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Abstract. Natural languages contain regular, context-free, and context-
sensitive syntactic constructions, yet none of these classes of formal lan-
guages can be identified in the limit from positive examples. Mildly
context-sensitive languages are capable to represent some context-
sensitive constructions such as multiple agreement, crossed agreement,
and duplication. These languages are important for natural language
applications due to their expressiveness, and the fact that they are not
fully context-sensitive. In this paper, we present a polynomial-time algo-
rithm for inferring subclasses of internal contextual languages using posi-
tive examples only, namely strictly and k-uniform internal contextual lan-
guages with local maximum selectors which can contain mildly context-
sensitive languages.

Keywords: Internal contextual grammar with local maximum selec-
tors · Identification in the limit from positive data

1 Introduction

In theoretical computer science, formal language theory is one of the fundamental
areas. This study has its origin in Chomskian grammars. Contextual grammars
which are different from Chomskian grammars, have been studied in [9,13,14,17]
by formal language theorists, as they provide novel insight into a number of issues
central to formal language theory. In a total contextual grammar, a context
is adjoined depending on the whole current string. Two special cases of total
contextual grammars, namely internal and external are very natural and have
been extensively investigated. (External) Contextual grammars are introduced
by Marcus in 1969 [9] with a linguistic motivation in mind. An internal contextual
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grammar generates a language starting from a finite set of strings (the base) and
iteratively adjoining to its contexts outside the current string. In other families
of contextual grammars, such as internal contextual grammars [9], the contexts
are adjoined inside the current string.

According to [12], it is known that many classes of formal languages, such
as regular and context-free, cannot be learned from positive data only. Now it
natural to look for subclasses of these languages which can be identified in the
limit from positive data only.

In this paper, we present a polynomial-time algorithm for learning Strictly
and k-uniform internal contextual languages with local maximum selector
(SLICGM , k−UICGLM ) from positive data. Using these two languages, mildly
context sensitive languages can be generated. That is, they can express the
context-sensitive syntactic constructions that are most prevalent in natural lan-
guages, such as multiple agreement, crossed agreement, and duplication [3].

Currently, there is an algorithm known for inferring the subclasses of the class
of internal contextual grammars with finite selector set [10]. Also, polynomial
time inferring algorithm is available for very attractive subclasses of the class of
external contextual grammars [8].

The paper is organized as follows. Section 2 describes the basic classes of
contextual grammars in more detail. Section 3 describes the newly defined sub-
classes. In Sect. 4, we discuss the generative power of the subclasses. Sections 5,
6 and 7 present the pseudocode and discuss the complete algorithm in detail
along with the correctness. Section 8 discusses the characteristic sample of the
algorithm. Running time complexity of the algorithm has been described in
Sect. 9. In Sect. 10, we present a complex example for better understanding of
the algorithm.

2 Basic Classes of Contextual Languages

This section recalls the definition of the basic classes of contextual languages.
[11] For an alphabet Σ, we denote by Σ∗ the free monoid generated by Σ, by λ
its identity, and Σ+ = Σ∗ − {λ}.

Definition 1. A Contextual grammar is a construct G = (Σ,A, (sel1, C1),
(sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where Σ is an alphabet, A ⊂ Σ∗

is a finite set, called the axiom set, seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selec-
tors, and Ci ⊂ Σ∗ ×Σ∗ where 1 ≤ i ≤ k, and Ci is a finite set of contexts. There
are two basic modes of derivation as follows. For two words x, y ∈ Σ∗, we have
the internal mode of derivation:

x =⇒in y iff x = x1x2x3, y = x1ux2vx3, x2∈seli, (u, v)∈Ci, for some 1 ≤ i ≤ k.
The external mode of derivation:
x =⇒ex y iff y = uxv, x ∈ seli, (u, v) ∈ Ci, for some 1 ≤ i ≤ k. The language
generated by G with respect to each of the two modes of derivation is: Lα(G) =
{w ∈ Σ∗ | x ∈ A, x =⇒∗

α w}, for α ∈ {in, ex}, where =⇒∗
α denotes the reflexive

- transitive closure of =⇒α.
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A contextual grammar with internal (external) mode of derivation is called an
internal (external) contextual grammar. The corresponding languages are called
an internal contextual languages and external contextual languages.

If sel1, sel2, . . ., selk are languages in the family of regular languages REG,
then G is said to be with REG choice. The family of languages generated by
contextual grammars with REG choice in the mode α of derivation is denoted
by Lα(REG).

Now consider the local maximum selector in internal local mode of derivation.
One natural restriction has been imposed on the use of selectors as seen in [15]. In
fact, there is a need for some length conditions on the selector to be used, such as
minimality or maximality. It implies that we can put the restriction that any time
when a context is adjoined around a selector, no factor of the selector (minimal
case) can be used as a selector, or no word containing the current selector as a
factor can be used as a selector (maximal case). This restriction can be imposed
with respect to the specified pair of selectors or to the whole grammar. Now we
discuss some details about the maximal case only because using maximal use of
selectors, we will be able to generate mildly context-sensitive family of languages
which is one the most important component to characterize natural languages.

