
Geographical and Overlapping Community
Modeling Based on Business Circles for POI

Recommendation

Man-Rui Li, Ling Huang, and Chang-Dong Wang(B)

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
limr3@mail2.sysu.edu.cn, huanglinghl@hotmail.com,

changdongwang@hotmail.com

Abstract. Point-of-interest (POI) recommendation is a challenging task
since check-in data is extremely sparse and the social relationships in tra-
ditional recommendation have a limited effect. To solve this challenge,
we propose a new geographical model with social influence and user
preference. More specifically, we firstly propose a business circle con-
ception which is more suitable for the modern consumption pattern in
an urban city in POI recommendation. Then we decompose the user-
location matrix into two geographical latent factors and integrate them
into our business circle framework. Besides, we incorporate the user pref-
erence as a regularization of matrix factorization framework into our
model by means of aggregating overlapping interest communities of users
via their check-ins categories. Extensive experiments are conducted on
two real-world datasets and the experimental results demonstrate that
our model outperforms other existing algorithms.
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1 Introduction

Early recommender systems have been widely used in online website to promote
the sales volume of the online consumption [1,2], while the recent recommender
systems began to focus on recommending the offline consumption by using the
information provided through integrated devices. Using the information of Inter-
net of things is a growing trend [3] and online location-based social networks
(LBSNs) is one of the typical representatives [4]. Because the information of
real-time locations becomes easier to be acquired by GPS, LBSNs have under-
gone a rapid development, such as Foursquare, Gowalla and Facebook Places, in
which users can share the experience in the physical world by checking in a POI.
LBSNs can help people discovering the interesting places, especially in an urban
city, where the POIs are in enormous quantity and hard to choose for users.

LBSNs can benefit users outdoor activities and bridge the gap between the
physical world and online social network, but POI recommendation in LBSNs
encounters more challenging issues than recommendation in traditional online
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websites for the following reasons. (a) Extremely sparse check-in data. POI
recommendation is facing a huge challenge caused by extremely sparse check-in
data. An individual user usually checks in a limited number of locations for two
factors. On one hand, though there are numerous locations in a city, users only
check in a small section for the restriction of distance. On the other hand, users
prefer to check in their favorite locations repetitively, leading to the number
of check-ins in different locations is limited. (b) The limited effect of social
influence. The traditional social relationship has limited effect in LBSNs for the
reason that there is only a very small portion of overlapping check-ins among
social friends [5]. In other words, we should explore more appropriate implicit
social relationships in LBSNs to improve the accuracy of recommendation. (c)
Complex and diverse factors. In POI recommender systems, relatively speak-
ing, there are more factors to be considered, such as geographical factor, tem-
porary factor, category attributes and so on. Among these factors, geographical
and temporary factors are intrinsic properties in POI recommendation for the
check-ins in specific time and location. In other words, POI recommendation is
an online-to-offline recommendation.

In this paper, we explore the geographical limits and overlapping interest
community information to improve the recommendation accuracy. Firstly, we
propose a business circle conception which is more suitable for the real modern
consumption pattern in an urban city in POI recommendation. Besides, we pro-
pose two geographical latent factors inspired by these previous work [6–8] and
integrate them into our business circle framework. Moreover, we incorporate the
user preference into our model by means of aggregating overlapping interest com-
munities of users via their check-ins categories. In experiments, we analyze the
effect of parameters in our algorithm and then compare our CBGeoMFC model
with three baseline algorithms to evaluate the performance our method.

2 The Proposed Model

2.1 Business Circle Conception

In urban cities, instead of a specific shop, people would often choose an area
(such as a business circle) when they go outside. For example, when you have
a date with your friends, you may expect a series of dating activities and all
that dating locations are geographically close. So you will consider a prosperous
region containing all that required venues, and we call that region as a business
circle. In addition, in order to integrate the situation that people check in near
the home or working place, we can also regard the surrounding area of the home
and working place as a business circle.

