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Abstract. We explore the relationship between bisimulations and logic.
The link between them is formed by logical characterisations, which
have been given for well-known bisimulation equivalences and preorders.
Parameterised bisimulations allow us to incorporate notions of abstrac-
tion or efficiency into behavioural equivalences. This generalised frame-
work of parameterised bisimulations is used to develop a parameterised
logical characterisation, thereby, unifying the existing logical character-
isations as well as paving the way for characterisation of novel bisimula-
tions. Methods for generating distinguishing formulae and characteristic
formulae in the parameterised logic are also discussed.
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1 Introduction

Bisimulation checking and model checking are among the two major approaches
to the verification of concurrent processes. Both model behaviour using labelled
transition systems but differ in specification. Bisimulation checking expresses
specification also as a labelled transition system, whereas model checking
expresses specification as a collection of logical formulas. Both have their advan-
tages. Model checking allows for partial specifications and its refinements by
adding more properties. Bisimulation checking gives us modularity as it is often
closed under most of the process constructors [9]. Therefore, both approaches
have their own applications.

But there is an interesting connection between them - formalized as logi-
cal characterisations - one of the most important being Hennessy-Milner logic
(HML) [16], which gives a modal logic characterisation for strong bisimulation.
Any two processes are strongly bisimilar if and only if they satisfy the same
set of HML formulae1. Consequently, for any two non-bisimilar processes, there
must exist a distinguishing formula which is satisfied by exactly one of the given
processes, and can be very useful for debugging.

1 Processes were constrained to be image-finite for finite logical characterisation.
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Sometimes, it is possible to construct a single formula capable of distinguish-
ing a process from every other non-bisimilar process. Known as characteristic
formula, it facilitates the reduction of bisimulation checking to model checking,
which may yield efficient algorithms for deciding behavioural preorders [10]. The
existence of a characteristic formula is therefore, central to the study of logical
characterisations [14].

The importance of logical characterisations can be gauged from the work
done towards showing their existence for many other bisimulation equivalences
besides strong bisimulation, e.g., timed bisimulations [19], probabilistic bisimu-
lations and preorders such as prebisimulation preorder [27], efficiency preorders
[17], contravariant simulation [1], etc. In this paper, we develop a logical charac-
terisation of parameterised bisimulations. As shown in [4], various bisimulation
relations can be expressed as instances of parameterised bisimulation. By work-
ing in a general framework of parameterised bisimulations, we achieve two goals.
Firstly, we unify the results on obtaining the logical characterisations for different
bisimulation relations. Secondly, this gives us a systematic way of obtaining a log-
ical characterisation of any novel bisimulation relation, which may be expressed
as an instance of parameterised bisimulation. As one would expect, the logical
characterisation of the parameterised bisimulations should also depend on the
same parameters. Since our logic generalises HML, we refer to it as parameterised
Hennessy-Milner logic.

The contributions of this paper may be summarized as follows:

– We propose parameterised HML, in Sect. 3, and show that it is a logical
characterisation of all bisimulation equivalences and preorders which can be
expressed in the framework of parameterised bisimulations.

– We study the conditions required to ensure that the distinguishing formula
is always finite. We also give procedures for model checking and generating
distinguishing formulae.

– We extend our logical characterisation with fixed point operators, in Sect. 4,
which allows us to derive the characteristic formula for any finite-state
process, and possibly some infinite-state systems, using suitable abstractions.

2 Background

To model process behaviours, both bisimulation and model checking use labelled
transition systems, which is one of the most widely used models of computation.

Definition 1. A labelled transition system (LTS) L is a triple 〈P,Act,−→〉,
where P is a set of process states or processes, Act is a set of actions and −→
⊆ P ×Act×P is the transition relation. We use p

a−→ q to denote (p, a, q) ∈−→.

2.1 Parameterised Bisimulations

The origin of bisimulations can be traced back to logic [24], where it serves
an important role in establishing modal logic as a fragment of first order logic
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[30]. It was first proposed in [7], as relations which preserve satisfiability of modal
logic formulas. Its discovery in computer science and fixed point characterisation
is attributed to [23] and is central to Milner’s theory of CCS [21]. Being the
finest behavioural equivalence [31], its importance in the theory of verification
is undeniable.

One can think of interesting behavioural relations, which may relate one
process with another behaviourally equivalent but more efficient process. Effi-
ciency need not be only in terms of time, it may also refer to other quantitative
measures like probability, energy, etc. One approach to defining these relations is
by incorporating efficiency into bisimulation, which is the idea behind efficiency
preorder [5] or timed prebisimulation [15]. The key idea behind them is to allow
an action to be matched with a functionally equivalent but more efficient one.
The same approach is used to incorporate abstraction into bisimulation, e.g.
weak bisimulation, where an action can be matched with another non-identical
but equivalent under the given abstraction. These bisimulations can be unified
under the general framework of parameterised bisimulations, which allow the
relations over actions to be parameters in the definition of bisimulation. The
parameter relations incorporates the desired notion of efficiency or abstraction.

Definition 2 [4]. Let P be the set of processes and ρ and σ be binary relations
on Act. A binary relation R ⊆ P ×P is a (ρ, σ)-bisimulation if p R q implies the
following conditions for all a, b ∈ Act.

p
a−→ p′ ⇒ ∃b, q′[a ρ b ∧ q

b−→ q′ ∧ p′ R q′] (1)

q
b−→ q′ ⇒ ∃a, p′[a σ b ∧ p

a−→ p′ ∧ p′ R q′] (2)

The largest (ρ, σ)-bisimulation, denoted �(ρ,σ), is called (ρ, σ)-bisimilarity.

This generalization captures a number of useful bisimulations. Strong bisim-
ulation is obtained by simply setting ρ and σ as identity relation over actions,
IdAct. Other interesting relations are defined by exploiting semantic relation-
ships between actions. For example, in Timed LTS, a special class of LTS
with labels from the set Act ∪ R≥0, one may differ in matching delay actions
d ∈ R≥0. We obtain time-abstracted bisimulation [20] by not distinguishing
between delay quantities. It is an instance of a parameterised bisimulation where
ρ = σ = IdAct ∪ (R≥0 × R≥0). We can also capture delay based efficiency, to
define timed prebisimulation [15], where a delay d can be matched by a faster
delay d′ ≤ d, by setting ρ = σ = IdAct∪ ≤R.

