Akihiro Yamamoto
Takuya Kida

Takeaki Uno

Tetsuji Kuboyama (Eds.)

LNAI 10558

Discovery Science

20th International Conference, DS 2017
Kyoto, Japan, October 15-17, 2017
Proceedings

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

10558

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Akihiro Yamamoto - Takuya Kida
Takeaki Uno - Tetsuji Kuboyama (Eds.)

Discovery Science

20th International Conference, DS 2017
Kyoto, Japan, October 15-17, 2017
Proceedings

@ Springer

Editors

Akihiro Yamamoto Takeaki Uno

Kyoto University National Institute of Informatics
Kyoto Tokyo

Japan Japan

Takuya Kida Tetsuji Kuboyama
Hokkaido University Gakushuin University
Sapporo Tokyo

Japan Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence

ISBN 978-3-319-67785-9 ISBN 978-3-319-67786-6 (eBook)

DOI 10.1007/978-3-319-67786-6
Library of Congress Control Number: 2017953423
LNCS Sublibrary: SL7 — Atrtificial Intelligence

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 20th International Conference on Discovery Science (DS 2017) was held in Kyoto,
Japan, during October 15-17, 2017. As in previous years, the conference was
co-located with the International Conference on Algorithmic Learning Theory (ALT
2017), which was already in its 28th year. First held in 2001, ALT/DS has been one
of the longest running series of co-located events in computer science. The unique
combination of recent advances in the development and analysis of methods for
automatic scientific knowledge discovery, machine learning, intelligent data analysis,
and their application to knowledge discovery on the one hand, and theoretical and
algorithmic advances in machine learning on the other hand, makes every instance of
this joint event unique and attractive.

This volume contains all the papers presented at the 20th International Conference
on Discovery Science, while the papers of the 28th International Conference on
Algorithmic Learning Theory are published as a volume in the JMLR Workshop and
Conference Proceedings series. The 20th Discovery Science conference received 42
international submissions. Each submission was reviewed by at least three Program
Committee members. The co-chairs eventually decided to accept 18 papers as regular
papers and 6 papers as short papers. A special issue on the topics of Discovery Science
has also been scheduled for the Springer journal Machine Learning, thus offering the
option of publishing in this prestigious journal an extended and reworked version of
papers presented at Discovery Science 2017.

The program included 4 invited talks. In the joint DS/ALT invited talk, Masashi
Sugiyama from RIKEN, the University of Tokyo, gave a presentation on “Machine
Learning from Weak Supervision — Towards Accurate Classification with Low
Labeling Costs.”The DS invited talk by Koji Tsuda from the University of Tokyo was
on “Automatic Design of Functional Molecules and Materials.” DS participants also
had the opportunity to attend the ALT invited talks, which were given by Adam Kalai
from Microsoft Reasearch New England and by Alexander Rakhlin from the University
of Pennsylvania. Abstracts of the joint invited talk and the DS invited talk are included
in this volume. The program also included one special session organized by Takeaki
Uno from National Institute of Informatics, Japan.

We would like to thank all the authors of submitted papers, the Program Committee
members, and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the invited speakers. We are grateful to Steve Hanneke and Lev
Reyzin for ensuring the smooth coordination with ALT. We are grateful to the people
behind EasyChair, too. It was an essential tool in the paper submission and evaluation
process, as well as in the preparation of the Springer proceedings. We are also grateful
to Springer for their continuing support of Discovery Science and for publishing the
conference proceedings.

VI Preface

We would like to thank the local arrangement chairs, Yasuaki Kobayashi and
Matthew de Brecht from Kyoto University, and all their team. Also, we wish to express
our thanks to Kaori Deguchi for helping us with various affairs. All of them worked
very hard to make both conferences a great success.

Finally, we gratefully appreciate the financial support of JST CREST (Data Parti-
clization for Next Generation Data Mining).

August 2017 Akihiro Yamamoto
Takuya Kida

Tetsuji Kuboyama

Takeaki Uno

Organization

Program Committee

Annalisa Appice
Hiroki Arimura
Yukino Baba
Hideo Bannai
Michelangelo Ceci
Bruno Cremilleux
Ivica Dimitrovski
Saso Dzeroski
Floriana Esposito
Daiji Fukagawa
Johannes Fiirnkranz
Mohamed Gaber
Jodo Gama
Dragan Gamberger
Kouichi Hirata
Jaakko Hollmén
Kimihito Ito
Alipio M. Jorge
Takuya Kida
Dragi Kocev
Stefan Kramer
Tetsuji Kuboyama
Nada Lavrac
Philippe Lenca
Gjorgji Madjarov
Donato Malerba
Giuseppe Manco
Elio Masciari
Robert Mercer
Tetsuhiro Miyahara
Anna Monreale
Masaaki Nishino
Pance Panov

Dino Pedreschi
Ruggero G. Pensa
Bernhard Pfahringer
Gianvito Pio

Jan Ramon

University of Bari Aldo Moro, Italy

Hokkaido University, Japan

Kyoto University, Japan

Kyushu University, Japan

University of Bari Aldo Moro, Italy

Université de Caen, France

Ss. Cyril and Methodius University in Skopje, Macedonia
Jozef Stefan Institute, Slovenia

University of Bari Aldo Moro, Italy

Doshisha University, Japan

TU Darmstadt, Germany

Birmingham City University, UK

INESC TEC, University of Porto, Portugal
Rudjer Boskovic Institute, Croatia

Kyushu Institute of Technology, Japan

Aalto University School of Science, Finland
Hokkaido University, Japan

FCUP, Univ. do Porto/LIAAD, INESC Porto L.A., Portugal
Hokkaido University, Japan

Jozef Stefan Institute, Slovenia

Johannes Gutenberg University Mainz, Germany
Gakushuin University, Japan

Jozef Stefan Institute, Slovenia

IMT Atlantique, France

Ss. Cyril and Methodius University in Skopje, Macedonia
University of Bari Aldo Moro, Italy

ICAR-CNR, Italy

ICAR-CNR, Italy

The University of Western Ontario, Canada
Hiroshima City University, Japan

University of Pisa, Italy

NTT Communication Science Laboratories, Japan
Jozef Stefan Institute, Slovenia

University of Pisa, Italy

University of Turin, Italy

University of Waikato, New Zealand

University of Bari Aldo Moro, Italy

Inria, France

VI Organization

Chedy Raissi
Chiara Renso
Kazumi Saito
Hiroshi Sakamoto
Marina Sokolova

Jerzy Stefanowski
Mahito Sugiyama
Yasuo Tabei
Takeaki Uno
Herna Viktor
Ryo Yoshinaka
Blaz Zupan
Tomislav Smuc

Inria, France

ISTI-CNR, Italy

Univesity of Shizuoka, Japan

Kyushu Institute of Technology, Japan

University of Ottawa and Institute for Big Data Analytics,
Canada

Poznan University of Technology, Poland

National Institute of Informatics, Japan

RIKEN Center for Advanced Intelligence Project, Japan

National Institute of Informatics, Japan

University of Ottawa, Canada

Tohoku University, Japan

University of Ljubljana, Slovenia

Rudjer Boskovic Institute, Croatia

Additional Reviewers

Bioglio, Livio
Gerow, Aaron
Haidar, Diana
Jafer, Yasser
Mignone, Paolo

Petkovié¢, Matej
Sousa Lima, Wesllen
Sousa, Ricardo

Zopf, Markus

Abstracts of Invited Talks

Machine Learning from Weak Supervision —
Towards Accurate Classification
with Low Labeling Costs

Masashi Sugiyama

! RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
2 The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi,
Chiba 277-8561, Japan
sugi@k.u-tokyo.ac.Jjp

Abstract. Machine learning from big training data is achieving great success.
However, there are various application domains that prohibit the use of massive
labeled data. In this talk, I will introduce our recent advances in classification
from weak supervision, including classification from two sets of unlabeled data,
classification from positive and unlabeled data, a novel approach to
semi-supervised classification, and classification from complementary labels.
Finally, I will briefly introduce the activities of RIKEN Center for Advanced
Intelligence Project.

Automatic Design of Functional Molecules
and Materials

Koji Tsuda

Graduate School of Frontier Sciences, University of Tokyo, 5-1-5
Kashiwa-no-ha, Kashiwa-shi, Chiba-ken 277-8561, Japan
tsudalk.u-tokyo.ac.jp

Abstract. The scientific process of discovering new knowledge is often char-
acterized as search from a space of candidates, and machine learning can
accelerate the search by properly modeling the data and suggesting which
candidates to apply experiments on. In many cases, experiments can be sub-
stituted by first principles calculation. I review two basic machine learning
techniques called Bayesian optimization and Monte Carlo tree search. I also
show successful case studies including Si-Ge nanostructure design, optimization
of grain boundary structures and discovery of low-thermal-conductivity com-
pounds from a database.

Contents

Online Learning

Context-Based Abrupt Change Detection and Adaptation
for Categorical Data Streams 3
Sarah D Ettorre, Herna L. Viktor, and Eric Paquet

A New Adaptive Learning Algorithm and Its Application
to Online Malware Detection, 18
Ngoc Anh Huynh, Wee Keong Ng, and Kanishka Ariyapala

Real-Time Validation of Retail Gasoline Prices. 33
Mondelle Simeon and Howard J. Hamilton

Regression

General Meta-Model Framework for Surrogate-Based Numerical
Optimization.t e 51
Ziga Luksic, Jovan Tanevski, Saso DZeroski, and Ljupco Todorovski

Evaluation of Different Heuristics for Accommodating Asymmetric
Loss Functions in Regression 67
Andrei Tolstikov, Frederik Janssen, and Johannes Fiirnkranz

Differentially Private Empirical Risk Minimization
with Input Perturbation 82
Kazuto Fukuchi, Quang Khai Tran, and Jun Sakuma

Label Classification

On a New Competence Measure Applied to the Dynamic Selection
of Classifiers Ensemble 93
Marek Kurzynski and Pawel Trajdos

Multi-label Classification Using Random Label Subset Selections. 108
Martin Breskvar, Dragi Kocev, and Saso DzZeroski

Option Predictive Clustering Trees for Hierarchical
Multi-label Classification 116
Tomaz Stepisnik Perdih, Aljaz Osojnik, Saso Dzeroski, and Dragi Kocev

http://dx.doi.org/10.1007/978-3-319-67786-6_1
http://dx.doi.org/10.1007/978-3-319-67786-6_1
http://dx.doi.org/10.1007/978-3-319-67786-6_2
http://dx.doi.org/10.1007/978-3-319-67786-6_2
http://dx.doi.org/10.1007/978-3-319-67786-6_3
http://dx.doi.org/10.1007/978-3-319-67786-6_4
http://dx.doi.org/10.1007/978-3-319-67786-6_4
http://dx.doi.org/10.1007/978-3-319-67786-6_5
http://dx.doi.org/10.1007/978-3-319-67786-6_5
http://dx.doi.org/10.1007/978-3-319-67786-6_6
http://dx.doi.org/10.1007/978-3-319-67786-6_6
http://dx.doi.org/10.1007/978-3-319-67786-6_7
http://dx.doi.org/10.1007/978-3-319-67786-6_7
http://dx.doi.org/10.1007/978-3-319-67786-6_8
http://dx.doi.org/10.1007/978-3-319-67786-6_9
http://dx.doi.org/10.1007/978-3-319-67786-6_9

X1V Contents

Deep Learning

Re-training Deep Neural Networks to Facilitate Boolean

Concept EXtraction ot

Camila Gonzalez, Eneldo Loza Mencia, and Johannes Fiirnkranz

An In-Depth Experimental Comparison of RNTNs and CNNs

for Sentence Modeling.

Zahra Ahmadi, Marcin Skowron, Aleksandrs Stier, and Stefan Kramer

Feature Selection

Improving Classification Accuracy by Means of the Sliding Window

Method in Consistency-Based Feature Selection

Adrian Pino Angulo and Kilho Shin

Feature Ranking for Multi-target Regression with Tree Ensemble Methods. . .

Matej Petkovi¢, Saso Dzeroski, and Dragi Kocev

Recommendation System

Recommending Collaborative Filtering Algorithms

Using Subsampling Landmarkers

Tiago Cunha, Carlos Soares, and André C.P.L.F. de Carvalho

Community Detection

Recursive Extraction of Modular Structure from Layered Neural Networks

Using Variational Bayes Method.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino

Discovering Hidden Knowledge in Carbon Emissions Data:

A Multilayer Network Approach.

Kartikeya Bhardwaj, HingOn Miu, and Radu Marculescu

Topic Extraction on Twitter Considering Author’s Role Based

on Bipartite Networks

Takako Hashimoto, Tetsuji Kuboyama, Hiroshi Okamoto,
and Kilho Shin

Pattern Mining

Mining Strongly Closed Itemsets from Data Streams.

Daniel Trabold and Tamas Horvath

Extracting Mutually Dependent Multisets.

Natsuki Kiyota, Sho Shimamura, and Kouichi Hirata

http://dx.doi.org/10.1007/978-3-319-67786-6_10
http://dx.doi.org/10.1007/978-3-319-67786-6_10
http://dx.doi.org/10.1007/978-3-319-67786-6_11
http://dx.doi.org/10.1007/978-3-319-67786-6_11
http://dx.doi.org/10.1007/978-3-319-67786-6_12
http://dx.doi.org/10.1007/978-3-319-67786-6_12
http://dx.doi.org/10.1007/978-3-319-67786-6_13
http://dx.doi.org/10.1007/978-3-319-67786-6_14
http://dx.doi.org/10.1007/978-3-319-67786-6_14
http://dx.doi.org/10.1007/978-3-319-67786-6_15
http://dx.doi.org/10.1007/978-3-319-67786-6_15
http://dx.doi.org/10.1007/978-3-319-67786-6_16
http://dx.doi.org/10.1007/978-3-319-67786-6_16
http://dx.doi.org/10.1007/978-3-319-67786-6_17
http://dx.doi.org/10.1007/978-3-319-67786-6_17
http://dx.doi.org/10.1007/978-3-319-67786-6_18
http://dx.doi.org/10.1007/978-3-319-67786-6_19

Contents

Bioinformatics

LOCANDA: Exploiting Causality in the Reconstruction of Gene

Regulatory Networks.

Gianvito Pio, Michelangelo Ceci, Francesca Prisciandaro,
and Donato Malerba

Discovery of Salivary Gland Tumors’ Biomarkers via Co-Regularized

Sparse-Group Lasso.

Sultan Imangaliyev, Johannes H. Matse, Jan G.M. Bolscher,
Ruud H. Brakenhoff, David T.W. Wong, Elisabeth Bloemena,
Enno C.I. Veerman, and Evgeni Levin

Knowledge Discovery

Measuring the Inspiration Rate of Topics in Bibliographic Networks.

Livio Bioglio, Valentina Rho, and Ruggero G. Pensa

Discovering Minority Sub-clusters and Local Difficulty Factors

from Imbalanced Data

Mateusz Lango, Dariusz Brzezinski, Sebastian Firlik,
and Jerzy Stefanowski

Fusion Techniques for Named Entity Recognition and Word Sense

Induction and Disambiguation

Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, and Sabine Loudcher

Author Index e

XV

http://dx.doi.org/10.1007/978-3-319-67786-6_20
http://dx.doi.org/10.1007/978-3-319-67786-6_20
http://dx.doi.org/10.1007/978-3-319-67786-6_21
http://dx.doi.org/10.1007/978-3-319-67786-6_21
http://dx.doi.org/10.1007/978-3-319-67786-6_22
http://dx.doi.org/10.1007/978-3-319-67786-6_23
http://dx.doi.org/10.1007/978-3-319-67786-6_23
http://dx.doi.org/10.1007/978-3-319-67786-6_24
http://dx.doi.org/10.1007/978-3-319-67786-6_24

Online Learning

Context-Based Abrupt Change Detection
and Adaptation for Categorical Data Streams

Sarah D’Ettorre’ ™), Herna L. Viktor', and Eric Paquet!-?

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa K1N 6N5, Canada
{sdett026,hviktor}C@uottawa.ca, eric.paquet@nrc-cnrc.gc.ca
2 National Research Council of Canada, Ottawa, ON K1A 0R6, Canada

Abstract. The identification of changes in data distributions associ-
ated with data streams is critical in understanding the mechanics of
data generating processes and ensuring that data models remain rep-
resentative through time. To this end, concept drift detection methods
often utilize statistical techniques that take numerical data as input.
However, many applications produce data streams containing categori-
cal attributes, where numerical statistical methods are not applicable.
In this setting, common solutions use error monitoring, assuming that
fluctuations in the error measures of a learning system correspond to
concept drift. Context-based concept drift detection techniques for cat-
egorical streams, which observe changes in the actual data distribution,
have received limited attention. Such context-based change detection is
arguably more informative as it is data-driven and directly applicable
in an unsupervised setting. This paper introduces a novel context-based
algorithm for categorical data, namely FG-CDCStream. In this unsu-
pervised method, multiple drift detection tracks are maintained and their
votes are combined in order to determine whether a real change has
occurred. In this way, change detections are rapid and accurate, while the
number of false alarms remains low. Our experimental evaluation against
synthetic data streams shows that FG-CDCStream outperforms the
state-of-the art. Our analysis further indicates that FG-CDCStream
produces highly accurate and representative post-change models.

Keywords: Data streams + Categorical data - Concept drift - Context-
based change detection + Unsupervised learning - Ensembles - Online
learning

1 Introduction

Data streams, that are characterized by a continuous flow of high speed data,
require learning methods that incrementally update models as new data become
available. Further, such algorithms should be able to adapt appropriately as
underlying concepts in the data evolve over time. Explicit detection of this evo-
lution, known as concept drift, is beneficial in ensuring that models remain
© Springer International Publishing AG 2017

A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 3-17, 2017.
DOI: 10.1007/978-3-319-67786-6_1

4 S. D’Ettorre et al.

accurate and provide insights into the mechanics of the data generating process
[6]. Thus, concept drift detection has been of continuous interest to machine
learning researchers.

The majority of concept drift detection algorithms utilize statistical meth-
ods requiring numerical input [5]. However, real world data attributes are often
categorical [9]. For example, point-of-sales streams include categorical attributes
such as colour {red, green, blue} or size {small, medium, large, x-large}. Environ-
mental data attributes might contain categorical attributes like predators {eagle,
owl, fox} or land cover {desert, forest, tundra}. This prevalence of categorical
data poses a challenge for change detection researchers. Currently, the majority
of research on change detection in categorical data streams utilize error changes
in the learning system as an indicator of concept drift [9]. While these tech-
niques have proven to be reasonably successful, it remains that fluctuations in
error measures cannot be definitively attributed to concept drift alone. Relatively
few studies in the literature have examined context-based change detection in
categorical data streams [9]. In this case, concept drift is detected when changes
in the actual data distribution are observed, providing more precise information
about particular changes. This opens the door to unsupervised change detection
[9], a non-trivial task [4]. Since class information is not always available, facili-
tating unsupervised change detection broadens the spectrum of categorical data
which may be analyzed.

To this end, this paper focuses on improving the quality of knowledge extrac-
tion from evolving streams of categorical data through the use of context-based
change detection and adaptation strategies. This paper introduced the FG-
CDCStream technique, which extends the CDCStream algorithm [9], in order
to rapidly detect abrupt changes, using a fine-grained drift detection technique.
The FG-CDCStream method employs a voting-based algorithm in order to
track the evolution of the data as the stream evolves. Adaptation is improved
by ensuring that a post-change classifier is trained on a reduced batch of highly
relevant data. This ensures that the evolving classification models are more rep-
resentative of the post-change concept. Our experimental evaluation confirms
that our algorithm is highly suitable for abrupt change detection.

This paper is organized as follows. Section 2 introduces background work.
In Sect. 3, we detail the FG-CDCStream algorithm. Section4 discusses our
experimental evaluation and results. Finally, Sect. 5 presents our conclusion and
highlights future work.

2 Background

This section discusses related works in terms of measuring the similarity of cat-
egorical data and context-based drift detection.

2.1 DILCA Context-Based Similarity Measure

Categorical variables are abundant in real-world data and this fact has lead to
a large and diverse collection of proposed distance measures spanning various

Change Detection and Adaptation for Categorical Data Streams 5

fields of study, many of which arising in the context of categorical data clus-
tering. Similarity measures can be context-free or context-sensitive, supervised
or unsupervised. Context-free measures do not depend on relationships between
instances while context-sensitive measures do. Based on [4,5], distance measures
for categorical values may be classified into six groups that are not necessarily
mutually exclusive: simple matching approaches, frequency-based approaches,
learning approaches, co-occurrence approaches, probabilistic approaches, infor-
mation theoretic approaches and rough set theory approaches.

DILCA is a recent state-of-the-art similarity measure that is purely context-
based, that makes no assumptions about data distribution and that does not
depend on heuristics to determine inter-attribute relationships [8]. These prop-
erties make DILCA attractive as it minimizes bias and can be applied to a great
range of data sets with a wide range of characteristics. The DILCA similarity
measure is computed in two steps, namely context selection and distance com-
putation. Informative context selection is non-trivial, especially for data sets
with many attributes. Consider the following set of m categorical attributes:
F = {X1,X2,...,Xm}. The context of the target attribute Y is defined as a
subset of the remaining attributes: context(Y) C F/Y. DILCA uses the Sym-
metric Uncertainty (SU) feature selection method [10] to select a relevant, non-
redundant set of attributes which are correlated to the target concept in the
context.

IG(Y; X) (1)
H(Y)+ H(X)

DILCA selects a set of attributes with high SU with respect to the target Y.
A strength of the SU measure, as defined in Eq. 1, is that it is not biased towards
features of greater cardinality and is normalized on [0, 1]. Once the context has
been extracted, the distances between attribute values of the target attribute
are computed using Eq. 2:

SU(Y, X) =2

Yxceontenty) Zurex (Pyilzr) — Ply;|zr))?
dyios) = ¢ Xeconteat(v) Zarex (Pyiln) — Plyslex)) -

EXecontea:t(Y) |X|

For each value of each context attribute, the Euclidean distance between
the conditional probabilities for both values of Y is computed and summed.
This value is then normalized by the total number of values in X. The pairwise
distances computation between each of the values of Y results in a symmetric
and hollow (where diagonal entries are all equal to 0) matrix M; =|Y| x |[Y].

2.2 CDCStream Categorical Drift Detector

The CDCStream algorithm, as created by [9], utilizes the above-mentioned
DILCA method [9] in order to detect drift in categorical streams, as follows.
Consider an infinite data stream S where each attribute X is categorical.
A buffer is used to segment the stream into batches: S = {S1,Ss,..., Sn,...}.
(Note that, if the class information is present in the stream, it is removed during

6 S. D’Ettorre et al.

segmentation, thus creating an unsupervised change detection context.) The set
of distance matrices M = {My, Ms, ..., M} produced by DILCA is aggregated
to numerically summarize the data distribution of each batch in a single statistic
using Eq.3. The resulting statistic, in [0, 1], represents both intra- and inter-
attribute distributions of a batch.

2*\/2‘.fl‘2‘.’fl.' Mx, (i, §)2
Z]\/j eM =0]77.+17 1 b
extractSummary(M) = l IT}',F“XL‘) 3)

Data are analyzed in batches, by using a dynamic sliding window method.
The historical window L consists of all batch summaries, except the most recent
batch which constitutes the current window. The dynamic window grows and
shrinks appropriately based on the change status, by forgetting the historical
window and/or absorbing the most recent batch. In periods of stability, the
historical window continues to grow summary by summary. When a change is
detected, abrupt forgetting is employed and the historical window is dropped
and replaced with the current window.

As noted in [9], a two-tailed statistical test, which does not assume a specific
data distribution is required for context-based, unsupervised change detection.
To this end, Chebychev’s inequality was adopted. Formally, Chebychev’s Inequal-
ity states that if X is a random variable with mean pux and standard deviation
ox, for any positive real number k:

Pr(X = x| 2 hox) < 7 (@
In this equation, % is the maximum number of the values that may be beyond
k standard deviations from the mean. CDCStream utilizes this property in
order to warn for, and subsequently detect, changes in the distributions. Values
of k representing warning and change thresholds, are denoted by k, and k.,
respectively. These values were empirically set to k,, = 2 and k. = 3. That is, in
order for a warning to be flagged, at least 75% of the values in the distribution
must be within two standard deviations of the mean. For a change to be flagged,
at least 88.89 % of the values must be within three standard deviations of the
mean. The CDCStream adaptation method employs global model replacement.
When a warning is detected (k,), a new background classifier is created and
updated alongside the current working model. Once a change is detected (k.),
the current model is entirely replaced with the background model.

Limitations of CDCStream for Abrupt Drift Detection. A recent study
showed that CDCStream performs competitively in terms of accuracy and
adaptability, when compared to two state-of-the art algorithms with similar goals
but different structures [9]. In this prior study, the main focus was on detect-
ing gradual drifts. CDCStream does, however, have a number of limitations,
notably when aiming to address abrupt drift. Firstly, Chebychev’s Inequality is
conservative, leading to high detection delay, due to the fact that the grain of

Change Detection and Adaptation for Categorical Data Streams 7

the bound must be quite coarse. Secondly, aggregation into a single summary
statistic may have a diluting effect, depending on factors such as change mag-
nitude, duration and location, which may result in increased missed detections
and detection delays. In an abrupt drift setting, a main goal is to offer a fast
response to change. Lastly, temporal bounds on the post-change replacement
classifier training data are unnecessarily broad, potentially leading to warnings
caused by noise or minor fluctuations. This broadness could severely effect any
post-change classifications. Collectively, these limitations have the greatest effect
on the detection of abrupt concept drifts. An increased detection delay due to
the coarseness of Chebychev’s inequality or aggregation dilution would be most
detrimental in the case of abrupt drift. Since the distributions change so rapidly,
predictions based on the previous distribution would be quite erroneous. This is
more so than in the gradual change case, where the stream still contains some
instances of the previous distribution. Aggregation dilution would also be more
likely to miss changes altogether if the transition period was shorter. Finally,
introducing a new classifier that remains partially representative of the previ-
ous distribution, is unlikely to be effective in classifying the data of an abrupt
change. In the next section, we present our FG-CDCStream algorithm that
extends CDCStream to address the abrupt drift scenario.

3 FG-CDCStream Algorithm

The aims of the FG-CDCStream approach, as depicted in Algorithm 1, are
to improve detection delay and reduce missed detections of the batch-based sce-
nario and its associated aggregation. Ergo, FG-CDCStream overlays a series of
batches, or tracks, each shifted by one instance from the previous track in order
to simulate an instance by instance analysis. A detailed technical explanation
follows.

Our FG-CDCStream technique uses a dynamic list L of ¢ contiguous
batches S of fixed size n to detect a change between the current batch and
the previous batches remaining in the sliding window. To solve the grain size
problem, we employ overlapped dynamic lists deemed tracks. More formally,
FG-CDCStream uses a series of n tracks, each overlapping the previous track’s
most recent n — 1 instances. This allows a change test to be performed as each
instance is received, while incorporating the use of batches. Note that there is a
single initial delay of 2n before the first two batches may be compared.

Figure 1 displays the batch and track construction process as instances arrive.
For simplicity, this example shows only the structure of batches and tracks and
does not include responses to concept drift. Let us assume a batch size of three
instances (a batch size much too small in reality, but sufficient to understand
track construction). Until the first three instances are collected, no batches exist.
Once the third instance arrives, the first batch, represented by the purple rec-
tangle, is complete. From this point on, a batch is completed upon the arrival of
a new instance. This is demonstrated with the creation of the blue and the green
batches. Upon the arrival of the sixth instance (2n), a second batch is added to

8 S. D’Ettorre et al.

Algorithm 1. FG-CDCStream

Input: S: stream of instances, W: window size

1: Initialize trackPointer = 0, k = 0, kw = 2, k. = 3, votes = 0, votes, = 1,
votes. = 15, inst = null

2: for count =0 — W do
3: tracks.add(new change detector)
4: while hasMorelInstances(S) do
5. inst = S.nextInstance
6: buffer.add(new batch container)
7 for count =0 — buf fer.size do
8: buf fer.get(count).add(inst)
9: if buffer.size == W then
10: k = tracks.get(track Pointer).get KV alue(bu f fer.get(0))
11: if kK > k. then
12: votes + +
13: if votes == votes,, then
14: warningPeriod = true; initiate BackgroundClassifier(buf fer.get(0))
15: if votes == votes. then
16: changePeriod = true; warningPeriod = false
17: replace classifier with background classifier; nullify background classifier
18: else if k£ < k,, then
19: votes = 0
20: if warningPeriod then
21: warningPeriod = false; nullify background classifier
22: if changePeriod then
23: changePeriod = false

24: updateClassifier(inst); update BackgroundClassifier(inst)
25: if buf fer.size == W then

26: buf fer.remove(0) ;

27: update track pointer

the original purple track. Note that the track with the newest batch is shown at
the front and the least recently updated track in the rear. This process continues
until the end of the stream (or to infinity).

It should be noted that, in reality, instances are stored explicitly only until a
batch is complete. A buffer with a container for each track stores instances until
n have been collected. When a batch is complete, it is input to the corresponding
track’s change detector object, which maintains summary statistics, as described
in Eq. 3. That track’s buffer is then cleared and the main algorithm begins build-
ing its next batch upon the arrival of the next instance. The appearance of the
next instance fills a batch belonging to the next track and the process continues.

The algorithm requires a data stream and a user-defined window size para-
meter. An integer variable trackPointer keeps an account of which track the
current batch (the batch completed by the current instance) belongs to. The k
variable refers to the value calculated by Chebychev’s inequality, which is ini-
tially zero. The votes variable stores the accumulated votes of the tracks seen so

Change Detection and Adaptation for Categorical Data Streams 9

\
\
I
\
[I
I
l
I

'O g g1 i i i g1

Fig. 1. Track and batch building visualization

far. As each instance arrives, a buffer, which is a list of instance containers (or
batches), adds a new batch object to the list. A copy of the current instance is
then added to each of the existing batches. Note that upon the arrival of the first
instance, only one batch container exists. When the second instance arrives, a
new batch is added to the buffer and that instance is added to both batches. At
this point, the first batch contains the first and second instances, and the sec-
ond batch contains only the second instance. This produces contiguous batches
that contain data that are shifted by one instance. This process continues until
the buffer contains n batches. At this point the first batch is complete, i.e. it
contains n instances. The complete batch is processed, as described below. After
the batch is processed and summarized, it is removed from the buffer.

To process a completed batch, the batch is sent to the change detector asso-
ciated with the current track. The change detector returns the value of k for this
batch, as calculated using Chebychev’s Inequality. Recall that, in CDCStream,
if this value is equal to two (k,,), a warning occurs. Similarly, a value of three
(k.) indicates that a change is detected by this track. Otherwise, a value of zero
is returned.

The FG-CDCStream algorithm differs from CDCStream in two aspects.
Firstly, it does not immediately flag a warning when a track encounters k = k,, =
2, but only maintains this statistic. Secondly, a value of k = k. = 3 initiates
a warning period, rather than reporting a change, if this is the first change
detection in a series. This launches the creation of the background classifier
which is built from the current batch. Subsequent reports of k. in this warning
period increment the votes count. Reported values of k,, are permitted within a
warning period, but do not terminate it nor increment the vote count. If a value
of less than k,, is reported by a track during the warning period, the warning
period is terminated, the votes count is reset to zero and the background classifier
is removed. This initiates a static period, until the next warning occurs.

If at least votes. tracks confirm a value of k., the system acknowledges the
change. (It follows that the value of the votes. parameter is domain-dependent
and determined through experimentation.) A confirmed change triggers adapta-
tion by replacing the current classifier with the background classifier. The change
period remains, whereby no new warnings or changes may occur, until a value

10 S. D’Ettorre et al.

of k < 2 is reported, initiating the next static period. A fall in the value of k sig-
nifies that the current change is fully integrated into the system, i.e. the change
detectors have forgotten the past distribution and the current model represents
the current distribution.

Whether or not adaptation occurs, a forgetting mechanism is applied to any
change detector that produces a value of k.. If change is not confirmed, the orig-
inal change detection was likely incorrect and thus forgetting the corresponding
information for that specific track is assumed to be reasonable. This effectively
resets change detectors that are not performing well and permits outlier infor-
mation to be discarded.

Forset

Formet

Fig. 2. Forgetting mechanism example

Figure2 illustrates the system’s forgetting mechanics. Firstly, the green
track’s most recent batch detects a change (represented by the exclamation mark
in the red triangle). It then forgets all of its past batches retaining only the cur-
rent one. The next batch to arrive, belonging to the purple track, also detects
the change and forgets its past batches. The next batch, belonging to the blue
track does not detect the change so it forgets nothing. The next green batch also
does not detect change, so track building (or remembering) proceeds. The same
is true for the next purple batch. This process occurs regardless of the state
of the system: in-control, warning or out-of-control. In this example, the green
and purple tracks may have detected a change due to outlier interference. It is
beneficial for these two tracks to forget this information. On the other hand,
the blue track, whose summary statistics may not have been as affected by the
outlier(s) due the shifted sample, would retains this information.

4 Experimentation

Experimentation was conducted using the MOA framework for data stream
mining [1], an open source software closely related to its offline counterpart
WEKA [7]. We used both synthetic and real data streams in our evaluation.
Due to space restrictions, we are only reporting the results against the syn-
thetic data streams. Five of MOA’s synthetic data set generators, summarized

Change Detection and Adaptation for Categorical Data Streams 11

in Table 1, were used in various configurations to produce the synthetic data.
Varying degrees of noise were tested using synthetic data in order to test and
compare the algorithms’ robustness to noise. Each synthetic data set was injected
with 0, 1, 2, 3, 4, 5, 10, 15, 20 and 25% noise using the WEKA “addNoise” filter.
This noise was applied to every attribute but the class attribute, since CDC-
Stream and FG-CDCStream are unsupervised change detectors. Experimen-
tation was performed on a machine with an Intel i7-4770 processor, 16GB of
memory, using the Windows 10 Pro x64 Operating System. The original CDC-
Stream study [9] tested its strategy using only the Naive Bayes classifier. For a
more comprehensive understanding of the behaviour of both CDCStream and
FG-CDCStream, we employed the Naive Bayes classifier, the Hoeffding tree
incremental learning, and the K-NN lazy learning strategy. Each of the classifiers
used for experimentation are available in MIOA..

Four measures [2] were used to evaluate change detection strategies, as fol-
lows. The mean time between false alarms (MTFA) describes the average dis-
tance between changes detected by the detector that do not correspond to true
changes in the data. It follows that a high MTFA value is desirable. The mean
time to detection (MTD) describes how quickly the change detector detects
a true change and a low MTD value is sought. Further, the missed detection
rate (MDR) gives the probability that the change detector will not detect a
true change when it occurs and it follows that a low value is preferred. Finally,
the calculated mean time ratio (MTR) describes the compromise between fast
detection and false alarms, as shown in the equation, and a higher MTR value
is required.

MTFA

MTD
These performance measures allow for a detailed examination of a change detec-
tor’s effectiveness in detecting true changes quickly while remaining robust to
noise and issuing few false alarms, thus providing researchers with a way to
directly assess a change detector’s performance [2].

A more indirect way of evaluating change detection methods, and the most
common in the literature, is the measuring of accuracy-type performance mea-
sures. We considered the classification accuracy, x and k™ accuracy-type mea-
sures focusing on the k™ results due to their comprehensiveness. The x statistic
considers chance agreements, and the 1 statistic [3] considers the temporal
dependence often present in data streams.(Interested readers are referred to [3]
for a detailed discussion on the evaluation of data stream classification algo-
rithms.) We considered the progression of accuracy-type statistics throughout
the stream, not only the final values, in order to gain more insights into change
detector performance. For instance, the steepness of the drop in accuracy-type
performance at a change point, and the swiftness of recovery provides more
information than a single value representative of an overall accuracy.

Abrupt changes were injected and streams of one, four and seven changes
were studied in various orders. Different stream sample sizes, change widths, pat-
terns and distances between changes (as well as magnitudes and orderings) were
studied on account of comprehensiveness. For single change scenarios, changes

MTR = (1— MDR) (5)

12 S. D’Ettorre et al.

Table 1. Synthetic data (basic characteristics)

Dataset Classes | Features | Categorical | Numerical
LED 10 24 24 0

Stagger 2 3 3 0

Mixed 2 4 2 2

Agrawal 2 9 3 6
ConceptDriftStream | Varies | Varies | Varies Varies

were injected half way through the stream in order to observe system behav-
iour well before and well after the change. For multiple abrupt changes, four
different distances between changes were studied, namely 500, 1000, 2500 and
5000 instances. This was done in order to assess the change detectors’ abilities
to detect changes in succession and to compare recovery times.

4.1 Results

Table 2 shows the average performance of the classifiers in abrupt drift sce-
narios. The table shows that the Hoeffding Tree incremental learner performs
the best, overall, in all cases. Further, the FG-CDCStream algorithm gener-
ally outperforms CDCStream. The greater gap between the performance in
Hoeffding Tree and Naive Bayes change detectors in CDCStream compared
to FG-CDCStream, is likely a consequence of the Hoeffding Tree’s superior
ability to conform to streaming data naturally, through data acquisition and
without explicit concept drift detection.

Table 2. Average algorithm performance comparison by classifier

Change type | Algorithm | Classifier | kT K Accuracy (%)
Abrupt FG-CDC |HT 93.74 | 93.67 | 95.72
NB 91.42 |91.45|94.55
IbK 79.93 | 79.92 | 84.55
CDC HT 71.70 | 76.28 | 83.81
NB 57.58 160.05|71.65
IbK 60.33 | 69.34 | 80.72

Next, we focus on our experimental results against single abrupt change data
streams generated using the LED data set, as shown in Figs. 3 and 4. The value of
votes. was set to 15, by inspection. Note that the information for MTFA, MTD
and MTR performance measures are not available for CDCStream. This is
because CDCStream was unsuccessful in detecting changes in the case of the

Change Detection and Adaptation for Categorical Data Streams 13

MTFA MTD

mrGCoCsuesm
Cocsueam

350 sEEsEssEsssEEsSssEsEEESEEsSEEEEEESS

0123456789 10111213181516 1718 1920 21 22 23 24 25 26 27 28 29 3031 01234567 851011121316 151617 181920 21 2223 2425 26 27 28 29 30 31
Data set

MDR MTR
1 6460000000000 000000000000000 0000 3
SEEEEESEEEEEEEEEEEEEEEEEEEEEEEE

04 miGCocsueam mFGCOGSen

scocsieam + cocsirean

012345678 91011121314151617 1819202122 23 24 2526 27 28 29 30 31
Dataset oataset

Kt

R L S ey
* - *e o, tes*
‘e

012345672 9101112131015161718192021 2223225252728 2930 31
Data set

Fig. 3. A graphical comparison of performance statistics of FG-CDCStream and CDC-
Stream on 31 different data streams containing a single abrupt change each.

System Recovery Following Change of Various

Magnitudes
"
100 S
——1drifting attribute
20 |
| U ——2drifting attributes
x 0 RS —— 3 drifting attributes
40 I —— 4 drifting attributes
20 - ——Sarifting attributes
° L : ——6 drifting attributes
o 2000 4000 6000 8000 10000 7 drifting attributes

Number of Instances

Fig. 4. System recovery following a single abrupt change. The long dashed line indicates
the true change, the medium dashed line the approximate change detection and the
short dashed line the full classifier recovery.

single abrupt drifting data streams. In contrast, FG-CDCStream produces
good change detection statistics in the single abrupt change scenario. These
measures remain consistent across all of the streams. Specifically, our algorithm
issues false alarms at a low rate (with MTFA values around 1400) and success-
fully detects the true change in every case.

Next, we consider the multiple change scenario. Recall that multiple changes
were injected into streams at varying distances from one another, namely 500,
1000, 2500 and 5000 instances. The averaged results and the corresponding
trends may be observed in Fig. 5. Similar to the single abrupt change scenario,
CDCStream failed to detect concept drift in the multiple abrupt change sce-
nario. (Note that our evaluation confirms that its accuracy-type statistics are
equivalent to those of a regular incremental Naive Bayes classifier with no explicit
change detection functionality.) The xT graph in Fig.5 shows that as distance

14 S. D’Ettorre et al.

MTFA MTD

nnnnnnnn

...............

nnnnnnn

Fig.5. A graphical comparison of averaged performance statistics of FG-CDCStream
and CDCStream for multiple abrupt drifts and the associated trends as distance
between the changes increases.

between changes increases, the kT increases only slightly for CDCStream. This
slight increase is due entirely to the natural adaptation of the incremental clas-
sifier over time.

For the FG-CDCStream change detector, performance and distance
between changes generally correlate positively, as one would expect. If there is
a longer period between the changes, FG-CDCStream has more information
to detect and recover from change. This leads to a more streamlined representa-
tion of the current concept by growing its more accurate tracks’ windows of the
current concept and pruning the less accurate ones. A clear increase in MTFA
occurs with increasing distance between changes. This trend corresponds to the
systems’ ability to forget more of previous concepts (discard more of the less
accurate tracks) when more time is available between changes. When less time
is available, it is likely that more tracks still contain the information of previ-
ous concepts. Nevertheless, the FG-CDCStream is able to detect concept drift
fast, while maintaining a low false detection rate.

The effect of concept drift injection magnitudes on the T performance mea-
sure throughout the stream is shown in Fig. 6. The particular stream represented
was injected with seven changes from low to high change magnitudes. At shorter
distances, change points are less defined and the system has a more difficulty
to recover, especially from higher magnitude change. This is due to less reliable
change detection, as discussed above and therefore less representative models.

Finally, we turn our attention to the case when increasing levels of noise
were injected into streams with multiple abrupt drifts. The averaged results and

Change Detection and Adaptation for Categorical Data Streams 15

Low to High Magnitude Injections at Low to High Magnitude Injections at
Distances of 500 Instances Distances of 1000 Instances

w/ ||

Number of Instances Number of Instances

Low to High Magnitude Injections at Low to High Magnitude Injections at
Distances of 2500 Instances Distances of 5000 Instances

100 100
& &

L Lo
4 4

o 5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
Numberof Instances Number of Instances

Fig. 6. FG-CDCStream ™ performance on LED data stream with varying distances
between change injection points.

corresponding trends may be observed in Fig. 7. The results indicate that FG-
CDCStream is robust to noise, especially when multiple changes are present
and the distances between those changes are large. It follows that, the level of
acceptable noise would depend on the particular application. In general, though,
since a value greater than 15% noise in every attribute is a rather high noise ratio
to be occurring in real data, it is likely that FG-CDCStream would perform
satisfactorily on most streams containing abrupt drifts.

4.2 Discussion

The above-mentioned experimental results confirm that the FG-CDCStream
algorithm leads to improved abrupt change detection and adaptation.

Improving Abrupt Change Detection. FG-CDCStream was designed
with the intention of retaining the appealing qualities of CDCStream while
improving change detection elements where opportunities exist. It essentially
uses an ensemble of change detectors, each containing slightly shifted informa-
tion, that vote on whether or not a change has occurred. Only the change detec-
tors in close proximity in the forward direction to the detector that first flags
change submits a vote. This is appropriate, due to the temporal nature of the
data and the desire to detect a change quickly. The voting system decreases
the chances of completely losing information due to aggregation. This not only
increases the probability of detecting the change (reducing MDR) and detect-
ing it quickly (reducing MTD), but provides another advantage of decreasing
the probability of false detections (increasing MTFA). Since a vote is required
to confirm a change, slight variations in distribution that would flag a false
change in CDCStream would, in FG-CDCStream, be outvoted and there-
fore not flag a false change. This further increases the algorithm’s robustness.
In summary, FG-CDCStream overcomes the issues that CDCStream has
with regard to the batch scenario and dilution due to aggregation, improving its
change detection capabilities.

16 S. D’Ettorre et al.

MTFA MTD

Fig. 7. A graphical comparison of linear trends of the averaged performance statistics
of FG-CDCStream on six data sets containing a multiple abrupt changes at varying
distances from one another over increasing noise levels.

Improving Adaptation. A major limitation of CDCStream is its poten-
tial for a very unrepresentative replacement classifier during adaptation. This
is caused by the termination requirement of a warning period being only
a change period regardless of how closely or distantly that change period
occurs. This requirement potentially results in a background classifier that is
non-representative of the new distribution following a change detection. FG-
CDCStream reconciles this by permitting a warning period to terminate if
it is followed by either a static period or a change. In FG-CDCStream, if a
warning period is followed by a static period, the background classifier initiated
by the warning is ignored rather than continuing to build until the next change
occurs. The only background classifier that may be used as an actual replacement
classifier in FG-CDCStream is one that is initiated by a warning immediately
prior (i.e. there is no static period in between) a detected change. If, by chance, a
change occurs without a preceding warning, the replacement classifier is created
from the most recent batch only. This follows, since a change occurring absent
of any warning is likely to be abrupt, and therefore a short historical window is
appropriate.

5 Conclusion

This paper introduces the FG-CDCStream algorithm, an unsupervised and
context-based change detection algorithm for streaming categorical data. This

Change Detection and Adaptation for Categorical Data Streams 17

algorithm provides users with more precise information than that of learning-
based methods about the changing distributions in categorical data streams
and provides context-based change detection capabilities for categorical data,
previously undocumented in machine learning research. The experimental results
show that FG-CDCStream method is able to detect abrupt drift fast, while
maintaining both lower false alarm rates and lower detection misses.

This research would benefit from further exploration of the effects of differ-
ent types of data streams on algorithm performance. For instance, a comprehen-
sive study on real data might provide further insight into algorithm behaviour.
Additional research on no-change data streams would also be beneficial. Further,
studying how attribute cardinality effects the algorithm would be useful as well.