Business circle is highly correlated to the geographical features, and we use
the Haversine Formula [9] to get the great circle distance between two locations
using their geo-co-ordinates as

d = 2R arcsin
((

sin2(
ϕ2 − ϕ1

2
) + cos(ϕ1) cos(ϕ2) sin2(

λ2 − λ1

2
)
) 1

2

)
(1)
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where ϕ is latitude, λ is longitude, and R is the earth’s radius.
And we define the negative of great-circle distance is the geographical simi-

larity between two locations geoSim(lj , lj′) = −d(lj , lj′), where lj ad lj′ are two
locations in the location set L = {l1, ...ln}. By applying f(x) = x−min(x)

max(x)−min(x)

to map the similarity to the range of [0, 1], which is taken as the input of the
Affinity Propagation (AP) clustering algorithm [10] to cluster all the check-in
locations into groups, the business circles can be obtained with each group rep-
resenting one business circle and the representative location being the centroid
of the business circle.

2.2 Geographical Modeling

Matrix Factorization. Low rank matrix factorization is widely used in POI
recommendation, which approximates a user-location frequency matrix R by
the multiplication of two k-dimensional latent matrices, namely user check-in
preference latent matrix U ∈ R

m×k and location characteristic latent matrix
L ∈ R

n×k, where m and n are the numbers of users and locations respectively.

min
U,L

||I � (R − ULT )||2F + λu||U ||2F + λl||L||2F (2)

where I ∈ R
m×n is a [0, 1] matrix with Ii,j = 1 indicating that user i has visited

location j and Ii,j = 0 otherwise. The tuning parameters λu, λl is non-negative
to avoid overfitting and || · ||2F is the Frobenius norm.

CBGeoMF. In this section, we redefine the users’ activity and POI influ-
ence and incorporate them into our business circle conception, and hence pro-
pose a new geographical matrix factorization model based on business circles
(CBGeoMF).

The business circle is a geographical priority concept. In other words, users
always concern more about which consumption centers they want to go to instead
of a specific POI. To abstract this conception, first of all, we give the definition
of user’s activity on business circles and attraction of POI in the business circle.

User’s Activity on Business Circles

1. User is more active on the business circles where he/she has checked in more
times.

2. The business circles which are geographically near the activity business circles
have more potential to be active.

For the foregoing considerations, the problem is to evaluate the density distribu-
tion on each business circle, which can be modeled by using the two-dimensional
kernel density estimation approach. Assume that we have obtained a business
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circle set C = {c1, ...cw}, the estimated density of user ui in a business circle cq

can be defined as

xi,cq
=

1
Pi

∑
cq′∈Pi

n
cq′
i

δ
K(

d(cq, cq′)
δ

) (3)

where K(·) is standard normal distribution with δ being the standard deviation,
Pi is the set of business circles that user ui has visited and n

cq′
i is the check-in

number of ui on business circle c′
q. And d(cq, cq′) denotes the distance of business

circles cq and cq′ , i.e. the distance between the corresponding centroids returned
by AP.

In this way, the activity of user on circle is represented by a non-negative
matrix X, which is estimated by both the check-in frequency counts and geo-
graphical information.

Attraction of POI in the Business Circle. Considering that users are more
likely attracted by the popular locations, the locations in a dense region are more
attractive. Similar to user’s activity, the attraction of location lj in a business
circle cq, denoted as ylj∈cq

, can be computed in the same way using kernel density

estimation approach, ylj∈cq
= 1

δncq

∑
lj′∈cq

K(d(lj ,lj′ )
δ ), where ncq

is the number
of locations in cq, and lj′ is the other locations in the same business circle cq

as lj . In this way, the attraction of POIs in their corresponding circles can be
represented by the non-negative matrix Y .

The preference of users on locations can be decomposed into two low rank
w-dimensional latent factors, where w is the number of business circles. One is
user’s activity on business circles X ∈ R

m×w, and the other is the attraction of
POI in the corresponding circle Y ∈ R

n×w. By augmenting the matrix of the
two latent geographical matrices X and Y with the original latent matrices U
and L, the objective function can be defined as follows

min
U,L

||IR � (R − ULT − XY T )||2F + λu||U ||2F + λl||L||2F + λx||X||2F (4)

In the above objective function, the user’s activities on circles X are initially
initialized by using Eq. (3), and then they are iteratively updated to meet the fact
that users activity behavior would change to reflect their real check-in behavior.