Definition 2. Given a contextual grammar G = (Σ,A, (sel1, C1), (sel2, C2),
. . ., (selk, Ck)), we define, for two words x, y ∈ Σ∗, the local maximal mode of
derivation in G is defined as follows: x =⇒lm y iff x = x1x2x3, y = x1ux2vx3,
for x2 ∈ seli, (u, v) ∈ Ci, i ≤ i ≤ k and for no x′

1, x
′
2, x

′
3 ∈ seli, x = x′

1x
′
2x

′
3, x

′
2 ∈

seli, x2 a factor of x′
2. Here lm denotes the local maximal mode.

Example: Consider the following contextual grammar

– G = ({a, b, c}, {abc}, (b+, {(a, bc)}))

Now we show one sample derivation - here [] denotes the contexts and underlined
string is the selector.

– abc =⇒G a[a]b[bc]c
– aabbcc =⇒G aa[a]bb[bc]cc
– aaabbbccc =⇒G aaa[a]bbb[bc]ccc
– The language generated by G is Llm(G) = {anbncn | n ≥ 1}.

3 Subclasses of the Class of Internal Contextual
Grammars with Local Maximum Selectors

In this paper our learning paradigm is identification in the limit which is defined
as follows:

Definition 3 [12]. Method M identifies language L in the limit if, after a finite
number of examples, M makes a correct guess and does not alter its guess there-
after. A class of languages is identifiable in the limit if there is a method M such
that given any language of the class and given any admissible example sequence
for this language, M identifies the language in the limit.
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Here our main focus is on designing an identification algorithm to infer internal
contextual languages, but according to Gold model [12], no superfinite class of
languages is inferable from positive data only. A class of languages which consists
of all finite languages but atleast one infinite language, is called super finite class
of languages. From [10], we have the following result.

Theorem 1 [10]. The class of internal contextual languages (ICL), is not infer-
able from positive data only.

As we know that the class ICL is not inferable from positive data only, it is
natural to look for subclasses of these languages which can be identified in the
limit from positive data only. We now define strictly internal contextual grammar
with local maximum selectors (SICGLM ) and k-uniform internal contextual
grammar with local maximum selectors (k − UICGLM ).

Definition 4. A strictly internal contextual grammar with local maxi-
mum selectors (SICGLM ) is an internal contextual grammar G =
(Σ,A, (sel1, C1), (sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where

– Σ is the alphabet.
– A ⊂ Σ∗ is a finite set, called axiom set.
– seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selectors.
– Ci ⊂ Σ∗ × Σ∗, are sets of contexts.

with the following restrictions,

– If the rule is (seli, Ci) where Ci = {(ui, vi)} then first(ui) �= first(vi) where
first(u) denotes the first alphabet of u.

– for each selector, there exists exactly one context (u, v).

The language generated by SICGLMG is given by Lslm(G) = {w ∈ Σ∗ |
x =⇒∗

slm w, x ∈ A} where =⇒slm denotes the one step derivation in strictly
local maximal mode. Now, SLM denotes the family of languages generated by
SICGLM .

Now we present two examples of SICGLM , G1, G2:

– G1 = ({a, b, c}, {abc}, (b+, {(a, bc)})) where first(u) = a �= first(v) =
b, L(G1) = {anbncn | n ≥ 1}. For better understanding, see the derivation
example of Definition 2.

– G2 = ({a, b, c, d}, {abcd}, (ab+c, {(a, c)}), (bc+d, {(b, d)})) where first(u) =
a �= first(v) = b and first(u) = b �= first(v) = d, L(G2) = {anbmcndm |
n ≥ 1}.

Definition 5. A k - uniform internal contextual grammar with local max-
imum selectors (k − UICGLM ) is an internal contextual grammar G =
(Σ,A, (sel1, C1), (sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where

– Σ is the alphabet.
– A is the finite subset of Σ∗, called axiom set.
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– seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selectors.
– Ci ⊂ Σ∗ × Σ∗, are sets of contexts.

With the following restrictions, if the rule is (seli, Ci) where Ci = {(ui, vi)}
then |u| = |v| = k.

– The language generated by a k − UICGLM G is given by Lklm(G) = {w ∈
Σ∗ | x =⇒∗

klm w, x ∈ A} where =⇒klm denotes the one step derivation in
k-local maximal mode. Now, KLM denotes the family of languages generated
by k − UICGLM .

Now we present a k −UICGLM G3 = ({a, b, c}, {c}, ({c}{a, b}∗, {(a, a), (b, b)})),
Lklm(G3) = {wcw | w ∈ {a, b}∗}.

4 Power of the Subclasses

In this section we discuss the generative power of these subclasses. We know that
several natural languages are not context-free and these languages are consisting
of non-context-free properties. Thus, in order to obtain formal grammars focus-
ing to model natural languages, we have to look for classes of grammars that
are able to generate non-context-free languages. On the other hand they should
not be too powerful, that means they should not generate languages without
any linguistic relevance. So, the idea of keeping the generative power under con-
trol has lead to the notion of mildly context-sensitive family of languages. The
properties of such families are the following [11]:

1. It contains all three basic non-context-free constructions in, that is,
– multiple agreements: L1 = {anbncn | n ≥ 1}
– crossed agreements: L2 = {anbmcndm | n,m ≥ 1}
– duplication: L3 = {wcw | w ∈ (a + b)∗}.

2. All the languages in the family, are polynomial time parsable.
3. It contains semilinear languages.

Here, our defined subclasses can generate three basic non-context-free
constructions.