Another class of interesting relations emerge when we model internal actions,
in the LTS, as transitions labeled with τ . These τ -actions cannot be observed,
and the behavioural equivalence must ignore them. This behavioural equivalence
is captured by weak bisimulation [16]. One may also view τ as a measure of
internal activity, to define efficiency preorders [5]. These relations can also be
expressed as an instance of parameterised bisimulations, which is described in
Sect. 5.
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We will obtain the logical characterisations for these bisimilarities, by devel-
oping results for parameterised bisimilarities. However, we will limit ourselves to
parameterised bisimilarities which become preorders (or equivalences), by plac-
ing suitable restrictions on the underlying relations over actions.

Fixed Point Characterisation: The fixed point characterisation of (ρ, σ)-
bisimilarity, over the complete lattice of binary relations on P under the ⊆
ordering serves an important role as the starting point for the derivation of
characteristic formulae.

Lemma 1. The relation �(ρ,σ) over processes P may be expressed as the greatest
fixed point of the monotonic function F(ρ,σ) : 2P×P → 2P×P , defined as

F(ρ,σ)(R) = {(p, q) | [∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[a ρ b ∧ q

b−→ q′ ∧ p′ R q′]]∧
[∀b, q′ : q

b−→ q′ ⇒ ∃a, p′[a σ b ∧ p
a−→ p′ ∧ p′ R q′]]}

One approach to computing the greatest fixed point in a lattice, is to take
the top element (the universal relation in our case), and keep on applying the
function until it reaches the fixed point. Let U denote the universal relation,
then the ith approximant of (ρ, σ)-bisimilarity is defined as �i

(ρ,σ)= F i
(ρ,σ)(U).

In general, the intersection of all the approximants, �ω
(ρ,σ)=

⋂
i∈N

�i
(ρ,σ),

will contain the greatest fixed point, �(ρ,σ), and �ω
(ρ,σ)=�(ρ,σ) when F i

(ρ,σ) is
co-continuous [13].

Lemma 2 [4]. For any i ∈ N, the i-th approximant, �i
(ρ,σ), as well as �ω

(ρ,σ)

and �(ρ,σ) are preorders iff both ρ and σ are preorders. Moreover, they become
an equivalence iff we also have ρ = σ−1.

The proof for (ρ, σ)-bisimilarity, given in [4], can be generalised for approxi-
mants using induction.

Abstracted LTS: The notion of an abstracted LTS allows us to extend our
results to some infinite-state systems.

Definition 3. Given a set S ⊆ P and a preorder ≤⊆ P ×P, we define an initial
set Si and a terminal set St as

Si = {s ∈ S|  ∃s′[s′ ∈ S ∧ s′ < s]} St = {s ∈ S|  ∃s′[s′ ∈ S ∧ s < s′]}
where s < s′ iff s ≤ s′ and s = s′. The set S is closed if for every s ∈ S, there
exists an s′ ∈ Si and s′′ ∈ St such that s′ ≤ s ≤ s′′.

Let p
a−→ p1 and p

b−→ p2 be two transitions such that a ρ b and p1 �(ρ,σ) p2.

Then matching the transition p
b−→ p2 with q

c−→ q′, where b ρ c and p2 �(ρ,σ) q′

holds, also matches p
a−→ p1 due to transitivity of ρ and �(ρ,σ). Effectively,

satisfying the condition (1) in Definition 2 only requires matching transitions to
the terminal states under �(ρ,σ) ordering, {p′ | p

b−→ p′ ∧a ρ b }t, provided it is a
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closed set. Similarly for satisfying the condition (2), i.e. matching a transition of
q, it suffices to only look at transitions to the initial states, {p′ | p

a−→ p′∧a σ b}i.
Therefore, we define an abstracted LTS which retains only the relevant states.

Definition 4. Let L = 〈P,Act,−→〉 be an LTS. For any p ∈ P and a ∈ Act,
let aρ-Succ(p) = {p′ | p

b−→ p′ ∧ a ρ b}, σa-Succ(p) = {p′ | p
b−→ p′ ∧ b σ a} and

TI(p) =
⋃

a∈Act[(aρ-Succ(p))t ∪ (σa-Succ(p))i]. Then an LTS abstracted with
respect to process p ∈ P is defined as L†

p = 〈Reach(p),Act,−→†
p〉 where

Reach(p) = {p} ∪
⋃

p′∈TI(p)

Reach(p′)

the terminal and initial sets are created with respect to �(ρ,σ) ordering and the
transition relation −→†

p is the restriction of −→ to Reach(p).

Since L and L†
p have common elements, we will subscript the process state

with the LTS when there is ambiguity. The following lemma formalizes this
intuitive property of preservation of bisimilarity by the abstracted LTS.

Lemma 3. Let L be an LTS such that the sets {p′ | ∃b[p b−→ p′ ∧ a ρ b]} and
{p′ | ∃[p b−→ p′ ∧ b σ a]} are always closed, for any state p and label a. Then, for
any state p, we have pL �(ρ,σ) pL†

p
as well as pL†

p
�(ρ,σ) pL.

Proof. A state q is in L is also in L†
p iff qL ∈ Reach(pL). Let R = {(qL, q′

L†
p
) |

qL �(ρ,σ) q′
L ∧ q′

L ∈ Reach(pL)}.

Claim. The relation R is a (ρ, σ)-bisimulation.
Consider an arbitrary (qL, q′

L†
p
) ∈ R. Since qL �(ρ,σ) q′

L, if qL
a−→ rL, then

there must be some b, r′ such that q′
L

b−→ r′
L with a ρ b and rL �(ρ,σ) r′

L. Since

the set {s | q
b−→ s ∧ a ρ b} is closed, there must be some r′′

L ∈ {s | q
b−→

s ∧ a ρ b}t such that r′
L �(ρ,σ) r′′

L. Since q′
L ∈ Reach(pL), by recursive definition

of Reach(pL), we will also have r′′
L ∈ Reach(pL). Hence, by definition of R, we

will have (r′
Lp

, r′′
L†

p
) ∈ R.

Conversely, for any q′
L†

p

b−→ r′
L†

p
, since L†

p can be embedded into L, we will

also have q′
L

b−→ r′
L. By definition of R, qL �(ρ,σ) q′

L, hence there must be some
a, r such that qL

a−→ rL with a σ b and rL �(ρ,σ) r′
L. Clearly, r′

L ∈ Reach(pL),
since it is in L†

p, and hence (rLp
, r′

L†
p
) ∈ R.

By a symmetric argument, we can show that the relation R′ = {(q′
L†

p
, qL) |

q′
L �(ρ,σ) qL ∧ q′

L ∈ Reach(pL)} is also a (ρ, σ)-bisimulation. Since pL ∈
Reach(pL) and pL �(ρ,σ) pL, we will have (rLp

, pL†
p
) ∈ R and (pL†

p
, pLp

) ∈ R′.