References

1. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601-1604 (2010)

2. Bifet, A., Read, J., Pfahringer, B., Holmes, G., Zliobaité, I.: CD-MOA: change
detection framework for massive online analysis. In: Tucker, A., Hoppner, F.,
Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 92-103. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41398-8_9

3. Bifet, A., Read, J., Zliobaité, I., Pfahringer, B., Holmes, G.: Pitfalls in benchmark-
ing data stream classification and how to avoid them. In: Blockeel, H., Kersting, K.,
Nijssen, S., Zelezny, F. (eds.) ECML PKDD 2013. LNCS, vol. 8188, pp. 465-479.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40988-2_30

4. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: a
comparative evaluation. In Proceedings of the 2008 STAM International Conference
on Data Mining, pp. 243-254 (2008)

5. Cao, F., Zhexue Huang, J., Liang, J.: Trend analysis of categorical data streams
with a concept change method. Inf. Sci. 276, 160-173 (2014)

6. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 1-37 (2014)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. 11(1), 10-18
(2009)

8. lenco, D., Pensa, R.G., Meo, R.L.: From context to distance: learning dissimilarity
for categorical data clustering. ACM Trans. Knowl. Discov. Data 6(1), 1-25 (2012)

9. Ienco, D., Bifet, A., Pfahringer, B., Poncelet, P.: Change detection in categorical
evolving data streams. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC 2014), pp. 274-279 (2014)

10. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: Proceedings of Twentieth International Conference on Machine
Learning, vol. 2, pp. 856-863 (2003)

http://dx.doi.org/10.1007/978-3-642-41398-8_9
http://dx.doi.org/10.1007/978-3-642-40988-2_30

A New Adaptive Learning Algorithm
and Its Application to Online Malware Detection

Ngoc Anh Huynh!2®) Wee Keong Ng'2, and Kanishka Ariyapala!?

! Nanyang Technological University, Singapore, Singapore
hu0001nh@e.ntu.edu.sg, wkn@pmail .ntu.edu.sg,
kanishka.ariyapala@math.unifi.it
2 University of Padua, Padua, Italy

Abstract. Nowadays, the number of new malware samples discovered
every day is in millions, which undermines the effectiveness of the tradi-
tional signature-based approach towards malware detection. To address
this problem, machine learning methods have become an attractive and
almost imperative solution. In most of the previous work, the application
of machine learning to this problem is batch learning. Due to its fixed
setting during the learning phase, batch learning often results in low
detection accuracy when encountered zero-day samples with obfuscated
appearance or unseen behavior. Therefore, in this paper, we propose the
FTRL-DP online algorithm to address the problem of malware detection
under concept drift when the behavior of malware changes over time.
The experimental results show that online learning outperforms batch
learning in all settings, either with or without retrainings.

Keywords: Malware detection - Batch learning + Online learning

1 Introduction

VirusTotal.com is an online service which analyzes files and urls for malicious
content such as virus, worm and trojan by leveraging on an array of 52 com-
mercial antivirus solutions for the detection of malicious signatures. On record,
VirusTotal receives and analyzes nearly 2 million files every day. However, only
a fraction of this amount (15%) can be identified as malicious by at least one
antivirus solution. Given the fact that it is fairly easy nowadays to obfuscate a
malware executable [23], it is rather reasonable to believe that a sheer number
of the unknown files are actually obfuscated malware samples. In principle, the
rest of the unknown cases should be manually reverse engineered to invent new
signatures, but this is infeasible due to the large number of files to be analyzed.
Therefore, looking for an automated way to address this problem is imperative
and has attracted a lot of research effort, especially in the direction of using
machine learning which has gained a lot of successes in various domains of pat-
tern recognition such as face analysis [22] and sentiment analysis [4].

In a recent paper, Saxe et al. [20] train a 3-layer neural network to distin-
guish between malicious and benign executables. In the first experiment, the

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 18-32, 2017.
DOI: 10.1007/978-3-319-67786-6_2

http://VirusTotal.com

A New Adaptive Learning Algorithm and Its Application 19

author randomly splits the whole malware collection into train set and test set.
The trained network can achieve a relatively high detection accuracy of 95.2% at
0.1% false positive rate. It is noted that the first experiment disregards the release
time of the executables, which is an important dimension due to the adversarial
nature of malware detection practice since malware authors are known to regu-
larly change their tactics in order to stay ahead of the game [7]. In the second
experiment, the author uses a timestamp to divide the whole malware collection
into train set and test set. The results obtained show that the detection accuracy
drops to 67.7% at the same false positive rate. We hypothesize that the reasons
for this result are two-fold: the change in behavior of malware over time and
the poor adaptation of neural network trained under batch mode to the behav-
ioral changes of malware. In addition, another recent study also reports similar
findings [3].

The working mechanism of batch learning is the assumption that, the samples
are independently and identically drawn from the same distribution (iid assump-
tion). This assumption may be true in domains such as face recognition and
sentiment analysis where the underlying concept of interest hardly changes over
time. However, in various domains of computer security such as spam detection
and malware detection, this assumption may not hold [2] due to the inherently
adversarial nature of cyber attackers, who may constantly change their strategy
so as to maximize the gains. To address this problem of concept drift, we believe
online learning is a more appropriate solution than batch learning. The reason is
that, online algorithms are derived from a theoretical framework [11] which does
not impose the iid assumption on the data, and hence can work well under con-
cept drift or adversarial settings [5]. Motivated by this knowledge, we propose the
Follow-the-Regularized-Leader with Decaying Proximal (FTRL-DP) algorithm —
a variant of the proximal Follow-the-Regularized-Leader (FTRL-Proximal)
algorithm [12] — to address the problem of malware detection.

To be specific, the contributions of this paper are as follow:

e A new online algorithm (FTRL-DP) to address the problem of concept drift
in Windows malware detection. Our main claim is that online learning is
superior to batch learning in the task of malware detection. This claim is
substantiated in Sect. 7 by analyzing the accuracy as well as the running time
of FTRL-DP, FTRL-Proximal and Logistic Regression (LR). The choices of
the algorithms are clarified in Sect. 4.

e An extensive data collection of more than 100k malware samples using the
state-of-the-art open source malware analyzer, Cuckoo sandbox [6], for the
evaluation. The collected data comprises many types such as system calls, file
operations, and others, from which we were able to extract 482 features. The
experiment setup for data collection and the feature extraction process are
described in Sect. 5.

For LR, the samples in one month constitutes the test set and the samples
in a number of preceding months are used to form the train set; for FTRL-DP,
a sample is used for training right after it is tested. The detailed procedure

20 N.A. Huynh et al.

is presented in Sect.6. In Sect. 2, we review the previous works related to the
problem of malware detection using machine learning. We formulate the problem
of malware detection as a regression problem in Sect. 3. Lastly, in Sect.8, we
conclude the paper and discuss the future work.

2 Related Work

2.1 Batch Learning in Malware Detection

The analysis of suspicious executables for extracting the features used for auto-
mated classification can be broadly divided into two types: static analysis and
dynamic analysis. In static analysis, the executables are executed and only fea-
tures extracted directly from the executables are used for classification such as
file size, readable strings, binary images, n-gram words, etc. [10,19].

On the other hand, dynamic analysis requires the execution of the executables
to collect generated artifacts for feature extraction. Dynamic features can be
extracted from host-based artifacts such as system call traces, dropped files and
modified registries [17]. Dynamic features can also be extracted from network
traffic such as the frequency of TCP packets or UDP packets [16,18]. While
static analysis is highly vulnerable to obfuscation attacks, dynamic analysis is
more robust to binary obscuration techniques.

To improve detection accuracy, the consideration of a variety of dynamic
features of different types is recently gaining attention due to the emergence of
highly effective automated malware analysis sandboxes. In their work, Mohaisen
et al. [14] studied the classification of malware samples into malware families
by leveraging on a wide set of features (network, file system, registry, etc.) pro-
vided by the proprietary AutoMal sandbox. In a similar spirit, Korkmaz et al. [9]
used the open-source Cuckoo sandbox to obtain a bigger set of features aiming
to classify between traditional malware and non-traditional (Advanced Persis-
tent Threat) malware. The general conclusion in these papers is that combining
dynamic features of different types tends to improve the detection accuracy.

In light of these considerations, we decided to use the Cuchoo sandbox to
execute and extract the behavioral data generated by a collection of more than
100k suspicious executables. Our feature set (Sect. 5.3) is similar to that of Kork-
maz et al. although we address a different problem: regressing the risk levels of
the executables. Furthermore, our work differs from previous work in the aspect
that we additionally approach this problem as an online learning problem rather
than just a batch learning one.

2.2 Online Learning in Malware Detection

The importance of malware’s release time has been extensively studied in the
domain of Android malware detection. In their paper [2], Allix et al. studied
the effect of history on the biased results of existing works on the application of
machine learning to the problem of malware detection. The author notes that

A New Adaptive Learning Algorithm and Its Application 21

most existing works evaluate their methodology by randomly picking the samples
for the train set and the test set. The conclusion is that, this procedure usually
leads to much higher accuracy than the cases when the train set and the test
set are historically coherent. The author argues that this result is misleading as
it is not useful for a detection approach to be able to identify randomly picked
samples but fail to identify zero-day or new ones.

To address this problem of history relevance, Narayanan et al. [15] have
developed an online detection system, called DroidOL, which is based on the
online Passive Aggressive (PA) algorithm. The novelty of this work is the use
of an online algorithm with the ability to adapt to the change in behavior of
malware in order to improve detection accuracy. The obtained result shows that,
the online PA algorithm results in a much higher accuracy (20%) compared to
the typical setting of batch learning and 3% improvement in the settings when
the batch model is frequently retrained.

3 Problem Statement

Given 52 antivirus solutions, we address the problem of predicting the percentage
of solutions that would flag an executable file as malicious. Formally, this is a
regression problem of predicting the output y € [0, 1] based on the input = € R"
which is the set of 482 hand-crafted features extracted from the reports provided
by the Cuckoo sandbox (Sect.5.3). The semantic of the output defined in this
way can be thought of as the risk level of an executable. We augment the input
with a constant feature which always has the value 1 to simulate the effect of a
bias. In total, we have 483 features for each malware sample.

In this case, we have framed the problem of malware detection as the regres-
sion problem of predicting the risk level of an executable. We rely on the labels
provided by all 52 antivirus solutions and do not follow the labels provided by
any single one as different antivirus solutions are known to report inconsistent
labels [8]. In addition, we also do not use two different thresholds to separate
the executables into two classes, malicious and benign, as in [20] since it would
discard the hard cases where it is difficult to determine the nature of the exe-
cutables, which may be of high value in practice.

4 Methodology

To allow a fair comparison between batch learning and online learning, we use the
models of the same linear form, represented by a weight vector w, in both cases.
The sigmoid function (H%) is then used to map the dot product (biased by
the introduction of a constant feature) between the weight vector and the input,
w 'z, to the [0, 1] interval of possible risk levels. Additionally, in both cases, we
optimize the same objective function, which is the sum of logistic loss (log loss
— the summation term in Eq.1). In the batch learning setting, the sum of log
loss is optimized in a batch manner in which each training example is visited
multiple times in minimizing the objective function. The resultant algorithm is

22 N.A. Huynh et al.

usually referred to as Logistic Regression with log loss (Sect. 4.1). On the other
hand, in the online setting, we optimize the sum of log loss in an online manner,
in which each training sample is only seen once. The resultant algorithm is the
proposed FTRL-DP algorithm (Sect. 4.2).

4.1 Batch Learning — LR

Given a set of n training examples {(z;,y;)}" ,, Logistic Regression with log
loss corresponds to the following optimization problem:

- 1
argmm{ Z y; log(p;) + (1 — y;)log(1 — p;)) + Ailjwl|z + 2)\2|w||%} W
i=1

in which p; = sigmoid(w " z;)

The objective function of Logistic Regression (Eq.1) is a convex function
with respect to w as it is the sum of three convex terms. The first term is the
sum of log losses associated with all training samples (within a time window).
The last two terms are the L1-norm regularizer and the L2-norm regularizer.
The L1 regularizer is a non—-smoothed function used to introduce sparsity into
the solution weight w. On the other hand, the L2 regularizer is a smooth function
used to favor low variance models that have small weight.

4.2 Online Learning — FTRL-DP

Online Convex Optimization. The general framework of online convex opti-
mization can be formulated as follows [21]. We need to design an algorithm that
can make a series of optimal predictions, each at one time step. At time step
t, the algorithm makes a prediction, which is a weight vector w;. A convex loss
function I;(w) is then exposed to the algorithm after the prediction. Finally, the
algorithm suffers a loss of [;(w;) at the end of time step ¢ (Algorithm 1). The
algorithm should be able to learn from the losses in the past so as to make better
and better decisions over time.

Algorithm 1. Online Algorithm
1: for t =1,2,... do
2: Make a prediction w;
3: Receive the lost function I;(w)
4: Suffer the lost I;(w;)

The objective of online convex optimization is to minimize the regret with
respect to the best classifier in hindsight (Eq.2). The meaning of Eq. 2 is that

A New Adaptive Learning Algorithm and Its Application 23

we would like to minimize the total loss incurred up to time ¢ with respect to
the supposed loss incurred by the best possible prediction in hindsight, w*.

Regret, = Z ls(ws) — le(w*) (2)
s=1 s=1

Since the future loss functions are unknown, the best guess or the greedy
approach to achieve the objective of minimizing the regret is to use the predic-
tion that incurs the least total loss on all past rounds. This approach is called
Follow-the-Leader (FTL), in which the leader is the best prediction that incurs
the least total loss with respect to all the past loss functions. In some cases, this
simple formulation may result in algorithms with undesirable properties such as
rapid change in the prediction [21], which lead to overall high regret. To fix this
problem, some regularization function is usually added to regularize the pre-
diction. The second approach is called Follow-the-Regularized-Leader (FTRL),
which is formalized in Eq. 3.

t
W1 = argmin { Z ls(w) + r(w)} (3)
w s=1
It is notable to see that the FTRL framework is formulated in a rather general
sense and performs learning without relying on the iid assumption. This property
makes it more suitable to adversarial settings or settings in which the concept
drift problem is present.

The Proposed FTRL-DP Algorithm. In the context of FTRL-DP, an online
classification or an online regression problem can be cast as an online convex
optimization problem as follows. At time ¢, the algorithm receives input x; and
makes prediction w;. The true value y; is then revealed to the algorithm after
the prediction. The loss function l;(w) associated with time ¢ is defined in terms
of z; and y; (Eq.4). Finally, the cost incurred at the end of time ¢ is I (w;). The

underlying optimization problem of FTRL-DP is shown in Eq.5.
le(w) = =y log(p) — (1 — y¢) log(1 — p)
in which p = sigmoid(w ' z)

(4)

Compared with Eq. 3, Eq. 5 has the actual loss function I;(w) replaced by its
linear approximation at wy, which is I (w;) + Vi (w) T (w —wy) = g w41 (wy) —
g¢ wy (in which g; = VI;). The constant term (I;(w;) — g/ wy) is omitted in the
final equation without affecting the optimization problem. This approximation
is to allow the derivation of a closed—form solution to the optimization problem
at each time step, which is not possible with the original problem in Eq. 3.

t
. 1 1
ween = arguin {gTw Al + ghaliolf + 3 3 onalw - w3}
- (5)

t
in which g/, = Zg;r
i=1

24 N.A. Huynh et al.

FTRL-DP utilizes 3 different regularizers to serve 3 different purposes. The
first two regularizers of L1-norm and L2-norm serve the same purpose as in
the case of Logistic Regression introduced in Sect. 4.1. The third regularization
function is the proximal term used to ensure that the current solution does not
deviate too much from past solutions with more influence given to most recent
ones by using an exponential decaying function (ots =78 with 1 > v > O).
This is our main difference from the original FTRL-Proximal algorithm [12].
The replacement of the per coordinate learning rate schedule by the decaying
function proves to improve the prediction accuracy in the face of concept drift
(discussed in Sect. 7). The solution to the objective function of FTRL-DP is
stated in Theorem 1, whose proof is presented in Appendix A.

Theorem 1. The optimization problem in Eq.5 can be solved in the following
closed form:

0 if ll2tlln < M
Witl,i =\ _zeiAisign(zei) pp e (6)
Aot ap 20

t
in which z = g1t — Ap E 01,5 W
s=1

Regret Analysis of FTRL-DP. In Theorem 2, we prove a result that bounds
the regret of FTRL-DP. The bound is dependent on the decaying rate ~.

Theorem 2. Suppose that |[wi||2 < R and ||gi|l2 < G. With Ay = A2 = 0 and
Ap =1, we have the following regret bound for FTRL-DP:

. 1 G*1+hT
Regret(w*) < 2R? T + o T (7

Due to space constraint, the proof of Theorem?2 will be provided in an
extended version of the paper.

In summary, we aim to compare between the performance of batch learning
and online learning on the problem of malware detection. To make all things
equal, we use the models of the same linear form and optimize the same log
loss function, which lead to the LR algorithm in the batch learning case and the
FTRL-DP algorithm in the online learning case. For LR, only the samples within
a certain time window contribute to the objective function (Eq.1). On the other
hand, the losses associated with all previous samples equally contribute to the
objective function of FTRL-DP (Eq.5). This difference is critical as it leads to
the gains in the performance of FTRL-DP over LR, which is discussed in Sect. 7.

5 Data Collection

5.1 Malware Collection

We used more than 1 million files collected in the duration from March 2016
to Apr 2016 by VirusShare.com for the experiments. VirusShare is an online

http://VirusShare.com

A New Adaptive Learning Algorithm and Its Application 25

7000

s
g

5000
4000 5000
3000 4000

2000 3000

Number of Executables

1000 2000

Number of Executable:

1000

o
D o L L B s L B e S SR COW S| R B e TR cev Pl
O S S S S S 0 S S S S i a1 O 0 S SIS N o

B O e O O O e 0.0 02 04 06 08 10

Month Maliciousness Level

Fig. 1. Distribution of executables Fig. 2. Distribution of risk level.

malware analyzing service that allows Internet users to scan arbitrary files
against an array of 52 antivirus solutions (the scan results are actually pro-
vided by VirusTotal). In this study, we are only interested in executable files
and able to separate out more than 100k executables from the 1 million files
downloaded.

Figure 1 shows the distribution of the executables with respect to executa-
bles’ compile time. The horizontal axis of Fig.1 shows the months during the
4years from Nov/2010 until Jul/2014, which is the period of most concentra-
tion of executables and chosen for the study. The vertical axis of Fig. 1 indicates
the number of executables compiled during the corresponding month. Figure 2,
instead, shows the maliciousness distribution of the executables. The horizontal
axis indicates the maliciousness measure and the vertical axis the number of
corresponding executables.

5.2 Malware Execution

We make use of the facility provided by DeterLab [13] as the testbed for the
execution of the executables. DeterLab is a flexible online experimental lab for
computer security, which provides researchers with a host of physical machines
to carry out experiments. In our setup, we use 25 physical machines with each
physical machine running 5 virtual machines for executing the executables. Each
executable is allowed to run for 1 min. The experiment ran for more than 20 days
and collected the behavioral data of roughly 100k executables.

5.3 Feature Extraction

In this paper, we mostly consider dynamic features of the following 4 categories
for regression: file system category, registry category, system call category, and
the category of other miscellaneous features.

API Call Category. API (Application Programming Interface) calls are the
functions provided by the operating system to grant application programs the
access to basic functionality such as disk read and process control. Although
these calls may ease the process of manipulating the resources of the machine, it

26 N.A. Huynh et al.

also provides hackers with a lot of opportunities to obtain confidential informa-
tion. For this category, we consider the invoking frequencies of the API calls as
a set of features. In addition, we also extract as features the frequencies that the
API files are linked. The total number of features in this category is 353 and the
complete set of API calls as well as the set of API files are available at https://
git.io/vDywd.

Registry Category. In Windows environments, the registry is a hierarchical
database that holds the global configuration of operating system. Ordinary pro-
grams often use the registry to store information such as program location and
program settings. Therefore, the registry system is like a gold mine of infor-
mation for malicious programs, which may refer to it for information such as
the location of the local browsers or the version of the host operating system.
Malicious program may also add keys to the registry so as to be able to survive
multiple system restarts. We extract the following 4 registry related features:
the number of registries being written, opened, read and deleted.

File System Category. File system is the organization of the data that an
operating system manages. It includes two basic components: file and directory.
File system-related features are an important set of features to consider since
malware has to deal with the file system in one way or another in order to
cause harm to the system or to steal confidential information. We consider the
following file-related features: the number of files being opened, written, in exis-
tence, moved, read, deleted, failed and copied. In addition, we also consider the
following 3 directory related features: the number of directories being enumer-
ated, created and removed. In total, we were able to extract 11 features in this
category.

Miscellaneous Category. In addition to out-of-the-box functionalities,
Cuckoo sandbox is further enhanced by a collection of signatures contributed
by the public community. These signatures can identify certain characteristics
of the analyzed binary such as the execution delay time or the ability to detect
virtual environment. All these characteristics are good indicators for the high
risk level of an executable but may just be false positives. We consider the binary
features of whether the community signatures are triggered or not. In addition,
we also consider 3 other features that may be relevant to the behavior charac-
terization: the number of mutex created, the number of processes started and
the depth of the process tree. The total number of features in this category is
118.

In summary, we are able to extract 482 features that spans 4 different cate-
gories: API calls, registry system, file system and miscellaneous features.

https://git.io/vDywd
https://git.io/vDywd

A New Adaptive Learning Algorithm and Its Application 27

6 Evaluation

6.1 Experiment with LR

We evaluate LR in four different settings: once, multi-once, monthly, and multi-
monthly. In the once setting, the samples appeared in the first month of the
whole dataset are used to form the train set and the rest of the samples are used
to form the test set. The multi-once setting is similar to the once setting except
that the samples in the first 6 months are used to form the train set instead. It
should be noted that retraining is not involved in the first two settings.

On the other hand, the other two settings do involve retraining, which is a
crude mechanism to address the change in behavior of malware over time. Since
it is infeasible to carry out retraining upon the arrival of every new sample, we
perform retraining on a monthly basis. Due to the characteristic of our dataset,
we find that the monthly basis is a good balance to ensure that we have enough
samples for the train set and the training time is not too long (the monthly
average number of samples is 2.4k). In the monthly setting, we use the sam-
ples released in a month to form the test set and the samples released in the
immediately preceding month to form the train set. The multi-monthly setting
is similar to the monthly setting except that we use the samples in the preceding
6 months to form the train set instead.

For a quick evaluation, we make use of the LR implementation, provided by
the TensorFlow library [1] to train and test the LR regressors. TensorFlow is a
framework for training large scale neural network, but in our case, we only utilize
a single layer network with sigmoid activation, binary cross-entropy loss and two
regularizations of L1-norm and L2-norm. 20% of each train set is dedicated for
validation and the maximum number of epochs that we use is 100. We stop the
training early if the validation does not get improved in 3 consecutive epochs.

6.2 Experiment with FTRL Algorithms

We use the standard procedure to evaluate FTRL-DP and FTRL-Proximal
(jointly referred to as FTRL algorithms). Each new sample is tested on the
current model giving rise to an error, which is then used to make modification
to the current model right after. This evaluation is usually referred to as the
mistake-bound model.

Due to their simplicity, FTRL-DP and FTRL-Proximal can be implemented
in not more than 40 lines of python code. The implementation makes heavy use
of the numpy library, which is mostly written in C+4. As TensorFlow also has
C++ code under the hood, we believe that the running time comparison between
the two cases is sensible. Evaluated on the same computer, it actually turns out
that the running time of FTRL algorithms is much lower than that of LR. We
use the same amounts of three regularizations for both FTRL-DP and FTRL-
Proximal. For FTRL-DP, we report the best possible setting for parameter ~.

The computer used for all the experiments has 16 GB RAM and operates
with a 1.2 GHz hexa-core CPU. The running times of all experiments are shown
in Table 1. The mean cumulative absolute errors are reported in Fig. 3.

28 N.A. Huynh et al.

m—® Once ¥—¥v Multi-Monthly €~ FTRL-Proximal
4&—4 Multi-Once o o Monthly =8 FTRL-DR

I I I I I i I I 1 I
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of Samples

Fig. 3. Mean cumulative absolute errors of FTRL-DP, FTRL-Proximal and different
settings of LR.

7 Discussion

7.1 Prediction Accuracy

We use the mean cumulative absolute error (MCAE) to compare the performance
between FTRL-DP, FTRL-Proximal and different batch settings of LR, which
are reported in Fig. 3. The MCAE is defined in Eq.8, in which y; is the actual
risk level of an executable and p; the risk level predicted by the algorithms.
In Fig. 3, the horizontal line shows the cumulative number of samples and the
vertical line the MCAE. There are four notable observations that we can see
from Fig. 3.

1 n
=l 8)
n

t=1

Firstly, the more data that we train the LR model on, the better performance
we can achieve. This observation is evidenced by the fact that, in most of the
time, the error line of the multi-once setting stays below the error line of the
once setting, and the error line of the multi-monthly setting stays below the
error line of the monthly setting. A possible explanation for this observation is
that the further we go back in time to obtain more data to train the model on,
the less variance the model becomes, which results in the robustness to noise,
and consequently, higher prediction accuracy.

Secondly, the retraining procedure does help to improve prediction accuracy.
It is evidenced by the fact that the monthly setting outperforms the once setting,
and similarly the multi-monthly setting outperforms the multi-once setting. This
observation is a supporting evidence for the phenomenon of evolving malware
behavior. As a consequence, the most recent samples would be more relevant to
the current samples, and training on most recent samples would result in a more
accurate prediction model.

From the first two observations, we can conclude that the further we go back
in time to obtain more samples and the more recent the samples are, the better
the trained model would perform. This conclusion can be exploited to improve
prediction accuracy by going further and further back in time and retraining the

A New Adaptive Learning Algorithm and Its Application 29

model more often. However, this approach would become unpractical at some
point when the training time required to frequently update an accurate model
via periodic retrainings would become too long to be practical. It turns out that
this issue can be elegantly addressed by the FTRL algorithms, which produces
much higher prediction accuracy at considerable lower running time.

Thirdly, FTRL algorithms (worse MCAE of 0.123) are shown to outperform
the LR algorithm in all settings (best MCAE of 0.156). The error lines corre-
sponding to the performance of FTRL algorithms consistently stays below other
error lines. The gain in the prediction accuracy of FTRL algorithms over all
settings of LR can be explained by the contribution of all previous samples to
its objective function. In different batch settings of LR, only the losses associ-
ated with the samples within a certain time window contribute to the respective
objective functions.

Finally, the fourth observation is that FTRL-DP (MCAE of 0.116) outper-
forms FTRL-Proximal (MCAE of 0.123). The gain in performance of FTRL-DP
over FTRL-Proximal can be explained by the ability of FTRL-DP to cope with
concept drift via the use of a specially designed adaptive mechanism. This mech-
anism makes use of an exponential decaying function to favor the most recent
solutions over older ones. The effective result is that the most recent samples
would contribute more to the current solution thereby alleviating the problem
of concept drift.

7.2 Running Time

In terms of running time (training time and testing time combined), FTRL-DP
and FTRL-Proximal are clearly advantageous over LR. From Table1, we can
see that the running times of FTRL algorithms are much lower than that of
LR, especially compared to the settings with retraining involved (monthly and
multi-monthly). The reason for this result is that FTRL algorithms only needs
to see each sample once to update the current weight vector whereas in the case
of LR, it requires multiple passes over each sample to ensure convergence to the
optimal solution.

Table 1. Running time of FTRL-DP, FTRL-Proximal and different LR settings.

Experiment Running time
LR Multi-monthly [44m 31s

LR Monthly 14m 14s

LR Multi-once 558

LR Once 42
FTRL-Proximal |28s
FTRL-DP 26's

30 N.A. Huynh et al.

8 Conclusions and Future Work

The evolving nature of malware over time makes the malware detection problem
more difficult. According to previous studies, batch learning based methods often
perform poorly when encountered zero-days samples. Our research is motivated
to fill in this gap by proposing FTRL-DP — a variant of the FTRL-Proximal algo-
rithm — to address this problem. We evaluated two learning paradigms using an
extensive dataset generated by more than 100k malware samples executed on
Cuckoo sandbox. The experimental results show that FTRL algorithms (worse
MCAE of 0.123) outperforms LR in the typical setting of batch learning as well as
the settings with retrainings involved (best MCAE of 0.156). The gain in perfor-
mance of FTRL algorithms over different batch settings of LR can be accounted
for by its objective function taking into account the contribution of all previous
samples. Furthermore, the improvement of FTRL-DP over FTRL-Proximal can
be explained by the usage of an adaptive mechanism that regularizes the weight
by favoring recent samples over older ones. In addition, FTRL algorithms are
also more advantageous in terms of running time.

It can be noticed that all above methods are black-box solutions, which do
not gain domain experts any insights. An interesting development of this work
is to enable the direct interaction with a domain expert using a visualization.
The domain expert could prioritize or discard weight alterations suggested by
the learning algorithm via the interactive exploration of malware behavior. This
visual analytics approach would lead to a transparent solution where the domain
expert can benefit most of his knowledge in collaboration with black-box auto-
mated detection solutions.

A Proof of Theorem 1

Proof. To remind the optimization objective of FTRL-DP:
t

wt+1—argmlngltw+>\1|\wlll+ A2||w||2+ ApZ”yt *[lw — ws]3
s=1

t t

wt+1:argmm(glt A Z’y “Sw,)w+)\1||w||1—|— (/\2+)\ —7)Hw”g
s=1

¢
1 -
O el A
s=1
Omitting the constant term A, S 8 w13, we have:

Wyl = argmln zdw+ M|w| + = ()\2 + Apre) wl[3 (9)

In Eq.9, 2z = g/, — A Zs Y sw] and = 1 . Each component of

w contribute 1ndependent1y to the objective function oz 9 hence can be solve
separately:

A New Adaptive Learning Algorithm and Its Application 31

. 1
Wyt1,; = argmin z; jw; + A1 |jw;l|1 + 5()\2 +)\prt)||wiH§ (10)

wq

Note that w; in 10 refers to the i** component of w. Let flw;) = zw; +
Mllwill1 + £ (A2 4+ Apre) lwil|3. There are two cases:

— If ||lz,ill1 < A1, we have:
1 2
flwi) > =z iwilln + A lwsll1 + 50\2 + Apre) wil[3

1 1

flwi) = =AifJwsllr + A flwills + §(>\2 + i) [[will5 = §(>\2 + Apre) [Jwill3 >0
f(w;) achieves the minimum at w; =0

— If ||ze4lli > A1, 2 and w; must have opposite signs at the minimum of
f(w;) as otherwise w; can always have sign flipped to further reduce f;(w;).
Therefore, it is equivalent to solving:

. . 1
Wyt1,; = argmin z; jw; — sign(z ;) A |lw; |1 + 5()\2 +)\prt) ||w1||%
Wy

. ; —si P
which achieves minimum at zero gradient or w; = —%
T

This concludes the proof.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets yet
relevant? In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol.
8978, pp. 51-67. Springer, Cham (2015). doi:10.1007/978-3-319-15618-7_5

3. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using
network traffic classification. In: IEEE Conference on Communications and Net-
work Security (CNS), pp. 134-142 (2015)

4. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM
4, 82-89 (2013)

5. Gama, J., Zliobaité, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

6. Guarnieri, C., Schloesser, M., Bremer, J., Tanasi, A.: Cuckoo sandbox-open source
automated malware analysis. Black Hat USA (2013)

7. Iliopoulos, D., Adami, C., Szor, P.: Darwin inside the machines: malware evolution
and the consequences for computer security. arXiv:1111.2503 [cs, g-bio] (2011)

8. Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R.,
Joseph, A.D., Tygar, J.D.: Better malware ground truth: Techniques for weighting
anti-virus vendor labels. In: Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, pp. 45-56. ACM (2015)

9. Korkmaz, Y.: Automated detection and classification of malware used in targeted
attacks via machine learning. Ph.D. thesis, Bilkent University (2015)

http://arxiv.org/abs/1603.04467
http://dx.doi.org/10.1007/978-3-319-15618-7_5
http://arxiv.org/abs/1111.2503

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

N.A. Huynh et al.

Makandar, A., Patrot, A.: Malware analysis and classification using artificial neural
network. In: 2015 International Conference on Trends in Automation, Communi-
cations and Computing Technology (I-TACT 2015), vol. 01, pp. 1-6 (2015)
McMahan, H.B.: A survey of algorithms and analysis for adaptive online learning.
arXiv preprint arXiv:1403.3465 (2014)

McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,
Phillips, T., Davydov, E., Golovin, D., et al.: Ad click prediction: a view from the
trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1222-1230. ACM (2013)

Mirkovic, J., Benzel, T.: Deterlab testbed for cybersecurity research and education.
J. Comput. Sci. Coll. 28(4), 163-163 (2013)

Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity, behavior-based auto-
mated malware analysis and classification. Comput. Secur. 52, 251-266 (2015)
Narayanan, A., Yang, L., Chen, L., Jinliang, L.: Adaptive and scalable android
malware detection through online learning. In: 2016 International Joint Conference
on Neural Networks (IJCNN), pp. 2484-2491. IEEE (2016)

Nari, S., Ghorbani, A.A.: Automated malware classification based on network
behavior. In: 2013 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 642-647 (2013)

Norouzi, M., Souri, A., Samad Zamini, M.: A data mining classification approach
for behavioral malware detection. J. Comput. Netw. Commun. 2016, 1-9 (2016)
Rafique, M.Z., Chen, P., Huygens, C., Joosen, W.: Evolutionary algorithms for clas-
sification of malware families through different network behaviors. In: Proceedings
of the 2014 Conference on Genetic and Evolutionary Computation, pp. 1167-1174.
ACM (2014)

Saini, A., Gandotra, E., Bansal, D., Sofat, S.: Classification of PE files using sta-
tic analysis. In: Proceedings of the 7th International Conference on Security of
Information and Networks, p. 429. ACM (2014)

Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 10th International Conference on Malicious and
Unwanted Software (MALWARE), pp. 11-20 (2015)

Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends
Mach. Learn. 4(2), 107-194 (2011)

Valenti, R., Sebe, N.; Gevers, T., Cohen, I.: Machine learning techniques for
face analysis. In: Cord, M., Cunningham, P. (eds.) Machine Learning Tech-
niques for Multimedia, pp. 159-187. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-75171-7_7

You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: International
Conference on Broadband, Wireless Computing, Communication and Applications
(BWCCA), pp. 297-300 (2010)

http://arxiv.org/abs/1403.3465
http://dx.doi.org/10.1007/978-3-540-75171-7_7
http://dx.doi.org/10.1007/978-3-540-75171-7_7

Real-Time Validation of Retail Gasoline Prices

Mondelle Simeon and Howard J. Hamilton®)

Department of Computer Science, University of Regina, Regina, Canada
Howard.Hamilton@uregina.ca

Abstract. We provide a method of validating current gasoline (petrol)
prices for a crowd-sourced app that primarily provides current gasoline
prices. To validate prices reported by users of the app, we propose an
approach that validates each price report in real time as it is entered by
a consumer by comparing it to the current prediction of what the price
is expected to be at the specified store at the present time. To do so, a
forecast model is used to predict, with high accuracy, a price range for
each store in real-time so that when a price is entered by a consumer
it can be flagged if it falls outside the predicted range. We present the
first experimental results concerning predicting the current price in real
time at all stores in a city. The results indicate that there is a significant
improvement in reducing the forecast error when using our Price Change
Rules model over the modified Most Common Action model.

Keywords: Price forecasting - Price prediction - Predictive accuracy -
Forecasting gasoline prices - Data mining -+ Machine learning

1 Introduction

We provide a method of validating current gasoline (petrol) prices for a crowd-
sourced app that primarily provides current gasoline prices. For brevity, we refer
to any retail location that sells gasoline as a store. Prices are reported to a central
server by consumers who visit stores. This approach to obtaining data carries
the risk that consumers may enter incorrect prices either intentionally or acci-
dentally, resulting in inaccurate data. Based on these incorrect prices, consumers
may make faulty decisions about where to purchase their fuel, resulting in a neg-
ative experience with the app. Thus it is imperative to limit these occurrences.
One approach is to validate each price report in real time as it is entered by
a consumer by comparing it to the current prediction of what the price should
be at the present time. To do so, a forecast model is used to predict, with high
accuracy, a price range for each store in real-time so that when a price is entered
by a consumer it can be reported if it falls outside the predicted range.
Gasoline is a unique commodity because it commands the attention of con-
sumers on a weekly or daily basis. A small difference in the price of gasoline at
competing stores can determine which of them receives a customer’s business.
Given the importance of gasoline to consumers’ daily lives, many researchers
have studied the behavior of crude oil prices, wholesale gasoline prices, and

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 33-47, 2017.
DOI: 10.1007/978-3-319-67786-6_3

34 M. Simeon and H.J. Hamilton

retail gasoline prices. However, for the retail gasoline market, most of these
studies have mainly focused on identifying factors which generally affect gas
prices. This project aims to identify predictive factors that affect retail prices
at individual stores and use these factors to predict highly accurate prices on
demand for any store in real time. By real time, we mean that the price is vali-
dated before being shown to a waiting interactive user. Unless otherwise stated,
all gasoline prices mentioned in this article are United States (US) prices quoted
per gallon of gasoline and include all applicable taxes.

The remainder of this paper is organized as follows. Section 2 reviews the
relevant literature on the retail gasoline market and defines the Most Common
Action (MCA) model and algorithm. Section 3 outlines the Price Change Rules
(PCR) prediction model. Section4 presents the results of an evaluation of the
MCA and PCR models on several years worth of data from five North American
cities. Section 5 presents conclusions and suggestions for future research.

2 Related Research

In this section, we present previous studies that describe the connection between
common factors such as crude oil and store location with respect to gasoline
prices. Then we describe the Most Common Action model and a modified version
of it for real-time forecasting.

2.1 Factors Affecting Gasoline Prices

Several research studies have examined factors that affect retail gasoline prices.
The US Federal Trade Commission issued a report that summarized the dynamic
factors such as supply, demand, competition, and regulations significantly affect-
ing gasoline prices, as collected from various research sources [4]. This study finds
that crude oil price is the most important factor affecting gasoline prices in the
United States. Specifically, changes in crude oil prices are responsible for 85% of
the changes seen in the US gasoline market. The report also suggests that dis-
ruptions to oil supply pipelines across the US have the ability to cause significant
price increases.

Another study of gasoline prices determined that the presence of indepen-
dent, unbranded stores drove prices down [5]. Specifically, the presence of an
independent store led to prices that were on average five cents lower than usual.
The lower prices were observed at other stores located in a circular neighborhood
with a radius of one mile (1.6 km) centered on the independent store. Conversely,
the replacement of an unbranded store by a branded store led to prices in the
same neighborhood that were on average five cents higher than previously. The
study concluded that little difference in prices could be attributed to the demo-
graphics of the area or the specific characteristics of the stores.

A separate study focused on the effect of competition density on the retail
gasoline market [1]. It examined two theories associated with the presence of

Real-Time Validation of Retail Gasoline Prices 35

price dispersion, namely the monopolistic competition theory and the search-
theoretical theory, in order to determine which one more closely described
the gasoline market. According to the monopolistic competition theory, when
consumers perceive differentiated products across sellers it creates imperfect
competition and when assuming diverse demand elasticity this results in price
dispersion. In contrast, according to the search-theoretic theory, it suggests price
dispersion is generated when consumers do not know the location of a low
price [1]. When gas price data were examined, price dispersion decreased as store
density increased. Self-serve gasoline prices also decreased as density increased.
These findings are more consistent with the monopolistic competition theory,
than the search-theoretic theory. However, they appear to contradict previous
findings, which found that the search-theoretical theory more accurately reflects
the search costs and consumer preferences of the gasoline market.

In a similar study, retail gas prices in three California cities were examined in
an effort to discover the effects of competition in the retail gasoline market [2].
The findings show that an increase in price by 2 cents led to a decrease in sales
volume that was different depending on the level of competition in the area. In
an area with a low density of competition, stores saw a 2.4% reduction in sales
volume while in areas with a high density of competition, stores experienced
an 8.4% decrease. This study concluded that competition between stores tends
to lower prices because consumers have a greater number of alternatives from
which to choose. These findings are consistent with two other studies [3,7].

Finally, another study examined the effects of spatial factors on competition
and the price of gasoline [8]. This study found that instead that spatial concen-
tration does not matter. In other words, the store location does not, in itself,
affect the retail gas price to an appreciable extent. These findings run contrary
to microeconomic theory that, suggests that business outlets located proximate
to one another should charge lower prices.

2.2 The Most Common Action Model

One pattern observed in another study [9] is that each store can be characterized
by a single price change category corresponding to the daily price change made
most frequently. This price change category is called the most common action.
The Most Common Action (MCA) model predicts the most common action as
the next price change category [9]. To limit the possible types of price changes
to be considered, this model uses z price change categories, where z is a small
integer. Table 1 shows the number of price changes made for each of z = 11 price
change categories for 334 price changes at a store. The most common action
observed is price change category 4.

The algorithm to determine the predicted price with the MCA model is
shown in Algorithm 1. The predicted price change category for a store on day d
is determined by finding the most common action over h earlier days, where h is
the history size, i.e. a number such as 365 or 730. The method counts the number
of days on which the change in price matches each of the price change categories
and then chooses the category with the largest count as the most common action.

36 M. Simeon and H.J. Hamilton

Table 1. Frequency of changes in price change categories

Price change category (a) | Frequency of price changes (F,)
0 2
7
12
60
121
80
5

O 0N Ok W N~

—
o

34

Algorithm 1. The Most Common Action Algorithm
1: Input: P = price data, p = |P|, z = category count, h = history size
2: A={0,....,z—1} // possible actions
3 VaceA: Fo=0,T,=0
4 m=0,k=p—1
5: while m < h and k£ > 0 do
6.
7
8

if both P, and P._1 are not null then

m+ +
: 0= (Px— Pi_1)
9: a = Category(6)
10: Fo=F,+1
11: To =Tq + 6
12: end if

13: k——
14: end while

15: @maz = argmax F,
a€A
16: Predicted Action = amaz

17: Predicted Price Change = Ta,,0./Farmas

Ties are broken arbitrarily. The predicted price change is the average of all the
price changes in the predicted price change category that occurred during the
h days.

A detailed step-by-step description of the algorithm is as follows. The input
is a consecutive series of end-of-day prices P = {F,..., P,_1}, the number of
price change categories z, and the number of earlier days h (line 1). If the end-
of-day price for a day is not known, a special null value should be provided. The
algorithm initializes a frequency counter (F,) for each price change category a to
zero; as well, it initializes the total of all price differences for each price change

Real-Time Validation of Retail Gasoline Prices 37

category to zero (line 3). The main loop (lines 5-14) goes back over the preceding
days one by one, from the most recent backwards (lines 4 and 13), attempting
to find h days where a price difference (delta) can be calculated. It continues as
long as h such days have not been found (i.e., m < h) and there are still days
to check (i.e., k > 0) (line 5). Given consecutive non-null prices, a delta can be
computed (line 6). The count of such deltas is incremented (line 7). The delta
0 is calculated by subtracting the preceding price from the current one (line 8).
The corresponding price change category (or action) a for a delta is determined
by the Category function which consults an external table (line 9). As well, the
frequency for the action (F,) is incremented (line 10) and the total of the deltas
for the action Ty, is updated (line 11). After all deltas in the window have been
examined, the action with the highest frequency (amas) is determined (line 15).
The argmax function is assumed to break ties arbitrarily and return one of the
actions with the maximum count. This action is the predicted action (line 16).
The predicted price change is calculated as the average of the deltas in window
where the action is the same as the predicted action (line 17). The predicted
price can be determined outside the algorithm as the sum of the most recent
non-null price and the predicted price change (not shown).

For our experiments, we modified the MCA model so that it predicted the
most common action for every price report received, instead of only one for the
end of each day.

3 The PCR Real-Time Prediction Model

In this section, we describe the PCR model for predicting prices in real time. We
explain the concept of Price Change Rules and then show how to predict prices
using these rules. Next, we describe the PCR algorithm, and then explain how
to evaluate the PCR model for the task of in forecasting prices in real-time.

3.1 Price Change Rules

The Price Change Rules (PCR) Model is premised on the observation that while
various stores make the same price changes on the same day, some specific stores
consistently make the price changes first and other stores consistently make
similar price changes later. We refer to the first type of store as a leader and the
second type as a follower. The model uses this observation to predict the price
change at a store. As with the MCA, this model uses z price change categories to
limit the possible types of price changes to be considered. For example, if z = 7,
the seven price change categories might be as shown in Table2. We used these
price change categories for PCR in our experiments.

In Table 2, the second column shows the range for each price change category
shown in the first column. Here, the first three price change categories represent
decreases in price, the fourth represents no change in price, and the last three
represent increases in price. The range for each of these price change categories
includes the end point if “[” or “]” is shown and excludes it if “(” or “)” is shown.

38 M. Simeon and H.J. Hamilton

Table 2. Price changes

Price change category | Range

[<-10 cents]

[—5 to —10 cents)
[

(0 to —5 cents)

0 cents|

(0 to 5 cents)
[5 to 10 cents)
[>10 cents]

DU |W N~ O

Two stores S; and S; make a matched change if both make a price change
in the same price change category from exactly the same previous price on the
same day. A price change rule (or simply a rule) is a representation that is
created to describe matched changes that are observed between two stores. As
a simplification, we assume that if a store makes more than one price change in
the same category on the same day, only the first is analyzed. A price change
rule has three notable features: frequency, direction, and strength. The frequency
of the rule is the number of times (days) both stores make a matched change.
The direction of a rule indicates which store made the change at an earlier time
during the day. Although the matched change was made by both stores on the
same day, the specific times of the price reports are used to determine which
store was first. Ties are resolved arbitrarily.

