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Abstract. Due to the uncertainty and fuzziness of the real world, the dual
hesitant fuzzy set (DHFS) has been proposed to express uncertain information
during the process of multi-attribute decision making (MADM). In order to
process the information with incomplete dual hesitant fuzzy elements (IDHFEs)
in MADM, a new similarity degree for MADM with incomplete dual hesitant
fuzzy sets (IDHFSs) is proposed. The concept of similarity degree of IDHFEs
and similarity aggregation matrix are introduced. Then a complete dual hesitant
fuzzy matrix (CDHFM) is obtained by using the maximum similarity to com-
plement the data. An investment selection example is provided to illustrate the
validity and applicability of the proposed method.

Keywords: Incomplete dual hesitant fuzzy element - Maximum similarity -
Multi-attribute decision making

1 Introduction

MADM is a common process to human beings. In classical MADM, the assessments of
alternatives are precisely known [1]. However, because of the inherent vagueness of
human preferences and the uncertainty of objects, the attributes involved in decision
making problems are better denoted by the fuzzy concept. Fuzzy sets have been
introduced by Zadeh [2]. Subsequently, many scholars have done a lot of achievements
on fuzzy decision making [3, 4, 5]. Hesitant fuzzy set (HFS), which has been intro-
duced by Torra and Narukawa as an extension of fuzzy set [6, 7], describes the
situations that permit the membership of an element to a given set having a few
different values, which is a useful means to describe and deal with uncertain infor-
mation in the process of MADM. However, the HFS only depicts people’s membership
and ignors the people’s non-membership. Therefore, Zhu et al. have proposed the
DHFS [8]. Comparing with the classical fuzzy set theory, DHFS increase the
non-membership degree to describe the fuzzy nature of the objective world compre-
hensively and show a strong flexibility and practicality.
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In recent years, hesitant fuzzy MADM has received more and more attention.
Herrera-Videma et al. have emphasized fuzzy preference matrix and studied different
forms of expression in fuzzy preference matrix approach [9]. Xu et al. have defined the
distance and similarity measure of the HFSs [10, 11]. Zhang et al. have proposed
hesitant fuzzy power aggregation operator to aggregate MADM evaluation values [12].
Xia and Xu also have developed some aggregation operators for hesitant fuzzy
information and applied them in MADM problems under the hesitant fuzzy environ-
ment [13]. In the real life, people often judge the truth-values of a fuzzy proposition
with language. Lin R has defined the hesitant fuzzy linguistic set by combining the
advantages of linguistic evaluation values and HFS [14]. On the basis of multi-hesitant
fuzzy sets, literature [15] has proposed the multi-hesitant fuzzy linguistic term sets.

The above studies are based on the assumption that the evaluation information is
complete. However, due to the complexity of the decision making environment, the
hesitation of the decision makers and the improper operation in the decision making
process, the information is often incomplete. In order to solve the problem of MADM
with information loss, the information is usually complemented by some methods.
Therefore, this paper proposes a multi-attribute decision making method based on the
maximum similarity of IDHFSs. We define the similarity of the IDHFEs in the IDHFSs
and compare the similarity among individuals to complement the maximum data. An
example is then provided to illustrate the proposed approach is more flexible and
effective.

2 Preliminaries

DHFS, as a generalization of fuzzy set, permit the membership degree and the
non-membership degree of an element to a set presented as several possible values
between 0 and 1, which can describe the situations where people have hesitancy in
providing their preferences over objects in the process of decision making.

Definition 1 [17]. Let X be a fixed set, then DHFS on X is defined as:

D = {{x, h(x),g(x)|x € X)}

where A(x) and g(x) are two sets of several values in [0, 1], representing the possible
membership degrees and the non-membership degrees for x € X. Also, there is

0<ypn<1,0<y" +4t <1

where y € h(x),n € g(x),7" € i (x) = Uyepe max {y} and n™ € g7 (x) = U e
max {n}. The DHFS is composed of dual hesitant fuzzy elements (DHFEs), which is
denoted by d(x) = (h(x), g(x)) (d = (h, g) for short).