An abstracted LTS may help in reducing an infinite-state system to a finite
one. In some cases, it can be obtained without computing the bisimilarity rela-
tion. An example would be Timed Prebisimulation in Timed Automata [26].
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3 Parameterised Hennessy-Milner Logic

Logical characterisation gives an effective syntax for describing distinguishing
behaviour, which differentiates the implementation from the specification with
respect to the behavioural preorder, as the distinguishing formula. For strong
bisimilarity, Hennessy-Milner Logic (HML) with the possibility modality 〈a〉
and the necessity modality [a], for every observation a ∈ Act, suffice. But when
we have a more general notion of functional equivalence, same must also be
incorporated in our modalities. For that, we look closely at how these modalities
describe distinguishing behaviour.

Suppose distinguishing behaviour arises because the implementation can give
an observation a, leading to behaviour described by some formula ϕ. Since it is
not allowed by the specification, there will be no observation b, such that a ρ b,
leading to a state satisfying ϕ. We can describe this using the modality 〈a〉ρ.

Conversely, distinguishing behaviour may arise as the specification has an
observation a, leading to behaviour described by some formula ϕ, but there
is no functionally equivalent observation in the implementation leading to the
matching behaviour. That is, for every b, such that b σ a, the implementation
does not yield the behaviour ϕ. This can be described using the modality [a]σ

−1
.

Hence, we propose the following as logical characterisation,

Definition 5. The syntax of the logic L(ρ,σ) is given by the following BNF

ϕ := � | ⊥ | 〈a〉ρ
ϕ | [a]σ

−1
ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where a ∈ Act. The semantics of ϕ ∈ L(ρ,σ) is inductively defined as

‖�‖P = P ‖ϕ1 ∨ ϕ2‖P = ‖ϕ1‖P ∪ ‖ϕ2‖P

‖⊥‖P = ∅ ‖ϕ1 ∧ ϕ2‖P = ‖ϕ1‖P ∩ ‖ϕ2‖P

‖〈a〉ρ
ϕ‖P = {p | ∃b, p′[aρb ∧ p

b−→ p′ ∧ p′ ∈ ‖ϕ‖P ]}
‖[a]σ

−1
ϕ‖P = {p | ∀b, p′[bσa ∧ p

b−→ p′ ⇒ p′ ∈ ‖ϕ‖P ]}
These definitions can be seen as a natural generalization of those given for

HML and observational HML. A process p satisfies a formula ϕ ∈ L(ρ,σ), denoted
p � ϕ, iff p ∈ ‖ϕ‖P . In general, this logic is not closed under complementation.
However, when ρ = σ−1, the two operators 〈 〉ρ and [ ]σ

−1
will become dual, mak-

ing it a modal logic. The satisfiability relation can be used to generate a preorder
relation on processes, which brings us to the notion of logical characterisation.

Definition 6. A logic L characterises a preorder �L over P if for any p, q ∈ P,
p �L q iff ∀ϕ ∈ L[p � ϕ ⇒ q � ϕ].

The following lemma justifies L(ρ,σ) by showing its invariance under (ρ, σ)-
bisimilarity.

Lemma 4. If ρ, σ are transitive, then for any processes p, q such that p �(ρ,σ) q,
we have p �L(ρ,σ) q.
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Proof (By structural induction). Conjunction and disjunction being trivial cases,
we only sketch the proofs for modal operators. Suppose we are given processes
p, q such that p �(ρ,σ) q and p � ϕ holds.

– ϕ = 〈a〉ρ
ϕ′: There must exist an action b and state p′, such that p

b−→ p′,
aρb, and p′ � ϕ′. But since p �(ρ,σ) q, we must have some action c and state
q′, such that q

c−→ q′, bρc, and p′ �(ρ,σ) q′. By the induction hypothesis, we
will have q′ � ϕ′. Also since ρ is transitive, we have aρc. Hence q � 〈a〉ρ

ϕ′.
– ϕ = [a]σ

−1
ϕ′: Consider any transition q

b−→ q′, such that bσa holds. Since
p �(ρ,σ) q, there must exist an action c such that p

c−→ p′, cσb, and
p′ �(ρ,σ) q′. By transitivity of σ, we must have cσa. If p′ � ϕ′, by the induc-
tion hypothesis, we must have q′ � ϕ′. This holds for any b such that bσa,
therefore, q � [a]σ

−1
ϕ′.

The other direction, that is, if p �L(ρ,σ) q then p �(ρ,σ) q, requires additional
constraints, one of them being image-finiteness.

3.1 Image-Finiteness

Definition 7. An LTS L = 〈P,Act,−→〉 is (ρ, σ)-image-finite iff for any p ∈ P
and a ∈ Act, the sets, {q | p

b−→ q ∧ aρb } and {q | p
b−→ q ∧ bσa}, are finite.

An LTS L is image-finite upto (ρ, σ)-bisimilarity if L†
p is (ρ, σ)-image-finite for

every p ∈ P.

Image-finiteness enables the decidability of bisimulation by making the bisim-
ulation function co-continuous, which in turn guarantees a finite distinguishing
behaviour between non-bisimilar processes.

Theorem 1. Given an LTS L, if for every p ∈ P, the sets {p′|p b−→ p′ ∧ aρb}
and {p′|aσb ∧ p

a−→ p′} are closed and L†
p is (ρ, σ)-image-finite, then �ω

(ρ,σ)⊆
F(ρ,σ)(�ω

(ρ,σ)), and hence �ω
(ρ,σ)= �(ρ,σ).

Proof. Let p �ω
(ρ,σ) q. Then for any a, p′ such that p

a−→ p′, the set Qi =

{q′|q b−→ q′ ∧ aρb ∧ p′ �i
(ρ,σ) q′} is non-empty for every i. Since �i

(ρ,σ)⊆ �j
(ρ,σ),

for all i ≥ j, we would have Qi ⊆ Qj , which gives us a decreasing sequence of

sets. If some q′ is common to every Qi, then q
b−→ q′ ∧ aρb ∧ p′ �ω

(ρ,σ) q′ will
hold.

