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Abstract. A program has secure information flow if it does not leak any
secret information to publicly observable output. A large number of static
and dynamic analyses have been devised to check programs for secure
information flow. In this paper, we present an algorithm that can carry
out a systematic and efficient attack to automatically extract secrets
from an insecure program. The algorithm combines static analysis and
dynamic execution. The attacker strategy learns from past experiments
and chooses as its next attack one that promises maximal knowledge
gain about the secret. The idea is to provide the software developer with
concrete information about the severity of an information leakage.
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1 Introduction

Information flow security is concerned with the development of methods that
ensure that programs do not leak secret information, i.e., that it is not possible
to learn secret information by looking at publicly accessible output.

To ensure that programs have secure information flow relative to a given
information flow policy, a large number of static analyses have been devised
(see [22] for a survey). Most of these approaches are qualitative, in the sense
that they try to establish that a program is secure and they reject programs
as insecure otherwise. In case of a leak (even if allowed by a given declassifica-
tion policy) they do not provide details about how much information is leaked.
Quantitative information flow analysis [1–3,14,20,23] complements qualitative
analyses by measuring the amount of leaked information. Developers can use
this feedback to decide whether the leakage is acceptable or not.

Our aim is to support detection and comprehension of information flow leaks
during software development. In previous work [8] we presented an approach to
generate demonstrator code for leakages in the form of failing tests. These tests
could be examined and debugged by a developer to fix the leak. The generated
tests merely demonstrated that a program does not respect a given information
flow policy, but it was not possible to extract actual secrets. Extracting a secret
or at least narrowing down the number of possible values of a secret information
helps in two ways: (i) the software developer obtains additional information
about the nature of the leak and (ii) it becomes easier to judge the severity of a
leak and to assign its fix an appropriate priority.
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The work presented in this paper applies techniques developed for quantified
information flow analysis to guide the systematic creation of an (as small as
possible) set of experiments/attacks to be conducted to gain maximal knowledge
about a secret. The set of experiments is built incrementally. New experiments
are added only if they are non-redundant and lead to a “maximal” knowledge
gain. This sets our approach apart from previous work [3,14,20] that uses a
random set of experiments (or simply states the existence of such a set), i.e. we
are able to obtain a tighter characterisation of secrets than before.

We introduce a novel approach for automatic generation of a “good” exper-
iment set to exploit information flow leaks. The main contributions are: (i) an
algorithm that combines static analysis and dynamic analysis. Symbolic exe-
cution is used to statically analyse a program’s behaviour, to compute path
conditions and symbolic states. Based on this information, knowledge about a
secret is incrementally increased by devising knowledge-maximizing experiments
that in turn refine the static analysis results. These experiments are obtained
by (ii) maximizing information leakage relative to metrics that depend on public
input. The result of our algorithm is a (iii) logical characterisation of a secret.
Hence, a model finder can be used to extract the remaining candidates for the
secret, and in the best case, the secret itself as the only remaining model.

The paper is structured as follows: In Sect. 2 we give the necessary back-
ground to make the paper self-contained. Section 3 is about our approach and its
design. Section 4 describes the generation of the input values for the experiments
with a focus on efficiency. An experimental evaluation is presented in Sect. 5. We
finish with related work (Sect. 6) and conclusions/future work (Sect. 7).

2 Background

The programming language used throughout the paper is a simple, deterministic
and imperative language with global variables of a 32-bit integer type (we denote
their domain with Z32). We consider here only programs where termination is
guaranteed for all inputs. Our actual implementation supports a rich subset of
sequential Java, including method calls, objects with integer fields, and integer-
typed arrays (see Sect. 5.1).

In the remaining paper we use p to denote a program and Var = {x1, . . . , xn}
to denote an ordered set of all program variables occurring in p.

2.1 Characterization of Insecurity Using Symbolic Execution

Symbolic execution (SE) is a versatile static analysis technique [13]. SE “runs”
a program with symbolic (input) values instead of concrete ones.

Example 1. The program in Listing 1.1 uses l, h as program variables. For
values of l below 100, the computed value stored in l represents the result of
comparing the initial values of l and h, where l is assigned 3, 0, −3 for l being
equal, less than, and greater than h, respectively. For values of l of 100 and
above, the value 2 is assigned to l.
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Starting SE at line 1 in an initial state where l and h have symbolic input
values l0 and h0, respectively (short: l : l0, h : h0) causes a split into two SE
paths. The first branch deals with the case where the branch condition l0 < 100
holds and the second branch with the complementary case. We continue symbolic
execution on the first branch with the if-statement in line 2. This causes another
split with branch conditions l0

.= h0 and l0 � .= h0. Continuing again with the first
branch, we symbolically execute the assignment of value 3 to l in line 3. ��

Symbolic execution creates an SE tree representing all possible concrete exe-
cution paths. Each node corresponds to a code location and contains the symbolic
state at that point: a mapping from program variables to their symbolic value
and a path condition. The path condition is the conjunction of all branch con-
ditions up to the current point of execution. The initial state of any execution
path through a node with path condition pc must necessarily satisfy pc.

