I4D5M and T40I10D5M do not
have such a bias. Still, we obtained very good results for these data streams as
well. Thus the repetition of transactions does not improve the results in favour
of our algorithm. We have carried out experiments on several other artificial
data streams generated by the IBM Quest data generator using other parame-

Table 3. Number of Δ̃-closed sets (|CΔ,Dt |), precision (P ) and recall (R) after process-
ing 5M transactions for various datasets and different values of Δ̃.

Δ̃ Kosarak Mushroom Poker-hand Retail T10I4D5M T40I10D5M

|CΔ,Dt
| P R |CΔ,Dt

| P R |CΔ,Dt
| P R |CΔ,Dt

| P R |CΔ,Dt
| P R |CΔ,Dt

| P R

0.046 8 1 1 155 0.99 1 6 1 1 8 1 1 6 1 1 190 1 0.99

0.041 8 1 1 190 1 0.99 62 1 1 10 1 1 11 0.92 1 223 0.98 0.99

0.036 9 1 1 225 0.98 0.98 127 1 1 11 1 1 19 1 1 267 0.99 0.99

0.031 10 1 1 382 0.99 1 248 1 1 12 1 1 29 1 0.93 330 0.99 0.99

0.026 14 1 1 676 0.97 0.98 353 1 1 13 1 1 44 0.96 0.98 433 1 0.98

0.021 16 1 0.94 1112 0.99 1 578 1 1 13 0.93 1 82 0.99 0.98 650 1 0.99

0.016 24 1 1 1934 0.97 1 738 1 1 18 1 1 140 1 0.99 1137 0.98 0.98

0.011 40 0.98 1 4361 0.84 0.84 739 1 1 27 1 0.96 218 0.98 0.99 2785 0.98 0.98

0.006 86 0.98 0.97 9469 0.80 0.93 4343 0.96 0.94 66 0.98 0.98 390 0.99 1 11 k 0.97 0.97

0.001 1153 0.93 0.96 76 k 0.93 0.98 47 k 1 1 1653 0.93 0.96 2591 0.96 0.94 —
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ters selected systematically (except for the size 5 M). For all datasets considered,
the results were very similar to those obtained for T10I4D5M and T40I10D5M.
For space limitations, we do not report these results in this short version.

6 Concluding Remarks

We have presented a general purpose algorithm for mining strongly closed item-
sets from transactional data streams under the landmark model. The speed
and approximation results of the previous section indicate the suitability of our
algorithm for mining strongly closed itemsets from massive transactional data
streams as well. Our empirical results give also evidence that strongly closed
itemsets are of high practical relevance to concept drift detection in transac-
tional data streams. Other practical applications, e.g., computer aided product
configuration, will be discussed in the long version of this paper.

The experimental results motivate us to develop an algorithm specific to
concept drift detection that is based on mining and monitoring the changes in
strongly closed itemsets. Besides the landmark model, we are going to consider
the problem of mining strongly closed itemsets under the sliding window model as
well. This problem requires, however, an entirely different algorithmic approach.

The speed-up results reported in Sect. 5 can further be improved by utilizing
that |CΔ,Dt

| is typically (much) smaller than the sample size s calculated by
Hoeffding’s inequality (see [2] for a detailed discussion on the size of CΔ,Dt

). For
such cases, the closure σΔ,Dt′ (C ∪ {e}) can be computed from CΔ,Dt

without
any database access to Dt′ , even when the closure of C ∪ {e} has not been
calculated for Dt. For example, instead of computing σΔ,Dt

(C ∪ {e}) in Line 2
of Algorithm 3, we can return

⋂{Y ∈ CΔ,Dt
: C ∪{e} ⊆ Y }, as CΔ,Dt

is a closure
system.
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Abstract. In this paper, we extend mutually dependent patterns as
itemsets introduced by Ma and Hellerstein (2001) to mutually dependent
multisets allowing two or more occurrences of the same items. Then, by
improving the algorithm to extract all of the mutually dependent pat-
terns based on Apriori with maintaining itemsets and their supports, we
design the algorithm to extract all of the mutually dependent multisets
based on AprioriTid with traversing a database just once and main-
taining both multisets and their tail occurrences but without computing
overall multiplicity of items in multisets. Finally, we give experimental
results to apply the algorithm to both real data as antibiograms consist-
ing of a date, a patient id, a detected bacterium, and so on and artificial
data obtained by repeating items in transaction data.

1 Introduction

An association rule mining [9], which extracts association rules from a transac-
tion database, is one of the most famous research areas in data mining. In the
association rule mining, we first extract all of the sets of items (itemsets, for
short) that occur frequently in a database under the minimum support. We call
such itemsets frequent itemsets. Then, by dividing every frequent itemset into
two parts, that is, a premise and a consequence, we extract all of the implications
from the premise to the consequence, which we call association rules, that occur
accurately in the database under the minimum confidence [1,9].

Here, an association rule claims that the probability that the consequence
occurs in a database when the premise occurs is greater than the minimum con-
fidence. Hence, we can regard that an association rule represents the dependency
in the database between two itemsets of the premise and the consequence.

As a generalization of the dependency between itemsets, Ma and
Hellerstein [5] have introduced a mutually dependent pattern that is an itemset
such that every subset in the itemset occurs in a database together with other
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subsets dependently. Here, the dependency is evaluated as the conditional proba-
bility of two subsets under the threshold called the minimum dependency. On the
other hand, Xiong et al. [8] have introduced a hyperclique pattern that is an item-
set such that, if every item in the itemset occurs in a database then other items
also occur under the minimum h-confidence. They have shown that the hyper-
clique pattern is equivalent to the itemset under the minimum all-confidence [7].
Furthermore, it is also equivalent to the mutually dependent pattern.

In their researches [5,8], the patterns are itemsets and they do not contain
two or more occurrences of the same items. On the other hand, it is natural to
extend the patterns from itemsets (sets of items) to multisets of items allowing
two or more occurrences of the same items in several transaction databases. For
example, in this paper, we deal with an antibiogram consisting of a date, a patient
id, a detected bacterium, and so on, as experiments. Then, in the antibiogram,
the multiple dates, patient id’s and bacteria are necessary to obtain the rules
representing the causes of hospital acquired infection. Hence, we formulate a
mutually dependent multiset as an extension of a mutually dependent pattern.

Both Ma and Hellerstein [5] and Xiong et al. [8] have designed the algorithm
to extract all of the mutually dependent patterns based on the famous algorithm
Apriori [1]. In contrast, in this paper, we design the algorithm to extract all
of the mutually dependent multisets based on AprioriTid [1] to traverse a
transaction database just once.

Whereas the previous algorithms [5,8] are sufficient to maintain itemsets
and their supports, just the supports are insufficient to represent the multiple
occurrences of items in multisets. This is because, when determining a pattern
as a multiset is included in a transaction as a multiset, it is necessary to compute
multiplicity of every item in both the pattern and the transaction. Furthermore,
since our algorithm traverses a transaction database just once, it is necessary to
store the information to determine such an inclusion after traversing.

On the other hand, our algorithm constructs the candidates by adding an
item to the tails of already constructed mutually dependent multisets same as
AprioriTid [1]. According to this strategy, in this paper, we introduce a tail
occurrence of a multiset in order to determine such an inclusion without com-
puting overall multiplicity of items in multisets.

This paper is organized as follows. In Sect. 2, we formulate mutually depen-
dent multisets. In Sect. 3, we introduce a tail occurrence of a multiset and present
its properties. In Sect. 4, we design the algorithm to extract all of the mutually
dependent multisets. In Sect. 5, we implement our algorithm, apply it to both
real data as antibiograms consisting of a date, a patient id, a detected bacterium,
and so on, and artificial data obtained by repeating items in FIMI repository [2],
and evaluate the extracted mutually dependent multisets.

2 Mutually Dependent Multisets

Let X and T be finite sets. We call an element in X an item and an element of
T a transaction id (tid, for short). Also we call a set X ⊆ X of items an itemset.
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In this paper, we deal with a multiset of items on X as a set allowing the
multiple occurrences of items explicitly. Formally, let N be natural numbers.
Then, a multiset on X is a mapping X : X → N. For a multiset X on X , we
say that x ∈ X is an element of X if X(x) > 0 and denote it by x ∈ X (like as
a standard set). When X(x) = k (> 0) for x ∈ X , we call k the multiplicity of
x in X. The cardinality of X, denoted by |X|, is defined as

∑
x∈X X(x).

Let X and Y be multisets on X . We say that X is a sub-multiset of Y , denoted
by X � Y , if it holds that X(x) ≤ Y (x) for every x ∈ X , and X = Y if X � Y
and Y � X. Also we call the multiset Z such that Z(x) = max{X(x), Y (x)} for
every x ∈ X the union of X and Y and denote it by X � Y .

We assume a lexicographic order � on X . Here, x ≺ y if x � y and x 
= y.
Then, we represent a multiset X on X as a string xk1

1 · · · xkn
n on X such that

xi ∈ X , ki = X(xi) > 0 and xi ≺ xj for every 1 ≤ i < j ≤ n. If ki = 1, then we
sometimes omit ki and denote xi simply, instead of x1

i . Let X = xk1
1 · · · xkn

n and
Y = yl1

1 · · · ylm
m be multisets on X in the above form. Then, it holds that X � Y

if, for every i (1 ≤ i ≤ n) such that xi ∈ X, there exists a j (1 ≤ j ≤ m) such
that xi = yj ∈ Y and ki ≤ lj , and X = Y if n = m, xi = yi and ki = li for every
i (1 ≤ i ≤ n).

Let X be a multiset xk1
1 · · · xkn

n and x an item in X such that xn � x. Then,
we define a concatenation Xx as xk1

1 · · · xkn
n x if xn ≺ x or xk1

1 · · · xkn+1
n if xn = x.

Furthermore, for two items x, y ∈ X such that x � y, we define Xxy as (Xx )y.
We call a pair 〈t,W 〉 of a tid t ∈ T and a multiset W on X a transaction.

Here, we assume that every tid has just one multiset as a transaction. Also we
call the set of transactions a transaction database. For a transaction database D
and a multiset X, we define a tidset τD(X) of X in D as follows.

τD(X) = {t ∈ T | 〈t,W 〉 ∈ D,X � W}.

Then, we define the frequency freqD(X) and the support suppD(X) of X in D
as follows.

freqD(X) = |τD(X)|, suppD(X) =
freqD(X)

|D| .

Definition 1 (Frequent multiset). Let D be a transaction database, X a
multiset and σ (0 ≤ σ ≤ 1) the minimum support. Then, we say that X is
frequent in D if suppD(X) ≥ σ.

Theorem 1 (cf., [1]). If a multiset X is frequent in D, then so is every sub-
multiset X ′ � X. In other words, suppD(X ′) ≥ suppD(X) for every X ′ � X.

Proof. Since it holds that X ′ � W whenever X � W , it holds that t ∈ τD(X ′)
whenever t ∈ τD(X), which implies that |τD(X ′)| ≥ |τD(X)|. ��

For multisets X1 and X2, we define a conditional probability PD(X1|X2) in
D that the occurrence of X2 in a transaction in D implies that of X1 as follows.

PD(X1|X2) =
suppD(X1 � X2)

suppD(X2)
=

freqD(X1 � X2)
freqD(X2)

.
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Hence, the occurrence of X1 is more dependent on the occurrence of X2 in D if
PD(X1|X2) is larger.

Let π (0 ≤ π ≤ 1) be the threshold of conditional probability, which we call
the minimum dependency. Then, we say that non-empty multisets X1 and X2

are mutually dependent in D if PD(X1|X2) ≥ π and PD(X2|X1) ≥ π.

Definition 2 (Mutually dependent multiset). Let D be a transaction data-
base, X a multiset and π the minimum dependency. Then, we say that X is
mutually dependent in D if PD(X1|X2) ≥ π for every X1,X2 � X such that
X1,X2 
= ∅.

We call the minimum value of conditional probabilities for every pair of non-
empty sub-multisets of a mutually dependent multiset X the dependency of X,
which we will use to evaluate the mutually dependent patterns in Sect. 5.

A mutually dependent multiset without multiple occurrences of items (i.e.,
that is a set) coincides with a mutually dependent pattern [5]. The following
properties also hold for mutually dependent multisets.

Theorem 2 (cf., [5]). For a multiset X and the minimum dependency π, X is
mutually dependent in D iff PD(X|x) ≥ π for every x ∈ X.

Proof. The only-if direction is obvious by letting X1 = X and X2 = x for every
X1,X2 � X in Definition 2. To show the if-direction, suppose that PD(X|x) ≥ π
for every x ∈ X. Suppose that X1 and X2 are non-empty sub-multisets of X and
x ∈ X2. Since X1�X2 � X, x � X2 and by Theorem 1, it holds that suppD(X1�
X2) ≥ suppD(X) and suppD(x) ≥ suppD(X2), which implies that PD(X1|X2) =
suppD(X1 � X2)/suppD(X2) ≥ suppD(X)/suppD(x) = PD(X|x) ≥ π. ��

Theorem 3 (cf., [5]). If a multiset X is mutually dependent in D, then so is
every sub-multiset X ′ � X.

Proof. Let X1 and X2 be non-empty multisets such that X1 � X ′ and X2 � X ′.
Since X ′ � X, it is obvious that X1 � X and X2 � X. Since X is mutually
dependent in D, it holds that PD(X1|X2) ≥ π, which implies that X ′ is also
mutually dependent in D. ��

3 Tail Occurrence of Multisets

In the following, for a multiset X on X , in order to strengthen the multiplicity
of x ∈ X and to avoid the confusion, we denote X(x) by mX(x).

In order to extract mutually dependent multisets from a transaction database
D, it is necessary for every algorithm to determine whether or not X � W for
a multiset X and a transaction 〈t,W 〉 ∈ D, that is, to check mX(x) ≤ mW (x)
for every x ∈ X. Furthermore, since we will design the algorithm based on
AprioriTid instead of Apriori, our algorithm traverses a transaction database
D just once and it is necessary to store the information to determine whether
or not X � W after traversing D. Hence, as a key idea of our algorithm, in this
paper, we introduce the following tail occurrence.
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Definition 3 (Tail item). Let X be a multiset on X . Then, a tail item of X,
denoted by tl(X), is an item x ∈ X such that y � x for every y ∈ X.

Definition 4 (Tail occurrence). Let X and W be multisets on X . Then, the
tail occurrence tloc(X,W ) of X in W is the following value.

tloc(X,W ) = max{mW (tl(X)) − mX(tl(X)) + 1, 0}.

Example 1. For X1 = a5b3 and W = a3b4c, since tl(X1) = b, it holds that
mX1(b) = 3 and mW (b) = 4, which implies that tloc(X1,W ) = 4 − 3 + 1 = 2.
Similarly, for X2 = a2b4 and X3 = a2b5, it holds that tloc(X2,W ) = 1 and
tloc(X3,W ) = 0.

Theorem 4. For multisets X and W , if tloc(X,W ) = 0, then it holds that
X 
� W . Furthermore, if X is of the form Y xk such that Y � W , x = tl(X)
and 1 ≤ k ≤ mX(x), then it holds that tloc(X,W ) = 0 iff X 
� W .

Proof. If tloc(X,W ) = 0, then it holds that mW (tl(X)) − mX(tl(X)) + 1 ≤ 0,
that is, mW (tl(X)) < mX(tl(X)), which implies that X 
� W . Also suppose
that X = Y xk, Y � W and x = tl(X). If X 
� W , then it is necessary that
mX(x) > mW (x). Since x = tl(X), it holds that mW (tl(X))−mX(tl(X))+1 ≤ 0,
which implies that tloc(X,W ) = 0. ��
Example 2. Consider X2, X3 and W in Example 1 again. Suppose that Y = a2b3.
Then, it holds that b = tl(X2) = tl(X3), X2 = Y b, X3 = Y b2 and Y � W . Also,
it holds that tloc(X2,W ) = 1 and tloc(X3,W ) = 0 by Example 1 and X2 � W
and X3 
� W , which Theorem 4 claims.

Theorem 5. Let W and X be multisets. Also let x and y be items such that
tl(X) � x � y. Suppose that Xx ,Xy ,Xxy � W . If x ≺ y, then it holds that
tloc(Xxy ,W ) = tloc(Xy ,W ) = mW (y). Otherwise, that is, if x = y, then it
holds that tloc(Xxx ,W ) = tloc(Xx ,W ) − 1.

Proof. Suppose that x ≺ y. Then, it holds that tl(X) ≺ y, which implies
that mXy(y) = mXxy(y) = 1. Hence, it holds that tloc(Xxy ,W ) =
mW (y) − mXxy(y) + 1 = mW (y) and tloc(Xy ,W ) = mW (y) − mXy(y) + 1 =
mW (y).

Suppose that x = y. Then, it holds that tloc(Xx ,W ) = mW (x)−mXx (x)+1
and tloc(Xxx ,W ) = mW (x) − mXxx (x) + 1. Since mXxx (x) = mXx (x) + 1, it
holds that tloc(Xxx ,W ) = tloc(Xx ,W ) − 1. ��
Example 3. Let W1 = a2bc, W2 = b2c3 and X = ∅.

Consider the case that x = b and y = c. Then, it holds that tloc
(Xx ,W1) = tloc(b, a2bc) = 1, tloc(Xx ,W2) = tloc(b, b2c3) = 2, tloc(Xy ,W1) =
tloc(c, a2bc) = 1 and tloc(Xy ,W2) = tloc(c, b2c3) = 3. Hence, it holds that
tloc(Xxy ,W1) = tloc(bc, a2bc) = 1 = tloc(Xy ,W1) and tloc(Xxy ,W2) =
tloc(bc, b2c3) = 3 = tloc(Xy ,W2).

Consider the case that x = y = c. Then, it holds that tloc(Xx ,W1) =
tloc(c, a2bc) = 1 and tloc(Xx ,W2) = tloc(c, b2c3) = 3. Hence, it holds that
tloc(Xxy ,W1) = tloc(c2, a2bc) = 0 = tloc(Xx ,W1) − 1 and tloc(Xxy ,W2) =
tloc(c2, b2c3) = 2 = tloc(Xx ,W2) − 1.
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Finally, as extensions of the tidset based on tail occurrences, we introduce
an occurrence set oD(X) and an occurrence tidset oτD(X) of X in D as follows.

oD(X) = {〈t, tloc(X,W )〉 | 〈t,W 〉 ∈ D,X � W, tloc(X,W ) > 0},
oτD(X) = {t ∈ T | 〈t, oc〉 ∈ oD(X)}.

We can always obtain oτD(X) from just oD(X). We will maintain the occur-
rence set oD(X) of X to determine X � W for every 〈t,W 〉 ∈ D.

4 Algorithm to Extract Mutually Dependent Multisets

The algorithms to extract all of the mutually dependent patterns [5,8] repeat to
generate the candidates of mutually dependent patterns with growing the cardi-
nality of patterns one by one and then add the mutually dependent patterns if
they are mutually dependent until no mutually dependent pattern is extracted.
In this paper, we extend their algorithms to those for mutually dependent mul-
tisets. Here, in the remainder of this paper, we omit the subscript D in the
notations of τD, freqD, suppD, PD, oD and oτD.

The difference between their algorithms and our algorithm is that the former
is based on Apriori [1] whereas the latter on AprioriTid [1] more efficient
than Apriori. Also the former maintains itemsets and their supports whereas
the latter does multisets and their tail occurrences based on Theorems 4 and 5.

Our algorithm adopts a breadth-first generate-and-test strategy based on
the cardinality of multisets same as AprioriTid [1]. Hence, throughout of our
algorithm, we assume that every multiset X has its occurrence set o(X) and our
algorithm can always access o(X) when X is generated. Then, after traversing
a transaction database D once and storing the occurrence set for every item,
we can compute the frequency freq(X) of a multiset X by computing |oτ(X)|
without traversing D again. Furthermore, our algorithm also checks whether or
not X is a candidate of mutually dependent multisets by using o(X).

The algorithm isMDM in Algorithm 1 checks whether or not a multiset
is mutually dependent. By Theorem 2, a multiset X is not mutually depen-
dent iff there exists an item x ∈ X such that P (X|x) = freq(X)/freq(x) =
|oτ(X)|/|oτ(x)| < π under the minimum dependency π.

procedure isMDM(X, π)
input : A multiset X and the minimum dependency π.
output : The truth value of true or false.
foreach x ∈ X do1

if |oτ(X)|/|oτ(x)| < π then2

return false and halt;3

return true;4

Algorithm 1. isMDM
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procedure OccSet(o(Xx ), o(Xy))
input : Two occurrence sets o(Xx ) and o(Xy).
output : The occurrence set o(Xxy) of Xxy .
if x ≺ y then1

o(Xxy) ← {〈t, oc〉 ∈ o(Xy) | t ∈ oτ(Xx ) ∩ oτ(Xy)};2

else3

/* x = y */
o(Xxy) ← {〈t, oc − 1〉 | 〈t, oc〉 ∈ o(Xx ), oc > 1};4

return o(Xxy);5

Algorithm 2. OccSet

The algorithm OccSet in Algorithm 2 constructs the occurrence set o(Xxy)
of Xxy from two occurrence sets o(Xx ) and o(Xy) based on Theorem 5.

The principle of the algorithm OccSet is illustrated as follows.

1. When x ≺ y, tids contained in o(Xxy) are tids contained in both o(Xx ) and
o(Xy), that is, oτ(Xx ) ∩ oτ(Xy). For every tid in oτ(Xx ) ∩ oτ(Xy), the tail
occurrence of Xxy is set to that of Xy by Theorem 5. In this case, o(Xxy) = ∅
if oτ(Xx ) ∩ oτ(Xy) = ∅. This procedure is realized as line 2 in the algorithm
OccSet.

2. When x = y, tids contained in o(Xxy) constitute a subset of those in o(Xx ).
For every tid t in o(Xx ), the tail occurrence of t in o(Xxy) is that in o(Xx )
minus 1 by Theorem 5. In this case, o(Xxy) = ∅ if every element in o(Xx ) is of
the form 〈t, 1〉. This procedure is realized as line 4 in the algorithm OccSet.

By using the algorithms isMDM and OccSet, we design the algorithm
ExtMDM in Algorithm 3 to extract all of the mutually dependent multisets
from a transaction database D under the minimum dependency π.