2.3 Overlapping Community Modeling

Social network is often taken as a good side information in recommender systems
to improve accuracy. However, it works relatively less effective in a location-based
recommendation for two reasons: (a) Geographical Limitation. Unlike the
traditional recommendation, LBSN has an intimate relations with both online
and offline, that is to say, we have to consider the geographical limitation in real
life. For example, though two users have similar following relationship or prefer-
ence, it is still not suitable to recommend one’s check-in locations to another if
their frequently visited places are far away. (b) Sparse Social Relationship.
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Another reason is that compared to a traditional online social relationship, users
in LBSN have fewer direct social connections and 90% user’s overlap check-ins
to his/her friends’ check-ins is less than 20%, which is mentioned in the previous
studies [5,11]. We incorporate the category influence and geographical social net-
work information as a regularization term of matrix factorization based model to
consider both the user’s preference and geographical limitation, which is inspired
from the relevant studies [12–14].

As aforementioned, the AP algorithm is used to cluster all the check-ins into
a set of clusters, and each cluster represents a business circle. Considering the
geographical limitation, the users who have similar frequently visited business
circles are defined to be geographical social friends. We can effectively settle the
defects that there are few overlap check-ins of a user to his/her friends’ check-ins
by aggregating the check-ins on locations into the check-ins on business circles.
The common check-ins on locations are infrequent, even though the users have
the similarity routines, however, their frequently visited business circles can be
the same. In this way, the geographical feature can be enhanced. Furthermore,
compared with [11,15,16] which believed users are more geographical similar
when their ‘homes’ are near, our approach don’t need to build a multi-center
gaussian model for each user to estimate the rough home location.

In the first place, the Pearson Correlation Coefficient (PCC) is used to cal-
culate the similarity matrix Sif of users. Considering the number of check-
ins of each user differs greatly, we first normalize the visit frequency of each
user from 0 to 1 by rc

i,cq
= frei,cq

max{frei} . Then the similarity Sif is defined as

Sif =
∑

c∈Cif
(rc

i,cq
−r̄c

i )(r
c
f,cq

−r̄c
f )

√∑
c∈Cif

(rc
i,cq

−r̄c
i )

2
√∑

c∈C(rc
f,cq

−r̄c
f )

2
, where frei,cq

is the check-in fre-

quency of user i on business circle cq, rc
i,cq

is the rating (normalized visited
frequency) of user i on business circle cq, r̄c

i is the average rating of user i on
all the circles, and Cif is the business circles set that both user ui and user uf

have visited.

Table 1. The statistics of data sets.

Statistics User Venue Check-ins Category Sparsity

Foursquare (NYC) 1083 38330 226970 251 0.22%

Jiepang (HongKong) 130 1153 5124 130 1.17%

Then we cluster the users into overlapping communities M = {m1, ...mh}
according to corresponding category information. And the regularization term
is λh

2

∑m
i=1

∑h
p=1 IM

ip Zip

∑
uf ∈mip

Sif ||Ui − Uf ||2F , where mip denotes the com-
munity mp containing the users in the same community as ui, IM

ip equals 1 if
ui belongs to mp or equals 0 otherwise, Zip is the preference of ui on commu-
nity mp, which is defined as Zip = frei,mp

max∀m{frem
i } , where frei,mp

is the check-in
frequency of user i on community mp.
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In this way, we solve the problem that common check-ins of users on locations
are insufficient by incorporating both the user preference (category information)
and geographical social network information.

2.4 The Overall Model and Optimization

Accordingly, the objective function of the overall model is as follows

E =
1
2

m∑
i=1

n∑
j=1

IR
ij (Rij − UiL

T
j − XiY

T
j )2 +

λu

2
||U ||2F +

λl

2
||L||2F +

λx

2
||X||2F

+
λh

2

m∑
i=1

h∑
p=1

IM
ip Zip

∑
uf ∈mip

Sif ||Ui − Uf ||2F (5)

Stochastic Gradient Descent (SGD) is used to find a local minimum of our
objective function Eq. (5), and the gradient descent w.r.t. Ui, Lj and Xi are

