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Abstract. The architecture of a system describes the system’s overall
organization into components and connections between those compo-
nents. With the emergence of mobile computing, dynamic architectures
have become increasingly important. In such architectures, components
may appear or disappear, and connections may change over time. The
dynamic nature of such architectures makes reasoning about their behav-
ior difficult. Since components can be activated and deactivated over
time, their behavioral specifications depend on their state of activation.
To address this problem, we introduce a calculus for dynamic architec-
tures in a natural deduction style. Therefore, we provide introduction and
elimination rules for several operators traditionally employed to specify
component behavior. Finally, we show soundness and relative complete-
ness of these rules. The calculus can be used to reason about component
behavior in a dynamic environment. This is demonstrated by applying
it to verify a property of dynamic blackboard architectures.

Keywords: Dynamic architectures · Component calculus · Architecture
verification · Configuration traces · Behavior traces

1 Introduction

A system’s architecture provides a set of components and connections between
their ports. With the emergence of mobile computing, dynamic architectures
have become more and more important [2,8,16]. In such architectures, compo-
nents can appear and disappear, and connections can change, both over time.
Dynamic architectures can be modeled in terms of configuration traces [14,15].
Consider, for example, the execution trace of a dynamic architecture depicted
in Fig. 1. The figure shows the first three configurations of one possible execu-
tion of a dynamic architecture composed of three components c1, c2, and c3.
To facilitate the specification of such architectures, they can be separated into
behavioral specifications for components, activation specifications, and connec-
tion specifications [15]. Thereby, behavior of components is often specified by
means of temporal logic formulæ [13] over the components interface. Consider,
for example, a component c3 with output port o1 whose behavior is given by the
temporal specification “©(o1 = 8)”, meaning that it outputs an 8 on its port o1
at time point 1 (assuming that time starts at 0).
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c1
o0 = {9}
i0 = {5}
o1 = {A,X}

o2 = {5}

c2i0 = {Z}
o0 = {9}

i1 = {A,X}

i2 = {8, 4}

c3 i0 = {X}
o0 = {9}

i1 = {5}

o1 = {8, 4}

n = 0

,

c1
o0 = {2, 7}

i0 = {3}
o1 = {D}

o2 = {9}

c2i0 = {B,G}
o0 = {6}

i1 = {D}

i2 = {1, 3}

n = 1

,

c1
o0 = {5, 3}

i0 = {1}
o1 = {F,Q}

o2 = {2, 4}

c2i0 = {Z}
o0 = {9}

i1 = {H}

i2 = {3, 9}

c3 i0 = {T,B}
o0 = {7}

i1 = {2, 4}

o1 = {3, 9}

n = 2

,

Fig. 1. Execution trace of a dynamic architecture.

For static architectures, the original specification of temporal properties of
single components remain valid even when deployed to the architecture. The
original specification of component c3, for example, is still valid when deployed
to a static architecture, i.e., c3 will still output an 8 on its port o1 at time point
1, even if deployed to the architecture. For dynamic architectures, on the other
hand, the traditional interpretation of temporal specifications of the behavior
of components is not valid anymore. For example, it is not clear whether the
trace depicted in Fig. 1 actually fulfills the original specification of component
c3, since c3 is not active at time point 1 (n = 1).

So, how can we reason about the behavior of components deployed to dynamic
architectures? To answer this question, in the following we provide a calculus
for dynamic architectures. It formalizes reasoning about the behavior of a com-
ponent when it can be activated and deactivated. In the spirit of natural deduc-
tion, we provide introduction and elimination rules for each temporal operator.
Finally, we show soundness and relative completeness of the calculus. As a prac-
tical implication, our calculus can be used to support the verification of proper-
ties for dynamic architectures. This is demonstrated by means of the blackboard
pattern for dynamic architectures. To this end, we apply the calculus to verify
a characteristic property of the pattern.

The remainder of the paper is structured as follows: First, we introduce our
model for dynamic architectures in Sect. 2. In Sect. 3, we then provide the notion
of behavior assertions and behavior trace assertions as means to specify the
behavior of components. In Sect. 4, we introduce our calculus, which allows us
to reason about component behavior in a dynamic context. Sect. 5 then demon-
strates the practical usability of the calculus by applying it to verify a property
of dynamic blackboard architectures. Finally, we conclude our discussion with a
review of related work in Sect. 6 and a brief summary of the major contributions
of this paper in Sect. 7.

2 A Model of Dynamic Architectures

In [15], we introduce a model for dynamic architectures based on the notion of
configuration traces. Our model is based on Broy’s Focus theory [3] and an
adaptation of its dynamic extension [4]. In this section, we briefly summarize
the main concepts of the model and extend it with the notion of behavior traces
to model the behavior of single components.
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2.1 Foundations: Ports, Valuations, and Components

In our model, components communicate by exchanging messages over ports.
Thus, we assume the existence of sets M and P containing all messages and
ports, respectively.

Port Valuations. Ports can be valuated by messages. Roughly speaking, a
valuation for a set of ports is an assignment of messages to each port.

Definition 1 (Port Valuation). For a set of ports P ⊆ P, we denote by P the
set of all possible PVs, formally:

P
def
= (P → ℘(M)).

Moreover, we denote by [p1, p2, . . . �→ {m1}, {m2}, . . .] the valuation of ports
p1, p2, . . . with sets {m1}, {m2}, . . ., respectively. For singleton sets we shall
sometimes omit the set parentheses and simply write [p1, p2, . . . �→ m1,m2, . . .].