As previously mentioned, the store that makes a matched change first is
called a leader, and the other store a follower. Every rule can be described
from the point of view of the leader or the follower. Therefore we define two
types of price change rules named leading and following rules. A leading rule
has the form “S; leads S; (N1/N)” and indicates that stores S; and S; made
matching changes on N separate days, and on Nj days, S; made the change
before S;. The value N1/N as a percentage represents the strength of the rule.
The corresponding following rule has the form “S; follows S; ((N1)/N)” and
indicates that store S; and S; made matching changes on N days, and on N;
days, S; made the change after §;. Any leading rule can be rewritten as a
following rule and vice versa. For simplicity, we will use only following rules for
the remainder of this paper. Table3 shows the forms of two possible following
rules between two stores S; and S; that describe the same situation (assuming
there are no ties in the update times).

Given a rule of the form “S; follows S; (Ni1/N) x 100%”, for each of the
x times that S; changes its price after S;, then the time difference between the
price reports received for S; and S; is recorded. Thus a determination can be
made, for instance, of the average amount of time that S; changes its price after
S;. Additional measures such as the median time or interquartile range of the
time can also be determined. This information can be used to decide if a future

Real-Time Validation of Retail Gasoline Prices 39

Table 3. Price change rule

Rule | Store | Direction | Store | Frequency | Strength (%)
1 Sz follows Sj N1 Nl/N X 100%
2 Sj follows Sl N*Nl (N*Nl)/N X 100%

price report of S; falls in an expected time period after a price report of S;. It
can also be used to decide if a price report for .S; is too old to be considered.

The Leading Set for a store Sy, is a relatively permanent set of rules describing
cases where store Sj often leads another store. When a new price is reported for
store Si, a rule is added to the Active Following Set for all stores listed in the
Leading Set. The Active Following Set is the highly variable set of all following
rules that are active for store S;. When a price must be predicted for store Sg,
the set of rules in its Active Following Set are consulted, as explained in the next
subsection.

3.2 Prediction Using Price Change Rules

Price change rules are used to determine a predicted price for a store at a given
time. Two measures are also used to make this determination, namely the price
equality frequency and the inverse power distance. For two stores, S; and S, the
price equality frequency measures the number of days both stores had the same
end-of-day price. The spherical distance (d) between the locations of S; and S;
is calculated using the Haversine formula as follows:

i — ¢

d=2xrx sin_l\/sin2(2) + cos (¢;) cos ((;Sj)sinQ()\i

—
2

) @)

where ¢; and ¢; are the latitudes of store S; and store S;, A; and A; are their
longitudes, and r is the radius of the earth (6372.8km).

The inverse power distance (I) between stores is calculated such that smaller
distances get a higher weight. For power k, we use the following:

1
= (d+ 1)k @

where d is the spherical distance between a pair of stores. Denominator (d + 1)
is used to ensure that the formulation works even when the distance is 0. After
preliminary testing with a variety of values of k from 1 to 10, we obtained the
best results with & = 4, which we used in our experiments.

The potency of a following rule is modeled by an exponential function such
that higher frequencies have an exponentially higher weight. We calculate the

potency as follows:
C = p(N1/N) (3)

where b is a base for the exponent, Nj is the frequency of the following rule
for a price change category, and N is the maximum number of times a store is

40 M. Simeon and H.J. Hamilton
Table 4. Available price change rules for store Sk at time ¢
Rule | Store ID | Time received | Actual price Inverse Price change rule
change (A) distance (1) frequency (C)
1 Sk, to T2 Y2 22
2 Sk2 t3 3 Y3 zZ3
m Sk"L tm Tm Ym Zm

followed in that price change category. After preliminary testing with a variety
of values of b from 1 to 20, we obtained the best results with b = 15, which we
used in our experiments.

Table 4 shows a set of m rules for store Si. For instance, rule 1 shows that
Store Si, made the actual price change z2 at time ts.

To determine the contribution to the predicted price change at store Sy that
is due to a specific following rule from store S; at time t;, we consider three
factors: (1) the actual price change A made at store S; at time ¢;, (2) the inverse
distance I between stores Sy and S;, and (3) the potency C of the price change
rule. First, the inverse distance I and potency C' are multiplied together to
give a weight E. Similarly, the product D of the actual price change A, the
inverse distance I, and the potency C of each rule is calculated. To determine
the predicted price, we consider all m rules that are available for store Sy at
the current time (in the Active Following Set and satisfied the time filter). The
predicted price is obtained by dividing the sum of the product D over all m rules
by the sum of the weights E over all m rules, which is calculated as follows:

2 i D
2ia B

The details of the calculation are shown in Table 5.

(4)

prediction =

Table 5. Predicted price change for store Sk at time ¢

Rule | Store ID | Time Actual Inverse Price change | Product (D) Weight (E)
received | price distance (I) | rule potency
change (A) (F)
Sk ta T2 Y2 22 To X Yz X 22 Y2 X 22
2 Sky t3 z3 Y3 23 xT3 X Y3 X 23 Y3 X 23
m Skm tm T Ym Zm Tm X Ym X Zm | Ym X Zm
Sums >Yie1 D it E
™
D
Predicted price change Em;l
il E

Real-Time Validation of Retail Gasoline Prices

All —(_ Distance Filter
Stores \\
[Select Stores]

Price Change Category Frequencies
and Price Equality Frequencies

|

[Price Change Rules]
[Time Filter]
Prediction using the

Active Following Rule Set

[Predicted Price

Fig. 1. Overview of the PCR method

41

42 M. Simeon and H.J. Hamilton

3.3 Description of the Method

Figure 1 gives an overview of the Price Change Rules (PCR) method. From time
to time (say once a day), a set of price change rules is created. For a store Sy,
a distance filter is used to select only its close neighbors. The close neighbors
Sk,p C Sk of store Sy, are the pZ% of the stores in the city that are closest to store
Sk. From these selected stores, two frequencies are obtained by simple counting.
First, the count of the number of end-of-day price changes in each price change
category is determined from data over n days. In other words, the count is the
number of days that S; and each of its close neighbors make price changes that
fall in the same price change category. These counts are used to build the Leading
Set of price change rules for store S;. Secondly, the price equality frequencies of
S with each of its close neighbors is also determined.

In real time, the PCR model responds to the receipt of price reports submit-
ted by customers for the various stores. At time t;, when a price report is received
for store Sk, two main steps are taken: the price is validated and updates are
made for the followers of store Sy.

To perform the validation, a prediction is made. First, a time filter is applied
to the rules. This filter discards any rule, R;, in the Active Following Set that was
received at time ¢;, where the difference in time between ¢; and ¢; is greater than
a threshold value. Based on preliminary testing, we selected a threshold value
of 48 h. For the remaining rules in the Active Following Set, the price prediction
formulation described previously in Sect. 3.2 is applied to determine a predicted
price change. This predicted price change is compared to the actual price change
and validation is performed.

Updates are performed as well. For every price change rule in the Leading
Set for the price change category of the actual price change, the rule is added to
the Active Following Set for all the stores that Sy leads (as determined by the
rules).

3.4 Evaluation of the PCR Method

To evaluate the Price Change Rules method, we developed the Build and Test
model shown in Fig. 2. During the first phase, called the building phase, all price
reports from a sequence of days (e.g., w = 730 days) are used to generate the price
change rules based on the counts of matching changes for every pair of stores.
During the second phase, called the testing phase, for each price report from
an immediately subsequent sequence of days (e.g., the next n = 430 days), the
PCR model is used to predict the price change and the error in the predictions
is recorded. The predictions are generated using the formulation described in
Sect. 3.2. For each price report in the testing phase, the actual price change is
compared to the predicted price change and the forecast error determined. Each
actual price change is also fed back into the model at the end of the day during
the testing phase to update the price change rules.

The forecast error (e) is the difference between the actual and the forecast
(or predicted) value in a time series. Let y; denote the ith observation and g;
denote a forecast of y;. The forecast error is simply e; = y; — ;.

Real-Time Validation of Retail Gasoline Prices 43

730 days initializes (PCR Model
(max)

tests

430 days
(max) updates

has

Actual Predicted
Prices Prices

enters enters

determines
Evaluator

Fig. 2. Build and Test model

produces

The mean absolute error (MAE) is used to measure the forecast error over n
predictions. It is defined as follows:
WS
= — €;l.
n

i=1

4 Experimental Evaluation

In this section, an evaluation of the Price Change Rules model is presented. We
first describe the data used in the experiments and then we present the experi-
mental results. We also compared the performance to that of the Most Common
Action (MCA) method, as described in Sect. 2. This method was already in use
by the makers of the app.

Data were available for five North American cities; for brevity, they are named
Cityl to Cityb. The data for each city were treated as a separate data set when
evaluating the PCR and MCA models. In all cases, we considered only “regular”
gasoline (the most commonly purchased gasoline). For Cityl and City2, retail
prices are available between 1 January 2011 and 8 March 2013 while for City3,
City4, and City5, prices are available between 1 January 2010 and 8 March 2013.
While many stores have at least one price report per day, over the given time
period, there are also many days where some stores have no price reports.

44 M. Simeon and H.J. Hamilton

Table 6 summarizes the data. The prices for City5 are converted from price
per litre to price per gallon. There is considerable variation in price not only
between cities but within cities. For example, the range between cheapest and
most expensive regular gasoline is at least 57.2%. Further, there is also great
variation in the number of stores in each city, with a minimum of 212 in City4
and a maximum of 1091 in City5. There is much less variation between the cities
in terms of the share of the largest brand with a minimum of 17% in City4 to a
maximum of 24.7% in City5.

Table 6. Summary statistics

Cityl |City2 |City3 |Cityd | Cityb
Number of price reports | 443,310 | 679,610 | 674,480 | 663,941 | 1,663,489
Number of stores 316 849 380 212 1091
Number of brands 45 114 53 30 10
Share of largest brand |21.2% |24.6% |18.4% | 17% 24.7%
Price | Min 2.64 1.12 1.09 1.84 3.78
Max 4.15 4.19 6.42 4.3 6.05
Mean 3.50 3.38 3.84 3.52 4.61

Tables7 to 8 show the evaluation results for the PCR model on the five
datasets from Cityl to City5. Table 7 shows the number of price reports predicted
in each of the cities, and the number and percentage of these predictions that
matched the most frequent rule in the rule set, some other rule in the rule set,
or no rule in the rule set at that time. The most frequent rule predicts the price
change category with the highest frequency in the list of price change rules. For
instance, in Cityl, 291,237 price reports were predicted, 155,502 matched the
most frequent rule, 120,060 matched some other rule, and 15,675 did not match
any rule present at the time, and these values represent 53.39%, 41.22%, and
5.38% of the total price reports, respectively.

These results show that the highest percentage of predictions that matched
the most frequent rule was 85.64% in City5, while the lowest was in Cityl, with
53.39%. In all five cities, less than 7.5% of the predicted prices did not match
any of the rules, with City5 having the lowest percentage at 3.06% and City2,
having the highest at 7.23%. We also assessed the accuracy of the predicted
prices. Given that the most frequent rule suggested a prediction in category i,
we predicted the median price change of all price changes made in that category.
Thus, although the price category is [—5 to —10 cents], the median might be —6
cents.

Table 8 shows the results for the Build and Test evaluation method for the
PCR and Most Common Action (MCA) models. We calculated the MAE as
described in Sect.3.4. The third column gives the percentage of price reports

Real-Time Validation of Retail Gasoline Prices 45

Table 7. Number of predictions

City | # of Prices | # of predictions % of predictions
Total Matches rule Matches rule
Most frequent | Other |None |Most frequent | Other | None

Cityl | 291,237 155,502 120,060 | 15,675 | 53.39 41.22 |5.38
City2 | 413,092 309,100 74,120 | 29,872 |74.83 17.94 |7.23
City3 | 384,066 272,485 92,829 |18,752|70.95 24.17 | 4.88
City4 | 343,646 191,867 138,259 | 13,520 | 55.83 40.23 | 3.93
City5 | 856,928 733,887 96,812 | 26,229 | 85.64 11.30 | 3.06

Table 8. Summary of results

City | The PCR method The MCA model
MAE(¢) | % < 5 cents | MAE (¢) | % < 5 cents

Cityl | 2.092 85.80 3.971 75.87

City2 | 0.856 93.63 1.262 90.67

City3 | 1.134 90.29 1.703 85.81

City4 | 1.374 91.46 3.234 81.22

City5 | 0.393 99.52 0.919 98.69

for which the predicted error was less than 5 cents. For PCR, the highest fore-
cast error and lowest percentage within 5 cents was in Cityl with 2.092 cents
and 85.80%, respectively, while the lowest forecast error and highest percentage
within 5 cents was in City5 with 0.393 cents and 99.52%, respectively.

The mean absolute error (MAE) for Cityl with the PCR model is 2.092 cents
but 3.971 cents for the MCA model. This difference shows that the PCR model
improves the error by 1.879 cents over the MCA model. Improvements of 0.406,
0.569, 1.860, and 0.526 cents are also observed for City2, City3, City4, and City5,
respectively. All of these differences are statistically significant.

The PCR model predicts price changes at a store based entirely on price
changes made at other stores. Detailed examination of cases where the model
does poorly shows that if matching changes occur frequently, which they com-
monly do, the predictions are highly accurate, but in cases where they do not, the
predictions can be highly inaccurate. The main weakness of the PCR approach
may be that it only considers competitor actions in predicting the price.

5 Conclusion

This paper described a forecast model for forecasting real-time retail gas prices.
The Price Change Rules Model assumes that knowledge of a store’s competitors
price changes on the same day can be employed to predict the price change for

46 M. Simeon and H.J. Hamilton

that store. The model creates price change rules for each pair of stores based on
past price changes in the same category. Each real-time price report at a given
store triggers the addition of a price change rule to the rule set for every other
store that follows it. The predicted price is determined as a weighted average of
all the price change rules in the rule set. The evaluation results showed that the
model significantly reduced the forecast error for all five cities, compared to the
Most Common Action Model modified for real-time forecasting.

There are three main areas for continued research. The first area is the mod-
eling of the relationship between wholesale costs and competitive considerations.
As mentioned, the PCR model forecasts price changes at a store that are based
entirely on price changes made at other stores. Previous research on retail price
analysis has found that the changes in price are also significantly affected by
wholesale costs and competitive behavior. Wholesale gasoline is a commodity
that is traded on the open market. Thus, its price can change by the minute,
which may influence the cost framework for a retailer. Retailers purchase gaso-
line on different schedules based on volume of sales and storage capacity [6].
Considering the volatility of wholesale prices, the cost of each delivery can vary
significantly even in a short time period. Now while wholesale costs may be a sig-
nificant factor, retail prices on a day-to-day basis are also heavily influenced by
competition between retailers. How much of the changes in wholesale prices are
passed on to the consumer and how soon? Does competition outweigh wholesale
costs? The answers to these questions will assist in modeling the relationship
between wholesale costs and competitive considerations.

The second area is incorporating additional information about the stores. For
example, the brand of the store could be considered as well as the availability of
other services, such as a convenience store or carwash.

Finally, the third area is the modeling of longer-term trends in retail prices.
Predicting gas prices beyond one day ahead becomes increasingly difficult
because of the volatility of both crude oil and whole sale prices as well as competi-
tion considerations. However, it may be possible to identify trends in the changes
in price that would indicate prices are increasing, or decreasing, or remaining the
same. Determining this information at the store level, would provide additional
information to customers that can assist them in making decisions about when
and where to fuel their vehicles.

References

1. Barron, J.M., Taylor, B.A., Umbeck, J.R.: Number of sellers, average prices, and
price dispersion. Int. J. Ind. Organ. 22(8-9), 1041-1066 (2004)

2. Barron, J.M., Umbeck, J.R., Waddell, G.R.: Consumer and competitor reactions:
evidence from a field experiment. Int. J. Ind. Organ. 26(2), 517-531 (2008)

3. Deck, C.A., Wilson, B.J.: Experimental gasoline markets. J. Econ. Behav. Organ.
67(1), 134-149 (2008)

4. FTC: Gasoline price changes: the dynamic of supply, demand, and competition,
June 2005

=

Real-Time Validation of Retail Gasoline Prices 47

Hastings, J.: Vertical relationships and competition in retail gasoline markets: empir-
ical evidence from contract changes in Southern California: reply. Am. Econ. Rev.
100(3), 1277-79 (2010)

NACS: What influences gasoline prices (2013)

Pinkse, J., Slade, Margaret Emily, Brett, Craig: Spatial price competition: a semi-
parametric approach. Econometrica 70(3), 1111-1153 (2002)

Schultheis, A., Johnson, D.K.N., Lybecker, K.M., Nadar, D.: Should i buy here, or
keep driving? The effect of geographic market density on retail gas prices. Colorado
College Working Paper 2011-2015, December 2011

Simeon, M.: Are these reported prices correct? Forecasting retail gas prices (2017,
in Preparation)

Regression

General Meta-Model Framework
for Surrogate-Based Numerical Optimization

Ziga Luksic!', Jovan Tanevski2(®9) Sago Dzeroski?, and Ljupéo Todorovski'»?

! University of Ljubljana, Ljubljana, Slovenia
ziga.luksic@live.com, ljupco.todorovski@fu.uni-1j.si
2 Jozef Stefan Institute, Ljubljana, Slovenia
{jovan.tanevski,saso.dzeroski}@ijs.si

Abstract. We present a novel, general framework for surrogate-based
numerical optimization. We introduce the concept of a modular meta
model that can be easily coupled with any optimization method. It incor-
porates a dynamically constructed surrogate that efficiently approximates
the objective function. We consider two surrogate management strategies
for deciding when to evaluate the surrogate and when to evaluate the true
objective. We address the task of estimating parameters of non-linear mod-
els of dynamical biological systems from observations. We show that the
meta model significantly improves the efficiency of optimization, achieving
up to 50% reduction of the time needed for optimization and substituting
up to 63% of the total number of evaluations of the objective function. The
improvement is a result of the use of an adaptive management strategy
learned from the history of objective evaluations.

1 Introduction

Numerical optimization is a task of finding the values of numerical parameters
that minimize or maximize a real-valued objective function. It is an omnipresent
task in various domains of engineering and science. The methods for numeri-
cal optimization rely on numerous evaluations of the objective function, which
presents a problem when the evaluation is non-trivial. This occurs when the eval-
uation involves either an expensive real-world experiment or a computationally
complex procedure. In the first case, the number of possible evaluations is limited
due to the cost of the experiment. In the second case, although the number of
possible evaluations is in principle unlimited, the time need to perform a com-
putationally complex evaluation practically limits its repeated execution. The
focus of our interest is on tasks that are problematic due to the latter limitation.

In this paper we address the task of estimating parameters of ordinary dif-
ferential equations [12], which is often approached as a numerical optimization
problem. The objective function involves computationally expensive methods for
simulation of differential equations. The task of parameter estimation is central
to the task of mathematical modeling, which is in turn an essential part of the
discovery of knowledge about the complex behavior and function of biological
systems [16]. Another example of such task is hyper-parameter tuning [11], i.e.,

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 51-66, 2017.
DOI: 10.1007/978-3-319-67786-6_4

52 7. Luksic et al.

selecting a parameter setting for a machine learning algorithm that leads to its
optimal predictive performance on a given data set. In this case, the objective
function involves computationally expensive evaluation of the predictive perfor-
mance of the machine learning algorithm on a data set.

Surrogate-based approaches to numerical optimization address exactly the
case where the evaluation of the objective function is non-trivial. A surrogate
function is a close approximation of the objective function that is computation-
ally more efficient to evaluate [14]. The optimization task can be streamlined by
evaluating such surrogates instead of the true objective function. We can cluster
the surrogate-based approaches in two groups based on the surrogate manage-
ment strategy, i.e., the way they decide when to use the surrogate and when to
use the true objective function. During optimization, wrapper approaches eval-
uate only the surrogate, but validate the identified optimal points using the true
objective function [3,21]. The control over the use of surrogates is thus very
limited. In contrast, embedded approaches modify the optimization algorithm
by incorporating strategies that decide between evaluating the surrogate or the
true objective function within the optimization method [13]. While the embed-
ded approaches can deploy arbitrary strategy for surrogate management, they
require modifications of the core optimization method.

In this paper, we present an alternative framework for surrogate-based opti-
mization that allows for the use of arbitrary surrogate management strategies
without modifying the optimization method. As a consequence, a surrogate man-
agement strategy can be combined with any core optimization method with-
out additional efforts for re-implementing and/or modifying the optimization
method. The framework employs a meta model that incorporates a dynamically
constructed surrogate, the procedure for its construction and a decision function
that implements a surrogate management strategy.

We aim at showing that the proposed framework can solve complex numeri-
cal optimization problems with non-trivial objective functions while significantly
reducing the number of true objective evaluations. We test the utility of the
proposed framework on three task of estimating the parameters of models of
dynamical biological systems represented by ordinary differential equations. We
couple the meta model with Differential Evolution [22], as the core algorithm for
numerical optimization, and Random Forest regression as method for learning
surrogates. According to [8], Differential Evolution “due to its competitive per-
formance stands out as a good choice for the core optimizer’ in surrogate-based
approaches. Random Forests [5] are known as a strong, robust and versatile
method reported to work well in a variety of contexts, domains and data sets.

Section 2 introduces the tasks of numerical optimization and estimating para-
meters of differential equations and overviews the related work on surrogate-
based optimization. We then introduce our general framework for surrogate-
based numerical optimization in Sect. 3. We next report on the empirical evalu-
ation of the proposed framework in Sect. 4. Finally, Sect. 5 concludes the paper
with a summary and an outline of directions for further research.

General Meta-Model Framework for Surrogate-Based Optimization 53

2 Background and Related Work

Before overviewing the surrogate-based optimization methods and placing our
contribution in its context, we introduce two central tasks of interest: numerical
optimization and estimating parameters of differential equations.

2.1 Numerical Optimization

We consider the task of single-objective optimization of unconstrained, continu-
ous, nonlinear and deterministic problems. Numerical optimization is the task of
finding the solution z* € R* in a given k-dimensional continuous space of solu-
tions X that leads to the extremum of an objective function F': z € X — R.
The objective function can be either minimized or maximized: in the former
case, the result of optimization is z* = argmin . y F'(x). If the analytic solution
for the minimum of F' is intractable, numerical methods are applied. These can
be clustered into two groups of local and global optimization methods.

Local optimization methods [19] are commonly used due to their efficiency.
Such methods rely on the derivative of the objective function with respect to the
problem parameters. The derivative is estimated by sampling or by direct calcu-
lation. They quickly converge to the point with the minimal value of the objec-
tive function in the neighborhood of the initial point. Given a hard non-linear
problem, the local solution might not represent the global optimum. Therefore,
local methods are frequently restarted from multiple initial points to increase the
probability of finding the global solution, sacrificing the efficiency of the process.

Global optimization methods are concerned with finding the global optimum
of an objective function [20]. They can be deterministic or stochastic. While
the deterministic methods guarantee finding the global optimum, they do not
guarantee that it will be found in a finite amount of time. Stochastic methods
efficiently find the optimal regions of an objective function, but they do not
guarantee the global optimality of the solution. A good property of global sto-
chastic methods, in particular metaheuristics [25], is their ability to consider
black-box objective functions. As a result, they have gained popularity and have
been successfully applied to problems from various domains [4].

2.2 Estimating Parameters of Ordinary Differential Equations

The mathematical modeling of biological systems is an essential part of the
discovery of knowledge about the complex behavior and function of biological
systems [16]. The mathematical formalism that has been widely accepted as most
adequate for representing the interactions within a dynamical biological system
is the formalism of ordinary differential equations (ODEs) [18]. The estimation of
the parameters of a model of a dynamical system from observations, also known
as system identification, is central to the task of mathematical modeling [12].
A model of a dynamical system is described by a set of coupled ODEs
V=3 (V,), where v; € V denote state variables, v; = dv;/dt their time deriva-
tives, the functions g; € G describe the structure of the model and = denotes the

54 7. Luksic et al.

real-valued constant parameters of the model. Given an initial condition Vy (val-
ues of V at time ¢p), the model can be integrated to obtain trajectories of values
Vr representing the simulated behavior of the dynamical system at time points
T. Analytic solution for a set of non-linear ODEs is rarely an option, so compu-
tationally expensive numerical approximation methods for ODE integration are
typically applied.

The problem of estimating the parameters of ODEs from observations can be
formulated as a numerical optimization problem. Given the observations O of
variables V at time points T', the objective function is the likelihood of z to lead
to simulated behaviour Vr, i.e., F(z) = —L(O7|Vr), where L is a likelihood func-
tion. In practice, due to the complexity of the models, the likelihood-based func-
tion is approximated by a least-squares function F(x) = Zuev”Og) - V}U)HQ,

where Ogj) and VT(U) denote the observed and simulated values of variable v
at time points 7. Recall however, that V is obtained using computationally
intensive ODE integration method, which can be severely limiting.

Regarding the choice of a parameter estimation method for problems com-
ing from the domain of systems biology, global stochastic and hybrid methods
based on metaheuristics are considered as most promising in the literature [2,7].
Out of the many different metaheuristic methods, Evolutionary Strategies and
Differential Evolution have been identified as the most successful [24,26].

2.3 Surrogate-Based Numerical Optimization

Surrogate-based optimization approaches are used to solve numerical optimiza-
tion problems when the number of available evaluations of the objective function
is limited. This limited availability is often related to the limited resources for
performing the evaluation. The limited resources might involve physical equip-
ment when the evaluation of the objective function involves performing exper-
iments (in engineering domains) or computational time when evaluating com-
putationally complex objectives (in computational domains). Surrogate-based
approaches replace the true objective function F' with a surrogate P, i.e., a
predictive model that approximates the true objective function. The numerical
optimization method then interchangeably employs F' and P to obtain the eval-
uation of the objective function given a series of candidate solutions z € X.
Thus, in addition to F' and P the surrogate-based optimization employs a deci-
sion function D that decides when to use F' and when P. It also involves decision
about when the approximation model is learned and updated from a training
set based on a sample of the available evaluations of the true objective function.

In the literature on surrogate-based optimization, the decision function D
is referred to as a surrogate management strategy [13]. Figurel depicts the
clustering of the state-of-the-art of surrogate-based methods into two groups of
wrapper (B) and embedded (C) approaches. To better understand the figure,
consider first the simple situation of a numerical optimization algorithms that
do not use surrogates (A). In such an environment, the optimization method
interacts only with the true objective function F by requesting numerous

General Meta-Model Framework for Surrogate-Based Optimization 55

(A) no-surrogate (B) wrapper

z

Rz) Optimization algorithm ——=*

— |

Optimization algorithm

@*p, Flz*p)

z

¥ ——

Plz)
—Ceam>

(C) embedded (D) meta-model

Optimization algorithm ——=*
¥ toirte). ey

T @ TD(I‘(E).P(E))
z
Pz) Y

o Fle) "HEI) »
o Fe

Fig. 1. Numerical optimization without surrogates (A), two state-of-the-art surrogate-
based approaches to numerical optimization, wrapper (B) and embedded (C) and the
framework based on meta models, proposed in this paper (D). In the four illustrations,
F' denotes the objective function, S the surrogate, and D the decision function that
corresponds to the surrogate management strategy. The arrows denote the flow of
values between the different components of the optimization approach.

Optimization algorithm ——z*

=l

evaluations of candidate solutions x. At the end, the method reports the optimal
solution x* that minimizes the value of the objective function.

Wrapper approaches place the surrogate management strategy outside the
optimization method. Following this approach, the wrapper first initializes the
surrogate P using a sample of candidate solutions x and their respective objective
evaluations F(z). In consecutive iterations the wrapper runs the optimization
method using the surrogate P, obtaining a solution 2}, which is evaluated using
the true objective function. The solution z} and its evaluation F(z}) are then
added to the surrogate training set and the surrogate is updated before running
the next iteration. Examples of wrapper-approach methods are the methods for
constrained numerical optimization COBRA [21] and SOCOBRA [3]. Both are
based on the earlier work on efficient global optimization (EGO) methods [14]
that also follow the wrapper approach.

Embedded approaches rely on encoding the management strategy within the
optimization method. Following this approach, the decision whether to use the
surrogate or the true objective function is based on the various artifacts of the
algorithm [13]. In particular, population-based evolutionary optimization meth-
ods use surrogates to evaluate the offspring candidates for the next generation of
individuals. On the other hand, the selection of the top candidates to be actually
included in the next generation, is based on the evaluation of the true objec-
tive function. A simpler, generation-based management strategy evaluates the

56 7. Luksic et al.

surrogate function in some generations, and the true objective function in oth-
ers. The surrogate-based variants of Differential Evolution in general [8,17,23]
in particular, follow the embedded approach.

Wrapper approaches are inflexible when it comes to the surrogate manage-
ment strategy, since it forces the evaluation of the surrogate function within the
wrapped optimization method, while the true objective function can only be eval-
uated from outside the method. On the other hand, the embedded approaches
are more flexible, but the decision function relies directly on the current state of
the core optimization algorithm. Also, it requires re-implementation or modifi-
cation of an existing implementation of the core optimization method.

The general meta-model framework for surrogate-based optimization we pro-
pose combines the simplicity of the wrapper approaches with the flexibility of
the embedded approaches. On one hand, the meta model can be coupled with
any core optimization method since it is used as a black box (see Fig. 1(D)). The
surrogate and decision functions are coupled together with the true objective
function independently from the optimization algorithm. On the other hand,
within the meta model, different types of surrogate models and the appropriate
procedure for their construction can be seamlessly integrated. Subsequently, an
arbitrary complex surrogate management strategy can be applied to the dynam-
ically constructed surrogate model and the true objective function, generating
a single meta-model evaluation. The decision can be different for each request
for evaluation from the optimization method as it is based on the history of
meta-model evaluations.

3 Meta Model for Surrogate-Based Optimization

We first introduce the meta-model framework for surrogate-based optimization.
We next introduce two meta models that use two different surrogate management
strategies. The first one is a simple, “uninformed” meta model that uses only
the length of the evaluation history to decide whether to evaluate the surrogate
function or the true objective function. The second one is a more complex,
adaptive management strategy, called a relevator. The decision function for the
relevator uses a predictive model trained using the history of evaluations of the
true objective function.

3.1 Meta-Model Framework

The function MetaModel: RF x (R¥+2)* — R is defined by the three functions
(F, S, D), corresponding to the components of the meta model:

— objective function F : R¥ — R,
— surrogate function S : R* x (RF*2)* — R,
— decision function D : R*¥ x (RF+2)* — {0,1}.

General Meta-Model Framework for Surrogate-Based Optimization 57

In our meta-model framework the function MetaModel is defined as:

F(x); D(z,h)=1

MetaModel(z, h) = {S(:z:,h); D(w,h) = 0 (1)

Note the difference between the values of D in Fig.1 and its role in the meta
model in Eq. 1. In the latter case, the value of D determines whether the meta
model returns the value of the true objective function F' or the value of the
surrogate P. In Fig. 1, the inputs and outputs of D correspond to the flow of
values between the components.

The surrogate function S takes care of learning and updating the sur-
rogate predictive model P : RF — R from the training set sampled from
the history of evaluations h of the true objective function. In particular, S
takes care of collecting the history of meta-model evaluations, i.e., the finite
sequence of past evaluations h € (R¥*+2)*. Each past evaluation is recorded as
(z1,- - ,xk, MetaModel(x),), where x = (z1,--- ,xk) is a point of evaluation,
while § = 1, if the objective function was used for evaluation, and 6 = 0, oth-
erwise. The history of evaluations is updated after each evaluation of the meta
model. The surrogate training set is the sample of the history of evaluations with
6=1.

There are three important properties to be considered when constructing a
good surrogate function: the type of the prediction model, the size of the train-
ing set used for its construction and the frequency of model updates. We aim at
selecting a surrogate that closely approximates the true objective function and
can be evaluated efficiently. Moreover, the efficiency of the surrogate function
depends upon the trade-off between the frequency of surrogate learning and the
size of the training set. Having a high update frequency is desirable since the sur-
rogate then always takes into account the most recent history of evaluations. On
the other hand, frequent surrogate updates are unproductive unless the learning
time is fairly low compared to the evaluation time of the true objective function.
To this end, we introduce a user-defined parameter that determines the number
of true object evaluations between the consecutive surrogate updates.

When it comes to the size of the training set, the issue of filtration of the
history of evaluations arises. For example, when using the meta model in conjunc-
tion with a population-based method, the population slowly converges towards
the minimum of the true objective function. After a number of evaluations, we
can focus to the recent evaluations that correspond to the lower values of the
objective. Therefore, older history can be safely removed from the training set.
In our implementation, the training set includes a user-defined number of the
recent points from the history of evaluations as well as a user-defined number of
points with the lowest values of the true objective.

3.2 TUninformed Meta Model

The simplest surrogate management strategy (decision function) for a meta
model is the one based only on the current index of the evaluation. For instance,

58 7. Luksic et al.

meta model can use the surrogate for every third evaluation. Such decision func-
tions do not use any kind of information about the point being evaluated other
than the length of the evaluation history. Thus this management strategy is
considered to be “uninformed”.

A decision function D is uninformed, if it can be represented as a composite
of the length function L : (R¥*2)* — N and a function D: R — {0, 1} such that
the meta model (F, S, D) is defined as:

MetaModel(z, h) = {F(x), I?(L(h))
S(x,h); D(L(h))

X 2

A meta model with an uninformed decision function is an uninformed meta
model.

3.3 Relevator Meta Model

An alternative approach is to identify points which are of high “relevance” for
the optimization algorithm and decide whether to use the true objective function
or the surrogate function to evaluate it. The evaluation of the most relevant
points should be performed using the true objective function in order to properly
estimate the current state of the optimization. We want to avoid misleading the
algorithm into false optima that may appear as artifacts of the evaluation of the
surrogate function.

The strategy for making a decision based on the relevance of a point brings
up two issues. How is the relevance of a point formally defined and how can
the relevance of a point be estimated before evaluating it. During the task of
optimization, the points with values that are closest to the lowest seen value are
considered as most relevant. In our approach, we calculate the relevance of a
point as follows. Let f = (f1 -, fm) represent the vector of values of previously
evaluated points in the history of evaluations. We define the relevance of the
point z € R¥ relative to these values f as

relevance(z, f) = (1 + (F(x) — miin fi)/(ave; fi — miin fin~t (3)

As long as F(x) > min; f; the relevance is bound to the interval [0, 1] where
the value of 0 corresponds to a point of low relevance and 1 to a point of high
relevance.

The relevator meta model employs machine learning models for predicting the
point relevance. From the history of evaluations and the same training set as the
one used to learn the surrogate, we learn another model that predicts the point
relevance. We refer to this model as the relevator. In addition to the relevator,
the decision function also includes a decision threshold that distinguishes the
points with high relevance, which should be evaluated using the true objective,
from points with low relevance, which should be evaluated with the surrogate.
To allow for the definition of a dynamical threshold, we define the threshold @
as a function of the history of evaluations.

General Meta-Model Framework for Surrogate-Based Optimization 59

Thus, the decision function of a relevator meta model is the indicator function
1[R(z,h) > O(h)], where R : R* x (R¥+2)* — [0,1] is the relevance of point
x given the history of evaluations h and ©: (R*+2)* — [0,1] is a dynamical
relevance threshold function. The relevator meta model is then defined as:

F(z); R(z,h) > 6O(h)

MetaModel(z,h) = {S(x,h); R(z,h) < O(h) W

We implement the dynamical relevance threshold using an iterative updating
procedure with the goal to control for and locally bound the rate of surrogate
evaluations. By considering the user-defined number of most recent evaluations,
we can either raise or lower the threshold after every meta model evaluation in
order to increase or decrease the rate of surrogate evaluations to achieve (locally)
the user-defined substitution rate.

4 Empirical Evaluation of the Meta-Model Variants

We empirically compare the performance of the two meta-model variants against
the Differential Evolution method without using surrogates on three parameter
estimation problems from the domain of systems biology'. After introducing the
problems, we present the experimental setup and results.

4.1 Parameter Estimation Problems

For the empirical evaluation of the proposed framework we have selected three
dynamical biological systems with varying degrees of complexity shown in Fig. 2.
The three systems have been well studied in terms of their dynamical properties
and identifiability [6,10].

The first system is a synthetic oscillatory network of three protein-coding
genes interacting in an inhibitory loop, known as the Repressilator, modeled by
Elowitz and Leibler [9]. The system is represented by a set of six ODEs with
four constant parameters that are subject to estimation. Each gene (rectangle
in Fig.2 (A)) is modeled by two observable variable properties: the amount of
mRNA transcribed by the gene and the amount of protein translated from the
mRNA. Each of the three proteins inhibits the transcription of a target mRNA.
The inhibition is modeled by a Hill type kinetics, the translation of mRNA to
protein and the degradation of both mRNA and protein are modeled by linear
kinetics. The transcription is assumed to have an additional constant component
due to “leakiness” of the promoter.

The second system is a metabolic pathway representing a biological NAND
gate modeled by Arkin and Ross [1]. The model is represented by a set of five
ODEs with 15 constant parameters that are subject to estimation. The ODEs
correspond to the five observed variables S3-S7 represented by rectangles in

! The implementation of the framework, the two meta-model variants, the models and
data are available at http://source.ijs.si/zluksic/metamodel/.

http://source.ijs.si/zluksic/metamodel/

60 7. Luksic et al.

(A) (B) 11 12 (C)
@\J/@ o LR | oL
EI AA-L-[XSIRed— AA-L-[X2/Enz—
Acl

~__ |~ _—
@ Sub--~[X3/ind]-~

/\
~__

Fig. 2. Diagrams of the three models of dynamical biological systems used for the
empirical evaluation: (A) A synthetic oscillatory network - repressilator; (B) Metabolic
NAND gate; and (C) S-system model of a genetic network. The rectangles represent
observed and modeled variables. The arcs ending with an arrow (—) represent interac-
tions with positive regulation while the arcs ending with a bar () represent interactions
with negative regulation.

Fig.2 (B). The metabolites X1-X6 (circles) are assumed to be in steady-state
(i.e. X; = 0). The system has two inputs I1 and I2, modeled as step functions.
The dynamics of the interactions, represented by the arcs in the figure, are
modeled by Michaelis-Menten kinetics with non-competitive inhibition.

The third system is a genetic network modeled by Kikuchi et al. [15]. The
system is represented as a five variable S-system model with 23 constant para-
meters. S-system model is a set of ODEs in which the interactions in the
system are approximated by a multivariate power-law functions of the form
Xi = Zj 845 - k; Hk X,?"k7 where s;; are stoichiometric coefficients, k; are reac-
tion rates and o;;, are kinetic orders. In the system represented in Fig.2 (C) the
observed variables are represented by rectangles. The stoichiometric coefficients
for the reactions are —1 for reactants and +1 for products, the reaction rates
and the kinetic orders are subject to estimation. The amounts of nucleic acid
(NA), amino acid (AA) and substrate are assumed to be constant.

4.2 Experimental Setup

The uninformed meta model was set to use the true objective function every
third meta-model evaluation (66% substitution rate). For the relevator meta
model the surrogate function and the relevator are trained using the Weka
implementation of Random Forest [5] with default parameters (100 trees with
int(log, (#parameters) + 1) parameters per split) using 8 threads to reduce build
time. The local substitution rate of the relevator was kept between 60% and
70%. We used a step size of 0.001 to adjust the threshold, with the starting
value of the threshold set to 0.7. Based on the dimension of the problems, the
training set for the repressilator was filtrated so it contains the 2000 most recent
evaluations of the true objective function with additional 500 points with the
lowest seen values. For the other two problems the training set was increased by

General Meta-Model Framework for Surrogate-Based Optimization 61

factor of 2. Both prediction models were rebuilt after every 500 (repressilator)
or 1000 (metabolic, s-system) evaluations of the meta model.

The meta models were coupled with the Differential Evolution optimization
method [22] with fixed parameter settings. Based on the dimensionality of the
problems, the population size was set to 100 (repressilator) or 200 (metabolic, s-
system). The crossover probability was set to 0.8 and the differential weight was
set to 0.9. For all experiments the same random seed (42) was used. The models
were simulated using the classical explicit fourth order Runge-Kutta integrator
with a step size of 1072, The observation data for the repressilator was obtained
by simulating the model in the time interval [0,30]. Samples for all variables
were taken at each integer time point. The objective function used was the sum
of the root of squared errors — F(x) = >, [O; — V4|, where O; and V; are
the vectors of observed and simulated values of all variables V at time t.

The observation data for the metabolic pathway model was obtained from
Gennemark and Wedelin [10]. It consists of 12 sets of observations obtained by
simulating the model using 12 different pairs of input step functions (I1,12)
in the time interval [0,150] sampled uniformly at 7 time points. The objec-
tive function used was the negative log-likelihood calculated as F(x) = L(x) =

— 1Y vev ZteT(OS’) —VN2/5{") where O and V,'*) are the observed and

simulated values of variable v at time point ¢ and 0" = 10~ - O{*). To obtain
the objective function the estimated likelihood was summed across all datasets.

The observation data for the s-system model was also obtained from Gen-
nemark and Wedelin [10]. It consists of 10 sets of observations obtained by
simulating the model using 10 different sets of initial conditions for all variables
in the time interval [0, 0.5]. Each dataset contains 11 data points for each vari-
able sampled uniformly from the simulations. As in the experiment with the
metabolic pathway, to compare the observations to the simulated values we use
the negative log-likelihood. The standard deviation of observations at each time
point was set to atv) = 1072. Due to the wide ranges of values that can occur
during the evaluation of the highly nonlinear system, we transform the likelihood
function to obtain the objective function F(x) = log(1 + L(z)). The transfor-
mation preserves the order and maps 0 to 0. As in the previous experiment, the
objective function was summed across all datasets.

4.3 Results

Figure 3 depicts the convergence curves for the three parameter estimation prob-
lems (rows) obtained using no surrogate, the uninformative, and the relevator
meta model (columns). The convergence rate and the obtained optima indicate
a superior performance of the relevator meta model.

Even for a relatively simple repressilator problem, it can be observed that
using a meta model significantly improves the rate of convergence relative to
the number of evaluations of the true objective function. While slight improve-
ments are obtained with the uninformed meta model, the relevator meta
model achieves a nearly perfect fit of the observations in less than 30,000 true

62 7. Luksic et al.

(A) repreSSIIator no-surrogate s-uninformed s-relevator

7 total #evals: 50000
7 min(F) = 0.0006

total #evals: 50000
min(F) = 0.0006

total #evals: 50000
min(F) = 0.0000

2000
2000
I
2000
I

Fo F o F o
8 S 8
° o - o -
T T T T T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
#evals of F #evals of F #evals of F
(B) metabolic no-surrogate s-uninformed s-relevator
o total #evals: 300000 s] total #evals: 300000 o total #evals: 300000
g - min(F) = 971.4130 é B min(F) = 1171.2349 g g min(F) = 368.5438
Fgl Fg| Fgl
8 8 4 8
8 8 8
& & &
© o - o 4
T T T T T T T T T T T T T T T T T T
0 50000 150000 250000 0 50000 150000 250000 0 50000 150000 250000
#evals of F #evals of F #evals of F
(C) 5'5y5tem no-surrogate s-uninformed s-relevator
o | total #evals: 300000 o | total #evals: 300000 o | total #evals: 300000
= min(F) = 0.1429 = min(F) = 0.1408 = min(F) = 0.0892
©
F ©
< 4
«~ 4
- 4
T T T T T T T T T T T T T T T T T T
0 50000 150000 250000 0 50000 150000 250000 0 50000 150000 250000
#evals of F #evals of F #evals of F

Fig. 3. Dependence of the quality of the best solution found so far on the number of
evaluations of the true objective function. Convergence curves for the three parameter
estimation problems: (A) Repressilator; (B) Metabolic pathway; and (C) S-System
model of a genetic network. The three curves correspond to the no-surrogate method
(left), the uninformed meta model (middle), and the relevator meta model (right).

objective evaluations. For the other two problems, the uninformed meta model
slows down the convergence of DE without surrogates. In contrast, the releva-
tor meta model outperforms the other two methods by factor of over 2.5 on
the metabolic problem and by factor of 1.6 on the s-system problem. In all the
experiments that we have conducted, the global rate of substitution was close to
the local one.

Figure4 confirms the superiority of the relevator meta model to the two
alternative methods both in rate of convergence and the achieved optimal values.
In the case of the repressilator, the relevator reaches the objective value of 10~4
after less than 30,000 true function evaluations, whereas the uninformed meta
model and DE without surrogates are not able to reach that value in 50,000
evaluations. Similarly, for the other two problems, the number of true objective
evaluations that the relevator needs to reach an objective threshold is at least
twice lower then the number of evaluations needed by the other two methods.
The uninformed model has never reached the lowest objective thresholds, while
the DE without surrogates has reached it only for the metabolic problem.

In Table 1, we compare the three methods by observing the time and the num-
ber of evaluations needed to achieve the minimal objective value obtained using

General Meta-Model Framework for Surrogate-Based Optimization 63

(A) repressilator (B) metabolic (C) s-system

§’ ® no- surogate » = no-surogate ® no- surogate

s- uninformed s- uninformed s- uninformed

Sf O s-relevator E’ © s-relevator © s-relevator
w w
5 5
281 2 g
g g 28

o -

: s 05

log(F) * \OAQ(F) \Oﬂg(F)
Fig. 4. Transposed convergence curves for the three parameter estimation problems
((A) Repressilator, (B) Metabolic pathway and (C) S-System model of genetic network)
show the number of true objective evaluations needed to reach a certain objective value
threshold. Points are missing from the end of some of the curves if that method did
not reach the threshold in the allocated total number of evaluations.