∂E

∂Ui
=−

n∑

j=1

IRij(Rij − UiL
T
j − XiY

T
j )Lj + λuUi + λh

h∑

p=1

IMip Zip

∑

uf ∈mip

Sif (Ui − Uf )

∂E

∂Lj
=−

m∑

i=1

IRij(Rij − UiL
T
j − XiY

T
j )Ui + λlLj (6)

∂E

∂Xi
=−

n∑

j=1

IRij(Rij − UiL
T
j − XiY

T
j )Yj + λxXi

3 Experiments

3.1 Dataset Description

We use the Foursquare and Jiepang datasets to evaluate the performance of our
model which are widely used in previous studies in the location-based recom-
mender system [6,17]. The Foursquare dataset contains a long-term (about 10
months) check-in data in New York City (NYC) collected from Foursquare, rang-
ing from April 2012 to February 2013, and Jiepang dataset contains check-ins
in HongKong from December 2011 to September 2012. Each check-in contains a
user ID, a location ID, a category ID and a category name, latitude and longi-
tude coordinates. Table 1 lists the general statistics of our two datasets. To split
the dataset into training set and testing set, we firstly aggregate the check-ins
for each location of each user. After that, we select 80% data randomly as the
training set to train the model and the remaining 20% are held out for testing.

3.2 Evaluation Metrics

Considering only limited locations will be recommended to users in location-
based recommendation, we use the Top-N recommendation approach to evaluate
our model, including Precision@N, Recall@N, and F1@N metrics. F1@N is the
harmonic mean of precision and recall.
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3.3 Parameters Analysis

There are six parameters in our algorithm, namely λh, λx, λu, λl, N , and k. We
set the dimension of latent matrices k as 2 and the regularization coefficients
λu, λl equal to 0.01 in all experiments. Then we analyze the effect of social regu-
larization coefficient λh, user activity regularization coefficient λx, and the length
of recommend list N respectively by fixing other parameters in this section.

Parameter Analysis on λh. Parameter λh represents the impact on com-
munity social relationship. On the Foursquare dataset, we fix the parameters
N = 5, λx = 0.01 and increase the λh from 0 to 0.07 unevenly. It’s obvious
that the accuracy is sensitive to the community social regularization. Compared
with the situation that we don’t consider the impact of community influence (i.e.
λh = 0), the accuracy can be promoted 44.8% when λh = 0.005 on Foursquare.
Besides, on the Jiepang dataset, we fix the parameters N = 5, λx = 40, and
the accuracy can be promoted by 6.3% at the best performance when setting
λh = 0.07 as shown in Table 2.

Table 2. Parameter analysis: the influence of λh on the proposed CBGeoMFC model.

Foursquare λh 0 0.0001 0.0005 0.001 0.005 0.01 0.05 0.07

Precision@5 0.0404 0.0404 0.0408 0.0421 0.0585 0.0550 0.0430 0.0440

Recall@5 0.0120 0.0121 0.0121 0.0125 0.0174 0.0164 0.0128 0.0131

F1@5 0.0185 0.0185 0.0187 0.0193 0.0268 0.0252 0.0197 0.0202

Jiepang λh 0 0.01 0.05 0.07 0.1 0.3 0.5 0.7

Precision@5 0.0492 0.0492 0.0508 0.0523 0.0523 0.0492 0.0446 0.0431

Recall@5 0.0732 0.0732 0.0755 0.0778 0.0778 0.0732 0.0664 0.0641

F1@5 0.0589 0.0589 0.0607 0.0626 0.0626 0.0589 0.0534 0.0515

Parameter Analysis on λx. Parameter λx is the Frobenius norm coefficient
of user activity. On Foursquare, we fix the parameters N = 5, λh = 0.005 and
then test λx from 0.0001 to 150 as shown in Table 3. The accuracy has almost
no improvement when λx < 1 while it increases rapidly when λx > 1 and
achieves the best performance as λx = 100. As for the Jiepang dataset, the best
result is achieved as λx = 40. The experiment result shows that user activity
on most circles is unimportant, for the large value of λx generates a rather
strong constraints. When the parameter λx continues to increase, the constraints
become stronger so that it removes some obvious features and the value begins to
decrease. This is consistent with the real world situation that users always check-
in in a limited number of circles. The accuracy is promoted 9.9% and 19.2% at
the best performance on the Foursquare and Jiepang datasets respectively.
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Table 3. Parameter analysis: the influence of λx on the proposed CBGeoMFC model.