Note that in our model, ports can be valuated by a set of messages, meaning
that a component can send/receive no message, a single message, or multiple
messages at each point in time.

Components. In our model, the basic unit of computation is a component. It
consists of an identifier and a set of input and output ports. Thus, we assume
the existence of set Cid containing all component identifiers.

Definition 2 (Component). A component is a triple (id , I, O) consisting of:

– a component identifier id ∈ Cid and
– two disjoint sets of input and output ports I,O ⊆ P.

The set of all components is denoted by C. For a set of components C ⊆ C, we
denote by:

– in(C)
def
=

⋃
(id,I,O)∈C({id} × I) the set of component input ports,

– out(C)
def
=

⋃
(id,I,O)∈C({id} × O) the set of component output ports,

– port(C)
def
= in(C) ∪ out(C) the set of all component ports, and

– id(C)
def
=

⋃
(id,I,O)∈C{id} the set of all component identifiers.

A set of components C ⊆ C is called healthy iff a component is uniquely
determined by its name:

∀(id , I, O), (id ′, I ′, O′) ∈ C : id = id ′ =⇒ I = I ′ ∧ O = O′. (1)

Similar to Definition 1, we define the set of all possible component port val-
uations (CPVs) for a set of component P ⊆ Cid × P.
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2.2 Modeling Component Behavior

A component’s behavior is modeled by a set of execution traces over the com-
ponent’s interface. In the following, we denote with (E)+ the set of all finite
sequences over elements of a given set E, by (E)∞ the set of all infinite sequences
over E, and by (E)∗ the set of all finite and infinite sequences over E.

Definition 3 (Behavior Trace). A behavior trace for a component (id , I, O)
is an infinite sequence (I × O)∞. The set of all BTs for component c is denoted
by B(c).

Note that a component’s behavior is actually modeled as a set of behavior traces,
rather than just a single trace. This is to handle non-determinism for inputs to,
as well as outputs from components.

Example 1 (Behavior Trace). In the following, we provide a possible BT for a
component c3 with two input ports i0 and i1, and two output ports o0 and o1:
[i0, i1, o0, o1 �→ X, 5, 9, {8, 4}], [i0, i1, o0, o1 �→ {T,B}, {2, 4}, 7, {3, 9}], · · · .

2.3 Modeling Dynamic Architectures

Dynamic architectures are modeled as sets of configuration traces which are
sequences over architecture configurations.

Architecture Configurations. In our model, an architecture configuration
connects ports of active components.

Definition 4 (Architecture Configuration). An architecture configuration
(AC) over a healthy set of components C ⊆ C is a triple (C ′, N, μ), consisting of:

– a set of active components C ′ ⊆ C,
– a connection N : in(C ′) → ℘(out(C ′)), and
– a CPV μ ∈ port(C ′).

We require connected ports to be consistent in their valuation, that is, if a com-
ponent provides messages at its output port, these messages are transferred to
the corresponding, connected input ports:

∀pi ∈ in(C ′) : N(pi) �= ∅ =⇒ μ(pi) =
⋃

po∈N(pi)

μ(po). (2)

The set of all possible ACs over a healthy set of components C ⊆ C is denoted
by K(C).

Note that connection N is modeled as a set-valued function from component
input ports to component output ports, meaning that: (i) input/output ports
can be connected to several output/input ports, respectively, and (ii) not every
input/output port needs to be connected to an output/input port (in which case
the connection returns the empty set).
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Configuration Traces. A configuration Traces consists of a series of configu-
ration snapshots of an architecture during system execution.

Definition 5 (Configuration Trace). A configuration trace (CT) over a
healthy set of components C ⊆ C is an infinite sequence (K(C))∞. The set of all
CTs over C is denoted by R(C).

Example 2 (Configuration Trace). Fig. 1 shows the first three ACs of a possible
CT. The first AC, t(0) = (C ′, N, μ), e.g., consists of:

– components C ′ = {C1, C2, C3}, with C1 = (c1, {i0}, {o0, o1, o2}), C2 =
(c2, {i0, i1, i2}, {o0}), and C3 = (c3, {i0, i1}, {o0, o1});

– connection N , with N((c2, i1)) = {(c1, o1)}, N((c3, i1)) = {(c1, o2)}, and
N((c2, i2)) = {(c3, o1)}; and

– valuation μ = [(c1, i0), (c1, o0), (c2, i2), · · · �→ 5, 9, {8, 4}, · · · ].
Note that a dynamic architecture is modeled as a set of CTs rather than

just one single trace. Again, this allows for non-determinism in inputs to an
architecture as well as its reaction. Moreover, note that our notion of architecture
is dynamic in the following sense: (i) components may appear and disappear over
time and (ii) connections may change over time.

In the following, we introduce an operator to denote the number of activations
of a component in a (possible finite) configuration trace. Thereby, we denote by
[c]i = ci the i-th component (where i ≥ 1 and i ≤ n) of a tuple c = (c1, . . . , cn).

Definition 6 (Number of Activations). With 〈c
n

# t〉, we denote the num-
ber of activations of component c in a (possibly finite) configuration trace t up to
(excluding) point in time n:

〈c
0

# t〉 def
= 0,

c ∈ [t(n)]1 =⇒ 〈c
n+1

# t〉 def
= 〈c

n

# t〉 + 1,

c /∈ [t(n)]1 =⇒ 〈c
n+1

# t〉 def
= 〈c

n

# t〉.
Moreover, we introduce an operator to return the last activation of a component
in a configuration trace.

Definition 7 (Last Activation). With last(t, c), we denote the greatest i ∈ N,
such that c ∈ [t(i)]1.