Listing 1.1. Running example

1 if (l < 100) {
2 if (l == h)
3 l = 3;
4 else
5 if (l < h) l = 0;
6 else l = -3;
7 } else l = 2;

Path conditions and symbolic values are
always expressed relative to the initial sym-
bolic values present in the initial symbolic
state. In the following, instead of introducing
a new constant symbol v0 to refer to the initial
value of a program variable v, we simply use
the program variable v itself. This means pro-
gram variables occurring in path conditions
and symbolic values refer always to their ini-
tial value.

We use SETp to refer to the SE tree of program p and Np to refer to the
number of symbolic execution paths of SETp. For each leaf node of an SE path i
(1 ≤ i ≤ Np) the corresponding path condition is denoted with pci and the
symbolic value of variable v ∈ Var in the final state of path i is denoted with the
expression fv

i . Later we need to express symbolic values or path conditions over a
different variable signature: Let V = {x1, . . . , xn}, V ′ = {x′

1, . . . , x
′
n} be ordered,

disjoint sets of program variables with the same cardinality; we write pci[V ′/V ],
meaning that each xi in pci has been replaced by x′

i. In case of two disjoint
variables sets V1, V2 we write pci[V ′

1 , V ′
2 / V1, V2] instead of pci[V ′

1/V1][V ′
2/V2].

Similar for the symbolic values fv
i .

There are several approaches to deal with loops and recursive method calls
in SE to achieve a finite SE tree. We follow the approach presented in [11],
which uses specifications, namely, method contracts and loop invariants. In case
of sound and complete specifications this approach is fully precise. In case of
incomplete specifications, completeness (but not soundness) is sacrificed. In brief,
the effect of loops and method calls is encoded as part of the path condition and
the introduction of fresh symbolic values.

The approach presented in this paper extends our previous work [8] in which
SE is used to compute path conditions and the final symbolic values of program
variables to obtain a logic characterisation of insecurity. We recapture the most
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important ideas: Let L,H be a partitioning of Var . The noninterference policy
H ��L forbids any information flow from the initial value of high (confidential/se-
cret) program variables H to low (public) variables L. In [7] self-composition is
used as a means to formalize, in terms of a logic formula, whether or not a pro-
gram is secure relative to a given noninterference policy. The negation of such
a security formula is true for insecure programs, i.e. any model of the negated
formula describes a pair of program runs that leak information. We use this idea
as follows: Given two SE paths i and j with path conditions pci, pcj and final
symbolic values fv

i , fv
j , v ∈ Var . The insecurity formula

Leak(i, j) ≡ (
∧

v∈L

v
.= v′) ∧ pci ∧ (pcj [Var ′/Var ]) ∧

∨

v∈L

fv
i � .= (fv′

j [Var ′/Var ]) (1)

has a model (an assignment of values to program variables satisfying (1)) if
there are two program runs, one taking path i and the other one path j (i = j
possible), that end in final states differing in the value of at least one low variable,
even though their initial states coincided on the low input. Our target programs
are deterministic, hence, this can only be the case if the value of high variables
influenced the final value of the low variables. To check whether a program is
insecure, we compare all pairs of symbolic execution paths:

∨

1≤i≤j≤Np

Leak(i, j) (2)

An SE path that contributes to an information leak is called a risky path.
The set of all risky paths is denoted by Risk . Details on how to support other
information flow policies than noninterference can be found in [8].

2.2 Quantitative Information Flow Analysis

We recall some measures for quantifying information leaks [3,15,23,25]. Given
a program p and a noninterference policy H ��L, let O ⊆ L (usually: O = L)
be a subset of low variables whose value can be observed by an attacker after
termination of p. We assume that before running p, the attacker knows about
the values of low variables (or can even manipulate them); and that the initial
values of variables in H and L are independent (i.e. from an attacker’s perspective
knowledge about L does not entail any knowledge about H ).

Let L,H denote the finite sets of all possible values of L and H , e.g., for
two unrestricted integer program variables H = {h1, h2}, H is the Cartesian
product Z32 × Z32 of their domain. Similarly, let O be the set of all possible
output values of O. Let the function Op : L → 2O that computes the set of
all possible output values of O for a given low input be defined as follows:
Op : l �→ {o | o final values of O after executing p(l, h), for each h ∈ H}.

Each low input value l defines a random variable Oout(l) corresponding to
the observed output values in the set Op(l) after running program p with fixed
low level input l. We denote with Oout(L) the function from L to the space of
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random variables as defined above. The random variables corresponding to the
initial values of H are denoted with Hin.

Conventionally, the amount of information that is leaked from H to O can be
measured by quantifying the amount of unknown information about H ’s value
(the secret) w.r.t. the attacker before running the program (the attacker’s initial
uncertainty about the secret) and after observing the output value of O (the
attacker’s remaining uncertainty about the secret). Then we have:

information leaked = initial uncertainty − remaining uncertainty

To measure uncertainty different notions of entropy are in use, for instance,
Shannon entropy [5,21], min entropy [23], and guessing entropy [3,15]. To quan-
tify information leakage, we adapt the definition given in [25].

Given random variables X,Y with sample spaces X and Y, respectively. The
Shannon entropy of X is defined as H(X ) = −∑

x∈X
P(X = x )log(P(X = x )).