The algorithm ExtMDM first traverses a transaction database D just once
and constructs the occurrence set o(x) for x ∈ C1 in lines 2 and 3. Then, it
repeats the following procedures until Ck = ∅.

1. Check whether or not a multiset X is mutually dependent by using the algo-
rithm isMDM in Algorithm 1 for every X ∈ Ck and add X to Lk if so in
line 4.

2. For every pair of Xx and Xy in Lk such that x � y, add Xxy to Ck+1 if the
occurrence set o(Xxy) is not empty in lines from 5 to 8.

Theorems 3 and 4 guarantee that it is not necessary to construct multisets by
adding an item y to the tail of Xx , once tloc(Xx ,W ) = 0 for every 〈t,W 〉 ∈ D.
Finally, when Ck = ∅, the algorithm ExtMDM returns all of the mutually
dependent multisets as

⋃k−1
i=1 Li.

Example 4. Consider the transaction database D in Table 1 and set π to 2/3.
The algorithm ExtMDM first traverses D once and construct the set C1 of

occurrence sets as Table 1. Here, for a multiset X ∈ C1, the number in ti is the
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procedure ExtMDM(D, π)
input : A transaction database D and the minimum dependency π.
output : All of the mutually dependent multisets in D.
C1 ← {{x} | x ∈ X}; k ← 1;1

Traverse D; /* Construct the occurrence sets for L1 and C2 */2

while Ck �= ∅ do3

Lk ← {X ∈ Ck | isMDM(X, π) = true}; Ck+1 ← ∅;4

foreach Xx ∈ Lk do5

foreach Xy ∈ Lk s.t. x 
 y do6

/* Construct the occurrence set o(Xxy) from already
constructed occurrence sets o(Xx ) and o(Xy) */
if OccSet(o(Xx ), o(Xy)) �= ∅ then7

Ck+1 ← Ck+1 ∪ {Xxy};8

k ← k + 1;9

return
⋃k− 1

i=1 Li;10

Algorithm 3. ExtMDM

Table 1. The transaction database D, C1, C2 and C3 in Example 4.

D C1 t1 t2 t3 C2 t1 t2 t3 C2 t1 t2 t3 C3 t1 t2 t3 C3 t1 t2 t3

t1 a2bc a 2 − 2 aa 1 − 1 bb − 1 1 aaa − − − bbb − − −
t2 b2c3 b 1 2 2 ab 1 − 2 bc 1 3 − aab 1 − 2 bbc − 3 −
t3 a2b2 c 1 3 − ac 1 − − cc − 2 − abb − − 1 bcc − 2 −

value of tloc(X,W ) for 〈ti,W 〉 ∈ D and “−” denotes no entry. Since all of the
element in C1 is mutually dependent, it extracts L1 as C1.

Consider every pair of Xx and Xy such that x � y in L1. Then, there exists
a case that X = ∅ and (x, y) is one of (a, a), (a, b), (a, c), (b, b), (b, c) and (c, c).

When x ≺ y, the algorithm OccSet works for the multiset ab that o(ab) is
set to 〈t, oc〉 ∈ o(b) such that t ∈ oτ(a) ∩ oτ(b) in line 2. Since oτ(a) ∩ oτ(b) =
{t1, t3} and o(b) = {〈t1, 1〉, 〈t2, 2〉, 〈t3, 2〉}, the algorithm OccSet sets o(ab) to
{〈t1, 1〉, 〈t3, 2〉}. Similarly, since oτ(a)∩oτ(c) = {t1}, oτ(b)∩oτ(c) = {t1, t2} and
o(c) = {〈t1, 1〉, 〈t2, 3〉}, the algorithm OccSet sets o(ac) and o(bc) to {〈t1, 1〉}
and {〈t1, 1〉, 〈t2, 3〉}, respectively.

When x = y, the algorithm OccSet works for the multiset aa that o(aa)
is set to 〈t, oc − 1〉 such that 〈t, oc〉 ∈ o(a) and oc > 1 in line 4. Since o(a) =
{〈t1, 2〉, 〈t3, 2〉}, the algorithm OccSet sets o(aa) to {〈t1, 1〉, 〈t3, 1〉}. Similarly,
since o(b) = {〈t1, 1〉, 〈t2, 2〉, 〈t3, 2〉} and o(c) = {〈t1, 1〉, 〈t2, 3〉}, the algorithm
OccSet sets o(bb) and o(cc) to {〈t2, 1〉, 〈t3, 1〉} and {〈t2, 2〉}, respectively.

As a result, the algorithm ExtMDM constructs the set C2 with occurrence
sets as Table 1. Since P (ac|c) = P (cc|c) = 1/2 < π in checking whether or not
“isMDM(X,π) = true,” it extracts L2 as {aa, ab, bb, bc} in line 4.
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Consider every pair of Xx and Xy such that x � y in L2. Then, there exist
two cases that (1) X = a and (x, y) is one of (a, a), (a, b) and (b, b) and (2)
X = b and (x, y) is one of (b, b), (b, c) and (c, c).

When x ≺ y, since oτ(aa) ∩ oτ(ab) = {t1, t3} and oτ(bb) ∩ oτ(bc) = {t2},
the algorithm OccSet sets o(aab) and o(bbc) to {〈t1, 1〉, 〈t3, 2〉}(= o(ab)) and
{〈t2, 3〉}, respectively. When x = y, since o(aa) = {〈t1, 1〉, 〈t3, 1〉}, o(ab) =
{〈t1, 1〉, 〈t3, 2〉}, o(bb) = {〈t2, 1〉, 〈t3, 1〉} and o(cc) = {〈t2, 2〉}, the algorithm
OccSet sets o(aaa), o(abb), o(bbb) and o(bcc) to ∅, {〈t3, 1〉}, ∅ and {〈t2, 1〉},
respectively.

As a result, the algorithm ExtMDM constructs the set C3 with occurrence
sets as Table 1. Since P (abb|a) = P (bbc|c) = P (bcc|c) = 1/2 < π in checking
whether or not “isMDM(X,π) = true,” it extracts L3 as {aab} in line 4.

Since the algorithm ExtMDM cannot construct C4, it returns mutually
dependent multisets L1 ∪ L2 ∪ L3 = {a, b, c, aa, ab, bb, bc, aab}.

In order to extract all of the frequent mutually dependent multisets, by
Theorem 1, it is sufficient to input the minimum support σ, store |D| when tra-
versing D and replace the construction of Lk in line 4 in the algorithm ExtMDM
with the following statement.

Lk ← {X ∈ Ck | (isMDM(X,π) = true) ∧ (|oτ(X)|/|D| ≥ σ)}.

Since just the algorithm isMDM is essential to extract mutually dependent
multisets in the algorithm ExtMDM, it is sufficient to replace the above state-
ment with the following statement when we extract all of the frequent multisets.

Lk ← {X ∈ Ck | |oτ(X)|/|D| ≥ σ}.

5 Experimental Results

In this section, we apply the algorithm ExtMDM to real data as antibiograms
provided from Osaka Prefectural General Medical Center and artificial data
obtained by repeating items from transaction data in FIMI repository [2].

In the following, we denote the support and the dependency by percentage
(%). Also the computer environment is that OS is Ubuntu Linux (64bit), CPU
is Xeon CPU E5-1650 v3 (3.50 GHz) and RAM is 1024 MB.

5.1 Antibiogram

In this section, we apply the algorithm ExtMDM to antibiograms provided
from Osaka Prefectural General Medical Center in years from 1999 to 2012,
consisting of a patient ID, a date, a sample, a detected bacterium and results of
susceptibility test for 108 antibiotics, and so on, with total 295,031 records [6].

From this antibiogram, after setting detected bacteria as items, we convert
two kinds of transaction data, data on dates and data on patients by changing
tids. The tids in data on dates are dates, whereas the tids in data on patients are
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patients’ IDs. We use just transactions with more than two items as data. Then,
the number of transactions and the average number of items in transactions
in data on dates are 3,338 and 34.1042, respectively, whereas those in data on
patients are 15,596 and 6.7066, respectively.

Tables 2 and 3 illustrate, when varying the minimum dependency π from 10%
to 100% under the minimum support 0.1%, the number n and the maximum
cardinality c of extracted mutually dependent multisets and the computation
time t (sec.) for the data on dates and the data on patients, respectively.

Tables 2 and 3 show that the computation time for the data on patients in
Table 3 does not change well, which is larger than that for the data on dates in
Table 2 when π is greater than or equal to 30% whereas smaller when π is less
than or equal to 20%. The algorithm ExtMDM first constructs C1, L1 and C2,
whose size depends on the number of transactions of data, where the number of
transactions in the data on dates is 3,338, whereas that in the data on patients is
15,596. Since the number of transactions of the data on patients is much larger
than that on dates, we can conclude that the occurrence sets in the data on
patients are larger than those on dates and the running time depends on the
process of occurrence tidsets.

On the other hand, the maximum cardinality for the data on patients is not
changed, whereas that on dates grows large when π is 10%, which is the reason
that the computation time that π = 10% in Table 2 is very large.

Next, we analyze the extracted mutually dependent multisets from the view-
point of microbial substitution, which is one of the causes of hospital acquired
infection.

Table 4 illustrates the extracted mutually dependent multisets whose car-
dinality is 7 under the minimum support 0.1% and the minimum dependency
50%, from the data on dates. Here, the items of (S. aureus), (P. aeruginosa),

Table 2. The number and the maximum cardinality of extracted mutually dependent
multisets and the computation time for the data on dates.

π 100 90 80 70 60 50 40 30 20 10

n 463 466 471 488 533 638 935 1,918 6,910 68,519

c 4 4 4 5 6 7 9 11 13 17

t 3.9166 3.9045 3.9253 3.9241 3.9719 4.1261 4.2289 4.8282 7.3796 71.0553

Table 3. The number and the maximum cardinality of extracted mutually dependent
multisets and the computation time for the data on patients.

π 100 90 80 70 60 50 40 30 20 10

n 467 467 467 467 472 497 509 590 708 1,142

c 5 5 5 5 5 5 5 8 8 8

t 7.4423 7.4370 7.4451 7.4455 7.2321 7.2598 7.2434 7.1902 7.2680 7.3376



Extracting Mutually Dependent Multisets 277

Table 4. The extracted mutually dependent multisets whose cardinality is 7 from the
data on dates.

Mutually dependent multisets Support Dependency

(S. aureus)6(P. aeruginosa) 56.68% 58.68%

(E. coli)(S. aureus)5(P. aeruginosa) 54.76% 56.70%

(E. coli)(S. aureus)6 52.67% 54.53%

(S. aureus)5(P. aeruginosa)2 51.56% 53.38%

(S. aureus)7 51.47% 53.29%

(S. aureus)5(P. aeruginosa)(E. faecalis) 50.36% 52.14%

(yeast)(S. aureus)5(P. aeruginosa) 50.21% 51.99%

(E. coli) and (E. faecalis) denote Staphylococcus aureus, Pseudomonas aerugi-
nosa, Escherichia coli and Enterococcus faecalis, respectively.

Table 4 shows that all of the extracted mutually dependent multisets whose
cardinality is 7 contain the item (S. aureus) at least 5 times. Also they con-
tain the item (P. aeruginosa) at most twice and just (E. coli)(S. aureus)6 and
(S. aureus)7 do not contain (P. aeruginosa). Furthermore, both the support and
the dependency of all of the multisets are more than 50%, which is high.

Furthermore, from the medical viewpoint, it is well-known that the occur-
rence of (P. aeruginosa) after the occurrence of (S. aureus) is regarded as micro-
bial substitution, which Table 4 suggests.

Table 5 illustrates the extracted mutually dependent multisets whose car-
dinality is at least 3 under the minimum support 0.1% and the minimum
dependency 20% from the data on patients. Here, the items of (S. maltophilia),
(S. marcescens) and (E. aerogenes) denote Stenotrophomonas maltophilia, Ser-
ratia marcescens and Enterobacter aerogenes, respectively. Also “sp.” denotes
“species.”

Table 5 shows that the extracted mutually dependent multisets whose cardi-
nality is 4 are (S. aureus)4 and (P. aeruginosa)4. Also, in the extracted mutually
dependent multisets, (S. aureus)4 and (S. aureus)3 have the support greater than
10%. Also (P. aeruginosa)3, (P. aeruginosa)4 and (yeast)(P. aeruginosa)2 have
the support greater than 4%. The others have the support smaller than 2%.

Whereas the supports of the extracted mutually dependent multisets in
Table 5 are much smaller than those in Table 4, the extracted multisets in Table 4
contain several items not occurring in Table 5 and not concerned with the items
(S. aureus) and (P. aeruginosa).

5.2 Artificial Data

In this section, we use artificial data obtained by repeating items from trans-
action data in FIMI repository [2]. For data D in FIMI repository, the data
“D mod k” denote the data obtained by repeating every item i (as an integer)
at (i mod k)+1 times in D, where k = 2, 5 and 10. We use “accidents,” “chess,”
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Table 5. The extracted mutually dependent multisets whose cardinality is at least 3
from the data on patients.

Mutually dependent multisets Support Dependency

(S. aureus)4 11.17% 24.14%

(P. aeruginosa)4 4.13% 20.82%

(S. aureus)3 15.88% 34.34%

(P. aeruginosa)3 5.60% 30.10%

(yeast)(P. aeruginosa)2 4.08% 20.42%

(α-hemolysis sp.)(Neisseria sp.)(Haemophilus sp.) 1.90% 28.03%

(Enterobacter sp.)(α-hemolysis sp.)(Neisseria sp.) 1.53% 22.63%

(α-hemolysis sp.)(Neisseria sp.)(non-hemolysis sp.) 1.42% 20.93%

(S. maltophilia)3 1.15% 21.77%

(S. marcescens)3 0.97% 23.35%

(E. aerogenes)3 0.56% 22.37%

“kosarak,” “mushroom,” “retail,” “T10I4D100K” and “T40I10D100K” as data
D. Then, we apply the algorithm ExtMDM to the data “D mod k,” and eval-
uate how efficient it extracts mutually dependent multisets by comparing with
mutually dependent patterns extracted by the algorithm ExtMDM from D.

Table 6 illustrates, for the artificial data “D mod k” whose number of trans-
actions is “tran.” and average number of items in transactions is “ave.”, the run-
ning time t (sec.) and the number n and the maximum cardinality c of extracted
mutually dependent multisets from “D mod k” under the minimum support σ
and the minimum dependency π (75% or 50%).

For the data “accidents mod 10,” our algorithm returns no mutually depen-
dent multisets by memory overflow. The reason is that the information of stor-
ing candidate sets in the algorithm ExtMDM is too large to extract mutually
dependent multisets, since both the number of transactions and the number of
items in transactions are too large.

Table 6 shows that, when the running time is small like “chess” and “mush-
room,” the number of extracted mutually dependent multisets and the running
time increase rapidly. On the other hand, when the running time is large like
“T10I4D100K” and “T40I10D100K,” those increase slowly.

Note that, by using the property that a singleton is always mutually depen-
dent, we implement the algorithm ExtMDM to skip the construction of C1 and
to construct L1 directly. This is the reason that the running time of the data D
is sometimes larger than that of the data “D mod k.”

In Sect. 5.1, the number of transactions and the average number of items in
transactions are 3,338 and 34.1042 in data on dates and 15,596 and 6.7066 in
data on patients. As a result, by comparing with those in Table 6, antibiograms
have more appropriate sizes than the artificial data for our implementation.
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Table 6. The running time t (sec.) and the number n and the maximum cardinality
c of extracted mutually dependent multisets from the artificial data “D mod k” under
the minimum support σ and the minimum dependency π.

data “D mod k” tran. ave. σ π t n c

accidents 340, 183 33.81 95% 75% 61.12 15 4

accidents mod 2 49.11 66.77 23 5

accidents mod 5 96.87 233.69 239 12

accidents mod 10 178.77 308.28 – –

chess 3, 196 37.00 95% 75% 0.41 77 5

chess mod 2 50.93 0.61 131 6

chess mod 5 105.77 2.63 1,719 15

chess mod 10 191.91 17.86 14,039 30

kosarak 990, 002 8.10 1.5% 50% 4,011.16 38 2

kosarak mod 2 10.07 4,050.99 45 4

kosarak mod 5 18.79 7,820.18 86 6

kosarak mod 10 34.39 14,336.74 221 16

mushroom 8, 124 23.00 20% 75% 7.90 75 5

mushroom mod 2 32.00 6.72 113 6

mushroom mod 5 66.81 7.42 403 11

mushroom mod 10 121.01 14.08 5,763 26

retail 88, 162 10.31 0.1% 50% 854.69 959 2

retail mod 2 13.49 611.00 1,181 3

retail mod 5 27.18 811.99 2,342 9

retail mod 10 50.68 1,159.04 4,387 19

T10I4D100K 10, 000 10.10 0.02% 75% 1,666.91 866 2

T10I4D100K mod 2 12.96 1,266.54 1,237 3

T10I4D100K mod 5 25.39 1,286.18 2,498 6

T10I4D100K mod 10 45.22 1,331.93 4,553 11

T40I10D100K 10, 000 39.61 1% 75% 1,739.45 755 1

T40I10D100K mod 2 56.61 1,675.40 1,089 2

T40I10D100K mod 5 113.84 1,790.28 2,212 5

T40I10D100K mod 10 208.10 1,973.44 4,037 10

6 Conclusion and Future Works

In this paper, we have formulated mutually dependent multisets as extensions of
mutually dependent patterns [5] or hyperclique patterns [8] as itemsets. Then,
by improving the algorithms [5,8] based on Apriori to the algorithm based on
AprioriTid and introducing tail occurrences, we have designed a new algorithm
to extract all of the mutually dependent multisets by traversing a transaction
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database just once. Finally, we have applied the algorithm to the real data as
antibiograms and the artificial data. For antibiograms, we have succeeded in
extracting the mutually dependent multisets suggesting microbial substitution.

Concerned with Sect. 5.1, it is a future work to analyze the extracted mutually
dependent multisets from the medical viewpoint in more detail. In particular, it
is a future work to incorporate the extraction of mutually dependent multisets
from antibiograms with the methods of the event summarization [4] to extract
time-related patterns.

Concerned with Sect. 5.2, the implementation of our algorithm is not fast
enough to apply to large data, because the implementation of the algorithm
ExtMDM in Algorithm 3 is not robust to store the information of candidate
sets. Then, it is a future work to implement it robustly for a larger data. It is
also a future work to investigate whether or not we can improve our algorithm
based on the breadth-first search algorithms as Apriori and AprioriTid [1,9]
to the depth-first search algorithm as FPGrowth [3,9].

In this paper, we have ignored the number of occurrences of multisets in
transactions. We have formulated that a multiset is included in a transaction if
it occurs at least once, which is the reason to determine such an inclusion by
using just a tail occurrence. On the other hand, it is possible to be necessary to
deal with the number of occurrences of multisets in transactions. Hence, it is a
future work to extend multisets to deal with the number of occurrences.

Acknowledgment. The authors would like to thank anomymous refrees of DS2017
for valuable comments to revise the submitted version of this paper.
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Abstract. The reconstruction of gene regulatory networks via link pre-
diction methods is receiving increasing attention due to the large avail-
ability of data, mainly produced by high throughput technologies. How-
ever, the reconstructed networks often suffer from a high amount of false
positive links, which are actually the result of indirect regulation activi-
ties. Such false links are mainly due to the presence of common cause and
common effect phenomena, which are typically present in gene regulatory
networks. Existing methods for the identification of a transitive reduction
of a network or for the removal of (possibly) redundant links suffer from
limitations about the structure of the network or the nature/length of
the indirect regulation, and often require additional pre-processing steps
to handle specific peculiarities of the networks at hand (e.g., cycles).

In this paper, we propose the method LOCANDA, which overcomes
these limitations and is able to identify and exploit indirect relationships
of arbitrary length to remove links considered as false positives. This is
performed by identifying indirect paths in the network and by compar-
ing their reliability with that of direct links. Experiments performed on
networks of two organisms (E. coli and S. cerevisiae) show a higher accu-
racy in the reconstruction with respect to the considered competitors, as
well as a higher robustness to the presence of noise in the data.

Keywords: Causality · Bionformatics · Gene network reconstruction

1 Introduction

Recent studies in biology have been significantly supported by high throughput
technologies and by computational methods, which led to an improved under-
standing of the working mechanisms in several organisms. Such mechanisms can
be usually modeled through biological networks, which are able to easily describe
the considered biological entities as well as their relationships and interactions.
On the basis of the phenomenon under study, different types of biological net-
works can be considered. The most prominent example is that of networks mod-
eling the control of transcription into messenger RNAs or proteins [2,13]. In these
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 283–297, 2017.
DOI: 10.1007/978-3-319-67786-6 20
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Fig. 1. Network reconstruction from expression data. On the left, a matrix of M genes,
each associated to a vector containing the expression level measured under N different
conditions. In the middle, the gene-gene matrix obtained by pair-wisely computing a
similarity/correlation measure between the vectors. On the right, the reconstructed
network obtained by imposing a threshold on the values of the gene-gene matrix.

networks, called Gene-Regulatory Networks (GRNs), nodes represent molecular
entities, such as transcription factors, proteins and metabolites, whereas edges
represent interactions, such as protein-protein and protein-DNA interactions.

The direct observation of the real structure of these interaction networks
would require expensive in-lab experiments, usually performed through the so-
called epistasis analysis. Although in the literature we can find some compu-
tational approaches which support such an analysis [17], gene expression data
are much easier to obtain, therefore most of computational approaches pro-
posed in the literature focused on predicting the existence of interactions from
gene expression data, mainly on the basis of link prediction methods. These
approaches analyze the expression level of the genes under different conditions
(e.g., with a specific disease or after a treatment with a specific drug) or, alter-
natively, under a single condition in different time instants. The expression levels
observed for each gene are represented as a feature vector and a gene-gene matrix
is built by pair-wisely computing a similarity, correlation or information-theory-
based measure between the vectors associated to genes [6]. Finally, the existence
of links is inferred by imposing a threshold on the obtained score (see Fig. 1),
where the direction is inferred only if the considered measure is asymmetric.