To compare the DHFSs, Zhu et al. have gave the following comparison laws:

Definition 2 [8]. Let A; = {hy,, g4, }(i = 1,2) be any two DHFSs, s4, = iz%y —i
ye
> n(i =1,2) the score function of A;(i = 1,2) and p,, = iz)) + iz n(i=1,2).

neg yEh neg
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The accuracy function of A;(i = 1,2), where I, and [, be the number of elements in &
and g, respectively, then

(i) if sa, > sa,, then A; is superior to A,, denoted by A; > Aj;

(i1) if s4, = sa,, then
(1) if ps, = pa,, then A is equivalent to A,, denoted by A; ~ Aj;
(2) if pa, > pa,, then A, is superior to A,, denoted by A; > A,.

3 Similarity of Incomplete Dual Hesitant Fuzzy Elements

In the real life, due to the preference of experts and the influence of external factors,
some values of the information can’t be given. So there is a case where the DHFEs are
incomplete when the values of the information are represented by DHFEs. Therefore,
we divide the DHFEs into complete double hesitation fuzzy elements and incomplete
double hesitation fuzzy elements. The corresponding definitions as follows:

Definition 3. Let U = {u;,uy,...,u,} be a fixed set and A; = (h;, g;) be any DHFEs
onU,i=1.2,...n.

(1) if n" = (n;)" = nf, then the DHFEs are called complete dual hesitant fuzzy
elements, denoted by CDHFEs; The matrix(s) composed of CDHFEs are called
complete double hesitation fuzzy matrix(s), denoted by CDHFM(s); The set(s)
composed of CDHFEs are called complete double hesitation fuzzy set(s), denoted
by CDHFS(s).

2) if nf’ # (n;)" # ni, then the DHFEs are called incomplete dual hesitant fuzzy
elements, denoted by IDHFEs. The matrix(s) composed of IDHFEs are called
incomplete double hesitation fuzzy matrix(s), denoted by IDHFM(s); The set(s)
composed of IDHFEs are called incomplete double hesitation fuzzy set(s),
denoted by IDHFS(s).

Where nf’ and nf are the number of values in A; and g;, respectively.(ni)* is the
largest value of n and nf.

Singh [16] has proposed the similarity measures of CDHFSs. However, it is no
longer applicable for IDHFS(s). We improve the definition of similarity measures in
[16] and give the definition of similarity degree of IDHFEs.

Definition 4. Let A(u,) = (h(uy), g(u,)), and B(u,) = (h(u,),g(u,)) be two IDHFEs,
the similarity degree s;pyrss(A, B) between A and B is defined as:

Siprres(A, B) =2 k=1 s=1 =1 =1 W

I Ny R Ny TRy
(,;k;hik) g 2 Ap) +(;Z;8it) PD

If we take weight of each element x € X for membership function and non-membership
function into account, then
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p q o p
Z wﬂkhﬂk : Z a)vshvs + Z w,ulhul : Z wvrhvr
k=1 s=1 =1 r=1 (2)

siprres(A, B) =2 > . ; 7
(ch:l w#khuk)z + (Z:l wvs‘hvs)z + (I; w#lhul)z + (Z:l wvrhvr)z

P q o p
where Y uhu, Y Oushvs, Y Wuguis Y Wiw&r are called the weighted summation of
k=1 =1

s=1 r=1

each element x € X for membership function and non-membership function, respec-
tively. Particularly, if each element has same importance, then (2) is reduced to (1).

According to the Definition 2, we can easily proof Definition 4 satisfies the fol-
lowing properties:

Proposition 1. Let A,B and C be any IDHFSs, then sipyres(A, B) is the similarity
degree, which satisfies the following properties:
(i) 0 < sipares(A,B) < 1
(ii) sipures(A,B) = 1 if and only if A = B;
(i) sipures(A, B) = siprres(B,A);
(IV) Let C be any IDHFS, if Ang C, then SIDHFES(A7B) > SIDHFES(A7 C),
sipures(B, C) > sipures(A, C).