Note that last(t, c) is well-defined iff ∃i ∈ N : c ∈ [t(i)]1 and ∃n ∈ N : ∀n′ ≥
n : c /∈ [t(n′)]1.

Finally, we introduce an operator which for a given point in time returns the
least earlier point in time where a certain component was not yet active.

Definition 8 (Least Not Active). With 〈c n∨ t〉, we denote the least n′ ∈ N,
such that n′ = n ∨ (

n′ < n ∧ ∀n′ ≤ k. ≤ n : c /∈ [t(n′)]1
)
.

Note that 〈c n∨ t〉 is always well-defined and for the case in which c ∈ [t(n)]1, it
returns n itself.
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2.4 From Configuration Traces to Behavior Traces

In the following, we introduce the notion of projection to extract the behavior
of a certain component out of a given CT.

Definition 9 (Projection). Given a (finite or infinite) CTt ∈ (K(C))∗ over a
healthy set of components C ⊆ C. The projection to component c = (id , I, O) ∈ C
is denoted by Πc(t) ∈ (B(c))∗ and defined as the greatest relation satisfying the
following equations:

Πc(t |0) def
= 〈〉,

c ∈ [t(n)]1 =⇒ Πc(t |n+1)
def
= Πc(t |n) ̂ (

λp ∈ I ∪ O : [t(n)]3 (id , p)
)
,

c /∈ [t(n)]1 =⇒ Πc(t |n+1)
def
= Πc(t |n),

where ŝ e denotes the sequence resulting from appending element e to sequence s.

Example 3 (Projection). Applying projection of component c3 to the CT given
by Example 2 results in a BT starting as described by Example 1.

Note that for systems in which a component is activated only finitely many
times, the projection to this component results in only a finite behavior trace.

3 Specifying Component Behavior

In the following, we introduce the notion of behavior trace assertions, a language
to specify component behavior over a given interface specification. We provide its
syntax as well as a formal semantics thereof in terms of behavior traces. Finally,
we introduce a satisfaction relation for configuration traces which serves as a
foundation for the calculus presented in the next section.

3.1 Behavior Trace Assertions

Component behavior can be specified by means of behavior trace assertions, i.e.,
temporal logic [13] formulæ over behavior assertions. Behavior assertions, on the
other hand, are used to specify a component’s state at a certain point in time.
They are specified over a given interface specification.

Interface Specifications. Interfaces declare a set of port identifiers and asso-
ciate a sort with each port. Thus, in the following, we postulate the existence of
the set of all port identifiers Pid. Moreover, interfaces are specified over a given
signature Σ = (S, F,B) consisting of a set of sorts S, function symbols F , and
predicate symbols B.

Definition 10 (Interface Specification). An interface specification (IS) over
a signature Σ = (S, F,B) is a triple (Pin , Pout , t

p), consisting of:

– two disjoint sets of input and output port identifiers Pin , Pout ⊆ Pid,
– a mapping tp : Pin ∪ Pout → S assigning a sort to each port identifier.

The set of all interface specifications over signature Σ is denoted by SI(Σ).
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Behavior Assertions. Behavior assertions specify a component’s state (i.e.:
valuations of its ports with messages) at a certain point in time. In the following,
we do not go into the details of how to specify such assertions, rather, we assume
the existence of a set containing all type-compatible behavior assertions over a
given interface specification.

Definition 11 (Behavior Assertions). Given IS Si = (Pin , Pout , t
p) over

signature Σ = (S, F,B) and family of variables V = (Vs)s∈S with variables Vs

for each sort s ∈ S. With ϕV
Σ(Si), we denote the set of all type-compatible (with

regard to tp) behavior assertions (BAs) for Si, Σ, and V .

Algebras and Variable Assignments. A BA is always interpreted over a given
algebra for the signature used in the corresponding IS. Thus, in the following,
we denote by A(Σ) the set of all algebras (S′, F ′, B′, α, β, γ) for signature Σ =
(S, F,B), consisting of sets S′, functions F ′, predicates B′, and corresponding
interpretations α : S → S′, β : F → F ′, and γ : B → B′. Moreover, with IV

A , we
denote the set of all variable assignments (VAs) ι = (ιs)s∈S (with ιs : Vs → α(s)
for each s ∈ S) for a family of variables V = (Vs)s∈S in an algebra A.

Semantics of Behavior Assertions. The semantics of behavior assertions is
described in terms of component port valuations satisfying a certain behavior
assertion. In the following, we denote with A ↔ B a bijective function from set
A to set B.

Definition 12 (Behavior Assertions: Semantics). Given interface specifi-
cation Si = (Pin , Pout , t

p) ∈ SI(Σ), a healthy set of components C ⊆ C, compo-
nent c = (id , I, O) ∈ C, algebra A ∈ A(Σ), and V Aι = (ιs)s∈S ∈ IV

A . We denote

with μ b|=(δi,δo)
(A,ι) γ that μ ∈ I ∪ O satisfies BA γ ∈ ϕV

Σ(Si) for port interpretations
(PIs) δi : I ↔ Pin and δo : O ↔ Pout .

Behavior Trace Assertions. Behavior trace assertions are a means to spec-
ify a component’s behavior in terms of temporal specifications over behavior
assertions.