However, except for those based on clustering [15], these methods generally
assume the independence among the interactions, i.e., they focus on each pair of
genes separately, disregarding possible dependencies or indirect influences among
them. This assumption leads to predict false positive interactions, which are
usually due to causality phenomena: (i) common regulator genes (also referred
to as common cause in the literature [9]) or (ii) commonly regulated genes (also
referred to as common effect in the literature [9]). In the first case (see Fig. 2(a)),
the feature vector associated to a gene C which exhibits a regulatory activity on
two genes A and B will presumably be similar to the feature vectors associated
to A and B. However, even if there is no interaction between the genes A and
B, their feature vectors will appear similar, therefore a link between them could
possibly be detected. Analogously, in the second case (see Fig. 2(b)), a gene C
which is regulated by two genes A and B will presumably have a feature vector
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(a) (b)

Fig. 2. Issues in the network reconstruction due to common cause (a) or common effect
(b) phenomena. The direction of the interactions does not appear in the reconstructed
networks if we consider the case of a symmetric similarity/correlation measure.

which is similar to the feature vectors associated to A and B. Therefore, even if
A and B do not interact, their feature vectors will be similar and a link between
them will possibly appear in the reconstructed network. Such issues are even
more evident when data are affected by noise. Indeed, possible measurement
errors can lead to a significant increment of false positives due to common cause
and common effect phenomena, compromising the quality of the reconstruction.

The presence of these phenomena in the reconstruction of gene regulatory
networks has been largely recognized in the literature, also considering possible
hidden common causes and hidden common effects [10], and several approaches
for post-processing the gene-gene matrix have been proposed. These methods,
usually called scoring schemes [6], analyze large sets of genes simultaneously,
in order to catch more global interaction activities and possibly reduce false
positives due to the presence of common cause and common effect phenomena.
One of the most popular scoring scheme is ARACNE [11], which evaluates all
the possible connected gene triplets and removes the edge with the lowest score.
ARACNE is limited to undirected networks and is not able to analyze more
global indirect interactions (i.e., involving more than three genes). However,
although the idea of removing the weaker edge is very simple, the intuition
of considering the score as an indication of the reliability of the interaction is
reasonable, and has been exploited by other works in the literature (e.g., [3]).

In this paper, inspired by the same idea, we introduce a new method, called
LOCANDA, which is able to identify interaction chains of arbitrary length and
is able to remove false positive interactions working on the identified chains. It is
noteworthy that the approach we propose in this paper has its roots in methods
for the analysis of graphs and, in particular, in works for the transitive reduction
[1,7]. However, differently from existing methods, LOCANDA is able to handle
weighted, directed and possibly cyclic networks without any pre-processing step.

In the Sect. 2, we briefly describe existing methods which exploit causality
in the analysis or in the reconstruction of networks, giving emphasis to those
tailored for the identification and removal of indirect interactions in (biologi-
cal) networks. In Sect. 3, we describe our method LOCANDA, while in Sect. 4
we describe the experiments we performed and comment the obtained results.
Finally, in Sect. 5, we draw some conclusions and outline possible future works.
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2 Related Work

In the literature, we can find several approaches which catch and exploit causality
phenomena for different goals. A general framework for the identification of
causal links between variables [12] consists in (i) the analysis of correlations,
which suggest possible (undirected) links, (ii) the analysis of partial correlations,
which can be exploited to remove possibly indirect relationships and (iii) some
assumptions on the structure of the network, such as acyclicity, which can suggest
the possible direction of links. It is noteworthy that such assumptions can be
easily violated in specific domains, such as biology, leading to an inaccurate
reconstruction. An example of application of such a framework can be found in
algorithms for learning the structure of Bayesian networks [9], which identify
causalities between variables by analyzing the d-separation among them, which
is based on the common cause and effect phenomena described in Sect. 1.

Other approaches exploit the concept of causality to identify a transitive
reduction of a graph [1,7]. These methods analyze a graph and produce a new
graph containing a subset of links, which guarantees to convey the same informa-
tion of the original graph. This means that, analogously to the method proposed
in this paper, these approaches aim at removing edges that can be considered the
result of an indirect relationship. Specifically, the method proposed in [1] finds
a transitive reduction G′ of the initial graph G, where G′ has a directed path
from vertex u to vertex v if and only if G has a directed path from vertex u to
vertex v and there is no graph with such a property having fewer edges than G′.
In other words, the obtained graph G′ is the smallest graph (in terms of edges)
such that given any pair of nodes 〈u, v〉, if v is (respectively, is not) reachable
from u in the initial graph G, then v is (respectively, is not) reachable in the
reduced graph G′. This means that the information conveyed by the graph, in
this work, is associated to the reachability of nodes. Although based on the same
principles of LOCANDA, this approach requires the identification of an equiv-
alent acyclic graph before performing the analysis and is limited to unweighted
graphs. Therefore, it can not exploit information about the reliability commonly
associated to each edge in biological networks.

Analogously, in [7] the authors propose the identification of a Minimal Equiv-
alent Graph (MEG), whose definition is the same as the transitive reduction pro-
posed in [1]. The method consists of several steps, that are: (i) the identification
of strongly connected components, (ii) the removal of cycles from each compo-
nent, (iii) the identification of the minimal equivalent graph for each component
and (iv) the reintroduction of the edges removed in the step (i). Even if more
sophisticated, this approach suffers from the same limitations described for [1].

Focusing on biological networks, in the literature, several approaches have
been proposed to consider specific issues as well to exploit specific characteristics
of such an application domain. In particular, it is possible to exploit the causal-
ity to infer the directionality of the interactions by exploiting time-series gene
expression data [6]. In this case, the regulator gene (the cause), by definition,
should act before the regulated gene (the effect). Therefore, a common strategy
consists in computing the similarity between two genes u and v, by performing a
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progressive shifting forward in time of the time-series associated to the first gene
u. If the similarity increases, then it is possible to conclude that u acts before v,
therefore u regulates v. More sophisticated approaches exploit Granger causal-
ity [8] or hidden (i.e., unobserved, latent) common causes and common effects
[10]. All these methods, however, are applicable only when analyzing time-series
data, while they cannot be applied when each gene is associated with a vec-
tor representing its expression values in different (steady) conditions. In [11],
the authors propose the (already mentioned) method ARACNE which exploits
causality phenomena to identify and remove indirect relationships. Analogously
to the approach presented in this paper, the method acts as a post-processing
phase of the network reconstruction, aiming at removing interactions considered
as the indirect effect of other interactions. This is performed by analyzing all the
triplets of connected genes and by removing the weakest interaction, i.e. the edge
with the lowest score. As already clarified, although based on the same principle
of LOCANDA, this approach is limited to indirect interactions involving only
three genes, thus it cannot identify interaction chains of arbitrary length.

In a more recent work [3], the authors propose a method for the identification
of the transitive reduction of biological networks. This method is able to analyze
both unweighted networks and possibly cyclic weighted networks. In this last
case, however, following the approach adopted in [14], it requires to pre-process
the network in order to make it acyclic. In detail, the method (i) identifies and
shrinks the strongly connected components into single nodes, (ii) applies the
reduction on the resulting acyclic graph, and (iii) re-expands the components.
It is noteworthy that this procedure assumes that genes within each component
are fully connected and do not perform any reduction within each component,
since the results would strongly depend on the order of the analysis. Moreover,
it assumes that the graph resulting from the step (i) is acyclic, i.e., there is no
cycle among the components. However, the reduction phase is based on an idea
which is similar to that adopted in LOCANDA, i.e. on the computation of an
uncertainty score for paths connecting nodes, and on the removal of direct links
having a higher uncertainty with respect to the identified indirect paths.

In summary, with respect to existing works in the literature, the method
LOCANDA proposed in this paper identifies and removes links which are consid-
ered as the result of indirect regulation activities, exploiting common cause and
common effect phenomena. LOCANDA has the following distinguishing charac-
teristics: (i) unlike classical methods for the identification of a transitive reduc-
tion of networks [1,7], it is able to work on weighted networks, which is relevant
when dealing with reconstructed biological networks where edges are associated
to a score/reliability; (ii) unlike [11], it is able to work on directed networks,
which (if available) becomes important to correctly consider causality phenom-
ena; (iii) similar to [3] and unlike [11], it is able to catch indirect relationships of
arbitrary length by comparing the reliability of direct links to that of identified
indirect relationships; (iv) contrary to [1,3,7] it is able to directly work on cyclic
networks, without any pre-processing steps and by guaranteeing the same result
independently on the order of analysis.
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3 The Method LOCANDA

In this section, we describe the method LOCANDA for the identification and
removal of false positive links in a reconstructed gene network. The method is
based on the concepts of common cause and common effect already introduced in
Sect. 1. We remind that LOCANDA is not limited to the simple cases depicted
in Fig. 2, but is able to detect and exploit indirect relationships of arbitrary
length. In the following, before describing our approach, we introduce some useful
notions and formally define the task we solve. Let:

– V be the set of genes, i.e., nodes in the reconstructed network.
– E ⊆ (V ×V ×R) be the set of interactions in the reconstructed network, i.e.,

weighted edges in the form 〈source node, destination node, edge weight〉.
– P be a generic path between two nodes v1 (source node) and vk (destination

node) in the network, defined as a sequence of nodes [v1, v2, . . . , vk], such that
∀i=1,2,...,k−1,∃wi : 〈vi, vi+1, wi〉 ∈ E.

– f(P ) be a function that measures the reliability of the path P according to
the edges involved in its sequence of nodes.

A path P between u and v is considered more reliable than the edge 〈u, v, w〉 if
f(P ) > w. According to such an assumption, the task we solve consists in the
identification of a reduced set of edges ˜E ⊆ E, satisfying the following properties:

– the reachability of nodes is preserved. Formally, given two nodes u, v, there
exists at least a path P connecting them through the edges in ˜E if and only
if there exists at least a path P connecting them through the edges in E.

– an edge 〈u, v, w〉 is removed, i.e., it does not belong to the reduced set ˜E, if
there exists a path P from u to v which is more reliable than 〈u, v, w〉.

Note that, contrary to [1,7], we do not require the minimality of the number
of edges in the reduced network, since we are not interested in pure transitive
reduction, but in removing possible false positive edges identified during the
reconstruction of the network. Indeed, in the case of reconstructed gene networks,
the fact that the information conveyed by a link can be represented by a sequence
of nodes (a path) is not a sufficient condition to consider the link as a false
positive due to the presence of common cause or common effect phenomena.
For this reason, we remove a link only if its reliability appears lower than the
reliability of the identified path, measured by f(·). In this work, we take into
account different possible measures to estimate the reliability of the path. In
particular, being w(vi, vj) the weight associated to the edge between vi and vj ,
we consider the following measures:

– Minimum (Min), which corresponds to the lowest edge weight in the path,
following the principle of the “weakest link in the chain”.
Formally, f([v1, v2, . . . , vk]) = min

i=1,2,...,k−1
w(vi, vi+1).

– Product (Prod), i.e., the product of the edge weights involved in the path. This
approach is motivated by the common strategy adopted for the combination
of probabilities of (naively independent) events.
Formally, f([v1, v2, . . . , vk]) =

∏k−1
i=1 w(vi, vi+1).
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– Average (Avg), i.e., the average of the edge weights involved in the path.
Formally, f([v1, v2, . . . , vk]) = 1

k · ∑k−1
i=1 w(vi, vi+1).

– Weighted Average (WAvg), i.e., the average of the edge weights involved in
the path, linearly weighted on the basis of their closeness to the source node.
This approach can be motivated by the assumption that the influence of the
source node on the other nodes in the path fades linearly on the basis of their
distance. Formally, f([v1, v2, . . . , vk]) = 1

∑k−1
i=1

1
i

· ∑k−1
i=1

[

1
i · w(vi, vi+1)

]

.

The pseudo-code of the algorithm LOCANDA is reported in Algorithm 1. We
also report a running example in Fig. 3. Before describing LOCANDA, we remind
that the method is able to analyze both undirected and directed networks,
weighted according to a score representing the reliability about the existence of
the interaction (computed by any method for network reconstruction). Here we
assume to work with a weighted directed network (the most general case), since
an unweighted network can be always mapped into a directed network by intro-
ducing an edge for each direction, with the same reliability score. The first step
of LOCANDA consists in the removal of self-edges (line 2), since some methods
for network reconstruction identify them erroneously. Although self-regulation
activities are possible in biology, in reconstructed networks such links are due to
errors in the computation of similarity/correlation measures on the vector asso-
ciated to a single gene. In our example, the self-edge on the node E (Fig. 3(b)) is
removed, leading to the network in Fig. 3(c). Then the algorithm analyzes each
node (that we call source node) aiming at identifying all the reachable nodes and
a path to reach them. Note that the visit of the network is performed accord-
ing to a depth-first and best-first strategy, based on the reliability of the edges.
The algorithm works in a greedy fashion, since an exhaustive exploration of all
the possible paths would lead to an exponential time complexity. When there
are several edges to follow, LOCANDA considers the path that locally (i.e., by
observing only the neighborhood) appears the most reliable.

LOCANDA exploits three data structures: the set of visited nodes (visited),
the current sequence of nodes (path) and a stack, according to which nodes are
explored. Moreover, it exploits a structure (RT ) similar to the routing table used
by routing algorithms, which keeps information about the nodes reachable from
the source node. In particular, for each reachable node (destination), it stores:

– the next-hop, i.e., the node adjacent to the source node that we need to
follow to reach it, according to the current path.

– the path score associated to the current path, on which is based the choice
of the optimal path to keep. LOCANDA will prefer a new path with respect
to a previously identified path if this value is higher.

– the path weight, which represents the reliability associated to the current
path according to f(·), that will be exploited to remove links.

Note that we prefer to consider two different criteria for the choice of the
optimal path to consider (path score) and for the estimation of the reliability
of the path (path weight), since they could not be generally based on the same
assumptions. In particular, the path score will correspond to the sum of edges in
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Algorithm 1. Pseudo-code of the method LOCANDA.
Data:

·V : the set of genes (nodes in the network)
·E ∈ (V × V × R): the set of interactions (edges in the network), represented as

〈source node, destination node, edge weight〉
·f(·): the measure for the reliability of a path

Result:
·Ẽ: the updated (reduced) set of interactions

1 begin

2 Ẽ ← E \ E.getSelfEdges();
3 foreach src ∈ V do

/* Structures initialization. Records in the routing table RT are in the form
〈dest node, next hop, path score, path weight〉. Operations on RT are based on
dest node. Updates are considered as a new record if it does not exist. */

4 visited ← {src}; path ← [src]; path score ← 0; stack ← [ ]; RT ← [ ];

/* Initialize the routing table for adjacents of src */

5 foreach 〈src, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
6 RT.update(adj, adj, w, f([adj]));
7 stack.push(adj);

8 while stack is not empty do
9 current node ← stack.pop();

10 visited ← visited ∪ {current node};
11 edge weight ← Ẽ.getEdgeWeight(path.getLast(), current node);
12 old path score ← RT.getPathScore(current node);
13 new path score ← path score + edge weight;

/* Update the RT if the route does not exist or if the new path has a
higher score than the previous path */

14 if old path score = null or old path score < new path score then
15 next hop ← path.getFirst();
16 RT.update(current node, next hop, new path score, f(path));

/* Push non-visited adjacent nodes of the current node into the stack,
ordered by weight */

17 foreach 〈current node, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
18 if adj /∈ visited then
19 stack.push(adj);

/* Update the current path */
20 if some nodes were added to stack then
21 path.add(current node);
22 path score ← new path score;

23 else if stack is not empty then
24 next ← stack.top();

25 while 〈path.getLast(), next〉 /∈ Ẽ do
26 last ← path.getLast();
27 path.removeLast();

28 path score ← path score − Ẽ.getEdgeWeight(path.getLast(), last);

/* Remove a direct link if it is not used to reach other nodes and its less
reliable than the indirect link (path) */

29 all next hops ← RT.getAllNextHops();

30 foreach 〈src, adj, w〉 ∈ Ẽ do
31 if adj /∈ all next hops and w < RT.getPathWeight(adj) then

32 Ẽ ← Ẽ \ {〈src, adj, w〉};

33 return Ẽ;
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the path, since, combined with the adopted strategy for the choice of the edge to
follow (i.e., the highest), leads to the identification of long and reliable paths. On
the contrary, the estimation of the path weight will be based on several different
measures, that we will describe later.

The analysis of a source node is performed as follows. First, the data struc-
tures are initialized (line 4), by considering the source node as already expanded
and by adding it to the current path. Second, we analyze all its adjacent nodes,
i.e., we push them into the stack, ordered in ascending order according to the
edge weight, and initialize the routing table by setting themselves as their next-
hop (lines 5–7). Then, the main part of the algorithm (lines 8–28) iterates until
the stack still has some nodes to analyze. In particular, LOCANDA pops a node
(current node) from the stack (see Fig. 3(d)), marks it as visited (lines 9–10), and
computes the score associated with the current path to reach the current node
from the source (lines 11–13). If the current path is the first identified path to
reach current node or it has a higher score with respect to the previous path in
the routing table, LOCANDA updates the routing table (lines 14–16).

Then the algorithm expands the current node, by pushing its adjacent nodes
into the stack in ascending order with respect to the edge weight, if not already
visited (lines 17–19). If at least a node was pushed (see Figs. 3(e),(f),(g)), the
current path is updated to follow current node (lines 20–22), otherwise (see
Fig. 3(h)) the algorithm steps back, until it can find an existing edge between
the last node in the path and the next node in the stack (lines 23–28). In both
cases, the path and its score are updated incrementally (lines 22 and 26–28).

When there is no more nodes in the stack, LOCANDA removes all the direct
links such that the properties described before are satisfied. In particular, it
removes a link between the source node u and an its adjacent v if v is never
used as next-hop to reach other nodes and if the path identified to reach v from
u appears more reliable then the direct link (lines 29–32). The algorithm then
proceeds with the next source node. It is noteworthy that the removed links will
never be considered again from the algorithm. This can be done without any risk
to lose relevant paths, since those edges would never be considered in any case,
even analyzing the nodes of the networks in a different order. As an example,
the removed edge between A and B in Fig. 3(i) would not be followed in any
case during the analysis of the node G as source node. Therefore, the order of
analysis of source nodes does not affect the resulting reduced network.

The immediate removal of such links also improves the algorithm time com-
plexity. Indeed, although in the pessimistic case LOCANDA has a time complex-
ity of O(|V | · |E|)1, this choice decreases the number of edges at each iteration.

4 Experiments

We performed our experiments on the datasets considered in [4]. These datasets
consist of steady-state expression data (10 conditions), generated by the tool

1 For space constraint, we do not prove formally the time complexity of the algorithm.
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(a) The initial reconstructed network. (b) The self edge on the node E.

(c) Self edge on the node E removed. (d) Node A expanded. Node C popped
from the stack (since the weight of A→C
was the highest).

(e) Node C expanded. Node B popped
from the stack (since the weight of C→B
was the highest).

(f) Node B expanded. Node D popped
from the stack (it was the only pushed
node, since C had been already visited).

(g) Node D expanded. Node E popped
from the stack (it was the only pushed
node, since C had been already visited).

(h) Node E expanded. No node pushed
into stack, since D had been already vis-
ited. It steps back to analyze F from C.

(i) Removal of the link A→B. (j) Reduced network, after the analysis
of all the nodes (f(·) = Minimum).

Fig. 3. An example of execution of LOCANDA and the analysis of the source node A.
Grey nodes: already expanded; blue node: the current node to analyze, extracted from
the stack; black edges: not seen yet; grey edges: already seen, but still not followed; blue
edges: belonging to the current path; red edges: will not be followed, since would bring
to already expanded nodes; black-dashed edges: to be removed. (Color figure online)



LOCANDA: Exploiting Causality in the Reconstruction of GRNs 293

SynTReN [16] on the basis of the well-defined regulatory networks of the organ-
isms E. coli and S. cerevisiae (henceforth Yeast) [6]. SynTReN selects connected
sub-networks of the input networks and generates gene expression data which
best describe the network structure. We consider sub-networks of 100 and 200
genes, characterized by 121 and 303 links, with an average node degree of 2.42
and 3.03, respectively. In order to evaluate the robustness to noise, coherently to
[4], we consider three versions of each dataset, with different levels of (additive,
lognormally-distributed) noise, i.e., 0.0 (without noise), 0.1 and 0.5, introduced
by SynTReN. Gene regulatory networks were reconstructed by adopting the sys-
tem GENERE [4], which, according to the experiments, obtains state-of-the-art
results in terms of Area Under the ROC Curve (AUC). In particular, we selected
the parameter configuration of GENERE which led to the best results.

We considered as a competitor the system ARACNE [11], that we already
described in Sect. 2. Moreover, we considered, as a baseline, the original network
reconstructed by GENERE. For all the systems, we performed the experiments
by imposing a lower threshold on the weight of the edges in {0.0, 0.1, . . . 1.0}.
For LOCANDA, we performed the experiments with all the measures for the
estimation of the reliability of the path proposed in Sect. 3, that are: minimum
(Min), product (Prod), average (Avg) and weighted average (WAvg).

The evaluation measure that we consider is based on the Area Under the ROC
Curve. It is noteworthy that the classical AUC evaluation focuses on known
examples in the gold standard, disregarding all the predicted links for which
the existence is unknown. This means that the obtained AUC value can be
significantly distorted, since focused only on the small subset of known links in
the reconstructed network. Since, in real scenarios, the biologists have to analyze
the whole set of predicted links, possibly ranked in descending order with respect
to their score, we define the weighted AUC as follows:

WAUC(V, ˜E) =

(

1 − sumOfWeights( ˜E)
|V | · (|V | − 1)

)

· AUC( ˜E) (1)

where sumOfWeights( ˜E) =
∑

〈u,v,w〉∈Ẽ(w) is the sum of edge weights in the

reduced reconstructed network, AUC( ˜E) is the classical Area Under the ROC
Curve and |V | · (|V | − 1) is the number of possible links in the network. It is
noteworthy that this measure penalizes the original AUC score proportionally to
the number (and the weight) of links in the reduced network. This is motivated
by the fact that a large set of predicted links, all with a high score (i.e., without
a clear indication about their rank) would require an extensive manual analysis
performed by biologists. On the other hand, reconstructed networks with many
links will not be penalized significantly if a large set of links has a very low score,
since they would be probably disregarded by biologists during their analysis.
Note that, due to the weighting defined in Eq. 1, WAUC values near to 0.5 do
not correspond to a random prediction as in the standard AUC evaluation.