Foursquare λx 0 0.0001 0.001 0.01 0.1 1 10 50 100 150

Precision@5 0.0504 0.0504 0.0504 0.0504 0.0504 0.0508 0.0517 0.0547 0.0554 0.0547

Recall@5 0.0150 0.0150 0.0150 0.0150 0.0151 0.0152 0.0154 0.0163 0.0165 0.0163

F1@5 0.0231 0.0231 0.0231 0.0231 0.0231 0.0233 0.0237 0.0251 0.0254 0.0251

Jiepang λx 0 10 20 30 40 50 60 7 80 90

Precision@5 0.0400 0.0400 0.0431 0.0462 0.0477 0.0462 0.0462 0.0462 0.0431 0.0415

Recall@5 0.0595 0.0595 0.0641 0.0686 0.0709 0.0686 0.0686 0.0686 0.0641 0.0618

F1@5 0.0478 0.0478 0.0515 0.0552 0.0570 0.0552 0.0552 0.0552 0.0515 0.0497

Parameter Analysis on N . Parameter N is the length of recommend list in
the top-N recommendation. Setting λx = 0.01, λh = 0.01 and λx = 40, λh = 0.7
on the Foursquare and Jiepang datasets respectively, we change the parameter
N from 1 to 20 and find that precision has a decline trend while recall continues
growing when parameter N increases. F1 measuring result considers both preci-
sion and recall and arrives the best performance as N = 20 on Foursquare and
N = 7 on Jiepang as shown in Fig. 1.
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Fig. 1. The influence of N on the CBGeoMFC model.

3.4 Comparison Experiments

In this section, comparison results will be reported to compare the proposed
CBGeoMFC method with some existing methods, namely UBCF, PMF [18] and
MFC [12]. For all comparison methods, the parameters are set as suggested in
the corresponding papers. In particular, for the sake of fairness, we set the same
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random initial value for all the methods, and set the learning rate as 0.0001
and regularization coefficients as 0.01 for every algorithms. We use parameter
λx = 40, λh = 0.1 and λx = 100, λh = 0.005 on the Jiepang and Foursquare
datasets in our CBGeoMFC model.

The comparison results are shown in Fig. 2. Our algorithm achieve the best
performance among all the three comparison algorithms in terms of all evalua-
tion metrics for considering both social influence and geographical limits. From
the results, we can find that UBCF is not appropriate in POI recommendation
for the reason that the check-in data is too sparse and users have few overlapping
check-ins. Compared with PMF, our model improves the recommendation preci-
sion, recall and F1 by 93.9%, 63.7%, 80.5% and 64.1%, 24.9%, 34.8% respectively
on Jiepang and Foursquare. Compared with MFC, our model improves the rec-
ommendation precision, recall and F1 by 39.1%, 46.2%, 40.5% and 34.9%, 15.2%,
20.7% respectively on Jiepang and Foursquare. Overall, our CBGeoMFC model
outperforms the compared algorithms.
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Fig. 2. Performance comparison.

4 Conclusions

POI recommendation can benefit users outdoor activities in an urban city and
bridge the gap between the physical world and online social network, but it
encounters more challenges for the reasons that the check-in data is too sparse,
various factors have to be considered and the effect of social influence is limited.
To solve these challenges, we propose a business circles conception and use AP
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algorithm to cluster all the check-ins into business circles. By aggregating the
check-ins on locations into the check-ins on business circles, we can effectively
settle the defects that there are few overlap check-ins of a user to his/her friends’
check-ins. Then we compute the user’s activity and attraction of the POI on
each circle to evaluate the user preference on location, which is more consistent
with the modern consumption pattern in an urban city. In addition, we cluster
the users into overlapping communities according to the corresponding category
information and social relationships. Finally, we incorporate all above factors
into a matrix factorization framework. The experimental results have confirmed
that our algorithm remarkably outperforms other existing algorithms.
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