Theorem 2

(i) L1, L2 ∈ SLM (See examples of Definition 4).
(ii) L3 ∈ KLM (See example of Definition 5).

Lemma 1. KLM − SLM �= φ.

Proof. From Theorem 2 we know that L3 ∈ KLM . The appropriate gram-
mar to generate L3 is G3 = ({a, b, c}, {c}, ({c}{(a + b)∗}, {(a, a), (b, b)})) where
k = 1. But L3 /∈ SLM , as we know from Definition 3 that if the rule is (seli, Ci)
where Ci = {(ui, vi)} then first(ui) �= first(vi). Here it needs to be always
first(ui) = a = first(vi) or first(ui) = b = first(vi). 	
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Lemma 2. SLM − KLM �= φ.

Proof. From Theorem 2, we can conclude that L1, L2 ∈ SLM . The appropri-
ate grammar to generate L1 and L2 are respectively G1 = ({a, b, c}, {abc},
(b+, {(a, bc)})) where |u| = |a| = 1 and |v| = |bc| = 2 and G2 = ({a, b, c, d},
{abcd}, (ab+c, {(a, bc)}), (bc+d, {(b, d)})) where for selector ab+c the required
contexts are always |u| = |a| = 1 and |v| = |bc| = 2. So it can be understood
easily that L1, L2 /∈ KLM . 	

Lemma 3. SLM ∩ KLM �= φ.

Proof. L5 = {ancbn | n ≥ 0}, L5 ∈ SLM ∩ KLM . The appropriate grammar to
generate L5 is G = ({a, b, c}, {c}, (c, {(a, b)})) and it satisfies Definitions 4 and 5.

	

Theorem 3. SLM is incomparable with KLM and but they are not disjoint.

Proof. We can conclude this fact from Lemmas 1, 2 and 3. 	


5 Identification of Subclasses of Internal Contextual
Languages with Local Maximum Selectors and
Correctness

In this section, we propose an identification algorithm IA to infer SICGLM from
positive examples only. We recall the notion of an insertion rule. The insertion
operation is first considered by Haussler in [6] and based on the operation, inser-
tion systems are introduced by Kari in [7]. Informally, if a string α is inserted
between two parts w1 and w2 of a string w1w2 to get w1αw2, we call the opera-
tion as insertion.

Our identification algorithm IA takes finite sequences of positive examples
itj in the different time interval tj where j ≥ 1. Our goal is to find out SICGLM ,
such that IPS ⊆ L(G) where IPS is the input set. The algorithm works in the
following way.

• After receiving the first set as an input, based on the size of each input, firstly
the algorithm determines the axiom.

• Then it defines insertion rules in order to find out the contexts and selectors
from input example.

• After that, insertion rules are converted into 1-sided1 contextual rules.
• Next it updates with new contextual rules if the next input cannot be gener-

ated by the existing contextual rules, that is called the correction phase. All
the guessing will be done in a flexible way in the sense that the correction
can be done at every instance.

• Then it will convert 1-sided contextual rule into 2-sided contextual rule to
take care of over generalization, that could be the temporary guess gj at
particular time interval tj , about the unknown grammar.

• Finally we will take care of maximal use of selectors.
1 In an 1-sided contextual rule either left context is λ or right context is λ.
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Lemma 4. Let gt1 , gt2 , . . ., gti be the sequences of guesses (grammar) about
the unknown grammar produced by identification algorithm IA at different
time interval t1, t2, . . ., ti based on different information, it1 , it2 , . . ., iti such that
gf = gf+1.

Proof. The behavior of the algorithm, in particular, there is an upper bound(in
terms of the size the current input set) to make the guess gi about the unknown
grammar where L(gi−1) ⊂ L(gi). Thus, there exist a f ≥ 1 such that gf = gf+1

where L(gf−1) ⊂ L(gf ). So, we conclude this lemma. 	

From this, we have the following result.

Theorem 4. SLM is identifiable in the limit from positive examples only.

6 Pseudocode of Our Algorithm

In this section we present the pseudocode of our algorithm IA and also in further
subsections we explain that in detail.

1: axiom ← FIND − SMALLEST (IPS)
2: inser ← GENERATE − INSR(axiom, si)
3: 1 − Sided − Contextual − Rule ← {}
4: 1 − Sided − Correct − Rule ← {}
5: 2 − Sided − Correct − Rule ← {}
6: Table ← �
7: 1 − Sided − Contextual − Rule.push[CONV ERT − into − CONTEXTUAL −

RULE(inser)]
8: IPS ← REMOV E(IPS, si)
9: for (1 − Sided − Contextual − Rulei ∈ {1 − Sided − Contextual − Rule}) do
10: for (si ∈ IPS) do
11: S ← CHECK − CONTEXTUAL − RULE(1 − Sided − Contextual −

Rulei, si)
12: if S = 1 then
13: 1 − Sided − Correct − Rule.push[1 − Sided − Contextual − Rulei]

14: if S = 0 then
15: 1−Sided−Correct−Rule.push[CORRECTION −CONTEXTUAL−

RULE(1 − Sided − Contextual − Rulei, si)]

16: for (1 − Sided − Correct − Rulei ∈ {1 − Sided − Correct − Rule}) do
17: for (si ∈ IPS) do
18: Table.insert[FIND − NOF − APP − of − EACHRULE − in −

EACHMEMBER(1 − Sided − Correct − Rulei, si)]

19: if TableRowi = TableRowj then
20: 2 − Sided − Correct − Rule.push[MERGE(1 − Sided − Correct − Rulei, 1 −

Sided − Correct − Rulej)]

21: LOC − MAX − SELi ← LMS(seli, ui, vi)
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6.1 Finding Axiom - Pseudocode-Step: 1

axiom ← FIND − SMALLEST(IPS):

– case 1: It finds the smallest string from the current IPS. The smallest string
will be considered as an axiom.