The obtained results are plotted in the box plots depicted in Fig. 4. Box
plots are drawn by considering the different values for the input threshold on
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Fig. 4. Box plots depicting the results. On the X-axis there are the different methods;
on the Y-axis there is the WAUC obtained by varying the threshold on the edge weight.
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the edge weight. This allows us to evaluate the stability of the results with
respect to such a parameter. First, we can observe that ARACNE, GENERE and
LOCANDA Prod obtain unstable results with respect to the input threshold,
whereas the other variants of LOCANDA obtain very stable results. Moreover,
we can observe that the networks reconstructed by GENERE appear, in general,
accurate and often lead to the highest WAUC value (see the datasets Ecoli-100-
0.1, Ecoli-200-0.1, Ecoli-200-0.5, Yeast-100-0.1, Yeast-100-0.5, Yeast-200-0.0 and
Yeast-200-0.1). However, such a result can be obtained with a specific value of
the input threshold and a wrong decision can lead to very poor results. On the
contrary, a non-optimal choice of the value for the input threshold does not
affect significantly the results obtained by LOCANDA Min, LOCANDA Avg
and LOCANDA WAvg, that lead to stable and high WAUC values in almost all
the cases. ARACNE generally obtains lower WAUC values, which also appear
highly dependent on the value of the input threshold. An exception can be
observed in the dataset Ecoli-200-0.0 in which ARACNE obtains the best result.

Analyzing the influence on the results caused by the presence of noise in the
data, we can observe that, without noise or with a low amount of noise, GENERE
and ARACNE obtain acceptable (although unstable) results. However, when the
amount of noise increases, their average WAUC values decrease significantly. On
the contrary, LOCANDA, especially with the variants based on Min, Avg and
WAvg, generally shows good and stable results, even in the case of the datasets
with the highest noise. This proves that the proposed method is actually very
robust to the possible presence of noise in the data.

Finally, we performed the Friedman test with the Nemenyi post-hoc test,
with α = 0.05, in order to evaluate whether the obtained results appear signifi-
cant from a statistical viewpoint. Following [5], we plot a graph which summa-
rizes the results in Fig. 5. Observing the graph, we can conclude that, although
LOCANDA Min generally leads to the best results, the difference among the
three variants based on Min, Avg and WAvg is not statistically significant.
However, the difference between the results obtained by these three variants
and by the other approaches, including ARACNE and GENERE, is statistically
significant.

The non-optimal results obtained by the variant based on product can be
motivated by the fact that it is based on assumptions that are often violated in
biological networks (i.e., the independence between the events). On the contrary,
the very good results obtained by the variants Min and WAvg can be motivated
by the fact that their assumptions correctly reflect the real interactions among
genes. At this respect, we can conclude that: (i) the variants based on Min and
WAvg are the most appropriate for the reconstruction of gene networks, and (ii)
LOCANDA can be easily adapted to analyze networks representing data about
other application domains, by identifying a proper function f(·) able to catch
specific assumptions of the domain at hand.
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Fig. 5. Results of the Friedman test and Nemenyi post-hoc test with α = 0.05.

5 Conclusions and Future Work

In this work, we proposed the method LOCANDA for the analysis of recon-
structed biological networks, which identifies and exploits causality phenomena
to remove links which can be considered the result of indirect regulation activi-
ties. Contrary to existing methods for the identification of a transitive reduction
of a network or for the identification of redundancies in reconstructed biologi-
cal networks, LOCANDA simultaneously offers all the following characteristics:
(i) it is able to analyze directed weighted networks, fully exploiting the weights
on the edges which represent their reliability; (ii) it does not require any pre-
processing step on the network in order to handle the possible presence of cycles;
(iii) it is able to identify indirect relationships of arbitrary length and to exploit
them to remove direct links considered as false positives. The estimation of the
reliability of a path is guided by a function, which can be tuned according to
specific underlying phenomena and assumptions with respect to the application
domain at hand. Focusing on biological networks, the obtained results show that
LOCANDA, especially in its variant based on minimum, is able to obtain bet-
ter and more stable results with respect to the considered competitors, even
with highly noisy data. Moreover, according to the Friedman test and Nemenyi
post-hoc test, such difference appears statistically significant.

As future works, we plan to compare LOCANDA with additional competitor
systems, also in the analysis of a larger network about the Homo Sapiens. We will
also perform a qualitative analysis of the results, guided by experts in biology.
Moreover, we will evaluate the effectiveness of LOCANDA in the analysis of
networks representing data about other domains, focusing on the influence of
the function f(·) when different assumptions on the network are verified.
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4. Ceci, M., Pio, G., Kuzmanovski, V., Dẑeroski, S.: Semi-supervised multi-view learn-
ing for gene network reconstruction. PLOS ONE 10(12), 1–27 (2015)
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Abstract. In this study, we discovered a panel of discriminative microR-
NAs in salivary gland tumors by application of statistical machine
learning methods. We modelled multi-component interactions of sali-
vary microRNAs to detect group-based associations among the features,
enabling the distinction of malignant from benign tumors with a high
predictive performance utilizing only seven microRNAs. Several of the
identified microRNAs are separately known to be involved in cell cycle
regulation. Integrated biological interpretation of identified microRNAs
can provide potential new insights into the biology of salivary gland
tumors and supports the development of non-invasive diagnostic tests to
discriminate salivary gland tumor subtypes.

Keywords: Cancer biomarkers · Salivary gland tumors · Feature selec-
tion · Stability selection · Co-regularization · microRNA

1 Background and Motivation

Statistical machine learning techniques have recently received significant atten-
tion due to their outstanding performance in various data analysis tasks. One of
the most common tasks in machine learning is the feature selection, frequently
referred to as biomarker selection when applied to biomedical datasets [13]. In
this study, we used a recently constructed database [10] to analyze the microRNA
(miRNA) expression profiles of head and neck cancer samples via a statistical
c© Springer International Publishing AG 2017
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machine learning algorithm which can detect group-based associations. We mod-
elled multi-component interactions of salivary miRNAs enabling the distinction
of malignant from benign salivary gland tumors with a high predictive per-
formance. Moreover, stability selection [11] and randomization test [4] proce-
dures were conducted on the collected data to select the most robust miRNA
biomarkers.

Head and neck cancer is the sixth most common type of cancer, and patients’
overall five-year survival rate is only around 50% [7]. As one of the subtypes of
head and neck cancer, salivary gland tumors are a rare but very heterogeneous
set of tumors comprised of 13 benign and 24 malignant subtypes. Early diagno-
sis is a key factor in contributing to a positive outcome of salivary gland tumor
treatment. Clinical examination, with or without fine needle aspiration cytol-
ogy, preoperative CT-scan, and MRI are the most commonly used methods for
diagnosing these rare tumor types [15]. More recently, a non-invasive and inex-
pensive salivary diagnostic tools are being developed to assist in the diagnosis
of these and other types of oral tumors. In particular, salivary miRNAs have
attracted much attention for non-invasive diagnostic applications since altered
levels of salivary miRNA expression have been implicated in the etiology of
cancer [10,23].

2 Previous Work

In our recent study [10], we profiled miRNA expression in saliva from oral cancer
patients and produced a database that can be used for studying differences in
whole saliva from patients with a malignant or a benign parotid gland tumor.
One of the main limitations of the previous study, however, was the use of a uni-
variate statistical approach to analyze the generated high-dimensional data. The
tacit assumption of such an approach is that the underlying biological process is
dominated by a few miRNAs acting as isolated entities. While this approach is
attractive due to its relative simplicity, biological processes such as tumor devel-
opment are in reality much more complex, and are driven by multi-component
interactions among miRNA, mRNA, DNA, peptides, signaling molecules, and
drug activities. Furthermore, it is known that some biological processes are con-
trolled by activating a hierarchical cascade of interdependent miRNA regulators
[2,17]. Multi-component group-based interactions, such as hierarchal miRNA
systems, are difficult to detect using standard statistical tests.

To exploit existing hierarchical relationship among features, one should use a
model which incorporates this domain-specific knowledge explicitly in its objec-
tive function. Many existing hierarchical feature selection models [9,12] are not
directly applicable to genomics data, because they exploit ontology-based seman-
tic relationships and do not use sparsity-inducing norms. To a lesser extent, a
similar problem also applies to sparsity inducing methods, such as group lasso
[22] and sparse-group lasso [16], because they implement group information but
ignore its hierarchical properties. We suggest using a co-regularized sparse-group
lasso algorithm, which does not have above mentioned limitations and it works
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under the assumption that features are divided into hierarchically related groups.
Such a feature ‘grouping effect’ is useful when interrogating the miRNA dataset
in order to detect group-based miRNA interactions. Co-regularized sparse-group
lasso was evaluated in our recent study [14] on a synthetic dataset, and its perfor-
mance was examined under various settings. The results of the study supported
conclusion that its application is beneficial in comparison to the standard lasso
[19], elastic net [24], group lasso [22], and sparse-group lasso [16] techniques.

3 Methodology

3.1 Co-Regularized Sparse-Group Lasso

Let S = (X,y) denote a dataset where y is the n × 1 label vector and X
is the n × p input dataset matrix, where n is the number of examples and p
the number of features. If the features are divided into M groups, we use the
following notations: X = (X1|...|XM ) is an input dataset matrix where each
X(v) is a n × p(v) sub-matrix, where p(v) is the number of features in group v.
β = (β1, ..., βp) = (β(1)|...|β(M)) is a vector of weights, where β(v) (p(v) × 1)
is the vector of weights of the corresponding features of group v. Using these
notations, co-regularized sparse-group lasso model [14] computes weights that
minimize the following objective function:

LcrSGL(α, λ,β) =
1
2n

∥
∥
∥
∥
∥
y −

M∑

v=1

X(v)β(v)

∥
∥
∥
∥
∥

2

2

(1)

+ αλ ‖β‖1 + (1 − α)λ
M∑

v=1

√

p(v)
∥
∥
∥β(v)

∥
∥
∥
2

+
1
2n

M∑

l,v=1

γlv(X(l)β(l) − X(v)β(v))2,

where γlv is the co-regularization coefficient between groups l and v. Further
details of the co-regularized sparse-group lasso, such as weight update procedure,
soft-thresholding operator and a step-wise sketch of the algorithm are provided
in our previous work [14].

3.2 Stability Selection and Randomization Test

The regularized feature selection model is parameterized by the hyper-parameter
α ∈ [0, 1], which modulates the emphasis of either the L1- or L2-norm regular-
izations. This, and two other hyper-parameters λ, γ, influence the number of
features selected [14,16]. To minimize this influence on the model performance,
a stability selection [11] procedure was introduced. In this study, the stability
selection procedure was performed by running the feature selection model mul-
tiple times on randomly subsampled data, and choosing only those features that
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are selected most frequently across all sample partitions. Furthermore, while
solving a penalized classification problem, we assume that due to biological rea-
sons there is an association between the miRNA expression value matrix and the
classification labels vector. This assumption can be tested by conducting model-
ing on the dataset with reshuffled class labels, while keeping the corresponding
miRNA expression value indices fixed. Such a procedure is often used to test the
statistical significance of results, and is known as a randomization test [4].

4 Experiments

The miRNA dataset obtained from the discovery phase [10] was used as an
input for the machine learning algorithm. Specifically, the miRNA dataset con-
tains data from ten patients diagnosed with malignant parotid gland tumors
and ten patients diagnosed with benign parotid gland tumors. miRNA expres-
sion profiles were determined by real-time PCR encompassing 750 miRNAs. To
compensate for variance in feature amplitudes, all input features were zero-mean
unit-variance scaled.

Under a standard miRNA nomenclature system [5], general pattern of a
miRNA name is a ‘three letter species abbreviation–miR–number–qualifier’.
Using miRNA names, the dataset can be split to a group of 17 miRNAs which
originate from mice species, and the next group consists of 733 miRNAs which
originate from human species. Within those human-originated miRNAs group,
15 belong to let-7 family discovered originally from C. elegans. Within the rest of
718 human non-let-7 miRNAs, further group division is also possible depending
on the miRNA qualifier (e.g. 3p or 5p arm of a hairpin loop).

The features were selected based on their stability after 50 runs of feature
selection model on random data shuffles using the stability selection procedure.
Model hyper-parameters were estimated using an exhaustive grid search within
a 10-fold stratified shuffled cross-validation procedure [6] on 80% of the training
dataset, and the model’s generalization error was assessed on the remaining 20%
test dataset. The performance measure used for a binary classification task is a
Receiver Operating Characteristics Area Under Curve (ROC AUC).

5 Results and Discussion

5.1 Model Performance Evaluation

Stability selection procedure conducted on the miRNA expression profiles
allowed the identification of seven of the most stable discriminative miRNA
biomarkers. These biomarkers’ associated weights as well as their stability coef-
ficients are presented in the right panel of Fig. 1. Out of the 750 analyzed miR-
NAs, hsa-miR-449b had the highest stability coefficient (0.88). Other miRNAs
with relatively high stability coefficients were hsa-miR-374, hsa-miR-411, hsa-
miR-599, hsa-miR-1285, hsa-miR-324-5p, and hsa-miR-449a. ROC curves were
constructed to determine the diagnostic/predictive values of the combined seven
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selected miRNAs, resulting in a ROC AUC score of 0.92 (Fig. 1, Left). We also
illustrate the differences in expression values of the top seven biomarkers for
the malignant and benign tumor samples in the left panel of Fig. 2. The p-value
of the randomization test for 10,000 shuffles is 0.0097 < 0.01, thus assuming
1% significance level, we can conclude that the model prediction performance is
statistically significant.
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Fig. 1. Overview of predictive power of the selected seven features. Left:
ROC curves for which corresponding ROC AUC scores were computed for models
with sequentially added features. The best prediction model selected seven combined
miRNAs with a ROC AUC value of 0.92. Right-top: Weights of the selected top seven
biomarkers. Right-bottom: Stability coefficients of the selected top seven biomarkers.

5.2 Biological Interpretation

In this study, we have discovered a panel of seven miRNA biomarkers which
enabled the differentiation between benign and malignant parotid salivary
gland tumors with a high degree of accuracy. Four of the presently identi-
fied miRNAs (hsa-miR-374, hsa-miR-1285, hsa-miR-449a and hsa-miR-449b)
have been implicated in the control of the cell cycle either as ‘gas pedals’ or as
‘brake pedals’, and their actions have already been validated in vitro in earlier
studies [1,3,8,18,20,21]. These four validated ‘gas pedal’ and ‘break pedal’ miR-
NAs coordinately accelerate the cell division cycle as presented in Fig. 2.

According to previous studies, hsa-miR-374 and hsa-miR-1285 promote cell
cycle progression; hsa-miR-374 suppresses the expression of GADD45A, an
inducer of cell cycle arrest [1,20], while both hsa-miR-374 and hsa-miR-1285
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Fig. 2. A higher expression of hsa-miR-374 and hsa-miR-1285 , and a lower
expression of hsa-miR-449a and hsa-miR-449b in saliva from patients with a
malignant tumor, may result in an uncontrolled acceleration of the cell cycle
in malignant tissues. Section A: hsa-miR-374 inhibits the translation of GADD45A,
encoding a DNA-damage-inducible protein involved in growth arrest [1,20]. Section B:
hsa-miR-1285 inhibits the expression of p21 directly by binding to its mRNA, but
also indirectly by inhibiting the expression of p21 activator p53 [3,18]. Section 1: hsa-
miR-449a and hsa-miR-449b both can directly inhibit the expression of CDK4 and
CDK6 [8,20,21]. ‘–’ sign represents inhibition; ‘+’ sign represents activation. Left: The
zero-mean unit-variance scaled expression values of several stable biomarker miRNAs
in saliva from patients with malignant or benign salivary gland tumors.

suppress the expression of CDKN1A, which encodes cell cycle regulator p21
[3,18]. This results in the suppression of the p21 -mediated inhibition of CDK6
which, in conjunction with CDK4, acts as a switch to direct the cell towards S
phase. It can be envisaged that increased levels of these miRNAs, e.g. in malig-
nant tumors, will enhance the rate of cell division.

On the other hand, hsa-miR-449a and hsa-miR-449b act as ‘brake-pedals’ for
cell-division by directly and indirectly suppressing CDK6 and CDK4 [8,20,21].
We hypothesize that the increased expression levels of hsa-miR-374 and hsa-
miR-1285 (the ‘gas-pedals’) in combination with the decreased expression levels
of hsa-miR-449a and hsa-miR-449b (the ‘brake-pedals’) will contribute to an
uncontrolled acceleration of the cell cycle in malignant tissues. To sum up, the
set of statistical machine learning algorithms selected a group of miRNAs that
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coordinately target the cell division cycle and possibly result in development of
malignant salivary gland tumors.

6 Conclusions

In this study, we analyzed a miRNA expression dataset collected from a lim-
ited number of patients with benign and malignant salivary gland tumors. The
machine learning algorithm identified a panel of biomarkers of malignant tumors
whose targets were separately validated in vitro in previous studies. The main
contribution of this study is the discovery of diagnostic cancer biomarkers by
application of our recently published statistical machine learning method to a
cancer genomics dataset. The combination of sparse regularization and the sta-
bility selection procedures provided an opportunity to utilize the full potential
of the collected data. To the best of our knowledge, this is the first report of a
salivary gland tumor miRNA panel that not only distinguishes tumor subtypes,
but also gives potential insight into the biology of the salivary gland tumor
development process.
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Abstract. Information diffusion is a widely-studied topic thanks to
its applications to social media/network analysis, viral marketing cam-
paigns, influence maximization and prediction. In bibliographic net-
works, for instance, an information diffusion process takes place when
some authors, that publish papers in a given topic, influence some of their
neighbors (coauthors, citing authors, collaborators) to publish papers in
the same topic, and the latter influence their neighbors in their turn. This
well-accepted definition, however, does not consider that influence in bib-
liographic networks is a complex phenomenon involving several scientific
and cultural aspects. In fact, in scientific citation networks, influential
topics are usually considered those ones that spread most rapidly in the
network. Although this is generally a fact, this semantics does not con-
sider that topics in bibliographic networks evolve continuously. In fact,
knowledge, information and ideas are dynamic entities that acquire dif-
ferent meanings when passing from one person to another. Thus, in this
paper, we propose a new definition of influence that captures the dif-
fusion of inspiration within the network. We propose a measure of the
inspiration rate called inspiration rank. Finally, we show the effective-
ness of our measure in detecting the most inspiring topics in a citation
network built upon a large bibliographic dataset.

Keywords: Information diffusion · Topic modeling · Citation networks

1 Introduction

Information diffusion is a fundamental and widely-studied topic in many research
fields, including computational social science, machine learning and network ana-
lytics, thanks to its applications to social media/network analysis [1], viral mar-
keting campaigns [17], influence maximization [4] and prediction [6]. An informa-
tion diffusion process takes place when some active nodes (e.g., customers, social
profiles, scientific authors) influence some of their inactive neighbors in the net-
work and turn them into active nodes with a certain probability, and the newly
activated nodes, in their turn, can progressively trigger some of their neighbors
into becoming active [12]. Information diffusion is similar to the spread of dis-
eases in epidemiology and it has also been modeled as such [7] by considering
influence as a contagion process. However the correct definition of “influence”
c© Springer International Publishing AG 2017
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strongly depends on the application. In mouth-to-mouth viral campaign, a user
who buys a product at time t influences their neighbors if they buy the same
product at time t + δ. In social media, influence is the process that enables the
diffusion of memes, (fake) news, viral posts across the network through different
social actions such as likes, shares or retweets. In bibliographic networks, author
a influences author b when a and b are connected by some relationship (e.g., col-
laboration, co-authorship, citation) and either b cites one of the papers published
by author a, or author b publishes in the same topic as author a [12]. The latter
definition, however, does not consider that influence in bibliographic networks
is a complex phenomenon involving several scientific and cultural aspects. For
instance, in scientific citation networks, the most cited papers are often seminal
papers that introduce some topics (or some new aspects of a topic) for the first
time. They are often cited “by default” and thus they spread in the network for
very long periods. Moreover, in most existing works, influential topics are simply
those ones that spread most rapidly in the network. Although this is generally
a fact, this semantics does not consider that topics in bibliographic networks
evolve continuously. In fact, knowledge, information and ideas are dynamic enti-
ties that acquire different meanings when passing from one person to another.
For instance, “deep learning”, a term invented in early 2000s, has known a rapid
development and evolution that has influenced many research fields including
semiconductor technology and circuits [3,5,20].

In this paper we address the problem of information diffusion in a biblio-
graphic network by using the notion of inspiring topics. According to our defin-
ition, the most inspiring topics are those that evolve rapidly in the network by
triggering fast citation rates. As an example, consider an author a0 that publish
a paper p0 covering a given topic X at initial time interval t0 of width δ. In the
following time interval t1, the activated authors are those that publish a paper
p1 citing paper p0. In the following time interval t2, the authors that publish
a paper p2 citing paper p1 are activated. In general, we only consider citations
from papers published at time interval ti to papers published at the previous
time interval ti−1. Moreover, differently from other state-of-the-art methods, we
consider topics assigned to papers by an adaptive Latent Dirichlet Annotation
(LDA) technique [15]. According to this method, a paper p is said to cover a
topic X if the LDA model states that p is generated by X with a probability
greater than a threshold. Therefore, for a given time interval width δ, our topic
diffusion model enables the ranking of topics according to their inspiration rate:
topics that rank high for small values of δ are the most inspiring ones.

The salient contributions of this paper can be summarized as follows: (1) we
define inspiration as an alternative to influence in information diffusion; (2) we
introduce the definition of inspiration rank as a measure of the topic inspiration
rate: topics that trigger fast citation rates have a high inspiration rank; (3)
we use an adaptive LDA technique for assigning topics to each paper; (4) we
propose a topic analysis model enabling the ranking of topics according to their
inspiration rate. By comparing our model to a standard diffusion model, we show
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the effectiveness of our framework on a large corpus consisting of about 155,000
scientific papers and 225,000 authors.

The remainder of the paper is organized as follows: related works are analyzed
in Sect. 2; the topic diffusion model is presented in Sect. 3; Sect. 4 provides the
report of our experiments; finally, we draw some conclusions in Sect. 5.

2 Related Works

Information diffusion has been first regarded as a derivation of the process of
disease propagation in contact networks [14], a well-studied problem in epidemi-
ology. An obvious application stands in the domain of marketing, where diffusion
models are used to understand the process of information spread among poten-
tial customers with the goal of improving viral marketing campaigns [9]. In [17],
the authors mathematically characterize the propagation of products recommen-
dation in the network of individuals.