We can also show that Qt
i ⊆ Qt

j , for all i ≥ j. Suppose not, i.e., Qt
i ⊆ Qt

j for
some i, j with i ≥ j. Then there must exist some r ∈ Qt

i such that r ∈ Qt
j . Now

we will also have r ∈ Qi, and hence r ∈ Qj , since Qi ⊆ Qj . But since r is not
in Qt

j , there must exist some r′ ∈ Qt
j such that r �(ρ,σ) r′ holds. But this would

mean that r′ must also be in Qi since �(ρ,σ)⊆ �i
(ρ,σ), and hence in Qt

i in place
of r by transitivity of �i

(ρ,σ), giving us a contradiction.
By assumption, Q0 is a closed set, and hence Qt

0 is non-empty. In fact, we can
show that for every i ≥ 0, Qi is a closed set, making Qt

i non-empty. Consider
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any r ∈ Qi, then r is also in Q0, and hence there is some r′ ∈ Qt
0 such that

r �(ρ,σ) r′. But since �(ρ,σ)⊆ �i
(ρ,σ) and �i

(ρ,σ) is transitive, r′ will also be in
Qi and hence in Qt

i.
Now under (ρ, σ)-image-finiteness assumption, Qt

0 is a finite set, hence there
will be an i0 such that Qt

i0
= Qt

j for all j ≥ i0. Also Qt
i0

is non-empty, hence
any element from Qt

i0
would be common to every Qi. Similar argument can be

made for a transition of q.

Lemma 5. If ρ, σ are reflexive and L†
p is (ρ, σ)-image-finite for every p ∈ P,

then the preorder �L(ρ,σ) is a (ρ, σ)-bisimulation.

Proof (Proof by Contradiction). Assume not. Then there must exist processes
p, q which are not bisimilar but p �L(ρ,σ) q holds. This can happen only if some
transition of p or q cannot be matched, giving us two cases

Case 1: We have p �L(ρ,σ) q and p
a−→ p′, but there is no action b and state

q′ with q
b−→ q′, aρb, and p′ �L(ρ,σ) q′. Let Q = {q′ | ∃b[q b−→ q′ ∧ a ρ b]}. Now

Q has a finite terminal set Qt. Moreover, for every q′ ∈ Qt, there must exist a
formula ϕq′ such that p′ � ϕq′ but q′ � ϕq′ . Consider the formula ϕ =

∧
q′∈Qt ϕq′ .

Clearly p′ � ϕ, and since ρ is reflexive, we have p � 〈a〉ρ
ϕ. Since p �L(ρ,σ) q, q

must also satisfy this formula, but this requires some state q′′ ∈ Q to satisfy ϕ,
which in turn requires some q′ ∈ Qt to satisfy ϕ, as q′′ �(ρ,σ) q′ (Lemma 4). But
q′ cannot satisfy ϕq′ , and consequently ϕ.

Case 2: We have p �L(ρ,σ) q and q
b−→ q′, but there is no action a and state p′

with p
a−→ p′, aσb, and p′ �L(ρ,σ) q′. Let P = {p′ | ∃a[p a−→ p′ ∧ a σ b]}. Now P

has a finite initial set P i. Moreover, for every p′ ∈ P , there must exist a formula
ϕp′ such that p′ � ϕp′ but q′ � ϕp′ . Consider the formula ϕ =

∨
p′∈P i ϕp′ . For

any p′′ ∈ P , there will be some p′ ∈ P i such that p′ �(ρ,σ) p′′, and due to
Lemma 4, we will have p′′ � ϕp′ , consequently p′′ � ϕ, and hence, p � [b]σ

−1
ϕ.

Since p �L(ρ,σ) q, q must also satisfy this formula. But this is only possible if q′

satisfies ϕ since σ is reflexive.

Theorem 2 now follows from Lemmas 4 and 5.

Theorem 2. If ρ, σ are preorders then �(ρ,σ)= �L(ρ,σ) , i.e. L(ρ,σ) is a logical
characterisation of �(ρ,σ) over (ρ, σ)-image-finite LTS.

The proof argument uses image-finiteness to ensure finite conjunctions and
disjunctions. If we allow infinite conjunctions and disjunctions in our logic,
denoted L∞

(ρ,σ), then we can obtain the logical characterisation result without
requiring the constraints of image-finiteness.

Theorem 3. If ρ, σ are preorders then �(ρ,σ)= �L(ρ,σ) , i.e. L∞
(ρ,σ) is a logical

characterisation of �(ρ,σ).
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Procedure. GenerateFormula for generating a distinguishing formula
Input: p, q ∈ L = 〈P, Act, −→〉
Assumption: L†

r is (ρ, σ)-image-finite for every r ∈ P. If p ��i
(ρ,σ) q then

Bisimilar(p, q) = (a, p′) s.t. there does not exist any b, q′ with

q
b−→ q′ �i−1

(ρ,σ) p′ and aρb or Bisimilar(p, q) = (b, q′) s.t. there

does not exist any a, p′ with p
a−→ p′ �i−1

(ρ,σ) q′ and aσb

Output: if p �(ρ,σ) q then ff else ϕ s.t. (p � ϕ and q � ϕ) or (p � ϕ and q � ϕ)

GenerateFormula(p, q) = if p �(ρ,σ) q then return ff

else switch Bisimilar(p, q) do
case (a, p′): do return 〈a〉ρ∧

{q′ | q
b−→q′∧aρb}t

GenerateFormula(p′, q′)

case (b, q′): do return [b]σ
−1 ∨

{p′ | p
a−→p′∧aσb}iGenerateFormula(p

′, q′)

Logical characterisation implies the existence of a distinguishing formula,
which is satisfied by p but not by q, whenever p �(ρ,σ) q. The proof of Lemma 5
can be molded into a procedure for generating the distinguishing formula. Pro-
cedure GenerateFormula generates a distinguishing formula between the input
processes, assuming a bisimulation procedure which not only tells us whether
two processes are bisimilar, but also gives us the unmatched transition when
they are not. Image-finiteness bounds the number of recursive calls and also the
depth of recursion, by guaranteeing an i such that p �(ρ,σ) q implies p �i

(ρ,σ) q
(Theorem 1), and hence ensures the termination of the procedure.

3.2 Testing Preorders Logically

We may also view the parameterised HML formulas as tests. If p �(ρ,σ) q, then
the L(ρ,σ) formulas satisfied by p, denoted L(ρ,σ)(p), is a subset of the L(ρ,σ)

formulas satisfied by q, L(ρ,σ)(q). If q is the specification, then L(ρ,σ)(q) can be
seen as the set of allowed behaviours, therefore, L(ρ,σ)(p) ⊆ L(ρ,σ)(q) ensures the
correctness of p.