– case 2: If two strings are given with same length then both of them will be
there in the axiom set A.

– case 3: At any point of time a string can be given as an input which is
smaller than some members of the existing axiom set. In such cases, if the
strings existing in the axiom set can be generated from this new smaller string,
then this new smaller string will replace them.

– case 4: If no member of the existing axiom set can be generated from the
new smaller string then the new smaller string will be added to the axiom set
as a new member of the axiom set.

Let IPS be the set of input strings. IPS = {s1, s2, . . ., sk} where sj =
sj1sj2 . . . sjr, 1 ≤ j ≤ k, 1 ≥ r. (i.e., sj is of length r). Then the axiom will
be Min(IPS) where Min(A) denotes the minimum size member of set A.

6.2 Defining Insertion Rule and Converting It into Contextual Rule
- Pseudocode-Steps: 2, 7, 8

– insr ← GENERATE − INS(axiom, si): It generates the insertion rule
from axiom and any member (si) of input set IPS. The output of the function
will be stored in insr as an insertion rule.

– 1 – Sided – Contextual – Rule.push[CONVERT – into – CONTEXT
–UAL – RULE(inser)]: It converts insr into 1−Sided−Contextual−Rule
and push that into 1 − Sided − Contextual − Rule set.

– IPS ← REMOVE(IPS, IPi): It removes the current input member IPi

from IPS.

We now shortly describe about the intuitive idea of the parts 1–4. We try to
identify the selectors from the axiom and contexts from examining input. If the
format of the insertion rule is uxv where u, x, v ∈ Σ+ are left context, inserted
portion, and right context respectively.

– Let the axiom be sa
j = sa

j 1
sa

j 2
sa

j 3
. . . sa

j n
and the examining (scanning) string

be se
j = se

j1
se

j2
. . . se

jr
where r = length of the examining string. Now from the

axiom we can have the following consideration. In the following four parts, if
a string x is a substring of y, then it is denoted by x ∈ sub(y).

– Part 1: let the initial rule be (u, x, v)ins where u = sa
j 1

, v = sa
j 2

sa
j 3

. . . sa
j n

,
check whether any |x| ≤ r exists with uxv ∈ sub(se

j) or not. If yes then fix
that x (i.e., and go to part 3. Else, go to part 2.

– Part 2: Remove the last alphabet of the right context v and the rule becomes
(u, x, v)ins where u = sa

j 1
, v = sa

j 2
sa

j 3
. . . sa

j n−1
, Check whether any |x| ≤ r

exists with uxv ∈ sub(se
j) or not, if yes, go to part 3. Else, go to (recursively)

part 2 until the rule becomes of the form (u, x, v) | u = sa
j 1

, v = sa
j 2

. Then go
to part 4.
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– Part 3: Conversion into Contextual Rule: 7. After getting correct
insertion rules (which necessarily satisfy uxv ∈ sub(se

j)), they are converted
into 1-sided contextual rules as follows: (u, x, v)ins −→ (sel, (u, v))icg where
selicg = uins, vicg = x, uicg = λ and the omitted right context vins will be
treated as the left context uins for the next insertion rule. Now, we remove
(ux)ins as a substring from the examining string and only uins from the
axiom. Once we get a selector and associated context with it, we have the
following conditions for each insertion rule.

– Condition 1: If (|u| + |x| + |v|)ins = |E| where |E| denotes the length of
examining string, it implies that only one rule has been applied and we have
obtained that already.

– Condition 2: If (|u|+|v|)ins ≤ |sa
j | where |sa

j | denotes the length of the axiom,
then we remove uins from axiom sa

j , and obtain a new temporary axiom. Also
consider vins = uins for the next insertion rule. Next, it removes (ux)ins as a
substring from se

j and obtain a new temporary input. Here after we continue
our procedure with this temporary axiom and temporary examining input in
the same way.

– Condition 3: If (|u| + |x| + |v|)ins ≤ |E| but (|u| + |v|)ins = |sa
j |, it implies

that some part is still left to scan and that is left context uicg of the first
selector selfirst

icg or right context vicg of the last selector sellast
icg , then we will

include them as a new rule.
(selnew, {umew, vnew})new where unew = uicg, vnew = λ, selnew = selfirst

icg , in
another case, vnew = vicg, selnew = sellast

icg . For these rules, we will never go
for correction.

– Part 4: If uins = sa
j 1

and vins = sa
j 2

, this time we consider uins = sa
j 1

sa
j 2

.
Rest of the axiom part will be considered as right context vins of the new rule
as follows, (u, x, v)ins where u = sa

j 1
sa

j 2
, v = sa

j 3
. . . sa

j n
and go to part 1 until

uins = sa
j 1

sa
j 2

sa
j 3

. . . sa
j n

. In that case, defining insertion rule is not possible.
Here our selection of axiom is wrong, so we need to start with different axiom.