Definition 5. Let A = (hp(uy),gp(u,)) and B = (hp(u,),gp(u,)) be two IDHFEs,
then the similarity matrix of A and B on attribute ¢; is defined as:

R, = (Xu0) s> Where x,, = 5., (A,B),1 < j < n

Definition 6. Let A = (hp(u,),gp(u,)) and B = (hp(uy),gp(uy)) be two IDHFEs,
then the similarity aggregation matrix Ry is defined as:

Ry = (ri)pm = s Where ryy = Xe, () " Xea(u) * - -~ Xey(uv)

4 Application of Proposed Similarity Degree in MADM

4.1 Method of Proposed Similarity Degree in MADM

When we complement the data to IDHFEs based on the maximum similarity, we need

to operate and organize the system of the information many times. So we make the

following signs:

(1) Denote the similarity matrix as R’Cj after the rth operations for the information
system;
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(2) Denote the similarity aggregation matrix as R’N(q) after the rth operations for the

information system;
(3) Denote the information system as D' after the #th operations;
(4) Denote the integral information system as D.

Note: Two IDHFEs, which similarity degree is the greatest, we complement the two
IDHFEs by adding to the weighted summation each other until the IDHFEs get to
CDHFEs, then ordering the membership degree and non-membership degree of the
CDHFEs from the largest to the smallest.

Based on the above analysis, when the information of system is incomplete, we use
the following method to find the best alternative in MADM problem.

Let U = {uy,uz, ..., u,} be a set of alternatives and C = {cy,ca,....,cn} be a set
of attributes, we construct the decision matrix D° = (d,,),,.,, Where d, = (huy, guv)
(1 <u<m1 <v<n). The method involves the following steps:

Step 1. Let 7 = 1 and calculate the similarity degrees s, (1, u,) of any two alter-
natives u, and u, of attribute ¢; in U~! € D'"1, we obtain the similarity matrix
R, = (Xu),x, and the similarity aggregation matrix R;‘(Q) = (") psens

Step 2. Scan similarity aggregation matrix Ri,/_ = (Xuv),x,, and find the maximum of
the similarity of any two alternatives with IDHFEs. According to the Note, we

arrange the matrix D'~! to get matrix D':

(i) D" #D,t=1t+1, return Step 1,
(ii) If D' = D, then to Step 3;

Step 3. Calculate the similarity degrees among the alternatives uéi and the ideal
alternatives u:j by using formula 2) i =1,2,...,m,j=1,2,..., n);

Step 4. Rank the alternatives according to the results of Step 3;
Step 5. Select the best alternative according to the Step 4.

4.2 Practical Example

Here, we take the example [16], to illustrate the utility of the proposed method. Also,
we show that the results obtained using the proposed method are same as the results of
Ref. [16].

There is an investment company, which wants to invest a sum of money in the best
option. There is a panel with four possible alternatives to invest the money: u; is a car
company; u, is a food company; uz is a computer company; u4 is an arms company.
The investment company must make a decision according to the following three
attributes: ¢ is the risk analysis; ¢, is the growth analysis; c3 is the environmental
impact analysis. The attribute weight vector for membership degree and nonmember-
ship degree is given as w = (0.35, 0.25, 0.40)” and z = (0.30, 0.40, 0.30)”, respectively.
The four possible alternatives u; (i =1, 2, 3, 4) are to be evaluated using the
dual hesitant fuzzy information by three decision makers under three attributes

¢j (j=1,2,3), as listed in the following dual hesitant fuzzy decision matrix DY (“A”
represent that the missing value):
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{{0.5,0.4,0.3},{0.4,0.3}} {{0.6, 04, A}, {04, 0.2}} {{0.3,0.2,0.1}, {0.6,0.5}}

Lo _ | {107.06,04},{03,02) {{0.7,0.6,&},{0.3,0.2}} {{0.7,0.6,0.4}, {0.2,0.1}}
- {{0.6,0.4,0.3},{0.3,&}} {{0.6,0.5,&},{0.3,&}} {{0.6,0.5,5},{0.3,0.1}}
{{0.8,0.7,0.6},{0.2,0.1}} {{0.7, 0.6,A}, {0.2, &}} {{0.4,0.3, A}, {0.2,0.1}}

Step 1. Let 7 = 1 and calculate the similarity degrees s, (1, u,) of any two alter-
natives u, and u, of attribute c; to obtain the similarity matrix Rcl_j = (Xuv) 454> Where
1 <u,v<41<j<3 Then we get the similarity aggregation matrix R}« =

<)
(ru)4sca Of €.