We may define complementation for the parameterised HML. Given a formula
ϕ ∈ L(ρ,σ), its complement, ϕc ∈ L(σ−1,ρ−1), is defined by following structural
induction.

�c = ⊥ (ϕ1 ∨ ϕ2)
c = ϕ1

c ∧ ϕ2
c (〈a〉ρ

ϕ)c = [a]ρϕc

⊥c = � (ϕ1 ∧ ϕ2)
c = ϕ1

c ∨ ϕ2
c ([a]σ

−1
ϕ)

c
= 〈a〉σ−1

ϕc

It may be easily seen that p � ϕ iff p � ϕc. Therefore, if L(ρ,σ)(p) ⊆ L(ρ,σ)(q),
then L(σ−1,ρ−1)(q) ⊆ L(σ−1,ρ−1)(p). The specification may be seen as the set of all
tests that the correct implementation should pass. Then, an implementation is
correct under (ρ, σ)-bisimilarity, iff all the specification’s tests, L(σ−1,ρ−1)(q), are
satisfied by the implementation, implying L(σ−1,ρ−1)(q) ⊆ L(σ−1,ρ−1)(p), which
by logical characterisation result implies p �(ρ,σ) q.
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Procedure. IsModel for checking satisfiability
Input: ϕ ∈ L(ρ,σ), p ∈ L = 〈P, Act, −→〉
Assumption: L†

p is (ρ, σ)-image-finite
Output: p � ϕ
IsModel(tt , p) = true
IsModel(

∧
i∈I ϕi, p) =∧

i∈IIsModel(ϕi, p)

IsModel(ff , p) = false
IsModel(

∨
i∈I ϕi, p) =∨

i∈IIsModel(ϕi, p)

IsModel(〈a〉ρϕ, p) =
∨

q∈{q | p
b−→q∧aρb}t

IsModel(ϕ, q)

IsModel([a]σ
−1

ϕ, p) =
∧

q∈{q | p
b−→q∧bσa}i

IsModel(ϕ, q)

Procedure IsModel gives a recursive method for deciding whether a formula ϕ
is satisfied by a process p. It is guaranteed to terminate when L†

p is (ρ, σ)-image-
finite. Note that a finite or algebraic description of the LTS is not necessary.
If the LTS is described co-algebraically, then the procedure IsModel gives a co-
inductive definition2. To evaluate a PHML formula, you only need to look at
the current state and its immediate successors, which can be done in a purely
observational model. Therefore, we may also view �L(ρ,σ)= �−1

L(σ−1,ρ−1)
as the

testing equivalence obtained by interpreting formulas of logic L(σ−1,ρ−1) as the
encoding of tests.

4 Extending Parameterised HML with Fixed Point
Operators

The parameterised HML can be extended with fixed point operators [18].

Definition 8. The syntax of the logic LX
(ρ,σ) is given by the following BNF

ϕ := � | ⊥ | X | 〈a〉ρ
ϕ | [a]σ

−1
ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | νX.ϕ | μX.ϕ

where a ∈ Act and X ∈ X ranges over a countable set of variables.

The operators νX and μX denote the greatest fixed point and least fixed
point respectively, binding the variable X in its scope. Any variable which is not
bound is called a free variable. A closed formula is one without any free variables,
and the fragment of closed formulas of the logic will be denoted cf(LX

(ρ,σ)). To
define the semantics, we need the notion of valuations, which assigns meaning to
free variables. Given a countable set of variables X , a valuation V is essentially
a map from X to 2P .

2 It is still inductively defined over L(ρ,σ), but it is co-inductively defined over
processes.
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Definition 9. The semantics of the formula ϕ ∈ LX
(ρ,σ) over some process set

P is defined inductively as,

‖X‖P
V = V(X)

‖ϕ1 ∨ ϕ2‖P
V = ‖ϕ1‖P

V ∪ ‖ϕ1‖P
V

‖ϕ1 ∧ ϕ2‖P
V = ‖ϕ1‖P

V ∩ ‖ϕ1‖P
V

‖〈a〉ρ
ϕ‖P

V = {p | ∃b, p′[aρb ∧ p
b−→ p′ ∧ p′ ∈ ‖ϕ‖P

V ]}
‖[a]σ

−1
ϕ‖P

V = {p | ∀b, p′[bσa ∧ p
b−→ p′ ⇒ p′ ∈ ‖ϕ‖P

V ]}
‖νX.ϕ‖P

V =
⋃{E ⊆ P | E ⊆ ‖ϕ‖P

V[E/X]}
‖μX.ϕ‖P

V =
⋂{E ⊆ P | ‖ϕ‖P

V[E/X] ⊆ E}

where V[E/X](Y ) = V(Y ) for all Y = X and V[E/X](X) = E.

The semantics of any formula depends upon the valuation supplied. Conse-
quently, the satisfaction relation should be redefined.

Definition 10. A process p satisfies a formula ϕ under V, denoted p �V ϕ,
iff p ∈ ‖ϕ‖P

V . It satisfies the formula ϕ, denoted p � ϕ, iff p ∈ ‖ϕ‖P
V for all

valuations V.

A valuation can be seen as an element of (2P)|X |, which is the |X | fold
product of 2P . Since powerset forms a complete lattice, and the direct product
of a countable collection of complete lattices is also a complete lattice, this must
also be a complete lattice under pointwise subset ordering [8]. More formally,

Definition 11. Let V1 and V2 be any two valuations over X . We define a partial
order ≤ on valuations as

V1 ≤ V2 ⇔ ∀X ∈ X [V1(X) ⊆ V2(X)]

The ≤ ordering yields a complete lattice, (X → 2P ,≤), over valuations.

The semantics of any formula is monotonic with respect to this partial order
over valuations.

Lemma 6. Let V1 and V2 be any two valuations over X and ϕ be any formula
in LX

(ρ,σ). If V1 ≤ V2 then ‖ϕ‖P
V1

⊆ ‖ϕ‖P
V2

(Refer [25]).

Given a formula ϕ with a free variable X ∈ X , the function, Oϕ(V) =
V[‖ϕ‖P

V /X], is monotonic over the complete lattice (X → 2P ,≤). Hence by
Tarski’s theorem [29], the semantic definition of νX and μX indeed defines the
greatest and the least fixed point respectively. It also makes the model checking
of LX

(ρ,σ) decidable over finite-state systems. For example, to compute ‖νX.ϕ‖P ,
we just need to apply Oϕ repeatedly, starting from P (empty set in case of least
fixed point), until we reach a fixed point.