In this section, we get the selectors from axiom and contexts from examining
input. Later on for new input, we may need to change our it for wrong guess
(next section).

6.3 Making Correction and Updating Rules - Pseudocode-Steps:
9–15

– S ← CHECK − CONTEXTUAL − RULE(1 − Sided − Contextual−
Rulei, si): It checks the correctness of 1 − Sided − Contextual − Rulei for
another input.

– If S is true then the correct 1 − Sided − Contextual − Rulei will be pushed
onto set {1−Sided−Correct−Rulei} and continue the process for the next
input.

– CORRECTION–CONTEXTUAL–RULE(1 – Sided –Contextual –
Rulei, si): Otherwise it goes for correction.
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Below we have discussed that if the new examining string is not derivable with
the existing set of contextual rules, then we need to go for correction and updat-
ing with new rules.

Let the rule be Ri : (seli, (ui, vi))icg where ui = λ. Examining string se
j =

se
j1

se
j2

. . . se
jr

. We can represent the examining as X selis
e
jy+1

se
jy+2

. . . se
jy′

seli+1 Z where X,Z ∈ Σ∗ and the remaining parts of the string. The exam-
ining string is presented in this form X selis

e
jy+1

se
jy+2

. . . se
jy′ seli+1 Z because

we make the correction of rule Ri using rule Ri+1, so it is needed to introduce
the seli and seli+1 both.

Proposition 1. In case of correction, we deal with only 1-sided contextual rules
where left context is always empty. (see condition 3 of Subsect. 6.2)

If seli = se
j l

se
j l+1

. . . se
jy

. If selector seli, seli+1 are not present in se
j then new

insertion rule has to be defined again to find out the correct selectors and go
to Sect. 6.2. If defining insertion rule is not possible even after this step, then it
indicates that the chosen axiom is wrong. In that case, we will choose some other
axiom, if available. If no other axiom is available then we add the examining
string into the axiom set as a new member of axiom set (recall that we have
positive examples only).

If vi �= se
jy+1

se
jy+2

. . . se
jy′ , then correction and updating is required. Let vi

be V1V2 . . . Vw and se
jy+1

se
jy+2

. . . se
jy′ be Q1Q2 . . . Qz for convenience sake.

To apply the rule properly the following condition is required, V1V2 . . . Vw =
Q1Q2 . . . Qz where w = z.

Here we are making an analysis to find out the partially equal part (pre-
fix/suffix) of V1V2 . . . Vw and Q1Q2 . . . Qz.

We have shown that the correction part for one rule, in the same way the
correction can be done for other rules.

Theorem 5. If the analysis starts with equality such that Q1 = V1, Q2 =
V2, . . ., Qf = Vs, and Qf+1 �= Vs+1 or f = z or s = w, then we can have four
different type of errors which are stated in terms of following lemmas. (Finding
common prefix part).

Lemma 5. If (f = z and s = w) then it implies that matching is correct, so no
need to make any correction for this rule and the rule is correct.

Lemma 6. If (f = z and s < w) then we infer two new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci ={(ui′ , vi′)}, vi′ =V1V2 . . . Vs = Q1Q2 . . .
Qz, ui′ = λ, seli′ = seli.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = {(u(i+1)′ , v(i+1)′)}, u(i+1)′ =
Vs+1Vs+2. . .Vw, v(i+1)′ = λ, sel(i+1)′ = sel(i+1). 	


Lemma 7. If (f < z and s = w) then we infer two new rules.
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Proof. – Rulei′ : (seli′ , Ci′) where Ci = {(ui′ , vi′)}, vi′ = V1V2. . .Vw = Q1Q2 . . .
Qf , ui′ = λ, seli′ = seli.

– Rule(i+1)′ = (sel(i+1)′ , C(i+1)′) where C(i+1)′ = {(u′
(i+1), v(i+1)′)}, u(i+1)′ =

Qf+1Qf+2. . .Qz, v(i+1)′ = λ, sel(i+1)′ = sel(i+1). 	

Lemma 8. If (f < z and s < w) then we infer three new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci = {(ui′ , vi′)}, vi′ = V1V2. . .Vs = Q1Q2 . . .
Qf , ui′ = λ, seli′ = seli.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where u(i+1)′ = Vs+1Vs+2 . . . Vw, u(i+1)′ =
λ, sel(i+1)′ = seli+1.

– Rule(i+2)′ : Rule(i+2)′ : (sel(i+2)′ , C(i+2)′) where u(i+2)′ = Qf+1Qf+2 . . .
Qz, v(i+2)′ = λ, sel(i+2)′ = seli+1. 	


Theorem 6. If the analysis starts with inequality such that Q1 �= V1, but Qz =
Vw, Qz−1 = Vw−1 . . . Qf = Vs, and Qf−1 �= Vs−1 then we can have three different
type of errors which can be seen in the following lemmas. (Finding common suffix
part).

Lemma 9. If (s = 1, f > 1) then we infer two new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci′ = {(ui′ , vi′)}, ui′ = V1V2 . . . Vw, vi′ =
λ, seli′ = seli+1.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u′
(i+1), v(i+1)′) where

v(i+1)′ = Q1Q2 . . . Qf−1, u(i+1)′ = λ, sel(i+1)′ = seli. 	