Definition 13 (Behavior Trace Assertions). For a family of variables V =
(Vs)s∈S, rigid (fixed for the whole execution) variables V ′ = (V ′

s )s∈S, the set of
all behavior trace assertions (BTAs) for ISSi ∈ SI(Σ) is given by Γ

(V,V ′)
Σ (Si)

and defined inductively by the equations provided in Fig. 2.

φ ∈ ϕV ∪V ′
Σ (Si) =⇒ φ ∈ Γ

(V,V ′)
Σ (Si) ,

“γ” ∈ Γ
(V,V ′)
Σ (Si) =⇒ “ © γ”, “♦γ”, “�γ” ∈ Γ

(V,V ′)
Σ (Si) ,

“γ”, “γ′” ∈ Γ
(V,V ′)
Σ (Si) =⇒ “ γ U γ′)” ∈ Γ

(V,V ′)
Σ (Si) .

Fig. 2. Inductive definition of behavior trace assertions.
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3.2 Semantics: Behavior Traces

In the following, we define what it means for a behavior trace to satisfy a corre-
sponding behavior trace assertion.

Definition 14 (Semantics BTs). Given algebra A and corresponding VAs
ι′ = (ι′s)s∈S ∈ IV ′

A for variables V ′. With (t, n) t
b|=(δi,δo)

(A,ι′) γ, defined recursively
by the equations listed in Fig. 3, we denote that BT t ∈ B(c) satisfies BA
γ ∈ Γ

(V,V ′)
Σ (Si) at time n ∈ N. A BT t ∈ B(c) satisfies BA γ ∈ Γ

(V,V ′)
Σ (Si),

denoted t
t
b|=(δi,δo)

(A,ι′) γ iff (t, 0) t
b|=(δi,δo)

(A,ι′) γ.

(t, n) t
b|=(δi,δo)

(A,ι′) “φ” ⇐⇒ ∀ι ∈ IV
A : t(n) b|=(δi,δo)

(A,ι∪ι′)“φ” [for φ ∈ ϕV
Σ(Si)] ,

(t, n) t
b|=(δi,δo)

(A,ι′) “ © γ” ⇐⇒ (t, n + 1) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “ γ′ U γ
)
” ⇐⇒ ∃n′ ≥ n : (t, n′) t

b|=(δi,δo)
(A,ι′) “γ” ∧

∀n ≤ m < n′ : (t, m) t
b|=(δi,δo)

(A,ι′) “γ′” .

Fig. 3. Recursive definition of satisfaction relation for behavior traces.

3.3 Semantics: Configuration Traces

In the following, we define what it means for a configuration trace to satisfy a
behavior assertion.

Definition 15 (Semantics CTs). Given algebra A, corresponding VAs ι′ =
(ι′s)s∈S ∈ IV ′

A for variables V ′, and behavior trace t′ ∈ B(c). With

(t, t′, n) t
k|=(c,δi,δo)

(A,ι′) γ
def⇐⇒(

∃i ≥ n : c ∈ [t(i)]1 ∧ (
Πc(t) ◦ t′, 〈c

n

# t〉) t
b|=(δi,δo)

(A,ι′) γ
)

∨ (3)(
∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1 ∧(

Πc(t) ◦ t′,#(Πc(t)) − 1 + (n − last(t, c))
) t

b|=(δi,δo)
(A,ι′) γ

)
∨ (4)(

�i : c ∈ [t(i)]1 ∧ (
t′, n

) t
b|=(δi,δo)

(A,ι′) γ
)
, (5)

we denote that CT t ∈ R(C) satisfies BA γ ∈ Γ
(V,V ′)
Σ (Si) at time n ∈ N for

a given continuation t′. Again, a CT t ∈ B(c) satisfies BA γ ∈ Γ
(V,V ′)
Σ (Si),

denoted t
t
k|=(c,δi,δo)

(A,ι′) γ iff (t, 0) t
k|=(c,δi,δo)

(A,ι′) γ.
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To satisfy a given behavior assertion γ for a component c at a certain point in
time n under a given continuation t′, a configuration trace t is required to fulfill
one of the following conditions:

– By Eq. (3): Component c is again activated (after time point n) and the
projection to c for t fulfills γ at the point in time given by the current number
of activations of c.

– By Eq. (4): Component c is activated at least once but not again in the
future and the continuation fulfills γ at the point in time resulting from the
difference of the current point in time and the last activation of c.

– By Eq. (5): Component c is never activated and the continuation fulfills γ at
point in time n.

For the sake of readability, from now on, we omit symbols for algebras and
port/variable interpretations for satisfaction relations. An algebra and corre-
sponding interpretations are, however, assumed to be fixed for each property.

The following property ensures correctness of Definition 15:

Proposition 1 (Soundness of Definition 15). A CT t ∈ R(c) satisfies BA
γ ∈ Γ

(V,V ′)
Σ (Si) for a given continuation t′ ∈ B(c) iff the corresponding projection

satisfies γ:
(t, t′) t

k|=
(c)

γ ⇐⇒ Πc(t) ◦ t′ t
b|=γ,

where s◦s′ denotes the sequence resulting from concatenating sequences s and s′.

Remember that for architectures in which a component is activated only
finitely many times, the projection to this component results in only a finite
behavior trace. This is why we actually check for a valid continuation t′ ∈ B(c).