The conditional Shannon entropy of X given Y is defined as

H(X |Y ) =
∑

y∈Y

P(Y = y)
∑

x∈X

P(X = x |Y = y)log(P(X = x |Y = y))

Intuitively, H(X ) is the average number of bits required to encode the values
of X and H(X |Y = y) quantifies the average number of bits needed to describe
the outcome of X under the condition that the value of Y is known.

Shannon entropy and its conditional variant are used to quantify information
leakage as follows: the initial uncertainty of the attacker about the input value
of H is interpreted as Shannon entropy of Hin, while the remaining uncertainty
of the attacker about Hin when Oout(L) is known is interpreted as conditional
entropy. Then information leakage can be computed as ShELp(L) = H(Hin) −
H(Hin |Oout(L)) that is the mutual information of Hin and Oout(L).

While Shannon entropy is a natural approach to quantify leakage, it fails to
reflect the vulnerability that high values might be guessed correctly in a single
try. Consider the two programs

p1 ≡ if (h%8==0)l=h else l=1), p2 ≡ l=h&0777

taken from [23]. Using Shannon entropy, the mutual information leakage of pro-
gram p1 is smaller than that of p2, i.e., p1 is considered to be more secure than p2.
However, the risk of leaking the complete value of H in a single run is significantly
higher for p1 than for p2. Smith [23] proposed min entropy as an alternative met-
ric to address this problem. Min entropy H∞(X) of a random variable X equals
−logV(X) where V(X) = maxx∈XP(X = x ). Intuitively, the min entropy of a
random variable X represents the highest probability that X can be guessed
in a single try. Using min entropy to measure information leakage is similar to
Shannon entropy: the initial uncertainty is interpreted as min entropy of Hin

and the remaining uncertainty is the conditional min entropy of Hin given Oout.
The final leakage metric considered in this paper is guessing entropy. Intu-

itively, the guessing entropy of a random variable X is the average number of
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questions of the kind: “Is the value of X equal to x?” that are needed to infer
the value of X. The derivation of the computation of the guessing entropy-based
leakage is similar to the previous ones. Details of min and guessing entropy-based
leakage can be found in the technical report [9].

3 Automatic Inference of a Program’s Secrets

This section describes our attacker model and presents the core logic of our
algorithm to automatically infer a program’s secrets.

3.1 Attacker Model and Overview

We assume that the attacker knows the source code and can run the program
multiple times to observe public outputs. The notation p,L,H , etc. is as above.

Fig. 1. Structure of the algorithm to infer secrets

Figure 1 shows an
overview of our app-
roach. First, the source
code is analysed stati-
cally by symbolic exe-
cution to identify exe-
cution paths, called
risky paths, that might
cause information leak-
age (directly or indi-
rectly). Based on this
analysis a number of
experiments are per-
formed to infer the secret. An experiment is a program run with concrete input
together with the outcome. To perform an experiment the algorithm selects suit-
able low input based on knowledge about risky execution paths and knowledge
accumulated in previous runs. The algorithm terminates when one of the follow-
ing conditions holds: (i) all secrets have been inferred unambiguously; (ii) it can
be determined that no new knowledge can be inferred; (iii) a specified limit of
concrete program runs is reached.

We assume that high variables are not modified by or in between runs. We
use hs ∈ H to refer to a secret, i.e.. concrete (to us unknown) values of H .

3.2 Knowledge Representation of High Input

We fix a program p, a noninterference policy H ��L, and a set O ⊆ L of observ-
able low variables. The concrete value sets L, H, Op(·) are as before. To gain
knowledge about a secret, a series of experiments is performed.

Definition 1. A pair 〈l, o〉hs
with l ∈ L, o ∈ Op(l) is called an experiment for

p and hs denoting the high input value used in the run. As long as it is clear
from the context, we omit the subscript hs.
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Let E = {〈lj , oj〉 | 1 ≤ j ≤ m} be a set of experiments for a program p. Symbolic
execution of p yields a precise logical description of all reachable final states, see
Sect. 2. Recall that Np is the number of all feasible (i.e., with satisfiable path
condition) symbolic execution paths. For each symbolic execution path i, we
obtain its path condition pci and the final symbolic values fv

i of any program
variable v. Let O′ be an ordered set of fresh program variables such that for any
v ∈ O there is a corresponding v′ ∈ O′ and the cardinality of O and O′ is equal,
i.e. |O| = |O′|. The formula

Info(L,H , O′) =
∨

1≤i≤Np

InfoPathi(L,H , O′) (3)

where InfoPathi(L,H , O′) = pci ∧ ∧
v′∈O′ v′ = fv

i “records” the information
about final values contained in a symbolic execution path. It is true whenever
the variables in L, H , O′ are assigned values l, h, o such that executing p in
an initial state 〈l, h〉 terminates in a final state where the variables in O have
values o. For a concrete experiment 〈l, o〉 formula (3) is instantiated to

Info〈l,o〉(H ) = Info(l,H , o) = Info(L,H , O′)[l, o/L, O′] (4)

This formula is true at the time of running the experiment, because (i) the
taken execution path must be contained in one of the symbolic execution paths,
and (ii) the observed output values must be equal to those obtained by evaluating
the symbolic values with the concrete initial values of the low and high variables.