1 0.942 0.968 0.852 1 0.965 0.971 0.926

Rl _ 0.942 1 0.959 0.976 Rl _ 0.965 1 0.981 0.983

“ 0.968 0.959 1 0.895 @ 0.971 0.981 1 0.983
0.852 0976 0.895 1 0.926 0.983 0.983 1

1 0.599 0.763 0.729 1 0.835 0.900 0.835

.| 0599 1 0.924 0.728 .| 0835 1 0.954 0.895

10763 0.924 1 0.908 Ma) T | 0.900 0.954 1 0.928
0.729 0.728 0.908 1 0.835 0.895 0.928 1

Step 2. We can see 3 = r3; is the largest from Ril‘t(cj) easily, that is, the similarity of

u and u3 is the largest. Arranging matrix D°, we can get matrix D'.

{{0.5,0.4,03},{0.4,0.3}} {{0.6, 0.4, A}, {04, 0.2}} {{0.3,0.2,0.1},{0.6,0.5}}
{{0.7.,0.6,0.4}, } {{0.7,0.6,0.38}, } {{0.7,0.6,0.4}, }
o {0.3,0.2,0.105} {0.3,0.2,0.105} {0.2,0.13,0.1}
{{0.6,0.4,0.3}, } {{0.6,0.5,0.45}, } {{0.6,0.57,0.5}, }
{0.3,0.155,0.155} {0.3,0.155,0.155} {0.3,0.1,0.095}

{{0.8,0.7,0.6},{0.2,0.1}} {{0.770.67 A}, {0.27 A}} {{0.47 03, 5}7 {02, 0.1}}

Thus, we can get D' # D, return Step 1.
Let t = 2 and calculate the similarity degrees s, (u,,u,) of any two alternatives u,

and u, of attribute ¢; to obtain the similarity matrix jo = (Xuv)454. Where
1 <p,v<41<j<3 Then we get the similarity aggregation matrix R§< =

<)
(Tuv)gxq of ¢
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1 0948 0.997 0.852 1 0901 0932 0926
W _ | 0948 1 0966 0968 | , |0901 1 0996 0948
a 0.997 0966 1 0882 | © 0932 0996 1  0.956
0.852 0968 0.882 1 0.926 0.948 0.956 1
1 0.650 0.682 0.729 1 0833 0871 0.835
, _ | 0650 1 0998 0730 | , (083 1 0987 0882
a7 10682 0998 1 0737 ] 9| 0871 0987 1  0.858
0.729 0730 0.737 1 0.835 0.882 0.858 1

Due to the similarity of u, and u3 are complete, overlook s(uz,u3). We can see
14 = rap 1is the largest from Ri(c_) easily, that is, the similarity of u, and uy is the
J

largest. Arranging matrix D', we can get matrix D?.

{{0.5,0.4,0.3}, {0.4,0.3}} {{0.6, 04, EA}, {04, 0.2}} {{0.3,0.2,0.1}, {0.6,0.5}}
{0.7,0.6,0.4, {0.7,0.6,0.38), {0.7,0.6,0.4},
{ {0.3,0.2,0.105} } { {0.3,0.2,0.105} } { {0.2,0.13,0.1} }
D’ = {0.6,0.4,0.3}, {0.6,0.5,0.451, {0.6,0.57,0.51,
{ {0.3,0.155,0.155} } { {0.3,0.155,0.155} } { {0.3,0.1,0.095} }
{0.8,0.7,0.6}, {0.7,0.6,0.564}, {0.4,0.57,0.3},
{ {0.2,0.197,0.1} } { {0.2,0.197,0.197} } { {0.2,0.1,0.1425} }

Thus, we can get D?> # D, return Step 1.
Let t = 3 and calculate the similarity degrees s, (u,,u,) of any two alternatives u,

and u, of attribute ¢; to obtain the similarity matrix jo = (Xu)4x4. Where
1 <p,v<41<j<3. Then we get the similarity aggregation matrix R§< =

<)
(Tuv)gxq of ¢

1 0948 0.997 0.871 1 0901 0932 0.864
& | 0948 1 0966 0979 | o | 0901 1 0996 0996
g 0.997 0966 1 0898 | © 0932 0996 1  0.985