Lemma 10. If (s > 1) then we infer three new rules.

Proof. – Rulei′ : (sel′i, C
′
i) where Ci′ = {(ui′ , vi′)}, ui′ = VsVs+1 . . . Vw, vi′ =

λ, seli′ = seli+1.
– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u(i+1)′ , v(i+1)′), v(i+1)′ =

Q1Q2 . . . Qf−1, u(i+1)′ = λ, sel(i+1)′ = seli.
– Rule(i+2)′ : (sel(i+2)′ , C(i+2)′) where C(i+2)′ = (u(i+2)′ , v(i+2)′), u(i+2)′ =

λ, v(i+2)′ = V1V2 . . . Vs−1, sel(i+2)′ = seli. 	

Lemma 11. If Qz �= Rw then we infer two new rules. (In this case Theorem6
is not applicable here because common prefix/suffix part is absent).

Proof. – Rulei′ : (sel′i, C
′
i) where Ci = {(ui′ , vi′)}, vi′ = V1V2 . . . Vw, ui′ =

λ, seli′ = seli.
– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u′

(i+1), v(i+1)′ = Q1Q2 . . . Qz,
u(i+1)′ = λ, sel(i+1)′ = seli. 	


In this section, we must notice that we have different rules with same selectors.
According to Definition 4, for each selector there must be one rule. As we are
inferring 1-sided contextual rule, it does not satisfy our Definition 4. In the next
section we will convert 1-sided contextual rule into 2-sided contextual rule in
order to take care of over generalization.
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7 Controlling over Generalization - Pseudocode-Steps:
16–20

In this section we determine the number of applications of each rule to generate
the given input set. It is presented in table. We put priority in applying rules
where left context is empty and context is smaller in size. If it is found that
without using any rule we can generate full input set then we can ignore that
rule.

– Using steps 16, 17 - we scan all the correct contextual rule for all the member
of input set.

– Table.insert[FIND − NOF − APP − of − EACHRULE − in − EACH
MEMBER(1 − Sided − Correct − Rulei, IPi)]: It finds out the applica-
tion of each rule on each member of the input and insert that record into the
table.

– 2 – Sided –Correct –Rule.push[MERGE(1 – Sided –Correct –Rulei,
1 − Sided − Correct − Rulej)]: In this case if we find that ith row
(TableRowi) and jth row (TableRowj) of the table are same then we merge
these two rules and store as a 2 − Sided − Correct − Rule.

Actually all the rules are 1-sided where left contexts or right contexts are empty
that generates more elements. Thus, to control this over generalization, we check
that how many times each rule is applied in each member of the input set. Rules
which are applied equal number of times in each member, those can be merged
into one rule based on condition.(discussed in Lemmas 12 and 13)

Lemma 12. If consecutive selectors are seli, selj with (j − i) = 1 and left con-
texts(right contexts) are null in both of the rule then we can get 2-sided internal
contextual rule after merging them.

Proof. Here seli, selj denote ith and jth selector, vi, vj are right contexts of them
respectively, and ui, uj are ith and jth left context of them respectively.

– Ri : (seli, (ui, vi))icg, Rj : (selj , (uj , vj))icg.
– case 1: If seli, selj where (j − i) = 1, if vi = vj = λ then rule becomes

Rnew : (selnew, (unew, vnew))icg where selnew = seli, vnew = uj .
– case 2: If seli, selj where (j − i) = 1, if ui = uj = λ then rule becomes

Rnew : (selnew, (unew, vnew))icg where unew = vi, selnew = selj .

Lemma 13. If consecutive selectors are seli, selj with (j − i) = 1 and left con-
texts of ith rule and right context of jth rule is null then we can get 1-sided
internal contextual rule after merging them.

Proof. Here seli, selj denote ith and jth selector, ui, vj are left contexts of ith
rule and right context of jth rule respectively.

– Ri : (seli, (ui, vi))icg, Rj : (selj , (uj , vj))icg.
– If seli, selj where (j − i) = 1, if ui = vj = λ then rule becomes Rnew :

(selnew, (unew, vnew))icg where selnew = seli, vnew = vivj .
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7.1 Finding Maximal Use of Selectors - Step 21

In this subsection we show how to identify regular selector set and use the
maximal idea. In this section we denote our already obtained individual selectors
as SEL.

COM(A,B) computes the common subword between A,B. On the other
hand, PREF (A), SUFF (B) denote the prefix and suffix part of A,B respec-
tively, sel stands for selector.

Lemma 14. For any selector and associated context with it, if COM(PREF
(SEL), SUFF (u)) �= λ or COM(PREF (v), SUFF (SEL)) �= λ then we get
regular selector set and we focus on the maximal use of selectors.

Proof. – COM(PREF (sel)), SUFF (u)): If a rule is (SEL, (u, v))icg where
SEL = X1X2..Xk, u = u1u2. . .um where X1 = uj ,X2 = uj+1, . . .,Xn =
um, j ≥ 1 then the regular selector set becomes SEL = (X1X2. . .Xn)∗

Xn+1

Xn+2.. . .Xk.
– COM(PREF (v), SUF (SEL)): If a rule is (SEL, (u, v))icg where SEL =

X1X2. . .Xk, v = v1v2. . .vm where Xj = v1,Xj+1 = v2, . . .,Xk = vn, j ≥ 1
then the selector set becomes SEL = X1X2. . .(XjXj+2. . .Xk)∗. (see example)

Remark 1. The above algorithm can also be used to identify a k-uniform internal
contextual grammar with local maximum selectors. A required modification is
that k is also given along with the input set.