Besides viral marketing studies, the success of Web 2.0 and online social net-
works has also boosted researches on topic diffusion. In [10,11] the authors lever-
age the theory of infectious diseases to capture the structure of topics and analyze
their diffusion in the blogsphere. In [25], Yang and Counts analyze Twitter by
constructing a model that captures the speed, scale, and range of information
diffusion. In [24], the same authors compare the diffusion patterns within Twit-
ter and a weblog network, finding that Twitter’s network is more decentralized
and connected locally. In [2], a novel and more accurate information propagation
model is defined: the authors propose a topic-aware extensions of the well-known
Independent Cascade and Linear Threshold models [16] by taking into account
authoritativeness, influence and relevance.

Digital libraries and bibliographic networks have also taken advantage
of information diffusion studies. Thanks to the availability of data sets of
unprecedented size many studies have analyzed citation, co-authorship or co-
participation networks to identify patterns of diffusion and influence, and to
rank authors. In [18], Radicchi et al. define an author ranking method based on
a diffusion algorithm that mimics the spreading of scientific credits on the net-
work. Shi et al., instead, study the structural features of the information paths
in the citation networks of publications in computer science [21]. Among their
findings, they discover that citing more recent papers corresponds to receiving
more citations in turn. In [12], the authors propose to model information diffu-
sion in multi-relational bibliographic networks, by distinguishing different types
of relationships. In addition, they propose a method to learn the parameters of
their model leveraging real publication logs.

Differently from all these works, we focus on topic diffusion and evolution
by leveraging explicit citations in bibliographic networks. Topic evolution has
already been regarded as extensions of the Latent Dirichlet Allocation (LDA)
or the Probabilistic Latent Semantic Analysis algorithms [8]. In [13] the authors
leverage citations to address the problem of topic evolution analysis on scientific
literature. When detecting topics in a collection of new papers at a given time
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instant, they also consider citations to previously published papers and propose
a novel LDA-based topic modeling technique named Inheritance Topic Model.
In our work, we adopt a similar solution, but we look at topic evolution from
the information diffusion perspective, by computing a ranking of most inspir-
ing topics, defined as those topics for which we observe a rapid evolution and
inspiration rate in the network.

3 Inspiration Propagation

In this section we introduce the mathematical background and the theoretical
framework of our ranking method.

We consider a set of n documents D = d1, . . . , dn and a set of K topics Z =
z1, . . . , zK . Each document di ∈ D is characterized by a distribution of topics
Θi = <θi1, . . . , θiK>, where ∀i, k, 0 ≤ θik ≤ 1 and

∑K
k=1 θik = 1. Each document

is authored by one or more authors belonging to the set A = {a1, . . . , aN}
of all possible N authors. Moreover, each document di has a timestamp tsi

corresponding to the publication date.
Authors and papers are part of a heterogenous information network, i.e., a

directed graph G(V, E), where V = V d ∪ V a and E = Ead ∪ Edd. Each vd
i ∈ V d

and va
l ∈ V a are, respectively, a vertex representing the i-th document di ∈ D

and a vertex representing the l-th author al ∈ A. Moreover, each (va
l , vd

i ) ∈ Ead

is a directed edge meaning that author al has coauthored document di and each
(vd

i , vd
j ) ∈ Edd is a directed edge coding the fact that document di cites document

dj . Furthermore, Ead is such that if (va
l , vd

i ) ∈ Ead, then (vd
i , va

j ) ∈ Ead (i.e.,
each connection between documents and authors is reciprocal).

Within the heterogenous information network G(V, E), we identify the cita-
tion network G(V,E), where V = V a is the set of author vertices and E =
{(vh, vl)} is the set of directed citation edges. In particular, (vh, vl) ∈ E iff there
exists a path path(va

h, va
l ) = va

h
ad−→ vd

i
dd−→ vd

j
ad−→ va

l within the information
network G(V, E). Roughly speaking, an edge (vh, vl) can be found in the citation
network G(V,E) iff author vh has cited some (at least one) paper coauthored by

Fig. 1. A heterogenous information network and the corresponding citation network.
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vl in one of the papers she coauthored. An example of heterogenous information
network and its corresponding citation network is given in Fig. 1.

In the following sections we describe the topic diffusion model adopted in our
framework, as well as the topic modeling method used to associate topics with
documents.

3.1 Topic Diffusion Model

Differently from most topic diffusion models that consider both co-authorship
and citation links, our approach only considers explicit citations. In most existing
approaches (such as the one presented in [12]), the influence process takes place
when an author publishes some paper on a given topic at time t and some of her
neighbors publish any paper on the same topic at time t + δ. Usually explicit
citations are simply ignored, but they are crucial to understand the evolution
and transformation of a topic across the network during a time period. Moreover,
when explicit citations are ignored and heterogeneous links between authors
are considered, the true semantics of propagation is less clear: influence may
occur because of some external factors, e.g., the topic is popular at publication
time, the authors are part of the same consortium within a project, or they
publish in the same topic just by chance. Instead, in our work, we propose to
measure “inspiration” as an alternative to classic influence processes. Conversely
speaking, inspiration takes place when an author cites another author explicitly
in one of her papers, regardless of its topic. The general definition of inspiration
is then as follows.

Definition 1 (inspiration). Let G(V, E) be a heterogenous information net-
work. Author ah ∈ A is inspired by author al ∈ A (al �= ah) iff there is a path
va

h
ad−→ vd

i
dd−→ vd

j
ad−→ va

l in G s.t. tsi ≥ tsj.

In the following we provide the theoretical details of our topic diffusion model.
Let T = [T0, Tn] be a time interval. We define a set ΔT = {ΔT0, . . . ,ΔTN} of
possibly overlapping time intervals over T s.t. ∀t = 1 . . . N ΔTt−1 ≺ ΔTt. We
introduce the definitions of initial topic-based inspiration and subsequent topic-
based inspiration for a given topic zk.

Definition 2 (initial topic-based inspiration). Let G(V, E) be a heteroge-
nous information network, ΔT = {ΔT0, . . . ,ΔTN} a set of time intervals and
Θ a topic distribution. For a given topic zk and a given threshold τ ∈ [0, 1],
author ah ∈ A is initially inspired by author al ∈ A (al �= ah) iff there is a
path va

h
ad−→ vd

i
dd−→ vd

j
ad−→ va

l in G s.t. tsj ∈ ΔT0, tsi ∈ ΔT1 and θjk ≥ τ .

According to this definition, the initial inspiration takes place when an author al

publishes a document dj during ΔT0 (tsj ∈ ΔT0) covering topic zk (θjk ≥ τ), and
another author ah publishes a document di, during the following time interval
ΔT1 (tsi ∈ ΔT1). Notice that we do not impose any constraints on the topic
covered by document di. Let us now introduce the definition of subsequent topic-
based inspiration.
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Definition 3 (subsequent topic-based inspiration). Let G(V, E) be a het-
erogenous information network and ΔT = {ΔT0, . . . ,ΔTN} a set of time inter-
vals. For a given topic zk, author ah ∈ A is subsequently inspired by author
al ∈ A (al �= ah) at time ΔTt iff there is a path va

h
ad−→ vd

i
dd−→ vd

j
ad−→ va

l in G
s.t. tsj ∈ ΔTt−1, tsi ∈ ΔTt and al has been initially/subsequently inspired by
another author am ∈ A (am �= ah and am �= al) during ΔTt−1 for topic zk.

It can be noticed that this definition is recursive, meaning that the subsequent
inspiration occurs when an author ah has cited an author al that has been either
subsequently inspired or initially inspired by a third author am in the previous
time interval. Moreover, according to our diffusion model, inspiration takes place
when a citation occurs between two consecutive time intervals. Even though
this may appear a strong constraint, we recall that the definition of the set
ΔT of time interval is very general. In particular, we introduce two parameters
δ > 0 and γ ≥ 0 (γ < δ), representing respectively the size of a sliding time
window and the overlap between two consecutive time windows. Given these two
parameters and a time interval T = [T0, Tn], we define ΔT = {ΔT0, . . . ,ΔTN}
in such a way that ΔTt = [T0 + t(δ − γ), T0 + t(δ − γ) + δ), for t = 0, . . . , N

with N = 
Tn−(T0+δ−1)
δ−γ �.

3.2 Computation of the Inspiration Rank

We now describe how to assign a rank value to each topic depending on its
inspiration speed. To this purpose, for a given topic zk and a given set of time
intervals ΔT = {ΔT0, . . . ,ΔTN} we measure the cumulative number of new
authors inspired at each time interval, according to the definitions of inspiration
given in Sect. 3.1. In particular, given the heterogenous information network
G(V, E) and a threshold τ , we call A0 = {ah|∃(va

h, vd
i ) ∈ Ead∧tsi ∈ ΔT0∧θik > τ}

the set of authors that publish a paper on topic zk during ΔT0. Then, we define
A1 = {ah | ∃al ∈ A0 s.t. ah is initially inspired by al} and, ∀t = 2, . . . , N ,
At = {ah | ∃al ∈ At−1 s.t. ah is subsequently inspired by al during ΔTt}. In a
nutshell, A1 is the set of initially inspired authors, A2, . . . , AN are the sets of
subsequently inspired authors.

Finally, we construct a set of two-dimensional points {(t, yt)}, t = 1, . . . , N
where yt = |At| for t = 1 and yt = |At−1 ∪ At| for t = 2, . . . , N . We use this set
to compute a linear function y = σ̂t + ĉ by solving the following simple linear
regression problem

(σ̂, ĉ) = arg min
σ,c

N∑

t=1

(yt − c − σt)2 (1)

using the least squares method.
The inspiration rank value is then defined as the slope σ̂ of the linear function

y = σ̂x + ĉ obtained by solving Eq. 1. More formally:
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Definition 4 (inspiration rank). Given a heterogenous information network
G(V, E), a topic zk and a set of time intervals ΔT = {ΔT0, . . . ,ΔTN}, the
inspiration rank of zk, called IR(G,ΔT , zk) is given by

IR(G,ΔT , zk) = σ̂ (2)

where σ̂ is the solution of the linear regression problem given in Eq. 1.

Notice that, by varying parameters δ and γ, which define the width and overlap
of time intervals in ΔT , different values of information rank can be obtained.

In order to compare our ranking method to the usual idea of topic diffusion,
for each topic we also compute a diffusion rank value as follows. For each time
interval ΔTt ∈ ΔT we set A′

t = {ah | ∃(va
h, vd

i ) ∈ Ead ∧ tsi ∈ ΔTt ∧ θik > τ},
i.e., A′

t is the set of authors that have published a paper on topic zk during
time interval Δt. Then, we construct a set of two-dimensional points {(t, y′

t)},
t = 1, . . . , N where y′

t = |A′
t| for t = 1 and y′

t = |A′
t−1 ∪ A′

t| for t = 2, . . . , N .
Again, we fit these values to a linear function y′ = σ̂t + ĉ and set the diffusion
rank DR(G,ΔT , zk) equal to the slope σ̂.

3.3 Topic Extraction

In this section, we introduce the topic modeling technique that we adopt to
determine the distribution of topics for each document di ∈ D. Topic extraction
is performed using Latent Dirichlet Allocation (LDA), a generative probabilistic
model of a corpus, that aims at describing a set of observations, e.g. textual
documents, using a set of unobserved latent elements, e.g. topics. LDA considers
each document as a distribution over latent topics and each topic as a distribution
over terms. Given α as prior knowledge about topics distribution, LDA assumes
the following generative process for each document d of a corpus: (1) draw a
distribution over topics θd ∼ Dirichlet(α), (2) for each word i in d draw a topic
zdi from θd and draw the word wdi from zdi.

For our purposes we use a slightly modified version of LDA, named Online
LDA [15]. In fact, traditional LDA implementations are based on either varia-
tional inference or collapsed Gibbs sampling; both methods require to process
the entire corpus in order to compute the topic model, and it is not possible to
query the model with previously unseen documents. In contrast, Online LDA
replaces the previously used inference methods with the stochastic variational
inference technique that allows online training, update of an existing model with
new documents and query for unseen documents. Algorithm 1 shows the proce-
dure to infer topics assignment on a new document. The document is represented
by a vector of terms occurrences n of length N , K is the number of topics in the
LDA model, α is the Dirichlet prior, β is the topic-term distribution matrix. The
algorithm iteratively refines the variational parameters φ (line 4) that represents
the word probability in each topic and ψ (line 5), which encodes the topics pro-
portion within the document. When the procedure converges [15] ψ is returned
as the topics assignment for the document represented by n (line 7).
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Algorithm 1. Topic inference on unseen documents in Online LDA.
1 Initialize ψk = 1, ∀k = 1, . . . , K.
2 repeat
3 for k = 1, . . . , K do
4 Set φwk ∝ exp{Eq[log θk] + Eq[log βw]} ∀w = 1, . . . , N

5 Set ψk = α +
∑N

w=1 φwknw

6 until 1
K

∑
k |change in ψk| < ε;

7 return ψ

4 Experiments

In this section, we present the results of our experiments conducted on a large
corpus of scientific documents. In particular, we analyze the outcomes of our
measure of inspiration in terms of effects on topic ranking. We compare our
results with the standard diffusion approach, broadly adopted in most research
works dealing with topic diffusion. In the following, we first describe the dataset
used in our experiments and how we construct it; then, we provide some insights
on the topic extraction and labeling tasks; finally, we give the details of the exper-
imental protocol and report the results returned by our ranking-by-inspiration
method in comparison with the standard ranking-by-diffusion approach.

4.1 Dataset

The dataset used in our experiments is a subset of the Computer Science paper
citation network. This dataset is created by automatically merging two datasets
originally extracted through ArnetMiner [23]: the DBLP and ACM citation
networks1. The merge procedure is necessary because both datasets lack some
information: the ACM dataset contains many abstracts and citations between
documents, but venues do not follow any naming convention and authors are
ambiguous; In DBLP, venues and authors are clearly identified, but abstracts

Table 1. Datasets statistics.

ACM-v8 DBLP-v8 Merged Selected

No. of papers 2,381,674 3,272,990 1,373,202 154,947

No. of complete papers 1,668,246 3,241,890 1,143,443 154,947

No. of venues names 265,149 11,553 6,959 153

No. of authors 1,508,051 1,752,440 903,771 225,559

No. of out-citations 8,650,089 8,466,858 6,513,765 1,321,905

No. of in-citations - - 5,365,753 1,000,657

1 https://aminer.org/citation.

https://aminer.org/citation
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are missing and citations contain repetitions. Some statistics on the datasets are
shown in Table 1. Papers are considered complete if all basic information are
present, i.e. title, abstract (ACM only), year, venue and at least one outgoing or
incoming citation. The merged dataset has been obtained by matching ACM and
DBLP entries as follows: two papers match if both title and list of authors are
the same. Then, abstracts and citations are extracted from ACM data; authors,
title and venue are extracted from DBLP data. Finally, the selected dataset
considers only papers published in the context of a set of manually preselected
venues in the period from 2000 to 2014, covering the following research area:
artificial intelligence, machine learning, pattern recognition, data mining, infor-
mation retrieval, database and information management. The selected dataset is
available online2.

4.2 Text Processing and Topic Extraction

The input data given to the topic extraction algorithm is obtained as the result
of a cleaning and vectorization process performed on the concatenation of paper
title and abstract. In particular, the cleaning module ignores terms that appears
only once in the dataset and in more than 80% of the documents. A domain
dependent stop words list is also excluded from topic computation. First, docu-
ments are pre-processed with NLP techniques that perform tokenization, lemma-
tization, stop words removal and term frequency computation in order to prepare
the corpus for the topic modeling algorithm. For performing this task, we adopt
a scalable and robust topic modeling library [19] that enables the extraction of
an adaptive set of topics using an online learning version of Latent Dirichlet
Allocation [15].

Topic modeling is performed on all papers published between 2000 and 2004
that appear within the selected dataset using Latent Dirichlet Allocation, search-
ing for K = 50 topics. The extracted topic model is then used to assign a
weighted list of topics to all papers published between 2005 and 2014. We per-
form LDA on a time interval preceding the one used for analysis, instead of
the whole corpus, because in this way we focus on well-established topics rather
than on emerging ones. However this choice does not limit our findings: in fact,
many research topics investigated during the last ten years (including, e.g., deep
learning) have been faced for the first time in the first half decade of the 21st
century.

Topics Labeling. For improving the readability of our model, we introduce
a simple topics labeling step that associates, to each topic zk represented by a
weighted list of words, up to three labels. The labels are computed as the first
three results obtained by querying Wikipedia with the set of most representative
words for zk. We identify as most representative the 6 words having a weight
greater than 0.01 or, if the first set is empty, the top 3 words. An example of
labels extracted with this method is shown in Table 2.
2 Dataset encoded in ArnetMiner V8 format, https://github.com/rupensa/tranet.

https://github.com/rupensa/tranet
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Table 2. Example of extracted topic description and associated labels.

Topic description Labels

0.091*network + 0.058*neural + 0.025*input +
0.021*learning + 0.021*adaptive + 0.020*neuron +
0.017*dynamic + 0.014*function + ...

Artificial Neural Network,
Artificial Neuron, -

4.3 Results

In our experiments, we calculate the ranking of topics according to their inspira-
tion rank and diffusion rank in the time interval from 2005 to 2014 for 1 ≤ δ ≤ 6
and 0 ≤ γ ≤ δ. In all our experiments τ = 0.2. Algorithms and scripts are imple-
mented in Python, and data are stored in a MongoDB3 database server. The
source code and the dataset are available online4: the whole analysis process can
be driven within an interactive Jupyter notebook5. The experiments are per-
formed on a server with two 3.30 GHz Intel Xeon E5-2643 CPUs, 128 GB RAM,
running Linux.

(a) 43 - Graph Database (b) 48 - Image Processing

(c) Diffusion on network (d) Inspiration speed

Fig. 2. Diffusion and word clouds of the selected topics.

3 https://www.mongodb.com/.
4 https://github.com/rupensa/tranet.
5 https://jupyter.org/.

https://www.mongodb.com/
https://github.com/rupensa/tranet
https://jupyter.org/
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(a) Spearman correlation
values between inspira-
tion and diffusion rank
for several values of δ and
γ.

(b) Spearman correlation values of inspiration ranks com-
puted with several γ values and same δ.

Fig. 3. Correlation computed between inspiration and diffusion ranks. (Color figure
online)

Examples of Inspiration Trend. As a first illustrative result, we show the
inspiration trend of two topics, and compare it to their diffusion trend. The
topics selected for this analysis are Graph DB (topic-43) and Image Processing
(topic-48). They are intrinsically described in word clouds shown in Fig. 2 by
means of their more representative terms. These two topics have been selected
due to their similarity in terms of number of assigned papers (8, 969 for topic 43
and 8, 646 for topic 48), authors (24, 143 for topic 43 and 23, 056 for topic 48)
and distribution of papers in the considered time frame. According to Fig. 2c,
which shows the diffusion trend as computed by the method in [12], these topics
have very close diffusion trends in the bibliographic network. However, there is
a strong difference in the inspiration trend, as shown in Fig. 2d: in fact, topic 43
(graph databases) evolves more rapidly than topic 48 (image processing). This
behavior can be explained by the increasing and fast research results obtained
by the database community, also boosted by the research on semantic queries
and triplestores. Image processing, in contrast, appears as an evergreen albeit
not particularly evolving research field in the time frame considered here. In this
experiment, we employ K = 50, δ = 2 and γ = 1.

Inspiration Rank vs. Diffusion Rank. In order to study the difference
between the proposed ranking and the usual one, we measure the Spearman’s
rank correlation coefficient [22] between the the inspiration rank and diffusion
rank. The Spearman’s rank coefficient assesses monotonic relationships between
two series of values. It basically captures the correlation between the two rank-
ings and ranges between −1 (for inversely correlated sets of values) and +1 (for
the maximum positive correlation).

Figure 3a shows the Spearman’s rank correlation coefficient between inspira-
tion rank IR and diffusion rank DR for several values of δ and γ. The empty
tiles on the bottom left are due to lack of data: since our dataset covers only 10
years, when δ >> γ there is only one time interval valuable for calculating the
rank, that is not sufficient for fitting a linear function.
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(a) Top 7 topics by inspiration (b) Top 7 topics by diffusion

Fig. 4. Ranking by inspiration and diffusion for several values of δ and γ. Diffusion
rank are not affected by parameter variation.

In general, it can be noticed that the two ranks are always positively corre-
lated. However, for lower values of δ (i.e., for small time windows), the correlation
is sensibly slighter (only 0.67 for δ = 1 and 0.65 for δ = 2, with γ = 1). This
can be explained by the fact that topics that diffuse faster are not necessarily
the most inspiring ones, according to our definition. When the inspiration rank
is high for small time windows, it means that citations occur very fast. The fact
that the two rank values get more similar when δ increases, also confirms our
intuition. In fact, it is more likely that papers are cited after four or five years,
rather than the year following its publication. When this occurs, it means that
this topic is evolving very fast, inspiring plenty of new research works. Another
noticeable result is that correlation decreases when γ increases. This is due to
the fact that larger overlap values allow to capture more citations to papers
published in the previous interval. However, its effect is weaker than the one of
parameter δ, as shown in Fig. 3b, where the correlation between any pair of γ
values for the same value of δ are illustrated. This particular results also shows
that our method is rather stable toward variations of parameter γ.

Ranking Comparison. Here, we analyze the ranking of the top 7 topics based
on the average inspiration rank, compared to the ranking of the same topics
based on diffusion rank. The results are depicted in Fig. 4a (notice that diffusion
ranks are not affected by parameter variation). We notice that the best 4 topics
are almost the same ones for all values of δ and γ, then the ranking becomes more
chaotic. More interestingly, topic IR (Information retrieval) is always ranked in
the top 3 positions for inspiration, while it is ranked 10th according to diffusion.
Our measure capture a real trend in Computer Science: the increasing research
efforts in information retrieval have been driven by search engine and social
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media applications, as well as by Semantic Web technologies. Topic Graph DB
(graph databases) is also ranked higher by our technique. Research on this topic
has been boosted by semantic database achievements in the last 15 years. Notice
that our techniques also ranks NLP (natural language processing) and PM (pat-
tern mining) among the top 7 topics, coherently with the actual efforts in these
domains pushed by the advances in sentiment analysis and other Semantic Web
applications as well as in frequent itemset and sequence mining in the consid-
ered period. These topics are only ranked 13th and 20th according to standard
diffusion metrics.