4 A Calculus for Dynamic Architectures

Until now, t
k|= is only implicitly defined in terms of t

b|=. While this mirrors our
intuition about t

k|=, it is not very useful to reason about it. Thus, in the following
section, we provide an explicit characterization of t

k|= in terms of a calculus for
dynamic architectures. Then, we show soundness and relative completeness of
the calculus with regard to Definition 15. Using a natural deduction style, we
provide introduction and elimination rules for each temporal operator.

4.1 Introduction Rules

We provide 8 rules which can be used to introduce temporal operators in a
dynamic context.

Behavior Assertions. The first rules characterize introduction for basic behav-
ior assertions. Therefore, we distinguish between three cases: First, the following
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case in which a component is guaranteed to be eventually activated in the
future:

AssIa [
n ≤ i c ∈ [t(i)]1 �n ≤

˙
k < i : c ∈ [t(k)]1

]
....

λp ∈ I ∪ O : [t(i)]3 (c, p) b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

∃i ≥ n : c ∈ [t(i)]1

For this case, in order to show that a BA φ holds at time point n, we have to
show that φ holds at the very next point in time at which component c is active.

For the case in which a component was sometimes active, but is not activated
again in the future, we get the following rule:

AssIn1
t′ n − last(c, t)

)
b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1

In order to show that BA φ holds at a certain point in time n, we have to show
that φ holds for the continuation t′. Note that the corresponding time point is
calculated as the difference from n to the last point in time at which component
c was active in t.

Finally, we have another rule for the case in which component is never
activated:

AssIn2 t′(n) b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

�i : c ∈ [t(i)]1

For such cases, BA φ holds at a certain point in time n when φ holds for t′

at time point n.

Next. The next rule characterizes introduction for the next operator. For this
operator as well, we distinguish two cases: The first case is again the one in
which a component is guaranteed to be eventually activated in the future:

NxtIa [
n ≤ i c ∈ [t(i)]1 �n ≤

˙
k < i : c ∈ [t(k)]1

]
....

(t, t′, i + 1) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“ © γ”

∃i ≥ n : c ∈ [t(i)]1

For this case, in order to show that a BTA ©γ holds at a certain point in time
n, we have to show that it holds after the very next activation of c in t.
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For the case in which a component is not activated again in the future, we
get the following rule for the next operator:

NxtIn (t, t′, n + 1) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“ © γ”

�i ≥ n : c ∈ [t(i)]1

In this case, the dynamic interpretation of the operator resembles its traditional
one. Thus, it suffices to show that BTA γ holds for the next point in time n+1,
in order to conclude that ©γ holds at n.

Eventually. Introduction for the eventually operator can be described with a
single rule:

EvtI 〈c n∨ t〉 ≤ n′ (t, t′, n′) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“♦γ”

It states that in order to show that ♦γ holds for a component c at some point
in time n, we only have to show that γ holds at some time point later than the
last activation (before n) of c.

Globally. Similarly, we provide a single introduction rule for the globally
operator:

GlobI [
n ≤ n′]

....
(t, t′, n′) t

k|=
(c)

“γ”

(t, t′, n) t
k|=

(c)
“�γ”

It allows us to conclude �γ for time point n whenever we can show that γ holds
for an arbitrary n′ ≥ n.

Until. Finally, we provide a single rule for introducing the until operator:

UntilI

〈cn∨t〉≤n′ (t,t′,n′) t
k|=

(c)
“γ”

[
n≤n′′ n′′≤i′′

c∈[t(i′′)]1 i′′<n′

]
....

(t,t′,n′′) t
k|=(c,δi,δo)

(A,ι) “γ′”

[
n≤n′′ n′′<n′

�i′′≥n′′ : c∈[t(i′′)]1

]
....

(t,t′,n′′) t
k|=(c,δi,δo)

(A,ι) “γ′”

(t,t′,n) t
k|=

(c)
“γ′ U γ”
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In order to show that γ′ U γ holds for a component c at some point in time
n, the rule requires to show that γ holds at some point n′ later than the last
activation (before n) of c and that for every time point up to the last activation
of component c before n′ (or the last time point n′′ < n′ for the case component
c is not activated anymore), γ′ holds.

4.2 Elimination Rules

In contrast to introduction, we provide 10 rules for the elimination of the different
temporal operators.

Behavior Assertions. Again, we first provide rules characterizing elimination
for basic behavior assertions. Similar to introduction, we distinguish between
three cases: The first case describes elimination for situations in which a com-
ponent is guaranteed to be activated sometimes in the future:

AssEa
(t, t′,n) t

k|=
(c)

“φ” n≤ i c∈ [t(i)]1 �n≤
˙
k<i : c∈ [t(k)]1

λp∈I ∪ O : [t(i)]3 (c,p) b|=“φ”
∃i≥n : c∈ [t(i)]1

The rule for such cases allows us to eliminate a basic BA φ and conclude that φ
holds at the very next point in time where component c is active.

The next rule deals with the case in which a component was sometimes active,
but is not activated again in the future.

AssEn1 (t, t′, n) t
k|=

(c)
“φ”

t′ n − last(c, t)
)

b|=“φ”
∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1

The rule for this case allows us to conclude that a BA φ holds at a certain point
in time for continuation t′. Again, the corresponding time point is calculated as
the difference of n and the last time component c was activated.