Table 1. Time (minutes), number of evaluations of the true objective function (F) and
of the meta model (MM) needed to achieve the minimal value of the objective obtained
using DE without surrogates.

no-surrogate | s-uninformed | s-relevator
Repressilator | Time 2.66 3.83 1.83
#evals(F) 50,000 50,179 22,351
#evals(MM) | 50,000 148,533 59,929
Metabolic Time 283.33 >283.33 135.5
#evals(F) 300,000 >300,000 137,620
#evals(MM) | 300,000 >1,000,000 | 363,702
S-system Time 145.66 95.17 97.00
#evals(F) 300,000 178,984 181,464
#evals(MM) | 300,000 517,936 498,335

DE without surrogates. Again, the uninformed meta model does not improve
the optimization performance for two reasons: it requires more time and more
true objective evaluations. For the s-system, it reduces both time and number of
evaluations, just like the relevator meta model, which outperforms no-surrogate
optimization for all three problems. The results show the time reduction of 30%
on the repressilator problem, 50% on metabolic and 33% on s-system. The rates
of substitution of the true objective with the surrogate evaluations are 62.7%,
62.2% and 63.6%, respectively.

5 Conclusion

We presented a novel, general meta-model framework for surrogate-based
numerical optimization. The framework is modular, easily configurable and
independent from the core optimization method. We focused on the basic,

64 7. Luksic et al.

defining feature of the meta model, the management strategy. We demonstrated
the efficiency of the strategy that supports decisions based on the relevance of
the evaluated point in contrast to uninformed substitution of the true objective
function with a surrogate function. We approached the prevalent and computa-
tionally expensive task of estimating the parameters of models of dynamical bio-
logical systems. On three examples with increasing complexity, we showed that
the use of meta model improves the efficiency of optimization. In particular, the
use of the relevator meta model for surrogate-based optimization significantly
and efficiently improves the convergence rate and the final result of the opti-
mization when considering a limited number of evaluations of the true objective
function.

Other than that, the components of the meta model and the core optimization
method can be easily adapted to a specific problem, such that the efficiency of
optimization is maximized. The adaptation introduces problems that can be
approach both from the aspect of numerical optimization and machine learning.
Such optimization of the framework is a direction for further work.

Particularly, in order to empirically evaluate the generality of the framework,
it can be instantiated using different core optimization methods. The evaluation
of the improvement in efficiency can then be established with regards to differ-
ent strategies or to the parameters of the presented general strategies. Other
issues concern more specifically the construction of the surrogate model and the
decision function. Such is the issue of learning models that can predict the val-
ues of the true objective function and the relevance of prediction at the same
time. The decision function may use information from the learned surrogate to
derive the relevance of prediction. For example by analysis of the variance of the
prediction of ensemble components or by considering the learning of other types
models that contain information about the certainty of the prediction (Bayesian
models, Gaussian process models, etc.). The problem of simultaneous prediction
of the value of the objective function and the relevance of the evaluated point
can be alternatively posed as a multi-target problem and approached by suitable
learning methods. In the direction of multi-target learning, the framework can
also be generalized towards the optimization of multi-objective problems. Fur-
thermore, the task of optimization has a temporal dimension. The evolution of
the population generates streams of information with increasing relevance. Such
information can be efficiently exploited by iterative and online learning methods.

Acknowledgments. The authors acknowledge the financial support of the Slovenian
Research Agency (research core funding No. P2-0103, No. P5-0093 and project No. N2-
0056 Machine Learning for Systems Sciences) and the Slovenian Ministry of Education,
Science and Sport (agreement No. C3330-17-529021).

General Meta-Model Framework for Surrogate-Based Optimization 65

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Arkin, A., Ross, J.: Statistical construction of chemical reaction mechanisms from
measured time-series. J. Phys. Chem. 99(3), 970-979 (1995)

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.G.: Systems
biology: parameter estimation for biochemical models. FEBS J. 276(4), 836-902
(2009)

Bagheria, S., Konena, W., Emmerich, M., Back, T.: Solving the G-problems in
less than 500 iterations: improved efficient constrained optimization by surrogate
modeling and adaptive parameter control. arXiv https://arxiv.org/abs/1512.09251
(2015)

Boussald, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf.
Sci. 237, 82-117 (2013)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Buse, O., Pérez, R., Kuznetsov, A.: Dynamical properties of the repressilator
model. Phys. Rev. E 81, 066206 (2010)

Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure
identification of biochemical and genomic systems. Math. Biosci. 219(2), 57-83
(2009)

Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution -
an updated survey. Swarm Evol. Comput. 27, 1-30 (2016)

Elowitz, M., Leibler, S.: A synthetic oscillatory network of transcriptional regula-
tors. Nature 403, 335-338 (2000)

Gennemark, P., Wedelin, D.: Efficient algorithms for ordinary differential equation
model identification of biological systems. IET Syst. Biol. 1(2), 120-129 (2007)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507-523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40
Jagaman, K., Danuser, G.: Linking data to models: data regression. Nat. Rev. Mol.
Cell Biol. 7(11), 813-819 (2006)

Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61-70 (2011)

Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Glob. Optim. 21, 345-383 (2001)

Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic mod-
eling of genetic networks using genetic algorithm and S-system. Bioinformatics
19(5), 643-650 (2003)

Kirk, P., Silk, D., Stumpf, M.P.H.: Reverse engineering under uncertainty. Uncer-
tainty in Biology: A Computational Modeling Approach. SMTEB, vol. 17, pp.
15-32. Springer, Cham (2016)

Mallipeddi, R., Lee, M.: An evolving surrogate model-based differential evolution
algorithm. Appl. Soft Comput. 34, 770-787 (2015)

Murray, J.D.: Mathematical Biology, 2nd edn. Springer, Heidelberg (1993)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg
(2006)

Pintér, J.: Global Optimization in Action: Continuous and Lipschitz Optimization:
Algorithms, Implementations and Applications. Springer, Heidelberg (1995)
Regis, R.G.: Constrained optimization by radial basis function interpolation for
high-dimensional expensive black-box problems with infeasible initial points. Eng.
Optim. 46(2), 218-243 (2013)

https://arxiv.org/abs/1512.09251
http://dx.doi.org/10.1007/978-3-642-25566-3_40

66

22.

23.

24.

25.
26.

7. Luksic et al.

Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341-359 (1997)
Su, G.: Gaussian process assisted differential evolution algorithm for computation-
ally expensive optimization problems. In: Proceedings of the IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial Application, pp. 272-276
(2008)

Sun, J., Garibaldi, J., Hodgman, C.: Parameter estimation using metaheuristics
in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biol.
Bioinform. 9(1), 185-202 (2012)

Talbi, E.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)
Tashkova, K., Korosec, P., Silc, J., Todorovski, L., Dzeroski, S.: Parameter esti-
mation with bio-inspired meta-heuristic optimization: modeling the dynamics of
endocytosis. BMC Syst. Biol. 5(1), 1-26 (2011)

Evaluation of Different Heuristics
for Accommodating Asymmetric Loss
Functions in Regression

Andrei Tolstikov(®™), Frederik Janssen, and Johannes Fiirnkranz

Knowledge Engineering Group, TU Darmstadt,
Hochschulstrasse 10, 64289 Darmstadt, Germany
andreit@ke.tu-darmstadt.de

Abstract. Most machine learning methods used for regression explicitly
or implicitly assume a symmetric loss function. However, recently an
increasing number of problem domains require loss functions that are
asymmetric in the sense that the costs for over- or under-predicting the
target value may differ. This paper discusses theoretical foundations of
handling asymmetric loss functions, and describes and evaluates simple
methods which might be used to offset the effects of asymmetric losses.
While these methods are applicable to any problem where an asymmetric
loss is used, our work derives its motivation from the area of predictive
maintenance, which is often characterized by a small number of training
samples (in case of failure prediction) or monetary cost-based, mostly
non-convex, loss functions.

1 Introduction

Recently an increasing number of regression problems require that different
emphasis is placed on over- and under-estimation. For example, consider one
of the most important parameters for predictive maintenance, the remaining
useful lifetime (RUL) of a given component. Given a reliable RUL estimation,
specific maintenance or repair actions can be planned as to minimize the overall
cost of using a particular piece of equipment. Usually, regression methods try to
predict the target value as accurately as possible, and do not distinguish between
over- and under-estimation errors. However, for the case of RUL, since the cost
of replacement of a component after a failure is usually higher than before a
failure, we would prefer to estimate the remaining lifetime pessimistically. Infor-
mally, we can say that we want to predict the target value as closely as possible
without over-estimation.

One approach to solving such problems with asymmetric loss functions is to
try to find closed-form solutions that minimize the given loss. We will briefly
discuss this approach in Sect. 3. However, such solutions typically have to make
assumptions about the model class. Moreover, for some popular model classes,
such as regression trees, closed-form solutions cannot be derived. Therefore, we
attempt a different, more general approach in this work: We will explore the
© Springer International Publishing AG 2017

A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 67-81, 2017.
DOI: 10.1007/978-3-319-67786-6_5

68 A. Tolstikov et al.

suitability of generic machine learning methods for regression under asymmetric
loss. The aim is to find simple and generally applicable methods that perform
better than basic regression methods for symmetric loss functions. We tested
several simple heuristics, which aim at offsetting the effects of asymmetric loss.

In this paper, we focus the discussion on predictive maintenance (PM),
although the problem has also been investigated in other areas, such as com-
putational finance. The specifics of predictive maintenance in this case are that
the loss function may be explicitly defined based on the monetary cost involved
when a certain failure happens or a maintenance procedure is performed. On
the other hand, the difficulty in predictive maintenance often lies in the lack of
data describing the failure, since failures might be quite rare and costly. Yet,
the total amount of data can be quite high, because data describing normal
operation without failures are usually abundant.

We will start with a formal definition of the problem (Sect.2) and a reca-
pitulation of previous work in this area (Sect.3). The core contribution of the
paper is a comparison of various methods which address this problem empiri-
cally, via a static or dynamic shift of the target value. These are discussed in
Sect. 4, and experimentally compared in Sect. 5. From the obtained results, we
draw our conclusions in Sect. 6.

2 Problem Formulation

The regression task is that given a set of training examples (x;, y;) with x; € R™
and y € R, find a function g(x;), which minimizes an expected loss C'(g(x), y) for
new pairs (x,y). The input variables x = (z1, 2, ..., ;) are called regressors,
the target value y is also known as the regressand. The function C(y’, y) specifies
the penalty assigned to a sample used in the model training, when the prediction
is not perfect. The learning stage finds for a given type of regression function
y' = g(8,x) such a set of parameters 3, that the overall cost of mis-prediction
for all samples ¢ is minimized, i.e.,

g = argminZC(y’=9(57Xi),yz‘) (1)

Additional constraints may be included to ensure that no over-fitting occurs.

This formulation fits into a wider context of cost-sensitive learning, where
various costs pertaining the data and predicted results are considered. However,
in machine learning, the problem has typically been considered in the context of
classification, where different costs are associated with different ways of mistak-
ing one class for the other [4]. Instead, we are dealing with regression problems
and continuously changing loss functions.

In most cases, the loss function is such that C(y',y) = C(y’ — y), that is
the loss function depends only on the error value. Moreover, the penalty is zero
only for perfect prediction (C(y' =y,y) = 0) and every error is penalized, i.e.,
C(y' # y,y) > 0. In terms of RUL prediction, if we want to reduce the number of
over-estimations, we should assign a higher loss to the training instances which

Accomodating Asymmetric Loss in Regression 69

Asymmetric step loss Asymmetric Linex loss Asymmetric linear with step
wn
o © 1
<
o ©
2
< 4 o 4
0
o Ze | 2
o o | o O 4
p o
0 -
S] -
= o 4 o 4
e T
-3 -2 -1 0 1 2 3 -3 -2 -1 (6) 12 3 -3 -2 -1 0 1 2 3
(a) (b) (c)

Fig. 1. Examples of asymmetric loss functions. Step loss (a) is used when we want to
completely avoid over-predicting, linex loss (b) when only the costs for large positive
and negative errors are significantly different, and asymmetric linear loss with step (c)
offers the opportunity to model actual monetary cost.

over-estimate the target value, whereas an under-estimating by the same error
should result in a smaller penalty. Thus, in this case, the loss function becomes
asymmetric, i.e., C(§) > C(—0) V§ > 0.

Examples of asymmetric loss function include step loss, which describes a
situation where we would like to equally penalize all cases of over- or under-
estimation (Fig.1 (a)), or the linex function, which consists of a linear form in
the negative range, an exponential function in the positive reange, connected by
a symmetric quadratic function for small positive or negative values (Fig.1 (b)).
For a predictive maintenance domain, it would be of particular interest to use
a loss function that reflects the actual gain or cost of equipment operation or
failure. In many cases, such functions can be quite easy to define, e.g., via piece-
wise linear functions. However, this also means that these function most likely
will not be smooth or convex, which restricts the use of gradient-based numerical
methods (cf. Fig. 1 (c)).

3 Related Work

The first analytical work exploring the effect of asymmetric loss functions on
regression was by Granger [6]. The author showed that in some simple cases of
asymmetric cost functions and a Gaussian distribution of the estimation error,
one can obtain an optimal solution by first solving the problem with a conven-
tional method using symmetric quadratic loss, and then shifting its predictions
by a certain value, which depends on the loss function and standard deviation
of error.

Christoffersen and Diepold [2] extended this work and showed that for every
loss function which depends only on the estimation error C(y’ — y), the optimal
estimation under asymmetric loss also can be obtained by adding to a mean a
certain value depending on the loss function and conditional moments of error

70 A. Tolstikov et al.

distribution of order two and higher. Specifically, we can view regression as a
method, which, for each set of regressor variables (x1, s, ...,z,), tries to esti-
mate a probability distribution of regressand Q(y,x) = Pr(y | x1,22,...,Zn),
and then provides a solution ¢ which minimizes a specific loss function for a given
distribution. For a symmetric quadratic loss function, the solution g approxi-
mates the expected value E(y | x1,22,...,2,) and is therefore an appropriate
starting point for an adjustment [2].

Thus, if we have a basic regression model 3’ = R(x), which uses a symmetric
loss function, then the solution to a problem with asymmetric loss is in the form:

§=9(x) = R(x) = B(R,x) + S(\(Q(y, %)), C) (2)

where B(R,x) is a bias of regression R, and the adjustment shift S(.) depends
on moments of variance Ar with respect to y of probability distribution Q(y,x)
and the loss function C(.). The importance of this result is that it shows
that a solution of form (2) can give an optimal solution. However, it is still
not a trivial problem, as we still need to find the probability distribution
Q(y,x) = Pr(y | 1,22,...,2,). Attempts to address this problem include, for
example [11], which extends [2] by proposing a method for estimating a con-
ditional probability distribution for a given combination of regressors using the
bootstrap [9]. However, it assumes that there is a sufficient number of data points
for each combination of regressors (z1,z2,...,2,), which may not be the case
for many real-life problems.

One important implication of these theoretical results with respect to appli-
cations in predictive maintenance is that in order to have an optimal adjustment,
we need to estimate the error probability distribution conditional on the regres-
sors. Probability distribution estimation requires a large volume of data for each
point, and thus might be infeasible for predictive maintenance applications. The
reason for this is that datasets for fault prediction consist of points collected
after actual failures, which implies that the cost of getting each point can be
quite high. Thus, we have to find methods that allow to correct the basic model
using only a small number of available training points.

The scope of our paper is close to [8], which compares multiple heuristics for
the case of asymmetric loss functions. There is a difference in focus, however. In
[8] the author targets systems with possibly varying loss functions, and suggests
to create a model of variance first, and later derive corrections from local or
global variances for specific loss functions. This approach is more flexible but
may increase error due to assumption of Gaussian distribution of residuals. Some
of the methods we are testing are based on the KNC method proposed in [8].

Another related work is [12], where authors propose to compute polynomial
adjustments based only on a predicted value. Taking into account the application
domain of the paper (positive values such as housing prices) and restating the
underlying assumption about the data (variability of house prices does depend
on the house price), it is reasonable to assume that this approach might work
for similar datasets. However, we do not include this method in our comparison,
since it requires a convex loss function.

Accomodating Asymmetric Loss in Regression 71

In the following, we explore several simpler approaches which try to estimate
a good prediction shift empirically from the given dataset.

4 Empirical Approaches Based on Prediction Shift

Machine learning offers a wealth of methods which can be used for regression.
Each of them offers unique capabilities, which may be helpful for addressing a
specific estimation problem. Most of them explicitly or implicitly assume sym-
metric cost functions. We would like to preserve this breadth of capabilities,
but add to it the ability to handle the case of asymmetric loss. One approach
could be to adapt individual techniques so that they can compute a direct solu-
tion to the global optimization given by (1). However, in many cases this may
be impractical, since both assumed model and loss function might not be con-
vex and differentiable, which would make finding the global minimum extremely
difficult.

Thus, we would like to adopt a two-step approach. At the first step a known
and proven machine learning method is used to estimate the required value,
providing a regression function R(x). At the second step, a shift function S(x)
is used to correct the original regression model. The computation of this function
is based on the recognition results and achieved errors from the first model. Thus
the complete solution to Eq. 1 is in the form:

9(x) = R(x) + 5(x) 3)

This is a reasonable approach, since this is a simplified version of (2), which
estimates the regression method bias and optimal shift terms of (2) together.

Formally, we would like to solve a problem of minimizing either the average
or combined loss, given a solution of a basic black-box machine learning method
y' = R(x) and its prediction errors on the training samples (6; = y; — v;, X;)-
From this, we need to obtain a shift function S(x) from a class of functions
S(,x), which minimizes the asymmetric loss given the errors of the basic model.
Formally, we want to find the parametrization such that

~ = arg min (ZC(& + S(’Y,X))>~ (4)

There are several straight-forward approaches for finding a suitable shift for
compensating an asymmetric loss. We later compare variants of the following
basic methods, which are described in more detail in the following sections and
summarized in Table 1:

— Constant shift: Given the results of a basic machine learning method, find
a constant (the same for every instance) correction shift, which reduces the
expected loss. This constant shift is then applied to the estimation given by
the basic model.

72 A. Tolstikov et al.

— Pointwise shift: Having the results of a model with a (presumably) symmetric
loss, transform the training data by adding a specific shift to each training
point, and then re-train the model. Two cases can be considered: First, the
shift may correct a significant prediction failure, or, second, the shift for each
point may reflect the difference between the loss accrued with an asymmetric
function compared to the loss accrued in the symmetric case.

— Learned model-based shift: Having a first-cut result of how well the regression
approximates the data, learn a meta model which, for a given basic model,
attempts to find the value or at least the sign of the error for each instance,
and then compensate according to the loss function.

— Assumed error model-based shift: This is based on the analytical results men-
tioned in the Sect. 3. Since the optimal shift for a given loss function depends
on the moments of error distribution, we can obtain a model of moments
under certain assumptions. In this paper, we assume that at each point of the
state space the error distribution is Gaussian, and that the standard deviation
for each point linearly depends on the regressor values.

—~ KNC Methods: Direct (i.e. using direct distribution instead of variance) vari-
ations of the methods introduced in [8], which attempt to estimate the con-
ditional probability distribution based on nearest-neighbour errors.

Being most obvious, the constant shift method serves as a baseline heuristic
for the comparison of the other methods. Another possible baseline is the direct
computation of optimum solution g(8,x) of Eq. 1, using for example, a gradient
descent method. However, the direct optimum is difficult to find for complex
forms of regression and loss functions, and the comparison is only applicable
within the same type of regression functions.

« Probability density * Loss function « Average Loss + Probability density « Loss function + Average Loss
Shift for linex loss Shift for asymmetric linear with step

0.015
J
)
0.015
J

densit)
Y 04016
L
I
densit
Y 0.01(‘{
L

Probability
0.005
L

10 15 20 25 30

Probability

0.005
L
50 "100 150 200 250 300

5
Average Loss and Loss function

Average Loss and Loss function

—/

r T T T T 1 r T T T T 1
-200 -100 0 100 200 300 -200 -100 0 100 200 300

0
0.000
L
0
L
0.000
L

(a) (b)

Fig. 2. Examples of computing constant shift for different loss functions. In green
color is the probability density of errors produced by a given primary machine learning
method. The probability distribution is shifted with respect to the loss function, and for
each shift the average loss is computed. Since this is a simple uni-dimensional function,
the optimum shift can be easily found even for inconvenient loss functions. The dotted
lines show the zero shift (red) and the shift achieving minimum average cost (blue).
(Color figure online)

Accomodating Asymmetric Loss in Regression 73

4.1 Constant Shift

Assume that we have a loss function C'() and for a given regression method and
training dataset we have an approximation function y’ = R(x). The total loss
for a dataset can then be computed by summing up the loss for all instances as
> Clyi — vi)-

Figure 2 shows two examples of computing a dependency of the average loss
on the shift value using the CPU dataset from the UCI collection [10]. Here,
linear regression was used as a primary model and the error density displayed is
for the training set.

4.2 Pointwise Shift

The approach in the previous section applies the same constant shift to all pre-
dictions. In this section, we discuss two approaches for making the magnitude
of the shift depend on the instance that is shifted.

Shift of Over-Predicted Instances of Training Set. This method, referred
to later as shift to zero, is ignorant of the loss function. Instead, it aims at
reducing the number of over- (or under-) predicted instances.

Suppose the basic regression model 3y = R(x) was trained using the set
of pairs (x;,y;). The subsequent model § = R(x) is trained using the same
algorithm as R, but using set of pairs (x;,y;), where, for the case of avoiding
over-prediction

)Y if R(xi) >y
YT\ Rx) if R(xi) < ys.

Non-linear Shift of Individual Instances of Training Set. The idea of this
approach is to externally emulate the effects asymmetric loss function without
considering the details of the chosen regression method. We assume that we know
both the loss function optimized by the method, which we denote as M (), as
well as the required asymmetric loss function C(9). Typically, we can just assume
that M (d) is symmetric and quadratic. Another assumption is that both loss
functions have the same loss value at the zero point. Furthermore, we denote the
parts of loss functions for positive and negative § as M+ (8), C*(6) and M~ (9),
C~(0), respectively.

First, we use the training set to create a regression model and then obtain the
error values Ay; = y; — y; for each of the training instances. The total accrued
loss for the training set under the method loss function is Ly = >, M(Ay;),
and assumed to be optimal for the method and the dataset. Then we modify the
label values y of the training set so that the total cost stays the same under the
required loss function

Lr=) M(A§:)=Lu

74 A. Tolstikov et al.

The labels are modified by substituting each y; with ¢; so that

VimUT s ot (0) = MY (Ay) if Ay, > 0

Then, we obtain a new regression model from this modified training set, and use
this newly learned model for prediction.

4.3 Learned Model-Based Shift

This is another generic machine learning approach, where we want to learn
how much offset is needed for every point to compensate the difference between
whatever loss function used by a basic regression method and the required loss
function C(9).

Here, we train the basic model on a training set of pairs (x;,y;), then use
an adjustment set of different pairs (x;,y;) for obtaining the errors §; = y; —Yj
and the corresponding losses I; = C’asc(éj). We use an ascending version of the
loss function C'(x) defined as

Cunel) = {C(‘” s

—-C(0) ifo<0
Then we use pairs (I;,x;) to train a regression function L(x) based on these
observed losses. For the final regression, we can use the loss to off-set the pre-
diction either in all cases (method L2), or only when we predict that an over- or
under-prediction occurs (method L1).

4.4 Assumed Error Model-Based Shift

As mentioned before, this approach makes use of the analytical results described
in Sect. 3. The general idea is as follows: since the optimal shift at a point depends
on two functions, the moments of error probability distribution and the loss
function, we can separate the computation of the shift from the modelling of
the error distribution. However, there must be an assumed model of probability
distribution, which connects these two stages. Formally, we assume point error
distribution can be represented by a function F

Pr(6 | x) = E(4, P(1,x))

where ¢ is the error value, x is a vector of regressors, P is a function of parameters
p of a probability distribution, and [are parameters describing the dependency of
p on x. We need to assume both the type of the distribution £ and the function
type of P, and then fit a maximum likelihood model so that

| = argmin (Zlog (s, P(l Xz))))

Accomodating Asymmetric Loss in Regression 75

Then, having fixed the parameters [and the function p = P(l,x), we can
substitute the general E(d, P(l,x)) with a specific £(,x), and then find for
specific loss and error functions C(4) and E‘(é, x), a dependency of the local
shift on the distribution parameters S(x), which minimizes expected loss

S(x) = arg min /_OO C(O)E(G — S,x)dé (5)

In the simplest scenario, which we explore here, F is a normal distribution,
and P models standard deviation as linear function ¢ = a-x + b. Then the
combination error function will be either (method AM)

1 __=w?
FE 5’ e — 2(a-x+b)? 6
Ox) = axr o ©

or, if we enforce an assumption of unbiased basic regression (method AZ)

1 Y L
E 5’ e — 2(a-x+b)2 7
(6.) (a-x+b)\/27re @)

The shift value from Eq.5 becomes a function of standard deviation S(x) =
S(a-x 4 b) = S(0), obtained from a single dimension optimization. Figure 3
shows examples of loss functions and dependency S(o) of optimal shift on o
under assumption of Gaussian noise.

The benefit of this approach is that error data modelling is performed inde-
pendently of the loss function, and, once the error model is found, any loss func-
tion can be used. Moreover, since finding an optimal shift for a given parameter of
the error probability distribution involves only a single dimension optimization,
it can be easily done for various types of loss functions, including non-convex,
discontinuous or non-differentiable functions.

Correction for Non-Gaussian Noise. The assumption of Gaussian noise may
mean that the shifts computed for specific values of the standard deviation would
be either too big or too small for a particular error distribution. We can try to
offset the effect of this assumption by correcting the shift using the information
obtained while computing the constant shift model from the Sect. 4.1. Constant
shift computation does not assume a specific model for the error distribution and
is optimal for a given distribution. That is, for the complete prediction set, with
error standard deviation o.¢q;, the computed optimal shift for Gaussian noise
should be S (0total), whereas the constant shift method provides value Scs. We
therefore can adjust the shift computation by a factor of Scg/ S (0total) (methods
AMC and AZC)

__5¢5 gia.x
S(X) B S(O—total) S(" b)

76 A. Tolstikov et al.

e ~ A
©
=
© - =
8 3
k| £
7] 8
- -
~
o - N
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 00 05 10 15 20 25 30
Error Standard deviation
(a) (b)

Fig. 3. Examples of asymmetric loss functions and corresponding computed optimal
shift 8 (o) under the assumption of Gaussian noise. Red is an example with quadratic
loss on the left side and piece-wise linear on the right. It is an example of a difficult
loss function, as it is both non-differentiable and non-convex. Blue has quadratic on
the left and z* on the right. Green is the asymmetric quadratic. Notice, that for some
loss functions the direction of the shift may change. (Color figure online)

4.5 k-Nearest Neighbors Based Methods

KNC [8] uses estimation errors 41, . .., of k nearest neighbours of each sample
1 of the training or adjustment set as a sample of the conditional distribution. In
[8] this sample is used to compute the variance. We suggest to use it to directly
estimate the required shift as (methods Ka and Kt)

S; = arg min <ZC(5j — Si)> (8)

J

Since k is small and this is only single dimensional optimization, it can be done
for a wide class of loss functions.
Other versions tested here include:

— Univariate direct KNC - version of uKNC from [8], which uses only predicted
value to find nearest neighbours (methods uKa and uKt).

— Using only features which are useful for primary regression method (methods
Kfa and Kft).

— The last variation is a combination an attempt to combine a constant shift
(which is essentially a simplest linear model) method with KNC. It uses linear
regression on values S; (methods Kla and Klt).

5 Experimental Comparison of Methods

We implemented the heuristics described above, and tested them on thirteen,
mostly small-sized (as common in predictive maintenance applications) datasets

Accomodating Asymmetric Loss in Regression 7

from the UCI [10] and WEKA [7] repositories.! Each loss function was adapted
to each dataset so that a significant cost difference was observed between over-
and under-predicted instances. Specifically, the cost of over-prediction was on
average 10 times higher for training instances of linear regression. Since some
of the heuristics require an additional dataset for parameter adjustment, each
dataset was randomly divided into three roughly equal parts, one of them used for
model training, one for adjustment and one for testing. In case the adjustment set
was not needed, it was used as additional training data. All possible assignments
of dataset parts were used and results averaged with the geometrical mean of
improvement ratios.

5.1 Regression Methods Used

As base learners, we used the following basic regression methods from the Weka
library [7]:

— Linear regression: Loss function — quadratic.

— M5 prime [5]: Loss function — quadratic (model tree of linear regressions).

— k-Nearest Neighbor: No explicit loss function. However, since mean value
of nearest neighbors are used, it is essentially equivalent to quadratic loss
function.

5.2 Loss Functions Used

We used the following types of asymmetric loss functions:

— Asymmetric quadratic function C(6,a) = %62 ifé<0
in the form, for a € (0, 4+00) 4= ad? if5>0

— Asymmetric polynomial C(6,a) = 52 ifd <0
in the form, for a € (0, 4+00) @)= §2ta if 5> 0

— Asymmetric linear C(6,a) = % ifo <0
in the form, for a € (0, +00))= ad if6>0

— Asymmetric linex
in the form, for a # 0

— Asymmetric linear function C(6,a,b,5) = {—a5 if § <0

C(6,a) =e™ —ad —1

with a step (linstep) bb+s ifd6>0

For a > 0, the linex function behaves as a linear function for large negative
§, as exponential for large positive d, and as (ad)?/2 for & — 0. For negative
a, linear and exponential parts are exchanged. This loss function is appropriate
for the cases when for small errors there is no cost difference, but there is a
significant difference between large positive and negative errors.

! The datasets used are auto93.arff, autoMpg.arff, autoPrice.arff, cloud.arff, cpu.arff,
echoMonths.arff, elevators.arff, housing.arff, meta.arff, pyrim.arff, strike.arff, tri-
azines.arff, and veteran.arff.

78 A. Tolstikov et al.

The asymmetric linear function with a step is especially relevant for real-life
predictive maintenance scenarios as it reflects actual monetary costs. Specifically,
different slopes on both sides reflect the difference between the lost utility from
yet functional part, if the said part is replaced before the failure, versus the cost
of loss of use of the whole piece of equipment, when it cannot be used due to
a failure. The step reflects the cost of repair after the failure versus the cost of
replacement of yet functional part. For many optimization methods this function
is rather inconvenient to work with, as it is discontinuous and not differentiable
at certain points, and not convex.

5.3 Results

The results of experiments are summarized in Fig.4, which shows the average
performance over all loss functions and Fig. 5, which shows the results for the
individual loss functions. The type of diagram used for these figures is proposed
by Demsar [3], and drawn by R scmamp package [1]. It is useful for performance
comparison of multiple methods on multiple datasets. It shows the average rank

Table 1. Abbreviations of method names used in diagrams.

Abbr | Method Described in
CSA | Constant shift computed using adjustment set Sect. 4.1
CST | Constant shift computed using training set Sect. 4.1
PZA | Point-wise shift computed using adjustment set Sect. 4.2
PZT | Point-wise shift computed using training set Sect. 4.2
PZa | Nonlinear point-wise shift using adjustment set Sect. 4.2
PZt | Nonlinear point-wise shift using training set Sect. 4.2
L1 Learned shift with one-sided correction Sect. 4.3
L2 Learned shift with two-sided correction Sect. 4.3
AM | Assumed model Sect. 4.4
AMC | Assumed model, with correction Sect. 4.4
AZ Assumed model, zero mean Sect. 4.4
AZC | Assumed model, zero mean, with correction Sect. 4.4
Ka Direct KNC computed using adjustment set Sect. 4.5
Kt Direct KNC computed using training set Sect. 4.5
uKa | Univariate direct KNC computed using adjustment set | Sect.4.5
uKt | Univariate direct KNC computed using training set Sect. 4.5
Kfa | Direct KNC with feature selection, using adjustment set | Sect. 4.5
Kft | Direct KNC with feature selection, using training set Sect. 4.5
Kla | Linear model of direct KNC, using adjustment set Sect. 4.5
Klt | Linear model of direct KNC, using training set Sect. 4.5

Accomodating Asymmetric Loss in Regression 79

CD

—_—

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
L | I R

CSA— AM
CST— Kla
Kt—— AZ
uKa—— AMC
Ka——— Kt
Kf——mmm™— uKt
PZT Kft
AZC PZA
L1 Basic
NLt NLa
—L2

Fig. 4. Demsar [3] diagram, showing the critical distance of a Friedman test for the
average ranking of methods. The scale on top is the average rank of a method. Better
methods are on the left. The rank differences between methods connected with a thick
line are not significant. The abbreviations for methods are explained in Table 1.

of each method (in our case each adjustment heuristic) and uses this as the basis
for an estimate of the significance of the observed performance difference. A lower
average rank (left side of the diagram) means better performing method. The
thick lines connecting some of the results which are within the critical difference
(CD at the left top corner) bounds. Thus, for methods that are connected in
this way, the rank differences are not significant (significance level o = 0.05).

For space efficiency, the diagrams show only abbreviated names of the meth-
ods; tthe abbreviations are explained in Table 1.

Somewhat surprisingly, the constant shift method proved to be the most
consistent method of adjustment. Apparently, the case of similar moments of
variance across the entire space is quite common. The KNC-based methods pro-
vided also good results, which can be expected, taking into account that they
essentially try to estimate local error distributions. Non-linear point correction
and meta-model adjustment of expected over-prediction performed better in
some cases, but often also provided extremely poor solutions, and therefore had
a poor average improvement results. It is, however, possible that for some known
scenarios such methods might be beneficial. For example, the overall performance
of the non-linear shift for asymmetric quadratic shift was the best.

80 A. Tolstikov et al.

Im

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
L ! L L -

CcD

M5P

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
L L L J

L L - L
csT AM csT AMC
CSA AZ csA— AM

Kit AMC uKa KI
PZT Ki Kit: L1
Kfa B Kfz B
uKa k Ka PZA
Ka Kit AZC NLa
AZC K PZT K
NLt PZA NLt Kf
L1 L——NLa AZ K
L2 L2
kNN quadratic
CD cD
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
L P P L - P A - L P
csA— L1 NLt— AZC
Kt— AZC Kit Kt
Kit Kla cSsT Kla
Ka AM CSA ukt
uKa NLa uKa Ki
ukt AZ NLa AM
CST PZA L1 AZ
Kit AMC Ka AMC
Kfa NLt Kfa Basi
PZT B PZT PZA
] L2 Ll
polynomial linear
cD cD
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[L L P) [S TS S L P

CSA—] AMC CST- PZT
PzT— Kt CSA- K
csT— Kla Kit—]

Kit Basi uKa ukt
uKa ukt Ka Kit
L1 Kit Kia AMC
Kfa AM AZC NLt
Ka PZA AM PZA
NLt AZ Kla Basi
AZC NLa AZ —-NLa
L—L2 Lz
linex linstep
cD cD
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23456 7 8 9 1011 12 13 14 15 16 17 18 19
L - 1 SR W S S W
csa- Kla CST: Kia
csT— AMC CSA PZT
PZT—— Kit M PZA
Kit ukt AZ ukt
uKa Basi uKa Kit
Kfa———— NLt Ka: I
Ka——— AZ AZC L1
— AM Kfa Basi
AZC PZA AMGC NLt
Kt NLa Kt Li—12
L2 —NLa

Fig. 5. Demsar [3] diagrams for different basic regression methods and loss function
types. M5P, Im, and kNN are basic regression methods, linear, quadratic, polynomial,
linex, and linstep are asymmetric loss functions described in Sect. 5.2

Accomodating Asymmetric Loss in Regression 81

6 Conclusion

In this paper, we made a first step towards analyzing the problem of predicting
with asymmetric continuous loss functions. This prediction problem commonly
occurs in predictive maintenance applications, where the task is to estimate
the remaining useful lifetime of a system component. The prediction should
approximate the real lifetime as closely as possible, but should never overpredict
the real value because that would mean that the component breaks before it is
repaired or replaced.

We reviewed theoretical results that show that under some common assump-
tions, the problem can be viewed as finding an optimal shift value for the predic-
tions of a model that has been trained with a conventional regression learner. In
the following, we investigated and empirically compared a few simple heuristics
for shift estimation, namely the use of a constant shift, a pointwise shift, learned
and assumed shift models.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF') under the “An Optic’s Life” project (no. 16KIS0025).
Thanks to the reviewers of this and a previous version of the paper, in particular for
the pointers to prior work.

References

1. Calvo, B., Santafe, G.: scmamp: Statistical comparison of multiple algorithms in
multiple problems. R J. 8(1), 248-256 (2016)

2. Christoffersen, P.F., Diebold, F.X.: Optimal prediction under asymmetric loss.
Econom. Theor. 13, 808-817 (1997)

3. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

4. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001), vol. 2. pp.
973-978. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (2001)

5. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, [.H.: Using model trees for
classification. Mach. Learn. 32(1), 63-76 (1998)

6. Granger, C.W.J.: Prediction with a generalized cost of error function. Oper. Res.
Q. 20(2), 199-207 (1969)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
Weka data mining software: An update. SIGKDD Explor. 11(1), 10-18 (2009)

8. Herndndez-Orallo, J.: Probabilistic reframing for cost-sensitive regression. ACM
Trans. Knowl. Discov. Data 8(4), 17.1-17.55 (2014)

9. Léger, C., Romano, J.P.: Bootstrap choice of tuning parameters. Annal. Inst. Stat.
Math. 42(4), 709-735 (1990)

10. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

11. McCullough, B.: Optimal prediction with a general loss function. J. Comb. Inf.
Syst. Sci. 25(14), 207-221 (2000)

12. Zhao, H., Sinha, A.P., Bansal, G.: An extended tuning method for cost-sensitive
regression and forecasting. Decis. Support Syst. 51(3), 372-383 (2011)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Differentially Private Empirical Risk
Minimization with Input Perturbation

Kazuto Fukuchi'®), Quang Khai Tran?, and Jun Sakumal»?

1 Department of Computer Science,

Graduated School of System and Information Science,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
kazuto@mdl.cs.tsukuba.ac.jp , jun@cs.tsukuba.ac. jp
2 Intelligent Systems Laboratory, Secom Co., Ltd.,

10-16, Shimorenjaku 8-chome, Mitaka City, Tokyo 181-8528, Japan
ku-chan@secom.co. jp

3 JST CREST, Ks Gobancho 6F, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan

Abstract. We propose a novel framework for the differentially private
ERM, input perturbation. Existing differentially private ERM implicitly
assumed that the data contributors submit their private data to a data-
base expecting that the database invokes a differentially private mech-
anism for publication of the learned model. In input perturbation, each
data contributor independently randomizes her/his data by itself and
submits the perturbed data to the database. We show that the input
perturbation framework theoretically guarantees that the model learned
with the randomized data eventually satisfies differential privacy with
the prescribed privacy parameters. At the same time, input perturbation
guarantees that local differential privacy is guaranteed to the server. We
also show that the excess risk bound of the model learned with input
perturbation is O(1/n) under a certain condition, where n is the sample
size. This is the same as the excess risk bound of the state-of-the-art.

Keywords: Differential privacy - Empirical risk minimization - Local
privacy - Linear regression - Logistic regression

1 Introduction

In recent years, differential privacy has become widely recognized as a theoretical
definition for output privacy [5]. Let us suppose a database collects private infor-
mation from data contributors. Analysts can submit queries to learn knowledge
from the database. Query-answering algorithms that satisfy differential privacy
return responses such that the distribution of outputs does not change signifi-
cantly and is independent of whether the database contains particular private
information submitted by any single data contributor. Based on this idea, a great

Q.K. Tran—This work was done when he was a master’s student in the Department
of Computer Science, Graduated School of SIE, University of Tsukuba.
© Springer International Publishing AG 2017

A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 82-90, 2017.
DOI: 10.1007/978-3-319-67786-6_6

Differentially Private Empirical Risk Minimization with Input Perturbation 83

deal of effort has been devoted to guaranteeing differential privacy for various
problems. For example, there are algorithms for privacy-preserving classifica-
tion [8], regression [12], etc.

Differentially private empirical risk minimization (ERM), or more generally,
differentially private convex optimization, has attracted a great deal of research
interest in machine learning, for example, [1,2,8,11]. These works basically follow
the standard setting of differentially private mechanisms; the database collects
examples and builds a model with the collected examples so that the released
model satisfies differential privacy.

Recently, the data collection process is also recognized as an important step
in privacy preservation. With this motivation, a local privacy was introduced as
a privacy notion in the data collection process [3,9,13]. However, the existing
methods of differentially private ERM are specifically derived for satisfying dif-
ferential privacy of the released model, and thus there is no guarantee for the
local privacy.

In this work, we aim to preserve the local privacy of the data and the differ-
ential privacy of the released model simultaneously in the setting of releasing the
model constructed by ERM. The goal of this paper is to derive a differentially
private mechanism with an utility guarantee, at the same time, the mechanism
satisfies the local privacy in the data collection process.

Table 1. Comparison of differentially private ERM. All methods assume that 2 norm
of the parameters is bounded by 7, the loss function is ¢-Lipschitz continuous. n and
d denote the number of examples and the dimension of the parameter, respectively.

Method Perturbation | Privacy Utility Additional
requirements
Objective [2,11] obj. func. (€, 6)-DP for model @] (W) A-smooth
Gradient Descent [1] | grad. (e, 6)-DP for model (@] %
Input (proposal) example (e, 8)-DP for model o <W> A-smooth
B+/€,8)-DLP for data uadratic
q
s.t. O(v/na) =3 loss

Related Work. Chaudhuri et al. [2] formulated the problem of differentially pri-
vate empirical risk minimization (ERM) and presented two different approaches:
output perturbation and objective perturbation. Kifer et al. [11] improved the
utility of objective perturbation by adding an extra £s regularizer into the objec-
tive function. Moreover, they introduced a variant of objective perturbation
that employs Gaussian distribution for the random linear term, which improves
dimensional dependency from O(d) to O(v/d) whereas the satisfying privacy
is relaxed from (e, 0)-differential privacy to (e, d)-differential privacy (Tablel,
line 1). Objective perturbation is work well for smooth losses, whereas Bassily
et al. [1] proved that it is suboptimal for non-smooth losses. They developed
the optimal algorithm of (e, §)-differentially private ERM, named differentially

84 K. Fukuchi et al.

private gradient descent. It conducts the stochastic gradient decent where the
gradient is perturbed by adding a Gaussian noise. They showed that the expected
empirical excess risk of the differentially private gradient descent is optimal up to
multiplicative factor of logn and log(1/d) even for non-smooth losses (Table 1,
line 2). They also provides the optimal mechanisms that satisfy (e, 0)-differential
privacy for strong and non-strong convex losses. Jain et al. [8] showed that for
the specific applications, the dimensional dependency of the excess risk can be
improved from polynomic to constant or logarithmic. These studies assume that
the database collects raw data from the data contributors, and so no attention
has been paid to the data collection phase.

Recently, a new privacy notion referred to as local privacy [3,9,13] has been
presented. In these studies, data are drawn from a distribution by each contrib-
utor independently and communicated to the data collector via a noisy channel,;
local privacy is a privacy notion that ensures that data cannot be accurately
estimated from individual privatized data. [3] has introduced a private convex
optimization mechanism that satisfies the local privacy. Their method has guar-
antee of differential privacy for the model, whereas its privacy level is same as
the differential local privacy.

Our Contribution. In this study, we propose a novel framework for the dif-
ferentially private ERM, input perturbation (Table 1, line 3). In contrast to the
existing methods, input perturbation allows data contributors to take part in
the process of privacy preservation of model learning. The mechanism of input
perturbation is quite simple: each data contributor independently randomizes
her/his data with a Gaussian distribution, in which the noise variance is deter-
mined by a function of privacy parameters (¢,0), sample size n, and some con-
stants related to the loss function.

In this paper, we prove that models learned with randomized examples
following our input perturbation scheme are guaranteed to satisfy (ce,d)-
differential privacy under some conditions, especially, (e, §)-differential privacy
if « = 1 (Tablel, line 3, column 3). The guarantee of differential privacy is
proved using the fact that the difference between the objective function of input
perturbation and that of objective perturbation is probabilistically bounded. To
achieve this approximation with randomization by independent data contribu-
tors, input perturbation requires that the loss function be quadratic with respect
to the model parameter, w (Table1, line 3, column 5).

From the perspective of data contributors, data collection with input per-
turbation satisfies the local privacy with the privacy parameter (8e,d) where
B = O(y/na) (Tablel, line 3, column 3). In the input perturbation framework,
not only differential privacy of the learned models, but also privacy protection
of data against the database is attained. From this perspective, we theoretically
investigate the influence of input perturbation on the excess risk.

We compared the utility analysis of input perturbation with those of the
output and objective perturbation methods in terms of the expectation of the
excess empirical risk. We show that the excess risk of the model learned with
input perturbation is O(1/an) (Tablel, line 3, column 4). If a = 1, the util-

Differentially Private Empirical Risk Minimization with Input Perturbation 85

ity and the privacy guarantee of the model are equivalent to that of objective
perturbation.
All proofs defer to the full version of this paper due to space limitation.