0.871 0979 0.898 1 0.864 0.996 0985 1

1 0.650 0.682 0.754 1 0833 0871 0.829
s _ | 065 1 0998 0968 | . | 0833 1 0987 098I
e 10682 0998 1 0973 | @ 0871 0987 1 0973

0.754 0.968 0.973 1 0.829 0981 0.973 1
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Due to the similarity of  wp,u3,uy, are complete, overlook
s(up,uz), s(up, uq), s(uz, us). We can see ri3 = r3 is the largest from Ri(c_) easily, that
J

is, the similarity of u; and u3 is the largest. Arranging matrix D?, we can get matrix D>,
{0.5,0.4,0.3}, {0.6,0.515,0.4}, {0.3,0.2,0.1},
{0.4,0.3,0.2058} {0.4,0.2058,0.2} {0.6,0.5,0.168}
{0.7,0.6,0.4}, {0.7,0.6,0.38}, {0.7,0.6,0.4},
DY — {0.3,0.2,0.105} {0.3,0.2,0.105} {0.2,0.13,0.1}
{0.6,0.4,0.3}, {0.6,0.5,0.45}, {0.6,0.57,0.5},
{0.3,0.155,0.155} {0.3,0.155,0.155} {0.3,0.1,0.095}
{0.8,0.7,0.6}, {0.7,0.6,0.564}, {0.4,0.57,0.3},
{0.2,0.197,0.1} {0.2,0.197,0.197}

{0.2,0.1,0.1425}
Thus, we can get D* = D, turn to Step 3.

Step 3. Calculate the similarity degrees among the alternatives ui/_ and the ideal
alternatives uji by using formula 2) i=1,2,...m,j=1,2,..., n);

(1) The ideal alternatives u; : u;, = ({0.8,0.7,0.6},{0.2,0.155,0.1}); u;, = ({0.7,

0.6,0.564},{0.2,0.155,0.105}); u?, = ({0.7,0.6,0.5},{0.2,0.1,0.095})
(2) The similarity degrees:

spures (), 1%,) = 0.852, sprres (17, , u},) = 0.978, sprpe, (], ) = 0.897,
spures (12, 1) = 0.999;
spares(uy,, 1)) = 0.962, spures(ul, 1)) = 0.993, spure, (1), , u}) = 0.980,
spres (U, 1)) = 0.997;
spures (s, 17,) = 0.598, sprpes (12, u},) = 0.998, spype, (1), 1}, ) = 0.955,
SDHFEs(Mi, bt;) =0.955

Step 4. Rank the alternatives according to the results of Step 3;
Suy > Su, > Suy > Su,
Step 5. Select the best alternative according to the Step 4.

Uy > Uy > U3 > U]

Therefore, u, is the best alternative to choose.
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4.3 Advantages of the Proposed Distance Measures

(i) Singh has proposed the distance and similarity measures for MADM with DHFSs
in [16]. The result of the proposed method is matched with existing method of
Singh. But the method in [16] based on decision maker’s preference parameter is
known to make decision. The approach we proposed is to complement the missing
data when the decision maker’s risk preference is unknown, extracting rules from
the existed information to solve the problem of missing information. Thus the
proposed method is more practical and general.

(i) As mentioned above, we give the definition of the similarity degree for IDHFEs
and give some related properties. Using the method of maximum similarity degree
to complement the IDHFEs not only keeps the maximum similarity among the
hesitant fuzzy information, but also solves the problem of information loss in
IDHFSs.

5 Conclusions

In the real world, the HFS or DHFS is adequate for dealing with the vagueness of DM’s
judgment. However, due to the preference of experts and the influence of external
factors, some information values can’t be given, which results in the fuzzy information
is not complete. In order to solve this problem, we propose a completion method of
information values based on the maximum similarity degree in IDHFSs. An important
advantage of the proposed method is that it not only solves the problem of information
loss in IDHFSs, but also keeps the maximum similarity among the hesitant fuzzy
information.

The next step of the research work is to extend the proposed method to the wider
areas such as machine learning, clustering, reasoning and so on.
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