In this case, at the time of defining insertion rule (Sect. 6.2), we need to focus
on the size of selectors and contexts in terms of column as k is given as an input.
Defining insertion rule should be done in the following way, uxv ∈ sub(se

j) where
|u| = |v| = k.

8 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of charac-
teristic sample. The characteristic sample is a finite set of data from a language
L that ensures the correct convergence of the algorithm on any presentation of
L as soon as it is included in the data seen so far.

Definition 6 (Characteristic Sample - CS). If Let L be a SICLLM then a
finite set CS is called a characteristic sample of L if and only if L is the smallest
SICLLM containing CS.

Consider G1 = ({a, b, c}, {abc}, (b+, {(a, bc)})) where first(u) = a �= first(v) =
b, L(G1) = {anbncn | n ≥ 1}. Here, CS = {abc, aaabbbccc, aabbcc, aaaabbbbcccc}.

When the input set IPS of the identification algorithm IA contains all the
elements of CS, the algorithm converges to a correct final guess for the target
SICLLM . Hence, it is clear from the manner in which the characteristic sample
CS is formed that, the class SLM is identifiable in the limit from positive data.
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9 Time Complexity of Our Algorithm

We analyze the time complexity of our algorithm in two aspects, time for updat-
ing a conjecture and a bound on the number of implicit errors of guesses. We
adapt this idea of time complexity analysis from [16]. Here we make an analysis
of our pseudocode step by step.

– Step 1: If k number of strings are given in the input set, then we need to find
out the size of each member of the set, so here the time complexity depends
on the number of input member k and size of each member of input set. So,
the time taken by step 1 is SumofSize(IPS).

– Step 2: In order to generate all the possible subarrays, it takes polynomial
time in the size of the axiom that is Size(axiom). Also when we search the
substring (uxv) in the examining input then it takes even linear time of the
size of the examining input that is Size(ExaminingInput).

– Step 3–6: It is only declaration.
– Step 7, 8: It can be seen easily that these two steps take constant time. Also

removing one element from the input set, takes constant time. 5
– Step 9–15: Let k be the number of input arrays in the input set. If all the rules

are correct then we do not need to go for any correction, so time complexity
depends on k and SumofSize(IPS). Also for any incorrect rule we need go
for correction and the correction part takes polynomial time in the size of the
input set that is SumofSize(IPS‘), finally these step 9–15 can be executed
in polynomial time in the size of the set.

– Step 16–18: These three steps depend on the number of 1-sided-contextual-
rule, let it be l and again the size of the input set.

– Step 19–20: In these two steps, firstly we search the table we if we find any two
rows are same then merge these two 1-sided-contextual-rule. So, it depends
on the size of the table.

– Step 21: It finds the regular selector. In this case, running time depends on
the size of the correct contextual rule.

Lemma 15 (Time for updating a conjecture). The identification algorithm
IA identifies a target grammar gf , in the limit, from positive data, satisfying the
property that the time for updating the conjecture is bounded by polynomial in
the size of the, SumofSize(IPS).

Proof. From the above discussion we can conclude that. 	

Lemma 16 (Number of implicit errors of guesses). The number of implicit
errors of guesses of IA, is bounded by polynomial in the cardinality of set IPS.

Proof. From the previous step by step running time discussion we can conclude
that. 	

Summing up the previous discussion about the definition of running time com-
plexity [16] and last two lemmas, we have the following theorem.

Theorem 7. The identification algorithm IA can be implemented to run in time
polynomial in the size of IPS for updating conjecture, and the number of implicit
errors of guesses is bounded by polynomial in the cardinality of set IPS.
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10 Example Run

Given input at time-unit t1 is it1 = IPS = {s1 = abbcdd, s2 = aabbbccddd}.
Examining string se

2 = se
21s

e
22 . . . se

210 = aabbbccddd, Axiom sa
1 = sa

11s
a
12 . . . sa

16 =
abbcdd.

Defining Insertion Rule:

– (u, x, v)ins where u = a, v = bbcdd, Check whether any |x| ≤ r exists with
uxv ∈ sub(se

2)? No-go to part 2.
– (u, x, v)ins where u = a, v = bbcd, Check whether any |x| ≤ r exists with

uxv ∈ sub(se
2)? No-go to part 2.

– (u, x, v)ins where u = a, v = bbc, Check whether any |x| ≤ r exists with
uxv ∈ sub(se

2)? Yes- x = ab, go to part 3.

According to condition 2 of Subsect. 6.2, (|u| + |v|)ins ≤ |sa
j |, so for the next

insertion rule - u = a, x = ab are removed from the examining string and u is
removed from axiom. Therefore string becomes bbccddd and temporary axiom
will be bbcdd. Existing v = bbc will be considered as u (left context) for the next
insertion rule. (u, x, v)ins where u = bbc, v = dd, x = c.