It is worth noting that, by analyzing the ranking of the top 7 topics based
on the average diffusion rank, and their respective ranking based on inspiration
(Fig. 4b), we observe that some of the topics that have a relatively lower rank in
the ranking-by-inspiration approach can be considered as application of Com-
puter Science techniques. For instance, it is a fact that Bioinformatics (ranked
third) has spread rapidly in the last 10 years. However, in our approach this
topics gets a lower rank: this can be explained by the fact that, in the research
areas under investigation, covering data mining and machine learning, papers
in this multidisciplinary field are more likely to be inspired by (rather than to
inspire) other research topics (such as, clustering, machine learning or pattern
mining). The same observation applies to genetics and image processing.

Finally, we explore the ranking provided by the two methods for a set of topics
of interest, namely: Deep learning (topic-3), Clustering (topic-22), Information
retrieval (topic-26), Neural networks (topic-33) and Pattern mining (topic-41).
The ranking positions are shown for several values of δ and γ in Fig. 5. The
same conclusions drawn in the previous experiments hold here, in particular
for pattern mining (PM). Interestingly, deep learning is ranked low, despite its
objective success in the last five years. This may be explained by the fact that the
topic model has been trained on papers published from 2000 to 2004 when deep

Fig. 5. Rankings on inspiration and diffusion speeds for several values of δ and γ on a
set of selected topics.
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learning was beginning to be recognized as a research field itself. Furthermore,
since we only consider Computer Science venues, the broad influence of deep
learning on other research areas can not be captured. Notice that, however, it
is always ranked far higher by our method. This is another result indicating
that inspiration capture a more realistic influence semantics than simple topic
diffusion.

5 Conclusions

We have proposed a new definition of influence that takes into account the
inspiration of a given topic within a citation network. We have defined a new
influence measure, called inspiration rank, that captures the inspiration rate of
topics extracted by an adaptive LDA technique, within a given time interval.
The inspiration rank allows the discovery of the most inspiring topics according
to different levels of speed. We have shown experimentally the effectiveness of
our measure in detecting the most inspiring topics in a citation network built
upon a large bibliographic dataset. Although the core application is the analysis
of topic diffusion in citation networks, our methods can be also applied on other
information networks, including patent and news, provided that a link between
two documents can be inferred directly or indirectly.

As future work, we will define new author and paper ranking methods based
on our inspiration measure. Furthermore, we will investigate new algorithms to
learn the topic diffusion parameters under different diffusion models adopting
our definition of inspiration.

Acknowledgments. This work is partially funded by project MIMOSA (MultIModal
Ontology-driven query system for the heterogeneous data of a SmArtcity, “Progetto di
Ateneo Torino call2014 L2 157”, 2015–17).
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Abstract. Learning classifiers from imbalanced data is particularly
challenging when class imbalance is accompanied by local data difficulty
factors, such as outliers, rare cases, class overlapping, or minority class
decomposition. Although these issues have been highlighted in previous
research, there have been no proposals of algorithms that simultaneously
detect all the aforementioned difficulties in a dataset. In this paper, we
put forward two extensions to popular clustering algorithms, ImKmeans
and ImScan, and one novel algorithm, ImGrid, that attempt to detect
minority sub-clusters, outliers, rare cases, and class overlapping. Exper-
iments with artificial datasets show that ImGrid, which uses a Bayesian
test to join similar neighboring regions, is able to re-discover simulated
clusters and types of minority examples on par with competing methods,
while being the least sensitive to parameter tuning.

Keywords: Class imbalance · Minority class categorization · Data
difficulty factors · Class overlapping · Minority sub-clusters

1 Introduction

Improving classifiers learned from class-imbalanced data has been a topic of
growing research in recent decades and several specialized algorithms have been
introduced [2,6]. However, less effort has been put into studying the characteris-
tics of imbalanced data, which make learning from imbalanced data so difficult.

It has been shown that neither the global imbalance ratio between the minor-
ity class and majority class nor the cardinality of the minority class are the main
sources of difficulty. Other data difficulty factors, referring to internal character-
istics of class distributions, are usually more influential. Several studies have
demonstrated the high impact of the following factors: decomposition of the
minority class into many sub-concepts [7,9], overlapping between the classes
[5,16], and presence of many minority class examples inside the majority class
region [13]. When these data difficulty factors occur together with class imbal-
ance, they may seriously deteriorate the recognition of the minority class [12,13].

Identification of data difficulty factors may help in distinguishing differ-
ent categories of imbalanced datasets (easier or more difficult to learn from).
c© Springer International Publishing AG 2017
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Consequently, specialized classifiers and preprocessing methods are more sen-
sitive to certain data categories [11,12]. Therefore, such an analysis of data
characteristics and data difficulty factors may be important, on the one hand,
to better understand the nature of class imbalanced data and, on the other, to
aid the development of new classification methods.

Nevertheless, automatic discovery of the aforementioned factors in real world
datasets is not an easy task and may not give unique results. Most known stud-
ies on difficulty factors have been carried out on synthetic data with ground
truth knowledge. Discovering sub-concepts of the minority class is usually done
with clustering algorithms such as k-means [9,14]. However, tuning parameters
of clustering, the number of expected sub-concepts, dealing with complex, non-
spherical shapes and outliers is problematic in real imbalanced datasets. There-
fore, discovering minority sub-concepts still constitutes a research challenge.

Some other difficulty factors may be linked to different types of examples
forming the minority class distribution with respect to their relative position.
This view has led Napierala and Stefanowski to differentiate between safe and
unsafe examples for recognizing minority instances [11]. The unsafe examples
are further categorized into borderline, rare cases, and outliers. These authors
have also introduced an approach to identify these types of examples by analyz-
ing class label distributions in the neighborhood of minority examples [11,12].
The results of these works have been useful for constructing new preprocessing
methods and specialized classifier ensembles for imbalanced data [19]. However,
this approach is unable to detect sub-concepts inside the minority class.

Therefore, an open research question is: whether it is possible to construct
a clustering approach that simultaneously discovers sub-concepts in complex
imbalanced data and categorizes types of examples inside discovered clusters?

The main aim of this paper is to solve this research problem by introduc-
ing new specialized clustering algorithms. For this purpose, we put forward two
extensions of popular clustering algorithms, ImKmeans and ImScan, as well as
propose a novel approach, called ImGrid, dedicated to discovering minority sub-
concepts and categorizing examples simultaneously. ImGrid uses spatial, density,
and statistical characteristics of the attribute space, to detect and analyze minor-
ity class regions. The algorithms are experimentally evaluated on a comprehen-
sive set of synthetic datasets with hidden sub-concept structures and various
proportions of data difficulty factors.

The paper is organized as follows: related literature is discussed in Sect. 2; the
proposed ImKmeans, ImScan, and ImGrid algorithms are described in Sect. 3;
experimental results are discussed in Sect. 4; and finally conclusions and lines of
future research are drawn in Sect. 5.

2 Related Work

2.1 Characteristics of Imbalanced Data

A dataset is considered to be imbalanced when the cardinality of the minority
class is much smaller than the majority class (which is expressed by the global
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imbalanced ratio between these two classes). In this paper we consider a standard
formulation of the binary class or binarized multi-class imbalance problem [6].

It is worth noting that the global imbalance between classes may not pose
difficulty for learning accurate classifiers by itself. Some, even highly, imbalanced
data can be accurately learned by standard algorithms if the classes are well
separated. When the rarity of the minority class is combined with other data
difficulty factors concerning instance distributions in the attribute space [19],
then it has a stronger negative impact on the recognition of the minority class.

Although many of the considered data factors are also known to affect learn-
ing in balanced domains, when they occur together with class imbalance the
deterioration of classification performance is amplified and affects mostly (or
sometimes only) the minority class. In this study, we focus on the following data
difficulty factors: decomposing the minority class into sub-concepts, overlapping
between classes, presence of outliers, and rare instances.

The influence of class decomposition into smaller sub-parts has been noticed
by Japkowicz et al. [9]. Their experimental studies have demonstrated that the
degradation of classification performance has resulted from the fragmentation of
the minority class, rather than from changing the global imbalance ratio. Such
sub-clusters of minority examples, surrounded by majority examples correspond
to, so called, small disjuncts, which are harder to learn and cause more classifi-
cation errors than larger sub-concepts [16]. Other experiments [13] showed that
classification performance drops when decision boundaries around sub-clusters
are non-linear and overlap with majority class examples. Finally, a visual analysis
of projections of popular imbalanced UCI data [12] confirmed that the minority
class often does not form a compact homogeneous distribution, but is scattered
into many smaller sub-clusters surrounded by majority examples.

High overlapping between regions of different classes in the attribute space
has already been recognized as particularly influential for standard, balanced,
classification problems. However, its impact is even stronger when recognizing
minority examples, see e.g. experimental studies [5]. The authors of these studies
have also shown that the local imbalance ratio inside the overlapping region is
more influential than the global ratio.

Other researchers characterize difficulty factors by considering mutual posi-
tions of a minority example with respect to other examples. One of the first stud-
ies in this direction [10] distinguished between safe and unsafe examples. More
precisely, examples located in homogenous sub-regions populated by examples
from the same class were called safe, whereas all other examples were denoted as
unsafe. Napierala and Stefanowski proposed to further categorize unsafe exam-
ples into borderline, rare cases, and outliers [11]. Borderline examples can either
be located in the overlapping between classes or positioned very close to complex
non-linear decision boundaries. The two other types of examples occur deeper
inside the safe region of the majority class. Outliers are isolated minority class
singletons, whereas rare examples correspond to very small groups (pairs or
triples) of examples. Comprehensive experiments [11,12] have shown that most
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benchmark imbalanced datasets contain mainly unsafe minority examples and
the categorization of unsafe data correlates with the performance of classifiers.

2.2 Identification of Sub-concepts and Types of Minority Examples

Nearly all approaches to identify sub-concepts apply clustering algorithms that
are run on examples of a single class, without analyzing their relation to remain-
ing classes. Japkowicz et al. [7,14] proposed a k-means based oversampling
method, where random oversampling is applied to majority and minority class
clusters until the global class distribution becomes balanced. Other researchers
discover within-class sub-concepts while constructing a classifier, by exploiting
classifier predictions to tune the number of clusters k [18]. Nevertheless, the use
of clustering algorithms for real-world datasets is still a non-trivial task. In case
of k-means, the main difficulty is to tune the number of clusters k. It is also
not obvious which optimization criteria should be considered as most clustering
evaluation metrics were proposed for purely unsupervised frameworks. Moreover,
existing works focus on the minority class without taking into account its local
relationship with majority examples and challenges, such as class overlapping,
rare cases, and outliers.

In an attempt to address these issues, as one of the contributions of this
paper, we verify the utility of density-based clustering algorithms for the task of
detecting sub-concepts. One of the analyzed algorithms is DBSCAN [4], which
is capable of finding clusters of any shape and does not require the specification
of the number of clusters. Nevertheless, DBSCAN requires specification of the
following parameters: the minimal number of data points min points and the
maximal distance among those points ε in order to begin the formation of a new
cluster. Just as finding a suitable k in k-means, the tuning of min points and
epsilon is not trivial.

Additionally, the proposed ImGrid algorithm is inspired by grid-based clus-
terers [3]. Algorithms from this group divide the attribute space into a set of cells,
which are later joined in order to form clusters. To the best of our knowledge,
grid-based clusterers have not been applied to imbalanced data analysis.

Concerning the identification of types of minority class examples, Napierala
and Stefanowski [11] proposed to identify four types of examples (safe, border-
line, rare, outlier) by analyzing class label distributions inside the neighborhood
of each minority class example. The authors considered two ways of modeling
the neighborhood, either with k-nearest neighbors or kernels. Depending on the
number of examples from the majority class inside the neighborhood, it is esti-
mated how safe or unsafe a minority example is. If all, or nearly all, its neighbors
belong to the minority class, this example is treated as a safe one, otherwise it is
categorized as one of three unsafe types: borderline, rare, outlier. The decision
which of the four types should be assigned to a given example can either depend
on the parameter k or thresholds on the within-region class probabilities.1

1 Details on tuning the size of the neighborhood and a comparison between the k-NN
and kernel-based approach can be found in [12].
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3 Clustering and Categorizing Minority Examples

Following the critical discussion on limitations of existing approaches in the
previous section, the main goal of our work is to create a clustering algorithm
that is capable of not only discovering minority class sub-concepts, but also
revealing their underlying example types. For this purpose, we put forward a
novel learning approach, called ImGrid, and devise modifications of k-means
and DBSCAN, called ImKmeans and ImScan.

ImGrid (Imbalanced Grid) is inspired by grid clustering algorithms [3]. The
main steps of the algorithm involve: (1) dividing the attribute space into grid
cells, (2) joining similar adjacent cells taking into account their minority class
distributions, (3) labeling examples according to difficulty factors, (4) forming
minority sub-clusters.

Since cells are joined based on example distributions, each cell should con-
tain enough examples to make the estimation of the example density feasible.
Hence, the presented algorithm divides each dimension of the attribute space
into � m

√|D|/10� equally wide intervals, where |D| is the size of the dataset and
m is the number of dimensions of the attribute space. This formula, inspired by
histogram bin count heuristics, ensures that, on average, we have 10 data points
in each cell. The value 10 was chosen to make the cell as small as possible,
while retaining a reasonable amount of data for statistical comparisons of cell
distributions.

The second step of ImGrid requires a method for joining adjacent cells. The
joining mechanism takes into account the distribution of minority and major-
ity class examples in grid cells and combines them only if the distribution of
the classes is similar. In particular, the algorithm aims at connecting cells that
contain examples of similar difficulty, and one way of achieving this goal is to
use the statistical hypothesis testing framework. The most popular tests for the
comparison of discrete distributions are Pearson’s chi-squared test and its exact
alternatives, such as Fisher’s exact test or Barnard’s test [1]. However, since
those tests cannot directly state that the distributions are identical (they can
only fail to reject the null hypothesis), we decided to use a Bayesian test [8],
which allows to calculate the hypotheses’ probability. Using this test, ImGrid
joins adjacent cells when the data statistically shows that the distributions are
similar. The level of required confidence in order to merge cells is a parame-
ter of the algorithm α; note that in this case α should be always greater than
0.5 (probability that the distributions are similar should be higher than they
are not). Since in binary classification the comparison of the class distribution
reduces to the analysis of two proportions, we have chosen a test constructed on
the Bayes factor for the beta-binomial model. As prior distribution of the classes
we use a non-informative Jeffreys prior [8].

In the third step of ImGrid, one of four difficulty labels (safe, borderline, rare,
or outlier) is assigned to each cluster based on the ratio of minority and majority
class examples. We refer to previous studies on modeling data difficulties [12] and
use the following thresholds to assign the labels: if the proportion of minority
examples p is greater than 0.7, the safe label is assigned; if 0.7 ≥ p > 0.3 then
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borderline label is attached; the rare or outlier label is assigned if 0.3 ≥ p > 0.1
or 0.1 ≥ p > 0, respectively [12].

Finally, having a clustering that divides the data into regions of different diffi-
culties, adjacent cells containing minority examples are joined. By joining minor-
ity examples regardless of their difficulty labels, the algorithm forms minority
sub-clusters. The pseudocode of ImGrid is presented in Algorithm1.

Algorithm 1. ImGrid
Input: D: m-dimensional dataset, α: threshold for statistical test
Output: types grid: grid with detected types, clustering grid: grid with clustering

1: grid ← split dimensions into
⌈

m
√|D|/10

⌉
equi-width intervals � 1) Create grid

2: to each cell ∈ grid assign corresponding data points
3: while [cell1, cell2] ← find cells to join(grid) do � 2) Join similar cells
4: grid.join(cell1, cell2)

5: for cell ∈ grid do � 3) Assign type to examples in cells
6: p ← cell.minority num/cell.example num
7: cell.assign label(p)

8: types grid ← grid.copy()
9: for cell ∈ grid do � 4) Form minority clusters

10: for neighbor ∈ cell.get neighbors() do
11: if cell.has minority() and neighbor.has minority() then
12: grid.join(cell, neighbor)

13: clustering grid ← grid
14: return [types grid, clustering grid]

1: function find cells to join(grid)
2: sort cells in grid by the prevalence of minority class in descending order
3: for cell ∈ grid do
4: for neighbor ∈ cell.get neighbors() do
5: neighbor.p ← probability that the distribution of examples in neighbor

and cell is the same
6: [p, best neighbor] ← neighbor with the highest neighbor.p
7: if p > α then return [cell, best neighbor]

8: return false

We also put forward extensions of the k-means and DBSCAN clustering algo-
rithms. The proposed approaches consist of: (1) dividing the whole dataset into
two datasets with examples of one class only, (2) performing standard clustering
on the dataset with minority examples, (3) incorporating majority examples into
the clustering result, and finally, (4) assigning difficulty labels to each cluster.

In the third step of the extensions we attempted to imitate the philosophy of
the original clustering algorithms. ImKmeans assigns each majority example to
the minority cluster with the nearest centroid. This naive approach relies solely
on the global clustering information available in k-means, thus, local difficulty
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type categorization produced ImKmeans may be very imprecise. Conversely,
ImScan attaches majority examples to the cluster of its nearest minority exam-
ple, but only if the distance to the nearest minority example does not exceed
ε. Both ImScan and ImKmeans assign difficulty labels using the same rules as
ImGrid. Algorithms 2 and 3 present the pseudocodes of the proposed extensions.

Algorithm 2. ImKmeans
Input: D: dataset, k: number of clusters
Output: clustering: a set of clusters with detected types

1: [D+, D−] ← split D based on class labels � 1) Divide dataset
2: clustering ← k-means(D+, k) � 2) Cluster minority examples
3: for maj example ∈ D− do � 3) Add majority examples to clusters
4: c ← cluster with the nearest centroid to maj example
5: c.add example(maj example)

6: for c ∈ clustering do � 4) Assign type to examples in clusters
7: p ← c.minority num/c.example num
8: c.assign label(p)

9: return clustering

Algorithm 3. ImScan
Input: D: dataset, ε: radius of considered neighborhood, min points: minimum
number of points required to form a dense region
Output: clustering: a set of cluster with detected types

1: [D+, D−] ← split D based on class labels � 1) Divide dataset
2: clustering ← DBScan(D+, ε, min points) � 2) Cluster minority examples
3: for maj example ∈ D− do � 3) Add majority examples to clusters
4: nearest ← minority example closest to maj example
5: if distance(nearest, maj example) < ε then
6: c ← cluster of nearest
7: c.add example(maj example)

8: for c ∈ clustering do � 4) Assign type to examples in clusters
9: p ← c.minority num/c.example num

10: c.assign label(p)

11: return clustering

To the best of our knowledge, there have been no previous proposals of algo-
rithms that simultaneously detect minority sub-concepts and identify local data
difficulty factors. In the following section, we examine the utility of the proposed
algorithms in terms sub-concept discovery and minority example categorization.

4 Experimental Study

In this section, we experimentally evaluate ImGrid, ImScan, and ImKmeans, on
78 synthetic datasets with controlled proportions and placement of data difficulty
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factors. The proposed algorithms are analyzed in terms of their ability to dis-
cover class sub-concepts and detect different difficulty labels. Hence, the cluster-
ing performance and the accuracy of difficulty type categorization is measured.
Finally, we asses how well the algorithms balance clustering and categorization
tasks, and compare their processing time.

4.1 Experiment Setup

In our experiments, we compare the proposed three algorithms (ImGrid, ImScan,
ImKmeans) and the algorithm for the identification of example difficulty type
by Napierala and Stefanowski [11] (Napierala) with the following parameters:

– ImGrid: α ∈ {0.75, 0.80, 0.85, 0.90, 0.95};
– ImScan: ε ∈ {10, 30, 50, 70, 90}, min points ∈ {2};
– ImKmeans: k ∈ [1, 9];
– Napierala: number of neighbors k ∈ {5, 7, 9, 11}.

The algorithm of Napierala and Stefanowski was chosen as a baseline for
categorizing minority class examples, however, this algorithm is not applicable
to clustering tasks and will not be compared with the remaining approaches in
terms of detecting sub-concepts. On the other hand, when analyzing clustering
performance, ImKmeans and Imscan default to standard definitions of k-means
and DBSCAN, and, therefore, can be considered as baseline approaches in terms
of detecting minority sub-concepts. We note that the min points parameter in
ImScan was set to 2 to ensure that rare cases can be identified as separate
clusters and distinguished from outliers.

Clustering was evaluated using Adjusted Mutual Information [17] (AMI)
which takes into account not only the total number of clusters but also the cor-
rectness of example assignation to sub-concepts. Categorization was treated as a
classification task and assessed using G-mean [10] over four difficulty types (safe,
borderline, rare, outlier). These measures were selected, as they are deemed suit-
able for imbalanced data [6,17]. We note that traditionally if at least one class is
unrecognized by the classifier, G-mean resolves to zero. To alleviate this property,
we changed the recall of unrecognized classes from zero to 0.001. To differentiate
from traditional G-mean, we denote the used measure as G-mean0.001.

All the algorithms and evaluation methods were implemented in Python using
the scikit-learn library [15].2 Experiments were conducted on a machine equipped
with an Intel i7-5500U 2.4 Ghz processor and 8 GB of RAM.

4.2 Datasets

In our experiments, we used 78 synthetic binary classification datasets with six
basic shapes of minority sub-clusters and varying proportions of data difficulty

2 Source code, datasets, and reproducible test scripts available at: https://github.com/
langus0/imgrid.

https://github.com/langus0/imgrid
https://github.com/langus0/imgrid
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factors. The datasets were created with the imbalanced dataset generator of
Wilk et al. [20], which provides the ground truth for sub-concept and difficulty
type detection. As this study focuses on local data difficulty factors, all the
datasets have a constant 1:5 global class imbalance ratio. Table 1 presents the
main characteristics of each dataset.