Theorem 4. Given a finite L†
p, for any ϕ ∈ cf(LX

(ρ,σ)), p � ϕ is decidable.
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4.1 Preservation Under Bisimulations

The characterisation result can be broken into two assertions. Firstly, if q satisfies
all the formulae which are satisfied by p, then p is (ρ, σ)-bisimilar to q. Since
LX
(ρ,σ) extends L(ρ,σ), this result will continue to hold. Interestingly, the other

assertion, i.e. if p is (ρ, σ)-bisimilar to q then q satisfies all formulae which are
true for p, also holds for LX

(ρ,σ), despite it being more expressive on account of
fixed point operators, provided that the valuation is (ρ, σ)-bisimilarity-closed.

Definition 12. Given any relation R, a set E ⊆ P is R-closed iff for every
process p, q, whenever p ∈ E and pRq, we have q ∈ E. Naturally, a valuation V
is R-closed iff V(X) is R-closed for every variable X.

For every p, q ∈ P with p �(ρ,σ) q, p ∈ ‖ϕ‖P
V implies q ∈ ‖ϕ‖P

V is equivalent to
saying that the set ‖ϕ‖P

V is bisimilarity-closed, i.e., the counterpart of Lemma 4
here will be showing that ‖ϕ‖P

V is bisimilarity-closed. The results given below
are a generalization of a corresponding result for strong bisimulation [28].

Definition 13

1. Given any set E ⊆ P, its upward (ρ, σ)-bisimilarity closure, Eu
(ρ,σ), is the set

{q ∈ P | ∃p[p �(ρ,σ) q ∧ p ∈ E ]}.
2. Given any set E ⊆ P, its downward (ρ, σ)-bisimilarity closure, Ed

(ρ,σ), is the
set {p ∈ E | ∀q[p �(ρ,σ) q ⇒ q ∈ E ]}.

Lemma 7. Let E = {Ei}i∈I be any collection of (ρ, σ)-bisimilarity-closed sets.
Then both

⋃
i∈I Ei and

⋂
i∈I Ei are also (ρ, σ)-bisimilarity-closed.

Lemma 8. If ρ, σ are preorders, then for any arbitrary set E,

1. Eu
(ρ,σ) is a (ρ, σ)-bisimilarity-closed set containing E.

2. Ed
(ρ,σ) is a (ρ, σ)-bisimilarity-closed set contained in E (Refer [25]).

Lemma 9. Given preorders ρ, σ, (ρ, σ)-image-finite processes in P and a (ρ, σ)-
bisimilarity-closed valuation V, the set ‖ϕ‖P

V is also (ρ, σ)-bisimilarity-closed for
any formula ϕ ∈ LX

(ρ,σ).

Proof. We extend the inductive argument of Lemma 4, which requires (ρ, σ)-
image-finiteness, with the proofs for fixed point operators. The case of the sin-
gle variable X trivially follows from the fact that the valuation V is (ρ, σ)-
bisimilarity-closed.

– Case νX.ϕ: For any E ⊆ ‖ϕ‖P
V[E/X], we have ‖ϕ‖P

V[E/X] ⊆ ‖ϕ‖P
V[Eu/X]

(Lemma 6), and hence E ⊆ ‖ϕ‖P
V[Eu/X]. By the induction hypothesis,

‖ϕ‖P
V[Eu/X] is (ρ, σ)-bisimilarity-closed. We can show Eu ⊆ ‖ϕ‖P

V[Eu/X], as any
q ∈ Eu will have a p ∈ E with p �(ρ,σ) q. Since E ⊆ ‖ϕ‖P

V[Eu/X], we will have
p ∈ ‖ϕ‖P

V[Eu/X], and hence q ∈ ‖ϕ‖P
V[Eu/X], due to it being (ρ, σ)-bisimilarity-

closed. Since Eu ∪ E = Eu, we can rewrite
⋃{E ⊆ P | E ⊆ ‖ϕ‖P

V[E/X]} as
⋃{Eu ⊆ P | Eu ⊆ ‖ϕ‖P

V[Eu/X]}, which is a (ρ, σ)-bisimilarity-closed set by
Lemma 7, and hence ‖νX.ϕ‖P

V is (ρ, σ)-bisimilarity-closed.
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– Case μX.ϕ: For any ‖ϕ‖P
V[E/X] ⊆ E , we have ‖ϕ‖P

V[Ed/X] ⊆ ‖ϕ‖P
V[E/X]

(Lemma 6), and hence ‖ϕ‖P
V[Ed/X] ⊆ E . By the induction hypothesis,

‖ϕ‖P
V[Ed/X] is (ρ, σ)-bisimilarity-closed. Therefore, for any p, q with p ∈

‖ϕ‖P
V[Ed/X] and p �(ρ,σ) q, we will have q ∈ ‖ϕ‖P

V[Ed/X] and hence q ∈ E .
This, however, implies that p must be in Ed, and hence ‖ϕ‖P

V[Ed/X] ⊆ Ed.
Since Ed ∩ E = Ed, we can rewrite

⋂{E ⊆ P | ‖ϕ‖P
V[E/X] ⊆ E} as

⋂{Ed ⊆ P | ‖ϕ‖P
V[Ed/X] ⊆ Ed}, which is a (ρ, σ)-bisimilarity-closed set by

Lemma 7, and hence ‖μX.ϕ‖P
V is also (ρ, σ)-bisimilarity-closed.

If ϕ is a closed formula, i.e. ϕ ∈ cf(LX
(ρ,σ)), then its meaning is independent

of the valuation, and hence is always bisimilarity-closed.

Theorem 5. Given preorders ρ, σ, for any (ρ, σ)-image-finite processes p, q,
p �(ρ,σ) q iff p �cf(LX

(ρ,σ))
q, i.e., cf(LX

(ρ,σ)) is a logical characterisation for
�(ρ,σ).

4.2 Characteristic Formula

Equipped with the fixed point operators, the logic LX
(ρ,σ) is powerful enough

to define characteristic formulae. Given a process p, a characteristic formula
is satisfied only by the processes which are (ρ, σ)-bisimilar to p. Its existence,
therefore, reduces bisimulation checking to model checking. More formally,

Definition 14. A closed formula ϕp ∈ LX
(ρ,σ) is characteristic of a process p, if

for every q ∈ P, we have p �(ρ,σ) q iff q ∈ ‖ϕp‖P .

Numerous derivations of characteristic formulae share a common underlying
structure [2], which encode the fixed point characterisation of the relation as a
formula in the logic. We adopt the derivation in [22] for parameterised bisimu-
lations, as it gives a step-by-step conversion of the fixed point characterisation
into a characteristic formula.