2 Problem Definition and Preliminary

Let Z = X x) be the domain of examples. The objective of supervised prediction
is to learn a parameter w on a closed convex domain W C R? from a collection
of given examples D = {(x;,y;)}!~,, where w parametrizes a predictor that
outputs y € Y from x € X. Let £ : W x Z — R be a loss function. Learning
algorithms following the empirical risk minimization principle choose the model
that minimizes the empirical risk:

Jw; D) =+ 3" tfaw, (@i,) + +2(aw), 1)
i=1

where 2(w) is a convex regularizer. We suppose that the following assumptions
hold throughout this paper: (1) W is bounded, i.e., there is 7 s.t. [|w]|2 < 7 for all
w € W, (2) ¢ is doubly continuously differentiable w.r.t. w, (3) ¢ is (-Lipschitz,
ie., [Vlw, (z,y))]]2 < ¢ for any w € W and (z,y) € Z, and (4) ¢ is A-smooth,
Le., [|[V2(w, (x,y))|]2 < A for any w € W and (z,y) € Z where || - | is the {5
matrix norm.

Three stakeholders appear in the problem we consider: data contributors,
database, and model user. Each data contributor owns a single example (x;, y;).
The goal is that the model user obtains the model w learned by ERM, at the
same time, privacy of the data contributors is ensured against the database and
the model user. Let us consider the following process of data collection and model
learning.

1. All the stakeholders reach an agreement on the privacy parameters (e,?)
before data collection

2. Each data contributor independently perturbs its own example and sends it
to the database

3. The database conducts model learning at the request of the model user with
the collected perturbed examples and publishes the model

Note that once a data contributor sends her perturbed example to the database,
she can no longer interact with the database. This setting is suitable for real
use, for example, if the data contributors sends their own data to the database
via their smartphones, the database is difficult to always interact with the data
contributors due to instability of internet connection. In this process, the privacy
concerns arise at two occasions; when the data contributors release their own
data to the database (data privacy), and when the database publishes the learned
model to the model user (model privacy).

Model privacy. The model privacy is preserved by guaranteeing the (e,J)-
differential privacy. It is a privacy definition of a randomization mechanism M

86 K. Fukuchi et al.

which is a stochastic mapping from a set of examples D to an output on an
arbitrary domain @. Given two databases D and D’, we say D and D’ are
neighbor databases, or D ~ D', if two databases differ in at most one element.
Then, differential privacy is defined as follows:

Definition 1 ((e,)-differential privacy [4]). A randomization mechanism M
is (e, §)-differential privacy, if, for all pairs (D, D) s.t. D ~ D’ and for any subset
of ranges S C O,

PrM(D) € S] < exp(e)Pr[M(D') € S] + 6. 2)

Data privacy. For the definition of the data privacy, we introduce the differ-
ential local privacy [3,9,13]. Because of the data collection and model learn-
ing process, the non-interactive case of the local privacy should be considered,
where in this case, individuals release his/her private data without seeing the
other individuals’ private data. Under the non-interactive setting, the differential
local privacy is defined as follows.

Definition 2 ((e, d)-differential local privacy [7,10,13]). A randomization
mechanism M is (e, d)-differentially locally private, if, for all pairs (z,2') s.t.
z # 2’ and for any subset of ranges S C O,

Pr[M(z) € S] < exp(e)Pr[M(z") € S] + 4. (3)

Utility. To assess utility, we use the empirical excess risk. Let w =
arg min,, cyyJ(w; D). Given a randomization mechanism M that (randomly)
outputs w over W, the empirical excess risk of M is defined as J(M(D); D) —
J(w; D).

3 Input Perturbation

In this section, we introduce a novel framework for differentially private ERM.
The objective of the input perturbation framework is three-fold:

— (data privacy) The released data from the data contributors to the database
satisfies (O(y/ne), §)-differentially locally private,

— (model privacy) The model resulted from the process eventually meets (e, 0)-
differentially private,

— (utility) The expectation of the excess empirical risk of the resulting models
is O(1/n), which is equivalent to that obtained with non-privacy-preserving
model learning.

By adjusting ¢, the input perturbation satisfies (e, d)-differential privacy and
(B¢, 9)-differential local privacy with the O(1/an) excess empirical risk where

8 =0(Vna).

Differentially Private Empirical Risk Minimization with Input Perturbation 87

3.1 Loss Function for Input Perturbation

The strategy of input perturbation is to minimize a function that is close to
the objective function of the objective perturbation method. The requirements
on the loss and objective function thus basically follow the objective perturba-
tion method with the Gaussian noise [11]. Input perturbation allows any (possi-
bly non-differential) convex regularizer as supported by objective perturbation.
However, for simplicity, we consider the non-regularized case where 2(w) = 0.
In addition to the requirements from the objective perturbation, input per-
turbation requires a restriction; the loss function is quadratic in w. Let q(x;, y;)
and p(x;,y;) be d dimensional vectors and s(x;,y;) be a scalar. Then, our
quadratic loss function has a form:
)T

l(w, (z,y)) = %qu(w, v)a(x, y)"w — p(x,y) w + s(z,y).

3.2 Input Perturbation Method

In this subsection, we introduce the input perturbation method. Algorithm 1
describes the detail of input perturbation; Algorithm 2 describes model learn-
ing with examples randomized with input perturbation. In Algorithm 1, each
data contributor transforms owing example (x;,y;) into (g,,p;), where q, =
q(x;,v;),p; = p(@;,y;). Then, she adds perturbation to (g;,p;) in Step 3. We
denote the example after perturbation by (g,,p;), which is submitted to the
database independently by each data contributors.

In Algorithm 2, the database collects the perturbed examples D = {g;, D,
from the n data contributors. Then, the database learns a model with these
randomized examples by minimizing

in ~ 1 " 1 -~ ~ ~ Ain
D)= 1Y (jutaale - plwes) Pl @
i=1

In the following subsections, we show the privacy guarantee of the input
perturbation in the sense of the differential local privacy and the differential
privacy. The utility analysis of models obtained following the input perturbation
framework is also shown.

3.3 Privacy of Input Perturbation

In this subsection, we analyze the privacy of the input perturbation in the sense
of the data privacy and the model privacy.

Data privacy of input perturbation. In Algorithm 1, each data contributor
of the input perturbation adds a Gaussian noise into the released data. Adding
a Gaussian noise into the released data satisfies (¢, 6)-differential local privacy as
well as the Gaussian mechanism [6]. As a result, we get the following corollary
that shows the level of the differential local privacy of Algorithm 1.

88 K. Fukuchi et al.

Algorithm 1. Input Perturbation
Public Input: ¢,6,d,n,n,¢ and A
Input of data contributor i: x;,y;
Output of data contributor i: g,,p,

2
/ V2daX da?22+4 22 (1
1 v, 6 — 7(1 /log(j/'y)7 o2 <2(810g2/6 49 2 5 (Zdar+y/2da2 A2+ 22 (1 2a)>

€2 (1—2a)

2: Sampling of noise vectors: r; ~ N (0,) u; ~ N(0,)
3: 4, — q, +wi, B, — p, — r: where q, = q(z:,y:) and p, = p(@i, ;)
4: Submission: Send q,,p, to the database

Algorithm 2. Model Learning on Input Perturbation

Require: ¢,§,d,n,n,¢ and A
1: All stakeholders agree with (e,) and share parameters d,n,n,(and A.
: The database collects (ql, P;) from the data contributors with Algorlthm 1.
: The database learns w'™ = arg min,, ¢y, J" (w; D) with A;;, = A —
Return w®.

=W N

Corollary 1. Suppose that q and p in Algorithm 1 are in the bounded domain
with the size parameter B. Then, Algorithm 1 satisfies (2cy/n(A/o, +C /o), 20)-
differential local privacy, where ¢ > /21n(1.25/9).

Since we have \/o, + (/op — (\/g—i— . /W)ﬁ as n — oo, Algorithm 1
is (O(y/ne), 0)-differentially locally private.

Model privacy of input perturbation. The following theorem states the
guarantee of differential privacy of models that the database learns from exam-

ples randomized by the input perturbation scheme.

Theorem 1. Let D be exzamples perturbed by Algorithm 1 with privacy parame-
ters € and 6. Then, if A > % and vy = g, the output of Algorithm 2 satisfies
(€, 0)-differential privacy.

3.4 Utility Analysis

The following theorem shows the excess empirical error bound of the model
learned by input perturbation:

Lemma 1. Let w'™ be the output of Algorithm 2. If A > % and examples
are randomized by Algorithm 1, w.p. at least 1 —~ — B the bound of the excess
empirical risk is

2 u ~ (12
< L + ol + T

4 2log 5
log; +o \f” + oy /2d10g ” ol
2

ny/n

) 4d¢%(8log 4 +4e)log Lt A 2 _ 22
J(w'™; D) — J(i; D) < (o)18 5 i g

Differentially Private Empirical Risk Minimization with Input Perturbation 89

In the right side of the bound, the first two terms of O(1/n) are the same as the
excess empirical risk of objective perturbation [11]. The third term of O(1/n)
and the last term of O(1/n/?) are introduced by input perturbation. The same
holds with expectation of the excess risk, as stated in the following theorem.

Theorem 2. If the assumptions from Lemma 1 hold, and n > 1610g%,
the ezpectation of the excess empirical risk E [J(w™;D)— J(w;D)] =
O (CHw|2 W) by setting A = O (W) and o, as the lowest

value specified in Algorithm 1.

4 Conclusion

In this study, we propose a novel framework for differentially private ERM, input
perturbation. In contrast to objective perturbation, input perturbation allows
data contributors to take part in the process of privacy preservation of model
learning. From the privacy analysis of the data releasing of the data contribu-
tors, the data collection process in the input perturbation satisfies (O(y/ne, d)-
differential local privacy. Thus, from the perspective of data contributors, data
collection with input perturbation can be preferable.

Acknowledgments. This work is supported by JST CREST program and is partly
supported by JSPS KAKENHI No. 16H02864.

References

1. Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: Efficient
algorithms and tight error bounds. In: Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 464-473. IEEE, October 2014

2. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12, 1069-1109 (2011)

3. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 429-438. IEEE (2013)

4. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486-503. Springer, Heidelberg (2006). doi:10.
1007/11761679-29

5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006). doi:10.1007/11681878_14

6. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3-4), 211-407 (2014)

7. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy
preserving data mining. In: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 211-222.
ACM (2003)

http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14

90

10.

11.

12.

13.

K. Fukuchi et al.

Jain, P., Thakurta, A.G.: (Near) dimension independent risk bounds for differen-
tially private learning. In: Proceedings of The 31st International Conference on
Machine Learning, pp. 476-484 (2014)

Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential
privacy. In: Advances in Neural Information Processing Systems, pp. 28792887
(2014)

Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM J. Comput. 40(3), 793-826 (2011)

Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and
high-dimensional regression. J. Mach. Learn. Res. 1, 41 (2012)

Lei, J.: Differentially private m-estimators. In: Advances in Neural Information
Processing Systems, pp. 361-369 (2011)

Wainwright, M.J., Jordan, M.I., Duchi, J.C.: Privacy aware learning. In: Advances
in Neural Information Processing Systems, pp. 14301438 (2012)

Label Classification

On a New Competence Measure Applied
to the Dynamic Selection of Classifiers Ensemble

Marek Kurzynski®) and Pawel Trajdos

Department of Systems and Computer Networks,
Wroclaw University of Science and Technology,
Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

marek.kurzynski@pwr.edu.pl

Abstract. In this paper a new method for calculating the classifier com-
petence in the dynamic mode is developed. In the method, first decision
profile of the classified object is calculated using K nearest objects from
the validation set. Next, the decision profile is compared with the sup-
port vector produced by the classifier. The competence measure reflects
the outcome of this comparison and rates the classifier with respect to
the similarity of its support vector and decision profile of the test object
in a continuous manner. Three different procedures for calculating deci-
sion profile and three different measures for comparing decision profile
and support vector are proposed, which leads to nine methods of compe-
tence calculation. Two multiclassifier systems (MC) with homogeneous
and heterogeneous pool of base classifiers and with dynamic ensemble
selection scheme (DES) were constructed using the methods developed.
The performance of constructed MC systems was compared against seven
state-of-the-art MC systems using 15 benchmark data sets taken from
the UCI Machine Learning Repository. The experimental investigations
clearly show the effectiveness of the combined multiclassifier system in
dynamic fashion with the use of the proposed measures of competence
regardless of the ensemble type used.

Keywords: Multiclassifier system - Dynamic ensemble selection - Mea-
sure of competence

1 Introduction

In the last two decades, multiclassifier (MC) systems which combine responses
of set of classifiers have been intensively developed. The reason is that different
classifiers offer complementary information about the object to be classified and
therefore MC system can achieve better classification accuracy than any single
classifier in the ensemble.

MC system has three general phases [2]: (1) generation in which the training
set is used to generate a pool of classifiers; (2) selection in which a single clas-
sifier (or an ensemble of classifiers) is selected to perform the classification; (3)

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 93-107, 2017.
DOI: 10.1007/978-3-319-67786-6_7

94 M. Kurzynski and P. Trajdos

combination (or integration) in which the final decision is made based on the pre-
dictions of the classifiers. It must be noted that selection and integration phases
may be facultative, since for the classifier combination two main approaches used
are classifier fusion and classifier selection [13]. In the first method, all classifiers
in the ensemble contribute to the decision of the MC system, e.g. through sum
or majority voting [11]. In the second approach, a single classifier is selected
from the ensemble and its decision is treated as the decision of the MC system.
The selection of classifiers can be either static or dynamic. In the static selec-
tion scheme, classifier is selected for all test objects, whereas dynamic classifier
selection (DCS) approach explores the use of different classifiers for different test
objects [6].

Recently, dynamic ensemble selection (DES) methods have been developed
which first dynamically select an ensemble of classifiers from the entire set
(pool) and then combine the selected classifiers by majority voting [3,4,12,18].
In this way a DES based system takes advantage of both selection and fusion
approaches. In most methods, the base classifiers are selected from the pool on
the basis of their individual accuracy measure called competence in a local region
of the feature space. These methods differ in algorithms for determining classifier
competence and ways of defining the local regions.

In [23] two methods were proposed where the local accuracy (competence) of
classifier is calculated as a simple percentage of correct classified samples from
the validation set. In the first method called OLA (overall local accuracy), local
accuracy is calculated in the region containing K-nearest validation objects of a
test object. Whereas in the LCA (local class accuracy) method, classifier compe-
tence is determined considering only these validation objects from the K-nearest
neighbors set which belong to the same class into which an unknown object is
assigned. In [20-22] two methods using probabilistic model were developed. The
idea of the first method is based on relating the response of the classifier with
the response obtained by random guessing. The measure of competence reflects
this relation and rates the classifier with respect to random guessing in a contin-
uous manner. In this way, it is possible to evaluate a group of classifiers against
a common reference point. Competent (incompetent) classifiers gain with such
approach meaningful interpretation, i.e. they are more (less) accurate than the
random classifier. In the second method, first a randomized reference classifier
(RRC) is constructed which, on average, acts like the classifier evaluated. Next
the competence of the classifier evaluated is calculated as the probability of cor-
rect classification of the respective RRC. T'wo interesting methods called A priori
and A posteriori selection scheme was presented in [9]. In the A priori method,
a classifier is selected based on its accuracy within the local region, without con-
sidering the class assigned to the unknown pattern. Similarly, in the A posteriori
method, local accuracies are estimated using the class posterior probabilities and
the distances of the samples in the defined local region. In [17] an interesting
ranking-based approach to determine competence measure was proposed. In the
method the ranking of base classifiers is done by estimating parameters related
to the correctness of the classifiers in the pool. An interesting method called

On a New Competence Measure Applied to the Dynamic Selection 95

MCB (Multiple Classifier Behavior) was proposed in [10]. In this method the
competence is defined as the classification accuracy calculated for a subset of a
validation set which is generated as follows. First, the MCB is calculated for a
test object and its K-nearest validation objects as a vector whose elements are
class labels assigned by all classifiers in the ensemble. Next, similarity between
the MCB'’s are calculated using the averaged Hamming distance. Finally, the
objects in the validation set that are the most similar to the test object are used
to generate the subset. The original KNORA-Eliminate (KE) method belonging
to the category of oracle-based methods was proposed in [12]. The oracles are
represented by the K-nearest neighbors of the unknown pattern in the validation
set and the KE method selects only those classifiers which are able to recognize
the entire K-neighborhood of the test pattern.

In this paper a new method for calculating the classifier competence in the
feature space is presented. In the proposed method, first the so-called decision
profile of the classified object is determined using K-nearest validation objects.
The decision profile provides the chance that the recognized object belongs to
the specified class. In the probabilistic model the natural concept of decision
profile is based on a posteriori probabilities of classes at the point x. Next, the
decision profile is compared with the response produced by the classifier (support
vector or values of discriminant functions) [7] and the competence is calculated
according to the similarity rule: the closer the response to the profile is, the more
competent the classifier is [14,15]. Three different procedures for calculating a
decision profile and three different measures for comparing the decision profile
and the support vector are proposed in this study.

In a nutshell, originality of the proposed approach consists in a different use of
the validation set. In the state-of-the-art-methods described above, the validation
set is directly used for calculating local accuracy of a classifier (i.e. its local com-
petence) via ranking-based, accuracy-based, probabilistic-based, behavior-based
and oracle-based measures. However, in the proposed method, validation set is
used for evaluating the classification profile of the test point and competence of
the classifier is determined by similarity of its response to this evaluation.

The paper is divided into four sections and organized as follows. In Sect. 2 the
measures of classifier competence are presented and two multiclassifier systems
using proposed measures of competence in a dynamic fashion are developed. The
performance of proposed MCS’s were compared with seven multiple classifier
systems using 15 datasets taken from the UCI Machine Learning Repository.
The results of computer experiments are described in Sects. 3, and 4 concludes
the paper.

2 Multiclassifier System

2.1 Preliminaries

In the multiclassifier (MC) system we assume that a set of trained classifiers
U = {11,va,...,19r} called base classifiers is given.

96 M. Kurzynski and P. Trajdos

A classifier ¥ is a function ¥; : X — M from a metric feature space
X C R¥™ to a set of class labels M = {1,2,..., M}. Classification is made
according to the maximum rule

Yi(z) =i & dy(x) =]Hé%{ dj(z), (1)

where [dj1 (), di2(x), ..., diar(x)] is a vector of class supports (classifying func-
tion) produced by ;. Without loss of generality we assume that dj;(z) > 0 and
Zj dij(z) =1

In this paper, we propose MC systems which use a dynamic ensemble selec-
tion scheme and trainable combining methods based on a competence measure
c(¢y|x) of each base classifier (I = 1,2, ..., L) evaluating the competence of classi-
fier ¢; at a point z € X. Competence measure is normalized, i.e. 0 < ¢(¢y]x) < 1.
e(i]z) = 0(1) denotes the most incompetent (competent) classifier ;.

For the training methods of combining the base classifiers, it is assumed that
a validation set

V={(z1,1), (2, 42), ..., (N, jn)}; zk €X, jk €M (2)
containing pairs of feature vectors and their corresponding class labels is
available.

2.2 Measure of Competence

K-neighborhood. Let first introduce the concept of K-neighborhood of object
x € X which is defined as the set of K nearest neighbors of the point = from
validation set V), viz.

Sk(@) ={Tn,, Tny, - Tny, EV:

< —
s o, —all < i [l —]} ®)
where || - || denotes the distance in the feature space X. The neighborhood size

K is a parameter of the method — its value can be selected experimentally.

Decision Profile. Decision profile of object z € X

3(x) = [61(2), 8a(), ..., Sr(w)], b;(x) 20, Y 6;(x) =1 (4)

J

denotes the vector of normalized values where the jth value §;(z) is interpreted
as a measure of chance that object 2 belongs to the jth class (j € M). In the
probabilistic model the natural value of 0;(x) is a posteriori probability of jth
class at the point z.

We propose the following methods for calculating decision profile at the point
z using its K-neighborhood.

On a New Competence Measure Applied to the Dynamic Selection 97

The Fraction-based Method (FM)

In this approach, 6;(z) is calculated as the fraction of objects from the jth class

in the set Sk (). Let M;K)(x) be the number of validation objects from Sk (z)
belonging to the j-th class. Then

M) ()
0j(w) =~ jEM. (5)

The Ranking-based Method (RM)

In the RM method 0;(x) is equal to the normalized sum of ranks of objects
belonging to the jth class in the set Sk (). Let r(xy) be the rank of validation
object xp € Sk (x). The nearest neighbour has the rank equal to K, the rank of
the furthest neighbor is equal to 1. Then

rj(z) = > r(ak) (6)
25 €Sk (2):jr=J

is the sum of ranks of validation objects from the K neighborhood of x belonging
to the jth class. And next

5j(a) = 3T)

The Potential Function Method (PM)

Let H(z,x;) be a non-negative potential function [16] decreasing with the
increasing distance between x and x. In this study, a Gaussian potential func-
tion with the Euclidean distance is used:

H(z,) = exp(—||z — zx]|?). (8)

Then, we can calculate J;(z) as a normalized sum of potential functions (8) for
objects belonging to the jth class from the set Sk (x), namely:

szGSK(z):jk:j exp(—||x - xk‘|2)
Zje/\/t Zxkes,{(g;);jk:j exp(—||z — zx|[?)

dj(x) = 9)

Distance Between Decision Profile and Vector of Supports. In order to
evaluate ¢, at x and determine its competence ¢(1);|x), we must compare decision
profile d(x) and vector of supports d;(x) and calculate distance dist[d(x), d;(x)].
Competence measure is a normalized function of this distance decreasing with
the increasing distance between 6(z) and d;(z). In particular, ¢(¢;|x) is equal to
1 (0) if distance is equal to 0 (is the greatest one).

We propose three different methods for calculating distance dist[d(z), d;(z)]
and the resulting measures of competence.

98 M. Kurzynski and P. Trajdos

Euclidean Distance (ED)
We adopt the Euclidean distance

dist[(6(x), di(x)] = ||6(x) — di()]| (10)
and hence we get

V3 - |15(z) - di(a)l|

0(1#1\35) = \/§

Maax-Mazx Distance (MD)

Let 7 be the class number for which classifier i; produced the greatest support
value at the point z (i.e. di;j(x) = maxge m(dix(2))). Similarly, let ¢ be the class
number with the greatest value in the decision profile §(z) at z. Then, the max—
max distance is defined as:

dist[(6(x), di(x)] = |dij(x) = 6;(x)] + |dui(x) = 6i(x)]. (12)
Hence we have the following formula for competence measure:

2 — |diy(2) — 6;(2)| + |dus(2) — 6i(2)|

c(hilz) = 5

(13)

Hamming Distance (HD)

N

Let h(y(x)) = [j1, s - - - dag) and h(x) = [, - -, jns) be the vectors of class
numbers ordered according to the decreasing values of supports produced by ;
at « and decision profile of z, respectively. Distance between d;(z) and §;(z) is
defined as the Hamming distance between vectors h(v¢;(z)) and h(x), namely

dist[(6(x), di(z)] = Du[h(¢i(x)), h(x)]. (14)
Hence we get the following form of competence measure

M — Dylh(ta(2)), h(=))

c(ilz) = i

(15)

Example. Consider a classification problem with three classes (M = 3).
Figure 1 presents 6-neighborhood of an object = in the two-dimensional feature
space. Additional unit grid will help to determine distances between objects.
Suppose that classifier ¢ produced supports dy(z) = 0.3, da(z) = 0.6 and
ds3(z) = 0.1. Our purpose is to determine the competence c(|z) of the clas-
sifier ¢ at the point = using presented methods.

From Fig. 1 we simply get the Euclidean distances between z and validation
objects:

||‘T - le =2, H.%‘ - $2H =5, ||‘T - xSH = 2.83,

||z — z4]| = 2.23, ||z — x5|| = 3, ||z — z6]| = 3,6.

On a New Competence Measure Applied to the Dynamic Selection 99

X6 X2 | s Validation objects
Y X! Y from the 1st class
A
o Validation objects
from the 2nd class
X X5
L © _— .
<> Validation objects
from the 3th class
X3 X4
o
7
@® Classified object

Fig. 1. Illustration of Example: 6-neighborhood of an object x.
First, we calculate decision profiles for the proposed methods.
FM method:

M® =2 M =3 M =1 and hence 6, (x) = 1/3,65(z) = 1/2, 53(x) = 1/6.

(16)
RM method:
7"1("17) - 107 7‘2(1’) = 93 7”‘3(IE) =2
and hence
81 (z) = 10/21, 8y(x) = 9/21, d3(z) = 2/21. (17)
PM method:
H(z,21) + H(x,23) = 0.1354 0.059 = 0.194, H(x,x6) = 0.027
H(z,z9) + H(z,23) + H(x,25) = 0.006 + 0.108 4 0.049 = 0.163
and hence
0.194 0.163 0.027
=——=0. = —— =0424, ¢ = =0.071 1
01(®) = G3gg = 0505, 02(z) = G=eg = 0424, 9s(x) = gy = 0071, (18)

Now, using formulas (10)—(15) and calculated decision profiles (16), (17) and
(18), we can calculate competence ¢(t|x) of classifier ¢ at the point . Results for
all combination of calculating decision profile methods and concept of distance
between decision profile and vector of supports are presented in Table 1.

2.3 DES Systems

The proposed measure of competence can be applied in any multiclassifier system
in selection/fusion algorithm provided that the feature space X is a metric space.
In this subsection we describe two multiclassifier systems based on the DES
strategy.

100 M. Kurzynski and P. Trajdos

Table 1. Results of example.

Distance dist[(d(x), di(x)] | Competence c(i|x)
FM |ED | 0.197 0.86
RM 0.245 0.826
PM 0.272 0.808
FM | MD | 0.2 0.9
RM 0.347 0.827
PM 0.381 0.809
FM HD |0 1
RM 2 0.333
PM 2 0.333

Multiclassifier System with Fusion at the Decision Level (MC1). In
this system, first a subset ¥*(x) of base classifiers with the competences greater
than the random guess is selected for a given x:

U (z) = {Yu, Y2, ..., thir}, where c(Yy|z) > 1/M. (19)

The selected classifiers are combined using the weighted majority voting rule
where the weights are equal to the competences. This fusion method leads to
the following class supports (j = 1,2,... M):

T
d(MCI) ZC Yielx) [P () = 71, (20)
t=1

where |-| denotes the Iverson bracket.
The MC1 system (M) classifies using the maximum rule:

PN (@) = i e dMY (@) = maxdM (@), (21)

Multiclassifier System with Fusion at the Continuous-Value Level
(MC2). The MC2 system is identical to the MC1 system except that selected
classifiers (19) are combined at the continuous-value level (j = 1,2,... M):

T
dM (@) =3 e(dhuelw)die 5 (). (22)
t=1
Final decision — as previously — is made according to the maximum rule:
PMD(2) = i & dfM Y (2) = maxd M (). (23)
J

The MC2 system with competence measures developed will be applied in the
experimental investigations.

On a New Competence Measure Applied to the Dynamic Selection 101

3 Experiments

3.1 Experimental Setup

The performance of the developed MC systems was evaluated in experiments
using 15 benchmark data sets. In the first experiment, the MC2 system was
evaluated using different methods for calculating decision profile (FM, RM and
PM) and different distances between decision profile and support vector (ED,
MD and HD). The methods that showed the best performance were identified.
In the second experiment, the methods identified were compared with other
competence—based MC systems. The experiments were conducted in MATLAB
using PRTools 4.1 [8]. In both experiments, the value of K = 5 x M (M denotes
the number of classes) was used as the neighborhood size.

The 15 benchmark data sets were taken from the UCI Machine Learning
Repository [1]. We selected the same data sets which were used in experimental
investigations presented in [21]. A brief description of the data sets used is given
in Table 2.

Table 2. The data sets used in the experiments.

Data set #Objects | #Features | #Classes
Blood transfusion 748 4 2
Breast cancer Wisconsin | 699 9 2
Clouds 5000 2 2
Dermatology 366 34 6
EColi 336 8
Glass 214 6
Tonosphere 351 34 2
OptDigits 3823 64 10
Page blocks 5473 10 5
Pima Indians 768 8 2
Segmentation 2310 19

Spam 4601 57

Vowel 990 10 11
Wine 178 13 3
Yeast 1484 8 10

For each data set, feature vectors were normalized to zero mean and unit
standard deviation. Two-fold cross-validation was used to extract training and
test sets from each data set. For the calculation of the competences, a two-fold
stacked generalization method was used [24]. In the method, the training set is
split into two sets A and B of roughly equal sizes. Set A is first used for the

102 M. Kurzynski and P. Trajdos

training of the classifiers in the ensemble while set B is used for the calculation
of the competences. Then, set B is used for the training while the competences
are calculated using set A. Finally, the competences calculated for both sets are
stacked together and the classifiers in the ensemble are trained using the union
of sets A and B (i.e. the original training set). In this way, the competences of
the classifiers are calculated for all the feature vectors in the original training
set, but the data used for the calculation is unseen during the classifier training.
The experiments were conducted using two ensemble types: homogeneous and
heterogeneous. The homogeneous ensemble consisted of 50 feed-forward back-
propagation neural network classifiers with one hidden layer and the maximum
number of learning epochs set to 80. Each neural network classifier was trained
using randomly selected 70% of the objects from the training data set. The
heterogeneous ensemble consisted of the following 11 base classifiers [7]:

— (1) linear classifier based on normal distribution with the same covariance
matrix for each class;

— (2) quadratic classifier based on normal distribution with different covariance
matrix for each class;

— (3) nearest mean classifier;

— (4-6) k-nearest neighbors classifiers with k=1, 5, 10;

— (7, 8) Parzen density based classifier with the Gaussian kernel and the optimal
smoothing parameter hop: (and the smoothing parameter hope/2);

~ (9) pruned decision tree classifier with the Gini splitting criterion;

— (10-11) feed-forward backpropagation neural network classifier containing one
hidden layer with 10 neurons (two hidden layers with 5 neurons each) and
the maximum number of learning epochs set to 80;

The performance of the systems constructed was compared with the following
seven MC systems:

1. Overall local accuracy method (OLA1) [23]. In this method the compe-
tence at a test point x is calculated as the percentage of the correct recognition
of the K-nearest validation samples of x;

2. Local class accurracy method (LCA) [23]. In this method the compe-
tence is estimated for each base classifier as the percentage of correct classi-
fications within the local region (the K neighborhood), but considering only
examples from the class as classifier gives for the unknown pattern;

3. Overall local accuracy method (OLA2) [19]. In this method the com-
petence is calculated as in OLA1 approach but validation objects from the
K-neighborhood are additionally weighted by their Euclidean distances to
the unknown object x;

4. Multiple classifier behavior method (MCB) [10]. In this method the
competence is calculated using a similarity function to measure the degree of
similarity of the output profiles of all base classifiers;

5. Oracle KNORRA-eliminate method (ORE) [12]. In this method all
classifiers are selected that correctly classify all samples in the local region
(the K neighborhood). If no classifiers are selected, the local region is reduced
until at least one classifier is selected;

On a New Competence Measure Applied to the Dynamic Selection 103

6. Randomized reference classifier method (RRC) [21]. In this method
the competence of base classifier is calculated as the probability of correct
classification of randomized reference classifier (RRC) which - on average -
acts as a modeled base classifier;

7. Random guessing based method (RGM) [22]. In this method the com-
petence is calculated in relation to the random guessing method — the classifier
is considered as competent (incompetent) if it is more (less) accurate than
the random classifier.

3.2 Results and Discussion

Classification accuracies were averaged over 5 repetitions of two-fold cross-
validation. Statistical differences in rank between the systems were obtained
using the Friedman test with Iman and Davenport correction combined with the
post hoc Holm’s stepdown procedure [5]. The average ranks of the systems and a
critical rank difference calculated using the Bonferroni-Dunn test are visualised.
The level of p < 0.05 is considered as statistically significant.

The average ranks obtained from the first experiment for the nine methods
proposed and for the homogeneous and heterogeneous ensembles are presented
in Figs.2A and B, respectively. The use of the potential function method for
calculating decision profile and max-max distance between decision profile and
support vector (PM-MD) resulted in the best average rank regardless of the
ensemble type used. The average rank of PM-MD method is significantly better
than average ranks for FM-MD, RM-MD, PM-HD, FM-HD and RM-HD meth-
ods. Methods with the Hamming distance achieved the worst average ranks
regardless of the method for calculating decision profile and the ensemble type
used. Thus, for the second experiment the PM-MD method was selected.

A
PM-ED RM-MD PM-HD RM-HD
PM-MD | FM-ED | FM-MD RM-ED | FM-HD
| I |
I T 1 T I 1 1 1
1 2 3 4 5 6 7 8
B FM-ED FM-MD RM-MD PM-HD
PM-MD| PM-ED | RM-ED | FM-HD | RM-HD
| | |
I I 1 1 1 1 1 1
1 p 3 4 5 6 7 8

Fig. 2. Average ranks of the MC2 systems for different methods of calculating decision
profile and different distances between decision profile and support vector for homo-
geneous (A) and heterogeneous (B) ensemble of base classifiers. The interval (thick
line) is the critical rank difference (2.991) calculated using the Bonferroni-Dunn test
(p < 0.05).

104 M. Kurzynski and P. Trajdos

A
PM-MD ORE RGM OLA2
MCB RRC | LCA | OLAl
I II T T 1 I 1 1 I 1
1 2 3 4 5 6 7 8
B
PM-MD ORE RGM
RRC MCB LCA OLA2 OLAl
1 1 l l| 1 ll I l ll I
1 2 3 4 5 6 7 8

Fig. 3. Average ranks of MC systems compared for homogeneous (A) and heteroge-
neous (B) ensemble of base classifiers. The interval (thick line) is the critical rank
difference (2.394) calculated using the Bonferroni-Dunn test (p < 0.05).

Table 3. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the homogeneous ensemble. The best result for each data set

is in bold.

Dataset | OLA1 |LCA | OLA2 | MCB |ORE | RRC | RGM | PM-MD
Blood 76.18 | 75.29|76.44 | 77.15|76.28 | 76.44 | 76.32 | 77.02
Breast 94.21 |93.88/94.92 |97.25 |95.29 | 97.88 | 95.94 | 97.12
Clouds 62.92 |63.15|64.22 | 65.80 | 64.00 | 63.64 | 63.82 | 65.27
Dermat | 68.88 |70.44 |69.35 | 75.28 | 72.61 | 73.91 | 71.45 | 74.82
EColi 67.62 |69.48 70.35 | 76.44 |71.43|78.01 76.22 | 77.25
Glass 50.72 | 54.22|52.83 | 69.95 | 57.86 | 67.22 | 60.28 | 67.38
Tono 83.95 |84.25|84.15 | 88.57 | 85.47 | 87.62 | 86.15 | 86.47
OptDig |81.28 | 86.55|87.12 |88.32 | 86.48 | 88.21 | 87.35 | 89.42
Page 94.92 |95.12/95.23 | 96.21 |95.80 | 96.35 | 95.05 | 95.92
Pima 65.23 | 65.55 | 64.92 | 67.48 | 65.49 | 66.30 | 65.78 | 68.52
Segment | 87.88 | 86.54 | 88.75 | 96.23 | 91.32 | 95.72 | 91.44 | 94.96
Spam 81.84 |83.57|84.21 |89.12|85.29 | 88.85 | 87.17 | 88.24
Vowel 49.92 |53.22 | 50.5 60.25 | 55.86 | 59.45 | 57.73 | 61.15
Wine 91.28 193.15/91.22 1 94.47 |89.52|95.84 | 92.78 | 96.03
Yeast 49.85 |53.22|50.81 |56.28 | 52.28 | 56.36 |55.42 | 57.27
Av.Rank | 7.26 5.68 | 6.83 1.98 3.79 | 3.06 5.05 | 2.35

The results obtained in the second experiment for the PM-MD method and
seven MC systems and for the homogeneous and heterogeneous ensembles are
presented in Tables3 and 4 and in Figs.3A and B, respectively. The system
constructed achieved the second best average ranks for both types of classifier
ensemble. The average rank of PM-MD method is significantly better than aver-
age ranks for LCA, RGM, OLA1 and OLA2 methods regardless of the ensemble

type used.

On a New Competence Measure Applied to the Dynamic Selection 105

Table 4. Classification accuracies (in percent) and average ranks of the PM-MD system
and the eight MCSs for the heterogeneous ensemble. The best result for each data set
is in bold.

Data base | OLA1 |LCA |OLA2 | MCB |ORE |RRC |RGM |PM-MD
Blood 75.70 |77.23|75.93 |77.43 |76.48 |78.26 | 77.58 | 78.12
Breast 95.12 195.8495.48 | 95.17 | 96.42|96.28 | 94.87 | 95.54
Clouds 74.50 |75.13|74.21 |79.27 |77.12 |79.07 |75.12 | 80.02
Dermat 93.18 193.28193.42 |96.31 | 94.82 | 96.27 | 93.88 1 95.92
EColi 82.13 | 84.55|82.86 | 84.18 | 86.12 |86.24 | 83.15 | 84.88

Glass 64.18 | 65.28 64.05 | 67.40 | 67.15 |67.35 |64.88 |67.48
Tono 82.98 |83.17[82.75 |86.12 | 85.94 | 86.95 | 83.15 86.92
OptDig 87.92 191.15|88.24 | 95.31 1 95.15 |97.43 |90.65 |97.48
Page 89.24 192.38/90.82 | 95.84 | 95.21 [96.24 |91.13 |96.18
Pima 67.21 168.8967.15 | 69.12 | 68.73 |69.45 |67.45 | 69.32

Segment | 84.02 |87.55|86.58 |96.41 |95.11 |95.32 |89.55 |97.12
Spam 88.21 |89.45|88.85 [92.1790.32 | 91.91 |90.05 91.72
Vowel 82.24 185.92|84.72 | 88.32 |83.51 |90.18 |85.77 | 89.71
Wine 95.42 196.4196.15 | 97.05 1 96.84 |97.17 |96.32 | 98.03
Yeast 55.66 | 57.05|55.51 | 56.94 |56.83 |57.79|57.12 | 57.11
Av.Rank | 6.96 | 498 6.24 | 298 | 4.16 | 2.30 | 5.87| 2.48

4 Conclusion

Nowadays, many researches have been focused on MC systems and consequently,
many new solutions have been dedicated to each of the two main approaches:
classifiers fusion and classifiers selection. In the proposed solutions the funda-
mental role plays the assessment of competence of base classifiers which is crucial
in the DES scheme and in the combining of base classifiers. In the paper a new
method for calculating the competence of a classifier in the feature space was
presented. In the proposed method, first the K-neighborhood is used to deter-
mine the so-called decision profile of a test object. The decision profile is an
evaluation of the chance that the recognized object belongs to particular classes.
Next, the decision profile is compared with the response produced by the classi-
fier and the competence is calculated according to the similarity rule. The MC
systems with DES scheme using the proposed competence measure were devel-
oped and experimentally evaluated using 15 benchmark datasets. Experimental
results showed that the idea of calculating the competence of a classifier by com-
paring its response with the decision profile of the classified object is a correct
method and leads to the accurate and efficient multiclassifier systems.

Acknowledgment. This work was supported by the statutory funds of the Depart-
ment of Systems and Computer Networks, Wroclaw University of Technology.

106 M. Kurzynski and P. Trajdos
References
1. Lichman, M.: UCI Machine Learning Repository. University of California, School

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

of Information and Computer Science, Irvine (2013). http://archive.ics.uci.edu/ml
Britto, A., Sabourin, R., de Oliveira, L.: Dynamic selection of classifiers - a com-
prehensive review. Pattern Recogn. 47(11), 3665-3680 (2014)

Cavalin, P., Sabourin, R., Suen, C.: Dynamic selection approaches for multiple
classifier systems. Neural Comput. Appl. 22(3-4), 673688 (2013)

Cruz, R., Sabourin, R., et al.. META-DES: a dynamic ensemble selection frame-
work using meta-learning. Pattern Recogn. 48, 1925-1935 (2015)

Demsar, J.: Statistical comparison of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

Didaci, L., Giacinto, G., Roli, F., Marcialis, G.: A study of the performance of
dynamic classifier selection based on local accuracy estimation. Pattern Recogn.
38, 2188-2191 (2005)

Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, New York
(2001)

Duin, R., Juszczak, P., et al.: PR-Tools 4.1, A Matlab Toolbox for Pattern Recog-
nition. Delft University of Technology (2007). http://prtools.org

Giacinto, G., Roli, F.: Methods for dynamic classifier selection. In: Proceedings of
the 10th International Conference on Image Analysis and Processing, pp. 659-664
(1999)

Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classifier
behaviour. Pattern Recogn. 34, 1879-1881 (2001)

Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifier. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-20, 226-239 (1998)

Ko, A., Sabourin, R., Britto, A.: From dynamic classifier selection to dynamic
ensemble selection. Pattern Recogn. 41(5), 1718-1731 (2008)

Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, Hoboken (2004)

Kurzynski, M.: On a new competence measure applied to the combining multiclas-
sifier system. Int. J. Sig. Process. Syst. 4(3), 185-191 (2016)

Kurzynski, M., Krysmann, M., Trajdos, P., Wolczowski, A.: Multiclassifier system
with hybrid learning applied to control of bioprosthetic hand. Comput. Biol. Med.
69, 286-297 (2016)

Meisel, W.: Potential functions in mathematical pattern recognition. IEEE Trans.
Comput. C—18, 911-918 (1969)

Sabourin, M., Mitiche, A., Thomas, D., Nagy, G.: Classifier combination for hand-
printed digit recognition. In: Proceedings of the 2nd International Conference on
Document Analysis and Recognition, pp. 163-166 (1993)

dos Santos, E., Sabourin, R., Maupin, P.: A dynamic over produce-and-choose
strategy for the selection of classifier ensembles. Pattern Recogn. 41(10), 2993—
3009 (2008)

Smits, P.: Multiple classifier systems for supervised remote sensing image classifi-
cation based on dynamics classifier selection. IEEE Trans. Geosci. Remote Sens.
40, 801-813 (2002)

Woloszynski, T., Kurzynski, M.: On a new measure of classifier competence applied
to the design of multiclassifier systems. In: Foggia, P., Sansone, C., Vento, M. (eds.)
ICIAP 2009. LNCS, vol. 5716, pp. 995-1004. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04146-4_106

http://archive.ics.uci.edu/ml
http://prtools.org
http://dx.doi.org/10.1007/978-3-642-04146-4_106
http://dx.doi.org/10.1007/978-3-642-04146-4_106

21.

22.

23.

24.

On a New Competence Measure Applied to the Dynamic Selection 107

Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recogn. 44, 2656-2668 (2011)

Woloszynski, T., Kurzynski, M., et al.: A measure of competence based on random
classification for dynamic ensemble selection. Inf. Fusion 13, 207-213 (2012)
Woods, K., Kegelmeyer, W., Bowyer, K.: Combination of multiple classifiers using
local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19,
405-410 (1997)

Wolpert, D.: Stacked generalization. Neural Netw. 5, 214259 (1992)

Multi-label Classification Using Random Label
Subset Selections

= . . e .
2% Dragi Kocev!2?, and Saso Dzeroskil-?

Martin Breskvar®
! Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
2 Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
Martin.Breskvar@ijs.si

Abstract. In this work, we address the task of multi-label classification
(MLC). There are two main groups of methods addressing the task of
MLC: problem transformation and algorithm adaptation. Methods from
the former group transform the dataset to simpler local problems and
then use off-the-shelf methods to solve them. Methods from the latter
group change and adapt existing methods to directly address this task
and provide a global solution. There is no consensus on when to apply
a given method (local or global) to a given dataset. In this work, we
design a method that builds on the strengths of both groups of methods.
We propose an ensemble method that constructs global predictive mod-
els on randomly selected subsets of labels. More specifically, we extend
the random forests of predictive clustering trees (PCTs) to consider ran-
dom output subspaces. We evaluate the proposed ensemble extension
on 13 benchmark datasets. The results give parameter recommendations
for the proposed method and show that the method yields models with
competitive performance as compared to three competing methods.

Keywords: Multi-label classification - Structured outputs - Output
space decomposition * Predictive clustering trees -+ Ensemble methods

1 Introduction

Supervised learning is a very actively researched area of machine learning. Its
goal is to learn models able to provide predictions for previously unseen examples
of data. Single-target prediction scenarios are very common and applicable in
many domains. However, not all solutions to problems can be fitted into one
predicted variable. It is very possible that a more complex representation of the
data is needed. This is a challenge because it requires methods to predict more
than one variable of interest. In that sense, we move towards structured output
prediction (SOP) tasks. Examples of SOP tasks are MT regression (MTR), multi-
label classification (MLC), time series prediction etc.

This work focuses on solving the MLC task where a given example can be
annotated with one or more labels. For instance, a gene could have more than
one function, an image can contain different objects, a document can belong
to several categories, a disease can manifest with multiple symptoms, etc. This

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 108-115, 2017.
DOI: 10.1007/978-3-319-67786-6_8

Multi-label Classification Using Random Label Subset Selections 109

particular area of research attracts the attention of the community due to the
increasing number of possible applications in various domains (multimedia, biol-
ogy, medicine, semantic web, legislation,. ..). Traditional MLC approaches con-
sider individual labels separately, i.e., they are local and transform the dataset
into multiple single-label datasets (a dataset for each label) and then solve the
multiple single-label tasks with off-the-shelf methods. The key observation here
is that such approaches assume that labels are not related: If label relations exist,
these approaches are not able to take advantage of their knowledge. Therefore,
MLC approaches should be global and exploit potential relations between labels
to produce more accurate models.

Notwithstanding, given a dataset, it is not clear which type of method one
should use: a local or a global. There is no consensus on this issue [6]. On some
datasets, it is preferable to use local, while on other global methods. Having
this in mind, we believe that the best method should combine the advantages
of both groups. We hence propose a method for MLC that randomly samples
the output/label space and learns global models for the sampled label space.
Furthermore, we combine the multiple models into an ensemble.