We write Info〈l,o〉(H ) to emphasize that the truth value of the formula only
depends on the assignment of concrete values to the program variables in H . The
formula Info〈l,o〉(H ) constrains the possible high values and can be seen as the
information about hs that can be learned from experiment 〈l, o〉. The knowledge
about hs gained from all experiments in a set E is then

KE (H ) = K ∅(H ) ∧
∧

〈l,o〉∈E

Info〈l,o〉(H ) (5)

where K ∅(H ) is the initial knowledge about hs that is known before performing
any experiment, for example, domain restrictions. If nothing is known about hs,
then the initial knowledge K ∅(H ) is simply true. The set of all models of KE (H )
contains by construction also the actual secret hs (a simple inductive argument
with base case that K ∅(H ) is satisfied by hs).

We want to design a set of experiments that reduces, as much as possible,
the number of possible concrete values for H that satisfy (5). The smaller this
number is, the more we succeeded to narrow down the possible values for the
secret. In particular, if only one possible value remains, we know the secret.

Some notation: the set of all values of a variable set X that satisfy a formula
ϕ(X) is denoted by Sat(ϕ). Hence, Sat(KE (H )) is the set of all values of H that
satisfy KE(H ). As usual we use |S| to denote the cardinality of a set S.
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Data: p: program to be attacked (with the high input already set); noninterference policy

H 
�L; O ⊆ L: observable low variables; K∅(H ): initial knowledge about H ; maxE:
maximum number of experiments

Result: KE(H ): the accumulated knowledge about H obtained by executing the
experiments E

E ← ∅;
K ← K∅(H );
while |E| < maxE do

(l, leakage) ← findLowInput(E , K);
if leakage > 0 then

execute p with low input l;
o ← values of O when p terminates;

E ← E ∪ 〈l, o〉;
K ← K ∧ Info〈l,o〉(H );

if |SatH (K )| = 1 then
exit while;

end

else
exit while;

end

end

Algorithm 1. Secret inference

Example 2. Consider again the program from Listing 1.1 with l as low variable
and h as high variable. Assume the value of h is 10. Initially, the knowledge
about the value of h is its domain −231 ≤ h < 231.

Given two experiment sets X = {〈5, 0〉, 〈3, 0〉, 〈8, 0〉}, Y = {〈5, 0〉, 〈17,−1〉}.
The knowledge about the secret input value of h that can be gained from X and
Y is KX({h}) = 8 < h < 231 and K Y ({h}) = 5 < h < 17, respectively. Even
though |X| > |Y |, it is the case that |Sat(KY ({h}))| � |Sat(KX ({h}))|, hence
the knowledge about the secret value of h obtained from Y is higher than the
one obtained from X. ��

We want to accumulate maximal knowledge about a secret with as few exper-
iments as possible. In particular, we do not want to perform experiments that
do not create any knowledge gain. Avoiding redundant experiments is essential
to achieve performance.

Definition 2. An experiment 〈l, o〉 is called redundant for KE(H ) if the fol-
lowing holds: ∀h.(KE (h) → Info〈l,o〉(h)).

A redundant experiment 〈l, o〉 gains no new information about a secret hs

for knowledge KE (H ), because KE (h) ∧ Info〈l,o〉(h) ≡ KE (h).

3.3 Algorithm for Inferring High Input

Algorithm 1 implements the core of our approach. The result is a logical formula
that represents the accumulated knowledge about the high variables the algo-
rithm was able to infer. The result can be used as input to an SMT solver or
another model finder to compute concrete models representing possible secrets.

Algorithm 1 receives as input the program p, the symbolic execution result
for p, i.e. p’s SE tree together with all path conditions and symbolic values in the
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final symbolic execution state, the attacker’s initial knowledge, etc. In particular,
the formula Info〈l,o〉(H ) can be computed.

First, the set of already performed experiments E is initialized with the empty
set and the accumulated knowledge K is initialized with the initial knowledge of
the attacker. At the beginning of each loop iteration K contains the accumulated
knowledge of all experiments executed up to now, i.e. K = KE (H ). In the first
loop statement the low input l for a new experiment is determined by method
findLowInput(E ,K ) based on the set of experiments E and the knowledge K
accumulated so far. That method returns also a measure of the leakage expected
to be observed by executing p with the provided low input. The method returns
0 as leakage only if all low input values would result in redundant experiments.
In its most basic implementation the method returns simply random values and
a positive value for leakage. We discuss more refined implementations in Sect. 4.

If the expected leakage is positive (i.e. something new can be learned), pro-
gram p is executed with the computed low input l and the set of experiments
is extended by the pair 〈l, o〉 where o are the values of the observable variables
when p terminates. In the next step we update the accumulated knowledge by
adding the conjunct Info〈l,o〉(H ). Afterwards, we check whether the accumulated
knowledge uniquely determines the values of the high variables. If this is the case
we know the exact secret and return. Otherwise, we enter another loop itera-
tion until the maximal number of experiments maxE is reached. If the expected
leakage is zero, no useful low input can be found and the algorithm terminates.

4 Finding Optimal Low Input

We aim to provide a more useful implementation of method findLowInput(E )
than the trivial one sketched above. The main purpose of the method is to
determine optimal low input values that lead to a maximal gain of knowledge
about the values of the high variables. We use the security metrics discussed in
Sect. 2.2 to guide this process and show how these can be effectively computed
by employing symbolic execution and parametric model counting. We refer to
the technical report [9] for all proofs of theorems.