Now according to condition 3 of Subsect. 6.2, (|u| + |x| + |v|)ins ≤ |E| but
(|u|+|v|)ins = |sa

j |, so in this new insertion rule existing v = dd will be considered
as a u (for last selector) of the new rule. Now the axiom is covered completely
and the rest part of the string will be considered as x of the next insertion rule.
(u, x, v)ins where u = dd, v = λ, x = d. Finally the insertion rules are

– (u, x, v)ins where u = a, v = bbc, x = ab
– (u, x, v)ins where u = bbc, v = dd, x = c
– (u, x, v)ins where u = dd, v = λ, x = d

Converting into Contextual Rule: For A1

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = ab, u1 = λ,R2 : (sel2, (u2, v2))icg

where sel2 = bbc, v2 = c, u2 = λ,R3 : (sel3, (u3, v3))icg where sel3 = dd, v3 =
d, u3 = λ.

Next input set at time-unit t2 is it2 = IPS = {s3 = aaabcccd, s4 = aabccd}. s4
will be the new member of axiom set because s1, s4 both are of same lengths.
abbcdd, aabccd are considered as A1, A2 respectively.

Try to apply R1, R2, R3 on s3 but here we are not getting proper selectors
also, so we need to define the insertion rule again. But here defining insertion is
not possible from axiom A1, so we define he insertion rule from A2.

– (u, x, v)ins where u = a, v = abcc, x = a.
– (u, x, v)ins where u = abcc, v = d, x = c.

After converting into contextual rules: for A2-

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ,R2 : (sel2, (u2, v2))icg

where sel2 = abcc, v2 = c, u2 = λ.
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Now we will check that from A2, generating S1 is possible or not. Here A2 is
correct axiom for s1. So the rules will be after converting into contextual rule-

– R3 : {(sel3, (u3, v3))icg where sel3 = aa, v3 = bb, u6 = λ | (i ≥ 1)}, R4 :
{(sel4, (u4, v4))icg where sel4 = bccd, v4 = d, u4 = λ | (i ≥ 1)}.

Input at time-unit t3 is it3 = IPS = {s5 = aabbccdd}.

– From A1, deriving s5 is possible because selectors are matching but needs to
make the correction.

– In the same way we can verify that from A2 it is possible to generate s5 or
not, using second set of rule. Selectors are not matching, so need to define
insertion rule. Here defining insertion rule is possible, it suggests that axiom
is correct for S5.

– In the same way we can define insertion rules and convert insertion rules into
contextual rule to reach S5 from A2.

– R5 : (sel4, (u4, v4))icg where sel4 = aa, v1 = b, u1 = λ,R6 : (sel5, (u5, v5))icg

where sel5 = bccd, v5 = d, u5 = λ.
– Now with this new existing set of rule for A2, generating S2 is possible.

Making Correction and Updating Rules

– Here we are making the correction of R1 (for A1) to generate S5. Now let v1
be V1V2 = ab where w = 2. Xsel1Q1sel2Z = aabbccdd where sel1 = a,Q1 =
a, sel2 = bbc,X = λ,Z = cdd.

– Q1 = a = V1, Here (f = z = 1 and s < w = 2). (According to Lemma 6)
– R1 is changed and it becomes R1 : (sel1, (u1, v1))icg where sel1 = a, v1 =

a, u1 = λ.

New the set of rule will be after making the correction-for A1 to generate S2, S5.

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ
– R2 : (sel2, (u2, v2))icg where sel2 = bbc, v2 = c, u2 = λ
– R3 : (sel3, (u3, v3))icg where sel3 = dd, v3 = d, u3 = λ
– R4 : (sel4, (u4, v4))icg where sel4 = bbc, v4 = λ, u4 = b

From A2-possible to generate s2, s3, s5

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ
– R2 : (sel2, (u2, v2))icg where sel2 = abcc, v2 = c, u2 = λ
– R3 : (sel3, (u3, v3))icg where sel4 = aa, v4 = b, u4 = λ
– R4 : (sel4, (u4, v4))icg where sel5 = bccd, v5 = d, u5 = λ

Controlling over Generalization and Finding Maximum Selectors. So
two sets of rules are here, one is for axiom A1 and another one is for axiom A2.
Now we will check that how many times each rule has been used in each string
and that controls the over generalization. Table 1 contains application of each
rule for A1, s2 = aabbbccddd, s5 = aabbccdd. Also Table 2 contains application of
each rule for A2, s2 = aabbbccddd, s3 = aaabcccd, s5 = aabbccdd.
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Table 1. Finding application of each rule for A1

Rules s2 s5

R1 = (a, (λ, a)) 1 1

R2 = (bbc, (λ, c)) 1 1

R3 = (dd, (λ, d)) 1 0

R4 = (bbc, (b, λ)) 1 0

For A1, we can merge (R1, R2), (R3, R4), So according to Lemmas 12, 13 and
14. R12 = (bbc+, (a, c)), R34 = (b+bc, (b, d)), we can write R12 = (b+c+, (a, c)),
R34 = (b+c+, (b, d)).

Table 2. Finding application of each rule for A2

RULE s2 s3 s5

R1 = (a, (λ, a)) 0 1 0

R2 = (abcc, (λ, c)) 0 1 0

R3 = (aa, (λ, b)) 2 0 1

R4 = (bccd, (λ, d)) 2 0 1

For A2, we can merge (R1, R2), (R3, R4), So according to Lemmas 12, 13 and
14 - R12 = (a+b+c+, (a, c)), R34 = (b+c+d+, (b, d)).
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