Output space selection and transformation methods already exist in the
scope of MLC. One of the most well-known methods is Random k-Labelsets
(RAKEL) [8]. It is a problem transformation method as it constructs an ensem-
ble of ST classification models to solve the task of MLC. It does so by selecting
random subset of labels (size is determined by the k parameter) for each base
model. RAKEL then builds a powerset of the selected subset of labels and trains
a ST classification model on it. This approach has been extended towards data-
driven partitioning of the label space, which is achieved by using community
detection algorithms from social networks [7]: These find better label subspaces
as opposed to randomly selecting them. Another data-driven approach uses label
hierarchies obtained by hierarchical clustering of flat label sets by using anno-
tations that appear in the training data [5]. Finally, a dimensionality reduction
method that uses random forests with Gaussian subspaces has been proposed [3].
This method also belongs to the algorithm adaptation group. It reduces the out-
put space by making random projections of the output space into a new space
which represents a highly compressed version of the original label space.

2 MLC Using Random Label Subset Selections

The proposed method is based on the predictive clustering (PC) framework.
More specifically, we use predictive clustering trees (PCTs) that can be seen as
a generalization of decision trees for the task of structured output prediction.
The standard top-down induction of decision tree (TDIDT) algorithm is used to
generate PCTs. The pseudo code for the randomized PCT induction algorithm
(RPCT) is shown on the left side of Table 1 and it takes the following inputs: (i)
a dataset S, (ii) a function d.(X) that randomly samples ¢ descriptive variables
from dataset X without replacements and (iii) a set of attributes Ry, that the
learning process should use for supervision.

110 M. Breskvar et al.

The RPCT algorithm first randomly samples from the pool of all available
descriptive attributes for the current dataset. The sampled descriptive attributes,
along with the target attributes R; provided as input, are used to calculate the
best possible split point (i.e., the best test) to use for partitioning the data
instances. After the best test is found the data are split according to it. This
process continues recursively until a stopping criterion is met and the prototype
function is invoked. We use a prototype function that returns a vector of prob-
abilities that an example belongs to the positive class for each target variable.

The test selection is handled by the BestTest function: It begins by remov-
ing the target attributes which should not be considered (Table 1, right, line 2).
TI(S, R4, R:) is a projection function that reduces the original dataset S to Sg by
only considering descriptive and target attributes from sets Ry and R, respec-
tively. All possible tests on Sg are evaluated and the one that reduces the vari-
ance the most (w.r.t. Sgr) is selected (Tablel, right, lines 3-9). The variance
calculation function is also a parameter and can be instantiated based on the
type of machine learning task we want to solve. In this paper, we focus on MLC
so we calculate the variance as the sum of Gini indices over the individual target
variables from the set A = {A1, Ao, ..., A\g} as Var(S) = 30, Gini(S, \;).

Ensembles combine the predictions of multiple predictive models to achieve
better predictive performance. Predictions for new examples are made by query-
ing base models and combining their predictions. In this section, we describe the
process of generating ensembles, where the base models are not all learned from
all available target attributes, but rather each model is learned from a (differ-
ent) subset of them. For this, we will need the parameter R; defined above. We
named this ensemble method Random Output Selections (ROS).

Regular PCTs use the whole target space to calculate the heuristic score.
The proposed ensemble approach introduces random selections in the output

Table 1. The top-down induction of randomized predictive clustering trees

Function RPCT(S, 6., R¢) Function BestTest(S, Rq, R+)

Out: A predictive clustering tree Out: Selected test t*

1: Ry — 6.(5) Out: Heuristic score h™ of test t*

2 (t*,h*,P*) « BestTest(S, Ra, Ry) Out: Partitioning P* induced by t* on S

3: if t* # none then 1: (t*,h*,P*) « (none,0,0)

4: for each S; € P* do 2: Sgp «— II(S, Ra, Ry)

5: tree; «— RPCT(S;, 6¢, Ri) 3: for each possible test ¢t in Sg do

6: end for 4: P «— partitioning induced by ¢ on Sr

7 return node(t”, (J,{tree:}) 5: h — Var(R:, Sr) —

8: else ds,ep % Var(Ry, S;)

9: return leaf(Prototype(S)) 6: if (h > h*) then

10: end if 7: (t*,h*, P*) — (t,h, P)
8: end if
9: end for
10: return (t*,h*,P*)

Multi-label Classification Using Random Label Subset Selections 111

space, i.e., individual PCTs do not consider the whole target space anymore.
Each base model (PCT) is consequently learned from only those targets that
were included in the randomly generated partition R; provided to it by the
function II. The output space partitions are generated before the induction of
base models and are independent of the base model learning algorithm. The
algorithm for construction of subspaces has the following parameters: (i) the
number of base models b, (ii) a function 6, (X) that samples uniformly at random
without replacement v items from the set X and (iii) a set of target attributes
(labels) T'. ROS first creates a subspace which considers all target attributes, to
make sure that every target attribute is considered by at least one base model.
We generate the remaining b — 1 subspaces with the 6, function. We build ROS
ensembles of PCTs by using the randomized PCT algorithm (RPCT). Each base
model is learnt from different bootstrap replicate. Such perturbations of the
learning set have been proven useful in cases, where unstable base models, such
as decision trees, are used. RPCT introduces additional randomization while
learning its individual base models by considering only a subset of descriptive
attributes at each step, i.e., when selecting the best test at a given node by calling
the function §.(X) just before. In addition, ROS randomly selects a subset of
targets for each PCT in the ensemble (we refer to the method as RF-ROS).

Ensembles combine predictions of their base models. In this study, we use two
different prediction-combining techniques, i.e., aggregation functions: (i) total
averaging (i.e., the most commonly used voting technique) and (ii) subspace
averaging. Total averaging combines votes of the individual base models using
probability per-target distribution voting for all targets [1]. Subspace averaging
does the same, but only the labels considered during learning of the respective
base model participate in the voting.

3 Experimental Design

This section presents the experimental questions posed, benchmark datasets, the
experimental setup and the evaluation measures used. We designed the experi-
mental evaluation having the following research questions in mind:

1. What is the recommended label subspace size for RF-ROS ensembles?

2. Does it make sense to change the aggregation function, i.e., can subspace
averaging improve the predictive performance of RF-ROS models?

3. Considering predictive performance, how do RF-ROS ensembles compare to
other competing methods?

We use 13 publicly available benchmark datasets: Emotions, Scene, Yeast,
Birds, TMC 2007, Genbase, Medical, Enron, Mediamill, Bibtex, Bookmarks,
Corel 5k, and Delicious. The datasets vary in terms of number instances, descrip-
tive and target attributes. More details about the datasets are available at the
MULAN repository (http://mulan.sourceforge.net/datasets.html).

To evaluate the performance of the RF-ROS, we generated ensembles with

different output space sizes: v €(%, %, %, V@, 1og q) with ¢ the number of labels.

http://mulan.sourceforge.net/datasets.html

112 M. Breskvar et al.

We also experimented with two aggregation functions: total and subspace
averaging. We then compare the performance of RF-ROS with the perfor-
mance of: (i) Random forests of standard PCTs (RF-PCT) [4], (ii) Random
k-Labelsets (RAKEL) models [8] and (iii) Random forests with Gaussian sub-
spaces (RF-Gauss) [3].

RF-PCT and RF-ROS ensembles used 100 PCTs (ensembles are typically
saturated at that point) and descriptive space size v = [0.1 - ¢| + 1 [4]. The
trees in the ensembles were not pruned [1]. For RAKEL models, the k parameter
(size of labelset) was set to ¢/2 and the number of models to min(2q, 100). A
support vector machine (SVM) classifier was selected as a learning algorithm
within RAKEL, with a linear kernel and a complexity constant C' = 1. In RF-
Gauss, the number of Gaussian subspace components was set to log g. The other
RF-Gauss parameters were set to Ny, = 1 and k = /g [3]. The statistical
evaluation of the results was performed according to the guidelines of Demsar [2].
All statistical tests on the predictive performance values were conducted at the
significance level a = 0.05 (using three decimal places).

In order to determine the predictive performance of the induced models,
we empirically evaluate them according to 12 different measures that belong to
two groups: example and label based measures. The example based measures
considered are: hamming loss, accuracy, precision, recall, F1, subset accuracy.
The label based measures considered are: micro/macro precision, micro/macro
recall, micro/macro F1 [6]. Results in terms of different measures lead to the
same conclusions: In order to conserve space, we present only results for the
example based measures F1 (more is better) and Hamming loss (less is better)
in Table 2.

Table 2. The performance of the considered methods in terms of the example based
measures F1 and Hamming loss. DNF (did not finish) denotes algorithms that did not
produce results. The numbers in bold denote best performance on a dataset.

Example based F1 Hamming loss
RF-ROS RF-ROS
Z O] 7 V]
I I

[% @) 1 o — % O 0]

< O ey i A 0 £ i =

< < B3 3 < = y 3 2

Name ~ ~ ~ = n ~ ~ Jas = n

Emotions 0.637 0.534 0.574 0.582 0.588|| 0.205 0.2 0.197 0.196 0.198
Scene 0.681 0.413 0.574 0.558 0.591|| 0.098 0.111 0.09 0.093 0.088

Yeast 0.64 0.573 0.587 0.583 0.602 0.2 0.199 0.198 0.198 0.199
Birds 0.658 0.51 0.566 0.556 0.579 0.05 0.048 0.044 0.044 0.043

TMC 2007 0.81 0.992 0.908 0.902 0.926|| 0.033 0.001 0.015 0.016 0.012
Genbase 0.996 0.991 0.981 0.981 0.986(|0.001 0.001 0.002 0.002 0.001
Medical 0.789 0.515 0.673 0.669 0.683|| 0.01 0.016 0.013 0.013 0.012

Enron 0.562 0.508 0.527 0.518 0.559|| 0.049 0.047 0.046 0.046 0.045
Mediamill DNF 0.545 0.549 0.547 0.541|| DNF 0.03 0.03 0.03 0.032
Bibtex DNF 0.173 0.211 0.209 0.305|| DNF 0.014 0.013 0.013 0.013
Bookmarks DNF 0.2 0.206 0.203 0.175|| DNF 0.009 0.009 0.009 0.009
Corel DNF 0.018 0.007 0.009 0.089|| DNF 0.009 0.009 0.009 0.01

Delicious DNF 0.237 0.194 0.193 0.202|| DNF 0.018 0.018 0.018 0.021

Multi-label Classification Using Random Label Subset Selections 113

4 Results

The proposed method has two degrees of freedom: target subspace size and aggre-
gation function. Figurel shows the performance of RF-ROS on four datasets
with various label and example counts. The plots for each dataset also show
the point (total averaging, 100% target space, always the rightmost data point)
which represents the performance of the RF-PCT model on that dataset. The
results suggest that subspace averaging outperforms total averaging (especially
for subset sizes below 50%). Moreover, the two aggregation functions exhibit
inverse behavior w.r.t. the target subspace size. Total averaging performs better
with larger target subspaces while subset averaging is better for smaller ones.
When the target subspace size increases, both variants converge to a perfor-
mance similar to that of the original RF-PCT method. This behavior is expected
because larger subset size leads to larger overlap between the set of all target
variables and its subsets.

We also observe that the performance of models with different aggregation
functions converges at different rates. Although we observe convergence towards
RF-PCT on all datasets, we speculate that the convergence rate is dataset depen-
dent. For instance, on the Delicious dataset, both variants already converge with
a target subspace size of 25%. On the Bibtex dataset, this number is a bit higher
(50%) and on the Yeast and Scene datasets even higher (75%).

Delicious (983T) Bibtex (159T) Yeast (14T) Scene (6T)

°
8

°

@
IS
R

°
@

°
>

Example-Based F Measure
-
3
Example-Based F Measure
g 8
Example-Based F Measure

Example-Based F Measure

°
&

LOG SQRT 25% 50% 75% 100% LOG SQRT 25% 50% 75% 100% 25% SQRT LOG 50% 75% 100% 25% SQRT LOG 50% 75% 100%
Target space size Target space size Target space size Target space size

Subspace Averaging ~+- Total Averaging Subspace Averaging -+ Total Averaging Subspace Averaging - Total Averaging Subspace Averaging ~+- Total Averaging

Fig. 1. Example based F1 results for Delicious, Bibtex, Yeast and Scene datasets.

Figure2 shows average rank diagrams that confirm our speculations.
Figures2a and ¢ show some statistically significant differences, so we recom-
mend a larger subspace size (v = %) with total averaging. Figures2b and d do
not show any statistically significant differences between the considered RF-ROS
variants. Nevertheless, we recommend using the smallest evaluated subspace size
(v =log q) to be used with subspace averaging, as this is most efficient.

We compared the model performances of RF-ROS variants using these rec-
ommended parameters to the performance of RF-PCT, RAKEL and RF-Gauss
(Fig. 3). The diagrams do not show any statistical significance in terms of F1.
It is immediately visible that RAKEL performs very well. Although it did not
finish on five datasets, it can still be considered a serious competitor on datasets
with smaller label spaces. However, its predictive performance comes at a high

114 M. Breskvar et al.

Critical Distance = 1.69183 Critical

ance
5 4 3 2 1 5 4 3 2 1
L . I i . L h L !)

R}-ROS-TO!JS RF-ROS-Sub-25
RF-ROS-Tot}LOG RF-ROS-Tot-50 RF-ROS-Sub-LOG
RF-ROS-Tot-SQRT] RF-ROS-Sub-75 RF-ROS-Sub-SQRT
RF-ROS-Tot-25 | RF-ROS-Sub-50 |
(a) Total averaging (F1 measure) (b) Subspace averaging (F1 measure)
Critical Distance = 1.69183 Critical Distance = 1.69183
2 ¢ 3 2 ! 2 ¢ 3 2 !
RF-ROS-Tot-75 RF-ROS-Sub-50
RF-ROS-Tot-LOG RF-ROS-Tot-50 RF-ROS-Sub-LOG RF-ROS-Sub-25
RF-ROS-Tot-SQRT RF-ROS-Sub-SQRT
RF-ROS-Tot-25 RF-ROS-Sub-75
(c) Total averaging (Hamming) (d) Subspace averaging (Hamming)

Fig. 2. Average rank diagrams of the RF-ROS variants (F1 and Hamming loss).

computational cost. This method is hindered by the fact that it uses label pow-
ersets and SVMs to generate models which makes the running times of RAKEL
substantially longer. RAKEL is not a clear winner w.r.t. the average rank dia-
grams because the method was penalized for not finishing. If we take RAKEL out
of consideration, the average rank diagrams in Fig. 3 suggest that the proposed
method performs at least as well as the competition.

RF-ROS-Sub-LOG is ranked better than RF-PCT in terms of F1 and equally
ranked in terms of Hamming loss. RF-ROS-Tot-75 also performs well in terms
of Hamming loss measure but is ranked last w.r.t F1. Moreover, we observe that
RF-ROS-Sub-LOG is ranked better than RF-Gauss and RAKEL.

Here, we summarize the answers to our experimental questions. Regard-
ing the recommended label subspace size, RF-ROS should be instantiated with
v = log q. It could be beneficial to use a slightly larger subspace size on datasets
with larger label spaces (i.e., v € (/q, %)). Next, subspace averaging should be
preferred, because total averaging seems to degrade the predictive performance
of the models and (with larger label subspace sizes) converges to the performance
of the original method (RF-PCT). Note that even if we do not use the optimal
value for the subspace size, the performance of RF-ROS is lower-bounded by

Critical Distance = 1.69183 Critical Distance = 1.69183

3 b 3 2 ! 3 4 3 2 !
‘ —
RF-ROS-Sub-LOG RF-PCT
RAKEL RF-ROS-Sub-LOG
RF-Gaussian-Subspace RE-PCT RAKEL RF-ROS-Tot-75
RF-ROS-Tot-75 RF-Gaussian-Subspaces

(a) Example based F1 (b) Hamming loss

Fig. 3. Average rank diagrams for RF-ROS and its competitors.

Multi-label Classification Using Random Label Subset Selections 115

RF-PCT. Finally, RF-ROS ensembles perform well compared to the competi-
tion, which especially holds for the RF-ROS-Sub-LOG variant.

5 Conclusions and Future Work

We have proposed and evaluated a novel ensemble method for ML.C, namedRF-
ROS, that uses subsets of the label space to induce base models. We have exper-
imented with different subspace sizes and two voting mechanisms, and found
that the proposed method improves random forest models with PCTs as base
learners. We have also shown that the proposed method generates models that
performs equally well or better than the competition.

Future work is planned that will include evaluation against models gener-
ated by additional MLC methods. We will also add experiments on additional
datasets. Next, we would like to try a new aggregation function where we would
include predictions of the default model (i.e., predictions on the whole training
set). We would also like to include out-of-bag errors to estimate the quality of
individual base models and use this in conjunction with the mentioned aggre-
gation function. Finally, a possible direction for future work is the extension of
label subspace generation process that would work for hierarchies.

Acknowledgements. We acknowledge the financial support of the Slovenian
Research Agency via the grants P2-0103,L2-7509, and a young researcher grant to
MB, as well as the European Commission, through grants ICT-2013-612944 MAES-
TRA and ICT-2013-604102 HBP SGAL.

References

1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Mach. Learn. 36(1), 105-139 (1999)

2. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

3. Joly, A., Geurts, P., Wehenkel, L.: Random forests with random projections of
the output space for high dimensional multi-label classification. In: Calders, T.,
Esposito, F., Hiillermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8724,
pp. 607-622. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44848-9_39

4. Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting structured
outputs. Pattern Recogn. 46(3), 817-833 (2013)

5. Madjarov, G., Gjorgjevikj, D., Dimitrovski, I., Dzeroski, S.: The use of data-derived
label hierarchies in multi-label classification. J. Intel. Inf. Syst. 47(1), 57-90 (2016)

6. Madjarov, G., Kocev, D., Gjorgjevikj, D., Dzeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084-3104

2012

7. ézym;ﬁski, P., Kajdanowicz, T., Kersting, K.: How is a data-driven approach better
than random choice in label space division for multi-label classification? Entropy
18(8), 282 (2016)

8. Tsoumakas, G., Vlahavas, I.. Random k-labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
Mladeni¢, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 406-417.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74958-5_38

http://dx.doi.org/10.1007/978-3-662-44848-9_39
http://dx.doi.org/10.1007/978-3-540-74958-5_38

Option Predictive Clustering Trees
for Hierarchical Multi-label Classification

Tomaz Stepisnik Perdih2®9) | Aljaz Osojnik'?, Saso Dzeroski'?,
and Dragi Kocev!2

! Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
{tomaz.stepisnik,aljaz.osojnik,saso.dzeroski,dragi.kocev}@ijs.si
2 Jozef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. In this work, we address the task of hierarchical multi-label
classification (HMLC). HMLC is a variant of classification, where a single
example may belong to multiple classes at the same time and the classes
are organized in the form of a hierarchy. Many practically relevant prob-
lems can be presented as a HMLC task, such as predicting gene function,
habitat modelling, annotation of images and videos, etc. We propose to
extend the predictive clustering trees for HMLC — a generalization of
decision trees for HMLC — toward learning option predictive clustering
trees (OPCTs) for HMLC. OPCTs address the myopia of the standard
tree induction by considering alternative splits in the internal nodes of
the tree. An option tree can also be regarded as a condensed represen-
tation of an ensemble. We evaluate OPCTs on 12 benchmark HMLC
datasets from various domains. With the least restrictive parameter val-
ues, OPCTs are comparable to the state-of-the-art ensemble methods
of bagging and random forest of PCTs. Moreover, OPCTs statistically
significantly outperform PCTs.

1 Introduction

Supervised learning is one of the most widely researched areas of machine learn-
ing, where the goal is to learn, from a set of examples with known class, a function
that outputs a prediction for the class of a previously unseen example. The most
widely studied machine learning task is binary classification where the goal is to
classify the examples into two groups. The task where the examples can belong
to a single class from a given set of m classes (m > 3) is known as multi-class
classification. The case where the output is a real value is called regression.

In many real life problems of predictive modelling the target is structured
(e.g., the target is a vector of values with dependencies between them, or a time
series). In this work, we focus on the task of hierarchical multi-label classification
(HMLC). HMLC is a variant of classification, where a single example may belong
to multiple classes at the same time and the classes are organized in the form of
a hierarchy. An example that belongs to some class ¢ automatically belongs to all
super-classes of ¢: This is called the hierarchical constraint. Problems of this kind
can be found in many domains including text classification, functional genomics,

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 116-123, 2017.
DOI: 10.1007/978-3-319-67786-6_9

Option PCTs for HMLC 117

and object/scene classification. Silla and Freitas [19] give a detailed overview of
the possible application areas and the different approaches to HMLC.

Decision tree based methods take a very notable place among approaches to
HMLC. When used as base predictive models in an ensemble, they can yield a
state-of-the-art performance [13,18]. A prominent global tree method for HMLC
is a predictive clustering tree (PCT) for HMLC [20]. PCTs for HMLC inherit
the properties of decision trees: they are interpretable models, but learning them
is greedy. The performance of the trees is significantly improved when they are
used in an ensemble setting [13]. However, the greediness of the tree construction
process can lead to learning sub-optimal models. One way to alleviate this is to
use a beam-search algorithm for tree induction [12], while another approach is
to introduce option splits in the nodes [5,14].

In this work, we propose to extend predictive clustering trees (PCTs) for
HMLC towards option trees, hence we propose to learn option predictive clus-
tering trees (OPCTSs). An option tree can be seen as a condensed representation
of an ensemble of trees which share a common substructure. More specifically,
the heuristic function for split selection can return multiple values that are close
to each other within a predefined range. These splits are then used to construct
an option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for HMLC. Next, Sect. 3 outlines the design
of the experimental evaluation. Section4 continues with a discussion of the
results. Finally, Sect.5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [1], which is available at
http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT framework,
by introducing option nodes into the tree building procedure. Option decision
trees were first introduced as classification trees by Buntine [5] and then ana-
lyzed in more detail by Kohavi and Kunz [14]. Tkonomovska et al. [10] analyzed
regression option trees in the context of data streams. We also evaluated OPCTs
for the multi-target regression task [16].

The major motivation for the introduction of option trees is to address
the myopia of the top-down induction of decision trees (TDIDT) algorithm [4].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering of a subspace and prediction functions are placed
in the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows
the construction of an overlapping hierarchical clustering. This means that, at
each node of the tree several alternative hierarchical clusterings of the subspace

http://clus.sourceforge.net

118 T. Stepisnik Perdih et al.

can appear instead of a single one. When using TDIDT to construct a predic-
tive clustering tree, and in particular when partitioning the data, all possible
splits are evaluated by using a heuristic and the best one is selected. However,
other splits may have very similar heuristic values. The best partition could be
obtained with another split as a consequence of noise or of the sampling that
generated the data. In this case, selecting a different split could be optimal. To
address this concern, the use of option nodes was proposed [14].

The procedure of PCT learning for the HMLC task is presented in [13]. We
modify it by introducing an option node into the tree when the best splits have
similar heuristic values. Instead of selecting only the best split, we select several
of them. Specifically, we select splits s, that satisfy the condition:

Heur(s)

— " >1-—¢-d 1
Heur(spest) e d, (1)

where Spest is the best split, e determines how similar the heuristics must be,
d € [0,1] is a decay factor and [is the depth of the node we are attempting to
split. E.g., when e = 0.1, we are selecting only splits whose heuristics are within
10% of the best split at the top level. We define the depth of a node to be the
number of its ancestor nodes, excluding option nodes, as they do not split the
data. The use of a decay factor makes the selection criterion more stringent in
the lower nodes of the tree, where the impact of the split selection is also lower.
After we have determined the candidate splits, we introduce an option node
whose children are split nodes obtained by using the selected splits.
Introducing an option node with a large number of options is not advised [14]
as it can lead to the explosion of model sizes. Therefore, we limit the maximum

number of options for a single option node to 5 and also prohibit the induction
of option nodes on depth 3 and greater.

Fig. 1. An option tree (left) and the ensemble of its embedded trees (right). O; are
option nodes, S; split nodes and Ly leaf nodes.

Option PCTs for HMLC 119

Once an OPCT is learned, we use it for prediction. In a regular PCT an
example is sorted into a leaf (reached according to the tests in the nodes of
the tree) where a prediction is made using a prototype function. Traversing an
example through an OPCT is the same for split nodes and leaves. When we
encounter an option node, however, we traverse the example down each of the
options. This means that in an option node an example is sorted to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in
an option node, we aggregate the obtained predictions.

An option tree is usually observed as a single tree, however, it can also be
interpreted as a compact representation of an ensemble. We can extract embedded
trees out of an option tree by replacing every option node with one of its options
(Fig.1). A given OPCT is also an extension of the PCT learned on the same
data. By definition, whenever we introduce an option node, we include the best
split. Consequently, the PCT is an embedded tree in the OPCT, resulting from
replacing all option nodes with the best option.

3 Experimental Design

We evaluated the performance and efficiency of the proposed OPCT method with
different parameter values and compared it to the standard PCTs and ensembles
of PCTs. Evaluation was done on 12 datasets from biology, text classification and
image annotation domains. They are described in Table 1. The datasets came
pre-divided into training and testing sets and we used them in their original
format, for easier comparison of the results.

OPCTs are evaluated for various values of parameters e and d. For e we
consider values 0.1, 0.2, 0.5 and 1.0, while d takes values 0.5, 0.9 and 1.0. Notably,
different selections of parameters can produce the same OPCT, if for a given
dataset the same splits satisfy both criteria. Hereafter, the OPCT method with
specific parameter values is denoted OPCT_eX_dY (e.g., for e = 0.5,d = 0.9,
OPCT_€0.5_d0.9). The border case OPCT_el_d1 always selects the 5 best options
regardless of their heuristic score, making this setting similar to ensembles.

For PCTs and OPCTs we use the F-test as a pruning mechanism. Specifically,
we check if a split results in a statistically significant improvement over the single
node. If no split satisfies the F-test, the learning in the node stops. The signifi-
cance level for the test was selected from the set of values {0.125,0.1,0.05,0.01,
0.005,0.001} using internal 3-fold cross validation on the training set.

For ensembles, we considered bagging [2] and random forests [3]. For both
methods we used 100 trees in the ensemble. Random forests algorithm also takes
as input the size of the feature subset randomly selected at each node. For this
we used the square root of the number of descriptive variables ([\/|D| + |C|]).

Performance was measured using Area Under the Average Precision-Recall
Curve (AUPRC) [20]. For efficiency, we looked at the model size (number of
leaves in a tree/ensemble). For statistical comparison of the methods we adopted
the recommendations by Demsar [7]. Specifically, we used the Friedman test for
statistical significance and Nemenyi post-hoc test to detect between which algo-
rithms the significant differences occur. For both tests we selected confidence

120 T. Stepisnik Perdih et al.

Table 1. Descriptions of datasets used for the evaluation. The table shows the number
of examples in the training and testing sets (V¢ /Nie), number of descriptive attributes
(discrete/continuous, D/C'), number of labels in the hierarchy (|H|), maximal depth of
the labels in the hierarchy (Hq) and average number of labels per example (£).

Nitr/Nte |D|/|IC| ||H| |Ha L
Diatoms [9] 2065/1054 | 0/371 377 | 3.0 1.95
Enron [11] 988/660 | 0/1001 | 54 3.0 5.30
Expression FunCat [6] | 2494/1201 |4/547 | 475 4.0 8.87
Exprindiv—FunCat [6] |2314/1182 | 1252 261 4.0 3.36
ImCLEFO7A [§] 10000,/1006 | 0/80 96 13.0/3.0
ImCLEF07D [8] 10000,/1006 | 0/80 46 3.0 3.0
Interpro-FunCat [6] 2455/1264 | 2816 263 4.0 3.34
Reuters [15] 3000/3000 |0/47236 |100 |4.0|3.20
SCOP-GO [6] 6507/3336 | 0/2003 | 523 |5.5 6.26
Sequence-FunCat [6] |2455/1264 |2/4448 |244 [4.0 |3.35
WIPO [17] 1352/358 | 0/74435 183 |4.0|4.0
Yeast-GO [6] 2310/1155 | 5588/342 | 133 | 6.3 5.74

level 0.05. The results of the statistical analysis are presented with average rank-
ing diagrams. They plot the average ranks of the algorithms and connect those
whose average ranks differ by less than the critical distance. The performance of
the algorithms connected with a line is not statistically significantly different.

4 Results and Discussion

We present our experimental results as graphs with size on the horizontal axis
and performance on the vertical axis. Figure 2 shows the results on four datasets.
The remaining graphs are very similar and are omitted for brevity. Notably, the
figures are on separate scales and on some figures the differences in performance
between the different models are very small, e.g., on the SCOP-GO dataset.

Observing the points representing the results of OPCTs, the trade-off
between size and performance is clearly visible. This trade-off is achieved as
a consequence of different choices of the parameter values. The models’ pre-
dictive performance generally rises with increasing model size, indicating that
even the largest OPCTs do not overfit the training set, or possibly, different
options overfit different parts of the input space. The increase in predictive per-
formance in terms of increasing size also appears to saturate at the higher val-
ues of the observed parameter settings. This indicates that learning even larger
less-restrictive OPCTs is not likely to provide a significant boost to predictive
performance.

Compared to a PCT, OPCTs generally produce more accurate models that
are mostly much larger. However, the increase in predictive performance is often

Option PCTs for HMLC 121

Dataset = INCLEFO7D Dataset = Enron
0.90 o O prie 075 |
O O A Algorithm
x .
5 0.85 0.70 Ooﬁ pCT
<
Sos0 v @O : RForest
% 0.65 <> Bagging
o075 OPCT_e0.1_d0.5
0.60 OPCT_e0.1_d0.9
0.70 \/ OPCT_ e0.1_d1
0 50000 100000 150000 200000 0 10000 20000 30000
%% OPCT_e0.2_d05
Dataset = WIPO Dataset = SCOP-GO OPCT_e0.2_d0.9
080 O(} ?ﬁ? 088 () OPCT_e0.2_d1
) o0 % {) OPCT_e0.5_d0.5
o @ () OPCT e05_d0.9
35075 086
< OPCT_e0.5_d1
i &

T el1_do.
%070231 P () OPCT el dos
o0 57 OPCT_ el do.9

OPCT_el_d1
0.82 -
0.65
0 10000 20000 30000 40000 0 25000 50000 75000100000125000
Size Size

Fig. 2. Performances and sizes of models produced by different methods

noticeable even for the lowest parameter values when the difference in size is
relatively small. The comparison between OPCTs and ensembles of PCT's is more
varied. Bagging of PCTs is usually better than OPCTs (SCOP-GO), though
often very slightly (Enron) and sometimes worse (IMCLEF07D). However, the
size of a bagging ensemble can considerably surpass the size of even the largest
OPCTs. On the Enron dataset, random forests of PCTs outperform all other
methods by a solid margin. They also provide good performance on the SCOP-
GO dataset with relatively small trees, however, on the WIPO dataset they
produce the largest model which only outperforms a PCT.

We selected 3 parameter configurations as trade-off points between predic-
tive performance and model size: OPCT_el_d1, as it offers the best performance,
OPCT_el1.d0.5, as its performance was similar to that of OPCT_el_d1 but it
often produced noticeably smaller models, and OPCT_e0.5_d0.5, as it consis-
tently produced much smaller models than other two selected configurations,
albeit at the cost of some performance.

We compared the performance and size of these three configurations to that of
a PCT and their ensembles, using Friedman test to check if there is a significant
difference between the algorithms and the Nemenyi post-hoc test to show where
the differences occur. Results are presented in Fig. 3. The performance of a PCT
and its size is significantly lower than that of ensembles of PCTs, OPCT_el_d1
and OPCT_el1.d0.5. Additionally, the size of OPCT_e0.5_d0.5 is significantly
lower than that of the four aforementioned methods, but its performance is not.
We also observe that the average rank of OPCT_el1_d0.5 in performance is on
par with ensembles of PCTs (it placed between bagging and random forests),
while its average rank in size is noticeably better. As expected, a PCT always
produced the smallest model with the worst performance.

122 T. Stepisnik Perdih et al.

OPCT_el_d0.5 RForest
OPCT_el_d0.5 Bagging
OPCTeldl OPCT_e0.5 d0.5 OPCT_e0.5_d0.5 RForest
Bagging PCcT PCT OPCT el d1
|
\ [\ [\ \ \
1 2 3 4 5 6 1 2 3 4 5 6
Critical distance = 2.1765 Critical distance = 2.1765
| | A
(a) Performance (b) Size

Fig. 3. Average ranking diagrams of the performance and size of selected methods

5 Conclusions

In this work, we proposed an algorithm for learning option predictive clustering
trees (OPCTs) for the hierarchical multi-label classification task. The purpose
of OPCTs is to address the greediness of the standard algorithm for PCT learn-
ing. We experimentally evaluated the proposed method with various parameter
values and compared it to PCTs and ensembles of PCTs (bagging and random
forests). The results show that increasing the values of e and d increases the
model performance and size compared to PCTs. At the highest parameter val-
ues of e = 1, d = 1, OPCTs are comparable to the state-of-the-art ensemble
methods of bagging and random forest of PCTs.

We identified three interesting parameter selections for OPCTs and per-
formed statistical comparison of these three methods and regular PCTs and
their ensembles. The results show that regular PCTs have significantly lower
performance and size than other methods with the exception of OPCT _€0.5_d0.5.
Additionally, OPCT_e0.5_d0.5 produces significantly smaller models than bag-
ging of PCTs, random forests of PCTs and OPCT_el_d1. Average performance
ranks of bagging, random forests, OPCT_el_d1 and OPCT _el1_d0.5 are very sim-
ilar, while average size rank of OPCT_e1_d0.5 is noticeably lower than that of
the other three methods. Based on these results, we suggest the parameter values
of e € {0.5,1} and d € {0.5,1} for future analyses.

There are several avenues for further work. Notably, the OPCT method-
ology described in this paper can be easily applied to the task of multi-label
classification. In the future, we also plan to use the OPCT methodology as a
part of a guided process to produce regular PCTs though either input from a
domain expert, or through the use of additional validation data. Finally, we will
investigate the use of OPCTs for performing feature ranking and selection for
HMLC.

Acknowledgments. We acknowledge the financial support of the European Commis-
sion through the grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP, as
well as the support of the Slovenian Research Agency through young researcher grants
and the program Knowledge Technologies (P2-0103).

Option PCTs for HMLC 123

References

w

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J.
Mach. Learn. Res. 3, 621-650 (2002)

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Chapman & Hall/CRC, London (1984)

Buntine, W.: Learning classification trees. Stat. Comput. 2(2), 63-73 (1992)
Clare, A.: Machine learning and data mining for yeast functional genomics. Ph.D.
thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK (2003)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

Dimitrovski, 1., Kocev, D., Loskovska, S., Dzeroski, S.: Hierarchical annotation of
medical images. Pattern Recogn. 44(10-11), 2436-2449 (2011)

Dimitrovski, 1., Kocev, D., Loskovska, S., Dzeroski, S.: Hierarchical classification
of diatom images using ensembles of predictive clustering trees. Ecol. Inf. 7(1),
19-29 (2012)

Ikonomovska, E., Gama, J., Zenko, B., Dzeroski, S.: Speeding-up hoeffding-based
regression trees with options. In: Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, pp. 537-544 (2011)

Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification
research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS, vol. 3201, pp. 217-226. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30115-8_22

Kocev, D., Struyf, J., DzZeroski, S.: Beam search induction and similarity con-
straints for predictive clustering trees. In: Dzeroski, S., Struyf, J. (eds.) KDID
2006. LNCS, vol. 4747, pp. 134-151. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75549-4_9

Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817-833 (2013)

Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: Proceedings of
the 14th International Conference on Machine Learning, ICML 1997, pp. 161-169.
Morgan Kaufmann Publishers Inc., San Francisco (1997)

Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)

Osojnik, A., Dzeroski, S., Kocev, D.: Option predictive clustering trees for multi-
target regression. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS,
vol. 9956, pp. 118-133. Springer, Cham (2016). doi:10.1007/978-3-319-46307-0-8
Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of
hierarchical multilabel classification models. J. Mach. Learn. Res. 7, 1601-1626
(2006)

Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting
gene function using hierarchical multi-label decision tree ensembles. BMC Bioin-
form. 11(2), 1-14 (2010)

Silla, C., Freitas, A.: A survey of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Disc. 22(1-2), 31-72 (2011)

Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185-214 (2008)

http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-75549-4_9
http://dx.doi.org/10.1007/978-3-540-75549-4_9
http://dx.doi.org/10.1007/978-3-319-46307-0_8

Deep Learning

Re-training Deep Neural Networks to Facilitate
Boolean Concept Extraction

Camila Gonzélez®)®, Eneldo Loza Mencia, and Johannes Fiirnkranz

Knowledge Engineering Group, TU Darmstadt,
Hochschulstrasse 10, 64289 Darmstadt, Germany
camilag.bustillo@gmail.com, {eneldo,juffi}@ke.tu-darmstadt.de

Abstract. Deep neural networks are accurate predictors, but their deci-
sions are difficult to interpret, which limits their applicability in various
fields. Symbolic representations in the form of rule sets are one way to
illustrate their behavior as a whole, as well as the hidden concepts they
model in the intermediate layers. The main contribution of the paper is to
demonstrate how to facilitate rule extraction from a deep neural network
by retraining it in order to encourage sparseness in the weight matrices
and make the hidden units be either maximally or minimally active.
Instead of using datasets which combine the attributes in an unclear
manner, we show the effectiveness of the methods on the task of recon-
structing predefined Boolean concepts so it can later be assessed to what
degree the patterns were captured in the rule sets. The evaluation shows
that reducing the connectivity of the network in such a way significantly
assists later rule extraction, and that when the neurons are either mini-
mally or maximally active it suffices to consider one threshold per hidden
unit.

Keywords: Deep neural networks * Inductive rule learning - Knowledge
distillation

1 Introduction

Deep neural networks [10] achieve state of the art performance in a variety of
different fields, like computer vision, speech recognition and machine translation.
They can be leveraged both in supervised and unsupervised problem formula-
tions, as they automatically learn insightful features out of unprocessed data. In
the last few years, they have considerably risen in popularity as advancements
in the training practices and availability of user friendly frameworks have made
it much simpler to train accurate models, as long as sufficient data is available.

However, the fact that the models are governed by a high number of parame-
ters makes tracing the path that led to a classification an arduous process, which
is why they are often regarded as black boxes. This is a significant shortcoming,
as it makes them unsuitable for safety critical applications and domains where
there are juridical barriers which either explicitly forbid their use or implicitly
discourage it by making the user liable for the model’s decisions. Amongst the

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 127-143, 2017.
DOI: 10.1007/978-3-319-67786-6_10

http://orcid.org/0000-0002-4510-7309
http://orcid.org/0000-0002-1207-0159

128 C. Gonzélez et al.

legislation that aims for more comprehensible prediction models is the General
Data Protection Regulation (GDPR)' planned to take effect in 2018. There is
also an ongoing European legislative initiative on Civil law rules on robotics?.

In fields such as health care and criminal sentencing, comprehensible models
like decision lists or trees are favored because they provide understandable evi-
dence to support their predictions [16,17]. Decision support systems (DSS) aim
at integrating machine learning models into a human-centered decision process.
Here, interpretability is of particular advantage because a justified decision is
more likely to convince the human to support or disregard the machine’s recom-
mendation. Besides, the extent to which the model is used in practice depends
heavily on how easily interpretable it is, as this is a relevant criteria for eliciting
trust [14].

Compared to neural networks, if-then rule sets are a representation with a
good trade-off between human and machine interpretability [9]. This is partly
because they provide a symbolic representation which more closely resembles the
way humans model logic. Also, each rule can be observed individually, so only a
limited amount of information must be considered at any time. This advantage,
together with the fact that they can be more flexibly pruned, sometimes makes
them preferable over decision trees [7].

Consequently, researchers have looked into converting neural networks into
a rule-based representation. One problem with such approaches is that much
information is lost when the continuous range of activation levels of the internal
neurons is mapped to a two-valued logical representation. In this paper, we
investigate ways for retraining deep neural networks with the goal of encouraging
sparse connectivity and minimally or maximally active hidden units, with the
idea of facilitating a later extraction of rules from the network. We study the
problem on the task of reconstructing Boolean functions, because there we can
see whether the use of the network’s structure really helps to recover the logical
structure in the target function.

We will start our discussion with a brief general overview of prior work on
rule extraction from neural networks (Sect.2), with a particular focus on the
DEePRED algorithm, upon which forms the basis of our work (Sect.3). The
core contribution of this paper, an algorithm for retraining DNNs to extract
better representations, is described in Sect. 4, and experimentally evaluated on
the problem of reconstructing Boolean functions in Sect. 5.

2 Knowledge Distillation from Neural Networks

Much of the predictive strength of deep neural networks originates from their
ability to form latent concepts in the hidden layers, and the high connectivity
between these layers makes it difficult to distill the meaning of these concepts.

! EU Regulation 2016/679: http://eur-lex.europa.cu/eli/reg/2016/679/0j, http://
www.eugdpr.org.

2 http://www.curoparl.europa.cu/oeil /popups/ficheprocedure.do?reference=2015/
2103(INL).

http://eur-lex.europa.eu/eli/reg/2016/679/oj
http://www.eugdpr.org
http://www.eugdpr.org
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/2103(INL)
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/2103(INL)

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 129

One approach is to rely on visualization in order to analyze the behavior of the
learned network (see, e.g., [29]). However, another line of research concentrates
on ways of making the knowledge that is implicitly captured in these nodes
explicit and amenable to human inspection. Typically this is done by trans-
forming the neural network into more interpretable knowledge representations
such as rules or decision trees. A prerequisite for such work is often to simplify
the network by pruning unnecessary connections and neurons. We will briefly
recapitulate work in these areas in Sects. 2.1 and 2.2, respectively.

2.1 Rule Extraction

Many approaches have been developed to extract symbolic representations from
neural networks. However, most either do not consider the network’s internal
structure or are only applicable to shallow architectures. A distinction can be
made between pedagogical methods, which regard the network as a black box
and map relationships between the outputs and the inputs, decompositional ones
that observe the contribution of individual parameters or neurons and eclectic
methods which fall between the other two [4]. Other categorizations refer to the
computational complexity of the approach, what data is used to build the model
and whether a particular training regime is performed [2].

A first group is made up of subset approaches [8,27,28]. These are decom-
positional and typically assume a polarization of the activations and the use of
exclusively binary inputs. They search the entire feature space and construct
one expression per neuron of interest. Typically, a threshold is applied to the
neuron’s output to define an active and an inactive state. Rules are then learnt
for the active state by finding combinations of the incoming weights that cause
the bias of the hidden unit to be exceeded.

A shortcoming of these methods is that considering all subset combinations
grows at an exponential rate with the number of incoming connections, which
limits their applicability to larger networks. It also cannot be assumed that any
network can be converted to one with only maximally or minimally active neu-
rons while maintaining the initial accuracy. An even more difficult requirement
to fulfill is that inputs should be discrete so they can be binarized without infor-
mation loss.

Another problem that arises when sampling all possible inputs is that the way
the network reacts to implausible instances may not be meaningful, so capturing
this logic may result in an overly complicated rule model which is not better
at classifying unseen, naturally occurring examples. Some methods thus focus
primarily on the instances used to train the network when building the symbolic
model.

Such is the case for the pedagogical TREPAN algorithm [5], which explains
the outputs of the network with respect to the inputs by building decision trees
directly between these layers. The tree building process makes use of queried
instances, generated from the marginal distribution of each attribute, to avoid
low amounts of data as the tree branches. However, in a comparison of different
variants [18], that which did not generate new examples performed best.

130 C. Gonzélez et al.

CRED [20] also builds decision trees between network layers using the train
data, but it works in a decompositional manner. First, a target condition is
specified to discretize the class values, and decision trees are built to explain
this output pattern with the hidden units as attributes, using the corresponding
activation values of the training instances. The range of each hidden unit is
partitioned in an online manner, so several thresholds may be considered per
unit, and some units may be ignored. The trees are then converted into sets of
decision rules. Redundant and unsatisfiable rules and terms are deleted, and rules
are merged by forming their least general generalization (lgg) by selecting the
most general condition of the attributes they share, and dropping all conditions
of attributes they do not share. For instance, a < 0.3Ab >4 Ac>2— C7 and
a<02Ab>3Ad>2— Cq would become a < 0.3Ab >3 — (. Afterwards,
analogous rule sets are built which explain each split value considered for a the
hidden units with respect to the inputs, which now make up the attributes.
Finally, the total rules are formed by substituting the hidden split values with
these new rule sets.

2.2 Connection Pruning

Pruning connections or whole neurons of trained neural networks is a common
way to adapt the topology of the network to the effective size of the problem,
thus discouraging overfitting and increasing the generalization capabilities. It can
also be leveraged to require less time and resources when making classifications
[12,15,26].

A connection w; k between two neurons hj_;; and h;; can be pruned by
equaling the welght entry to zero. This is surmlar to applying dropout [25]
but whereas dropout temporarily removes randomly chosen connections for one
epoch at a time, pruning permanently removes selected connections from the
network. Connections can be pruned iteratively by retraining the network after
each pruning step, which allows to discard a considerably higher number [11].
Note that pruning connections can result in indirectly pruning whole inputs or
hidden units, as a neuron without output connections is disconnected from the
network.