4.1 Risky Paths and Reachable Paths

We start with a set of experiments E (|E | = m) and the accumulated knowledge
about the high variables in form of the logic formula KE (H ). We assume the
initial knowledge about secret K ∅(H ) is correct (hs satisfies K ∅(H )), hence hs

also satisfies KE (H ). Our aim is to find the low level input lm+1 for a new
experiment that is most promising for maximal knowledge gain. Next we show
how to avoid generation of low input that would lead to a redundant experiment.

A risky path is a symbolic execution path which might contribute to an
information leakage (see Sect. 2.1).

Definition 3. Let p be a program and Np be the number of all symbolic paths
of p. A symbolic path i (1 ≤ i ≤ Np) is called a risky path for a noninterference
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policy H �� O iff ∃k.(1 ≤ k ≤ Np ∧ Leak(i, k)) is satisfiable. The set of all risky
paths of p is denoted with Risk.

The set of risky paths gives rise to a condition for redundant experiments. If
a given low input never leads to the execution of a risky path, then it does not
contribute to an information leakage and thus the experiment is redundant. The
following theorem characterizes this intuition formally:

Theorem 1. InRisk(L) denotes the formula ∃h.
(
KE (h)∧∧

i/∈Risk ¬pci[h /H ]
)
.

If for some l ∈ L the formula InRisk(l) is false then the experiment 〈l, o〉 is
redundant for KE (H ).

Example 3. The SE tree of the program in Listing 1.1 has four paths with path
conditions pc1 = l < 100 ∧ l = h, pc2 = l < 100 ∧ l < h, pc3 = l <
100 ∧ l > h and pc4 = l ≥ 100. The set of risky paths is Risk = {1, 2, 3}. The
fourth path is not a risky path as it does not contribute to any leak. We have
InRisk({l}) = ∃h.¬(l ≥ 100) ≡ l < 100 indicating that only low input values
less than 100 may lead to any information gain. ��
Definition 4. An SE path i is called a reachable path for KE(H ) iff the fol-
lowing formula is satisfiable:

KE(H ) ∧ pci (6)

RE denotes the set of all reachable paths for KE (H ).

Example 4. (Example 3 cont’d) Assume the initial knowledge about the value of
h is −231 ≤ h < 231 and the secret value of h is 1000. We execute the program in
Listing 1.1 with l = 98. The execution terminates in a state where l has been
set to 0. Using this experiment, we obtain as accumulated knowledge about h:
−231 ≤ h < 231 ∧ ((98 = h ∧ 3 = 0) ∨ (98 < h ∧ 0 = 0) ∨ (98 > h ∧ −3 = 0))
≡ 98 < h < 231. With this knowledge about h, the risky path 3 becomes
unreachable because the formula 98 < h < 231∧l < 100∧l > h is unsatisfiable.
��
Theorem 2. For all experiments 〈l, o〉, it holds that KE (H ) ∧ Info〈l,o〉(H ) ≡
KE (H ) ∧ ∨

i∈RE InfoPathi(l,H , o).

Theorem 2 shows that all unreachable paths can be ignored while construct-
ing the knowledge about hs. Moreover, it allows us to consider only reachable
paths when deducing optimal low input, which we explain in the next sections.

4.2 Quantifying Leakage by Symbolic Execution

We denote the number of assignments of values to the variables in H that satisfy
KE (H ) by SE = |Sat(KE (H ))|. We assume that the actual value of H satisfies
KE (H ), i.e. KE (H ) is correct.
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Definition 5. For a formula g, let V be the set of all program variables occur-
ring in g and let V = X ∪̇ Y be a partitioning. Function CX [Y ](g) is called
parametric counting function iff it returns the number of assignments to the
variables of X that satisfy g (i.e. the number of models) as a function of Y .

Example 5. Given V = {l,h} and g = 0 ≤ h < 100∧h ≥ l∧0 ≤ l < 100. Then
the number of models of h satisfying g depends on l and can be determined for
any value of l satisfying 0 ≤ l < 100 by C{h}[{l}](g) = 100 − l. ��

We want to extend the experiment set E by adding a new experiment 〈l, o〉
such that the observable leakage (knowledge gain on high variables) is as high as
possible. The following theorem provides an iterative method to compute the
different leakage measures from Sect. 2.2 based on counting the models
of KE (H ).

Theorem 3. Let E be an experiment set and KE (H ) the knowledge about the
high variables. If the probability distribution of the values for H is uniform,
the Shannon entropy-based ShELp(L), the min entropy-based MELp(L), and the
guessing entropy-based GELp(L) leakages can be computed as follows:

ShELp(L) = log(SE ) − 1
SE

∑

o∈Op(L)

(
CH [L](g(L,H , o))log(CH [L](g(L,H , o)))

)

GELp(L) =
SE + 1

2
− 1

2SE

∑

o∈Op(L)

(
CH [L](g(L,H , o))(CH [L](g(L,H , o)) + 1)

)

MELp(L) = log(CO′ [L](∃h.g(L, h,O′))) (O′ as defined in Sect. 3.2)

where g(L,H , O) = KE(H ) ∧ InRisk(L) ∧ ∨
i∈RE InfoPathi(L,H , O).