Table 1. Dataset characteristics; superscripts denote versions of datasets with differ-
ent proportions of minority example types: u-unsafe, b-borderline, r-rare; subscript s

denotes “sparse” versions of datasets, with much less examples

Dataset Inst. Attr. Clust. Safe Border Rare Outlier

clover 1500 2/3 1 100 % 0 % 0 % 0 %

dis 1500 2/3/5 3 100 % 0 % 0 % 0 %

hyp 1500 2/3/5 1 100 % 0 % 0 % 0 %

joined 1500 2 4 100 % 0 % 0 % 0 %

normal 1500 2/3/5 1 100 % 0 % 0 % 0 %

rothyp 1500 2 1 100 % 0 % 0 % 0 %

<dataset>u . . . . . . +13 80 % 12 % 6 % 2 %

<dataset>b . . . . . . . . . 40 % 60 % 0 % 0 %

<dataset>r . . . . . . +50 30 % 40 % 20 % 10 %

<dataset>s 250 . . . . . . 100 % 0 % 0 % 0 %

<dataset>us 250 . . . +2 80 % 12 % 6 % 2 %

The clover dataset resembles a clover (Fig. 2a) with five prolonged leaves
in 2d- (clover) and 3d-attribute space (clover3). dis constitutes an exam-
ple of spherical minority class sub-clusters in 2, 3, or 5 dimensions. Datasets
hyp and rothyp exemplify a simple and rotated hyperplane decision boundary
between two classes. The joined dataset allows to test the algorithms on over-
lapping sub-clusters, whereas normal is a uniformly distributed sphere in 2, 3 or
5 dimensions. Each of the six basic (“safe”) datasets (clover, dis, hyp, joined,
normal, rothyp) has five additional versions:

– u-unsafe: where the minority class also contains borderline instances, rare
cases, and outliers;

– b-borderline: where the minority class is surrounded by a thick border of
examples overlapping with the majority class;

– r-rare: where the number of safe examples is smaller than the number of
unsafe examples;

– s-sparse: where the dataset has much less examples, which introduces spar-
sity to the attribute space;

– u
s -sparse: where the dataset is sparse and contains unsafe examples.

It is important to note that rare cases and outliers introduce additional
minority sub-clusters to the dataset.
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4.3 Minority Class Sub-clusters

Due to the large number of datasets and space limitations, detailed tabular
results for each algorithm can be found in online supplementary materials.3 In
this and the following section, we summarize the results by means of selected
plots, tabular summaries, and statistical hypothesis tests.

To compare the minority clustering performance of the proposed algorithms,
we calculated Adjusted Mutual Information (AMI) for each clustering. However,
since clustering is an unsupervised learning task and results can strongly depend
on algorithm parameters (e.g. k in k-means), we compare the algorithms on two
levels. The first level involves comparing best models, i.e., we choose the best
parametrization of a given algorithm for each dataset separately, and report this
“best” value for each dataset. This level corresponds to assessing algorithms, as
if we explicitly knew how to tune them (which is usually not true). The second
level involves comparing mean models, i.e., reporting the algorithms performance
averaged over all parameterizations. This scenario corresponds to comparing
algorithms as if they were parametrized by chance.

Table 2 shows detailed results for best models in terms of AMI on three
selected datasets: cloveru, disb, and rothypr. Additionally, upper panels of
Fig. 2 show sub-concept clusterings for the selected datasets. The results confirm
commonly known, complementary, characteristics of k-means and density-based

Table 2. Clustering and categorization results for three selected datasets: cloveru,
disb, and rothypr. Napierala added for comparison on categorization.

G-mean0.001 AMI Time Clusters Safe Border Rare Outlier

cloveru

ImKmeans 0.006 0.038 0.640 2 0 0 250 0

ImScan 0.150 0.613 0.483 11 0 235 8 7

ImGrid 0.530 0.486 0.142 9 140 58 44 8

Napierala 0.758 - 0.032 − 105 117 23 5

disb

ImKmeans 0.002 0.980 0.699 4 0 0 500 0

ImScan 0.032 0.577 0.438 2 0 250 0 0

ImGrid 0.526 0.577 0.156 2 66 121 57 6

Napierala 0.526 - 0.031 − 60 123 66 1

rothypr

ImKmeans 0.117 0.167 2.183 9 111 0 82 57

ImScan 0.106 0.183 0.428 43 82 10 123 35

ImGrid 0.134 0.000 0.165 1 134 8 59 49

Napierala 0.171 - 0.024 − 127 6 61 56

3 http://www.cs.put.poznan.pl/dbrzezinski/software/MinorityAnalysis.html.

http://www.cs.put.poznan.pl/dbrzezinski/software/MinorityAnalysis.html


334 M. Lango et al.

clustering algorithms. On the disb dataset, ImKmeans is capable of finding
the perfect clustering, as this dataset has only homogenous sub-concepts. On
cloveru and rothypr, however, ImKmeans has trouble with noisy examples.
Conversely, ImScan and ImGrid perform quite well on noisy datasets, but fail to
detect the right number of clusters, when the sub-concepts overlap.

1 2 3

CD

ImScan
ImKmeans

ImGrid

(a) Best model

1 2 3

CD

ImGrid
ImScan

ImKmeans

(b) Average performance

Fig. 1. Performance ranking using AMI. Algorithms that are not significantly different
according to the Nemenyi test (at α = 0.05) are connected.

Figure 1 graphically presents the results of the Friedman test with Nemenyi
post-hoc analysis for both levels of comparison. The null-hypothesis that best
models for each algorithm perform similarly was rejected with p < 0.001. Ideally
tuned versions of ImKmeans and ImScan are significantly better in terms of AMI
than ImGrid. However, the null-hypothesis of the Friedman test for comparing
mean models cannot be rejected (p = 0.245). Moreover, ImGrid obtains the
highest mean rank in this comparison. This shows how crucial parameter tuning
is to the performance of k-means and DBSCAN.

4.4 Minority Example Categorization

We also compared the ability of the algorithms to detect difficulty types of minor-
ity examples. Lower panels of Fig. 2 show example categorization corresponding
to clusterings from the upper panels.

One can notice that ImScan and ImGrid obtain quite accurate difficulty
type predictions. It is worth noting, however, that on the presented plots ImGrid
produces more accurate predictions. This is due to the fact that the plots present
best models in terms of the clustering performance (AMI). Contrary to ImGrid,
ImScan’s results are not robust to the change of parameters, hence its best
parametrization for clustering did not usually correspond with the best model
for categorization. It is also worth noting that ImGrid achieves G-mean0.001

values fairly close to those obtained by Napierala, which is an algorithm designed
strictly for detecting example difficulty types and has no clustering capabilities.

As it was done for clustering performance, we also performed the Friedman
test to assess the significance of differences in performance for best and mean
models. However, in this comparison we additionally analyze the performance
of the algorithm of Napierala and Stefanowski. As Fig. 3 shows, in terms of
G-mean0.001, Napierala is the best categorization algorithm, but it is not signif-
icantly better than ImGrid when looking at mean models. Moreover, once again
it can be noticed that ImScan is highly sensitive to parameter tuning.
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Ground truth ImKmeans ImScan ImGrid

Ground truth ImKmeans ImScan ImGrid

Ground truth ImKmeans ImScan ImGrid

Fig. 2. Comparison of clustering results (upper panel of each pair) and minority type
identification (lower panels) on the cloveru, disb, and rothypr datasets. Clusters
in upper panels are differentiated using shapes and colors. Types of minority class
examples in lower panels are color-coded as follows: safe - green, borderline - orange,
rare - red, outlier - black. Figure should be read in color. (Color figure online)
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1 2 3 4

CD

Napierala
ImScan

ImGrid
ImKmeans

(a) Best model

1 2 3 4

CD

Napierala
ImGrid

ImScan
ImKmeans

(b) Average performance

Fig. 3. Performance ranking using G-mean0.001. Algorithms that are not significantly
different according to the Nemenyi test (at α = 0.05) are connected.

4.5 Balancing Clustering and Categorization

Our final view on the performance of the algorithms involved assessing the trade-
off between clustering and categorization performance. For this purpose, we
decided to evaluate the algorithm using a linear combination of AMI and G-
mean0.001, as follows: βAMI + (1 − β)Gmean0.001. By varying the parameter β,
one can control which aspect of the task, clustering or categorization, is more
important. Figure 4 shows mean ranks of the Friedman test with varying β, for
both the best and mean models.

(a) Best model (b) Average performance

Fig. 4. Mean Friedman test ranks when evaluating the algorithms according to:
βAMI + (1 − β)Gmean0.001

For β = 0 and β = 1, the mean ranks in Fig. 4 correspond to results presented
for categorization and clustering, respectively. Nonetheless, in the range β ∈
(0, 1) one can analyze the trade-off offered by each algorithm. Looking at best
models, it can be seen that ImScan can be successfully tuned to any value of β,
with ImGrid being usually second. However, when comparing mean models, it
can be noticed that on average ImGrid produces better results, suggesting that
is much less prone to parameter tuning. This is an important finding, as the
goal of this study was to simultaneously detect minority sub-clusters and data
difficulty factors, without prior knowledge about how to cluster examples.
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Furthermore, we measured the running time of each algorithm and performed
a Friedman test (Fig. 5). One can notice that Napierala is the fastest approach,
however, it is an algorithm for the recognition of difficulty types only. Among
algorithms which provide information about both minority sub-concepts and
examples difficulty, ImGrid is significantly the fastest method. In terms of con-
crete values, ImGrid is on average almost two times faster than ImScan, its best
competitor.

Fig. 5. Running time ranking. Algorithms that are not significantly different according
to the Nemenyi test (at α = 0.05) are connected.

5 Conclusions and Future Research

The main aim of this study was to find novel ways of discovering local data
difficulty factors from imbalanced data. Up till now, efforts in this field have
concentrated, separately, on detecting sub-concepts of the minority class and
detecting local relationships between minority and majority examples. We argue
that existing approaches to identifying minority sub-concepts are impractical as
they heavily rely on non-trivial parameter tuning and are sensitive to outliers
and other difficulty factors.

In this paper, we put forward ImGrid, an algorithm that simultaneously
detects minority sub-clusters, outliers, rare cases, and class overlapping in imbal-
anced data. Additionally, we proposed two extensions to popular clustering algo-
rithms, ImKmeans and ImScan, that incorporate knowledge about relationships
between minority and majority examples. A comprehensive series of experi-
ments characterized the strengths and weaknesses of each algorithm, showing
that, depending on parameter tuning, each of the proposed algorithms is capa-
ble of successfully detecting sub-concept or characterizing difficulty types. How-
ever, the results highlighted ImGrid as a fast and easily parametrized trade-off
between minority class clustering and example categorization.

Due to its small dependency on parameter tuning, ImGrid could be used to
analyze real world datasets. Nevertheless, as future work the topic of defining
its grid space for real data may be revisited, as more flexible approaches to
dividing the attribute space can still be proposed. Moreover, the combination of
clustering and example categorization gives the user two layers of information
about an imbalanced dataset. These layers could be combined in a data difficulty
metric, which would inform the user about the main difficulties in the dataset
and suggest possible actions. Finally, it would be very interesting to use the
gathered information to improve specialized algorithms for imbalanced data.
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Abstract. In this paper we explore the use of well-known multimodal
fusion techniques to solve two prominent Natural Language Process-
ing tasks. Specifically, we focus on solving Named Entity Recognition
and Word Sense Induction and Disambiguation by applying feature-
combination methods that have already shown their efficiency in the
multimedia analysis domain. We present a series of experiments employ-
ing fusion techniques in order to combine textual linguistic features. Our
intuition is that by combining different types of features we may find
semantic relatedness among words at different levels and thus, the com-
bination (and recombination) of these levels may yield gains in terms
of metrics’ performance. To our knowledge, employing these techniques
has not been studied for the tasks we address in this paper. We test the
proposed fusion techniques on three datasets for named entity recogni-
tion and one for word sense disambiguation and induction. Our results
show that the combination of textual features indeed improves the perfor-
mance compared to single feature representation and the trivial feature
concatenation.

1 Introduction

Named Entity Recognition (NER) and Word Sense Induction and Disambigua-
tion (WSI/WSD) requires textual features to represent the similarities between
words in order to discern between different words’ meanings. NER goal is to
automatically discover, within a text, mentions that belong to a well-defined
semantic category. The classic task of NER involves detecting entities of type
Location, Organization, Person and Miscellaneous. The task is of great impor-
tance for more complex NLP systems, e.g., relation extraction, opinion mining.
Common solutions to NER consist on one of the following: via matching patterns
created manually or extracted semi-automatically; or by training a supervised
machine learning algorithm with large quantities of annotated text. The latter
being the currently more popular solution to this task.

Word Sense Induction and Disambiguation involves two closely related
tasks1. WSI aims to automatically discover the set of possible senses for a tar-
get word given a text corpus containing several occurrences of said target word.
1 Even though these tasks are related, they are independent from one another. Still,

in this paper we consider them to be a single one.
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Meanwhile, WSD takes a set of possible senses and determines the most appro-
priate sense for each instance of the target word according to the instance’s con-
text. WSI is usually approached as an unsupervised learning task, i.e., a cluster
method is applied to the words occurring in the instances of a target word. The
groups found are interpreted as the senses of the target word. The WSD task
is usually solved with knowledge-based approaches, based on WordNet; or more
recently with supervised models which require annotated data.

As stated before, both tasks rely on features extracted from text. Usually,
these representations are obtained from the surrounding context of the words
in the input corpus. Mainly two types of representations are used. According to
their nature we call these features lexical and syntactical. The first type requires
no extra information than that contained already in the analyzed text itself. It
consists merely on the tokens surrounding a word, i.e., those tokens that come
before and after within a fixed window. The second type, syntactical features,
is similar to the lexical representation in that we also consider as features the
tokens that appear next to the corpus’ words. Nonetheless, it requires a deeper
degree of language understanding. In particular, these features are based on
part of speech tags, phrase constituents information, and syntactical function-
ality between words, portrayed by syntactical dependencies. Likewise, specific
features, particular to a task are also employed. These features later on become
standard features in the literature.

Most of the approaches in the literature dealing with these tasks use each of
these features independently or stacked together, i.e., different feature columns
in an input representation space matrix. In the latter case, features are usually
combined without regards to their nature.

The main intuition of the present work is that word similarities may be found
at different levels according to the type of features employed. In order to exploit
these similarities, we look into multimedia fusion methods. In order to better
perform an analysis task, these techniques combine multimodal representations,
their corresponding similarities, or the decisions coming from models fitted with
these features. In this paper, we try to mutually complement independent rep-
resentations by utilizing said fusion techniques to combine (or fuse) features in
the hope of improving the performance of the tasks at hand, specially compared
to the use of features independently.

Fusion techniques have previously shown their efficiency, mainly on text and
image related tasks, where there is a need to model the relation between images
and text extracts. Here, in order to apply multimedia fusion techniques, we con-
sider textual features as different modalities, i.e., instead of having textual and
image features we have lexical and syntactical features. The main contribution
of this work is to assess the effectiveness of simple yet untested techniques to
combine classical and easy to obtain textual features. As a second contribution,
we propose a series of feature combination and recombination to attain better
results. We test our intuitions on both NER and WSI/WSD tasks and over
four different corpora: CoNLL-2003 [17], WikiNER and Wikigold [4] for NER;
Semeval-2007 [1] for WSI/WSD.
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The rest of the paper is organized as follows: in Sect. 2, we go into further
details about fusion techniques. We introduce the fusion operators that we use
in our experiments in Sect. 3. Then, in Sect. 4 we show the effectiveness of the
presented methods by testing them on NER and WSI/WSD and their respective
datasets. Finally, in Sect. 5 we present our conclusions and future directions to
explore.

2 Background and Related Work

In this section, we describe the fusion techniques we use in our methodology as
well as relevant use-cases where they have been employed.

2.1 Multimodal Fusion Techniques

Multimodal fusion is a set of popular techniques used in multimedia analysis
tasks. These methods integrate multiple media features, the affinities among
these attributes or the decisions obtained from systems trained with said fea-
tures, to obtain rich insights about the data being used and thus to solve a given
analysis task [2,3]. We note that these techniques come at the price of augment-
ing the training time of a system by increasing both the dimension space and/or
the density of a given feature matrix.

In the multimodal fusion literature we can discern two main common types
of techniques: early fusion and late fusion.

Early Fusion. This technique is the most widely used fusion method. The
principle is simple: we take both modal features and concatenate them into
a single representation matrix. More formally, we consider two matrices that
represent different modality features each over the same set of individuals. To
perform early fusion we concatenate them column-wise, such that we form a new
matrix having the same number of lines but increasing the number of columns
to the sum of the number of columns of both matrices. The matrices may also
be weighted as to control the influence of each modality.

The main advantage of early fusion is that a single unique model is fitted
while leveraging the correlations among the concatenated features. The method
is also easy to integrate into an analysis system. The main drawback is that we
increase the representation space and may make it harder to fit models over it.

Late Fusion. In contrast to early fusion, in late fusion the combination of
multimodal features are generally performed at the decision level, i.e., using
the output of independent models trained each with an unique set of features
[5]. In this setting, decisions produced by each model are combined into a sin-
gle final result set. The methods used to combine preliminary decisions usually
involve one of two types: rule-based (where modalities are combined according
to domain-specific knowledge) or linear fusion (e.g., weighting and then adding
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or multiplying both matrices together). This type of fusion is very close to the
so-called ensemble methods in the machine learning literature. Late fusion com-
bines both modalities in the same semantic space. In that sense, we may also
combine modalities via an affinity representation instead of final decision sets.
In other words, we can combine two modality matrices by means of their respec-
tive similarities. A final representation is then usually obtained by adding the
weighted similarity matrices.

The advantages of late fusion include the combination of features at the same
level of representation (either the fusion of decisions or similarity matrices).
Also, given that independent models are trained separately, we can chose which
algorithm is more adequate for each type of features.

Cross-Media Similarity Fusion. A third type of fusion technique, cross-
media similarity fusion (or simply cross fusion), introduced in [2,5], is defined and
employed to propagate a single similarity matrix into a second similarity matrix.
In their paper, the authors propagated information from textual media towards
visual media. In our case, we transfer information among textual features. For
example, to perform a cross fusion between lexical and syntactical features, we
perform the following steps:

1. Compute the corresponding similarity matrices for each type of feature.
2. Select only the k-nearest neighbor for each word within the lexical similarity

matrix. These neighbors are to be used as lexical representatives to enrich
the syntactical similarities.

3. Linearly combine both similarity matrices (lexical k-nearest lexical neighbors
with the syntactical features) via a matrix product.

Cross fusion aims to bridge the semantic gap between two modalities by using
the most similar neighbors as proxies to transfer valuable information from one
modality onto another one. Usually, the result of a cross fusion is combined
with the previous techniques, early and late fusion. In this paper we perform
experiment in that sense.

Hybrid Fusion. We may leverage the advantages of the previous two types of
fusion techniques by combining them once more in a hybrid setting. As described
in [3,18], the main idea is to simultaneously combine features at the feature level,
i.e., early fusion, and at the same semantic space or decision level. Nonetheless,
they define a specific type of hybrid fusion. In this paper, we adopt a looser
definition of hybrid fusion. That is, we perform hybrid fusion by leveraging the
combination of the fusion strategies described before.

We consider the first three types of fusion techniques (early fusion, late fusion
and cross fusion) as the building blocks to the experiments we conduct. While
we work with a single modality, i.e., textual data, we consider the different kinds
of features extracted from it as distinct modalities. Our intuition being that the
semantic similarities among words in these different spaces can be combined in
order to exploit the latent complementarity between the lexical and syntactical
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representations. The fusion should therefore improve the performance of the
NLP tasks at hand, NER and WSI/WSD.

Our first goal is to assess the effectiveness of the classic fusion methods and
then, as a second goal, to propose new combinations that yield better outcomes
in terms of performance than the simpler approaches. The new combinations
are found empirically. Nonetheless, as we will show, their effectiveness replicates
across different datasets and NLP tasks.

2.2 NER and WSI/WSD

To the best of our knowledge, there is no work that addresses both NER and
WSI/WSD explicitly while using fusion techniques from the multimedia analysis
domain. Still, we base our experiments on those carried on in [6,8,10] using well-
known supervised (structured perceptron) and unsupervised (spectral clustering)
learning algorithms. A thorough review on NER and WSI/WSD can be found
in [13,14], respectively.

3 Methodology

In the present section we address the core of the work performed in this paper.
We formally describe the fusion techniques we employ in the next section. Also,
we delineate the procedure followed in our experiments.

The experiments we carry on consist in generating fusion matrices that will
serve as input to a learning algorithm in order to solve NER and WSI/WSD.
These input feature matrices are based upon lexical, syntactical, or other types
of representation. The procedure can be seen in Fig. 1.

Input 
Corpus Preprocessing

Fusion Matrix 
Generation
IF 1F 2F NF

MLEX  

MSYN  

MSTD  

Fusion 
Matrix  Learning ModelResultsEvaluation

Fig. 1. Steps followed on our experiments. First the corpus is preprocessed, then fea-
tures are extracted from the text. A fusion matrix is generated, which in turn is used as
input to a learning algorithm. Finally, the system yields its results and to be analyzed.
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3.1 Fusion Strategies

We begin by presenting a formal definition of the fusion techniques employed
and described in the previous sections. We define (weighted) early fusion, late
fusion and cross fusion as follows:

Early Fusion
E(A,B) = hstack(A,B) (1)

Weighted Early Fusion

wEα(A,B) = hstack(α · A, (1 − α) · B) (2)

Late Fusion
Lβ(A,B) = β · A + (1 − β) · B (3)

Cross fusion
Xγ(A,B) = K(A, γ) × B (4)

Parameters A and B are arbitrary input matrices. They may initially represent,
for example, the lexical (MLEX) or syntactical based (MSY N ) features matrix,
or their corresponding similarity matrices, SLEX and SSY N , respectively. In a
broader sense, matrices A and B may represent any pair of valid2 fusion matrices.

In early fusion, E(A,B), the matrices A and B are combined together via a
function called hstack which concatenates, column-wise, both matrices A and
B. Weighted early fusion represents the same operation as before with an extra
parameter: α, which controls the relative importance of each matrix. In the
following, we refer to both operations as early fusion. When α is determined, we
refer to weighted early fusion.

Regarding late fusion Lβ(A,B), the β parameter determines again the impor-
tance of the matrix A, and consequently also the relevance of matrix B.

In cross fusion Xγ(A,B), the K(·) function keeps the top-γ closest words
(columns) to each word (lines) while the rest of the values are set to zero.

Using the previously defined operators, we distinguish four levels of experi-
ments:

1. Single Features: in this phase we consider the modalities independently as
input to the learning methods. For instance, we may train a model for NER
using only the lexical features matrix MLEX .