In [23] a method is introduced to prune connections from shallow neural net-
works. First, the networks are trained with a weight-decay penalty. Connections
wg’ ; between the hidden and output layers are then pruned if

2
[wp sl <m (1)
and connections wj1 . between the inputs and hidden units are pruned if
2 1
maxy ’wp,j.wjyk| <n. (2)

If no connection fulfills one of those conditions, then the entry wj1 i for which the
minimum of the maximum products is lowest is pruned. Afterwards, the network
is retrained. If the final error falls below an acceptable level, the pruning step is

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 131

repeated; otherwise the last acceptable parameters are restored and the process
is stopped.

The author uses this approach extensively as a preprocessing step before
applying rule extraction algorithms [21,24]. The pruning phase is usually fol-
lowed by a discretization of the hidden unit activations. In [22], the connectivity
of the hidden units is further reduced by ‘splitting’ those with many input con-
nections. Each new unit is treated as an output and a hidden layer is inserted
in the middle between the inputs and the new output layer. The network is
retrained and the new subnetwork pruned, and the process is repeated until
each neuron only has a small number of inputs.

3 The DEEPRED Algorithm

In order to extract representations from deep neural networks which not only
explain the network’s predictive behavior but also uncover hidden features, we
make use of the DEEPRED algorithm [30], which extends CRED (Sect.2.1) to
deep neural networks. It is scalable to large architectures, works in a decomposi-
tional manner and has been shown to be capable of extracting accurate models
from deep neural networks. We extended DEEPRED with a post-pruning step
(Sect. 3.3) meant to contain error propagation and reduce the complexity. This
is carried out each time a rule set is generated from a decision tree, and between
substitution steps when building the expression of the target with regards to the
inputs.

3.1 Overview

The DEEPRED algorithm extracts rules between any two layers by building
decision trees for layer h; using the activations from layer h;_; as attributes.
The trees are then transformed to rule sets, and a merging step converts the
intermediate representations into a single rule set connecting the inputs with
the outputs. Redundant and unsatisfiable rules and conditions are deleted, but
unlike in CRED no further pruning takes place. There is a version of the algo-
rithm that performs a feature selection prior to rule extraction by considering the
contribution of each input for correctly classifying the training data and remov-
ing inputs that do have a great impact. This proves to be very advantageous
when the network is used for high-dimensional data.

Figure 1 exemplifies how DEEPRED would extract rule representations from
a shallow neural network which emulates a Boolean function. The model is sam-
pled to obtain activation values for each training instance. A first tree is built to
predict under what activation settings of layer hy the target concept is fulfilled,
namely that class C; has a higher probability than Cjy. The tree is converted
into a DNF representation and the expression is simplified. A tree is then built
for each literal which appears in the simplified expression, using the input values
as attribute data. Each of these expressions is extracted and simplified, and a
last step substitutes the literals with regards to the hidden layer so that the
expression which predicts class C is in terms of the inputs.

132 C. Gonzélez et al.

F:AVvB
A|B|F Xo | X1 |[hio |hi1|hi2 || h2o|h21
010]0

° sample | 0 | 0 |[-09]09 [-09][08 02

011 0| 11([-09]-09]-09]| 01] 09

1101 1 0 09109 -09](02| 0.8

111 1] 110909]|-09(01]09
convert to DNF and simplify C4.5 hz1 > hzo

hio<0 :—
h11<0V(hi1>0Ah10>0)—ha1>hap
v
< <
hit <0Vhio>0-hay>hao hi<0 o ha1 < hao
h21 > hapo
hi; >0 E
— X0 <05Ax1 >05—>hi;<0 &
x0 <05 ¢ h10>0 =
— —~ — =
x1 <0.5 ; hi:1 <0 X0 <05 %o > 0.5 hio>0 &
~_
his>0 hio <0 X0 >0.5Vx1>05—=h21 >hao

Fig. 1. The general workflow of DEEPRED.

3.2 Extraction of DNF Formulas from Trees

A rule can be regarded as a conjunction of terms, where a term is a condition
indicating whether the activation state of a neuron falls or not above some
threshold, and a rule set as an expression in disjunctive normal form (DNF).
Each tree built by DEEPRED determines whether an input or the activation
of a hidden unit fulfills one such term, using terms with respect of the adjacent
shallower layer. For instance, a tree could determine if the value 0.5 is exceeded by
the second neuron in the first hidden layer. Such a tree would have two possible
classes, h12 > 0.5 and h; 2 < 0.5. A DNF for each of them can be obtained by
joining the respective terms on all paths from the root to the corresponding leafs
of the tree.

A separate DNF formula is maintained for each class, so there are two DNFs
per split value, each of which fires as soon as one of its rules fires. A DNF
formula for the event of neuron hs o exceeding the threshold 0.5 may look like
(h171 > 0.5/ h1’2 < 03) V (h172 > 0.3 A h1,3 > 07) — h2,2 > 0.5.

The expressions for opposite class conditions, as would be those for hy 2 > 0.5
and ho o < 0.5, are complementary after being extracted for the tree, but this
may no longer hold once pruning is applied. Thus, both may fire for a given
example, or neither may do so. Usually, additional criteria such as a priority
list for tie-breaking between multiple predictions or a default rule for the latter
case are employed. However, in our case only one expression is maintained for
the selected class, so the inconsistencies within intermediate expressions do not
translate to ambiguities in the final class prediction.

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 133

3.3 Simplification and Post-pruning of Expressions

Transforming a decision tree into a rule set, as well as the process of building
the expression of the target with regards to the inputs by sequentially substitut-
ing terms by DNFs, can result in expressions with redundant and unsatisfiable
rules and redundant conditions. These are removed each time an expression is
extracted from a decision tree and between substitution steps.

Very similar rules may still remain which do not provide more information
than a simpler rule would. This affects the comprehensibility and can promote
error propagation between layers. Yet, a too strong generalization of the inter-
mediate concepts should be avoided as its repercussions on the final expres-
sion cannot be observed until the end. CRED (cf. Sect. 2.1) employs a pruning
approach which is advantageous in shallow networks but proved in preliminary
experiments to be too aggressive for deep networks. Instead, we use a method
of reduced error pruning that only makes a change if this positively affects the
accuracy with respect to the head of the rule.

Rules are ordered in terms of increasing precision. For each rule, the change
in accuracy is calculated in case the rule is deleted, a term is removed from
the rule (calculated for all terms) and the rule being merged with another one
from the set (calculated for all remaining rules). The modification which leads
to the highest accuracy is performed if it improves the accuracy over the current
rule set. Unless the modification consists on removing the rule completely, the
precision is calculated for the new rule, which is regarded as unseen. This is
repeated until there are no unseen rules left.

4 Retraining DNNs to Extract Better Representations

One problem with rule extraction from neural networks is that the activations
assume continuous values within some range, whereas a mapping to a decision
tree or rule set reduces them to a discrete setting. The key idea of our work is
that the transformation process may be supported by forcing the network weights
to assume more extreme values. In this section, we therefore present methods
for retraining a deep neural network in order to encourage sparseness in the
weight matrices and make the hidden units be either maximally or minimally
active. For this work, we consider the accuracy on the entire dataset for guiding
the retraining, because our goal is to train the networks to exactly emulate
predefined concepts. However, in a different setting it might be advisable to use
a separate validation set, which is not used to optimize the parameters.

4.1 Weight Sparseness Pruning

We employ a connection pruning technique that is quite similar to that described
in Sect. 2.2. In contrast to that method, ours can be applied to deep networks,
and its aim is to sparsify all weight matrices so that the total number of connec-
tions between any two layers is reduced. This has the effect that single neurons

134 C. Gonzélez et al.

are neither connected to a majority of the neurons of the following layer nor to
a majority of those from the previous layer. The expectation is that, as observed
by [22], rules extracted from minimally connected neurons will be simpler and
more accurate.

The motivation for targeting such connections also comes from the perfor-
mance of DEEPRED when applied to a network manually constructed to emu-
late the parity function with eight inputs [30]. The network constructed for this
experiment has a recursive structure from the eight inputs to the output layer
and is minimally connected. DEEPRED is not only able to extract the modeled
DNF representation using a significantly lower number of instances than a ped-
agogical approach, but its intermediate rules also exactly replicate the recursive
features.

In preliminary experiments, we could not repeat this effect on fully connected
networks of the same topology trained with backpropagation, even if all combina-
tions were used for training. When rules are extracted from such networks using
a reduced set of instances, the majority of the logic is concentrated between the
inputs and the first hidden layer. The rule sets extracted between these layers
overfit the train data, and each depends on the majority of the inputs. Therefore,
the accuracy on the unseen instances never exceeds fifty percent and actually
decreases with increasing amounts of training data (a phenomenon that also
affects C4.5). If, on the other hand, the number of connections is reduced, the
network may be encouraged to learn a reduced amount of hidden features that
are more abstract and apply to a greater percentage of examples.

General Methodology. A connection wék is represented by the index of the
weight matrix [and the row and column indices j and k. The number of entries
that have already been pruned in each row or column of each weight matrix is
maintained in order to calculate the neighborhood sparseness of the remaining
entries. This value is determined by the sum of entries that have been pruned in
row j of matrix W' plus those that have been pruned in column k of the same
matrix.

On each step, a list of all existing connections is sorted in terms of increasing
neighborhood sparseness, and it is attempted to prune the next head element,
which is likely to be surrounded by unpruned entries. The target training accu-
racy that must be reached after retraining for the connection to remain pruned
is the original train accuracy minus an allowed decrease. If the accuracy is satis-
factory, the connection is pruned, the counts for column and row pruned entries
are updated, and the list is re-sorted. Otherwise, the last accepted parameters
are restored, and the next connection is removed from the list.

Iterations Used for Retraining. Preliminary experiments showed that often
a small number of iterations suffice to determine whether a connection can be
pruned, because the network gets stuck in a local minimum. On the other hand,
some connections cause a steep decrease in accuracy when they are first removed,
but the network later adapts. To allow the latter connections to be eliminated
while not considerably increasing the retraining time, the retraining epochs are

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 135

divided into smaller sets. If after a set the accuracy is equal or greater than
the target accuracy, the connection is pruned, otherwise the retraining continues
until either n retraining steps were performed from the time a connection was
pruned or there were no improvements in the last m steps, with n > m.

Re-exploration of a Connection. It was also observed that if a connection
could not be pruned at some stage, it was unlikely that it could be pruned
later on, even if other connections had been pruned which affected the neurons
it joined. Therefore, in the experiments outlined in Sect.5 there was only one
attempt of pruning per connection.

4.2 Activation Polarization

The activation range of the hidden units being continuous has several negative
repercussions, such as making it more costly to classify new instances, so tech-
niques have been developed for binarizing the parameters and activation values
[1,3]. Yet, most networks are trained in such a way that the hidden units can
take any value within the range.

As representing each neuron with only one expression is a more compre-
hensible way to illustrate that neuron’s purpose in the network than if different
expressions have to be regarded for an array of activation intervals, many decom-
positional rule extraction approaches reduce the possible states each neuron takes
to being either at the bottom or the top of the activation range (cf. Sect.2.1).

In order to extract rules which are true to the network while making this
assumption, the networks must be trained in a way that the activations are
polarized. There are several ways to achieve this. We propose a retraining step
similar to that used in [19] to encourage sparse activations. The key idea is to
penalize the loss function with a term based on the KL divergence between the
mean absolute value of each activation

1 i
Plyn = |D| ; ‘a’lﬂl‘ (3)

and a p close to one, which results from the use of a hyperbolic tangent function.
These terms are summed up over all hidden units, yielding

S KL(pll pra) = plog
ln In

P IL—p
=+ (1—p)log—"—. 4
Pim (I-p) e T i (4)

This term introduces the additional parameters p for the optimal activation
average and [for the weighting of the penalty term. Instead of having to define
0, the retraining method as implemented for this work starts by setting 5 = 0,
and increases this value iteratively. Between each increment, a number of epochs
are conducted, for as long as there is no decrease in accuracy, and the divergence
stays above some threshold. The last weight and bias parameters are stored
before each increase of 3. If the process stops because the accuracy falls, the
parameters which were saved last are restored.

136 C. Gonzélez et al.

5 Experiments

In order to show that we can derive meaningful conceptual descriptions from deep
neural networks, we performed experiments on artificial datasets. Our goal was to
demonstrate that our algorithms can reconstruct Boolean input functions from
networks trained to model them. For this, we first made a quality assessment of
the concepts extracted when the entire dataset is available. After exploring the
limits of each approach, we compared the generalization abilities of the different
variants by utilizing a subset of the combinations as training data and analyzing
the accuracy on the remaining instances.

5.1 Experimental Setup

Data. We used twenty datasets constructed from Boolean functions with six to
fourteen literals. Nineteen were generated by joining groups of randomly selected
literals with alternating OR and AND operators and choosing to apply negation
over each group with a 0.2 probability, and one was the parity function with
eight inputs. The expressions were simplified with the ESPRESSO heuristic logic
minimizer [13]. Each dataset was made up of all combinations of literals in the
simplified expression.

Network Architecture and Training. The networks had three hidden layers,
the first with twice as many neurons as inputs, the second with the average
of that number and two and the third and output layers with two neurons.
The hyperbolic tangent was used as activation function, and a softmax function
was applied on the last layer. The networks were trained using the TensorFlow
framework and cross-entropy as the loss function. They were trained with all
input combinations until achieving a perfect accuracy. In this way, it was certain
that they mimicked the logic of the predefined formulas.

Compared Algorithms. We compared several variants of our approach where
(i) no retraining took place, (ii) weights sparseness pruning was performed, and
(iii) a polarization of the activations was followed by weight sparseness pruning.
Also, as observing one expression per hidden neuron of interest, which predicts
when that unit is in an active state, is more comprehensible than having to
consider an array of expressions, it was analyzed how the models would be
affected if instead of allowing the online discretization of C4.5 to select thresholds
of the activation range, only the midpoint of this range was considered.

Hyperparameter Setting. C4.5 was set to stop growing a tree when the
percentage of the majority class exceeded 99% or only less than 1% of the original
instances remained in a node. Only binary splits were allowed and the trees
had a maximum depth of twenty nodes. For activation polarization, p was set
to 0.99 and [was increased by 0.1 at a time. For weight sparseness pruning,

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 137

a 1% decrease in accuracy was allowed. In both cases, each epoch set consisted
of 1000 epochs. For the networks which were retrained in both manners, the
penalty term from the activation polarization was added to the loss function
used during connection pruning, multiplied by the last accepted value of (.

Evaluation Measures. The comprehensibility of the intermediate logic — which
is to say that between subsequent layers — was assessed with the number of
expressions and the total number of terms. The semantic quality was measured
using the accuracy, which is to say the proportion of correctly classified instances
among all classifications. Note that as the networks used perfectly replicate the
Boolean functions, this corresponds to the fidelity of the extracted rules mim-
icking the network’s behavior.

For determining whether observed performance differences between two clas-
sifiers were statistically significant, the sign and Wilcoxon signed ranks tests
were used for a significance level of p = 0.05. Following [6], ties were distributed,
and in the event of an uneven number of ties, the number N of datasets was
reduced by one. Also subtracted from this number were comparisons which could
not be performed because of uncompleted experiments. This occurred when the
time or memory constraints for the extraction — set respectively at 24h and
5000 MegaBytes — were surpassed or when no model could be built using one
threshold per hidden unit. At least one experiment could not be completed for
a total of three datasets, including that of the parity function.

5.2 Characteristics of the Trained Networks

After retraining the networks it was observed how many weights had been
pruned, and how well the neurons could be polarized by calculating the devia-
tion of the activations from zero averaged over all hidden units and examples.
The results suggest that a trade-off takes place between the divergence from the
range center and the number of pruned connections, as can be observed in Fig. 2.
The pruning approach eliminated a great percentage of the connections, but at
the cost of distributing the activation values more evenly across the range. When
the networks were first polarized and the penalty term was maintained during
the latter connection pruning, the activation values gathered even closer to the
range boundaries, but considerably less connections were eliminated.

5.3 Reconstruction Using the Entire Dataset

There was a noticeable change in the number of intermediate expressions which
were extracted — as well as in their complexity measured with the number of
terms — when the networks were retrained under weight sparseness pruning. As
can be observed in Fig. 3, models taken from less connected networks were much
more compact.

How this reflects in the extracted models is exemplified in Fig.4 for the
expression (x5 Ax1 Axs) V (Ts A To ATy A 2o ATs). The model extracted from

138 C. Gonzélez et al.

o
5 10045 ~

N e By _

= (@) A Retraining
© 751 A A A

< X None

= A A

%) O

= YAWAY:

ey

S 50 A A Weight

g JANVAN O sparseness
= A pruning

O 95 yAN Polarization
o)) and

©)

= Pruning

@

S o RRRRRREK. X

& 0.4 0.6 0.8 10

Average deviation from centre of hidden units

Fig. 2. Trade-off between deviation of the activations from the center of the range
and weight entries that were pruned. Each point represents the result on one of the
20 datasets, either with no retraining, retraining after weight sparseness pruning or
retraining after polarization and posterior weight sparseness pruning.

O
1000 A

i Retraining
2 5001 % X
‘|q___) 2501 ><>< X X None
[
g 1001 ><><>< AN Weight
£ 50 ¥ A © g
fe 1 X x X O
2 AA%@%OO Polarization
= AN @) /A and
** X @@ Prunin

]
101 @ @ @é

10 50 100
Intermediate Expressions

Fig. 3. Change in the complexity of the intermediate concepts when preceding extrac-
tion with weight sparseness pruning or polarization of the activations followed by
pruning.

the original network finds an adequate representation for the second conjunction
in hy ¢ > 0.32, as well as for the first part of the first conjunction in h; o < —0.26,
but fails to do so for x5. The model extracted from the polarized and pruned
network includes instead only expressions with only a couple of literals each and
it therefore much simpler to trace.

Applying the different retraining methods on the networks did not cause a
substantial change in accuracy when any threshold could be considered. Nei-
ther was a significant difference found when only zero was used to partition the
activation ranges of the hidden units, except for when the networks had been
subjected to weight sparseness pruning but no activation polarization. This effect

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 139

Model extracted from original network Model extracted from

Ts1 < 0.15 s target polarized and pruned network
hag > 0.32V hay > 0.56 — h3y <015 ||hs1=-0.10 — target
(h1o < —0.26 A hy17 < —0.65)V — hoy > 056 ||726>088Vhoe<—099 = hsy <—0.10
(hl,() < —0.26 A h1,8 > 0.12) hl(}g()? —0.01 A hl’g > — hag < —0.99
e>082 e > 082 001 A s < o hag > 088
(I4 A 15) \Y (Il AR WA I5) Y — hl,g > 0.12 —0.01 Ah1o> —0.93
(x1 AZa ATz Awg) V (1 ATs A xs) o AT S hyg > —0.93
(jo VA WA mr;) 2 (.’L‘g AN x3 A\ Tr,) \Y — h1A7 < —0.65

’ : < —0.
(Zy Axg Axg Aas) V T A T3 — h10 < —0.01
(To Nx2 NT3) V (33 A s As) T — h1g < —0.01
x1 N T3 — }L]y(] < —-0.26 x5 N hl s > —0.01
ToNTo NT3 NTy N\Ts — h,lf(; > 0.32 2o A T3 — h1s > —0.01

Fig.4. Effect of preceding DEEPRED with activation polarization and weight
sparseness pruning in the model that reconstructs the expression (x3 Ax1 Axs) V
(T3 ATo ANTa N2 ATs).

is shown in Fig. 5. The black circles, which refer to the models extracted from
unpolarized and pruned networks which only include conditions of the hidden
units with zero as threshold, illustrate a clear fall in accuracy when compared
to the rest of the models.

These results reinforce the hypothesis that, when a high number of network
connections are pruned and a retraining phase is performed between pruning
steps, the logic modeled by the network is more heavily concentrated in the
remaining neurons, thus needing to subdivide the neuron range into more inter-

Weight

vals to describe it.
JAYAN
o O sparseness

OO0 pruning

o go

O

Retraining

X None

D%XO

D B&

Polarization
and
Pruning

2O D> >
(0]>-2
x> Do &

Train Accuracy
o
©
o

@O

o
®

Term Thresholds
® Any

051 & @ Zero
0.5 0.8 0.90 0.95 1
Train Accuracy Base Configuration

Fig. 5. Extent to which the concepts modeled by the neural networks were recon-
structed when using all input combinations. Different configurations are compared to
that where the network is not retrained and the term thresholds are selected by C4.5
in an online manner.

140 C. Gonzélez et al.

5.4 Reconstruction Using Part of the Dataset

For these experiments, the data was split into ten, four or two stratified folds
and a cross-validation was performed. Also, the folds were inverted to observe
the situation where lower data percentages were available. This resulted in ten
experiments where 10% and 90% of the data was used, four with 25% and 75%
being available, and two for the 50% case. The evaluation measure was averaged
over all folds.

Again, the analysis focused on the effect of the different retraining methodolo-
gies. As models extracted from networks that had been pruned but not polarized
using the range midpoint as sole threshold had a very low train accuracy, the
effect of enforcing this constraint was only analyzed for the variant including
both activation polarization and weight sparseness pruning.

Generally, the best performing models were those for which weight sparse-
ness pruning had been performed, but significant differences were only found
when less data was available. When more data was used to build the models,
the predictive accuracy approached the accuracy on the train data. A special
case was the parity function, for which none of the approaches extracted a well
generalizing model, with the accuracies laying at 0.5 or below. Though the mod-
els extracted from pruned networks displayed slightly higher accuracies, we were
eventually not able to resolve the issue for this very special case, which was our
initial motivation for the pruning and re-training approaches (cf. Sect.4.1), and
leave further investigation for future work.

The results when using 50% of the data or less are illustrated in Fig. 6. The
performances are shown in direct comparison to using plain C4.5 between the
input and output data. Compared to C4.5, the variant which did not perform net-
work pruning did not show any significant difference. That which only included
weight sparseness pruning outperformed C4.5 when 50% and 10% of the data
was present according to the Wilcoxon test (with Z = 2.22 and Z = 2.63) and
for both tests when 25% was used (16 wins out of N = 20, Z = 3.06). The
same held for the polarized and pruned variant (with, respectively, Z = 2.31,

Retraining
10 % as train data 25 % as train data 50 % as train data
1 X None
Ag R .
- & Weight
%) O sparseness
© Ox pruning
3 095 Polarization
3] ggg and
<< 0.90 X X Pruning
B A
o 0.8
© 4 ﬁa
05 & Term Thresholds
: A
lﬁ ® Any
0.5 0.80.90.95 1 05 0.80.90.95 1 05 0.80.90.95 1
@® Zero

Test Accuracy of C4.5

Fig. 6. Test accuracy of the models when using 10%, 25% and 50% of the dataset
as train data and the remaining instances as test data. Different configurations are
compared to the C4.5 algorithm, which disregards the internal structure.

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 141

Z = 2.52, 14 wins out of N =19 and Z = 2.75). This variant also outperformed
C4.5 using only one threshold per neuron according to both tests when 25% of
the data was used (with 16 wins from N = 19 and Z = 3.40).

The unpolarized pruned variant outperformed that with no retraining accord-
ing to both significance tests when 25% of the data was used (with 16 from
N =19 wins, Z = 3.11). The variant for which both retraining methods had
been applied was deemed better by the Wilcoxon test when using 10% of the
data (Z = 2.07).

6 Conclusion

Reducing the connectivity of the network proved to be a robust way for extract-
ing simpler intermediate concepts, which were also better at classifying unseen
instances. Yet it seems that encouraging low connectivity not only identifies irrel-
evant logic created from training too large architectures, but also concentrates
the hidden features which are in fact relevant for the classification into fewer
neurons. Thus a finer-grained partitioning of the activation ranges is required to
regain the hidden patterns.

This was partly shown by an analysis of the characteristics of the network,
which exposed a trade-off between the extent to which the activation values
could be polarized and the percentage of connections that could be pruned. The
negative consequences of this effect for rule extraction were confirmed by the
dismal performance of models which combined connection pruning with only
considering the center of the activation range as threshold.

However, when polarization of the activations was done jointly with con-
nection pruning, the benefits of the latter could be leveraged while avoiding
the undesired effect of concentrating more logic into less neurons. Although the
number of connections which could be pruned in these networks was substan-
tially lower, the intermediate models were not significantly more complex, and
in terms of accuracy these approaches consistently performed within the highest.

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful suggestions. Computations for this research were conducted on the Lichtenberg high
performance computer of the TU Darmstadt.

References

1. Aizenberg, 1., Aizenberg, N.N., Vandewalle, J.P.: Multi-valued and Universal
Binary Neurons: Theory, Learning and Applications. Springer, New York (2013).
doi:10.1007/978-1-4757-3115-6

2. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl. Based Syst. 8(6),
373-389 (1995)

3. Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural net-
works with binary weights during propagations. In: Advances in Neural Information
Processing Systems 28 (NIPS 2015), Montreal, Quebec, Canada, pp. 3123-3131
(2015)

http://dx.doi.org/10.1007/978-1-4757-3115-6

142

4.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Gonzélez et al.

Craven, M., Shavlik, J.W.: Using sampling and queries to extract rules from trained
neural networks. In: Proceedings of the 11th International Conference on Machine
Learning (ICML 1994), pp. 37-45. Morgan Kaufmann, New Brunswick (1994)
Craven, M., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Advances in Neural Information Processing Systems 8 (NIPS 1995),
pp. 24-30 (1995)

Demsar, J., Schuurmans, D.: Statistical comparisons of classifiers over multiple
data sets. J. Mach. Learn. Res. 7(1), 1-30 (2006)

Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD
Explor. 15(1), 1-10 (2013)

Fu, L.: Rule learning by searching on adapted nets. In: Proceedings of the 9th
National Conference on Artificial Intelligence (AAAI 1991), Anaheim, CA, USA,
vol. 2, pp. 590-595 (1991)

Fiirnkranz, J., Gamberger, D., Lavraé¢, N.: Foundations of Rule Learning. Springer,
Heidelberg (2012). doi:10.1007/978-3-540-75197-7

Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, Cambridge (2016)

Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
28 (NIPS 2015), Montreal, Quebec, Canada, pp. 1135-1143 (2015)

Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal
brain surgeon. In: Advances in Neural Information Processing Systems 5 (NIPS
1992), pp. 164-171. Morgan Kaufmann, Denver (1992)

Hayes, J.P.: Digital Logic Design. Addison Wesley, Reading (1993)

Kayande, U., Bruyn, A.D., Lilien, G.L., Rangaswamy, A., van Bruggen, G.H.:
How incorporating feedback mechanisms in a DSS affects DSS evaluations. Inf.
Syst. Res. 20(4), 527-546 (2009)

LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems 2 (NIPS 1990), Denver, Colorado, USA, pp. 598—
605 (1989)

Liu, J., Li, M.: Finding cancer biomarkers from mass spectrometry data by decision
lists. J. Comput. Biol. 12(7), 971-979 (2005)

Malioutov, D.M., Varshney, K.R.: Exact rule learning via Boolean compressed
sensing. In: Proceedings of the 30th International Conference on Machine Learning
(ICML 2013), Atlanta, GA, USA, pp. 765-773 (2013)

Milaré, C.R., Carvalho, A.C.P.L.F., Monard, M.C.: Extracting knowledge from
artificial neural networks: an empirical comparison of trepan and symbolic learning
algorithms. In: Coello Coello, C.A., Albornoz, A., Sucar, L.E., Battistutti, O.C.
(eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 272-281. Springer, Heidelberg
(2002). doi:10.1007/3-540-46016-0-29

Ng, A.: Sparse autoencoder. CS294A Lecture Notes, Stanford University (2011)
Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree
induction. In: Proceedings of the International Joint Conference on Neural Net-
works (IJCNN 2001), vol. 3, pp. 1870-1875. IEEE Press (2001)

Setiono, R.: Extracting rules from pruned neural networks for breast cancer diag-
nosis. Artif. Intell. Med. 8(1), 37-51 (1996)

Setiono, R.: Extracting rules from neural networks by pruning and hidden-unit
splitting. Neural Comput. 9(1), 205-225 (1997)

Setiono, R.: A penalty-function approach for pruning feedforward neural networks.
Neural Comput. 9(1), 185-204 (1997)

http://dx.doi.org/10.1007/978-3-540-75197-7
http://dx.doi.org/10.1007/3-540-46016-0_29

Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction 143

24.

25.

26.

27.

28.

29.

30.

Setiono, R., Liu, H.: Symbolic representation of neural networks. IEEE Comput.
29(3), 71-77 (1996)

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Thodberg, H.H.: Improving generalization of neural networks through pruning. Int.
J. Neural Syst. 1(4), 317-326 (1991)

Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural
networks. Mach. Learn. 13(1), 71-101 (1993)

Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 11(2), 377-389 (2000)

Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818-833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1-53
Zilke, J.R., Loza Mencia, E., Janssen, F.: DeepRED - rule extraction from deep
neural networks. In: Proceedings of the 19th International Conference on Discovery
Science (DS 2016), Bari, Italy, pp. 457-473 (2016)

http://dx.doi.org/10.1007/978-3-319-10590-1_53

An In-Depth Experimental Comparison
of RNTNs and CNNs for Sentence Modeling

Zahra Ahmadi'®), Marcin Skowron?, Aleksandrs Stier!, and Stefan Kramer!

! Institut Fiir Informatik, Johannes Gutenberg-Universitit, Mainz, Germany
zaahmadiQuni-mainz.de, stier@students.uni-mainz.de,
kramer@informatik.uni-mainz.de
2 Austrian Research Institute for Artificial Intelligence, Vienna, Austria
marcin.skowron@ofai.at

Abstract. The goal of modeling sentences is to accurately represent
their meaning for different tasks. A variety of deep learning architectures
have been proposed to model sentences, however, little is known about
their comparative performance on a common ground, across a variety
of datasets, and on the same level of optimization. In this paper, we
provide such a novel comparison for two popular architectures, Recursive
Neural Tensor Networks (RNTNs) and Convolutional Neural Networks
(CNNs). Although RNTNs have been shown to work well in many cases,
they require intensive manual labeling due to the vanishing gradient
problem. To enable an extensive comparison of the two architectures, this
paper employs two methods to automatically label the internal nodes:
a rule-based method and (this time as part of the RNTN method) a
convolutional neural network. This enables us to compare these RNTN
models to a relatively simple CNN architecture. Experiments conducted
on a set of benchmark datasets demonstrate that the CNN outperforms
the RNTNs based on automatic phrase labeling, whereas the RNTN
based on manual labeling outperforms the CNN. The results corroborate
that CNNs already offer good predictive performance and, at the same
time, more research on RNTNs is needed to further exploit sentence
structure.

1 Introduction

One aim of modeling sentences is to analyze and represent their semantic content
for classification purposes. Neural network-based sentence modeling approaches
have been increasingly considered for their significant advantages of removed
requirements for feature engineering, and preservation of the order of words and
syntactic structures, in contrast to the traditional bag-of-words model, where
sentences are encoded as unordered collections of words. These neural network
approaches range from basic Neural Bag-of-Words (NBoW), which ignores word
ordering, to more representative compositional approaches such as Recursive
Neural Networks (RecNNs) (e.g. [4]), Convolutional Neural Networks (CNNs)
(e.g. [6]), Recurrent Neural Network (RNN) models (e.g. [9]), or LSTMs (which
are outside the scope of this paper).

© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 144-152, 2017.
DOI: 10.1007/978-3-319-67786-6_11

An In-Depth Experimental Comparison of RNTNs 145

RecNNs work by feeding an external parse tree to the network. They are
a generalization of classic sequence modeling networks to tree structures and
have shown excellent abilities to model word combinations in a sentence. How-
ever, they depend on well-performing parsers to provide the topological struc-
ture, which are not available for many languages or do not perform well in noisy
domains. Further, they often require labeling of all phrases in sentences to reduce
the wvanishing gradient problem [5]. Yet RecNNs implicitly model the interac-
tion among input words, whereas Recursive Neural Tensor Networks (RNTNs)
have been proposed to allow more explicit interactions [11]. On the other hand,
CNNs are alternative models which apply one-dimensional convolution kernels
in sequential order to extract local features. Each sentence is treated individually
as a bag of n-grams, and long-range dependency information spanning multiple
sliding windows is therefore lost. Another limitation of CNN models is their
requirement for the exact specification of their architecture and hyperparame-
ters [12].

We conducted extensive experiments over a range of benchmark datasets
to compare the two network architectures: RNTNs and CNNs. Our goal is to
provide an in-depth analysis of how these models perform across different set-
tings. Such a comparison is missing in the peer-reviewed literature, likely because
recursive networks often require labor-intensive manual labeling of phrases. Such
annotations are unavailable for many benchmark datasets. In the next section,
we propose two methods to label the internal phrases automatically. Later, we
investigate whether there is an effect of using constituency parsing instead of
dependency parsing in the RNTN model. In this way, we aim to contribute to a
better understanding of the limitations of the two network models and provide
a foundation for their further improvement.

2 Method

Recursive Neural Tensor Network Architecture. RNTNs [11] are a generalization
of RecNNs where the interactions among input vectors are encoded in a single
composition function (Fig. 1a). Here, we propose two methods for the automatic
labeling of the phrases for RNTNs:

— Rule-based method: The RNTN model was first proposed for sentiment
analysis purposes. Hence, our first approach uses a rule-based method to
determine the valence of a phrase. We use four types of dictionaries: A dic-
tionary of sentiments carrying terms (from unigrams to phrases consisting of
n-gram words) with a corresponding sentiment score in the range of [—k, +k],
a negation dictionary, a dictionary of intensifier terms with a weight range
of [1,+k], and a dictionary of diminishers with a weight range of [k, —1].
The analysis of a phrase is conducted from the end, backward to the begin-
ning: If any sentiment term is found, we update the sentiment of the phrase
from neutral to the value of the sentiment term in the dictionary. Then
we search backwards for an intensifier or diminisher term. We increase or

146 7. Ahmadi et al.

decrease the absolute value of the sentiment based on the weight of the inten-
sifier /diminisher term and if required we adjust the score to a pre-defined
range. In the next step, we adjust the score for a negation term. If one is
found and there is no intensifier/diminisher before the sentiment term, the
sentiment is reversed; otherwise if the phrase includes both the negation term
and an intensifier/diminisher, the sentiment is set to weak negative. As an
example, consider the terms “not very good” and “not very bad”, where both
sentiments are weakly negative.

— CNN-based method: An alternative approach to labeling the phrases is
to use a pre-trained CNN model. We use the architecture proposed here (see
below for the description) to train a model on the sentence level, and use the
resulting model to label the internal phrases for the RNTN. In this way, the
RNTN can be applied to domains other than sentiment classification as well.
The CNN model receives the complete sentences and their label as training
data and will label the internal phrases in the test phase.

Convolutional Neural Network Architecture. Deep convolutional neural networks
have led to a series of breakthrough results in image classification. Although
recent evidence shows that network depth is of crucial importance to obtain
better results [2,3], most of the models in the sentiment analysis and sentence
modeling literature use a simple architecture, e.g. [6] uses a one-layer CNN.
Inspired by the success of CNNs in image classification, our goal is to expand the
convolution and Max-Pooling layers in order to achieve better performance by
deepening the models and adding higher non-linearity to the structure. However,
deeper models are also more difficult to train [3]. To reduce the computational
complexity, we choose small filter sizes. In our experiments, we use a simple CNN
model that consists of six layers (Fig. 1b): The first layer applies 1xd filters on the
word vectors, where d is the word vector dimension. The essence of adding such
a layer to the network is to derive more meaningful features from word vectors
for every single word before feeding them to the rest of the network. This helps
us achieving better performance since the original word vectors capture only
sparse information about the words’ labels. In contrast to our proposed layer,
Kim uses a so-called non-static approach to modify the word vectors during the
training phase [6].

The second layer of our CNN model is again a convolution layer with the
filters of size 2 x d. The output of this layer is fed into a Max-Pooling layer with
pooling size and stride 2. The reason for applying such a Max-Pooling layer in
the middle layers of the network is to reduce the dimensionality and to speed
up the training phase. This layer does not have notable effect on the accuracy
of the resulting model. Next, on the fourth layer, convolving filters of size 2 x d
with a padding size 1 are again applied to the output of the previous layer.
Padding preserves the original input size. The next layer applies Max-Pooling to
the whole input at once. Using bigger pooling sizes leads to better results [12].
Finally, the last layer is a fully connected SoftMax layer which outputs the
probability distribution over the labels.

An In-Depth Experimental Comparison of RNTNs 147

T SofiMax
p3 = f <|:(l1:| V[l:d] |:ll1:| +W {al]) fully connected layer
b2 p2 P2

SoftMax MaxPooling layer /

//

SoftMax

MaxPooling layer

[LIT] LIl [II1] [II1]
some unbelievably hilarious moments ers of size
ay az as aq

AV

Fig. 1. (a) An example of an RNTN architecture with word vector dimension of size 4
for sentiment classification of a given input sequence, which is parsed by a constituency
parser. V and W are the tensor matrix and the recursive weight matrix, respectively.
(b) Our proposed 6-layered CNN architecture. d is the dimension of the word vector.

3 Experiments

3.1 Experimental Settings

In our experiments, we use the pre-trained Glove [10] word vector models':
On the SemEval-2016 dataset, we use Twitter specific word vectors. On other
datasets, we use the model trained on the web data from Common Crawl, which
contains a case-sensitive vocabulary of size 2.2 million. Experiments show that
RNTNs work best when the word vector dimension is set between 25 and 35 [11].
Hence, in all the experiments, the size of the word vector, the minibatch and the
epochs were set to 25, 20 and 100, respectively. We use f = tanh and a learning
rate of 0.01 in all the RNTN models. In CNN models, the number of filters
in the convolutional layers are set to 100, 200 and 300, respectively; and the
maximum length of the sentences is 32. For shorter sentences, they are padded
with zero vectors. In RNTN models which use constituency parsers, we use the
Stanford parser [7]. For those models which use dependency parsers, we use
the Tweebo parser [8] — a dependency parser specifically developed for Twitter
data — for the SemEval-2016 dataset and on the rest of the datasets, we use the
Stanford neural network dependency parser [1]. In rule-based methods, we use a
dictionary of sentiments consisting of 6, 360 entries with maximum 2-gram words
and a sentiment range of [—3, 43|, a negation dictionary consisting of 28 entries,
a dictionary of intensifier terms consisting of 47 words with a weight range of

! http://nlp.stanford.edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/

148 7. Ahmadi et al.

Table 1. Performance comparison on all datasets. Accuracy and F-measure are aver-
aged over all the classes. n/a indicates non-defined cases as one of the classes was
misclassified completely resulting in an undefined value. If an experiment was not
applicable, the cell is left with a dash.

Dataset RNTN CNN CNN (Kim model) | Rule-based

Constituency parser Dependency parser

Rule CNN Manual Rule CNN

Acc.|F1 |Acc.|F1 |Acc.|F1 |Acc.|F1 |Acc.|F1 |Acc.|F1 |Acc.|F1 Acc.|F1
MR 0.630.63/0.70 |0.70|- - 0.50(0.50/0.49 0.49/0.71/0.71/0.71|0.71 0.640.64
SemEval-2016|0.53|0.45/0.52 |0.51 |- - 0.52]0.45|0.50{0.49/0.56 |0.56 |0.60/0.57 0.530.52
SST-5 0.30{0.28|0.34 /0.21|0.41|0.32|0.30 |0.29|0.30 |n/a |0.37 |0.26 |0.39 |0.32 0.31/0.29
TREC - - 0.72|n/a |- - - - 0.33|n/a |0.86/0.86|0.54 |0.57 - -
Subj - - 0.76 |0.76 |- - - - 0.42]0.42|0.89/0.89/0.88 |0.88 - -

[1, 3], and a dictionary of diminishers consisting of 26 entries with a weight range
of [-3,-1].

3.2 Task 1: Sentiment Analysis

In the first task, we compare the models on a set of commonly used sentiment
analysis benchmark datasets: The Movie Review (MR) dataset? that has pos-
itive or negative class, each contains 5331 instances. As the MR dataset does
not have a separate test set, we use 10-fold cross-validation in the experiments.
An extended version of the MR dataset relabeled by Socher et al. [11] in the
Stanford Sentiment Treebank (SST-5)3 has five fine-grained labels: negative,
somewhat negative, neutral, somewhat positive and positive. SST-5 contains
8544 training sentences, 1101 validation sentences and 2210 test sentences. The
SemEval-2016* dataset is a set of tweets labeled as either of the three negative,
neutral and positive labels. It has 12, 644 training tweets, 3001 validation tweets
and 20, 632 test instances.

— Comparison of automatic labeling methods: We first use the manually
labeled SST-5 dataset to test the effectiveness of our automatic labeling meth-
ods. We extract all the possible phrases of the whole dataset with respect to
their parse trees and use our rule-based method to label them. In the next
step we train the CNN model on the set of training instances and use the
resulting model to label the phrases. The accuracy of the rule-based and the
CNN labeling methods are 69% and 40%, respectively. As we see, the overall
accuracy of the CNN-based model is significantly lower than that of the rule-
based method. To have a better understanding of the classification perfor-
mance, we look into their confusion matrices. We subtract the corresponding
elements of the CNN-based confusion matrix from that of the rule-based vari-
ant and normalize them by dividing by the total number of phrases for each

2 https://www.cs.cornell.edu/people/pabo/movie-review-data/.
3 http://nlp.stanford.edu/sentiment /Data.
4 http://alt.qcri.org/semeval2016 /task4/.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/Data
http://alt.qcri.org/semeval2016/task4/

An In-Depth Experimental Comparison of RNTNs 149

(a) Rule-based vs. CNN-based RNTN (b) manually labeled RNTN vs. CNN
20
2 3.9 -9.6 3.6 3.9 -1.9 m 40 2 0.0 -6.8 6.5 -14.8 15.0 ﬂ 15
1 4.2 -23.9 27.7 -5.6 -2.3 F 20 1 0.0 -71 9.2 -9.4 7.3 1
K @ 5
s 0 2.6 -42.0 -10.2 -0.3 rq10 3 o 0.3 -6.4 16.7 -13.1 2.6 F40
2 2 5
-1 13.4 -37.8 33.2 -9.8 1.1 F q-20 -1 -0.9 4.6 10.9 -15.0 0.5 0
-1
2 18.5 -32.3 18.7 -6.0 1.1 E 4 -40 2 -5.0 17.9 7.5 -20.8 0.4 17
L &

-2 -1 0 1 2 2 -1 0 1 2
Predicted labels Predicted labels

Fig. 2. (a) Heatmap of difference of rule-based RNTN and CNN-based RNTN confu-
sion matrices on the SST-5 phrase set. The numbers are the percentage of normalized
differences based on the total number of phrases for each label. (b) Heatmap of dif-
ference of the manually labeled RNTN and the CNN model confusion matrices on
the SST-5 test set. The numbers in each cell indicate the percentage of normalized
differences based on the total number of sentences for each label.

label (i.e. %%’%l where 7 and j are the actual and predicted labels,
respectively). Figuré 2a illustrates the resulting heatmap. Red color indicates
cases where more phrases are predicted by the rule-based method than by
the CNN-based method while the blue color indicates the opposite case. We
observe that the CNN is a better model to correctly classify somewhat posi-
tive (1) and somewhat negative (—1) classes than the rule-based method. In
turn, the rule-based method is superior in the classification of the neutral (0)
and negative (—2) classes. To have a better interpretation of the numbers in
the heatmap, it is beneficial to look at the distribution of labels in the whole
population: 2.6%, 11.3%, 67.7%, 14.3% and 4.1% for —2 to +2 labels.

— Constituency parser Vs. dependency parser: The output of a depen-
dency parser is a Directed Acyclic Graph (DAG). However, RNTNs accept
a binary-branching parse tree as an input. Therefore, we have binarized the
output of the dependency parser by starting from the word which does not
point to any other word as its parent, and recursively binarize its children list
by adding empty nodes when necessary. While analyzing the effect of using
a dependency parser instead of a constituency parser in RNTNs (Table1), a
significant loss of performance is visible in some datasets (e.g. MR). This is
particularly noticeable when the labeling method is CNN (e.g. 70% to 49% in
MR). The reason for this could be the difference of the word order resulting
from a dependency parser compared to the n-gram features extracted by the
CNN.

— RNTN Vs. CNN: Table 1 shows a detailed comparison of the RNTN auto-
matically labeled variants to the CNN model and the rule-based method. We
have reported the average accuracy and F-measure over all classes. With the
same settings of parameters, we see a better performance of the CNN model
on the MR and SemEval-2016 datasets. The largest performance (in terms of
F-measure) improvement can be observed on the SemEval-2016 dataset, 0.51

150 7. Ahmadi et al.

to 0.56, for the best performing RNTN and CNN approaches. The possible
reasons may be related to the enormously large number of parameters that
have to be optimized in the tensor and the effects of the applied automatic
labeling of phrases used on the RNTN. Therefore, a future research direction
could try to reduce this space and find a better initialization.

— Effect of automatic labeling on RNTN performance: Table1 also
presents the performance of the manually labeled RNTN on the SST-5
dataset. As we can see, automatic labeling results in a significant degrada-
tion of performance on SST-5. Comparing the results with the CNN model
shows that the manually labeled RNTN outperforms the CNN architecture
in terms of overall accuracy and F-measure. To have a closer look into the
confusion matrix of both methods, we generate a heatmap similar to Fig. 2a,
this time subtracting the CNN confusion matrix elements from that of the

RNTN method (i.e W&) Blue color indicates more prediction
of sentences by the CNN model than by the RNTN while the red color indi-
cates the reverse case. Figure2b indicates that the RNTN has a tendency
to classify more instances into neutral (0) and positive (2) labels and it is
better at correct prediction of somewhat negative (—1), neutral and positive
labels while the CNN is better at classifying negative (—2) and somewhat
positive (1) labels. Here, the distribution of sentences over labels is closer to
the uniform distribution: 12.6%, 28.6%, 17.6%, 23.1% and 18.1% for —2 to
+2 labels. Unfortunately, currently there is no other dataset that is manually
labeled at the phrase level. A future direction includes further evaluation of
the impact of the phrase labeling accuracy on various datasets.