We will derive an equational system from which the characteristic formula
can be obtained using standard techniques [22]. Given some process set P, an
equational system EP is a collection of mutually recursive equations of the form
Xp = ϕp, where ϕp ∈ LX

(ρ,σ) and p ∈ P. We can also view this equational system
as a function over valuations, defined as (EP(V))(Xp) = ‖ϕp‖P

V . By Lemma 6,
this defines a monotonic function over the lattice ({Xp}p∈P → 2P ,≤), which is
isomorphic to the lattice of binary relations over P.

Lemma 10. The lattice ({Xp}p∈P → 2P ,≤) is isomorphic to (2P×P ,⊆) under
the following mapping

I(V) = {(p, q) | q ∈ V(Xp)} I
−1(R) = {q ∈ V(Xp) | (p, q) ∈ R}
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The utility of this isomorphism lies in its ability to define a characteristic
equational system as EP = I

−1 ◦ F(ρ,σ) ◦ I, with its greatest fixed point corre-
sponding to (ρ, σ)-bisimilarity. Its encoding in logic follows as

q ∈ (I−1 ◦ F(ρ,σ) ◦ I)(V)(Xp)

⇐⇒ (p, q) ∈ (F(ρ,σ) ◦ I)(V) [by definition of I−1]

⇐⇒ (∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q

b−→ q′ ∧ q′ ∈ V(Xp′ )])∧
(∀b, q′ : q

b−→ q′ ⇒ ∃a, p′[aσb ∧ p
a−→ p′ ∧ q′ ∈ V(Xp′ )]) [by definition of F(ρ,σ), I]

We can translate the above two conditions to logic in the following manner

(1) ∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q

b−→ q′ ∧ q′ ∈ V(Xp′)]

⇐⇒ ∀a, p′ : p
a−→ p′ ⇒ q ∈ ‖〈a〉ρXp′‖P

V [by definition of 〈a〉ρ]
⇐⇒ q ∈ ‖∧

a,p′:p a−→p′ 〈a〉ρXp′‖P
V [by definition of ∧]

(2) ∀b, q′ : q
b−→ q′ ⇒ ∃a, p′[aσb ∧ p

a−→ p′ ∧ q′ ∈ V(Xp′)]
⇐⇒ ∀b, q′ : q

b−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V [by definition of ∨]

Assuming ρ, σ are preorders, ∀b, q′ : q
b−→ q′ ⇒ q′ ∈ ‖∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V
is equivalent to ∀b, c, q′ : cσb ∧ q

c−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V .

First implies the second due to transitivity, which makes {(a, p′) | aσc ∧
p

a−→ p′} ⊆ {(a, p′) | aσb ∧ p
a−→ p′} whenever cσb holds, and hence

q ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V is true whenever q ∈ ‖∨

a,p′:aσc∧p
a−→p′ Xp′‖P

V is true.
Second implies the first due to reflexivity of σ, giving us,

∀b, q′ : q
b−→ q′ ⇒ q′ ∈ ‖∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V
⇐⇒ ∀b, c, q′ : cσb ∧ q

c−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V [by ref. and trans. of σ]

⇐⇒ ∀b : q ∈ ‖[b]σ
−1 ∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V [by definition of [b]σ
−1

]

⇐⇒ q ∈ ‖∧b [b]σ
−1 ∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V [by definition of ∧]

Combining the two, the characteristic equational system, EP′
�(ρ,σ)

, becomes

Xp = (
∧

a,p′:p a−→p′

〈a〉ρ
Xp′) ∧ (

∧

b

[b]σ
−1

(
∨

a,p′:aσb∧p
a−→p′

Xp′))

Clearly, if L†
p is finite, then the equational system will also be finite. Now

for any two actions a, b with aρb, the formula 〈b〉ρ
ϕ implies 〈a〉ρ

ϕ. Therefore,
if every subset of Act has finitely many maximal elements under the ordering
ρ, then we can always rewrite

∧
a,p′:p a−→p′ 〈a〉ρ

Xp′ as a finite conjunct. Simi-

larly, [b]σ
−1

ϕ implies [a]σ
−1

ϕ if aσb holds, and
∨

a,p′:aσb∧p
a−→p′ Xp′ will be finite

if we have only finitely many variables. Therefore, if every subset of Act has
finitely many maximal elements under the ordering σ, then we can always rewrite∧

b [b]σ
−1

(
∨

a,p′:aσb∧p
a−→p′ Xp′) as a finite conjunct. The following theorem cap-

tures this idea,
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Theorem 6. A process p has a finite characteristic formula in LX
(ρ,σ), if ρ and

σ are preorders with finitely many maximal elements and every action being less
than some maximal element, and L†

p is finite with pL†
p

�(ρ,σ) pL.

By constructing the characteristic formula of p and model checking it for q,
we obtain a procedure for deciding parameterised bisimilarity, p �(ρ,σ) q [10].
Though this requires ρ and σ to have finitely many maximal elements, and L†

p,
L†

q to be finite, i.e., the set of reachable initial and terminal states from p and q
must be finite.

5 Applications

Weak Bisimilarity and Efficiency Preorder. Expressing concrete bisimu-
lations as parameterised bisimulations may involve LTS transformation, for e.g.,
weak bisimulation requires the transitive closure of the transition relation under
τ actions [4], i.e. extending the action set to sequences τ iaτ j , i, j ≥ 0. Weak
bisimulation [16] is a (=̂, =̂)-bisimulation over this extended action set, where
=̂ = {(τ i, τ j) | i, j ≥ 0} ∪ {(τ iaτ j , τ i′

aτ j′
) | i, j, i′, j′ ≥ 0, a ∈ Act}. This gives

the logical characterisation L(=̂,=̂), which is identical to observational HML [16].
Similarly, efficiency preorders [5] is a (�,�)-bisimulation, where � = {(τ i, τ j) |
0 ≤ i ≤ j} ∪ {(τ iaτ j , τ i′

aτ j′
) | 0 ≤ i + j ≤ i′ + j′, i, j, i′, j′ ≥ 0, a ∈ Act}. Its

logical characterisation L(	,	), however, differs from the existing one [17].

Covariant-Contravariant Simulation. The classical view of process simula-
tion assumes all actions to be input actions, which the user may trigger. The
simulating process must simulate all the input actions of the process being sim-
ulated. But in the presence of output actions, this condition is reversed. This
forms the intuition for defining covariant-contravariant simulations [11].