Finally, we have another rule for the case in which component is never
activated:

AssEn2 (t, t′, n) t
k|=

(c)
“φ”

t′(n) b|=“φ” �i : c ∈ [t(i)]1

For such cases, we may eliminate φ and conclude that φ holds at n for con-
tinuation t′.
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Next. Similar to introduction, we provide two rules to eliminate a next operator:
The first rule deals again with the case in which a component is guaranteed to
be activated sometimes in the future:

NxtEa
(t,t′,n) t

k|=
(c)

“©γ” n≤i c∈[t(i)]1 �n≤
˙
k<i : c∈[t(k)]1

(t,t′,i+1) t
k|=

(c)
“γ”

∃i≥n : c∈[t(i)]1

Similar to the corresponding introduction rule, this rule allows us to conclude
BTA γ for a certain point in time i + 1, whenever ©γ holds at an earlier point
in time n and i is the very next activation of component c.

If a component is not activated again, we get the following rule for eliminating
a next operator:

NxtEn (t, t′, n) t
k|=

(c)
“ © γ”

(t, t′, n + 1) t
k|=

(c)
“γ”

�i ≥ n : c ∈ [t(i)]1

Again, the rule resembles the traditional interpretation of next, which allows us
to conclude that BTA γ holds for a certain point in time n + 1, whenever ©γ
holds at n.

Eventually. We provide two rules to eliminate an eventually operator:

EvtEa (t, t′, n) t
k|=

(c)
“♦γ”

∃n′ ≥ 〈c n∨ t〉 : (t, t′, n′) t
k|=

(c)
“γ”

∃i ≥ n : c ∈ [t(i)]1

When eliminating a ♦γ for a component c at time point n, the rule allows us
to conclude that BTA γ holds sometimes after the last activation (before n) of
component c.

A similar rule applies for the case in which c is not activated again (∃n′ ≥
n : (t, t′, n′) t

k|=
(c)

“γ′′). For this case (denoted EvtEn), however, we can conclude
that the corresponding point in time n′ is actually greater than n instead of
〈c n∨ t〉.

Globally. Similar to introduction, we have a single rule for the elimination of
a globally operator:

GlobE
(t, t′, n) t

k|=
(c)

“�γ” n′ ≥ 〈c n∨ t〉
(t, t′, n′) t

k|=
(c)

“γ”
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The rule allows us to eliminate �γ for component c at time point n and conclude
that γ holds at an arbitrary point later than the last activation of c before n.

Until. Finally, we provide two rules to eliminate until operators:

UntilEa (t, t′, n) t
k|=

(c)
“γ′ U γ”

∃
˙
n′ ≥ 〈c

n

# t〉 : (t, t′, n′) t
k|=

(c)
“γ” ∧(

∀
˙

n′′ ≥ 〈c n∨ t〉 : ∃n′′ ≤
˙
i′ < n′ : c ∈ [t(i′)]1

)
∨ (�i ≥ n′′ : c ∈ [t(i)]1 ∧ n′′ < n′)

=⇒ (t, t′, n′′) t
k|=

(c)
“γ′”

)

∃i ≥ n : c ∈ [t(i)]1

Assuming that γ′ U γ holds at some time point n, the rule allows us to conclude
that there exists a time point in the future n′, such that BTA γ holds and that
up to the last activation of component c earlier to n′ (or the last time point
n′′ < n′ for the case component c is not activated anymore), BTA γ′ holds.

Again, a similar rule applies for the case in which c is not activated again
(∃n′ ≥ n : (t, t′, n′) t

k|=
(c)

“γ′′). For this case (denoted UntilEn), however, we can
conclude that the corresponding point in time n′ is actually greater than n

instead of 〈c n∨ t〉.

4.3 Soundness and Completeness

In the following, we show soundness and relative completeness of the calculus.
Thereby, we denote with �DA

(
(t, n) t

k|=
(c)

γ
)

that it is possible to derive (t, n) t
k|=

(c)
γ

with the rules introduced in Sect. 4. With |=DA

(
(t, n) t

k|=
(c)

γ
)
, on the other hand,

we denote that configuration trace t indeed satisfies BTA γ at time point n.

Theorem 1 (Soundness). The calculus presented in Sects. 4.1 and 4.2 is
sound:

Proof (Sketch). For each rule, we assume its premises and prove its conclusions
from Definitions 14 and 15.

Theorem 2 (Completeness). The calculus presented in Sects. 4.1 and 4.2 is
complete (relative to the completeness of b|=):

�DA

(
(t, n) t

k|=
(c)

“γ”
)

⇐= |=DA

(
(t, n) t

k|=
(c)

“γ”
)
.

Proof (Sketch). The validity of each BTA can be derived by applying the corre-
sponding introduction rules.
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5 Verifying Properties of Dynamic Architectures

In the following, we demonstrate the practical usability of the calculus presented
in Sect. 4. Therefore, we specify a dynamic version of the blackboard architecture
pattern and apply our calculus to verify a simple property of such architectures.

5.1 Dynamic Blackboard Architectures: Specification

In the following, we introduce a simplified version of the blackboard pattern
as described, for example, by Shaw and Garlan [18], Buschmann et al. [5], and
Taylor et al. [19]. Therefore, we first specify the involved datatypes, the compo-
nents interfaces, and constraints regarding the activation/deactivation of compo-
nents as well as connections between their ports. Then we provide a specification
of component behavior in terms of BTAs.

Datatypes. Blackboard architectures work with problems and solutions for
them. Figure 4a provides the corresponding datatype specification (DTS) in
terms of an algebraic specification [21]. We denote by PROB the set of all problems
and by SOL the set of all solutions. To relate a problem with a corresponding
solution, we assume the existence of a function s : PROB → SOL which assigns the
correct solution to each problem.