3.3 Task 2: Sentence Categorization

We test this task on two datasets: The TREC® question dataset, where the
goal is to classify a question into six coarse-grained question types (whether a
question is about an entity, a person, a location, numeric information, abstract
concepts or an abbreviation), and the Subj® dataset, where the goal is to classify
a sentence as being objective or subjective. The TREC dataset has 5452 training
instances and 500 test sentences. The Subj dataset contains 10,000 sentences
in total but it does not have a separate test set, therefore we use 10-fold cross-
validation. The results are reported in the bottom section of Table 1. In these
experiments only CNN-based methods are applicable. We observe that the CNN
model outperforms RNTN versions, and dependecy parsing drastically reduces
the performance of the RNTN.

3.4 Comparison of CNN Architectures

In the next experiment, we compare our proposed deep CNN architecture to a
one layer CNN to find out the cases where the deep structure is beneficial. The

5 http://cogcomp.cs.illinois.edu/Data/QA /QC/.
5 https://www.cs.cornell.edu/people/pabo/movie-review-data/.

http://cogcomp.cs.illinois.edu/Data/QA/QC/
https://www.cs.cornell.edu/people/pabo/movie-review-data/

An In-Depth Experimental Comparison of RNTNs 151

one layer CNN architecture [6] has several parallel filters of different sizes and a
max-pooling layer. In our experiments, we have used 100 filters of size 3, 4, and
5. Classification results (see next to last column of Table1) indicate that the
performance of the one layer architecture is comparable to the proposed deep
architecture on the MR dataset and that it performs better on the rest of the
sentiment datasets. The performance of Kim’s architecture on the SST-5 dataset
is comparable to the RNTN based on manual labeling. These results highlight the
importance of keyphrase recognition in sentiment tasks, where applying larger
filters is more beneficial than having several layers of small filters. However, on
the other sentence categorization datasets, i.e. TREC and Subj, the proposed
deep CNN outperforms the flat architecture.

4 Conclusions

In this paper we studied two well-known deep architectures, CNNs and enhanced
versions of RNTNs, in the context of sentence modeling. In order to avoid the
labor-intensive task of manually labeling the internal phrases for recursive net-
works, we proposed two methods to automatically label them for training and
tuning phases: a rule-based method which is specifically used for sentiment pre-
diction and a CNN based method for general purposes. Considering this part of
study, the evaluation results on the SST-5 dataset indicate that the CNN method
has a tendency to assign a positive or negative polarity to the phrases while the
rule-based method classifies many of them as neutral. Based on the presented
automatic labeling methods of internal nodes, we conducted an in-depth study
of the RNTN model and compared the model to a relatively simple deep CNN
architecture. Experimental results conducted on an extensive set of standard
benchmark datasets demonstrate that the proposed CNN model outperforms
the RNTN variants with automatic phrase labeling, whereas the RNTN with
manual labeling (if available) outperforms the CNN. However, in that case, a
one layer CNN with several filters of different sizes is comparable to the manually
labeled RNTN. These results demonstrate that the syntactic structure of a sen-
tence will help in the classification performance when it is possible to accurately
label the internal nodes of a parse tree, otherwise CNNs can be more successful
at representing the meaning of the sentence with respect to the task. The find-
ings also show that there is still room for improvement of RNTN variants by
determining tensor functions in a more informed manner.

Acknowledgements. The authors thank PRIME Research for supporting the first
author during her research time. The second author is supported by the Austrian
Science Fund (FWF): P27530-N15.

152

7. Ahmadi et al.

References

10.

11.

12.

. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural

networks. In: Proceedings of Empirical Methods in Natural Language Processing,
pp. 740-750 (2014)

Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional net-
works for text classification. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 1107-1116 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778
(2016)

Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in lan-
guage. In: Advances in Neural Information Processing Systems, pp. 2096-2104
(2014)

Iyyer, M., Manjunatha, V., Boyd-Graber, J., Daumé III, H.: Deep unordered com-
position rivals syntactic methods for text classification. In: Proceedings of 53rd
Annual Meeting of the Association for Computational Linguistics, pp. 1681-1691
(2015)

Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of Empirical Methods in Natural Language Processing, pp. 1746-1751 (2014)
Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, pp. 423-430
(2003)

Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C., Smith, N.A.: A
dependency parser for tweets. In: Proceedings of Empirical Methods in Natural
Language Processing, pp. 1001-1012 (2014)

. Li, J., Luong, M.T., Jurafsky, D., Hovy, E.: When are tree structures necessary for

deep learning of representations? In: Proceedings of Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 2304-
2314 (2015)

Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of Empirical Methods in Natural Language Processing,
pp. 1532-1543 (2014)

Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.P.: Recursive deep models for semantic compositionality over a sentiment tree-
bank. In: Proceedings of Empirical Methods in Natural Language Processing, pp.
1631-1642 (2013)

Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification. CoRR abs/1510.03820 (2015)

Feature Selection

Improving Classification Accuracy
by Means of the Sliding Window Method
in Consistency-Based Feature Selection

Adrian Pino Angulo®™) and Kilho Shin

Graduate School of Applied Informatics, University of Hyogo, Kobe, Hyogo, Japan
apinoa85@gmail.com, kilhoshin314@gmail.com

Abstract. In the digital era, collecting relevant information of a tech-
nological process has become increasingly cheaper and easier. However,
due to the huge available amount of data, supervised classification is
one of the most challenging tasks within the artificial intelligence field.
Feature selection solves this problem by removing irrelevant and redun-
dant features from data. In this paper we propose a new feature selection
algorithm called SWCFs, which works well in high-dimensional and noisy
data. SWCFs can detect noisy features by leveraging the sliding window
method over the set of consecutive features ranked according to their
non-linear correlation with the class feature. The metric SWCFS uses to
evaluate sets of features, with respect to their relevance to the class label,
is the bayesian risk, which represents the theoretical upper error bound of
deterministic classification. Experiments reveal SWCFS is more accurate
than most of the state-of-the-art feature selection algorithms.

1 Introduction

Big data has been one of the most hottest trends for the last ten years. Super-
vised classification as a sub-field of machine learning, is increasingly gaining pop-
ularity among researchers due to its versatility and power of application at any
field where data is available. Among the most common examples of supervised
learning we can find: microarray problem classification [2], cancer diagnosis [3]
and network intruder detection [1]. Supervised classification in incredibly pow-
erful to make predictions and suggestions by means of inferring a function from
labelled training data. The most basic structured data corresponds to a single
data matrix

1 n
Ty - Ty
D=|: : ,
1 n
xl o2l e
where every instance x; is described by a row vector [z}, ..., 2%, ¢;]: 2 is a value

for the feature f;; and c¢; is a class label, which is a value for the class variable
C. The collected data have no utility unless useful information is discovered
from them. Supervised classification is a central issue in machine learning and
© Springer International Publishing AG 2017

A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 155-170, 2017.
DOI: 10.1007/978-3-319-67786-6_12

156 A. Pino Angulo and K. Shin

consists on finding a classification function ¢ : D — v(c) that is able to classify
an arbitrary instance with unknown class from v(c) € C. ¢ is built from analysing
the relation between instances in D. The performance of supervised classifiers
is often measured in three directions: efficiency, representation complexity and
accuracy. The efficiency refers to the time required to learn the classification
function ¢; while the representation complexity often refers to the number of bits
used to represent the classification function. One of the most common metrics
to measure the accuracy of a supervised classifier is the error rate defined as:

Jj=1

where m is the number of instances in D and § is the complement of the Kro-
necker’s delta function, which returns 0 if both arguments are equal and 1 oth-
erwise. All these three factors can be strongly affected when there exist features
in D that do not contain useful information to predict the class variable. Feature
selection plays an essential role in supervised classification since its main goal is
to identify and remove irrelevant and redundant features that do not contribute
to minimize the error of a given classifier [4]. Basically, the advantages of feature
selection include selecting a set of features F' = {f;,, ..., fi,} C F with:

Err(¢,Dz) < Err(¢,D),

where D is the result of projecting F over D. The process of selecting features
is composed of two basic components: an evaluation function and a search engine
[5]. The evaluation function is a metric that evaluates quantitatively how good
are a set of features to discriminate among class labels. On the other hand, the
search engine is in charge of generating all the potential sets to be evaluated.

Feature selection algorithms can be divided into three broad categories: wrap-
per, filter and embedded methods. To evaluate a feature set F', wrapper methods
use some accuracy score of a classifier after being trained in the dataset projected
by F. Wrapper methods are very low in efficiency since training and testing the
inferred function is required for each evaluation. Conversely, filters make use
of explanatory analysis on data to assign a score to each feature set. Filters are
usually less computationally expensive than wrappers, but they output a feature
set that is not tuned to a specific type of predictive model. Embedded meth-
ods learn which features best contribute to the accuracy of the model while the
model is being created. The most common type of embedded feature selection
methods are regularization or penalization methods [6].

Many of filter algorithms evaluate relevance of individual features using sta-
tistical measures, and some of them also incorporate evaluation of mutual rela-
tionship among features into the result of feature selection. In particular, two
sorts of inter-feature relation are known to harm the performance of feature
selection, that is, redundancy and interaction. Two features are said to interact
with each other if both individually can be considered irrelevant based on their
correlation with the class; but when combined, they can become very relevant.

Improving Classification Accuracy by Means of the Sliding Window Method 157

The ideal feature selection algorithm should be able to evaluate interacting
features, if present, and could incorporate the results of evaluation into fea-
ture selection results. However, since detecting all of the interacting features is
computationally expensive in high-dimensional environments, feature selection
algorithms only focus on searching for: (i) relevant features, (ii) relevant features
and non-redundant features, or (iii) interacting features.

To the best of our knowledge, SUPER-LCC [8] is one of the best feature
selection algorithms proposed by Shin et al. [8], which better can find accurate
sets. SUPER-LCC uses the backward search and the bayesian risk measure to
detect interacting features with an extreme high-performance. (We will discuss
in more detail this algorithm in Sect.2.3). However, we have found that under
some conditions, SUPER-LCC can not find features with high relevance score.

Assuming that there are several interacting set of features in the dataset
that can equally predict the class, SUPER-LCC is not designed to select the one
composed by features with the highest relevance. Pino and Shin [9] partially solve
this problem by proposing the algorithm Aspcc [9] that uses a measure, which
judge features according to their individual relevance score and their interaction
rate. However, since ASDCC is based on the Steepest Descent Search [10], which
needs (|F|+ |F|)(|F|+|F|)/2 evaluations to output F, is not practical for high-
dimensional data.

The main motivation of this paper is to improve both of the SUPER-LcCC
and AsDcC algorithms. Our approach is simple and is composed by two new
gears. First, we use the Steepest Descent Search, but make it faster by using
a sliding window method over F' to only judge irrelevant features in the first
iterations. Second, we use the Binary Search to detect and remove the non-
interacting features with lower individual relevance before starting the search.
We have found that this considerably reduce the search space. In the remaining
of this paper we further analyse the most popular feature selection algorithms by
giving concrete examples. Creating the ideal feature selection algorithm is a hard
task. However in Sect. 3 we propose our new consistency-based algorithm namely
Sliding Window for Consistency-based Feature Selection (SWCFS) that can find
a feature set to approximately solve the optimization problem of maximizing
interaction among relevant features and minimizing redundancy. In Sect.4 we
compare our algorithm with several state-of-the-art algorithms in 20 benchmark
datasets.

2 Feature Selection Methods

Feature selection can be accomplished in a variety of ways depending on the
characteristics of the data. In this section, we review most popular algorithms
in the feature selection field and analyze their advantages and drawbacks.

2.1 Feature Ranking Methods

The individual relevance score r(f;;C) of a feature f; is a common term
that refers to the power of a single feature to predict the class feature C.

158 A. Pino Angulo and K. Shin

The individual relevance score can be used as a metric to select the features that
better predicts the class under certain threshold. That is, features are ranked
using their individual relevance score and then the top features are selected.
These algorithms are called feature ranking methods and often use correlation,
distance and information measures between a single feature and the class feature
to find a set full of high-relevant features.

As an example, RELIEF [11] computes the relevance score of a feature f;
based on the capability of f; to discriminate among instances of different classes.
Assuming instance xj with class ¢y is randomly sampled from the data, and Hy,
and M}, are two sets of instances (in the neighborhood of xj) with class ¢y
and c_ respectively, then a feature has high separability power if it has similar
values in instances from Hj and different values in instances from M}. RELIEFF
is an extension of RELIEF that handle multiple classes by splitting the data
into series of two-class data [12]. The individual relevance of each feature f; in
F is assessed by computing the average of its separability power in [instances
randomly sampled. That is,

1
1
R0 = 25 S deheh+ S PO S gl s,
|C| k=1 ‘Mkl zj €My c#c(xy) ‘Hkl(l - (z;€EHy
where p(c) is the probability that an instance is labeled with class ¢ and
d(m}wx;) = (m}C — x;)/(maa:(fz) — min(f;)), with max(f;) and min(f;) being
the maximum and minimum value of feature f;.

While RF requires numeric features, the Mutual Information measure accepts
categorical features and can be used to measure correlation between a feature
and the class:

Prifi=z;,C=(]
(fiC)= > Prlfi=;,C=cllog Bl PO =4

@ €V (fi),
ceV(C)

Mutual Information is biased in favour of features with greater number of values
and this is a problem when used for feature selection [16]. The Symmetrical
Uncertainty measure deals with this problem by a normalizing function:

MI(fiC)
H(fi) + H(C)

The Symmetrical Uncertainty is the harmonic mean between MI(f;, C)/H(f;)
and MI(f;,C)/H(C). Therefore it is symmetrical and in the range of [0, 1].

Although the ranking feature algorithms are usually simple and fast, they
have two serious drawbacks that may affect the performance of supervised clas-
sifiers. First, redundant features are likely to be selected. Second, they usually
can not detect interacting features.

U(fi;C)=2

2.2 Pairwise Evaluation Methods

Oppositely to the feature ranking algorithms, pairwise evaluation methods can
detect and eliminate relevant features, but also are able to remove redundant

Improving Classification Accuracy by Means of the Sliding Window Method 159

features. Most of these algorithms use one of the measures mentioned in the
section above. The way most of these algorithms operates is as follows. First,
the relevance score r(f;, C) of each feature in f; € F' is computed and second,
pairwise evaluations r(f;, f;) between features are performed to detect features
that are highly correlated to others.

As an example, the algorithm FCBF (Fast Corelator based-Filter) [16] first
ranks all features {f1,...,fn} in the descending order of the Symmetrical
Uncertainty scores. Then, starting from the best/first feature in the ranking
f1, it applies a redundancy filter to all of features f; with j > i, and, if
SU(fi; fj) > SU(f;;C) holds then it removes f;. Since the overall complex-
ity of algorithm FCBF is O(mnlogn) where m is the number of instances in the
data, this algorithm is scalable to large data.

Although feature ranking and pair-wise evaluation methods are quite fast
and easy to implement, they are not able to detect interacting features. That’s
why in high-dimensional domains they may output low-quality sets.

To illustrate, consider the class target

function ¢ = fi®@f2 where {f1, fo,...,fn} € * SR
F are binary features and @ denotes the zor ., ;i }%fag*
operator. Beforehand, we know { f1, fo} won’t ﬁfi:j: e
be selected because both features by them- .. *

selves are uncorrelated with c. If we consider
that features in F\{ f1, f2} can not accurately
describe the class then we can not expect a
good performance of the classifier after reduc-
ing F' by any of the feature ranking or pair-
wise evaluation algorithms. Figurel depicts
a numerical version of the aforementioned

Fig.1. Example of how non-
relevant features can interact with

example. each other to accurately discrimi-
Consistency-based measures are a suc- pate between two classes.

cessful choice to face this problem because
they can detect high-order interacting features [20].

2.3 Consistency-Based Algorithms

Consistency-based algorithms can detect interacting features by collectively eval-
uating relevance (correlation) of a feature set to the class. Although exhaustive
search of all possible feature sets is computationally too expensive, the result
can be expected to be accurate.

We first introduce the Bayesian risk as a consistency measure example and
then we define the consistency measure concept. To illustrate, for a dataset D,
we view a feature of D as a random variable and a feature set F as a joint
variable. Then, we let {2z denote the sample space of F, C denotes a variable
that describes classes and Prp denotes the empirical probability distribution of
D. With these notations, the Bayesian risk is defined by

Be(F)=1- Z max{ P%[ﬁ':m,C:y] |y € 2¢}.

mEQF

160 A. Pino Angulo and K. Shin

This function is also referred to as the inconsistency rate in [20]. The Bayesian
risk has two important properties, that is, determinacy and monotonicity, and
we first introduce the notion of consistent feature sets to explain the properties.

Definition 1. For a dataset D described by F', a feature set F C F is consistent,
iff, Prp[C=y | F=x]=0orl foralz € 2z and y € 2c.

Then, the determinacy and monotonicity properties are described as follows.

Determinacy. %t(];i) =0, if, and only if, F is consistent in D.
Monotonicity. Bt(F) > Bv(G),if FC G L F.

Formally, a consistency measure is defined as a function that returns real
numbers on input of feature sets that has the determinacy and monotonicity
properties. The consistency-based feature selection, on the other hand, is char-
acterized by use of consistency measures as the evaluation function.

INTERACT [20] is the first instance of consistency-based feature selection
algorithms that have practical performance in both time efficiency and prediction
accuracy. It selects an answer from a small number of candidates, to be specific,
|F| feature subsets. In the first step, INTERACT sorts the features in F into
(f1,- .-, fi7)) in the increasing order of the symmetric uncertainty SU(f;, C) and

then sets F to F. Initially, F is equal F and then, Starting from ¢ = 1, INTERACT
lets FF = F\ {f;} and computes Bt(F \ {f;}) — Bt(F), which is non-negative by
the monotonicity property; If Be(F)\ {f;} — Be(F) < §, INTERACT judges that
the feature f; is not important and eliminates it from F; INTERACT repeats this
procedure until all features are tested.

Although INTERACT presented good balance between accuracy and efficiency,
Shin and Xu [21] have found that Be(F) \ {f;} — Be(F) can accumulate, and
consequently, INTERACT may output feature sets whose Bayesian risks are high.
They also proposed a new algorithm, namely, Linear Consistency Constrained
algorithm (Lcc), that solves this problem [21]. The difference of Lcc from
INTERACT is slight: The criteria to eliminate f; is on Bt(F)\ {f;} instead of on
Be(F) \ {fi} — Ber(F). Therefore, an output F of LcC is minimal in the sense
that both of Btr(F) < ¢ and G & F = Br(G) > § hold.

Recently, the efficiency of Lcc has been improved by conducting binary
search instead of linear search [8]. This idea was materialized under the name
of SUPER-LcC and works under the assumption that high-dimensional datasets
are abundant in irrelevant features that can be removed in mass. By the first to
the (i — 1)-th iterations of the algorithm, the algorithm determines a sequence
of indices of features [y < Iy < --- < l;_1, and defines F=F \{f1s s fi_, JU
{fi;s--- Ji,_, }- In the i-th iteration, the algorithm finds /; such that

i = argmax {Be(F\{fi_,11,.--,f;}) <3}

Jj=li—1+1,....n

by Binary Search due to the monotonicity property of the bayesian risk. SUPER-
Lcc outputs the same set as LcC but on average has a computational complexity
of O(nm(logn +logm)) where n is the number of features that describes the m

Improving Classification Accuracy by Means of the Sliding Window Method 161

instances in D. To the best of our knowledge, SUPER-LCC is the algorithm with
better practical performance in both of efficiency and accuracy. According to
their authors, for data with more than hundred thousand features, SUPER-LcCC
needs some seconds to give a response in an ordinary personal computer [8].

On the other hand, Steepest Descent Consistency Constrained algorithm
(Spcc) [10] is further stemmed from Lcc and aims to improve the prediction
performance of LcC by expanding the search range of LcC by leveraging a
steepest descent search instead of a linear search. That is, when F' is the current
best feature subset, SDCC asks the evaluation function to calculate the Bayesian
risk scores of all of the subsets that are obtained by eliminating a single feature
from F. If the minimum of the Bayesian risks computed is no greater than d,
Spcc updates F with one of the subsets that yield the minimum. The outputs
of SDCC are minimal in the same sense as stated above. Hence, if F' is the final
output, SDCC evaluates (|F| 4 |EF|)(|F| — |F| +1)/2 feature subsets. Since Spcc
is not practical for high-dimensional domains Pino and Shin developed a new
version of the SDCC algorithm namely, Accurate Steepest-Descent-Consistency-
Constrained (ASDCC) [9]. ASDCC introduces two rules to early detect and remove
non-interacting features and scores the features according to their individual rel-
evance and their bayesian risks.

In the remaining of this paper, we further analyse AsbccC and also the intrin-
sic characteristics and drawbacks of SDCC and SUPER-LCC to achieve the goal
of creating a novel feature selection algorithm as fast as SUPER-LCC and at least
as accurate as SDCC.

3 Our Proposal

Steepest-descent is a first-order optimization algorithm that finds a local min-
imum of a given function by stepping the solution in the direction where the
function decreases most quickly [10]. The main advantage of SpDCC over LccC
can be justified as follows. LcC eliminates the first feature f; that satisfies
Be(F \ {fi};C) < § from F, while SDCC tests all f; € F and eliminates f;
that minimizes Be(F \ {f;}; C) such that Be(F \ {f;}; C) < 6. We consider F as
a point in the space of subsets of the entire features of D. The neighbours of F
are determined by F'\ {f;} for f; € F; and the distance between F and F'\ {f;}
is given by Be(EF{f;}; C) — Bt(F; C). When a function f over feature subsets is
f(F) = |Ft|, the gradient from F to F'\ {f;} is 1/(Be(F \ {fi}; C) — Be(F;C)).
Therefore, an increase of the inconsistency score by eliminating a single feature
for SDCC is at least equal than by eliminating a single feature for Lcc. This also
means that SDCC can eliminate more features than Lcc.

Although it is known that SDCC significantly beats LCC in terms of the
inconsistency score, Spcc performs (|F| + |F|)(|F| — |F| 4+ 1)/2 evaluations to
output F. Furthermore, we have detected that SDCC removes a lot of features
highly-correlated with the class variable, which may affect the performance of
classifiers. In the remainder of this section we discuss some efficiency and effec-
tiveness issues of SDCC. Moreover, we propose a new algorithm to solve these
issues.

162 A. Pino Angulo and K. Shin

3.1 Defieciencies of steepest-descent Search

To set the scene of this section, consider two performance-related issues in the
Spcc algorithm that are revealed in the following example. Note that Problem
1 and Problem 2 are solved by AsDcc algorithm. Therefore, the contribution
of this paper is related to solving Problem 3.

{f17f27f37f4}

/
‘{f2,f3,f4}rj{f1,f3,f4}‘ ‘{f17f27f4}{ {fl,f2,f3}‘
.
[753] \{fg,f4 {fz,fs} {fl,f4}J ?{fl,fs}\ Mfl,fz}\

Fig. 2. An example of search paths by steepest-descent. r stands for the individual
relevance of a feature.

Figure?2 is the Hasse diagram of F' = {f1, fo, f3, fa}, and the gray nodes
represent the feature subsets whose inconsistency is zero. With § = 0, the solid
lines represent an example of the paths that SDCC can track. In the first iteration,
Spcc investigates the four feature subsets of { fa, fs, fa}, {f1, f3, fa}, {f1, f2, fa}
and {f1, f2, f3}. The inconsistency of three of them are zero, and SDCC chooses
{f2, f3, fa}. In the same way, in the second iteration, SDCC investigates {fs, f1},
{f2, fa} and { fo, f3} and chooses { f2, f4}. In the last iteration, SDCC investigates
{f4} and {f2} and then terminates.

Problem 1: Small Total Relevance Score: In Fig.2, {fo, f4} and {f1, fa}
are the two candidates that SDCC can select, because they are minimal in the
inclusion relation among the feature subsets in F' with B(F;C) < 0. Although
the Sdcc selects one of {fa, f4} and {f1, fa} arbitrarily, {f1, fa} is likely to be
a better answer than {fa, f4}, because r(f1,C) + r(f1,C) = 0.5 > r(f2,C) +
r(f4,C) = 0.4. In general, provided all the minimal sets G in F' with Bt(G;C) <
&, SDCC arbitrary selects any set G regardless any other information.

Solution to Problem 1. The Individual relevance insensitivity problem occurs
because the individual relevance of features has no meaning in the steepest-
descent algorithm. That is, the steepest-descent arbitrarily removes any feature
[~ such that f~ € argmin, . z{Br(F\ {fi};C) | Br(F'\ {f;};C) < 6}

A straightforward way to deal with this problem is by removing the feature
f~ with the smallest individual relevance. That is, in each iteration remove
feature f—, such that

£~ € argmin{r(f;C) | f € argmin{Be(F \ {fi})|f; € F,Be(F\ {f;}) < 6}}(- |
1

Improving Classification Accuracy by Means of the Sliding Window Method 163

0.1

o
’
- * o I * o
—+-Sdec* - Sdcc y,’) Sdec Sdcc bt Sdcc Sdcc
s \
\
X s Vv
Z] Rl N
E o’ .r"r *\—V’d«*“h'** \’k AN
~-. o,
8 vl n oty @ ~ e
7 5 S N >, Sea
g s S e, - ~.
el =TT e a .
o < ~e oo —a e
e ~+
&
0.0 0.85 4
o) 0.1 o) 0.1 0 5 01

Fig. 3. Comparison between the original Spcc [10] and its corrected version that
searches features based on Eq. (1) in terms of the bayesian risk, the Auc-Roc by
C4.5 classifier and, the number of features selected.

To validate the effect of this solution, we have compared SDCC and the corrected
that searches features by Eq.1 version using 50 datasets chosen from the UCI
machine learning repository [22]. As we expected the corrected version signifi-
cantly outperforms the original version in terms of the Auc-Roc, the bayesian
risk and the number of features selected. Figure3 depicts the averages of the
bayesian risk, AuUC-Roc when C4.5 is used as a classifier and the number of
features selected across the 50 datasets. The threshold parameter ¢ varies in the
interval [0,0.1] with an increment of 0.01.

Although these results are quite good, maximization of the average of the
individual features (collective relevance) can not be guaranteed because the indi-
vidual relevance of features is measured back stage. This means that until now
the process of removing a feature is composed by two sequential steps and the
individual relevance score is only used in the second one. In many cases, this
unbalanced trade-off between the bayesian risk and the collective relevance of
a set, may lead to undesirable results as stated in Sect.2.3. We now consider
the individual relevance of features as a crucial factor to judge the quality of a
feature set, by proposing the interelevance score measure defined as follows.

IR(F; f;;C) = (1 — a)A(F; fi;C) + aB(f;; C)
%t(F}é{i%;S}T—;?)t(F;C), if %t(F; C) <
Be(F\{fi};C)—Be(F;C), if Be(F;C)
r(fi;C)—r” e 4+ -
B { ifrt>r

with A(F; f;;C) =

0
]

rt—r—
0 ifrt =or"

where r* = maxy,cpr(fi;C), v~ = ming,ep7(fi; C) and « satisfies 0 < a < 1.
The interelevance score IR is normalization function that evaluates how good is
a given feature f; for the current feature set F. IR measures: (i) how relevant is
fi and (ii) the effect of removing f; from F from the consistency point of view.
Function A normalize the bayesian risk obtained by removing feature f; from F.
Bt(F;C) and § are taken as the minimum and maximum value respectively in

164 A. Pino Angulo and K. Shin

the normalization function. We expect that IR metric allows to select interacting
feature sets composed by features with high relevance score. Thus, to select f—,
we do not use Eq.1 as a criterion, but use f~ € argmin{IR(F; f;;C) | fi €
F,Be(F\{fi};C) < d}.

Problem 2: Unnecessary evaluations: Although in the second iteration
Spcc computes Br({f2, f3};C) > 0, this operation is unnecessary because
the result can be inferred by the monotonicity property of consistency mea-
sures. Since Br({f1, f2, f3};C) > 0 has been computed in the first iteration,
Br({f2, f3}) > 0 is inferred by monotonicity.

Solution to Problem 2. In order to avoid unnecessary evaluations, if %t(ﬁ ;C\
{f:}) > 6 holds with f; € F then feature f; is not evaluated anymore and never
removed. Furthermore, the interelevance score has a property that allows saving
evaluations when steepest-descent is run over a ranked feature set.

Proposition 1. Let F = {fy,..., fr—1, fx} be in a increasing order of r(fi; C)
where r is a relevant measure. If Be(F \ {f,}; C) = Be(F;C) holds then, there
does not exist a feature f; € F with j < p such that IR(F; f;;C) < IR(F; f,; C)
holds.

Proof. This is easy to see because Be(E \ {f,};C) is the minimum by the
monotonicity property and r(fp; C) < r(f;;C) always holds. O

Proposition 1 is essential to turn 4, .
our steepest-descent algorithm faster . %,
since when f, is found, it can be g
immediately removed without affect-
ing the final solution and p — 1 eval- ¢, .
uations of B are saved in each iter-
ation. In the ideal scenario, where 4,

p = k holds in each iteration, the .]

number of evaluations performed by ,, °

our steepest-descent algorithm is lin-

ear respect to the number of fea- | o* | . 1
tures in F'. Oppositely, in the worst 100 10000 Ve
case scenario where p = 1 holds in

each iteration, the number of evalu- Fig. 4. Percentage of the first consecutive
ation performed by the new version features {fi,..., fi} such that Bt(F;C) =

of Spcc is the same as the SDCC. Br(F\ {f1,..., fi};C) to the entire feature
set F.

Problem 3: Low scalability to

high-dimensional data: Our new version of SDCC may be still slow in datasets
with large number of interacting features. Although it is well known high-
dimensional datasets are rich in non-interacting features, we do not assume their
class variable can be described by a small number of features. Therefore, we now
describe two mechanism to reduce even more the number of evaluation of our
proposal.

Improving Classification Accuracy by Means of the Sliding Window Method 165

Solution 1 to Problem 3: Eliminating the big mass of irrelevant fea-
tures by Super-Lcce. High-dimensional datasets are likely to be abundant in
irrelevant and non-interacting features. Assuming |F| is very large, we can expect
Be(F\ F';C) = Be(F;C) with F' = {f1,..., fi} for a large value of [. To make
sure this expectation is true, we randomly picked 44 datasets from the UCI
machine learning repository and determine [.

The experiments were conducted in small (|F| < 100), medium (100 < |F| <
10000) and high-dimensional data (10000 < |F'|) using § = B(F; C). Figure4
depicts the results, and we see that values of [are very close to the numbers of
the entire features |F'|, when the dataset is high-dimensional. This means that
for these high-dimensional datasets our steepest-descent algorithm will remove
a huge number of consecutive features one by one, which is not so efficient.
However, recently Shin et al. in [8] have found that [can be determined efficiently
by means of binary search. In fact, {f1,..., fi} are removed by the first iteration
of SUPER-Lcc. This finding broke the premise that consistency-based algorithms
were computationally too expensive to apply to high-dimensional data. We use
their finding to efficiently remove F’ with only a few iterations (see Eq.1). We
use the first iteration of SUPER-LCC to eliminate the largest {fi,..., fi} such
that Be(F\ {f1,..., fi};C) < Br(F;C) + ¢ and then apply steepest descent to
the remainder of the features, that is, {fi+1,..., fa}-

Solution 2 to Problem 3: Windowing the search. When feature selection
is performed using consistency measures, in each iteration of the search we can
categorize features as: indispensable, useless and potential features. Being F the
current feature set, indispensable features must remain in F in order to keep
the bayesian risk under the threshold. That is, a feature f, € Fis indispensable
if Be(F \ {f.};C) > § holds. On the contrary, useless features can be safely
removed without degrading the bayesian score of F. A feature fy is said to be
useless when Bt(F \ {f,};C) = Br(F; C) holds. On the other hand, if a feature
is neither of indispensable nor useless then it is a potential feature. That is, for
potential feature f, Bt(F \ {f};C) < Br(F;C) + § holds. Potential features
are the most interesting type of features: they necessarily become indispensable
or useless at any moment of the search and must be evaluated in the next
iteration. Speaking about efficiency, the worst case scenario, in a given iteration,
is that all features are potential. This means that our version of the steepest-
descent algorithm needs | F'| evaluations to remove the one that minimize IR. To
overcome this drawback we propose to limit the search in each iteration to a
portion of the features in the current set. This can be done by applying a mobile
window search. Let d be the average of the differences of the individual relevance
of consecutive features in F’

n—1

Z (T(fi+1;C') - r(fi;C’)) - (rt —=r7), (2)

i=1

1
n—1

d=

166 A. Pino Angulo and K. Shin

we define the window search wy, in the k-th iteration as:

wy =1 +w(lrt—1r7)

Wi = Wi_1 + Ad, with k> 1,

where w = (0,1] and A € RT
are predefined parameters that
influence the initial size of the
window search w; and the accel-
eration of the expansion of the
window search wy in the k-th
iteration respectively. If the rel-
evance score of a feature falls
into the region of the window
[r~,wg) then will be evaluated
in the k-th iteration. The num-
ber of features evaluated in each
iteration is not only determined
by the position of useless fea-
tures but also by the size of the
window search. This may sig-
nificantly improve the efficiency
of our steepest-descent version in
datasets abundant in potential
features.

Let F be the entire feature set
and ¢ be the upper bound of the
permissible bayesian risk of the
output sets. We combine all the
solutions given above as follows.

1. The relevance r(f;; C) of each
feature f; € F is com-
puted using the Symmetrical
Uncertainty measure, and F' is
mapped to F by sorting the
features in incremental order
of SU(f;;C).

2. The maximum set of con-
secutive useless features
{f1,.-., fi} is identified and
removed by using the binary
search (see Eq.1)

3. The window size is computed
in each iteration.

Algorithm 1: SWCFs Algorithm

Input: D: the dataset

0: inconsistency score threshold

w: initial size of the window search

A: windows size coefficient

Output: F suboptimal set

Rank features in F' in incremental
order according to SU

2 Fix F=F
3 Find the maximum [such that

a4 Update F = F\ {f,...

 fi1}:C) = Be(F; 0)
7fl}

Be(F\ {f1,...

5 Compute r* = max, . r(f;; C) and

wy = wrt

Let d be the average of the
difference between SU(f;; C) and
SU(fi—1;C) for f; € F,k=1and
IR~ =inf

7 repeat
f~=Null
9 foreach f; € F do
10 if SU(f;; C) < wy, then
1 o[fi] = Be(F\{fi};C)
12 if 6[f;] > 6 then
continue;
13 if 5[f;] = Bt(F;C) then
f~ = fi, break;
14 if IR(F; f;;C) < IR~
then [~ = f;,, IR™ =
IR(F; f;; 0);
15 end
16 end
17 if f~ = Null then break;
18 | F=F\{f}
19 k=k+1
20 wy = w1 + Ad
21 until True;

Fig. 5. The algorithm of SwcCFs

Improving Classification Accuracy by Means of the Sliding Window Method 167

The steepest-descent algorithm is performed using the interelevance score IR
by evaluating only the features included in the current window and taking into
account the following rules with f; € F*:

Rule 1. If f; is an useless feature then it is immediately removed from F' (line 13).

Rule 2. Else if f; is indispensable then f; is not evaluated anymore and never
will be removed from F' (line 12).

Rule 3. Otherwise the feature f; that minimize IR is removed from F if
IR(F; £;C) > IR(F; @; C) holds. The algorithm stops when all features have
been tested and none of the features can be removed. Figure 5 depicts the entire
algorithm.

4 Experiments

We empirically evaluate the performance of the proposed algorithm and make
comparisons with some state-of-the-art feature selection algorithms: RELIEFF
(RF) [11], Crs [18], FcBF [16] and SUPER-LcC [8] and ASDcC [9]. We exclude
from comparison algorithms SUPER-CwC [8] and FSpcc [9] because we verify
they output similar results to SUPER-LcC and ASDCC respectively.
The configuration of the CD=1.804
experiments is as follows. First, 5'—4' 3 2 1
we run the feature selection algo- (NB) I | | j

] : i
rithms over the datasets and RFGrs] SLcchcfs
obtain selected feature subsets Fepf——— “——— Asdcc
for respective algorithms. To 5 4 3 2 1

evaluate the classification capa- (C4§%@ Cwlcfs
bility of the selected feature sets, Cfs SLce
we run ten-fold cross validation Feb

on the reduced data using two
classifiers: NAIVE BAYES and
C4.5. The bayesian risk parameter § of SUPER-LCC and SWCFS algorithms
was fixed to 0.01. We report results about the Auc-RocC values of both clas-
sifiers and the number of features selected by each algorithm. Before running
experiments we run SWCFS across many datasets with different values of o and
verified that o = 0.5 works well. Table 1 shows the Auc-Roc values after run-
ning the classifiers on the reduced data and the number of features selected by
each algorithm.

Fig. 6. Nemenyi test with o = 0.05

4.1 Numbers of Features Selected and Auc-Roc Scores

Speaking about the size of the output, SWCFS outputs smaller or equal when
compared with SLcc. Furthermore, when compared with all the algorithms it
turns out that SWCFS is ranked top for a half of the datasets. Speaking about
Avuc-Roc scores, SWCFS is ranked top for more than the 68% and 62% of the

168 A. Pino Angulo and K. Shin

Table 1. Results of Auc-Roc values for the reduced data and number of features
selected by each algorithm

NB-AUC values C4.5-AUC values size
data RF Cfs Fcbf SLec ASdee Swefs RF - Cfs Febf SLee Asdee Swefs RF - Cfs Febf SLec Asdec Swefs
OPT. .945 .967 .966 .966 .967 .968 .858 .924 .929 .933 928 .935 30 38 21 9 10 8
ARR. .468 .850 .854 .848 .850 .848 .464 .738 .737 .733 .733 .733 1 25 12 21 28 21
MAD. .523 .644 .646 .647 .646 .647 .500.770.613 .811 .814 811 1 6 4 15 12 15
MFE .966 .973 .985 .986 .970 .991 .972 .968 .961 .952 .954 .964 360 85 136 7 8 6
SEM .983 .956 .952 .955 .958 .956 .877 .881 .876 .865 .879 .885 175 74 30 31 45 27
AUD .946 .939 .905 .962 .923 .952 .907 .905.924 .921 905 .924 10 6 16 12 9 12
KRV .969 .930 .968 .972 .970 .983 .972.930.959 .997 .995 997 5 3 7 21 18 15
MF1 .922 .948 .947 .977 .981 .981 .923.908 .925 .916 .914 .911 90 67 38 8 9 7
MF2 .961 .969 .968 .969 .968 .970 .903 .905.899 .906 .905 910 15 12 37 11 13 11
MF3 .979 .986 .986 .981 .984 .984 .907 .915.907 .920 .907 .924 7 26 57 7 7 7
MF4 .949 .950 .945 .950 .949 .950 .918 .919 .918 .922 918 .922 3 4 2 5 4 5
MF5 .964 .965 .969 .967 .937 .969 .903 .904 .911 .901 .904 .906 196 103 27 21 17 17
MF6 .925.955.955 .957 .955 .957 .859 .880.884 .871 .871 871 7 25 14 12 14 12
PEN .977 .963 .963 .963 .964 .964 .973 .973 .974 .975 .970 974 16 11 11 7 10 7
SPL .981 .984.993 .990 .984 .989 .967 .969 .970 .969 .969 970 19 6 22 9 8 9
WAV 510 .945 .932 .938 .945 .946 .500 .858 .882 .877 .876 884 1 15 6 10 8 9
AVG. .873.933.933 .939 .934 .941 .838.897.892 .904 .903 .908 58.531.6.27.512.9 13.8 11.8

datasets for NAIVE BAYES and C4.5 classifiers respectively. To statistically com-
pare the algorithms, we run Friedman test and statistical differences were found.
Figure 6 shows the Nemenyi’s chart for each classifier. Group of algorithms that
are not significantly different are connected with a thick line.

4.2 Efficiency

It is apparent that SLcc and SWCFS are compatible in terms of efficiency in high-
dimensional data since SWCFSs takes advantage of the first iteration of SLCC to
remove the less relevant features that are not necessary to create consistency
sets. In the case where only small number of features are eliminated in the first
step of SWCFS, the numbers of evaluations depends on the size of the sliding
window. However, if the sliding window is reasonably small then the number of
evaluation can be comparable with the number of evaluations of Lcc algorithm.
Nevertheless, as Fig. 4 shows, it turns out that high-dimensional data are prone
to be rich in irrelevant features that can be removed in the first iteration of
SWCFS.

5 Conclusion and Future Works

In this paper we propose a new feature selection algorithm based on consistency
measures and individual feature scoring functions. The search strategy used by
the algorithm is the SDCC, which has quadratic order. However, we modify Spcc
by leveraging the binary search that allows to remove, in many cases, more than
95% of non-relevant features with small number of evaluations. In addition,
a sliding window was added to SDCC to avoid unnecessary evaluations. Experi-
ments reveal that the new proposal is very accurate when compared with several

Improving Classification Accuracy by Means of the Sliding Window Method 169

state-of-the-art algorithm. In the future we will evaluate the new algorithm in
high-dimensional data and make a further analysis about the optimal values for
its parameters.

References

10.

11.

12.

13.

14.

15.

. Rohrmair, G., Lowe, G.: Using data-independence in the analysis of intrusion detec-

tion systems. Theor. Comput. Sci. 340(1), 82-101 (2005)

. Angeleska, A., Jonoska, N., Saito, M.: Rewriting rule chains modeling DNA

rearrangement pathways. Theor. Comput. Sci. 454, 5-22 (2012)

De Maria, E., Fages, F., Rizk, A., Soliman, S.: Design, optimization, and pre-
dictions of a coupled model of the cell cycle, circadian clock, DNA repair sys-
tem, irinotecan metabolism and exposure control under temporal logic constraints.
Theor. Comput. Sci. 412(21), 2108-2127 (2011)

Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97,
273-324 (1997)

Molina, L.C., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and
experimental evaluations. In: Proceedings of the 2002 IEEE International Confer-
ence on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City (2002)
Hodorog, M., Schicho, J.: A regularization approach for estimating the type of a
plane curve singularity. Theor. Comput. Sci. 479, 99-119 (2013)

John, G.H., Kohavi, R., Pfleger, K.: Irrelevant feature and the subset selection
problem. In: ICML (1994)

Shin, K., Kuboyama, T., Hashimoto, T., Shepard, D.: Super-CWC and super-LCC:
super fast feature selection algorithms. In: Proceedings of 2015 IEEE International
Conference on Big Data (Big Data), pp. 1-7 (2015)

Pino Angulo, A., Shin, K.: Fast and accurate steepest-descent consistency-
constrained algorithms for feature selection. In: Pardalos, P., Pavone, M., Farinella,
G.M., Cutello, V. (eds.) MOD 2015. LNCS, vol. 9432, pp. 293-305. Springer, Cham
(2015). doi:10.1007/978-3-319-27926-8_26

Shin, K., Xu, X.M.: A consistency-constrained feature selection algorithm with
the steepest descent method. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.)
MDAT 2009. LNCS, vol. 5861, pp. 338-350. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04820-3_31

Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings
of the Ninth International Workshop on Machine Learning, pp. 249-256. Morgan
Kaufman Publishers Inc. (1992)

Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171-182.
Springer, Heidelberg (1994). doi:10.1007/3-540-57868-4_57

Xiaofei, H., Deng, C., Partha, N.: Laplacian score for feature selection. In: Pro-
ceedings of the 18th International Conference on Neural Information Processing
Systems (NIPS 2005), pp. 507-514 (2005)

Zhu, L., Miao, L., Zhang, D.: Iterative Laplacian score for feature selection. In:
Liu, C.-L., Zhang, C., Wang, L. (eds.) CCPR 2012. CCIS, vol. 321, pp. 80-87.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33506-8_11

Quanquan, G., Zhenhui, L., Jiawei, H.: Generalized Fisher score for feature selec-
tion. In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence (UAI 2011), pp. 266-273 (2011)

http://dx.doi.org/10.1007/978-3-319-27926-8_26
http://dx.doi.org/10.1007/978-3-642-04820-3_31
http://dx.doi.org/10.1007/978-3-642-04820-3_31
http://dx.doi.org/10.1007/3-540-57868-4_57
http://dx.doi.org/10.1007/978-3-642-33506-8_11

170

16.

17.

18.

19.

20.

21.

22.

A. Pino Angulo and K. Shin

Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-
based filter solution. In: Proceedings of the Twentieth International Conference on
Machine Learning (ICML-2003) (2003)

Guyon, 1., Weston, J., Barnhill, S.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46, 389 (2002)

Hall, M.A., Smith, L.A.: Feature selection for machine learning: comparing a
correlation-based filter approach to the wrapper. In: Proceedings of the Twelfth
International, pp. 235-239. AAAT Press (1999)

Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene
expression data. In: Proceedings of the IEEE Computer Society Conference on
Bioinformatics (CSB 2003) (2003)

Zhao, Z., Liu, H.: Searching for interacting features. In: Proceedings of the 20th
International Joint Conference on Artifical Intelligence (IJCAI 2007) (2007)

Shin, K., Xu, X.M.: Consistency-based feature selection. In: Veldsquez, J.D., Rios,
S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009. LNCS, vol. 5711, pp. 342-350.
Springer, Heidelberg (2009). doi:10.1007/978-