Intuitively, the theorem states that given the current stage of the experi-
ment with KE(H ) providing the initial uncertainty, the theorem expresses a
characterization of leakages by observing the low outputs.

When pci and the symbolic observable output values f
O

i are linear expres-
sions over integers, the computation of CH [L](. . .) and CO′ [L](. . .) can be reduced
to counting the number of integer points in parametric and non-parametric poly-
topes for which efficient approaches (and tools) exist [24].

4.3 Method findLowInput

Algorithm 2 shows detailed pseudo code of method findLowInput . It computes
the optimal low input values for a given leakage metric together with the com-
puted leakage. First, the set of reachable paths RE is determined by checking
the reachability of all paths using formula (6). If no reachable paths exist or all
reachable paths are not risky, the algorithm exits and returns 0 as leakage value
(in that case the low input values are irrelevant). Otherwise, the optimal low
input values for the leakage metric are computed.
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Data: Set of performed experiments E , current knowledge KE (H )

Result: (l, leakage): optimal low input value and corresponding leakage

RE ← findAllReachablePaths(KE(H ));

if |RE | > 0 ∧ RE ∩ Risk 
= ∅ then
QLeak(L) ← appropriatly instantiated entropy formula;

l ← findL2Maximize(QLeak(L));

if l = null then

l ← random value that does not appear in E ;
end

leakage ← QLeak(l);

else

l ← null;
leakage ← 0;

end

Algorithm 2. Implementation of method findLowInput

Here QLeak(L) is one of ShELp(L), GELp(L), MELp(L) according to the chosen
security metric. The low input values are determined by solving the optimization
problem: argmax l∈L

QLeak(l). In case of ShELp(L) and GELp(L) this is equivalent
to minimizing the sum expression in the corresponding formula of Theorem 3.

4.4 Choosing a Suitable Security Metric

Choosing the right security metric for a given program plays an important role
for finding optimal low input values. The choice influences the computational
complexity of the optimization problem as well as the quality of the found low
input. It turns out that computing the Shannon and guessing entropy-based
metrics is significantly more expensive than the min entropy-based metric. The
reason is that min entropy-based leakage merely requires to estimate the cardi-
nality of the observable output values, while the two others require to enumerate
each possible output value (but can find better low level input).

Consequently, the Shannon and guessing entropy-based leakage metrics are
only feasible for programs whose observable output (i) either depends only on
the chosen SE path, but not on the actual values of the low or high variables (i.e.
each SE path assigns only constant values to the observable variables); (ii) or the
output values depend only on the low input (i.e. for a specific concrete low input,
their concrete value can be determined by evaluating the corresponding symbolic
value f). For all other programs, determining the possible concrete output values
is too expensive in practice. We illustrate (for space reasons only for case (i)
described above) how the Shannon and guessing entropy-based leakage metrics
can be used.

Let i be a reachable path with path condition pci and symbolic output values
fO
i . By assumption (i), the symbolic values in fO

i are constants (i.e. independent
of any program variables), so they can be evaluated to concrete values oi. We
may assume that the output values for all SE paths i �= j differ, hence oi �= oj
(otherwise, paths i, j are merged into one with path condition pci ∨ pcj). Fur-
ther, Op(L) = {oi|i ∈ RE}, because we only consider reachable paths. Hence, we
can conclude that for all i, j ∈ RE with i �= j the formula InfoPathi(L,H , oj)
is equivalent to false and InfoPathi(L,H , oi) simplifies to pci. We use this to
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simplify the definition of g in Theorem 3 to g(L,H , oi) ≡ KE (H )∧pci. The com-
putation of ShELp(L) and GELp(L) becomes now significantly cheaper, because
the cardinality of the set of possible observable outputs is bound by the number
of reachable paths and only path conditions need to be considered.

Example 6. (Example 3 Cont’d) For our running example we already identified
the set of risky paths as Risk = {1, 2, 3} and obtained InRisk(l) = l < 100.
A closer inspection of the program reveals the following: as long as our only
knowledge about h is that its value is within an interval [a, b] then choosing the
arithmetic middle b+a

2 for the input value of l is the best choice.
The initial knowledge about h is that its value is between −231 and 231 − 1,

hence, the best choice is 0 or −1. We show that the solution computed automat-
ically by our algorithm reaches the same conclusion. To avoid redundant experi-
ments, we know already that l must be chosen such that l < 100 (= InRisk(l)).
Let ϕ denote −231 ≤ h < 231 ∧ l < 100. From the symbolic output values, we
obtain O{l} ⊆ {3, 0,−3} and:

g(l,h, 3) = ϕ ∧ h = l g(l,h, 0) = ϕ ∧ h > l g(l,h,−3) = ϕ ∧ h < l

g(l,h,l′) = ϕ ∧ (
(l = h ∧ l′ = 3) ∨ (l < h ∧ l′ = 0) ∨ (l > h ∧ l′ = −3)

)

where l′ is a new program variable representing the final value of l. Model
counting (we used the tool Barvinok [24]) yields the following functions:

C{h}[l](g(l,h, 3)) =

{
1, if − 231 ≤ l < 100
0, otherwise

C{h}[l](g(l,h, 0)) =

⎧
⎪⎨

⎪⎩

231 − 1 − l, if − 231 ≤ l < 100
0, if l ≥ 100
232, otherwise

C{h}[l](g(l,h,−3)) =

{
231 + l, if − 231 ≤ l < 100
0, otherwise

C{l′}[l](∃h.g(l,h,l′)) =

⎧
⎪⎨

⎪⎩

3, if − 231 < l < 100
2, if l = −231

1, otherwise

From the final function we see that the maximum leakage measured by
the min entropy-based metric is log 3 for all values of low input in the range
(−231, 100). This restricts the choice of a suitable value for l only slightly. Com-
putation of the maximal leakage for the Shannon and guessing entropy-based
metrics requires more effort. Using the optimizers Bonmin and Couenne1 with
the first three functions, we get as result l = 0 which meets our intuition.
1 www.coin-or.org/Bonmin and projects.coin-or.org/Couenne.

http://www.coin-or.org/Bonmin
http://projects.coin-or.org/Couenne
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Listing 1.2. Listing 1.1 with specification annotations

1 public class RelaxPC {
2 public int l; cprivate int h;
3 /*! l | h ; !*/
4 /*@ requires -2147483648 <= h && h < 2147483648; @*/
5 public void check(){
6 if (l < 100) { ... } ...
7 }
8 }

Moreover, the maximum Shannon entropy leakage when choosing l = 0 is
approximately 1, i.e. 1 bit of h is revealed. For this program, the Shannon
and guessing entropy-based metrics perform significantly better than the min
entropy-based metric. The latters’ successive application generates a series of
experiments that performs binary search to uncover the secret. ��

5 Implementation and Experiments

5.1 Implementation

We implemented the approach described above on top of the KEG tool [8].
KEG is used to create failing tests for insecure Java programs. The information
flow policy specification is provided in terms of source code annotations. KEG
supports noninterference and delimited information release policies. For loops
and (recursive) methods KEG supports loop invariants and method contracts.
Beside primitive types, object types are also supported.

Listing 1.2 shows the annotated Java code from Listing 1.1. Line 3 contains
a class level specification that forbids any information flow from the high vari-
able h to the low variable l. The check method’s precondition in line 4 specifies
the initial knowledge about h. The program is given to our tool which performs
the analysis explained in the previous sections and illustrated in Fig. 1. Our
implementation supports the computations described in Sect. 4 and outputs the
corresponding optimisation problems as AMPL [10] specifications. This makes
it possible to use any optimizer supporting the AMPL format. Currently, KEG
uses a combination of two open source optimizers, Bonmin and Couenne, as
well as the commercial optimizer Local Solver [4]. For model counting we use
Barvinok [24]. The latter only supports counting for parametric polytopes, which
restricts the use of the secret inference feature to programs with linear path con-
dition and symbolic output expressions. This restriction does not affect KEG’s
other features, including leak detection and leak demonstrator generation.

5.2 Experiments

For the running example, KEG detects an information flow leak for the specified
noninterference policy. In case the high variable has a value greater than 99, KEG
stops after one experiment and returns 99<h< 2147483648 as the accumulated



Inferring Secrets by Guided Experiments 283

knowledge, which is all that can be learned. However, if h is less or equal than
99, KEG automatically extracts the exact value of h after only 31 experiments
when using the Shannon or guessing entropy-based metric.

In addition, we evaluated our approach on a sample of insecure programs
under the assumption that for any program the attacker knows nothing about
the secret except that it is a 32 bit integer. Loop specifications and method
contracts are supplied for programs containing unbounded loops and recursive
method invocations. The tool has been configured to terminate its attack when it
was either able to infer the values of the high variables, the maximum achievable
knowledge has been reached, or the number of experiments exceeded the limit
of 32. The evaluation was performed on an Intel Core i5-480M processor with
4GB RAM and Ubuntu 14.04 LTS. The results are shown in Table 1.

Table 1. Case study statistics

File name #SP/RP High input Shannon entropy Min entropy Guessing entropy

#RB/E T(s) #RB/E T(s) #RB/E T(s)

PassChecker 2/2 2135451222 0/32 159 0/32 13.3 0/32 139.3

RelaxPC 4/3 -1208665253 32/31 31.7 1/32 6.9 32/31 29.4

MultiLows 6/3 395444738 32/20 22.6 1/32 7.5 32/22 24.3

ODependL 4/3 -13484756 1/1 0.9 1/1 0.2 1/1 0.3

ODependL 4/3 95464630 32/31 29.8 1/32 6.7 32/31 29.6

ODependLH 6/5 -941087637 n/a n/a 32/1 0.7 n/a n/a

ODependLH 6/5 23269332 n/a n/a 1/1 0.7 n/a n/a

LoopPlus 3/2 -552256949 n/a n/a 1/1 0.2 n/a n/a

LoopPlus 3/2 1707132530 n/a n/a 32/1 1.3 n/a n/a

EWallet 3/2 692935244 n/a n/a 21/32 10.1 n/a n/a

#(SP/RP): nr of Symbolic Paths/Risky Paths
#(RB/E): nr of Revealed Bits/necessary Experiments T(s): Time for experiments (seconds)
(available at www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/)

Discussion. Table 1 shows that using min entropy to guide experiment gener-
ation is in most cases the fastest option, but it lags often behind the other
entropies regarding the amount of inferred information, because it considers