Definition 15. Let P be the set of process states and Act be the set of actions
which can be partitioned into the sets Actr, Actl and Actbi. A binary relation
R ⊆ P ×P is a covariant-contravariant simulation if p R q implies the following
conditions

∀a ∈ Actr ∪ Actbi[p a−→ p′ ⇒ ∃q′[q a−→ q′ ∧ p′ R q′]]

∀a ∈ Actl ∪ Actbi[q a−→ q′ ⇒ ∃p′[p a−→ p′ ∧ p′ R q′]

We will write p �CC q, if there is a covariant-contravariant simulation R such
that p R q.

The covariant-contravariant simulation, defined above, ignores the Actl tran-
sitions for p and Actr transitions for q. To specify it as an instance of para-
meterised bisimulation, we introduce a special state 0, such that from every
process p there is a transition p

!−→ 0, and there is only one transition from
0, that is to itself as 0 ∗−→ 0, where !, ∗ are new action labels. Now covariant-
contravariant simulation can be instantiated as parameterised bisimulation by
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setting ρ = IdAct ∪ {(a, !)|a ∈ Actl} ∪ {(a, ∗)|a ∈ Act} ∪ {(!, !), (∗, ∗), (∗, !}
and σ−1 = IdAct ∪ {(a, !)|a ∈ Actr} ∪ {(a, ∗)|a ∈ Act} ∪ {(!, !), (∗, ∗), (∗, !}. All
processes will be (ρ, σ)-bisimilar to 0. Also, 0 satisfies every formula ψ ∈ L(ρ,σ−1).
As a consequence, every process p will satisfy any formula of the form 〈!〉ρ

ψ, and
hence 〈a〉ρ

ψ where a ∈ Actl, as well as 〈∗〉ρ
ψ, for any ψ ∈ L(ρ,σ−1). Similar

argument also holds for [!]σ
−1

ψ, [∗]σ
−1

ψ and [a]σ
−1

ψ, where a ∈ Actr and ψ is
any formula in L(ρ,σ). If we remove these modalities, we are only left with 〈a〉ρ,
where a ∈ Actr ∪ Actbi and [a]σ

−1
, where a ∈ Actl ∪ Actbi, and ρ, σ are identity

relations over these actions. This is exactly the logical characterisation given in
[12] for covariant-contravariant simulation.

Time Abstracted Bisimilarity and Timed Prebisimulation. Timed LTS
is a special class of LTS, where the label set is of the form Act ∪ R≥0, where
the labels in R≥0 correspond to delay observations. The strong bisimulation
over Timed LTS is also referred as Timed bisimulation. In general, the timed
bisimilarity over arbitrary Timed LTS is undecidable, but it becomes decidable
when restricted to Timed LTS generated from Timed Automata [3]. The Timed
LTS generated from Timed Automata has deterministic delays, that is, there
is a unique successor state for every delay transition. This, in turn, implies
image-finiteness, and hence the logical characterisation for strong bisimilarity
also works for timed bisimilarity.

Time abstracted bisimulation [20], which relaxes the condition of match-
ing a delay transition with any other delay transition, irrespective of the delay
amount, is another interesting behavioural equivalence over Timed LTS. As
noted in Sect. 3, time abstracted bisimulation [16] is a (�,�)-bisimulation, where
� = IdAct ∪ (R≥0 × R≥0). It is also decidable for TLTS generated from timed
automata. In fact one can apply zone abstraction [6] to obtain a finite abstracted
LTS, as all states in the same zone are time abstracted bisimilar. Since a finite
abstracted LTS is always image-finite, we obtain L(�,�) as the logical character-
isation for time abstracted bisimilarity.

Similarly, timed prebisimulation [15] is a (�,�)-bisimulation, where � =
IdAct∪ ≥ R. Again we can apply zone abstraction, and use zone endpoints to
obtain a finite abstracted LTS for TLTS generated from timed automata. How-
ever we require infinitesimal δ-delays, of the form d + δ or d − δ, to define zone
endpoints when zone boundaries are given by strict inequalities. This is also
why the decidability result for timed prebisimilarity based on zone abstraction
is restricted to one clock timed automata [15]. This technique can only be applied
to one clock timed automata, as δ delays for multiple clocks are incomparable.
We can remove the δ-delays from our logical characterisation, by noting that
〈d − δ〉≥ = 〈d〉≥, 〈d + δ〉≥ = 〈d〉>, [d − δ]≤ = [d]<, and [d + δ]≤ = [d]≤. Hence
we obtain the following as logical characterisation for timed prebisimilarity over
TLTS generated from one clock timed automata.

ϕ := 〈a〉ϕ | [a]ϕ | 〈d〉≥
ϕ | [d]≤ϕ | 〈d〉>

ϕ | [d]<ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where a ∈ Act and d ∈ R≥0. We refer the reader to [26] for detailed proof.
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6 Conclusion and Future Work

Parameterised HML, L(ρ,σ), generalises HML as the logical characterisation
for parameterised bisimulations. By selecting suitable relations on actions, one
readily obtains the existing characterisations of strong and weak bisimulation,
covariant-contravariant simulation [12], and novel characterisations for prebisim-
ilarity relations like efficiency preorder [17], timed prebisimulation [15], etc.

The characterisation immediately yields distinguishing formulae between
non-bisimilar processes. However it requires (ρ, σ)-image-finiteness upto (ρ, σ)-
bisimilarity, in which case non-bisimilar processes have a finite distinguishing
behaviour. Consequently, we obtain the algorithm for generating distinguish-
ing formulae when the processes are (ρ, σ)-image-finite and have a decidability
procedure for (ρ, σ)-bisimilarity.

The extension of parameterised HML with fixed point operators, LX
(ρ,σ),

remains invariant under the corresponding parameterised bisimulation, while
increasing its power to allow expressing characteristic formulae for finite-state
processes. Model checking of characteristic formula may yield efficient algorithms
for deciding behavioural relations [10], and is worth studying in the context of
parameterised bisimulations.

Generating distinguishing formula requires image-finiteness; similarly the
existence of finite characteristic formula is only guaranteed for finite-state sys-
tems. Interestingly, these results may be extended to infinite-state systems
through abstracted LTS. Infinite-state systems with quantitative aspects, like
time, may offer interesting instantiations of parameterised bisimulations, and
can become a good application domain for these results.

The expressive power of parameterised HML is another area worth investigat-
ing. This may involve generalizing the correspondence results for modal logic and
strong bisimulation [7], and may help in relating this logic to (ρ, σ)-bisimulation
invariant fragments of classical logics. This will enable us to compare our logical
characterisation with the existing ones, where they differ.
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