Interfaces. In our example, a blackboard architecture consists of a blackboard
(BB) component and a knowledgesource (KS) component. The configuration dia-
gram (CD) [14] in Fig. 4c shows the specification of the corresponding interfaces.
In our simple example, the BB component merely forwards messages to and from
the KS component. Thus, it has an input port ip which receives a problem and
an output port os which returns the corresponding solution. Moreover, it has an
output port pp to forward a problem to a KS and a corresponding input port ps

to receive its solution. A KS, in our example, gets a problem on its input port
pp and provides a corresponding solution on its output port ps.

DTSpec ProbSol

sort PROB, SOL

s : PROB → SOL

(a) Datatype Specification.

PSpec BPort uses ProbSol

ip, pp : PROB
os, ps : SOL

(b) Port Specification.

Diagram Blackboard
based on BPort uses ProbSol

ks : KS

pp ps

bb : BB

pp

osip

ps

(c) Configuration Diagram.

Fig. 4. Specification of the blackboard pattern.
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Spec Blackboard Activation uses Blackboard

�
(
bb.pp �= ∅ =⇒ ‖ks‖

)
(6)

�
(
‖ks‖ =⇒ � ♦‖ks‖))

(7)

� ‖bb‖)
(8)

Fig. 5. Specification of activation constraints for blackboard architectures.

Activation Constraints. Activation constraints restrict the activation or deac-
tivation of components. They are introduced by CDs and refined by activation
assertions (AAs).

In our example, the “bb : BB” and “ks : KS” annotations for a BB and KS
interface, respectively, denote the condition that there are unique BB and KS
components denoted bb and ks, respectively. Moreover, we require three more
activation constraints formulated as AAs in Fig. 5:

– By Eq. (6) we require ks to be active whenever bb posts a problem.
– By Eq. (7) we require a fairness condition for the activation of an already

activated ks.
– By Eq. (8) we require that bb is always active.

Connection Constraints. Connection constraints restrict the connection
between components. They are introduced by CDs and refined by connection
assertions CAs.

In our example, connection constraints are also specified graphically by the
CD in Fig. 4c. The solid connections between the ports denote a constraint
requiring that the ports of a KS component are connected with the corresponding
ports of a BB component as depicted, whenever both components are active.

Behavior Specifications. Behavior is specified in terms of BTAs as introduced
in Sect. 3. Note that we do not consider activation and deactivation of a compo-
nent when specifying its behavior. Rather, this is done in a separate specification
and our calculus can then be used to reason about such behavior, in a dynamic
environment as well.

In Fig. 6, we specify two simple properties for BB components. They merely
require messages from their input ports to be forwarded to the corresponding
output ports. Figure 7 provides a specification of the KS’s behavior. The property
requires that whenever a problem is received it is guaranteed to be eventually
solved.
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Spec BB Bhv uses Blackboard

var p, p′ : PROB
s : SOL
P : PROB SET

�
(
p ∈ ip =⇒ p ∈ pp

)
(9)

�
(
p ∈ ps =⇒ p ∈ os

)
(10)

Fig. 6. Specification of behavior for
blackboard components.

Spec KS Bhv uses Blackboard

var p, q : PROB
P : PROB SET

�
(
p ∈ pp =⇒ ♦ s(p) ∈ ps

)
(11)

Fig. 7. Specification of behavior for
knowledgesource components.

5.2 Dynamic Blackboard Architectures: Verification

In the following, we demonstrate how the calculus proposed in Sect. 4 can be
used to verify a simple property of blackboard architectures as specified above.

A simple property of a blackboard architecture as specified above is that
a problem is always solved. Expressed in terms of a behavior assertion over a
blackboard interface, it looks as follows:

�
(
p ∈ ip =⇒ ♦(

s(p) ∈ os

))
. (12)

It actually resembles the behavior property of KS components. Its proof is split
into 4 parts.

First, we apply introduction for the globally and eventually operators to
our goal. Thereby we use Hilbert’s ε-operator to denote an arbitrary but fixed
element satisfying a certain property. Moreover, we use Ass to abbreviate the
assumption (t, t′, n) t

k|=
(bb)

p ∈ ip for later reference.

...
(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t

k|=
(bb)

(s(p) ∈ os) 〈bb n∨ t〉 ≤ εn′. n′ ≥ 〈bb n∨ t〉)
EvtI

(t, t′, n) t
k|=
(bb)

♦ s(p) ∈ os
)

[Ass] ImpI
(t, t′, n) t

k|=
(bb)

(
p ∈ ip =⇒ ♦ s(p) ∈ os

))

[n ≥ 0] GlobI
(t, t′, 0) t

k|=
(bb)

�
(
p ∈ ip =⇒ ♦ s(p) ∈ os

))

We are now left with the goal of showing that the solution to the original
problem p is provided by the blackboard at port os at some point in time later
than the last activation of the blackboard. To discharge the proof obligation,
we apply elimination for the globally operator and the behavior specification of
blackboards. In the following, we abbreviate εn′. n′ ≥ 〈bb n∨ t〉 with n∗.
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n∗ ≥ 〈c 0∨ t〉
Eq. (10)

(t, t′, 0) t
k|=
(bb)

� s(p) ∈ ps =⇒ s(p) ∈ os
)

GlobE
(t, t′, n∗) t

k|=
(bb)

s(p) ∈ ps =⇒ s(p) ∈ os

...
(t, t′, n∗) t

k|=
(bb)

(s(p) ∈ ps)
ImpE

(t, t′, n∗) t
k|=
(bb)

(s(p) ∈ os)

We are left with the goal of showing that the solution for p is indeed received
by the blackboard. To this end, we apply connection constraints from the CD
as well as elimination rules for eventually and globally.