Fig. 2. Bits revealed per experiment

merely the number of output val-
ues. The Shannon and guessing
entropy-based metrics can only
be used for analysing the pro-
grams PassChecker, RelaxPC,
MultiLows, and ODependL, bec-
ause only those fall into the
class of programs character-
ized in Sect. 4.4. For these pro-
grams (exception PassChecker)
the Shannon and guessing entropy-
based metrics turn out to be very
effective. Both reveal almost 1
bit per experiment.

https://www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/
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Figure 2 compares for program RelaxPC the number of bits revealed after
each experiment for each of the supported metrics and with a simple exhaustive
brute force attack (the latter could be lucky and hit the secret in one of the first
32 attempts). For this program we can see that in case of the min entropy-based
metric the first experiment (which chose 0 as low level input) manages to reveal
about one bit of information, namely that the secret’s value is below 0 and stalls
afterwards. The reason is that under the assumption of a uniform distribution
the min entropy-based metric considers any possible choice of l between −231

and 99 to be equally good. Consequently, the min entropy-based metric does not
perform significantly better than a brute force attack. The Shannon and guessing
entropy-based metrics perform best, extracting almost one bit per experiment
and reveal the complete secret after 31 steps.

The program PassChecker is a simple password checker, leaking only whether
the given input is equal to the secret or not. The amount of leakage does not
depend on the low input and all entropy-based approaches perform equally bad
as random experiments or exhaustive brute-force attacks.

For programs whose observable output depends on high variables (ODe-
pendLH, LoopPlus and EWallet), Shannon and guessing entropy are practically
infeasible as the range of observable values is too large. However, min entropy is
still applicable and quite effective, as it leads to the generation of low input for
paths on which the observable output depends on the high input. Observe that
LoopPlus and EWallet contain unbounded loops and recursive method calls.

The programs ODependL, ODependLH and LoopPlus witness the fact that
successful secret inference may also depend on the values of high variables. The
reason is that in these programs the high variable influences the taken symbolic
execution path and the final output values, which renders the set of reachable
paths value-dependent on high variables. Hence, the quality of the generated
experiments depends as well on the high variables.

6 Related Work

An information-theoretic model for an adaptive side-channel attack is proposed
in [15]. The idea of the attacker strategy is to choose at each step the query that
minimizes the remaining entropy. This is achieved by enumerating all possible
queries to choose the best one, which is rather expensive. In contrast our app-
roach quantifies the potential leakage as a function of low input, and hence, we
can use efficient available optimizers to find the optimal input value.

Pasareanu et al. [19] propose a non-adaptive side-channel attack to find low
input that maximizes the amount of leaked information. In contrast to our app-
roach, only path conditions are considered, but not symbolic states. Hence, they
cannot measure leakage caused by explicit information flow. The authors of [12]
define a quantitative policy which specifies an upper bound for permitted infor-
mation leakage. The model checker CBMC is used to generate low input that
triggers a violation of the policy. Both of [12,19] use channel capacity, that is
measured via the number of possible observable output values, as their leakage
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metric. Thus their generated low input is often not the optimal one: for example,
in case of Listing 1.2, we are able to generate a sequence of low inputs for l, each
of which extracts nearly 1 bit of information, allowing to find the exact secret
after 31 experiments. Their approach can only return a single, arbitrary input
for l ∈ (−231, 100), hence, using it for an attack would not perform better than
brute force. Both approaches require a bound on the number of loop iterations or
the recursion depth, whereas we can deal with unbounded loops and recursion.

Low input as a parameter of quantitative information flow (QIF) analysis is
also addressed in [18,25]. In [25], the authors only analyze the bounding problem
of QIF for low input, but do not provide a method to determine a bound for the
leakage and they do not discuss how to find the input maximizing the leakage.

In [14] a precise quantitative information flow analysis based on calculating
cardinalities of equivalence classes is presented. The author assumes an optimally
chosen set of experiments, but does not describe how to construct such a set.

The authors of [6] model attacker knowledge as a probability distribution of
the secret and show how to update such knowledge after each experiment. In [3],
the authors briefly discuss the correlation between the set of experiments and the
attacker’s knowledge. However, none of these papers describes how to construct
an optimal experiment set that maximizes the leakage. Other approaches in
quantitative information flow [16,17,20] do not address low input in their analy-
ses and consider only channel capacity with the same drawbacks as discussed
earlier.

7 Conclusion and Future Work

We presented an approach and a tool to automatically infer secrets leaked by an
information flow-insecure program. It features a novel, adaptive algorithm that
(i) combines static and dynamic analysis, (ii) uses leakage metrics that depend
on low input (which, to the best of our knowledge, sets it apart from any existing
work) to guide experiment generation and (iii) provides a logic characterisation
of the search space for the secret that can be put into a model finder to extract
the secrets. The approach can deal with programs containing unbounded loops
and recursive methods. The viability of the method has been demonstrated with
a number of representative benchmark programs that clearly illustrate its poten-
tial and its current limitations. The latter are mainly derived from restrictions
in current parametric model counting tools so that any progress in this area will
directly benefit our approach as well. We plan to integrate specification gener-
ation techniques to reduce the need for user-provided annotations such as loop
invariants. We will also look at non-uniform distributions of secret values.
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