2. First Degree Fusion: we consider the three elementary fusion techniques
by themselves (early fusion, late fusion, cross fusion) without any recombi-
nation. These experiments, as well as those from the previous level, serve
as the baselines we set to surpass in order to show the efficacy of the rest
of the fusion approaches. As an example, we may obtain a representation
matrix by performing an early fusion between the lexical matrix and the
syntactical features matrix: E(MLEX ,MSY N ). In this level we distinguish

2 Valid in terms of having compatible shapes while computing a matrix sum or mul-
tiplication.



346 E.-P. Soriano-Morales et al.

two types of cross fusion: Cross Early Fusion (XEF) and Cross Late Fusion
(XLF). The first one combines a similarity matrix with a feature matrix:
X(SLEX ,MSY N). The second one joins a similarity matrix with a similarity
matrix: X(SSY N , SLEX).

3. Second Degree Fusion: we recombine the outputs of the previous two levels
with the elementary techniques. This procedure then yields a recombination
of “second-degree” among fusion methods. We introduce the four types of
second degree fusions in the following list. Each one is illustrated with an
example:
(a) Cross Late Early Fusion (XLEF): X(X(SSTD, SSY N),MSTD)
(b) Cross Early Early Fusion (XEEF: X(SSTD,X(SSTD, SSY N))
(c) Early Cross Early Fusion (EXEF): E(MSTD,X(SLEX ,MSTD))
(d) Late Cross Early Fusion (LXEF): L(MSTD,X(SSTD,MSTD))

4. N-Degree Fusion: in this last level we follow a similar approach to the pre-
vious level by combining the output of the second-degree fusion level multiple
times (more than two times) with other second-degree fusion outputs. Again,
in this level we test the following two fusion operations:
(a) Early Late Cross Early Fusion (ELXEF): E(MSTD, L(MSTD,X(SSTD,

MSTD)))
(b) Early ELXEF (EELXEF): E(MLEX , E(E(MSTD, L(MSTD,X(SSTD,

MSTD))), L(MLEX ,X(SSY N ,MLEX))))

3.2 Feature Matrices

In the previous subsection we presented the fusion operators used in our exper-
iments. Below we detail the three types of features used to describe the words
of each of the tested corpus.

Lexical Matrix (LEX). For each token in the corpus, we use a lexical window
of two words to the left and two words to the right, plus the token itself. Specif-
ically, for a target word w, its lexical context is (w−2, w−2, w, w+1, w+2). This
type of context features is typical for most systems studying the surroundings
of a word, i.e., using a distributional approach [11].

Syntactical Matrix (SYN). Based on the syntactic features used in [11,15],
we derive contexts based on the syntactic relations a word participates in, as
well as including the part of speech (PoS) of the arguments of these relations.
Formally, for a word w with modifiers m1, . . . ,mk and their corresponding PoS
tags pm

1 , . . . , pm
k ; a head h and its corresponding PoS tag ph, we consider the

context features (m1, pm1 , lbl1), . . . , (mk, pmk
, lblk), (h, ph, lbl invh). In this case,

lbl and lblinv indicate the label of the dependency relation and its inverse, corre-
spondingly. Using syntactic dependencies as features should yield more specific
similarities, closer to synonymy, instead of the broader topical similarity found
through lexical contexts.
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NER Standard Features Matrix (STD). The features used for NER are
based on those used in [4,8]. The feature set consists of: the word itself, whether
the word begins with capital letter, prefix and suffix up to three characters
(within a window of two words to the left and two words to the right), and the
PoS tag of the current word. These features are considered to be standard in the
literature. We note that the matrix generated with these features is exclusively
used in the experiments regarding NER.

3.3 Learning Methods

We use supervised and unsupervised learning methods for NER and WSI/WSD
respectively. On the one hand, for NER, as supervised algorithm, we use an
averaged structured perceptron [6,8] to determine the tags of the named entities.
We considered Logistic Regression and linear SVM. We chose the perceptron
because of its performance and its lower training time.

On the other hand, for WSD/WSI, specifically for the induction part, we
applied spectral clustering, as in [10], on the input matrices in order to automati-
cally discover senses (a cluster is considered a sense). Regarding disambiguation,
we trivially assign senses to the target word instances according to the number
of common words in each cluster and the context words of the target word. In
other words, for each test instance of a target word, we select the cluster (sense)
with the maximum number of shared words with the current instance context.

4 Experiments and Evaluation

We experiment with four levels of fusion: Single Features (SF), First-degree
Fusion (1F), Second-degree Fusion (2F) and N-degree Fusion (NF). The repre-
sentation matrices for NER come from lexical context features MLEX , syntac-
tical context features MSY N or standard features MSTD. On the other hand,
experiments on WSI/WSD exclusively employ matrices MLEX and MSY N .

Our first goal is to compare the efficiency of the basic multimedia fusion
techniques applied to single-modality multi-feature NLP tasks, namely NER
and WSI/WSD. A second goal is to empirically determine a fusion combination
setting able to leverage the complementarity of our features.

To this end, we evaluate the aforementioned 4 fusion levels. We note that
the fusion combinations in the third and fourth level (2F and NF) are proposed
based on the results obtained in the previous levels. In other words, in order to
reduce the number of experiments, we restrict our tests to the best performing
configurations. This is due to the large number of possible combinations (an
argument to a fusion operation may be any valid output of a second fusion
operation).

4.1 Named Entity Recognition

Pre-processing. As is usual when preprocessing text before performing named
entity recognition, [16], we normalize tokens that include numbers. This allows
a degree of abstraction to tokens that contain years, phone numbers, etc.
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Features. The linguistic information we use are extracted with the Stanford’s
CoreNLP parser [12]. Again, the features used for these experiments on NER
are those described before: lexical, syntactic and standard features, i.e., MLEX ,
MSY N , and MSTD, respectively.

Test Datasets. We work with three corpora coming from two different domains:

(1) CoNLL-2003 (CONLL): This dataset was used in the language-independent
named entity recognition CoNLL-2003 shared task [17]. It contains selected
news-wire articles from the Reuters Corpus. Each article is annotated man-
ually. It is divided in three parts: training (train) and two testing sets (testa
and testb). The training part contains 219,554 lines, while the test sets con-
tain 55,044 and 50,350 lines, respectively. The task was evaluated on the
testb file, as in the original task.

(2) WikiNER (WNER): A more recent dataset [4] of selected English Wikipedia
articles, all of them annotated automatically with the author’s semi-
supervised method. In total, it contains 3,656,439 words.

(3) Wikigold (WGLD): Also a corpus of Wikipedia articles, from the same
authors of the previous corpus. Nonetheless, this was annotated manually.
This dataset is the smaller, with 41,011 words. We used this corpus to val-
idate human-tagged Wikipedia text. These three datasets are tagged with
the same four types of entities: Location, Organization, Person and Miscel-
laneous.

Evaluation Measures. We evaluate our NER models following the standard
CoNLL-2003 evaluation script. Given the amount of experiments we carried on,
and the size constraints, we report exclusively the total F-measure for the four
types of entities (Location, Organization, Person, Miscellaneous). WNER and
WGLD datasets are evaluated on a 5-fold cross validation.

Results. We present in this subsection the results obtained in the named entity
recognition task, while employing the 4 levels of fusion proposed in the previous
section.

In contrast to other related fusion works [2,5,9], we do not focus our analysis
on the impact of the parameters of the fusion operators. Instead, we focus our
analysis on the effect of the type of linguistic data being used and how, by trans-
ferring information from one feature type to another, they can be experimentally
recombined to generate more complete representations.

Regarding the fusion operators’ parameters, we empirically found the best
configuration for β, from late fusion Lβ(A,B) = β · A + (1 − β) · B, is β = 0.5.
This implies that an equal combination is the best linear fusion for two different
types of features.

In respect of the γ parameter, used in cross fusion Xγ(A,B) = K(A, γ)×B,
we set γ = 5. This indicates that just few high quality similarities attain better
results than utilizing a larger quantity of lower quality similarities.
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Table 1. NER F-measure results using the Single Features over the three datasets.
These values serve as a first set of baselines.

A Single Features

CONLL WNER WGLD

MSTD 77.41 77.50 59.66

MLEX 69.40 69.17 52.34

MSY N 32.95 28.47 25.49

Single Features. Looking at Table 1, we see that the best independent features, in
terms of F-measure come from the standard representation matrix MSTD. This
is not surprising as these features, simple as they may be, have been used and
proved extensively in the NER community. On the other hand, MLEX performs
relatively well, considering it only includes information contained in the dataset
itself. Nevertheless, this representation that this kind of lexical context features
are the foundation of most word embedding techniques used nowadays. While
we expected better results from the syntactical features MSY N , as they are able
to provide not only general word similarity, but also functional, getting close to
synonymy-level [11], we believe that the relatively small size of the datasets do
not provide enough information to generalize.

First Degree Fusion. In Table 2 we present the First Degree fusion level. The best
performance is obtained by trivially concatenating the representation matrices.
This baseline proved to be the toughest result to beat. Late fusion does not
perform well in this setting, still, we see further on that by linearly combining
weighted representation matrices, we can add information to an already strong
representation. Finally, regarding the cross fusion techniques, cross early and
late fusion, we see that they depend directly on the information contained in
the similarity matrices. We note that, as is the case on single features, the com-
binations with matrix SSTD yield almost always the best results. While these
fusion techniques by themselves may not offer the best results, we see below
that by recombining them with other types of fusion we can improve the general
performance of a representation.

Second Degree Fusion. The second degree fusion techniques presented in Table 3
show that the recombination of cross fusion techniques gets us closer to the
early fusion baseline. With the exception of cross late early fusion, the rest of
the recombination schemes yield interesting results. First, in cross early fusion,
the best results, for the most part, are obtained while using the SLEX matrix
combined with the output of E(MLEX ,MSTD), which is still far from the base-
line values. Concerning, EXEF, we get already close to surpass the baselines
with the MSTD matrix, with the exception of the CONLL dataset. In LXEF,
even though the cross fusion X(SSY N ,MLEX) is not the best performing, we
found experimentally that by combining it with MLEX through a late fusion, it
gets a strong complementary representation. Our intuition in this case was to
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Table 2. NER F-measure results
using first degree fusion (1F). B
is either indicated on the table or
specified as follows. Looking at EF,
b̂EF = E(MSY N , MSTD). In XEF,
b∗
XEF takes the matrix from the set
{MLEX , MSTD} which yields the best
performing result. In XLF, b̂∗

XLF corre-
sponds to the best performing matrix
in {SLEX , SSY N}. These configurations
serve as the main set of baseline results.

A B Early Fusion

CONLL WNER WGLD

MLEX MSY N 72.01 70.59 59.38

MLEX MSTD 78.13 79.78 61.96

MSY N MSTD 77.70 78.10 60.93

MLEX b̂EF 78.90 80.04 63.20

Late Fusion

CONLL WNER WGLD

SLEX SSY N 61.65 58.79 44.29

SLEX SSTD 55.64 67.70 48.00

SSY N SSTD 50.21 58.41 49.81

Cross Early Fusion

CONLL WNER WGLD

SLEX MSTD 49.90 70.27 62.69

SSY N MSTD 47.27 51.38 48.53

SSTD b∗
XEF 52.89 62.21 50.15

Cross Late Fusion

CONLL WNER WGLD

SLEX SSTD 27.75 59.12 38.35

SSY N b∗
XLF 36.87 40.92 39.62

SSTD b∗
XLF 41.89 52.03 39.92

Table 3. NER F-measure results
using second degree fusion (2F).
In XLEF, a∗ corresponds to the
best performing matrix in the set
{X(SSTD, SLEX), X(SLEX , SSTD), X
(SSTD, SSY N)}. For XEEF, b̂XEEF =
E(MLEX , MSTD). In EXEF, b∗

EXEF

takes the best performing matrix from
{X(SSY N , MLEX), X(SLEX , MLEX),
X(SLEX , MSTD), X(SSY N , MLEX),
X(SSY N , MSTD)}. Finally, in LXEF,
b̂LXEF takes the best possible matrix
from {X(SLEX , MSTD), X(SSY N ,
MSTD), X(SSY N , MLEX)}.

A B Cross Late Early Fusion

CONLL WNER WGLD

â MSTD 37.69 59.44 41.71

â MLEX 38.31 58.73 41.56

â MSY N 29.31 52.06 34.91

Cross Early Early Fusion

CONLL WNER WGLD

SSTD b̂XEEF 54.34 64.20 39.59

SLEX b̂XEEF 49.71 71.84 45.14

SSY N b̂XEEF 47.54 53.77 43.32

Early Cross Early Fusion

CONLL WNER WGLD

MSTD b∗
EXEF 49.58 77.32 61.69

MLEX b∗
EXEF 49.79 66.22 53.54

MSY N b∗
EXEF 51.53 70.94 53.70

Late Cross Early Fusion

CONLL WNER WGLD

MSTD b̂LXEF 54.82 75.70 54.73

MLEX b̂LXEF 56.53 62.27 52.39

complement MLEX with itself but enriched with the SSY N information. In the
N-degree fusion results we discover that indeed this propagation of information
helps us beat the baselines we set before.

N-degree Fusion. Finally, the last set of experiments are shown in Table 4. Using
a recombination of fusion techniques, a so-called hybrid approach, we finally beat
the baselines (single features and early fusion) for each dataset. We note that
the best configuration made use of a weighted early fusion with α = 0.95. This
indicates that the single feature matrix, MLEX is enriched a small amount by the
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Table 4. F-measure results using N-degree fusion (NF). In ELXEF, b̂ELXEF =
L(MLEX , X(SSY N , MLEX)). For EELXEF, b̂EELXEF = E(E(MSTD, L(MLEX ,
X(SSY N , MLEX))), L(MLEX , X(SSTD, MLEX))) for CONLL and b̂EELXEF =
E(E(MSTD, L(MSTD, X(SSY N , MSTD))), L(MLEX , X(SSY N , MLEX))) for WNER
and WGLD. The best result is obtained in EELXEF when α = 0.95.

A B Early Late Cross Early Fusion

CONLL WNER WGLD

MSTD b̂ELXEF 67.16 79.45 62.37

Early Early Late Cross Early Fusion

CONLL WNER WGLD

MLEX b̂EELXEF 65.01 78.02 62.34

MLEX
α=0.95 b̂EELXEF 79.67 81.79 67.05

EF Baseline 78.90 80.04 63.20

fusion recombination, which is enough to improve the results of said baselines.
In CONLL, the early fusion (see Table 2) baseline being 78.13, we reached 78.69,
the lowest improvement of the three datasets. Regarding the Wikipedia corpus,
in WNER, we passed from 79.78 to 81.75; and in WGLD, from 61.96 to 67.29,
the largest improvement of all. It is important that we tried the weighted Early
Fusion operator with different α and the best result does not beat these fusion
results.

In the next section we transfer the knowledge gained in this task to a new
one, word sense induction and disambiguation.

4.2 Word Sense Induction and Disambiguation

Having learned the best fusion configuration from the previous task, in this
experiments we set to test if the improvements achieved can be transfered
into another NLP task, namely Word Sensed Induction and Disambiguation
(WSI/WSD).

Pre-processing. We simply remove stopwords and tokens with less than three
letters.

Features. We use the same set of features from the previous task, with the
exception of the standard NER features, that is, those represented by MSTD, as
they are specifically designed to tackle NER.

Test Dataset. The WSI/WSD model is tested on the dataset of the Semeval-
2007 WSID task [1]. The task was based on a set of 100 target words (65 nouns
and 35 verbs), each word having a set of instances, which are specific contexts
where the word appear. Senses are induced from these contexts and applied to
each one of the instances.
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Table 5. Supervised Recall and Unsupervised F-measure for the Semeval-2007 corpus.
We also display the average number of clusters found by each fusion configuration.

Method Recall (%) FM (%) # cl

All Noun Verb All Noun Verb

Single Features

MLEX 79.20 82.10 75.80 72.70 76.90 67.90 4.13

MSY N 79.10 81.60 76.20 69.30 69.40 69.20 4.47

Early Fusion

E(MLEX ,MSY N ) 78.70 81.11 76.10 74.00 76.66 71.11 4.46

Cross Early Fusion

X(SLEX ,MLEX) 79.20 82.30 75.70 76.20 79.60 72.50 3.63

X(SLEX ,MSY N ) 78.30 80.90 75.30 74.60 75.10 73.90 3.08

X(SSY N ,MLEX) 78.60 80.90 76.10 78.90 80.70 76.90 1.08

X(SSY N ,MSY N ) 78.90 81.40 76.10 73.70 77.70 70.00 2.72

Cross Late Fusion

X(SSY N , SLEX) 78.70 80.90 76.20 78.90 80.80 76.80 1.01

X(SLEX , SSY N ) 78.80 80.90 76.06 78.70 80.50 76.80 1.33

Cross Late Early Fusion

X(X(SLEX , SSY N ),MLEX) 78.40 80.40 76.10 70.00 68.70 71.40 3.11

X(X(SLEX , SSY N ),MSY N ) 78.90 81.80 75.60 75.20 77.40 72.80 3.16

Early Cross Early Fusion

E(MLEX , X(SLEX ,MLEX)) 79.20 82.40 75.70 76.00 79.50 72.10 3.57

E(MSY N , X(SLEX ,MLEX)) 78.30 80.50 75.80 75.20 75.40 75.00 1.95

Late Cross Early Fusion

L(MSY N , X(SLEX ,MSY N )) 78.60 81.10 75.80 67.80 71.40 63.80 4.22

L(MLEX , X(SLEX ,MLEX)) 79.50 82.80 75.70 76.09 79.10 72.70 3.96

Early Late Cross Early Fusion

E(MLEX , L(MSY N , X(SLEX ,MSY N ))) 78.50 81.40 75.40 74.20 78.20 69.80 4.26

E(MLEX , L(MLEX , X(SLEX ,MLEX))) 79.50 82.70 75.90 75.80 78.50 72.70 3.99

Evaluation Measures. Being an unsupervised task, the evaluation metrics of
WSI/WSD are debated in terms of quality [7]. We consider supervised recall and
unsupervised F-measure, as in the competition original paper [1]. The first one
maps the output of a system to the true senses of the target words’ instances
and the second one measures the quality of the correspondence between the
automatically found clusters and the senses. We consider that the number of
senses found by the system is also a rather good indicator of performance: the
best competition baseline assigns the most frequent sense to each target word
(this baseline is called MFS), thus this baseline system would have an average
of 1 sense (cluster) per word. A system that goes near this average may be
indeed not resolving the task efficiently but finding the MFS trivial solution.
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Consequently, to show that we do not fall in the MFS solution, we display in
our results the average number of clusters.

Results. Word sense induction and disambiguation results are found in Table 5.
Again, we aim to surpass the baseline of the single features and early fusion. We
experimentally set β = 0.90 and γ = 50. In this task, in late fusion, when the
first matrix is deemed more relevant than the second one, the performance is
higher. This may be due to the fact that, in this task, the feature matrices rows
contain types (that is, each line represent an unique word), and thus they are
more dense, which may entail more noisy data. By reducing the relevance of the
second matrix in late fusion, we are effectively attenuating the less important
information. Regarding γ = 50, again due to the denser characteristic of the
matrices, there is a larger quantity of true similar words that are useful to project
information into another matrix, through cross fusion.

The WSI/WSD results are shown in Table 5. In the following paragraph, we
will discuss these result all at once. Due to the page limit constraint, we omit
certain configurations that do not yield interesting results either by converging
to the MFS solution (1 sense found per target word) or because the performance
shown by those configurations is not interesting.

Regarding Single Features, MLEX comes on top of MSY N again. Nonetheless,
MSY N is much closer in terms of performance, and as expected, it is actually
higher with regards to verbs.

On the 1F level, we see that the early fusion technique in this task does
not surpass the independent features representation. Our intuition is that the
similarities of both matrices seem to be correlated. In cross early fusion, the best
result is obtained by X(SLEX ,MLEX), regarding the unsupervised F-measure.
This configuration already beats our baselines, improving both noun and verb
results on the unsupervised evaluation, improving the supervised recall of nouns,
and staying on the same level considering all words. Also, it produces more senses
than the MSF average number of senses (1 sense per target word), which is good
but not indicative of results correctness. Regarding cross late fusion, given the
average number of clusters produced, it seems that both results converge towards
the MFS, therefore we do not consider these results.

Beginning with the fusion recombinations, in level 2F, both cross late early
fusions yield average results. In cross early cross early fusion, the early fusion of
MLEX with X(SLEX ,MLEX) yields very similar results than X(SLEX ,MLEX).
The next natural step is to test this fusion via a linear combination, with a
late fusion. The result obtained confirmed the intuition of enriching a single
feature matrix with another weighted-down matrix to improve the performance.
Indeed, we consider that L(MLEX ,X(SLEX ,MLEX)) gets the best results in
terms of all-words supervised recall and the second best all-words unsupervised
F-measure (we do not consider solutions that are too close to the MFS baseline).

We test the same configurations as in NER, within the NF level, to try and
improve our results. Nonetheless, in general, they do not overcome the best result
found previously.
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In general, we found that the recombination fusion techniques work in terms
of improving the performance of the tasks addressed. In the following, we make
our final remarks and the future work to be done regarding fusion techniques on
NLP tasks.

5 Conclusion and Future Work

In this paper, we presented a comparative study of multimedia fusion techniques
applied to two NLP tasks: Named Entity Recognition and Word Sense Induction
and Disambiguation. We also proposed new fusion recombinations in order to
complement the information contained in the single representation matrices. In
order to accomplish this goal, we built upon basic fusion techniques such as early
and late fusion, as well as cross media fusion to transfer quality information from
one set of features to another.

We found that by taking a strong feature, in our case lexical context, MLEX ,
and enriching it with the output of rather complex fusion combinations, we can
improve the performance of the tasks addressed. The enrichment has to give
more relevance to the strong feature matrix, by selecting the right parameters.

While there is an improvement, we do note that fusion techniques augment
the computing time and memory consumption of the tasks at hand by enlarging
the feature space or by making it more dense. In that sense, more intelligent
ways of finding the most appropriate fusion must be researched. This is indeed
one of our future work paths: determining an optimal fusion path from single
features to a N-degree fusion recombination. Coupled with this, the automatic
determination of the parameters is still ongoing research in the multimedia fusion
community. Consequently, we believe that efficiently determining both parame-
ters and fusion combinations is the general domain of our future work. Another
route we would like to explore is testing these techniques on other tasks and
with datasets from different domains, in order to assert its effectiveness.
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