...
(t, t′, n) t

k|=
(ks)

p ∈ pp

Eq. (11)
(t, t′, 0) t

k|=
(ks)

�
(
p ∈ pp =⇒ ♦ s(p) ∈ ps

))
n ≥ 〈c 0∨ t〉

GlobE
(t, t′, n) t

k|=
(ks)

(
p ∈ pp =⇒ ♦ s(p) ∈ ps

))

ImpE
(t, t′, n) t

k|=
(ks)

♦(s(p) ∈ ps)
EvtEa, Eq. (7)

(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t
k|=
(ks)

(s(p) ∈ ps)
Fig. 4c, Eq. (6)

(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t
k|=
(bb)

(s(p) ∈ ps)

Finally it remains to show that the knowledgesource indeed receives the origi-
nal problem. To discharge this obligation, we simply again apply the constraints
induced by the CD as well as the behavioral specification of the blackboard
component.

Ass
(t, t′, n) t

k|=
(bb)

p ∈ ip

Eq. (9)
(t, t′, 0) t

k|=
(bb)

�
(
p ∈ ip =⇒ p ∈ pp

))
n ≥ 〈c 0∨ t〉

GlobE
(t, t′, n) t

k|=
(bb)

p ∈ ip =⇒ p ∈ pp

ImpE
(t, t′, n) t

k|=
(bb)

p ∈ pp

Fig. 4c, Eq. (8)
(t, t′, n) t

k|=
(ks)

p ∈ pp

Note that one of the premises is closed by reference to the assumption Ass
obtained at the beginning of the proof.

6 Related Work

Related work can be found in two different areas: work on the specification of
dynamic architectures in general and calculi about dynamic systems specifically.

Over the last years, some approaches to the specification of dynamic architec-
tures in general have emerged. One related approach comes from Le Métayer [12],
who applies graph theory to specify architectural evolution. Similar to our work,
the author proposed to model dynamic architectures as a sequence of graphs
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and to employ graph grammars as a technique to specify architectural evolution.
A similar approach comes from Hirsch and Montanari [11], who employ hyper-
graphs as a formal model to represent styles and their reconfigurations. Another,
closely related approach is the one used by Wermlinger et al. [20]. The authors
combine behavior and structure to model dynamic reconfigurations. Recently,
categorical approaches to dynamic architecture reconfiguration have appeared,
such as the work of Castro et al. [7] and Fiadeiro and Lopes [9]. While they all
introduce models for dynamic architectures similar to ours, they do not provide
a calculus to reason about such architectures. Thus, we complement their work
by providing rules to reason about such architectures.

A second area of work concerns approaches to reason about dynamic systems
in general: Pioneering work in this area goes back to Milner in his well-known
work on the π-calculus [17]. Here, the author provides a set of rules to reason
about reconfigurable systems in general. The main idea behind the underlying
model is that channels can be passed as messages between processes, which
can then exchange messages over these channels. Another foundational model
of dynamic systems which provides rules to reason about such systems is the
Chemical Abstract Machine (CHAM) [1]. It is built upon the chemical metaphor
and models a system as multi-set transformers. Thereby it also provides a set of
general laws to reason about such systems. Finally, the ambient calculus [6] can
be seen as an advancement of the CHAM. In contrast to membranes in CHAM,
ambients provide stronger protection and provide mobility for sub-solutions as
well. While all these approaches provide rules to reason about dynamic systems
in general, their underlying model of dynamic systems is different from our model
of dynamic architectures. Thus, we actually complement their work by providing
rules to reason about different types of systems.

7 Conclusion

In this paper, we introduce a framework to reason about the behavior of compo-
nents deployed to a dynamic environment. The major contributions of the paper
can be summarized as follows: (i) We extend our model of dynamic architectures
introduced in [15] with the notion of behavior traces to model behavior of single
components. Thereby we also characterize an operator to extract the behavior
of single components out of a given configuration trace. (ii) We introduce the
notion of behavior trace assertions to specify behavior of single components and
provide its formal semantics in terms of behavior traces. (iii) We provide a cal-
culus to reason about the behavior of components in dynamic architectures. It is
in a natural deduction style and provides introduction and elimination rules for
each operator of behavior trace assertions. (iv) We show soundness and relative
completeness of the calculus.

Our results can be used to support the verification of dynamic architec-
tures. This was demonstrated by applying our calculus to verify a property for
a dynamic version of the blackboard architecture pattern. Our overall research
is directed towards a unified framework for the specification and verification of



98 D. Marmsoler

patterns for dynamic architectures. By introducing the calculus, we provide an
important step towards this overall goal. However, future work is still required
in three major directions: (i) To better support verification, we are aiming at
integrating the calculus in Isabelle/HOL. Very much in the spirit of LCF [10],
we are currently working on a mechanized proof of the rules of the calculus from
first principles. (ii) Moreover, the calculus should be extended to better inte-
grate port connections. (iii) We are currently looking for ways to leverage the
hierarchical nature of patterns for their verification. Thus, we are interested in
theoretical results of how results for one pattern can be reused for the verification
of other, related patterns.
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